
INTRINSICALLY �11 RELATIONSIVAN N. SOSKOVAbstract. An external characterization of the inductive sets on countable ab-stract structures is presented. The main result is an abstract version of the classicalSuslin-Kleene characterization of the hyperarithmetical sets.Contents1. Introduction 12. Preliminaries 23. Enumeration Structures 44. The Semi-computable sets 75. Relatively intrinsically �11 sets. 96. Ordinal notations 127. A hierarchy for the Hyperelementary sets. 17References 211. IntroductionThe external approach in the abstract recursion theory can be roughly described asfollows. Consider a countable structure A and a subset A of the domain of A. Call Arelatively intrinsically "de�nable" on A i� for every enumeration f of A, the pullbackf�1(A) of A is "de�nable" relative to the diagram of the structure f�1(A). The mainproblem of this approach is to obtain an explicit (internal) characterization of therelatively intrinsically de�nable sets. There are several known results of that type. In[Mos69a] Moschovakis proves that the relatively intrinsically recursively enumerablesets coincide with the semi-computable in the sense of [Mos69b] sets. This result isgeneralized in the papers [AKMS89] and [Chi90] where it is shown that for each con-structive ordinal �, the relatively intrinsically �0� sets are exactly those de�nable byThis work was partially supported by the Ministry of science and higher education, ContractMM 43/91 1



2 IVAN N. SOSKOVmeans of recursive �0� formulae of the language L!1!. Finally, in [Gri72] it is provedthat on each acceptable structure A the relatively intrinsically hyperarithmetical setscoincide with the hyperelementary, i.e. inductive and coinductive, on A sets.Here we continue this line of investigations by proving that the intrinsically rela-tively �11 sets on each countable structure A coincide with the sets which are induc-tively de�nable on the least acceptable extension A� of A.The external approach to the de�nition of the inductive sets leads very fast tosome of the central results of the theory presented in [Mos74] as, for example, theAbstract Kleene Theorem, the Perfect Set Theorem, the Normal Form Theorem, etc.Along with this it allows also to transfer some results of the classical recursion theoryto the abstract case. This possibility is used in the last two sections of our paperwhere a notation system for the ordinals of the inductive sets is constructed and ahierarchy for the hyperelementary sets similar to the classical Suslin-Kleene hierarchyis obtained. The last result answers at least partially the respective question posedin [Mos74]. Another hierarchy based on second order exsistentional de�nitions iscontained in [Mos74].The paper is organized as follows. In section 3 we introduce the so called enumera-tion structures and prove a general normal form theorem for the relatively intrinsicallyde�nable sets which is used intensively in the rest of the paper. Section 4 containssome preliminary facts about the Semi-computable sets. In section 5 we present theinternal characterization of the relatively intrinsically �11 sets. In section 6 we de�nea set of indices of the hyperelementary sets and show that it is complete with respectto all inductive sets. Section 7 contains the abstract version of the Suslin-KleeneTheorem.Almost all of the arguments use set theoretic forcing, an idea which we owe to[AKMS89] and [Chi90]. The main technical problem here is the lack of a suitableclass of formulae to be forced. We avoid this obstacle by using forcing of appropriateinductive de�nitions. 2. PreliminariesThroughout the paper we shall suppose �xed a countable structure A = (B; �1,�2, : : : ,�k), where each �j is an aj-ary predicate on B. We shall assume that thereader is familiar with the basic notions of the theory of the positive elementaryinduction on A as presented in [Mos74].The least acceptable extension A� of A is de�ned as follows.Let 0 be an object which does not belong to B and h:; :i be a pairing operationchosen so that neither 0 nor any element of B is an ordered pair. Let B� be the leastset containing all elements of B0 = B [ f0g and closed under the operation h:; :i .



INTRINSICALLY �11 RELATIONS 3We associate an element n� of B� with each integer n by the inductive de�nition:0� = 0(n+ 1)� = h0; n�iand put N� = f0�; 1�; 2�; : : : g.Let A� be the structure (B�;B0; �1;�2; : : : ;�k; N�; Gh;i), where Gh;i is the graphof the pairing function.As pointed out in [Mos74], the structure A� is an acceptable extension of A and insome sense it is the least acceptable extension. Namely, the following is true.2.1. Proposition. Let A � Bn: Then A is inductive (hyperelementary) on all ac-ceptable extensions of A i� A is inductive (hyperelementary) on A�.From now on we shall suppose �xed a least acceptable extension A� of A.An one to one mapping f of the set of the natural numbers N onto B is calledenumeration of A.Clearly each enumeration f of A determines a unique structure Bf = (N ; �1, �2,: : : ; �k) where �j(x1; : : : ; xaj) = �j(f(x1); : : : ; f(xaj))for all x1; : : : ; xaj 2 N .By D(Bf ) we shall denote the set of all G�odel numbers of the elements of thediagram of Bf .2.2. De�nition. Let A � Bn. The set A is relatively intrinsically �11 (HYP, recur-sively enumerable) on A if for each enumeration f of A, there exists a �11 (hyper-arithmetical, r. e.) relative to D(Bf ) subset W of Nn, such that for all x1; : : : ; xn2 N , (x1; : : : ; xn) 2 W () (f(x1); : : : ; f(xn)) 2 A:In particular the relatively intrinsically r. e. sets are studied in [Lac64, Mos69a,AKMS89, Chi90].The relatively intrinsically HYP sets are studied in [Gri72], where is proved thata set A is intrinsically HYP on A if and only if it is hyperelementary on A, providedthat A is acceptable.The following simple proposition justi�es the use of the least acceptable extensionA�.2.3. Proposition. Let A � Bn and let f be an enumeration of A. Denote by W thesubset of Nn, de�ned by(x1; : : : ; xn) 2 W () (f(x1); : : : ; f(xn)) 2 A:There exists an enumeration f� of A� such that D(Bf�) 5T D(Bf ) and such that ifW � is the pullback of A with respect to f�, then W 5m W �.



4 IVAN N. SOSKOVProof. To simplify the notation, suppose that n = 1.Let J(x; y) = 2x+1:(2y + 1) be an e�ective coding of the ordered pairs of naturalnumbers. De�ne f� by means of the following inductive de�nition:f�(0) = 0�;f�(2x+ 1) = f(x);f�(J(x; y)) = hf�(x); f�(y)i:Obviously, f� is an enumeration of A� and D(Bf�) 5T D(Bf ).Now, we have x 2 W () 2x + 1 2 W �:Indeed, x 2 W () f(x) 2 A() f�(2x+ 1) 2 A() 2x+ 1 2 W �:2.4. Corollary. If for every enumeration f� of A� the pullback of A is �11(HYP,r.e.) relative to D(Bf�), then A is intrinsically �11(HYP, r.e.) on A.2.5. Corollary. Let A � Bn and suppose that A is inductive (hyperelementary) onA�. Then A is relatively intrinsically �11(HYP) on A.Proof. Let f� be an enumeration of A�. Then the pullback W � of A has an inductivede�nition on the structure Bf�, and hence, W � is �11 relative to D(Bf�).3. Enumeration StructuresIn this section we shall describe a general way of obtaining normal form of the in-trinsically \de�nable" sets on A. This construction will help us to avoid the repetitionof the same argument in the rest of the paper.Denote by E the set of all enumerations of A and by � the set of all �nite in-jective mappings of N into B. We shall call the elements of � �nite parts and use�; �; �; �; �; : : : to denote arbitrary elements of �. By f we shall denote elements ofE.The set theoretic inclusion \�" induces a natural ordering between �nite parts andbetween �nite parts and enumerations. We shall list the properties of E,� and �needed for the proof of the normal form theorem.E1. The set � is countable and non-empty.E2. (i) � � �;(ii) � � � & � � � =) � � �:E3. � � � & � � f =) � � f .E4. If � � f and � � f , then there exists a � � f such that � � � and � � �.



INTRINSICALLY �11 RELATIONS 53.1. De�nition. Let X � � and f 2 E. The enumeration f meets X if for some� 2 X, � � f .3.2. De�nition. A subset X � � is dense in the enumeration f if8� � f 9� 2 X(� � � ):3.3. De�nition. Let F be a family of subsets of �. An enumeration f is F-genericif whenever X 2 F and X is dense in f , then f meets X.E5. For every countable family F of subsets of � and every � 2 � there exists aF-generic enumeration f � �.Comment. It is obvious that E1 { E5 hold for E, � and � de�ned above. Mostof the theorems which follow can be formulated and proved in the context of arbi-trary structures of the form hE,�,�i satisfying E1 { E5. We call such structuresenumeration structures. A detailed treatment of the enumeration structures will bepresented in a forthcoming paper.Let us �x a denumerable family F of subsets of �.3.4. De�nition. A sequence X0;X1; : : : of subsets of � is dense if X0 6= ; and if�k 2 Xk and � � �k, then there exists a �k+1 2 Xk+1 s. t. �k+1 � � .3.5. Lemma. Let fXng be a dense sequence. There exists a F-generic enumerationf which meets all sets Xn, n = 0; 1; : : :Proof. Consider the family F1 = F [ fX0;X1; : : : g. Let �0 2 X0 and let f be aF1-generic enumeration which extends �0. Using induction on n we can show that fmeets all Xn; n = 0; 1; : : :Indeed, suppose that f meets Xn. We shall show that Xn+1 is dense in f . Let� � f . By the induction hypothesis, there exists a �n 2 Xn s. t. �n � f . Take a� � f s.t. �n � � and � � � . Since the sequence fXng is dense, there exists a �n+1in Xn+1 such that � � �n+1.Now, since f is F1-generic, we have that f meets Xn+1.3.6. De�nition. A subset Q of N� E is complete (with resect to the family F) iffor each n 2 N and each � 2 �, there exists a � � � such that if f is F-generic andf � � , then (n; f) 2 Q.3.7. Proposition. Let Q be a complete subset of N� E. There exists a F-genericenumeration f such that (n; f) 2 Q, for all n 2 N .Proof. Let �0; �1; : : : be an arbitrary enumeration of all �nite parts. We shall constructa dense sequence X0;X1; : : : so that if f is a F-generic enumeration and f meets Xn,then (n; f) 2 Q, and apply Lemma 3.5.



6 IVAN N. SOSKOVThe construction of the sets X0;X1; : : : will be carried out by steps. ByXqn we shalldenote the approximation of Xn obtained at step q. We shall ensure that Xqn � Xq+1nand take Xn = 1Sq=0 Xqn.Step q = 0. Let � � �0 be such that if f is F-generic and f � � , then (0; f) 2 Q.Set X00 = f�g and X0n+1 = ;; n = 0; 1; : : : .Suppose that Xq0 ; Xq1 ; : : : are de�ned. We shall consider two cases.(a) q = hi; j; n; ri, where �i 2 Xqn and �i � �j. (Here the number r is left free inorder to insure arbitrary large q with �rst three components i; j; n):Let � � �j be such that if f � � and f is F-generic, then (n + 1; f) 2 Q. SetXq+1n+1 = Xqn+1 [ f�g and Xq+1k = Xqk , for k 6= n+ 1.(b) Do nothing, otherwise.It follows easily from the construction of sets X0;X1; : : : that the sequence is denseand if f is F-generic and f meets Xn then (n; f) 2 Q.Our next step is to give a general de�nition of intrinsically \de�nable" sets on thestructure A.Let P0; P1; : : : Pl; : : : be a sequence of n { ary predicate letters.Suppose that a satisfaction relation \j=" is given saying for all enumerations f andall n { ary vectors x of natural numbers whether Pe(x) holds on f or not.For x = x1; : : : ; xn we shall use f(x) to denote the vector (f(x1); : : : ; f(xn)) ofelements of B.3.8. De�nition. A set A � Bn is called admissible in the enumeration f (relativeto \j=") if there exists e such that for all x 2 Nnf j= Pe(x)() f(x) 2 A:In such a case we shall call Pe a f -associate of A.3.9. De�nition. The set A is intrinsically de�nable (relative to \j=") if A is admis-sible in all enumerations.Let a forcing relation �  Pe(x) be de�ned so that the following is true:(1) �  Pe(x) & � � � =) �  Pe(x);(2) There exists a denumerable family F { of subsets of � s.t. if f is F-genericthen for all e; x, f j= Pe(x)() 9� � f(�  Pe(x)):Finally, given a �nite part � and a vector x, denote by R(�; x), the set fs : s 2Bn & 9� � �(� (x) = s)g:Now, we are ready to formulate the normal form theorem for the intrinsicallyde�nable sets.



INTRINSICALLY �11 RELATIONS 73.10. Theorem.(Normal Form Theorem) Let A � Bn be intrinsically de�nable.There exist �nite part � and e such that for all x 2 N and all s 2 R(�; x),s 2 A() 9� � �(� (x) = s & �  Pe(x)):(�)Proof. Towards a contradiction, assume that there do not exist � and e having theneeded properties.Let Q � N� E be de�ned by the equivalence:(e; f) 2 Q() Pe is not f -associate of A:We shall show that the set Q is complete. Let e 2 N and � 2 �. By the assumptionfor some x 2 Nn and s 2 R(�; x) the equivalence (�) fails. We have two cases:(a) s 2 A and 8� � �(� (x) = s =) � 1 Pe(x)). Let � � � and � (x) = s. Let f beF-generic and f � � . Clearly f 6j= Pe(x). On the other hand, since f(x) = � (x), wehave f(x) 2 A. So, Pe is not f -associate of A.(b) s =2 A but for some � � �; � (x) = s and �  Pe(x). Let f be F-generic andf � � . Then f j= Pe(x) but f(x) =2 A. Therefore, (e; f) 2 Q.Now, applying Proposition 3.7, we obtain that there exists a F-generic f such thatfor all e, (e; f) 2 Q and hence A is not admissible in f .4. The Semi-computable setsThe semi-computable sets on an abstract structure are introduced by Moschovakisin [Mos69b] as a counterpart of the recursively enumerable sets of natural numbers. In[Mos69a] Moschovakis proved that on each countable structure the semi-computablesets coincide with the 8-recursively enumerable sets of Lacombe [Lac64] and, hence,with the intrinsically r. e. sets in our terminology. Since all structures under con-sideration here are countable, we shall identify the semi-computable sets with theintrinsically r. e. sets.In this section we are going to applay Theorem 3.10 to get a normal form of thesemi-computable sets on A. The satisfaction and the respective forcing relations forthe recursively enumerable sets de�ned here are used also in the more sophisticatedapplications of Theorem 3.10 in the rest of the paper.For the sake of simplicity we shall consider only subsets of B.Let us �x an e�ective coding of the �nite sets of natural numbers (by Ev weshall denote the �nite set with code v). And let W0;W1; : : : ;We; : : : be a standardenumeration of the r. e. subsets of N .Let R0; R1; : : : ; Re; : : : be a sequence of unary predicate symbols. Given an enu-meration f of the structure A, de�nef j= Re(x)() 9v(hv; xi 2 We & Ev � D(Bf )):In other words, f j= Re(x)() x 2 �e(D(Bf ));



8 IVAN N. SOSKOVwhere �e is the e-th enumeration operator, see [Rog67].Clearly, the sets WD(Bf )e = fx : f j= Re(x)g coincide with the r.e. relative toD(Bf ) subsets of N . Hence a set A is intrinsically de�nable relative to \j=" if it issemi-computable on A.The de�nition of the relation �  Re(x) is a little bit more complicated.Our starting point is the representation of the diagram D(Bf ) of the structureBf = (N ; �1, �2, : : : ; �k). The set D(Bf ) consists of codes of atoms or negatedatoms which are true on Bf . We shall call these formulae literals.Now given a �nite part � and a natural number u, de�ne �  u if u is code of aliteral L(x1; : : : ; xa), all x1; : : : ; xa are elements of the domain of � andA j= L(�(x1); : : : ; �(xa)):For each �nite set Ev = fu1; : : : ; ulg, de�ne�  Ev () �  u1 & � � � & �  uland �nally de�ne �  Re(x)() 9v(hv; xi 2 We & �  Ev):From the de�nition it follows immediately that(1) �  Re(x) & � � � =) �  Re(x);(2) For any enumeration f ,f j= Re(x)() 9� � f(�  Re(x)):Now let A be a �xed subset of B and suppose that A is semi-computable. Fromthe Normal Form Theorem it follows that there exist � and e such that for all x ands 2 R(�; x) s 2 A() 9� � �(� (x) = s & �  Re(x)):(4.1)Given �nite part � and natural number e, denote by S�;e the subset of B de�nedby the equivalences 2 S�;e () 9x 2 N9� � �(� (x) = s & �  Re(x)):4.1. Proposition. A set A is semi-computable on A i� there exist �nite part � andnatural number e such that A = S�;e.Proof. Let A be semi-computable. Then there exist �nite part � and natural numbere such that 4:1 holds for all x and s 2 R(�; x) . From here we obtain directly thatA = S�;e.To prove the proposition in the other direction, we represent each �nite part asan element of B�. For example, we can identify the �nite part � mapping x1; : : : ; xnonto t1; : : : ; tn, respectively, with the element hhx1; t1i; : : : ; hxn; tni; 0�i of B�. Nowit is easy to show that given an enumeration f� of A�, the pullback of each set



INTRINSICALLY �11 RELATIONS 9S�;e is r. e. in D(Bf�). From here using Corollary 2.4 we obtain that each S�;e issemi-computable. 5. Relatively intrinsically �11 sets.In this section we shall show that a subset of Bn is intrinsically relatively �11 if andonly if it has an inductive de�nition on the structure A�.Again for simplicity we shall assume n = 1.By Corollary 2.5, each inductive on A� subset of B is relatively intrinsically �11.To prove the converse of Corollary 2.5 we shall apply the Normal Form Theorem.The de�nitions of the satisfaction and forcing relations used here are inductive, basedon the respective satisfaction and forcing relations for the r. e. sets de�ned in theprevious section.Let R0; R1; : : : ; Re; : : : be a sequence of predicate symbols which now are supposedto be 2{ary.Given an enumeration f , de�ne f j= Re(a; x) using the de�nition given in theprevious section. Clearly the sets f(a; x) : f j= Re(a; x)g coincide with the r. e.relative to D(Bf ) subsets of N2.Now let P0; P1; : : : ; Pe; : : : be a new sequence of 2{ary predicate letters. Let a be avariable with range the (codes of) �nite strings of natural numbers. If a = hz1; : : : ; zkiand z 2 N , then by a � z we shall denote the string hz1; : : : ; zk; zi. By hi we shalldenote the empty string.Let f be an enumeration of A. The satisfaction relation f j= Pe(a; x) is de�ned bymeans of the following inductive de�nition:5.1. De�nition.If f j= Re(a; x), then f j= Pe(a; x);if 8z(f j= Pe(a � z; x)), then f j= Pe(a; x).It is natural to associate ordinals with the sequences e; a; x such that f j= Pe(a; x)by the following:5.2. De�nition. Let f j= Pe(a; x), thenje; a; xjf = 0, if f j= Re(a; x) andje; a; xjf = sup(je; a � z; xjf + 1 : z 2 N), otherwise.The following lemma can be proved by means of the standard argument whichshows that the �11 sets coincide with the inductive sets on the structure of the arith-metic.5.3. Lemma. The sets Ye = fx : f j= Pe(hi; x)g coincide with the �11 relative toD(Bf ) subsets of N .



10 IVAN N. SOSKOVOur next task is to de�ne the forcing relation �  Pe(a; x). The de�nition isinductive following the de�nition of the relation \j= " and the usual forcing rules forinterpretation of the 8-quanti�er.5.4. De�nition.If �  Re(a; x), then �  Pe(a; x);If 8z 2 N8� � �9� � � (�  Pe(a � z; x)), then �  Pe(a; x).We associate ordinals with the tuples (e; �; a; x) such that �  Pe(a; x) as usual.5.5. De�nition.je; �; a; xj = 0, if �  Re(a; x),je; �; a; xj = sup(min(je; �; a � z; xj+1 : � � � ) : � � �; z 2 N), if � 1 Re(a; x).The following Lemma is immediate from the De�nition 5.4.5.6. Lemma. Let �; � be �nite parts, � � � and �  Pe(a; x), then �  Pe(a; x).Let F1 be the family containing all subsetsXe;�;a;x;z = f� : �  Pe(a � z; x) &je; �; a � z; xj < je; �; a; xjg of �:5.7. Lemma. Let f be a F1-generic enumeration, � � f and �  Pe(a; x). Thenf j= Pe(a; x).Proof. Trans�nite induction on je; �; a; xj. Skipping the obvious case f j= Re(a; x),assume f 6j= Re(a; x). Fix a z 2 N and consider the elementX = f� : �  Pe(a � z; x) & je; �; a � z; xj < je; �; a; xjgof F1. We shall show that X is dense in f . Let � � f . Take a � � f such that � � �and � � � . Since f 6j= Re(a; x); � 1 Re(a; x) and hence by the de�nition of \" thereexists a � � � which belongs to X. From here, by genericity, there exists a � � fwhich belongs to X.Now, we have that je; �; a � z; xj < je; �; a; xj and �  Pe(a � z; x). Hence, by theinductive hypothesis, f j= Pe(a�z; x). From here, it follows that 8z(f j= Pe(a�z; x)),and hence, f j= Pe(a; x).Denote by F2 the family containing all sets f� : 9z8� � � (� 1 Pe(a � z; x))g.5.8. Lemma. Let f be F2-generic and f j= Pe(a; x). Then there exists a � � f suchthat �  Pe(a; x).



INTRINSICALLY �11 RELATIONS 11Proof. Trans�nite induction on je; a; xjf.Assume that 8� � f(� 1 Pe(a; x)). Then the set X = f� : 9z8� � � (� 1Pe(a � z; x))g is dense in f . Hence there exist a � � f and z 2 N , such that8� � � (� 1 Pe(a � z; x)).On the other hand, f j= Pe(a; x) and f 6j= Re(a; x). (Otherwise we could �nd a� � f s.t. �  Re(a; x)). Hence, f j= Pe(a � z; x), and hence, by induction, thereexists a � � f s.t. � � � and �  Pe(a � z; x). A contradiction.5.9. Theorem. Let A � B. Then A is relatively intrinsically �11 on A i� A isinductive on A�.Proof. As we have already pointed out, in the one direction the theorem follows fromCorollary 2.5.Suppose now that A is relatively intrinsically �11 on A. By the Normal FormTheorem there exist � and e such that for all x 2 N and s 2 R(�; x),s 2 A() 9� � �(� (x) = s & �  Pe(hi; x)):Let domain of � = fw1; : : : ; wrg and �(wi) = ti; i = 1; : : : ; r.Fix a x0 =2 dom(�). Then we have the following representation of A.s 2 A()9� � �(� (x0) = s & �  Pe(hi; x0) ors = t1 & 9� � �(�  Pe(hi; w1; y)) or� � �s = tr & 9� � �(�  Pe(hi; wr; y)):(5.1)Now considering the �nite parts as elements of B�, using the fact that the setf(�; a; x) : �  Re(a; x)g is semi-computable and hence �rst order de�nable on A�,see [Mos69a], we obtain easily that the set f(�; a; x) : �  Pe(a; x)g is inductive onA� and, hence, that A is inductive on A�.5.10. Corollary. Let A � B. Then A is relatively intrinsically HYP on A i� A ishyperelementary on A�.Proof. Let A be relatively intrinsically HYP on A. Then A and the complement Aof A are relatively intrinsically �11 and hence both are inductive.Comment. The proof of Theorem 5.9 gives in fact more than formulated. The repre-sentation (5.1) gives a normal form of the inductive on A� sets. An easy applicationof this normal form is the characterization of the inductive sets by means of theGame quanti�er [Mos74]. Another application of Theorem 5.9 shows that on eachcountable acceptable structure A the �11 sets on A coincide with the inductive ones[Mos74]. Indeed, since the �11 sets on A are de�ned by means of �11-formulae in thelanguage of A, it is obvious that each such set is relatively intrinsically �11.



12 IVAN N. SOSKOV6. Ordinal notationsOne of the main di�culties in the theory of the inductive (�11) sets on abstractstructures is the lack of a nice notational system for the ordinals of the inductive setsas, for example, the set O in the classical recursion theory (cf. [Mos69c]). Here weshall obtain notations of the ordinals of the inductive sets on A� by transferring theclassical ordinal notational systems via enumerations of A.Consider a subset X of N . The set of the indices of the hyperarithmetical setsrelative to X is de�ned by means of the following inductive de�nition, [Sho67]:6.1. De�nition.(1) For each e, h0; ei is index;(2) If e is index then, h1; ei is index;(3) If all elements of WXe are indices, then h2; ei is index.Here WXe denotes the set �e(X), where �e is the e-th enumeration operator.The ordinals associated with the elements of the set IndX of all indices relative toX are as follows:(1) jh0; eijX = 0, for all e 2 N ;(2) jh1; eijX = jejX + 1;(3) jh2; eijX = sup(jzjX + 1 : z 2 WXe ).The following facts should be well known though the author was not able to �ndthe exact references.Let !X1 be the least ordinal which is not constructive relative to X.Fact 1. !X1 = fjejX : e 2 IndXg.Fact 2. There exists a recursive function h, which does not depend on X, suchthat if X � N , then a 2 OX () h(a) 2 IndX:Here OX is the set of the Church - Kleene ordinal notations relativized to X, see[Rog67].We prefer to work with IndX instead of OX because of the obvious inductivede�nition of IndX. Both sets are very similar though.Let I be a new unary predicate symbol. For each enumeration f of A de�nef j= I(u), by means of the following repetition of De�nition 6.1.6.2. De�nition.(1) f j= I(h0; ei), for all e 2 N ;(2) If f j= I(e), then f j= I(h1; ei);(3) If 8z(f j= Re(z) =) f j= I(z)), then f j= I(h2; ei).



INTRINSICALLY �11 RELATIONS 13Here R0; R1; : : : ; Re; : : : are unary predicate symbols and f j= Re(z) is de�ned asin Section 4. So, we have thatfz : f j= Re(z)g = WD(Bf )e :Obviously, f j= I(u)() u 2 IndD(Bf ).Set jf; ujI = jujD(Bf).Our next task is to de�ne the relation �  I(u). This will be an inductive de�nitionbased on the de�nition of �  Re(z), given in Section 4.6.3. De�nition.(1) �  I(h0; ei), for all e 2 N ;(2) If �  I(e), then �  I(h1; ei);(3) If 8z8� � �(�  Re(z) =) 9� � � (�  I(z))), then �  I(h2; ei).The ordinals associated with the pairs �; u such that �  I(u) are given by6.4. De�nition.(1) j�; h0; eijI = 0;(2) j�; h1; eijI = j�; ejI + 1;(3) j�; h2; eijI = sup(�(�; z) + 1 : � � �; z 2 N; �  Re(z)), where �(�; z) =min(j�; zjI : � � � ).Let IndA = f(�; u) : �  I(u)g. From de�nition 6.3 it follows immediately thatIndA is inductive on A�.Here we shall show two nice properties of the set IndA. Namely, that it is acomplete inductive set and that the closure ordinal �A� of the structure A� is equalto fj�; ujI : �  I(u)g.In the next section we shall use the elements of IndA as indices for the hyperele-mentary sets in a characterization of those sets similar to the classical Suslin - Kleenecharacterization of the hyperarithmetical (Borel) sets.6.5. Lemma. Let �  I(u) and � � �1. Then �1  I(u) and j�1; ujI 5 j�; ujI.Proof. Follows directly from the corresponding de�nitions.Let F1 be the family of subsets of � containing all sets f� : j�; zjI < j�; ujIg; � 2 �and z; u 2 N .6.6. Lemma. Let f be a F1-generic enumeration of A. Suppose that � � f and�  I(u). Then, f  I(u) and jf; ujI 5 j�; ujI.



14 IVAN N. SOSKOVProof. Trans�nite induction on j�; ujI. Skipping the obvious cases u = h0; ei oru = h1; ei, suppose that u = h2; ei. Let z 2 N and f j= Re(z). Consider theelement X of F1 de�ned by � 2 X () j�; zjI < j�; h2; eijI. We shall show that Xis dense in f . Let � � f . We can assume that �  Re(z). Then by De�nition 6.4there exists a � � � such that � 2 X. Hence, by genericity, there exists a � � fs.t. �  I(z) & j�; zjI < j�; h2; eijI . By the induction hypothesis, f j= I(z) andjf; zjI 5 j�; zjI < j�; h2; eijI . So, f j= I(h2; ei) andjf; h2; eijI = sup(jf; zjI + 1 : f j= Re(z)) 5 j�; h2; eijI:Let F2 be the family containing all sets f� : 9z 2 N(�  Re(z) & 8� � � (� 1I(z)))g.6.7. Lemma. Let f be a F2-generic enumeration of A and f j= I(u). Then thereexists a � � f s.t. �  I(u).Proof. Trans�nite induction on jf; ujI.Consider the nontrivial case u = h2; ei. Assume that 8� � f(� 1 I(h2; ei)). Then,the set X = f� : 9z(�  Re(z) & 8� � � (� 1 I(z)))g is dense in f . Hence there exist� � f and z such that �  Re(z) & 8� � � (� 1 I(z)). From here it follows thatf j= Re(z) and hence f j= I(z). By the induction hypothesis there exists a � � � s.t.�  I(z). A contradiction.Combining Lemma 6.6 and Lemma 6.7, we obtain the following:6.8. Theorem. There exists a denumerable family FI of subsets of � s.t. if f is aFI-generic enumeration of A, then the following is true:(i) f j= I(u)() 9�(� � f & �  I(u));(ii) � � f & �  I(u) =) jf; ujI 5 j�; ujI.Proof. Let FI = F1[ F2.Denote by �� = �A� the closure ordinal of the structure A� [Mos74].6.9. Theorem. �� = fj�; ujI : (�; u) 2 IndAg = min(!D(Bf )1 : f is enumeration ofA).Proof. Denote fj�; ujI : (�; u) 2 IndAg by �0 and min(!D(Bf )1 : f is enumeration ofA) by �1.The ordinal �0 is closure of the inductive de�nition (De�nition 6.3) of the set IndAon A� and hence, �0 5 ��.Let f� be an enumeration of A�. Clearly each inductive de�nition on A� canbe simulated \step by step" on Bf� , and hence, �� 5 !D(Bf�)1 . Therefore, �� 5min(!D(Bf�)1 : f� is enumeration of A�) 5 �1, by Proposition 2.3.



INTRINSICALLY �11 RELATIONS 15So, we have �0 5 �� 5 �1. To �nish the proof it remains to show that �0 = �1.Take a � < �1. Let f be a FI-generic enumeration of A. Clearly, � < !D(Bf )1 andhence there exists an e, such that f j= I(e) and jf; ejI = �. By Theorem 6.8, thereexists a � � f such that �  I(e) and � 5 j�; ejI. So, � < �0.6.10. De�nition. � w I(u), if 8� � �9� � � (�  I(u)).6.11. Proposition. The following are equivalent:(i) 8f � �(f is FI-generic =) f j= I(u)).(ii) � w I(u):(iii) �  I(u):Proof. (i) �! (ii) and (iii) �! (i) follow from Theorem 6.8.The proof of (ii) �! (iii) is by induction on k�; ukI, de�ned byk�; ukI = 0, if u = h0; ei or u = h2; ei.k�; h1; eikI = k�; ekI + 1.Let � w I(u). If u = h0; ei, then �  I(u) by de�nition. If u = h1; ei, then clearly� w I(e) and hence, by the induction hypothesis, �  I(e). So �  I(h1; ei).Suppose now that u = h2; ei. Let � � � & �  Re(z) for some z 2 N . Let � � � and�  I(h2; ei). Clearly �  Re(z), and hence, there exists a � � � such that �  I(z).Obviously � � � . So, we have that 8� � �(�  Re(z) =) 9� � � (�  I(z))). Hence,�  I(h2; ei).Our next goal is to show that the set IndA is complete with respect to the relativelyintrinsically �11 sets. As in the previous cases, we shall carry out the proof for n = 1.Let f be an enumeration of A. It is well known that a set W is �11 in D(Bf ) i� Wis many-one reducible to OD(Bf ) and hence, by Fact 2, i� W is many-one reducibleto IndD(Bf ). So, W is �11 in D(Bf ) i� there exists a total recursive function h, suchthat: x 2 W () f j= I(h(x)):Given A � B and an enumeration f of A, call the recursive function h an f-associate of A if for all x 2 N ,f(x) 2 A() f j= I(h(x)):Given �nite part �, x 2 N and s 2 R(�; x), denote by � � hx; si the �nite part �0such that dom(�0) = dom(�) [ fxg and �0(x) = s.6.12. Lemma. Let A � B be intrinsically relatively �11 on A. Then there exist �and recursive function h such that for all x 2 N and all s 2 R(�; x),s 2 A() � � hx; si  I(h(x)):



16 IVAN N. SOSKOVProof. Assume the contrary. Fix an arbitrary enumeration h0; h1; : : : ; he; : : : of thetotal binary recursive functions and consider the subset Q of N� E, de�ned by(e; f) 2 Q() he is not f -associate of A:We shall show, that Q is complete (with respect to the family FI).Let � 2 � and e 2 N . By assumption, there exist x 2 N and s 2 R(�; x) such thats 2 A< � � hx; si  I(he(x)):We have two cases:1. s 2 A and � � hx; si 1 I(he(x)). By Proposition 6.11, � � hx; si 1w I(he(x)),and, hence, there exists a � � � � hx; si, such that 8� � � (� 1 I(he(x)):Let f be FI-generic and f � � . Obviously (e; f) 2 Q.2. s =2 A and � � hx; si  I(he(x)): Take � = � � hx; si. Clearly, for all FI-genericenumerations, if f � � then (e; f) 2 Q.By the completeness of Q, there exist a FI-generic f such that for all e, (e; f) 2 Q.The last contradicts the fact that A is relatively intrinsically �11.Let A be an relatively intrinsically �11 subset of B. According to the Lemma above,there exist �nite part � and recursive function h, such that for all x 2 N , and s 2R(�; x), s 2 A() � � hx; si  I(h(x)):Let domain of � be fw1; : : : ; wrg and �(wi) = ti. Fix a x0 =2 fw1; : : : ; wrg. Thens 2 A()s 6= t1 & � � � & s 6= tr & � � hx0; si  I(h(x0))or s = t1 & �  I(h(w1))� � �or s = tr & �  I(h(wr)):(6.1)Let i(s) be a function on B� de�ned byi(s) = h� � hx0; si; h(x0)i; if s 6= t1; : : : ; s 6= tr;i(s) = h�; h(w1)i; if s = t1;...i(s) = h�; h(wr)i; if s = tr:Obviously, s 2 A() i(s) 2 IndA.The function i has a very simple de�nition and it is obviously e�ective on B�.Actually, i is Prime Computable on B� relative to the empty set of givens [Mos69b].So, we have proved the following theorem:6.13. Theorem. Let A � B. Then the following are equivalent:(i) A is relatively intrinsically �11 on A;



INTRINSICALLY �11 RELATIONS 17(ii) A is inductive on A�;(iii) There exists a prime computable relative to f;g function i such thats 2 A() i(s) 2 IndA:7. A hierarchy for the Hyperelementary sets.One of the main results in the classical theory of the hyperarithmetical sets is theSuslin-Kleene theorem which allows us to construct the �11-sets starting from the r.e.sets and iterating the operations taking the complement and e�ective union.As shown in [Mos74], it is not possible to obtain a direct generalization of thistheorem on arbitrary denumerable abstract structures.Here we shall transfer the Suslin-Kleene theorem as far as possible using enumer-ations.First we shall attach to each index (�; u) 2 IndA a set H�;u in a way very similarto that used in the proof of the Suslin-Kleene theorem given in [Sho67].After that we shall show that the sets H�;u coincide with the hyperelementary ones.To avoid some technical complications, we shall formulate and prove our results onlyfor subsets of B. However, all results can be easily generalized for subsets of Bn,n = 1.Recall the de�nition of the forcing �  Re(y) from section 4. Clearly the setG�;e = f(�; y) : � � � & �  Re(y)g is semi-computable on A�.Denote by S�;e the set fs : 9x9� � �(� (x) = s & �  Re(x))g. From the character-ization of the semi-computable sets in section 4., it follows that the sets S�;e coincidewith the semi-computable subsets of B.The sets H�;u are de�ned for all �; u s.t. �  I(u) by means of induction on j�; ujI.7.1. De�nition.(1) H�;h0;ei = S�;e;(2) H�;h1;ei = S��� BnH�;e;(3) H�;h2;ei = S(�;y)2G�;ej�;yjI<j�;h2;eijI H�;y.Comment. The problematic clause in the above de�nition is the third one. We areforced to use the restriction j�; yjI < j�; h2; eijI because, in general, we can not assertthat �  I(h2; ei) & � � � & �  Re(y); implies j�; yjI < j�; h2; eijI .So in the third clause, we have a hyperelementary union but not a semi-computableone. The fact that the set f(�; y) : (�; y) 2 G�;e & j�; yjI < j�; h2; eijIg is hyperele-mentary follows directly from the Stage comparison theorem [Mos74].



18 IVAN N. SOSKOVOn the other hand, using Proposition 6.11, one can easily show that for all (�; y) 2G�;e; �  I(y) and, as we shall see later, we have for all � and e,H�;h2;ei = [(�;y)2G�;e H�;y:Of course, since we want an inductive de�nition of the sets H�;u, we can not replacethe third clause by the last equality.Let H be a new binary predicate symbol. Given an enumeration f and naturalnumbers u; x such that f j= I(u), we de�ne the relation f j=1 H(u; x) by means ofinduction on jf; ujI. Here the meaning of f j= Re(x) is x 2 WD(Bf )e as usual.(1) If f j= Re(x), then f j=1 H(h0; ei; x);(2) If f 6j=1 H(e; x), then f j=1 H(h1; ei; x);(3) If 9y(f j= Re(y) & f j=1 H(y; x)), then f j=1 H(h2; ei; x).Let f j= H(u; x)() f j= I(u) & f j=1 H(u; x). Using the Suslin-Kleene theoremin the form given in [Sho67], relativized to D(Bf ), we obtain that a set W is hyper-arithmetical relative to D(Bf ) i� there exists a u, such that W = fx : f j= H(u; x)g.For �nite parts, we de�ne the relation � 1 H(u; x), again for those u such that�  I(u), by induction on j�; ujI.(1) If �  Re(x), then � 1 H(h0; ei; x);(2) If 8� � �(� 11 H(e; x)), then � 1 H(h1; ei; x);(3) If 9y(�  Re(y) & 8� � �(j�; yjI < j�; h2; eijI) & � 1 H(y; x)), then � 1H(h2; ei; x).Let �  H(u; x)() �  I(u) & � 1 H(u; x).The following lemma is obvious:7.2. Lemma. If �  H(u; x) and � � � , then �  H(u; x).Let FH = FI [ ff� : �  H(u; x)g : u; x 2 Ng:7.3. Lemma. For each FH-generic enumeration f ,f j= H(u; x)() 9� � f(�  H(u; x)):(7.1)Proof. If f 6j= I(u), then (7.1) is obvious.Let Indf = fu : f j= I(u)g. For each element u of Indf setjuj = min(j�; ujI : � � f & �  I(u)):We shall prove (7.1) for the elements u of Indf by means of trans�nite induction onjuj.We have to consider three cases:(a) u = h0; ei. Then f j= H(u; x)() f j= Re(x) and �  H(u; x)() �  Re(x).From here (7.1) follows directly.



INTRINSICALLY �11 RELATIONS 19(b) u = h1; ei. Let �0 � f be such that juj = j�0; ujI. We have that j�0; ejI <j�0; h1; eijI , and hence, jej < juj.Suppose that for some �; � � f and �  H(u; x). Assume f 6j= H(u; x). Thenf j= H(e; x), and hence, by induction there exists � � f , s.t. �  H(e; x). We canassume that � � �. The last contradicts �  H(u; x).Suppose that f j= H(u; x) but 8� � f(� 1 H(u; x)). From here it follows thatf� : �  H(e; x)g is dense in f . By genericity there exists � � f such that �  H(e; x).By induction, f j= H(e; x). A contradiction.(c) u = h2; ei. Let �0 � f be such that jh2; eij = j�0; h2; eijI .Suppose that for some � � f , �  H(u; x). Then there exists a y s.t. �  Re(y),�  H(y; x) and for all � � �; j�; yjI < j�; h2; eijI .Take a � � f , such that �0 � � , and � � � . Using Lemma 6.5, we obtainj�; yjI < j�; h2; eijI 5 j�0; h2; eijI . So jyj < jh2; eij. By induction, f j= H(y; x). Since�  Re(y), f j= Re(y). Therefore, f j= H(h2; ei; x).Assume now that f j= H(h2; ei; x). Then for some y 2 N , f j= Re(y) and f j=H(y; x). Consider the element X = f� : j�; yjI < j�0; h2; eijIg. We have that X isdense in f . Indeed, take a � � f . We can assume that �0 � � and �  Re(y). Since�0  I(h2; ei), there exists a � � � s.t. �  I(y) and j�; yjI < j�0; h2; eijI .By genericity, jyj < jh2; eij. Fix a �0 � f such that jyj = j�0; yjI.By induction, there exists a � � f , such that �  H(y; x) and �  Re(y). Finally,assume that 8� � f9� � �(j�; h2; eijI < j�0; h2; eijI). From here, by genericity, thereexists a � � f such that j�; h2; eijI < j�0; h2; eijI . The last contradicts the choice of�0. So, for some � � f , 8� � �(j�; h2; eijI = j�0; h2; eijI).Let � � f and let � majorize �0; �0; �; �. We shall show that �  H(h2; ei; x). Since� � �0; �  I(h2; ei). Since � � �; �  Re(y) and �  H(y; x). Let � � �. Then� � �0, and � � �. We have j�; yjI 5 j�0; yjI and j�0; h2; eijI 5 j�; h2; eijI . Combiningboth, we obtain j�; yjI 5 j�0; yjI < j�0; h2; eijI 5 j�; h2; eijI :So, j�; yjI < j�; h2; eijI .7.4. Lemma. Let A � B be relatively intrinsically HYP on A. There exist � and usuch that �  I(u) and for all x 2 N and s 2 R(�; x),s 2 A() 9� � �(� (x) = s & �  H(u; x)):(7.2)Proof. Assume the contrary. ConsiderQ = f(u; f) : f 6j= I(u) or 9x(f(x) 2 A< f j= H(u; x))g:We shall show that Q is complete (with respect to the family FH).Let � and u be given. By assumption � 1 I(u) or (7.2) fails for some x 2 N andsome s 2 R(�; x).



20 IVAN N. SOSKOV1. Let � 1 I(u). Then, by Proposition 6.11, � 1w I(u), and hence, for some� � �; 8� � � (� 1 I(u)). Let f � � and f be FH-generic. Then clearly, f 6j= I(u),and hence, (u; f) 2 Q.2. Let �  I(u). We have two subcases.2.1. s 2 A and 8� � �(� (x) = s =) � 1 H(u; x)). Take a �0 � � such that�0(x) = s. Clearly, if f � �0 is FH-generic, then (u; f) 2 Q .2.2. s =2 A and for some � � �; � (x) = s and �  H(u; x). Let f � � beFH-generic. Then obviously, f j= H(u; x) and f(x) = s =2 A. So, (u; f) 2 Q.By Proposition 3.7, it follows from here that there exists a f s.t. (u; f) 2 Q, forall u. Clearly A does not have a HYP associate in this f . A contradiction.7.5. De�nition. Given (�; u) 2 IndA, de�ne the setA�;u = fs : 9x9� � �(� (x) = s & �  H(u; x))g:7.6. Theorem. The following are equivalent for all A � B:(i) A is relatively intrinsically HYP on A;(ii) A is hyperelementary on A�;(iii) There exists (�; u) 2 IndA s.t. A = A�;u.Proof. The equivalence (i)  ! (ii) is proven in Corollary 5.10.The implication (i) �! (iii), and hence, the implication (ii) �! (iii) follow fromthe previous Lemma.It remains to show that each of the sets A�;u is hyperelementary on A�. Forwe can de�ne an inductive on A� relation R(�; u; x; i), such that if �  I(u), thenR(�; u; x; 0) () �  H(u; x) and R(�; u; x; 1)() � 1 H(u; x). The de�nition of Rfollows the de�nition of the relation \1". The only nontrivial moment is to translatethe part 8� � �(j�; yjI < j�; h2; eijI) of the third clause of the de�nition. This can bedone by means of the Stage comparison theorem [Mos74].Now, having the inductive relation R we can de�ne:s 2 A�;u () 9x9� � �(� (x) = s & R(�; u; x; 0))s 2 BnA�;u () 8x8� � �(� (x) 6= s _ R(�; u; x; 1)):The last two equivalencies show that both A�;u and the complement of A�;u areinductive, and hence that A�;u is hyperelementary on A�.7.7. Lemma. The sets A�;h0;ei coincide with the semi-computable on A sets.Given a subset A of B, denote by A the set BnA.7.8. Lemma. Let �  I(h1; ei). Then A�;h1;ei = [���A�;e.



INTRINSICALLY �11 RELATIONS 21Proof. Let s 2 A�;h1;ei. Then for some � � �, and some x, � (x) = s and � H(h1; ei; x). Hence, 8� � � (� 1 H(e; x)), and therefore, s 2 A�;e.Suppose now, that s 2 A�;e for some � � �. Then8� � �8x(�(x) = s =) � 1 H(e; x)):Clearly, there exists x0 2 N and extension �0 of � s.t. �0(x0) = s. We have that�0  H(h1; ei; x0). So, s 2 A�;h1;ei.7.9. Lemma. Let �  I(h2; ei). ThenA�;h2;ei = [(�;y)2G�;ej�;yjI<j�;h2;eijI A�;y = [(�;y)2G�;e A�;y:Proof. Suppose that (�; y) 2 G�;e, i.e. � � � and �  Re(y). Let s 2 A�;y. Then forsome � � � and some x 2 N , �(x) = s and �  H(y; x):Let f be an FH-generic enumeration s.t. f � �. Then f � �, and hence, f j=I(h2; ei). Since f � �, we have that f j= Re(y) and f j= H(y; x). Hence f j=H(h2; ei; x). Then, there exists a �, s.t. � � � � f and � j= H(h2; ei; x). From hereit follows that s 2 A�;h2;ei.Let s 2 A�;h2;ei. Then for some x 2 N and some � � �, � (x) = s & �  H(h2; ei; x).By the de�nition of \1", there exists y such that �  H(y; x); �  Re(y) andj�; yjI < j�; h2; eijI 5 j�; h2; eijI. Clearly s 2 A�;y.7.10. Theorem. For all (�; u) 2 IndA, A�;u = H�;u:Proof. Trans�nite induction on j�; ujI, using Lemmas 7.7 { 7.9.References[AKMS89] C. Ash, J. Knight, M. Manasse, and T. Slaman, Generic copies of countable structures,Ann. Pure Appl. Logic 42 (1989), 195{205.[Chi90] J. Chisholm, E�ective model theory vs. recursive model theory, J. Symbolic Logic 55(1990), 1168{1191.[Gri72] T. J. Grilliot, Omitting types: applications to recursion theory, J. Symbolic Logic 37(1972), 81{89.[Lac64] D. Lacombe,Deux generalizations de la notion de recursivite relative, C. R. de l'Academiedes Sciences de Paris 258 (1964), 3410{3413.[Mos69a] Y. N. Moschovakis, Abstract computability and invariant de�nability, J. Symbolic Logic34 (1969), 605{633.[Mos69b] Y. N. Moschovakis, Abstract �rst order computability I, Trans. Amer. Math. Soc. 138(1969), 465{504.[Mos69c] Y. N. Moschovakis, Abstract �rst order computability II, Trans. Amer. Math. Soc. 138(1969), 505{.[Mos74] Y. N. Moschovakis, Elementary induction on abstract structures, North - Holland, Ams-terdam, 1974.
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