A JUMP INVERSION THEOREM FOR THE ENUMERATION JUMP

I. N. SOSKOV

Abstract

We prove a jump inversion theorem for the enumeration jump and a minimal pair type theorem for the enumeration reducibilty. As an application some results of Selman, Case and Ash are obtained.

1. Introduction

Given two sets of natural numbers A and B, we say that A is enumeration reducible to $B\left(A \leq_{e} B\right)$ if $A=?_{z}(B)$ for some enumeration operator $?_{z}$. In other words, using the notation D_{v} for the finite set having canonical code v and $W_{0}, \ldots, W_{z}, \ldots$ for the Gödel enumeration of the r.e. sets, we have

$$
A \leq_{e} B \Longleftrightarrow \exists z \forall x\left(x \in A \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{z} \& D_{v} \subseteq B\right)\right.
$$

The relation \leq_{ϵ} is reflexive and transitive and induces an equivalence relation \equiv_{ϵ} on all subsets of \mathbb{N}. The respective equivalence classes are called enumeration degrees. For an introduction to the enumeration degrees the reader might consult Cooper [4].

Given a set A denote by A^{+}the set $A \oplus(\mathbb{N} \backslash A)$. The set A is called total iff $A \equiv \equiv_{e} A^{+}$. Clearly A is recursively enumerable in B iff $A \leq_{e} B^{+}$and A is recursive in B iff $A^{+} \leq_{\epsilon} B^{+}$. Notice that the graph of every total function is a total set.

The enumeration jump operator is defined in Cooper [3] and further studied by McEvoy [5]. Here we shall use the following definition of the e-jump which is m-equivalent to the original one, see [5]:
1.1. Definition. Given a set A, let $K_{A}^{0}=\left\{\langle x, z\rangle: x \in ?_{z}(A)\right\}$. Define the e-jump A_{e}^{\prime} of A to be the set $\left(K_{A}^{0}\right)^{+}$.

Several properties of the e-jump are proved in [5]. Among them it is shown that the e-jump is monotone, agrees with \equiv_{ϵ} and that for any sets A and B, A is Σ_{n+1}^{0} relatively to B iff $A \leq_{\epsilon}\left(B^{+}\right)_{e}^{(n)}$, where for every set $B, B_{e}^{(0)}=B$ and $B_{e}^{(n+1)}$ is the ϵ-jump of $B_{e}^{(n)}$.

Though for total sets the e-jump and the Turing jump are enumeration equivalent, in the general case this is not true. So, for example, the ϵ-jump of Kleene's set K is

[^0]enumeration equivalent to \emptyset^{\prime} while the Turing jump of K is enumeration equivalent to $\emptyset^{\prime \prime}$.

Since we are going to consider only e-jumps here, from now on we shall omit the subscript e in the notation of the ϵ-jump. So for any set A by $A^{(n)}$ we shall denote the n-th ϵ-jump of A.

In [5] several analogs of the known jump-inversion theorems for the Turing reducibility are proved, but the relativised versions are not considered. So the following natural question is left open. Given a set B, does there exist a total set F such that $B \leq_{e} F$ and $B^{\prime} \equiv_{\epsilon} F^{\prime}$?

In the present paper we are going to prove the following result which gives a positive answer to the question above. Given $k+1$ sets B_{0}, \ldots, B_{k}, we define for every $i \leq k$ the set $P\left(B_{0}, \ldots, B_{i}\right)$ by means of the following inductive definition:
(i) $P\left(B_{0}\right)=B_{0}$;
(ii) If $i<k$, then $P\left(B_{0}, \ldots, B_{i+1}\right)=\left(P\left(B_{0}, \ldots, B_{i}\right)\right)^{\prime} \oplus B_{i+1}$.
1.2. Theorem. Let $k \geq 0$ and B_{0}, \ldots, B_{k} be arbitrary sets of natural numbers. Let Q be a total set and $\mathcal{P}\left(B_{0}, \ldots, B_{k}\right) \leq_{e} Q$. There exists a total set F having the following properties:
(i) For all $i \leq k, B_{i} \in \sum_{i+1}^{F}$;
(ii) For all $i, 1 \leq i \leq k, F^{(i)} \equiv_{e} F \oplus \mathcal{P}\left(B_{0}, \ldots, B_{i-1}\right)^{\prime}$;
(iii) $F^{(k)} \equiv_{e} Q$.

Notice that if $B_{0}=\cdots=B_{k}=\emptyset$, then $\mathcal{P}\left(B_{0}, \ldots, B_{k}\right) \equiv_{\epsilon} \emptyset^{(k)}$ and hence, since both sets are total, they are Turing equivalent. So Theorem 1.2 is a generalization of Friedberg's jump-inversion theorem.

We shall also prove the following "type omitting" version of the above theorem:
1.3. Theorem. Let $k>n \geq 0, B_{0}, \ldots, B_{k}$ be arbitrary sets of natural numbers. Let $A \subseteq \mathbb{N}$ and let Q be a total subset of \mathbb{N} such that $\mathcal{P}\left(B_{0}, \ldots, B_{k}\right) \leq_{\epsilon} Q$ and $A^{+} \leq_{e} Q$. Suppose also that $A \not \mathbb{Z}_{e} \mathcal{P}\left(B_{0}, \ldots, B_{n}\right)$. Then there exists a total set F having the following properties:
(i) For all $i \leq k, B_{i} \in \Sigma_{i+1}^{F}$;
(ii) For all $i, 1 \leq i \leq k, F^{(i)} \equiv_{e} F \oplus \mathcal{P}\left(B_{0}, \ldots, B_{i-1}\right)^{\prime}$;
(iii) $F^{(k)} \equiv_{e} Q$.
(iv) $A \not \mathbb{Z}_{e} F^{(n)}$.

In [8] Selman gives the following characterization of the enumeration reducibility in terms of the relation "recursively enumerable in":

$$
A \leq_{e} B \Longleftrightarrow \forall X(B \text { is r.e. in } X \Rightarrow A \text { is r.e. in } X) .
$$

As an application of the so far formulated theorems we can get an upper bound of the universal quantifier in the equivalence above:
1.4. Theorem. $A \leq_{e} B$ iff for all total X, B is r.e in X and $X^{\prime} \equiv_{e} B^{\prime}$ implies A is r.e. in X.

Proof. Clearly for total X, B is r.e. in X iff $B \leq_{\epsilon} X$. Now suppose that for all total $X, B \leq_{e} X \& X^{\prime} \equiv_{\epsilon} B^{\prime} \Rightarrow A \leq_{e} X$. First we shall show that $A^{+} \leq_{\epsilon} B^{\prime}$. Indeed, by Theorem 1.2, there exists a total G such that $B \leq_{\epsilon} G$ and $G^{\prime} \equiv_{\epsilon} B^{\prime}$. Then $A \leq_{\epsilon} G$ and hence $A^{\prime} \leq_{e} G^{\prime} \leq_{e} B^{\prime}$. So since $A^{+} \leq_{e} A^{\prime}, A^{+} \leq_{e} B^{\prime}$.

Assume that $A \mathbb{Z}_{e} B$. Apply Theorem 1.3 for $k=1, n=0, B_{0}=B, B_{1}=\emptyset$ and $Q=B^{\prime}$ to get a total F such that $B \leq_{e} F, F^{\prime} \equiv_{e} B^{\prime}$ and $A \not \mathbb{L}_{\epsilon} F$. A contradiction.

Selman's theorem is further generalized in CASE [2], where it is shown that for all $n \geq 0$,

$$
A \leq_{e} B \oplus \emptyset^{(n)} \Longleftrightarrow \forall X\left(B \in \Sigma_{n+1}^{X} \Rightarrow A \in \Sigma_{n+1}^{X}\right)
$$

Finally Ash [1] studies the general case and characterizes by a certain kind of formally described reducibilities for any given $k+2$ sets A, B_{0}, \ldots, B_{k} the relations

$$
\mathcal{R}_{k}^{n}\left(A, B_{0}, \ldots, B_{k}\right) \Longleftrightarrow \forall X\left(B_{0} \in \Sigma_{1}^{X}, \ldots, B_{k} \in \Sigma_{k+1}^{X} \Rightarrow A \in \Sigma_{n+1}^{X}\right)
$$

By an almost direct application of Theorem 1.2 and Theorem 1.3 we obtain the following version of Ash's result:

1.5. Theorem.

(1) For all $n<k, \mathcal{R}_{k}^{n}\left(A, B_{0}, \ldots, B_{k}\right) \Longleftrightarrow A \leq_{e} \mathcal{P}\left(B_{0}, \ldots, B_{n}\right)$.
(2) For all $n \geq k, \mathcal{R}_{k}^{n}\left(A, B_{0}, \ldots, B_{k}\right) \Longleftrightarrow A \leq_{e} \mathcal{P}\left(B_{0}, \ldots, B_{k}\right)^{(n-k)}$.

Proof. The right to left implications of (1) and (2) are trivial.
Consider the left to right direction of (1). Towards a contradiction suppose that $n<k, \mathcal{R}_{k}^{n}\left(A, B_{0}, \ldots, B_{k}\right)$ and $A \not \mathbb{Z}_{e} \mathcal{P}\left(B_{0}, \ldots, B_{n}\right)$. By Theorem 1.3, there exists a total F, such that $A \not \Sigma_{e} F^{(n)}$ and for all $i \leq k, B_{i} \in \Sigma_{i+1}^{F}$. Clearly $A \notin \Sigma_{n+1}^{F}$. A contradiction.

To prove (2) in the non trivial direction assume that $n \geq k, \mathcal{R}_{k}^{n}\left(A, B_{0}, \ldots, B_{k}\right)$ and $A \not Z_{e} \mathscr{P}\left(B_{0}, \ldots, B_{k}\right)^{(n-k)}$. By Selman's theorem, there exists a total Q such that $\mathcal{P}\left(B_{0}, \ldots, B_{k}\right)^{(n-k)} \leq_{e} Q$ and $A \mathbb{Z}_{e} Q$. Set $B_{k+1}=\cdots=B_{n}=\emptyset$. Then $\mathcal{P}\left(B_{0}, \ldots, B_{n}\right) \equiv_{e} \mathcal{P}\left(B_{0}, \ldots, B_{k}\right)^{(n-k)}$. By Theorem 1.2 there exists a total F such that $F^{(n)} \equiv_{e} Q$ and for all $i \leq k, B_{i} \in \Sigma_{i+1}^{F}$. Clearly $A \not 又_{e} F^{(n)}$ and hence $A \notin \Sigma_{n+1}^{F}$. A contradiction.

A proof very close to that of Theorem 1.4 gives upper bounds of the universal quantifiers in the definitions of the relations \mathcal{R}_{k}^{n}.

1.6. Corollary.

(1) Let $n<k$. Suppose that S is a total subset of \mathbb{N} and $\mathcal{P}\left(B_{0}, \ldots, B_{k}\right) \leq_{\epsilon} S$. Then $\mathcal{R}_{k}^{n}\left(A, B_{0}, \ldots, B_{k}\right)$ iff for all total X such that $X^{(k)} \equiv_{e} S$,

$$
B_{0} \in \Sigma_{1}^{X}, \ldots, B_{k} \in \Sigma_{k+1}^{X} \Rightarrow A \in \Sigma_{n+1}^{X}
$$

(2) Let $k \leq n$. Then $\mathfrak{R}_{k}^{n}\left(A, B_{0}, \ldots, B_{k}\right)$ iff for all total X such that $X^{(n+1)} \equiv_{e}$ $\mathcal{P}\left(B_{0}, \ldots, B_{k}\right)^{(n-k+1)}$,

$$
B_{0} \in \Sigma_{1}^{X}, \ldots, B_{k} \in \Sigma_{k+1}^{X} \Rightarrow A \in \Sigma_{n+1}^{X}
$$

Clearly the result of Case can be obtained from Theorem 1.5 by setting $k=n$ and $B_{0}=\cdots=B_{n-1}=\emptyset, B_{n}=B$. Another corollary which is worth mentioning is obtained in the case $k=0, n \geq 0$ and $B_{0}=B$:

$$
A \leq_{e} B^{(n)} \Longleftrightarrow \forall X\left(B \in \Sigma_{1}^{X} \Rightarrow A \in \Sigma_{n+1}^{X}\right) .
$$

We conclude the introduction with a Minimal pair type theorem which generalizes the so far described Selman-Case-Ash results:
1.7. Theorem. Let $k \geq 0$ and B_{0}, \ldots, B_{k} be arbitrary sets of natural numbers. There exist total sets F and G such that $F^{(k+2)} \equiv_{e} \mathcal{P}\left(B_{0} \ldots, B_{k}\right)^{\prime \prime}$ and $G^{(k+2)} \equiv_{e}$ $\mathcal{P}\left(B_{0} \ldots, B_{k}\right)^{\prime \prime}$ and
(i) For all $n \leq k, \mathcal{P}\left(B_{0}, \ldots, B_{n}\right)<_{e} F^{(n)}$ and $\mathcal{P}\left(B_{0}, \ldots, B_{n}\right)<_{e} G^{(n)}$.
(ii) If $n \leq k, A \leq_{e} F^{(n)}$ and $A \leq_{e} G^{(n)}$, then $A \leq_{e} \mathcal{P}\left(B_{0}, \ldots, B_{n}\right)$.

An immediate corollary of the last Theorem is a result of Rornas [7] that there exist a minimal pair of total ϵ-degrees \mathbf{f}, \mathbf{g} over every ϵ-degree \mathbf{b}.

Clearly the minimal pair f, g could be constructed below b". So Theorem 1.7 generalizes Selman's theorem but does not generalize Theorem 1.4. A natural improvement of the last result would be to show that the degrees \mathbf{f}, \mathbf{g} could be constructed below \mathbf{b}^{\prime}. This would give a generalization of the respective result of McEvoy and Cooper [6] where a minimal pair of enumeration degrees below $\mathbf{0}^{\prime}$ is constructed.

The proofs of our results use of the machinery of the so called regular enumerations, described in the next section. Section 3 contains the final proofs. In the last section 4 a version of Theorem 1.7 involving infinite sequences of sets is presented.

2. Regular Enumerations

Let us fix $k \geq 0$ and subsets B_{0}, \ldots, B_{k} of \mathbb{N}. Since every set B is enumeration equivalent to $B \oplus \mathbb{N}=\{2 x: x \in B\} \cup\{2 x+1: x \in \mathbb{N}\}$, we may assume that B_{0}, \ldots, B_{k} are not empty.

In what follows we shall use the term finite part for finite mappings of \mathbb{N} into \mathbb{N} defined on finite segments $[0, q-1]$ of \mathbb{N}. Finite parts will be denoted by the letters τ, δ, ρ. If $\operatorname{dom}(\tau)=[0, q-1]$, then let $\operatorname{lh}(\tau)=q$.

We shall suppose that an effective coding of all finite sequences and hence of all finite parts is fixed. Given two finite parts τ and ρ we shall say that τ is less than or equal to ρ if the code of τ is less than or equal to the code of ρ. By $\tau \subseteq \rho$ we shall denote that the partial mapping ρ extends τ and say that ρ is an extension of τ. For any τ, by $\tau \upharpoonright n$ we shall denote the restriction of τ on $[0, n-1]$.

Bellow we define for every $i \leq k$ the i-regular finite parts.
The 0 -regular finite parts are finite parts τ such that $\operatorname{dom}(\tau)=[0,2 q+1]$ and for all odd $z \in \operatorname{dom}(\tau), \tau(z) \in B_{0}$.

If $\operatorname{dom}(\tau)=[0,2 q+1]$, then the $0-\operatorname{rank}|\tau|_{0}$ of τ is equal to ne number $q+1$ of the odd elements of $\operatorname{dom}(\tau)$. Notice that if τ and ρ are 0 -regular, $\tau \subseteq \rho$ and $|\tau|_{0}=|\rho|_{0}$, then $\tau=\rho$.

For every 0 -regular finite part τ, let B_{0}^{τ} be the set of the odd elements of $\operatorname{dom}(\tau)$.

Given a 0 -regular finite part τ, let

$$
\begin{aligned}
\tau \vdash_{0} F_{e}(x) & \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)\left(\tau\left((u)_{0}\right) \simeq(u)_{1}\right)\right) \\
\tau \vdash_{0}-F_{e}(x) & \Longleftrightarrow \forall(0 \text {-regular } \rho)\left(\tau \subseteq \rho \Rightarrow \rho \vdash_{0} F_{e}(x)\right)
\end{aligned}
$$

Proceeding by induction, suppose that for some $i<k$ we have defined the i regular finite parts and for every i-regular τ - the i-rank $|\tau|_{i}$ of τ, the set B_{i}^{τ} and the relations $\tau \Vdash_{i} F_{e}(x)$ and $\tau \Vdash_{i} \neg F_{e}(x)$. Suppose also that if τ and ρ are i-regular, $\tau \subseteq \rho$ and $|\tau|_{i}=|\rho|_{i}$, then $\tau=\rho$.

Set $X_{j}^{i}=\left\{\rho: \rho\right.$ is i-regular \& $\left.\rho \Vdash_{i} F_{(j)_{0}}\left((j)_{1}\right)\right\}$.
Given a finite part τ and a set X of i-regular finite parts, let $\mu_{i}(\tau, X)$ be the least extension of τ belonging to X if any, and $\mu_{i}(\tau, X)$ be the least i-regular extension of τ otherwise. We shall assume that $\mu_{i}(\tau, X)$ is undefined if there is no i-regular extension of τ.
2.1. Definition. Let τ be a finite part and $m \geq 0$. Say that δ is an i-regular m omitting extension of τ if δ is an i-regular extension of τ, defined on $[0, q-1]$ and there exist natural numbers $q_{0}<\cdots<q_{m}<q_{m+1}=q$ such that:
a) $\delta\left\lceil q_{0}=\tau\right.$.
b) For all $p \leq m, \delta \mid q_{p+1}=\mu_{i}\left(\delta \mid\left(q_{p}+1\right), X_{\left\langle p, q_{p}\right\rangle}^{i}\right)$.

Notice that if δ is an i-regular m omitting extension of τ, then there exists a unique sequence of natural numbers q_{0}, \ldots, q_{m+1} having the properties a) and b) above. We shall denote the sequence q_{0}, \ldots, q_{m} by K_{τ}^{δ}. Moreover if δ and ρ are two i-regular m omitting extensions of τ and $\delta \subseteq \rho$, then $\delta=\rho$.

Let \mathcal{R}_{i} denote the set of all i-regular finite parts. Given an index j, by S_{j}^{i} we shall denote the intersection $\mathcal{R}_{i} \cap ?_{j}\left(\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)\right)$, where $?_{j}$ is the j-th enumeration operator.

Let τ be a finite part defined on $[0, q-1]$ and $r \geq 0$. Then τ is $(i+1)$-regular with $(i+1)-r a n k r+1$ if there exist natural numbers

$$
0<n_{0}<l_{0}<b_{0}<n_{1}<l_{1}<b_{1} \cdots<n_{r}<l_{r}<b_{r}<n_{r+1}=q
$$

such that $\tau\left\lceil n_{0}\right.$ is an i-regular finite part with i-rank equal to 1 and for all $j, 0 \leq$ $j \leq r$, the following conditions are satisfied:
a) $\tau \backslash l_{j} \simeq \mu_{i}\left(\tau \mid\left(n_{j}+1\right), S_{j}^{i}\right)$;
b) $\tau \backslash b_{j}$ is an i-regular j omitting extension of $\tau \backslash l_{j}$;
c) $\tau\left(b_{j}\right) \in B_{i+1}$;
d) $\tau \backslash n_{j+1}$ is an i-regular extension of $\tau \backslash\left(b_{j}+1\right)$ with i-rank equal to $\left.|\tau| b_{j}\right|_{i}+1$

The following Lemma shows that the $(i+1)$-rank is well defined.
2.2. Lemma. Let τ be an $(i+1)$-regular finite part. Then
(1) Let $m_{0}, q_{0}, a_{0}, \ldots, m_{p}, q_{p}, a_{p}, m_{p+1}$ and $n_{0}, l_{0}, b_{0}, \ldots, n_{r}, l_{r}, b_{r}, n_{r+1}$ be two sequences of natural numbers satisfying a)-d). Then $r=p, n_{p+1}=m_{p+1}$ and for all $j \leq r, n_{j}=m_{j}, l_{j}=q_{j}$ and $b_{j}=a_{j}$.
(2) If ρ is $(i+1)$-regular, $\tau \subseteq \rho$ and $|\tau|_{i+1}=|\rho|_{i+1}$, then $\tau=\rho$.
(3) τ is i-regular and $|\tau|_{i}>|\tau|_{i+1}$.

Proof. The proof follows easily from the definition of the $(i+1)$-regular finite parts and from the respective properties of the i-regular finite parts.

Let τ be $(i+1)$-regular and $n_{0}, l_{0}, b_{0}, \ldots, n_{r}, l_{r}, b_{r}, n_{r+1}$ be the sequence satisfying a)-d). Then let $B_{i+1}^{\tau}=\left\{b_{0}, \ldots, b_{r}\right\}$. By K_{i+1}^{τ} we shall denote the sequence $K_{\tau \mid l_{r}}^{\tau \mid b_{r}}$. Notice that, since $\tau\left\lceil b_{r}\right.$ is an r omitting extension of $\tau \mid l_{r}$, the sequence $K_{\tau\left\lceil l_{r}\right.}^{\tau\left\lceil b_{r}\right.}$ has exactly $r+1$ members.

To conclude with the definition of the regular finite parts, let for every $(i+1)$ regular finite part τ

$$
\begin{gathered}
\tau \vdash_{i+1} F_{\epsilon}(x) \Longleftrightarrow \exists v\left(\langle v , x \rangle \in W _ { e } \& (\forall u \in D _ { v }) \left(\left(u=\left\langle e_{u}, x_{u}, 0\right\rangle \& \tau \vdash_{i} F_{e_{u}}\left(x_{u}\right)\right) \vee\right.\right. \\
\left.\left.\quad\left(u=\left\langle e_{u}, x_{u}, 1\right\rangle \& \tau \vdash_{i}-F_{e_{u}}\left(x_{u}\right)\right)\right)\right) . \\
\tau \vdash_{i+1}-F_{e}(x) \Longleftrightarrow(\forall(i+1) \text {-regular } \rho)\left(\tau \subseteq \rho \Rightarrow \rho \nvdash_{i+1} F_{e}(x)\right) .
\end{gathered}
$$

2.3. Definition. Let f be a total mapping of \mathbb{N} in \mathbb{N}. Then f is a regular enumeration if the following two conditions hold:
(i) For every finite part $\delta \subseteq f$, there exists a k-regular extension τ of δ such that $\tau \subseteq f$.
(ii) If $i \leq k$ and $z \in B_{i}$, then there exists an i-regular $\tau \subseteq f$, such that $z \in \tau\left(B_{i}^{\tau}\right)$.

Clearly, if f is a regular enumeration and $i \leq k$, then for every $\delta \subseteq f$, there exists an i-regular $\tau \subseteq f$ such that $\delta \subseteq \tau$. Moreover there exist i-regular finite parts of f of arbitrary large rank.

Given a regular f, let for $i \leq k, B_{i}^{f}=\left\{b:(\exists \tau \subseteq f)\left(\tau\right.\right.$ is i-regular $\left.\left.\& b \in B_{i}^{\tau}\right)\right\}$. Clearly $f\left(B_{i}^{f}\right)=B_{i}$.
2.4. Definition. A sequence $A_{0}, \ldots, A_{n}, \ldots$ of subsets of \mathbb{N} is e-reducible to the set P iff there exists a recursive function h such that for all $n, A_{n}=?_{h(n)}(P)$. The sequence $\left\{A_{n}\right\}$ is T-reducible to P if there exists a recursive in P function χ such that for all $n, \lambda x \cdot \chi(n, x)=\chi_{A_{n}}$, where $\chi_{A_{n}}$ denotes the characteristic function of A_{n}.
2.5. Lemma. Suppose that the sequence $\left\{A_{n}\right\}$ is e-reducible to P. Then the following assertions hold:
(1) The sequence $\left\{A_{n}\right\}$ is T-reducible to P^{\prime}.
(2) If $R \leq_{e} P$, then either of the following sequences is e-reducible to P :
a) $\left\{R \cap A_{n}\right\}$;
b) $\left\{C_{n}\right\}$, where $C_{n}=\left\{x: \exists y\left(\langle x, y\rangle \in R \& y \in A_{n}\right)\right\}$.

Proof. Let h be a recursive function such that for all $n, A_{n}=?_{h(n)}(P)$.
The proof of (1) follows easily from the definition of the e-jump. Indeed,

$$
\begin{gathered}
x \in A_{n} \Longleftrightarrow x \in ?_{h(n)}(P) \Longleftrightarrow\langle x, h(n)\rangle \in K_{P}^{0} \Longleftrightarrow 2\langle x, h(n)\rangle \in P^{\prime} . \\
x \notin A_{n} \Longleftrightarrow x \notin ?_{h(n)}(P) \Longleftrightarrow\langle x, h(n)\rangle \notin K_{P}^{0} \Longleftrightarrow 2\langle x, h(n)\rangle+1 \in P^{\prime} .
\end{gathered}
$$

To prove the part b) of (2) notice that for every n

$$
x \in C_{n} \Longleftrightarrow \exists y\left(\langle x, y\rangle \in R \& \exists v\left(\langle v, y\rangle \in W_{h(n)} \& D_{v} \subseteq P\right)\right)
$$

Let $R=?_{z}(P)$. Then $\langle x, y\rangle \in R \Longleftrightarrow \exists u\left(\langle u,\langle x, y\rangle\rangle \in W_{z} \& D_{u} \subseteq P\right)$.
Clearly there exists a recursive function g such that

$$
\langle w, x\rangle \in W_{g(n)} \Longleftrightarrow \exists y \exists u \exists v\left(\langle u,\langle x, y\rangle\rangle \in W_{z} \&\langle v, y\rangle \in W_{h(n)} \& D_{w}=D_{u} \cup D_{v}\right)
$$

Then $x \in C_{n} \Longleftrightarrow \exists w\left(\langle w, x\rangle \in W_{g(n)} \& D_{w} \subseteq P\right)$. Thus $C_{n}=?_{g(n)}(P)$.
The proof of the a) part of (1) is similar.
Let $i \leq k$. Set $P_{i}=\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)$. Notice that if $i<k$, then $P_{i+1}=P_{i}^{\prime} \oplus B_{i+1}$.
For $j \in \mathbb{N}$ let $\mu_{i}^{X}(\tau, j) \simeq \mu_{i}\left(\tau, X_{j}^{i}\right), \mu_{i}^{S}(\tau, j) \simeq \mu_{i}\left(\tau, S_{j}^{i}\right)$,

$$
\begin{aligned}
Y_{j}^{i} & =\left\{\tau:(\exists \rho \supseteq \tau)\left(\rho \text { is } i \text {-regular } \& \rho \vdash_{i} F_{(j)_{0}}\left((j)_{1}\right)\right)\right\} \\
Z_{j}^{i} & =\left\{\tau: \tau \text { is } i \text {-regular } \& \tau \vdash_{i} \neg F_{(j)_{0}}\left((j)_{1}\right)\right\} \text { and } \\
O_{\tau, j}^{i} & =\{\rho: \rho \text { is } i \text {-regular } j \text { omitting extension of } \tau\} .
\end{aligned}
$$

2.6. Proposition. For every $i \leq k$ the following assertions hold:
(1) The set \mathcal{R}_{i} of all i-regular finite parts is e-reducible to P_{i}.
(2) The function $\lambda \tau .|\tau|_{i}$ (assumed undefined if $\tau \notin \mathcal{R}_{i}$) is e-reducible to P_{i}.
(3) The sequences $\left\{S_{j}^{i}\right\},\left\{X_{j}^{i}\right\}$ and $\left\{Y_{j}^{i}\right\}$ are ϵ-reducible to P_{i}.
(4) The sequence $\left\{Z_{i}^{i}\right\}$ is T-reducible to P_{i}^{\prime}.
(5) The functions μ_{i}^{X} and μ_{i}^{S} are partial recursive in P_{i}^{\prime}.
(6) The sequence $\left\{O_{\tau, j}^{i}\right\}$ is e-reducible to P_{i}^{\prime}.

Proof. The proof is by induction on i. Suppose that $i=0$. The validity of (1)-(6) follows easily from the definitions of the 0 -regular finite parts and the relation " $\mid \vdash_{0}$ " and Lemma 2.5.

Suppose that for some $i<k$ the assertions (1)-(6) hold. Now the validity of (1) and (2) for $i+1$ follows directly from the definition of the $(i+1)$-regular finite parts. Since $\mathcal{R}_{i+1} \leq_{e} P_{i+1}$, by Lemma 2.5 the sequence $\left\{S_{j}^{i+1}\right\}$ is ϵ-reducible to P_{i+1}. Further, by induction and by Lemma 2.5 the sequence $\left\{X_{j}^{i}\right\}$ is T-reducible to P_{i}^{\prime}. By induction $\left\{Z_{j}^{i}\right\}$ is also T-reducible to P_{i}^{\prime}. From here it follows that the sets $\left\{\tau: \tau \mid \vdash_{i+1} F_{\epsilon}(x)\right\}$ are uniformly in e and x r. e. in P_{i}^{\prime} and therefore these sets are uniformly e-reducible to P_{i}^{\prime}. We have that

$$
\tau \in X_{j}^{i+1} \Longleftrightarrow \tau \in \mathcal{R}_{i+1} \& \tau \vdash_{i+1} F_{(j)_{0}}\left((j)_{1}\right)
$$

Hence the sequence $\left\{X_{j}^{i+1}\right\}$ is ε-reducible to P_{i+1}. Then by Lemma 2.5 the sequence $\left\{Y_{j}^{i+1}\right\}$ is ϵ-reducible to P_{i+1} and hence it is uniformly T-reducible to P_{i+1}^{\prime}. From here, since $Z_{j}^{i+1}=\mathcal{R}_{i+1} \backslash Y_{j}^{i+1}$, we get the validity of (4) for $i+1$. Now the truth of (5) and (6) for $i+1$ follows directly from the respective definitions.
2.7. Corollary. For every $i \leq k$ and every j, X_{j}^{i} is a member of the sequence $\left\{S_{j}^{i}\right\}$.
2.8. Proposition. Suppose that f is a regular enumeration. Then
(1) $B_{0} \leq_{e} f$.
(2) If $i<k$, then $B_{i+1} \leq_{e} f \oplus P_{i}^{\prime}$.
(3) If $i \leq k$, then $P_{i} \leq_{e} f^{(i)}$.

Proof. Since f is regular, $B_{0}=f\left(B_{0}^{f}\right)$. Clearly B_{0}^{f} is equal to the set of all odd natural numbers. So, $B_{0} \leq_{e} f$.

Let us turn to the proof of (2). Fix an $i<k$. Since f is regular, for every finite part δ of f there exists an $(i+1)$-regular $\tau \subseteq f$ such that $\delta \subseteq \tau$. Hence there exist natural numbers

$$
0<n_{0}<l_{0}<b_{0}<n_{1}<l_{1}<b_{1}<\cdots<n_{r}<l_{r}<b_{r}<\ldots
$$

such that for every $r \geq 0$, the finite part $\tau_{r}=f \mid n_{r+1}$ is $(i+1)$-regular and $n_{0}, l_{0}, b_{0}, \ldots, n_{r}, l_{r}, b_{r}, n_{r+1}$ are the numbers satisfying the conditions a)-d) from the definition of the $(i+1)$-regular finite part τ_{r}. Clearly $B_{i+1}^{f}=\left\{b_{0}, b_{1} \ldots\right\}$. We shall show that there exists a recursive in $f \oplus P_{i}^{\prime}$ procedure which lists $n_{0}, l_{0}, b_{0}, \ldots$ in an increasing order.

Clearly $f \mid n_{0}$ is i-regular and $\left.|f| n_{0}\right|_{i}=1$. By Lemma $2.6 \mathcal{R}_{i}$ is recursive in P_{i}^{\prime}. Using f we can generate consecutively the finite parts $f \mid q$ for $q=1,2 \ldots$ By Lemma $2.2 f\left\lceil n_{0}\right.$ is the first element of this sequence which belongs to \mathcal{R}_{i}. Clearly $n_{0}=\operatorname{lh}\left(f \mid n_{0}\right)$.

Suppose that $r \geq-1$ and $n_{0}, l_{0}, b_{0}, \ldots, n_{r}, l_{r}, b_{r}, n_{r+1}$ have already been listed. Since $f \mid l_{r+1} \simeq \mu_{i}\left(f \mid\left(n_{r+1}+1\right), S_{r+1}^{i}\right)$, we can find recursively in $f \oplus P_{i}^{\prime}$ the finite part $f \mid l_{r+1}$. Then $l_{r+1}=\operatorname{lh}\left(f \mid l_{r+1}\right)$. Next we have that $f \mid b_{r+1}$ is an i-regular $(r+1)$ omitting extension of $f \mid l_{r+1}$. So there exist natural numbers $l_{r+1}=q_{0}<\cdots<$ $q_{r+1}<q_{r+2}=b_{r+1}$ such that for $p \leq r+1$,

$$
f \mid q_{p+1} \simeq \mu_{i}\left(f \mid\left(q_{p}+1\right), X_{\left\langle p, q_{p}\right\rangle}^{i}\right) .
$$

Using the oracle $f \oplus P_{i}^{\prime}$ we can find consecutively the numbers q_{p} and the finite parts $f \upharpoonright\left(q_{p}+1\right), p=0, \ldots, r+2$. By the end of this procedure we reach b_{r+1}. It remains to show that we can find the number n_{r+2}. By definition $f\left\lceil n_{r+2}\right.$ is an i-regular extension of $f \mid\left(b_{r+1}+1\right)$ having i-rank equal to $\left.|f| b_{r+1}\right|_{i}+1$. Using f we can generate consecutively the finite parts $f\left\lceil\left(b_{r+1}+1+q\right), q=0,1, \ldots\right.$ By Lemma $2.2 f \mid n_{r+2}$ is the first element of this sequence which belongs to \mathcal{R}_{i}.

So B_{i+1}^{f} is recursive in $f \oplus P_{i}^{\prime}$. Hence, since $B_{i+1}=f\left(B_{i+1}^{f}\right), B_{i+1} \leq_{e} f \oplus P_{i}^{\prime}$.
We shall prove (3) by induction on i. Clearly $P_{0}=B_{0} \leq_{\epsilon} f$. Suppose that $i<k$ and $P_{i} \leq_{e} f^{(i)}$. Then $B_{i+1} \leq_{e} f \oplus P_{i}^{\prime} \leq_{e} f^{(i+1)}$. Therefore $P_{i+1}=P_{i}^{\prime} \oplus B_{i+1} \leq_{e}$ $f^{(i+1)}$.

Let f be a total mapping on \mathbb{N}. We define for every $i \leq k, e, x$ the relation $f \models_{i} F_{e}(x)$ by induction on i :

2.9. Definition.

(i) $f \models_{0} F_{e}(x) \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{\epsilon} \&\left(\forall u \in D_{v}\right)\left(f\left((u)_{0}\right)=(u)_{1}\right)\right)$;
$f \models_{i+1} F_{e}(x) \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)\left(\left(u=\left\langle e_{u}, x_{u}, 0\right\rangle \&\right.\right.\right.$
(ii)

$$
\left.\left.\left.f \models_{i} F_{e_{u}}\left(x_{u}\right)\right) \vee\left(u=\left\langle\epsilon_{u}, x_{u}, 1\right\rangle \& f \not \forall_{i} F_{e_{u}}\left(x_{u}\right)\right)\right)\right)
$$

Set $f \models_{i} \neg F_{e}(x) \Longleftrightarrow f \not \forall_{i} F_{e}(x)$.
The following Lemma can be proved by induction on i.
2.10. Lemma. Let f be a total mapping on \mathbb{N} and $i \leq k$. Then $A \in \Sigma_{i+1}^{f}$ iff there exists e such that for all $x, x \in A \Longleftrightarrow f \models_{i} F_{e}(x)$.

Our next goal is the proof of the Truth Lemma. Notice that for all $i \leq k$ the relation \vdash_{i} is monotone, i.e. if $\tau \subseteq \rho$ are i-regular and $\tau \vdash_{i}(\neg) F_{e}(x)$, then $\rho \vdash_{i}(\neg) F_{\epsilon}(x)$.
2.11. Lemma. Let f be a regular enumeration. Then
(1) For all $i \leq k, f \models_{i} F_{e}(x) \Longleftrightarrow(\exists \tau \subseteq f)\left(\tau\right.$ is i-regular \& $\left.\tau \vdash_{i} F_{e}(x)\right)$.
(2) For all $i<k, f \models_{i}-F_{e}(x) \Longleftrightarrow(\exists \tau \subseteq f)\left(\tau\right.$ is i-regular $\left.\& \tau \vdash_{i} \neg F_{\epsilon}(x)\right)$.

Proof. We shall use induction on i. The condition (1) is obviously true for $i=0$. Suppose that $i<k$ and (1) is true for i.

First we shall show the validity of (2) for i. Assume that $f \models_{i} \neg F_{e}(x)$ and for all i-regular $\tau \subseteq f, \tau \nvdash_{i} \neg F_{e}(x)$. Then for all i-regular finite parts τ of f there exists an i-regular $\rho \supseteq \tau$ such that $\rho \vdash_{i} F_{e}(x)$. Fix a $j \in \mathbb{N}$ such that

$$
S_{j}^{i}=\left\{\rho: \rho \in \mathcal{R}_{i} \& \rho \Vdash_{i} F_{e}(x)\right\} .
$$

Let δ be an $(i+1)$-regular finite part of f such that $|\delta|_{i+1}>j$. By the definition of the $(i+1)$-regular finite parts, there exists an i-regular $\rho^{\prime} \subseteq \delta$ such that $\rho^{\prime} \in S_{j}^{i}$. By (1), Since $\rho^{\prime} \subseteq f, f \models_{i} F_{\epsilon}(x)$. A contradiction. Assume now that $\tau \subseteq f$ is i-regular, $\tau \vdash_{i} \neg F_{e}(x)$ and $f \models_{i} F_{e}(x)$. By induction there exists an i-regular $\rho \subseteq f$ such that $\rho \vdash_{i} F_{\epsilon}(x)$. Using the monotonicity of \vdash_{i}, we can assume that $\tau \subseteq \rho$ and get a contradiction.

Now having (1) and (2) for i one can easily obtain the validity of (1) for $i+1$.
2.12. Proposition. Let f be a regular enumeration and $1 \leq i \leq k$. Then $f^{(i)} \equiv_{e}$ $f \oplus P_{i-1}^{\prime}$.

Proof. Let $1 \leq i \leq k$. By Proposition 2.8 it is sufficient to show that $f^{(i)} \leq_{e} f \oplus P_{i-1}^{\prime}$. Recall that $f^{(i)}=K_{f(i-1)}^{0} \oplus\left(\mathbb{N} \backslash K_{f^{(i-1)}}^{0}\right)$, where $K_{f^{(i-1)}}^{0}=\left\{\langle y, z\rangle: y \in ?_{z}\left(f^{(i-1)}\right)\right\}$. Clearly $K_{f(i-1)}^{0}$ is Σ_{i}^{0} in f and hence there exists an e such that $f \models_{i-1} F_{e}(x) \Longleftrightarrow$ $x \in K_{f^{(i-1)}}^{0}$. From here, using Lemma 2.11, we obtain that

$$
\begin{gathered}
x \in K_{f^{(i-1)}}^{0} \Longleftrightarrow(\exists \tau \subseteq f)\left(\tau \text { is }(i-1) \text {-regular } \& \tau \vdash_{i-1} F_{\epsilon}(x)\right) \text { and } \\
x \in\left(\mathbb{N} \backslash K_{f^{(i-1)}}^{0}\right) \Longleftrightarrow(\exists \tau \subseteq f)\left(\tau \text { is }(i-1) \text {-regular } \& \tau \vdash_{i-1} \neg F_{\epsilon}(x)\right) .
\end{gathered}
$$

So, by Proposition $2.6 K_{f^{(i-1)}}^{0}$ and $\left(\mathbb{N} \backslash K_{f^{(i-1)}}^{0}\right)$ are ϵ-reducible to $f \oplus P_{i-1}^{\prime}$. Hence $f^{(i)} \leq_{e} f \oplus P_{i-1}^{\prime}$.

3. Constructions of regular enumerations

Given a finite mapping τ defined on $[0, q-1]$, by $\tau * z$ we shall denote the extension ρ of τ defined on $[0, q]$ and such that $\rho(q) \simeq z$. If $\vec{k}=q_{0}, \ldots, q_{p}$ is a sequence of elements of $\operatorname{dom}(\tau)$, then by $\tau(\vec{k})$ we shall denote the sequence $\tau\left(q_{0}\right), \ldots, \tau\left(q_{p}\right)$.
3.1. Lemma. Let $i \leq k$ and τ be an i-regular finite part defined on $[0, q-1]$.
(1) For every $y \in \mathbb{N}, z_{0} \in B_{0}, \ldots, z_{i} \in B_{i}$, there exists an i-regular extension ρ of τ s.t. $|\rho|_{i}=|\tau|_{i}+1$ and $\rho(q) \simeq y, z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{i} \in \rho\left(B_{i}^{\rho}\right)$.
(2) For every sequence $\vec{a}=a_{0}, \ldots, a_{m}$ of natural numbers there exists an i regular m omitting extension δ of τ such that $\delta\left(K_{\tau}^{\delta}\right)=\vec{a}$.
Proof. We shall prove simultaneously (1) and (2) by induction on i. Clearly (1) is true for $i=0$. Now suppose that (1) holds for some $i<k$. First we shall prove (2). Notice that from (1) it follows that $\mu_{i}\left(\delta * a, X_{j}^{i}\right)$ is defined for all $a, j \in \mathbb{N}$ and $\delta \in \mathcal{R}_{i}$. Next we define recursively the i-regular finite parts δ_{p} for $p \leq m+1$. Let $\delta_{0}=\tau$. For $p \leq m$ let $q_{p}=\operatorname{lh}\left(\delta_{p}\right)$ and $\delta_{p+1}=\mu_{i}\left(\delta_{p} * a_{p}, X_{\left\langle p, q_{p}\right\rangle}\right)$. Let $q_{m+1}=\operatorname{lh}\left(\delta_{m+1}\right)$. Clearly δ_{m+1} satisfies the requirements of Definition 2.1 with respect to q_{0}, \ldots, q_{m+1} and $\delta_{m+1}\left(q_{0}, \ldots, q_{m}\right)=a_{0}, \ldots, a_{m}$.

Now we turn to the proof of (1) for $i+1$. Let τ be an ($i+1$)-regular finite part s.t. $\operatorname{dom}(\tau)=[0, q-1]$. Let $y \in \mathbb{N}, z_{0} \in B_{0}, \ldots, z_{i+1} \in B_{i+1}$ be given. Suppose that $|\tau|_{i+1}=r+1$ and $n_{0}, l_{0}, b_{0}, \ldots, n_{r}, l_{r}, b_{r}, n_{r+1}$ are the natural numbers satisfying the conditions a)-d) from the definition of the $(i+1)$-regular finite parts. Notice that $n_{r+1}=q$. Since τ is i-regular, by the induction hypothesis there exists an i-regular extension of $\tau * y$. Therefore $\rho_{0} \simeq \mu_{i}\left(\tau * y, S_{r+1}^{i}\right)$ is defined. Let $l_{r+1}=\operatorname{lh}\left(\rho_{0}\right)$. By (2) there exists an i-regular $r+1$ omitting extension δ of ρ_{0}. Let $b_{r+1}=\operatorname{lh}(\delta)$. By induction there exists an i-regular finite part $\rho \supseteq \delta$ such that $|\rho|_{i}=|\delta|_{i}+1$, $\rho\left(b_{r+1}\right) \simeq z_{i+1}$ and $z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{i} \in \rho\left(B_{i}^{\rho}\right)$. Set $n_{r+2}=\operatorname{lh}(\rho)$. Clearly ρ satisfies the conditions a) -d) from definition of the $(i+1)$-regular finite parts with respect to $n_{0}, l_{0}, b_{0}, \ldots, n_{r+1}, l_{r+1}, b_{r+1}, n_{r+2}$.

Remark. From the proof above it follows that the i-regular extension ρ satisfying (1) can be constructed recursively for $i=0$ and recursively in P_{i-1}^{\prime} if $i>0$. The construction of δ from (2) is recursive in P_{i}^{\prime}.
3.2. Corollary. For every $i \leq k$ there exists an i-regular finite part having i-rank equal to 1 .

As an application of Lemma 3.1 we obtain the following property of the regular enumerations which will be used in the proof of Theorem 1.7:
3.3. Lemma. Let f be a regular enumeration and $i<k$. Then $f \mathbb{Z}_{e} P_{i}$.

Proof. A standard forcing argument. Assume that $f \leq_{e} P_{i}$. Then the set

$$
S=\left\{\tau: \tau \in \mathcal{R}_{i} \&(\exists x \in \operatorname{dom}(\tau))(\tau(x) \nsucceq f(x))\right\}
$$

is ε-reducible to P_{i}. Let $S=S_{j}^{i}$ and δ be an $(i+1)$-regular finite part of f such that $|\delta|_{i+1} \geq j+1$. From the definition of the $(i+1)$-regular finite parts it follows that
either there exists a $\rho \subseteq \delta$ such that $\rho \in S$ or for all i-regular $\rho \supseteq \delta, \rho \notin S$. Clearly the first is impossible. Let $\operatorname{lh}(\delta)=q$ and $f(q) \simeq y$. By Lemma 3.1 there exists an i-regular $\rho \supseteq \delta$ such that $\rho(q) \nsucceq y$ and hence $\rho \in S$. A contradiction.
3.4. Corollary. If f is a regular enumeration, then for all $i<k, P_{i}<_{e} f^{(i)}$.

Let δ be a k-regular finite part and $1 \leq i \leq k$. By definition the sequence K_{i}^{δ} has exactly $|\delta|_{i}$ members. So, by Lemma 2.2 if $1 \leq i \leq k$, then the length of K_{i}^{δ} is greater than or equal to $|\delta|_{k}+(k-i)$.
3.5. Lemma. Let $i<k, A \not \mathbb{Z}_{e} P_{i}$ and let τ be an $(i+1)$-regular finite part, defined on $[0, q-1]$. Suppose that $|\tau|_{i+1}=r+1, y \in \mathbb{N}, z_{0} \in B_{0}, \ldots, z_{i+1} \in B_{i+1}$ and $s \leq r+1$. Then one can construct recursively in $P_{i}^{\prime} \oplus A^{+}$an $(i+1)$-regular extension ρ of τ such that
(i) $|\rho|_{i+1}=r+2$;
(ii) $\rho(q) \simeq y, z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{i+1} \in \rho\left(B_{i+1}^{\rho}\right)$;
(iii) if $K_{i+1}^{\rho}=q_{0}, \ldots, q_{s}, \ldots, q_{r+1}$, then
a) $\rho\left(q_{s}\right) \in A \Rightarrow \rho \vdash_{i} \neg F_{s}\left(q_{s}\right)$;
b) $\rho\left(q_{s}\right) \notin A \Rightarrow \rho \vdash_{i} F_{s}\left(q_{s}\right)$.

Proof. Let $0<n_{0}<l_{0}<b_{0}, \cdots<n_{r}<l_{r}<b_{r}<n_{r+1}=q$ be the natural numbers satisfying the conditions a)-d) from the definition of the $(i+1)$-regular finite part τ. Set $\rho_{0} \simeq \mu_{i}\left(\tau * y, S_{r+1}^{i}\right)$ and $l_{r+1}=\operatorname{lh}\left(\rho_{0}\right)$. Let $\delta_{0}=\rho_{0}$. Suppose that $p<s$ and δ_{p} is defined. Then let $q_{p}=\operatorname{lh}\left(\delta_{p}\right)$ and $\delta_{p+1} \simeq \mu_{i}\left(\delta_{p} * 0, X_{\left\langle p, q_{p}\right\rangle}^{i}\right)$. Now let $q_{s}=\operatorname{lh}\left(\delta_{s}\right)$. Clearly the set

$$
C=\left\{x:\left(\exists \delta \supseteq \delta_{s}\right)\left(\delta \in \mathcal{R}_{i} \& \delta\left(q_{s}\right) \simeq x \& \delta \vdash_{i} F_{s}\left(q_{s}\right)\right)\right\}
$$

is e-reducible to P_{i}. Since $A \not 又_{e} P_{i}$, there exists an a such that $a \in C \& a \notin A$ or $a \notin C \& a \in A$. Denote by a_{0} the least such a. Notice that a_{0} can be found recursively in $P_{i}^{\prime} \oplus A^{+}$. Set $\delta_{s+1} \simeq \mu_{i}\left(\delta_{s} * a_{0}, X_{\left\langle s, q_{s}\right)}^{i}\right)$. By the definition of the function μ_{i} we have that either $a_{0} \in A$ and $\delta_{s+1} \vdash_{i} \neg F_{s}\left(q_{s}\right)$ or $a_{0} \notin A$ and $\delta_{s+1} \vdash_{i} F_{s}\left(q_{s}\right)$. Next we extend δ_{s+1} to an i-regular $r+1$ omitting extension ρ_{1} of ρ_{0} in the usual way. Let $b_{r+1}=\operatorname{lh}\left(\rho_{1}\right)$. Using Lemma 3.1, we can extend ρ_{1} to an i-regular finite part ρ such that $|\rho|_{i}=\left|\rho_{1}\right|_{i}+1, \rho\left(b_{r+1}\right) \simeq z_{i+1}$ and $z_{j} \in \rho\left(B_{j}^{\rho}\right)$ for $j \leq i$. Let $n_{r+2}=\operatorname{lh}(\rho)$. Clearly $n_{0}, l_{0}, b_{0}, \ldots, n_{r+1}, l_{r+1}, b_{r+1}, n_{r+2}$ satisfy the conditions a)-d) from the definition of the $(i+1)$-regular finite parts. So, ρ is $(i+1)$-regular and $|\rho|_{i+1}=r+2$. Clearly q_{s} is the $s+1$-th member of K_{i+1}^{ρ} and since $\rho \supseteq \delta_{s+1}$, (iii) holds.
3.6. Lemma. Let $k>i \geq 0, A \not 又_{e} P_{i}$ and let τ be a k-regular finite part, defined on $[0, q-1]$ and $|\tau|_{k}=r+1$. Suppose that $y \in \mathbb{N}, z_{0} \in B_{0}, \ldots, z_{k} \in B_{k}$ and $s \leq r+(k-i)$. Then one can construct recursively in $P_{k-1}^{\prime} \oplus A^{+}$a k-regular extension ρ of τ such that
(i) $|\rho|_{k}=r+2$;
(ii) $\rho(q) \simeq y, z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{k} \in \rho\left(B_{k}^{\rho}\right)$;
(iii) if $K_{i+1}^{\rho}=q_{0}, \ldots, q_{s}, \ldots, q_{m_{i}}$, then
a) $\rho\left(q_{s}\right) \in A \Rightarrow \rho \vdash_{i} \neg F_{s}\left(q_{s}\right)$;
b) $\rho\left(q_{s}\right) \notin A \Rightarrow \rho \vdash_{i} F_{s}\left(q_{s}\right)$.

Proof. We shall use induction on $k-(i+1)$. The previous Lemma settles the case $k=i+1$. Now suppose that $k>i+1$. Let $\rho_{0} \simeq \mu_{k-1}\left(\tau * y, S_{r+1}^{k-1}\right)$ and let ρ_{1} be a $(k-1)$-regular $r+1$ omitting extension of ρ_{0}, such that $\rho_{1}\left(K_{\rho_{0}}^{\rho_{1}}\right)=0,0, \ldots, 0$. Let $b_{r+1}=\operatorname{lh}\left(\rho_{1}\right)$. Suppose that $\left|\rho_{1}\right|_{k-1}=r_{1}+1$. Since $\left|\rho_{1}\right|_{k-1}>|\tau|_{k-1}>|\tau|_{k}$, $s \leq r_{1}+(k-1-i)$. By induction there exists a $(k-1)$-regular extension ρ of ρ_{1} such that $|\rho|_{k-1}=\left|\rho_{1}\right|_{k-1}+1, \rho\left(b_{r+1}\right) \simeq z_{k}, z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{k-1} \in \rho\left(B_{k-1}^{\rho}\right)$ and such that (iii) holds. Clearly ρ is a k-regular extension of τ with k-rank equal to $r+2$.

The following lemma can be proved in a similar way:
3.7. Lemma. Let $k \geq 1$ and A_{0}, \ldots, A_{k-1} be subsets of \mathbb{N} such that $A_{i} \mathbb{Z}_{e} P_{i}$. Let τ be a k-regular finite part, defined on $[0, q-1]$. Suppose that $|\tau|_{k}=r+1$, $y \in \mathbb{N}, z_{0} \in B_{0}, \ldots, z_{k} \in B_{k}$ and $s \leq r+1$. Then one can construct recursively in $P_{k-1}^{\prime} \oplus A_{0}^{+} \cdots \oplus A_{k-1}^{+}$a k-regular extension ρ of τ such that
(i) $|\rho|_{k}=r+2$;
(ii) $\rho(q) \simeq y, z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{k} \in \rho\left(B_{k}^{\rho}\right)$;
(iii) if $i<k$ and $K_{i+1}^{\rho}=q_{0}^{i}, \ldots, q_{s}^{i}, \ldots q_{m_{i}}^{i}$, then
a) $\rho\left(q_{s}^{i}\right) \in A_{i} \Rightarrow \rho \vdash_{i} \neg F_{s}\left(q_{s}^{i}\right)$;
b) $\rho\left(q_{s}^{i}\right) \notin A_{i} \Rightarrow \rho \Vdash_{i} F_{s}\left(q_{s}^{i}\right)$.

Now we turn to the proofs of the formulated in the introduction theorems. Let a total set $Q \geq_{e} P_{k}$ be given. Clearly the sets B_{0}, \ldots, B_{k} are r. e. in Q. Let us fix some recursive in Q functions $\sigma_{0}, \ldots, \sigma_{k}$ which enumerate B_{0}, \ldots, B_{k}, respectively. Let $y_{0}, \ldots, y_{r}, \ldots$ be a recursive in Q enumeration of the elements of Q.

Proof of Theorem 1.2. By Proposition 2.8 and Proposition 2.12 it is sufficient to show that there exists a regular enumeration f such that $f^{(k)} \equiv_{e} Q$.

We shall construct f as a recursive in Q union of k-regular finite parts δ_{s} such that for all $s, \delta_{s} \subseteq \delta_{s+1}$ and $\left|\delta_{s}\right|_{k}=s+1$.

Let δ_{0} be an arbitrary finite part such that $\left|\delta_{0}\right|_{k}=1$. Suppose that δ_{s} is defined. Set $z_{0}=\sigma_{0}(s), \ldots, z_{k}=\sigma_{k}(s)$. Using Lemma 3.1 construct recursively (in P_{k-1}^{\prime}, if $k \geq 1$) a k-regular $\rho \supseteq \delta_{s}$ such that $|\rho|_{k}=\left|\delta_{s}\right|_{k}+1, \rho\left(\operatorname{lh}\left(\delta_{s}\right)\right)=y_{s}$ and $z_{0} \in$ $\rho\left(B_{0}^{\rho}\right), \ldots, z_{k} \in \rho\left(B_{k}^{\rho}\right)$. Set $\delta_{s+1}=\rho$.

Clearly the obtained this way enumeration f is regular and $f \leq_{e} Q$. Therefore by Proposition $2.12 f^{(k)} \leq_{e} Q$. On the other hand, using the oracle f (and P_{k-1}^{\prime}, if $k \geq 1$) we can generate as in the proof of Proposition 2.8 consecutively the sequence $n_{1}, \ldots, n_{s}, \ldots$ such that $f \mid n_{s+1}=\delta_{s}$. By the construction $y \in Q \Longleftrightarrow \exists s\left(f\left(n_{s+1}\right)=\right.$ $y)$. Hence $Q \leq_{\epsilon} f \oplus P_{k-1}^{\prime} \leq_{e} f^{(k)}$.

Suppose that $k>i \geq 0$ and A is a subset of \mathbb{N} such that $A^{+} \leq_{e} Q$ and $A \not \mathbb{Z}_{e} P_{i}$.
Proof of Theorem 1.3. We shall construct a regular enumeration f such that $f^{(k)} \equiv_{e} Q$ and $A \not \mathbb{Z}_{e} f^{(i)}$. The construction of f will be carried out again by steps. At each step s we shall define a k-regular finite part δ_{s} having k-rank equal to $s+1$.

Compared to the previous proof, we shall ensure in addition that at each step $s+1$, if $K_{i+1}^{\delta_{s+1}}=q_{0}, \ldots, q_{s}, \ldots, q_{m_{i}}$, then

$$
\begin{equation*}
\left(\delta_{s+1}\left(q_{s}\right) \in A \Rightarrow \delta_{s+1} \Vdash_{i} \neg F_{s}\left(q_{s}\right)\right) \&\left(\delta_{s+1}\left(q_{s}\right) \notin A \Rightarrow \delta_{s+1} \Vdash_{i} F_{s}\left(q_{s}\right)\right) \tag{3.1}
\end{equation*}
$$

We start by an arbitrary k-regular finite part δ_{0} having k-rank equal to 1 . Suppose that δ_{s} is defined. Set $z_{0}=\sigma_{0}(s), \ldots, z_{k}=\sigma_{k}(s)$. Using Lemma 3.6, construct recursively in Q a k-regular $\delta_{s+1} \supseteq \delta_{s}$ such that $\left|\delta_{s+1}\right|_{k}=\left|\delta_{s}\right|_{k}+1, \delta_{s+1}\left(\operatorname{lh}\left(\delta_{s}\right)\right)=y_{s}$, and $z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{k} \in \rho\left(B_{k}^{\rho}\right)$ and if $K_{i+1}^{\delta_{s+1}}=q_{0}, \ldots, q_{s}, \ldots, q_{m_{2}}$, then (3.1) holds.

Clearly the whole construction is recursive in Q and hence $f \leq_{e} Q$. Then $f^{(k)} \equiv_{e}$ $f \oplus P_{k-1}^{\prime} \leq_{e} Q$. The inequality $Q \leq_{e} f^{(k)}$ can be proved exactly as in the previous proof. It remains to show that $A \mathbb{Z}_{e} f^{(i)}$. Indeed, assume that $A \leq_{e} f^{(i)}$. Then the set $C=\{x: f(x) \in A\}$ is also ε-reducible to $f^{(i)}$. Let s be an index such that $\forall x\left(x \in C \Longleftrightarrow f \models_{i} F_{s}(x)\right)$. Then for all x

$$
\begin{equation*}
f(x) \in A \Longleftrightarrow f \models_{i} F_{s}(x) \tag{3.2}
\end{equation*}
$$

Consider δ_{s+1} and q_{s}. Clearly $\delta_{s+1}\left(q_{s}\right) \simeq f\left(q_{s}\right)$. Now assume that $f\left(q_{s}\right) \in A$. Then $\delta_{s+1} \vdash_{i} \neg F_{s}\left(q_{s}\right)$. Hence $f \models_{i} \neg F_{s}\left(q_{s}\right)$ which is impossible. It remains that $f\left(q_{s}\right) \notin A$. In this case $\delta_{s+1} \Vdash \Vdash_{i} F_{s}\left(q_{s}\right)$ and hence $f \models_{i} F_{s}\left(q_{s}\right)$. The last again contradicts (3.2). So $A \mathbb{Z}_{e} f^{(i)}$.

Now we turn to the proof of Theorem 1.7. Set $B_{k+1}=\mathbb{N}$ and $Q=P_{k+1}=$ $P_{k}^{\prime} \oplus B_{k+1}$. Clearly $Q \equiv_{e} P_{k}^{\prime}$. From now on an enumeration f will be called regular if it is regular with respect to $B_{0}, \ldots, B_{k}, B_{k+1}$.

Proof of Theorem 1.7. Since Q is a total set, by Theorem 1.2 there exists a regular enumeration g such that $g^{(k+1)} \equiv_{e} Q$. By Corollary 3.4 for all $i \leq k$, $P_{i}<_{e} g^{(i)}$. Finally notice that $g^{(k+2)} \equiv_{e} Q^{\prime} \equiv_{e} P_{k}^{\prime \prime}$.

For $i \leq k$, set $G_{z}^{i}=?_{z}\left(g^{(i)}\right)$, where $?_{z}$ is the z-th enumeration operator. We shall construct recursively in Q^{\prime} a regular enumeration f so that
(1) $f^{(k+2)} \equiv_{e} Q^{\prime}$;
(2) if $i \leq k$ and $G_{z}^{i} \mathbb{Z}_{e} P_{i}$, then $G_{z}^{i} \mathbb{Z}_{e} f^{(i)}$.

The construction of f will be carried out by steps. At each step s we shall construct a $(k+1)$-regular finite part δ_{s} so that $\left|\delta_{s}\right|_{k+1} \geq s+1$ and $\delta_{s} \subseteq \delta_{s+1}$. On the even steps we shall ensure (1), on the odd steps - (2).

Let \mathcal{R}_{k+1} be the set of all $(k+1)$-regular finite parts and $S_{j}^{k+1}=\mathcal{R}_{k+1} \cap ?{ }_{j}(Q)$. By Lemma 2.6 the sequence $\left\{S_{j}^{k+1}\right\}$ is T-reducible to Q^{\prime}. Let $\sigma_{0}, \ldots, \sigma_{k+1}$ be recursive in Q enumerations of the sets B_{0}, \ldots, B_{k+1}, respectively.

Let δ_{0} be an arbitrary $(k+1)$-regular finite part with $(k+1)$-rank equal to 1 . Suppose that δ_{s} is defined.

Case $s=2 m$. Check whether there exists a $\rho \in S_{m}^{k+1}$ such that $\delta_{s} \subset \rho$. If so let δ_{s+1} be the least such ρ. Otherwise let δ_{s+1} be the least $(k+1)$-regular extension of δ_{s} with $(k+1)$-rank equal to $\left|\delta_{s}\right|_{k+1}+1$.

Case $s=2 m+1$. Let $\left|\delta_{s}\right|_{k+1}=r+1 \geq s+1$. Let $m=\langle z, e\rangle$. We may assume that the recursive coding $\langle. .$.$\rangle is chosen so that e \leq m$. Then $e<r+1$. Let $\sigma_{0}(m) \simeq z_{0}, \ldots, \sigma_{k+1}(m) \simeq z_{k+1}$. Set $\tau_{0} \simeq \mu_{k}\left(\delta_{s} * z_{k+1}, S_{r+1}^{k}\right)$. Set $l_{r+1}=1 \mathrm{~h}\left(\tau_{0}\right)$ and
$q_{0}^{k}=l_{r+1}$. For $j<e$, let $\tau_{j+1}=\mu_{k}\left(\tau_{j} * 0, X_{\left\langle j, q_{i}^{k}\right\rangle}^{k}\right)$ and $q_{j+1}^{k}=\operatorname{lh}\left(\tau_{j+1}\right)$. Now we have defined τ_{e} and q_{e}^{k}. Let

$$
C=\left\{x:\left(\exists \tau \supseteq \tau_{e}\right)\left(\tau \in \mathcal{R}_{k} \& \tau\left(q_{e}^{k}\right) \simeq x \& \tau \Vdash_{k} F_{e}\left(q_{e}^{k}\right)\right)\right\} .
$$

Clearly C is recursive in Q. Since $G_{z}^{k}=?_{z}\left(g^{(k)}\right)$ and $g^{(k+1)} \equiv_{e} Q$, we can check recursively in Q^{\prime} whether there exists an a such that

$$
\begin{equation*}
a \in C \& a \notin G_{z}^{k} \vee a \notin C \& a \in G_{z}^{k} . \tag{3.3}
\end{equation*}
$$

If the answer is positive, then let a_{0} be the least a satisfying (3.3). If the answer is negative, then let $a_{0}=0$. Notice that we can find a_{0} recursively in Q^{\prime}. Next we extend recursively in Q^{\prime} the finite part $\tau_{e} * a_{0}$ to a finite part τ so that τ is a k-regular $r+1$ omitting extension of τ_{0}. Set $b_{r+1}=\operatorname{lh}(\tau)$.

Now consider the sets $G_{z}^{i}, i<k$. Notice that $g^{(i+3)}$ is recursive in Q^{\prime}. Since $P_{i} \leq_{e} g^{(i)}$ and

$$
G_{z}^{i} \leq_{e} P_{i} \Longleftrightarrow \exists u \forall x\left(x \in ?_{z}\left(g^{(i)}\right) \Longleftrightarrow x \in ?_{u}\left(P_{i}\right)\right)
$$

we can check recursively in $g^{(i+3)}$ for each i whether $G_{z}^{i} \leq_{e} P_{i}$. Set $A_{i}=G_{z}^{i}$, if $G_{z}^{i} \mathbb{Z}_{e} P_{i}$ and $A_{i}=P_{i}^{\prime}$, otherwise. Clearly $A_{i} \mathbb{Z}_{e} P_{i}$ and $A_{0}^{+} \oplus \cdots \oplus A_{k-1}^{+} \leq_{e} Q^{\prime}$. By Lemma 3.7 we can construct recursively in Q^{\prime} a k-regular extension ρ of τ such that
(i) $|\rho|_{k}=|\tau|_{k}+1$;
(ii) $\rho\left(b_{r+1}\right) \simeq z_{k+1}$ and $z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{k} \in \rho\left(B_{k}^{\rho}\right)$;
(iii) if $i<k$ and $K_{i+1}^{p}=q_{0}^{i}, \ldots, q_{e}^{i}, \ldots q_{h_{i}}^{i}$, then
a) $\rho\left(q_{e}^{i}\right) \in A_{i} \Rightarrow \rho \Vdash_{i} \neg F_{\epsilon}\left(q_{e}^{i}\right)$;
b) $\rho\left(q_{e}^{i}\right) \notin A_{i} \Rightarrow \rho \Vdash_{i} F_{\varepsilon}\left(q_{e}^{i}\right)$.

Set $\delta_{s+1}=\rho$.
Let $f=\bigcup \delta_{s}$. Clearly f is a regular enumeration and $f \leq_{e} Q^{\prime}$. First we shall show that $f^{(k+2)} \equiv_{e} Q^{\prime}$. Since f is regular, $P_{k+1} \leq_{e} f^{(k+1)}$. Therefore $Q^{\prime}=P_{k+1}^{\prime} \leq_{e}$ $f^{(k+2)}$. Clearly for every $z, x,\left\{\tau: \tau \in \mathcal{R}_{k+1} \& \tau \Vdash_{k+1} F_{z}(x)\right\}$ is ε-reducible to Q. From here, by the even stages of the construction, it follows that for all z, x,

$$
f \models_{k+1}(\neg) F_{z}(x) \Longleftrightarrow(\exists \tau \subseteq f)\left(\tau \in \mathcal{R}_{k+1} \& \tau \Vdash_{k+1}(\neg) F_{z}(x)\right) .
$$

Using the last equivalence we may conclude as in the proof of Proposition 2.12 that $f^{(k+2)} \leq_{e} f \oplus Q^{\prime}$. Hence $f^{(k+2)} \equiv_{e} Q^{\prime}$.

Let us turn to the proof of the condition (ii) of the Theorem. Since f is regular we have that if $i \leq k$, then for all e and x,

$$
f \models_{i}(-) F_{e}(x) \Longleftrightarrow(\exists \tau \subseteq f)\left(\tau \in \mathcal{R}_{i} \& \tau \vdash_{i}(-) F_{e}(x)\right) .
$$

Now suppose that $i \leq k, A \leq_{e} g^{(i)}$ and $A \leq_{e} f^{(i)}$. Assume that $A \mathbb{Z}_{e} P_{i}$. Fix z and ϵ such that $A=?_{z}\left(g^{(i)}\right)$ and for all x,

$$
f(x) \in A \Longleftrightarrow f \models_{i} F_{\epsilon}(x)
$$

Consider the step $s=2\langle z, e\rangle+1$. By the construction, there exists a $q_{\epsilon}^{i} \in$ $\operatorname{dom}\left(\delta_{s+1}\right)$ such that

$$
\left(f\left(q_{\epsilon}^{i}\right) \in A \Rightarrow f \models \neg F_{\epsilon}\left(q_{e}^{i}\right)\right) \&\left(f\left(q_{\epsilon}^{i}\right) \notin A \Rightarrow f \models F_{e}\left(q_{e}^{i}\right)\right) .
$$

A contradiction.

4. ω-REGULAR ENUMERATIONS

Let $B_{0}, \ldots, B_{k}, \ldots$ be a sequence of subsets of \mathbb{N}. We shall call a finite part or an enumeration k-regular if it is regular with respect to B_{0}, \ldots, B_{k}.
4.1. Definition. A finite part τ defined on $[0, q-1]$ is called ω-regular if there exist natural numbers $0<n_{0}<\cdots<n_{k}=q$ such that for every $j \leq k, \tau \mid n_{j}$ is a j-regular finite part and $\left.|\tau| n_{j}\right|_{j}=1$.
4.2. Definition. A total mapping f of \mathbb{N} in \mathbb{N} is called an ω-regular enumeration if the following two conditions are satisfied:
(i) For every $\delta \subseteq f$ there exists an ω-regular $\tau \subseteq f$ such that $\delta \subseteq \tau$.
(ii) For every k and $z \in B_{k}$ there exists a k-regular $\tau \subseteq f$ such that $z \in \tau\left(B_{k}^{\tau}\right)$.

Let $P_{k}=\mathcal{P}\left(B_{0}, \ldots, B_{k}\right)$ and $P_{\omega}=\left\{\langle k, x\rangle: x \in P_{k}\right\}$. The set P_{ω} is total. Indeed, fix z_{0} so that for all sets $A, ?_{z_{0}}(A)=A$. Then

$$
\begin{aligned}
& \langle k, x\rangle \notin P_{\omega} \Longleftrightarrow x \notin P_{k} \Longleftrightarrow x \notin ?_{z_{0}}\left(P_{k}\right) \Longleftrightarrow \\
& 2\left\langle x, z_{0}\right\rangle+1 \in P_{k}^{\prime} \Longleftrightarrow 2\left(2\left\langle x, z_{0}\right\rangle+1\right) \in P_{k+1}=P_{k}^{\prime} \oplus B_{k+1} \Longleftrightarrow \\
& \left\langle k+1,2\left(2\left\langle x, z_{0}\right\rangle+1\right)\right\rangle \in P_{\omega} .
\end{aligned}
$$

So, $\omega \backslash P_{\omega} \leq_{e} P_{\omega}$.
Using Lemma 2.2 we obtain immediately the following:
4.3. Lemma. If f is ω-regular, then f is k-regular for every k.
4.4. Corollary. If f is ω-regular, then $(\forall k \geq 1)\left(f^{(k)} \equiv_{e} f \oplus P_{k-1}^{\prime}\right)$.

An examination of the proofs of Proposition 2.6 and Proposition 2.8 shows the truth of the following uniform versions:

4.5. Proposition.

(1) The sets \mathcal{R}_{k} of all k-regular finite parts are uniformly in k e-reducible to P_{k} and hence the sequence $\left\{\mathcal{R}_{k}\right\}$ is T-reducible to P_{ω}.
(2) The sequences $\left\{S_{j}^{k}\right\}$ and $\left\{X_{j}^{k}\right\}$ are uniformly in k e-reducible to P_{k} and hence these sequences are uniformly in $k T$-reducible to P_{ω}.
(3) The functions μ_{k}^{S} and μ_{k}^{X} are uniformly in k partial recursive in P_{k}^{\prime} and hence they are uniformly partial recursive in P_{ω}.
4.6. Proposition. If f is an ω-regular enumeration, then the sets B_{k} and P_{k} are uniformly in $k e$-reducible to $f^{(k)}$.
4.7. Corollary. If f is an ω-regular enumeration, then $f^{(\omega)} \equiv_{e} f \oplus P_{\omega}$.
4.8. Theorem. Let Q be a total set and $P_{\omega} \leq_{e} Q$. There exists an ω-regular enumeration f such that $f^{(\omega)} \equiv_{e} Q$.

Proof. The construction of f will be carried out by steps. At each step we shall define a s-regular finite part δ_{s} with s-rank 1 . We shall ensure that $\delta_{s} \subseteq \delta_{s+1}$ and define $f=\bigcup \delta_{s}$.

Let $\sigma(k, s)$ be a recursive in Q function such that for all $k, \lambda s . \sigma(k, s)$ enumerates B_{k}. Let y_{0}, y_{1}, \ldots be a recursive in Q enumeration of Q.

Define δ_{0} on $[0,1]$ so that $\delta_{0}(0) \simeq y_{0}$ and $\delta_{0}(1) \simeq \sigma(0,0)$.
Suppose that δ_{s} is defined. Let $n_{0}=\operatorname{lh}\left(\delta_{s}\right), \tau_{0}=\mu_{s}\left(\delta_{s} * y_{s}, S_{0}^{s}\right)$ and $l_{0}=\operatorname{lh}\left(\tau_{0}\right)$. Next set $\tau=\mu_{s}\left(\tau_{0} * 0, X_{\left\langle 0, l_{0}\right\rangle}^{s}\right)$ and $b_{0}=\operatorname{lh}(\tau)$. Notice that τ is a s-regular 0 omitting extension of τ_{0}. Using Lemma 3.1, construct a s-regular extension ρ of τ such that $\left|\rho_{s}\right|_{s}=|\tau|_{s}+1, \rho\left(b_{0}\right) \simeq \sigma(s+1,0)$ and $\sigma(s, 1) \in \rho\left(B_{s}^{\rho}\right), \ldots, \sigma(0, s+1) \in \rho\left(B_{0}^{\rho}\right)$. Set $\delta_{s+1}=\rho$.

Clearly the obtained by the construction above enumeration f is ω-regular. Since the whole construction is recursive in Q, we have that $f \leq_{e} Q$ and hence $f^{(\omega)} \equiv_{e}$ $f \oplus P_{\omega} \leq_{e} Q$. It remains to show that $Q \leq_{e} f \oplus P_{\omega}$. Indeed, let $n^{0}=0$ and $n^{s+1}=\operatorname{lh}\left(\delta_{s}\right)$. Clearly we have a recursive in $f \oplus P_{\omega}$ procedure which generates consecutively the finite parts $\delta_{s}, s=0,1, \ldots$ Therefore the set $\left\{n^{s}: s \in \mathbb{N}\right\}$ is recursive in $f \oplus P_{\omega}$. Since $y \in Q \Longleftrightarrow \exists s\left(f\left(n^{s}\right) \simeq y\right), Q \leq_{e} f \oplus P_{\omega}$.

We shall need the following version of Lemma 3.7 which can be proved in a way similar to the proof of Lemma 3.6:
4.9. Lemma. Let $k \geq 1$, and let τ be a k-regular finite part, defined on $[0, q-1]$. Suppose that $|\tau|_{k}=r+1$. Let $s_{k-1} \leq r+1, s_{k-2} \leq r+2, \ldots, s_{0} \leq r+k$. Let for $i<k$ and $j \leq s_{i}, A_{j}^{i} \mathbb{Z}_{e} P_{i}$. Finally let $y \in \mathbb{N}, z_{0} \in B_{0}, \ldots, z_{k} \in B_{k}$. Denote by A the set $\bigoplus_{i<k, j \leq s_{i}}\left(A_{j}^{i}\right)^{+}$. Then one can construct recursively in $P_{k-1}^{\prime} \oplus A$ a k-regular extension ρ of τ such that
(i) $|\rho|_{k}=r+2$;
(ii) $\rho(q) \simeq y, z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{k} \in \rho\left(B_{k}^{\rho}\right)$;
(iii) if $i<k$ and $K_{i+1}^{\rho}=q_{0}^{i}, \ldots, q_{s_{i}}^{i}, \ldots q_{m_{i}}^{i}$, then for $j \leq s_{i}$:
a) $\rho\left(q_{j}^{i}\right) \in A_{j}^{i} \Rightarrow \rho \vdash_{i} \neg F_{j}\left(q_{j}^{i}\right)$;
b) $\rho\left(q_{j}^{i}\right) \notin A_{j}^{i} \Rightarrow \rho \Vdash_{i} F_{j}\left(q_{j}^{i}\right)$.

Now we are ready for the main result of this section:
4.10. Theorem. There exist total sets F and G such that $F^{(\omega)} \equiv_{e} G^{(\omega)} \equiv_{e} P_{\omega}$ and such that for all k the following conditions hold:
(i) P_{k} is uniformly e-reducible to $F^{(k)}$ and to $G^{(k)}, F^{(k)} \mathbb{L}_{e} P_{k}$ and $G^{(k)} \mathbb{L}_{e} P_{k}$.
(ii) If $A \leq_{e} F^{(k)}$ and $A \leq_{e} G^{(k)}$, then $A \leq_{e} P_{k}$.

Proof. We shall construct F and G as graphs of ω-regular enumerations f and g. This will ensure by Proposition 4.6 and Lemma 3.4 the condition (i).

Let g be an arbitrary ω-regular enumeration such that $g^{(\omega)} \equiv_{\epsilon} P_{\omega}$.
The construction of f is similar to that in the proof of Theorem 1.7. Let $\sigma(k, s)$ be a recursive in P_{ω} function such that for all $k, \lambda s . \sigma(k, s)$ enumerates B_{k}. For every
k and z, set $G_{z}^{k}=?_{z}\left(g^{(k)}\right)$. We start the construction of f by putting $\delta_{0}(0) \simeq 0$ and $\delta_{0}(1) \simeq \sigma(0,0)$. Suppose that δ_{s} is defined and δ_{s} is a s-regular finite part with s-rank 1. Consider the sets $G_{0}^{s}, G_{1}^{s-1}, G_{0}^{s-1}, \ldots, G_{s}^{0}, \ldots, G_{0}^{0}$. For $i \leq s$ and $j \leq s-i$ set $A_{j}^{i}=G_{s-i-j}^{i}$ if $G_{s-i-j}^{i} Z_{e} P_{i}$ and $A_{j}^{i}=P_{i}^{\prime}$, otherwise. Clearly this assignment can be done recursively in P_{ω}. Notice that $A_{j}^{i} \mathbb{Z}_{e} P_{i}$ and $\left(A_{j}^{i}\right)^{+} \leq_{e} P_{\omega}$

Let $\tau_{0}=\mu_{s}\left(\delta_{s} * 0, S_{0}^{s}\right)$ and $l_{0}=\operatorname{lh}\left(\tau_{0}\right)$. Next let a_{0} be the least a such that $a \in A_{0}^{s}$ is not equivalent to $\left(\exists \tau \supseteq \tau_{0}\right)\left(\tau \in \mathcal{R}_{s} \& \tau\left(l_{0}\right) \simeq a_{0} \& \tau\right.$ ト $\left._{s} F_{0}\left(l_{0}\right)\right)$. Set $\tau=\mu_{s}\left(\tau_{0} *\right.$ $\left.a_{0}, X_{\left\langle 0, l_{0}\right\rangle}^{s}\right)$ and $b_{0}=\operatorname{lh}(\tau)$. Using Lemma 4.9, construct a s-regular extension ρ of τ such that $|\rho|_{s}=|\tau|_{s}+1, \rho\left(b_{0}\right) \simeq \sigma(s+1,0)$ and $\sigma(s, 1) \in \rho\left(B_{s-1}^{\rho}\right), \ldots, \sigma(0, s+1) \in$ $\rho\left(B_{0}^{\rho}\right)$ and if $i<s$ and $K_{i+1}^{\rho}=q_{0}^{i}, \ldots, q_{s-i}^{i}, \ldots q_{m_{i}}^{i}$, then for all $j \leq s-i$
a) $\rho\left(q_{j}^{i}\right) \in A_{j}^{i} \Rightarrow \rho \vdash_{i} \neg F_{j}\left(q_{j}^{i}\right)$;
b) $\rho\left(q_{j}^{i}\right) \notin A_{j}^{i} \Rightarrow \rho \vdash_{i} F_{j}\left(q_{j}^{i}\right)$.

Set $\delta_{s+1}=\rho$.
Let $f=\bigcup \delta_{s}$. Clearly f is ω-regular, $f \leq_{\epsilon} P_{\omega}$ and hence $f^{(\omega)} \equiv_{\epsilon} P_{\omega}$. It remains to show the validity of (ii). Fix a k and assume that $A=G_{z}^{k}$ and $A \not \mathbb{Z}_{e} P_{k}$. We shall show that $A \not \mathbb{L}_{e} f^{(k)}$. Assume that $A \leq_{\epsilon} f^{(k)}$. Then the set $C=\{x: f(x) \in A\}$ is also ϵ-reducible to $f^{(k)}$. Let p be such that for all $x, f \models_{k} F_{p}(x) \Longleftrightarrow x \in C$. Then for all x

$$
\begin{equation*}
f(x) \in A \Longleftrightarrow f \models_{k} F_{p}(x) \tag{4.1}
\end{equation*}
$$

Consider the step $s=k+z+p$. Then $A_{p}^{k}=G_{z}^{k}=A$. By the construction there exists a $q \in \operatorname{dom}\left(\delta_{s+1}\right)$ such that

$$
\left(\delta_{s+1}(q) \in A \& \delta_{s+1} \vdash_{k} \neg F_{p}(q)\right) \vee\left(\delta_{s+1}(q) \notin A \& \delta_{s+1} \Vdash_{k} F_{p}(q)\right) .
$$

 $f \models_{k} F_{p}(q)$. The last contradicts (4.1).

The following corollary should be compared with the respective result in [1]:
4.11. Corollary. Let $A \subseteq \mathbb{N}$, then $A \leq_{e} P_{k}$ iff $A \in \Sigma_{k+1}^{X}$ for all total X such that $X^{(\omega)} \equiv_{e} P_{\omega}$ and $\forall i\left(B_{i} \in \Sigma_{i+1}^{X}\right)$ uniformly in i.
4.12. Definition. The set A is arithmetical in the sequence $\left\{B_{k}\right\}$ if for some k, $A \leq_{e} P_{k}$. The sequence $\left\{B_{k}\right\}$ is arithmetical in X if there exist recursive functions g, h such that $B_{k}=?_{g(k)}\left(\left(X^{+}\right)^{(h(k))}\right)$.
4.13. Corollary. The following assertions are equivalent:
(1) A is arithmetical in $\left\{B_{k}\right\}$.
(2) A is arithmetical in all X such that $X^{(\omega)} \equiv_{e} P_{\omega}$ and $\left\{B_{k}\right\}$ is arithmetical in X.
(3) A is arithmetical in all X such that $X^{(\omega)} \equiv{ }_{e} P_{\omega}$ and for all k, B_{k} is arithmetical in X.

Acknowledgments. Thanks to the referee for improving the exposition in this paper and for pointing out the reference to Rozinas' paper.

References

1. C. J. Ash, Generalizations of enumeration reducibility using recursive infinitary propositional senetences, Ann. Pure Appl. Logic 58 (1992), 173-184.
2. J. Case, Maximal arithmetical reducibilities, Z. Math. Logik Grundlag. Math. 20 (1974), 261-270.
3. S. B. Cooper, Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ_{2} sets are dense, J. Symbolic Logic 49 (1984), 503-513.
4. S.B. Cooper, Enumeration reducibilty, nondeterministic computations and relative computability of partial functions, in "Recursion theory week, Oberwolfach 1989" (K. AmbosSpies, G. Müler, G. E. Sacks, ed.), Lecture notes in mathematics vol. 1432, SpringerVerlag, Berlin, Heidelberg, New York 1990, pp. 57-110.
5. K. McEvoy, Jumps of quasi-minimal enumeration degrees, J. Symbolic Logic 50 (1985), 839-848.
6. K. McEvoy and S.B. Cooper, On minimal pairs of enumeration degrees, J. Symbolic Logic 50 (1985), 983-1001.
7. M. Rozinas, The semi-lattice of e-degrees, Recursive functions, Ivanov. Gos. Univ., Ivanovo, 1978, pp. 71-84, (in Russian).
8. A.L. Selman, Arithmetical reducibilities I, Z. Math. Logik Grundlag. Math. 17 (1971), 335-350.

Faculty of Mathematics and Computer Science, Sofia University, Blvd.
"James Bourchier" 5, 1164 Sofia, Bulgaria
E-mail address: soskov@fmi.uni-sofia.bg

[^0]: 1991 Mathematics Subject Classification. 03D30.
 Key words and phrases. enumeration reducibility, enumeration jump, enumeration degrees, forcing.

 This work was partially supported by the Ministry of education and science, Contract I 604/96.

