A JUMP INVERSION THEOREM FOR THE ENUMERATION JUMP

I. N. SOSKOV

ABSTRACT. We prove a jump inversion theorem for the enumeration jump and a minimal pair type theorem for the enumeration reducibility. As an application some results of Selman, Case and Ash are obtained.

1. INTRODUCTION

Given two sets of natural numbers A and B, we say that A is enumeration reducible to B $(A \leq_e B)$ if $A = \Gamma_z(B)$ for some enumeration operator Γ_z . In other words, using the notation D_v for the finite set having canonical code v and W_0, \ldots, W_z, \ldots for the Gödel enumeration of the r.e. sets, we have

$$A \leq_e B \iff \exists z \forall x (x \in A \iff \exists v (\langle v, x \rangle \in W_z \& D_v \subseteq B))$$

The relation \leq_e is reflexive and transitive and induces an equivalence relation \equiv_e on all subsets of \mathbb{N} . The respective equivalence classes are called enumeration degrees. For an introduction to the enumeration degrees the reader might consult COOPER [4].

Given a set A denote by A^+ the set $A \oplus (\mathbb{N} \setminus A)$. The set A is called *total* iff $A \equiv_e A^+$. Clearly A is recursively enumerable in B iff $A \leq_e B^+$ and A is recursive in B iff $A^+ \leq_e B^+$. Notice that the graph of every total function is a total set.

The enumeration jump operator is defined in COOPER [3] and further studied by MCEVOY [5]. Here we shall use the following definition of the *e*-jump which is *m*-equivalent to the original one, see [5]:

1.1. Definition. Given a set A, let $K_A^0 = \{\langle x, z \rangle : x \in \Gamma_z(A)\}$. Define the *e-jump* A'_e of A to be the set $(K_A^0)^+$.

Several properties of the *e*-jump are proved in [5]. Among them it is shown that the *e*-jump is monotone, agrees with \equiv_e and that for any sets A and B, A is \sum_{n+1}^{0} relatively to B iff $A \leq_e (B^+)_e^{(n)}$, where for every set B, $B_e^{(0)} = B$ and $B_e^{(n+1)}$ is the *e*-jump of $B_e^{(n)}$.

Though for total sets the e-jump and the Turing jump are enumeration equivalent, in the general case this is not true. So, for example, the e-jump of Kleene's set K is

¹⁹⁹¹ Mathematics Subject Classification. 03D30.

Key words and phrases. enumeration reducibility, enumeration jump, enumeration degrees, forcing.

This work was partially supported by the Ministry of education and science, Contract I 604/96.

enumeration equivalent to \emptyset' while the Turing jump of K is enumeration equivalent to Ø″.

Since we are going to consider only *e*-jumps here, from now on we shall omit the subscript e in the notation of the e-jump. So for any set A by $A^{(n)}$ we shall denote the n-th e-jump of A.

In [5] several analogs of the known jump-inversion theorems for the Turing reducibility are proved, but the relativised versions are not considered. So the following natural question is left open. Given a set B, does there exist a total set F such that $B \leq_e F$ and $B' \equiv_e F'\Gamma$

In the present paper we are going to prove the following result which gives a positive answer to the question above. Given k + 1 sets B_0, \ldots, B_k , we define for every $i \leq k$ the set $P(B_0, \ldots, B_i)$ by means of the following inductive definition:

- (i) $P(B_0) = B_0;$
- (ii) If i < k, then $P(B_0, \ldots, B_{i+1}) = (P(B_0, \ldots, B_i))' \oplus B_{i+1}$.

1.2. Theorem. Let $k \geq 0$ and B_0, \ldots, B_k be arbitrary sets of natural numbers. Let Q be a total set and $\mathfrak{P}(B_0,\ldots,B_k) \leq_e Q$. There exists a total set F having the following properties:

- (i) For all $i \leq k$, $B_i \in \Sigma_{i+1}^F$; (ii) For all $i, 1 \leq i \leq k$, $F^{(i)} \equiv_e F \oplus \mathcal{P}(B_0, \ldots, B_{i-1})'$; (iii) $F^{(k)} \equiv_e Q$.

Notice that if $B_0 = \cdots = B_k = \emptyset$, then $\mathcal{P}(B_0, \ldots, B_k) \equiv_e \emptyset^{(k)}$ and hence, since both sets are total, they are Turing equivalent. So Theorem 1.2 is a generalization of Friedberg's jump-inversion theorem.

We shall also prove the following "type omitting" version of the above theorem:

1.3. Theorem. Let $k > n \ge 0$, B_0, \ldots, B_k be arbitrary sets of natural numbers. Let $A \subseteq \mathbb{N}$ and let Q be a total subset of \mathbb{N} such that $\mathfrak{P}(B_0, \ldots, B_k) \leq_e Q$ and $A^+ \leq_e Q$. Suppose also that $A \not\leq_e \mathcal{P}(B_0, \ldots, B_n)$. Then there exists a total set F having the following properties:

- (i) For all $i \leq k$, $B_i \in \Sigma_{i+1}^F$; (ii) For all $i, 1 \leq i \leq k$, $F^{(i)} \equiv_e F \oplus \mathcal{P}(B_0, \dots, B_{i-1})'$;
- (iii) $F^{(k)} \equiv_e Q.$
- (iv) $A \not\leq_e F^{(n)}$.

In [8] Selman gives the following characterization of the enumeration reducibility in terms of the relation "recursively enumerable in":

 $A \leq_e B \iff \forall X(B \text{ is r.e. in } X \Rightarrow A \text{ is r.e. in } X).$

As an application of the so far formulated theorems we can get an upper bound of the universal quantifier in the equivalence above:

1.4. Theorem. $A \leq_e B$ iff for all total X, B is r.e in X and $X' \equiv_e B'$ implies A is r.e. in X.

Proof. Clearly for total X, B is r.e. in X iff $B \leq_e X$. Now suppose that for all total X, $B \leq_e X \& X' \equiv_e B' \Rightarrow A \leq_e X$. First we shall show that $A^+ \leq_e B'$. Indeed, by Theorem 1.2, there exists a total G such that $B \leq_e G$ and $G' \equiv_e B'$. Then $A \leq_e G$ and hence $A' \leq_e G' \leq_e B'$. So since $A^+ \leq_e A'$, $A^+ \leq_e B'$.

Assume that $A \not\leq_e B$. Apply Theorem 1.3 for $k = 1, n = 0, B_0 = B, B_1 = \emptyset$ and Q = B' to get a total F such that $B \leq_e F, F' \equiv_e B'$ and $A \not\leq_e F$. A contradiction. \Box

Selman's theorem is further generalized in CASE [2], where it is shown that for all $n \ge 0$,

$$A \leq_e B \oplus \emptyset^{(n)} \iff \forall X (B \in \Sigma_{n+1}^X \Rightarrow A \in \Sigma_{n+1}^X).$$

Finally ASH [1] studies the general case and characterizes by a certain kind of formally described reducibilities for any given k + 2 sets A, B_0, \ldots, B_k the relations

 $\mathfrak{R}_k^n(A, B_0, \dots, B_k) \iff \forall X(B_0 \in \Sigma_1^X, \dots, B_k \in \Sigma_{k+1}^X \Rightarrow A \in \Sigma_{n+1}^X).$

By an almost direct application of Theorem 1.2 and Theorem 1.3 we obtain the following version of Ash's result:

1.5. Theorem.

- (1) For all n < k, $\mathfrak{R}_k^n(A, B_0, \ldots, B_k) \iff A \leq_e \mathfrak{P}(B_0, \ldots, B_n)$.
- (2) For all $n \ge k$, $\mathfrak{R}_k^n(A, B_0, \dots, B_k) \iff A \le_e \mathfrak{P}(B_0, \dots, B_k)^{(n-k)}$.

Proof. The right to left implications of (1) and (2) are trivial.

Consider the left to right direction of (1). Towards a contradiction suppose that n < k, $\mathcal{R}_k^n(A, B_0, \ldots, B_k)$ and $A \not\leq_e \mathcal{P}(B_0, \ldots, B_n)$. By Theorem 1.3, there exists a total F, such that $A \not\leq_e F^{(n)}$ and for all $i \leq k$, $B_i \in \Sigma_{i+1}^F$. Clearly $A \notin \Sigma_{n+1}^F$. A contradiction.

To prove (2) in the non trivial direction assume that $n \geq k, \mathcal{R}_k^n(A, B_0, \ldots, B_k)$ and $A \not\leq_e \mathcal{P}(B_0, \ldots, B_k)^{(n-k)}$. By Selman's theorem, there exists a total Q such that $\mathcal{P}(B_0, \ldots, B_k)^{(n-k)} \leq_e Q$ and $A \not\leq_e Q$. Set $B_{k+1} = \cdots = B_n = \emptyset$. Then $\mathcal{P}(B_0, \ldots, B_n) \equiv_e \mathcal{P}(B_0, \ldots, B_k)^{(n-k)}$. By Theorem 1.2 there exists a total F such that $F^{(n)} \equiv_e Q$ and for all $i \leq k, B_i \in \Sigma_{i+1}^F$. Clearly $A \not\leq_e F^{(n)}$ and hence $A \notin \Sigma_{n+1}^F$. A contradiction. \Box

A proof very close to that of Theorem 1.4 gives upper bounds of the universal quantifiers in the definitions of the relations \mathcal{R}_k^n .

1.6. Corollary.

(1) Let n < k. Suppose that S is a total subset of \mathbb{N} and $\mathcal{P}(B_0, \ldots, B_k) \leq_e S$. Then $\mathcal{R}^n_k(A, B_0, \ldots, B_k)$ iff for all total X such that $X^{(k)} \equiv_e S$,

$$B_0 \in \Sigma_1^X, \dots, B_k \in \Sigma_{k+1}^X \Rightarrow A \in \Sigma_{n+1}^X.$$

(2) Let $k \leq n$. Then $\mathfrak{R}_k^n(A, B_0, \ldots, B_k)$ iff for all total X such that $X^{(n+1)} \equiv_e \mathfrak{P}(B_0, \ldots, B_k)^{(n-k+1)}$,

$$B_0 \in \Sigma_1^X, \dots, B_k \in \Sigma_{k+1}^X \Rightarrow A \in \Sigma_{n+1}^X.$$

Clearly the result of Case can be obtained from Theorem 1.5 by setting k = nand $B_0 = \cdots = B_{n-1} = \emptyset$, $B_n = B$. Another corollary which is worth mentioning is obtained in the case k = 0, $n \ge 0$ and $B_0 = B$:

$$A \leq_e B^{(n)} \iff \forall X (B \in \Sigma_1^X \Rightarrow A \in \Sigma_{n+1}^X).$$

We conclude the introduction with a Minimal pair type theorem which generalizes the so far described Selman-Case-Ash results:

1.7. Theorem. Let $k \ge 0$ and B_0, \ldots, B_k be arbitrary sets of natural numbers. There exist total sets F and G such that $F^{(k+2)} \equiv_e \mathcal{P}(B_0, \ldots, B_k)''$ and $G^{(k+2)} \equiv_e$ $\mathcal{P}(B_0 \ldots, B_k)''$ and

- (i) For all $n \leq k$, $\mathcal{P}(B_0, \ldots, B_n) <_e F^{(n)}$ and $\mathcal{P}(B_0, \ldots, B_n) <_e G^{(n)}$. (ii) If $n \leq k$, $A \leq_e F^{(n)}$ and $A \leq_e G^{(n)}$, then $A \leq_e \mathcal{P}(B_0, \ldots, B_n)$.

An immediate corollary of the last Theorem is a result of ROZINAS [7] that there exist a minimal pair of total e-degrees \mathbf{f}, \mathbf{g} over every e-degree \mathbf{b} .

Clearly the minimal pair \mathbf{f}, \mathbf{g} could be constructed below \mathbf{b}'' . So Theorem 1.7 generalizes Selman's theorem but does not generalize Theorem 1.4. A natural improvement of the last result would be to show that the degrees f, g could be constructed below \mathbf{b}' . This would give a generalization of the respective result of MCEVOY AND COOPER [6] where a minimal pair of enumeration degrees below $\mathbf{0}'$ is constructed.

The proofs of our results use of the machinery of the so called regular enumerations, described in the next section. Section 3 contains the final proofs. In the last section 4 a version of Theorem 1.7 involving infinite sequences of sets is presented.

2. Regular Enumerations

Let us fix $k \ge 0$ and subsets B_0, \ldots, B_k of N. Since every set B is enumeration equivalent to $B \oplus \mathbb{N} = \{2x : x \in B\} \cup \{2x + 1 : x \in \mathbb{N}\},\$ we may assume that B_0,\ldots,B_k are not empty.

In what follows we shall use the term *finite part* for finite mappings of N into N defined on finite segments [0, q-1] of N. Finite parts will be denoted by the letters τ, δ, ρ . If dom $(\tau) = [0, q-1]$, then let $\ln(\tau) = q$.

We shall suppose that an effective coding of all finite sequences and hence of all finite parts is fixed. Given two finite parts τ and ρ we shall say that τ is less than or equal to ρ if the code of τ is less than or equal to the code of ρ . By $\tau \subseteq \rho$ we shall denote that the partial mapping ρ extends τ and say that ρ is an extension of τ . For any τ , by $\tau \upharpoonright n$ we shall denote the restriction of τ on [0, n-1].

Bellow we define for every i < k the *i*-regular finite parts.

The 0-regular finite parts are finite parts τ such that dom $(\tau) = [0, 2q+1]$ and for all odd $z \in \operatorname{dom}(\tau), \tau(z) \in B_0$.

If dom(τ) = [0, 2q + 1], then the 0-rank $|\tau|_0$ of τ is equal to the number q + 1of the odd elements of dom(τ). Notice that if τ and ρ are 0-regular, $\tau \subseteq \rho$ and $|\tau|_0 = |\rho|_0$, then $\tau = \rho$.

For every 0-regular finite part τ , let B_0^{τ} be the set of the odd elements of dom (τ) .

Given a 0-regular finite part τ , let

$$\tau \Vdash_{0} F_{e}(x) \iff \exists v (\langle v, x \rangle \in W_{e} \& (\forall u \in D_{v})(\tau((u)_{0}) \simeq (u)_{1}))$$

$$\tau \Vdash_{0} \neg F_{e}(x) \iff \forall (0\text{-regular } \rho)(\tau \subseteq \rho \Rightarrow \rho \nvDash_{0} F_{e}(x)).$$

Proceeding by induction, suppose that for some i < k we have defined the *i*-regular finite parts and for every *i*-regular τ – the *i*-rank $|\tau|_i$ of τ , the set B_i^{τ} and the relations $\tau \Vdash_i F_e(x)$ and $\tau \Vdash_i \neg F_e(x)$. Suppose also that if τ and ρ are *i*-regular, $\tau \subseteq \rho$ and $|\tau|_i = |\rho|_i$, then $\tau = \rho$.

Set $X_i^i = \{\rho : \rho \text{ is } i\text{-regular } \& \rho \Vdash_i F_{(j)_0}((j)_1)\}.$

Given a finite part τ and a set X of *i*-regular finite parts, let $\mu_i(\tau, X)$ be the least extension of τ belonging to X if any, and $\mu_i(\tau, X)$ be the least *i*-regular extension of τ otherwise. We shall assume that $\mu_i(\tau, X)$ is undefined if there is no *i*-regular extension of τ .

2.1. Definition. Let τ be a finite part and $m \geq 0$. Say that δ is an *i*-regular m omitting extension of τ if δ is an *i*-regular extension of τ , defined on [0, q-1] and there exist natural numbers $q_0 < \cdots < q_m < q_{m+1} = q$ such that:

- a) $\delta \restriction q_0 = \tau$.
- b) For all $p \leq m, \, \delta \restriction q_{p+1} = \mu_i(\delta \restriction (q_p + 1), X^i_{\langle p, q_p \rangle}).$

Notice that if δ is an *i*-regular *m* omitting extension of τ , then there exists a unique sequence of natural numbers q_0, \ldots, q_{m+1} having the properties a) and b) above. We shall denote the sequence q_0, \ldots, q_m by K_{τ}^{δ} . Moreover if δ and ρ are two *i*-regular *m* omitting extensions of τ and $\delta \subseteq \rho$, then $\delta = \rho$.

Let \mathcal{R}_i denote the set of all *i*-regular finite parts. Given an index j, by S_j^i we shall denote the intersection $\mathcal{R}_i \cap \Gamma_j(\mathcal{P}(B_0, \ldots, B_i))$, where Γ_j is the *j*-th enumeration operator.

Let τ be a finite part defined on [0, q-1] and $r \ge 0$. Then τ is (i+1)-regular with (i+1)-rank r+1 if there exist natural numbers

$$0 < n_0 < l_0 < b_0 < n_1 < l_1 < b_1 \dots < n_r < l_r < b_r < n_{r+1} = q$$

such that $\tau \upharpoonright n_0$ is an *i*-regular finite part with *i*-rank equal to 1 and for all $j, 0 \le j \le r$, the following conditions are satisfied:

- a) $\tau \restriction l_j \simeq \mu_i(\tau \restriction (n_j + 1), S_j^i);$
- b) $\tau \restriction b_j$ is an *i*-regular *j* omitting extension of $\tau \restriction l_j$;
- c) $\tau(b_j) \in B_{i+1};$

d) $\tau \upharpoonright n_{j+1}$ is an *i*-regular extension of $\tau \upharpoonright (b_j + 1)$ with *i*-rank equal to $|\tau \upharpoonright b_j|_i + 1$ The following Lemma shows that the (i + 1)-rank is well defined.

2.2. Lemma. Let τ be an (i + 1)-regular finite part. Then

- (1) Let $m_0, q_0, a_0, \ldots, m_p, q_p, a_p, m_{p+1}$ and $n_0, l_0, b_0, \ldots, n_r, l_r, b_r, n_{r+1}$ be two sequences of natural numbers satisfying a)-d). Then $r = p, n_{p+1} = m_{p+1}$ and for all $j \leq r, n_j = m_j, l_j = q_j$ and $b_j = a_j$.
- (2) If ρ is (i+1)-regular, $\tau \subseteq \rho$ and $|\tau|_{i+1} = |\rho|_{i+1}$, then $\tau = \rho$.
- (3) τ is *i*-regular and $|\tau|_i > |\tau|_{i+1}$.

Proof. The proof follows easily from the definition of the (i+1)-regular finite parts and from the respective properties of the *i*-regular finite parts. \Box

Let τ be (i+1)-regular and $n_0, l_0, b_0, \ldots, n_r, l_r, b_r, n_{r+1}$ be the sequence satisfying a)-d). Then let $B_{i+1}^{\tau} = \{b_0, \ldots, b_r\}$. By K_{i+1}^{τ} we shall denote the sequence $K_{\tau \mid l_r}^{\tau \mid b_r}$. Notice that, since $\tau \mid b_r$ is an r omitting extension of $\tau \mid l_r$, the sequence $K_{\tau \mid l_r}^{\tau \mid b_r}$ has exactly r + 1 members.

To conclude with the definition of the regular finite parts, let for every (i + 1)-regular finite part τ

$$\tau \Vdash_{i+1} F_e(x) \iff \exists v(\langle v, x \rangle \in W_e \& (\forall u \in D_v)((u = \langle e_u, x_u, 0 \rangle \& \tau \Vdash_i F_{e_u}(x_u)) \lor (u = \langle e_u, x_u, 1 \rangle \& \tau \Vdash_i \neg F_{e_u}(x_u)))).$$

 $\tau \Vdash_{i+1} \neg F_e(x) \iff (\forall (i+1)\text{-regular } \rho)(\tau \subseteq \rho \Rightarrow \rho \not \Vdash_{i+1} F_e(x)).$

2.3. Definition. Let f be a total mapping of \mathbb{N} in \mathbb{N} . Then f is a regular enumeration if the following two conditions hold:

- (i) For every finite part $\delta \subseteq f$, there exists a k-regular extension τ of δ such that $\tau \subseteq f$.
- (ii) If $i \leq k$ and $z \in B_i$, then there exists an *i*-regular $\tau \subseteq f$, such that $z \in \tau(B_i^{\tau})$.

Clearly, if f is a regular enumeration and $i \leq k$, then for every $\delta \subseteq f$, there exists an *i*-regular $\tau \subseteq f$ such that $\delta \subseteq \tau$. Moreover there exist *i*-regular finite parts of f of arbitrary large rank.

Given a regular f, let for $i \leq k, B_i^f = \{b : (\exists \tau \subseteq f)(\tau \text{ is } i\text{-regular } \& b \in B_i^{\tau})\}$. Clearly $f(B_i^f) = B_i$.

2.4. Definition. A sequence A_0, \ldots, A_n, \ldots of subsets of \mathbb{N} is *e-reducible* to the set P iff there exists a recursive function h such that for all $n, A_n = \Gamma_{h(n)}(P)$. The sequence $\{A_n\}$ is *T-reducible* to P if there exists a recursive in P function χ such that for all $n, \lambda x.\chi(n, x) = \chi_{A_n}$, where χ_{A_n} denotes the characteristic function of A_n .

2.5. Lemma. Suppose that the sequence $\{A_n\}$ is e-reducible to P. Then the following assertions hold:

- (1) The sequence $\{A_n\}$ is T-reducible to P'.
- (2) If R ≤_e P, then either of the following sequences is e-reducible to P:
 a) {R ∩ A_n};
 - b) $\{C_n\}$, where $C_n = \{x : \exists y (\langle x, y \rangle \in R \& y \in A_n)\}.$

Proof. Let h be a recursive function such that for all $n, A_n = \Gamma_{h(n)}(P)$.

The proof of (1) follows easily from the definition of the *e*-jump. Indeed,

$$x \in A_n \iff x \in \Gamma_{h(n)}(P) \iff \langle x, h(n) \rangle \in K_P^0 \iff 2 \langle x, h(n) \rangle \in P'.$$
$$x \notin A_n \iff x \notin \Gamma_{h(n)}(P) \iff \langle x, h(n) \rangle \notin K_P^0 \iff 2 \langle x, h(n) \rangle + 1 \in P'.$$

To prove the part b) of (2) notice that for every n

$$x \in C_n \iff \exists y (\langle x, y \rangle \in R \& \exists v (\langle v, y \rangle \in W_{h(n)} \& D_v \subseteq P)).$$

Let $R = \Gamma_z(P)$. Then $\langle x, y \rangle \in R \iff \exists u(\langle u, \langle x, y \rangle) \in W_z \& D_u \subseteq P)$. Clearly there exists a recursive function g such that

$$\langle w, x \rangle \in W_{g(n)} \iff \exists y \exists u \exists v (\langle u, \langle x, y \rangle) \in W_z \& \langle v, y \rangle \in W_{h(n)} \& D_w = D_u \cup D_v).$$

Then $x \in C_n \iff \exists w(\langle w, x \rangle \in W_{g(n)} \& D_w \subseteq P)$. Thus $C_n = \Gamma_{g(n)}(P)$. The proof of the a) part of (1) is similar. \Box

Let
$$i \leq k$$
. Set $P_i = \mathcal{P}(B_0, \dots, B_i)$. Notice that if $i < k$, then $P_{i+1} = P'_i \oplus B_{i+1}$.
For $j \in \mathbb{N}$ let $\mu_i^X(\tau, j) \simeq \mu_i(\tau, X^i_j), \ \mu_i^S(\tau, j) \simeq \mu_i(\tau, S^i_j),$

 $Y_i^i = \{ \tau : (\exists \rho \supseteq \tau) (\rho \text{ is } i \text{-regular } \& \rho \Vdash_i F_{(j)_0}((j)_1)) \}$ $Z_i^i = \{\tau : \tau \text{ is } i \text{-regular } \& \tau \Vdash_i \neg F_{(i)_0}((j)_1)\}$ and $O_{\tau,i}^{i} = \{\rho : \rho \text{ is } i \text{-regular } j \text{ omitting extension of } \tau\}.$

2.6. Proposition. For every i < k the following assertions hold:

- (1) The set \mathfrak{R}_i of all *i*-regular finite parts is *e*-reducible to P_i .
- (2) The function $\lambda \tau . |\tau|_i$ (assumed undefined if $\tau \notin \mathbb{R}_i$) is e-reducible to P_i .
- (3) The sequences {S_jⁱ}, {X_jⁱ} and {Y_jⁱ} are e-reducible to P_i.
 (4) The sequence {Z_jⁱ} is T-reducible to P'_i.
 (5) The functions μ_i^X and μ_i^S are partial recursive in P'_i.

- (6) The sequence $\{O_{\tau,i}^i\}$ is e-reducible to P'_i .

Proof. The proof is by induction on i. Suppose that i = 0. The validity of (1)–(6) follows easily from the definitions of the 0-regular finite parts and the relation " \Vdash_0 " and Lemma 2.5.

Suppose that for some i < k the assertions (1)-(6) hold. Now the validity of (1) and (2) for i + 1 follows directly from the definition of the (i + 1)-regular finite parts. Since $\Re_{i+1} \leq_e P_{i+1}$, by Lemma 2.5 the sequence $\{S_j^{i+1}\}$ is *e*-reducible to P_{i+1} . Further, by induction and by Lemma 2.5 the sequence $\{X_j^i\}$ is *T*-reducible to P'_i . By induction $\{Z^i_i\}$ is also T-reducible to P'_i . From here it follows that the sets $\{\tau : \tau \Vdash_{i+1} F_e(x)\}$ are uniformly in e and x r. e. in P'_i and therefore these sets are uniformly *e*-reducible to P'_i . We have that

$$\tau \in X_j^{i+1} \iff \tau \in \mathfrak{R}_{i+1} \& \tau \Vdash_{i+1} F_{(j)_0}((j)_1).$$

Hence the sequence $\{X_{j}^{i+1}\}$ is *e*-reducible to P_{i+1} . Then by Lemma 2.5 the sequence $\{Y_{j}^{i+1}\}$ is e-reducible to P_{i+1} and hence it is uniformly T-reducible to P'_{i+1} . From here, since $Z_j^{i+1} = \mathcal{R}_{i+1} \setminus Y_j^{i+1}$, we get the validity of (4) for i+1. Now the truth of (5) and (6) for i + 1 follows directly from the respective definitions.

2.7. Corollary. For every $i \leq k$ and every j, X_j^i is a member of the sequence $\{S_j^i\}$.

2.8. Proposition. Suppose that f is a regular enumeration. Then (1) $B_0 \leq_e f$.

(2) If i < k, then $B_{i+1} \leq_e f \oplus P'_i$.

(3) If
$$i \leq k$$
, then $P_i \leq_e f^{(i)}$.

Proof. Since f is regular, $B_0 = f(B_0^f)$. Clearly B_0^f is equal to the set of all odd natural numbers. So, $B_0 \leq_e f$.

Let us turn to the proof of (2). Fix an i < k. Since f is regular, for every finite part δ of f there exists an (i + 1)-regular $\tau \subseteq f$ such that $\delta \subseteq \tau$. Hence there exist natural numbers

$$0 < n_0 < l_0 < b_0 < n_1 < l_1 < b_1 < \dots < n_r < l_r < b_r < \dots$$

such that for every $r \ge 0$, the finite part $\tau_r = f \upharpoonright n_{r+1}$ is (i+1)-regular and $n_0, l_0, b_0, \ldots, n_r, l_r, b_r, n_{r+1}$ are the numbers satisfying the conditions a)-d) from the definition of the (i+1)-regular finite part τ_r . Clearly $B_{i+1}^f = \{b_0, b_1 \ldots\}$. We shall show that there exists a recursive in $f \oplus P'_i$ procedure which lists n_0, l_0, b_0, \ldots in an increasing order.

Clearly $f | n_0$ is *i*-regular and $|f | n_0 |_i = 1$. By Lemma 2.6 \mathcal{R}_i is recursive in P'_i . Using f we can generate consecutively the finite parts f | q for $q = 1, 2 \dots$ By Lemma 2.2 $f | n_0$ is the first element of this sequence which belongs to \mathcal{R}_i . Clearly $n_0 = \ln(f | n_0)$.

Suppose that $r \geq -1$ and $n_0, l_0, b_0, \ldots, n_r, l_r, b_r, n_{r+1}$ have already been listed. Since $f | l_{r+1} \simeq \mu_i(f | (n_{r+1} + 1), S_{r+1}^i)$, we can find recursively in $f \oplus P'_i$ the finite part $f | l_{r+1}$. Then $l_{r+1} = \ln(f | l_{r+1})$. Next we have that $f | b_{r+1}$ is an *i*-regular (r+1) omitting extension of $f | l_{r+1}$. So there exist natural numbers $l_{r+1} = q_0 < \cdots < q_{r+1} < q_{r+2} = b_{r+1}$ such that for $p \leq r+1$,

$$f \restriction q_{p+1} \simeq \mu_i(f \restriction (q_p+1), X^i_{\langle p, q_p \rangle}).$$

Using the oracle $f \oplus P'_i$ we can find consecutively the numbers q_p and the finite parts $f \upharpoonright (q_p + 1), p = 0, \ldots, r + 2$. By the end of this procedure we reach b_{r+1} . It remains to show that we can find the number n_{r+2} . By definition $f \upharpoonright n_{r+2}$ is an *i*-regular extension of $f \upharpoonright (b_{r+1} + 1)$ having *i*-rank equal to $|f \upharpoonright b_{r+1}|_i + 1$. Using f we can generate consecutively the finite parts $f \upharpoonright (b_{r+1} + 1 + q), q = 0, 1, \ldots$ By Lemma 2.2 $f \upharpoonright n_{r+2}$ is the first element of this sequence which belongs to \mathcal{R}_i .

So B_{i+1}^f is recursive in $f \oplus P'_i$. Hence, since $B_{i+1} = f(B_{i+1}^f), B_{i+1} \leq_e f \oplus P'_i$.

We shall prove (3) by induction on *i*. Clearly $P_0 = B_0 \leq_e f$. Suppose that i < k and $P_i \leq_e f^{(i)}$. Then $B_{i+1} \leq_e f \oplus P'_i \leq_e f^{(i+1)}$. Therefore $P_{i+1} = P'_i \oplus B_{i+1} \leq_e f^{(i+1)}$. \Box

Let f be a total mapping on N. We define for every $i \leq k, e, x$ the relation $f \models_i F_e(x)$ by induction on i:

2.9. Definition.

(i)
$$\begin{array}{l} f \models_{0} F_{e}(x) \iff \exists v(\langle v, x \rangle \in W_{e} \& (\forall u \in D_{v})(f((u)_{0}) = (u)_{1})); \\ f \models_{i+1} F_{e}(x) \iff \exists v(\langle v, x \rangle \in W_{e} \& (\forall u \in D_{v})((u = \langle e_{u}, x_{u}, 0 \rangle \& f \models_{i} F_{e_{u}}(x_{u})) \lor (u = \langle e_{u}, x_{u}, 1 \rangle \& f \not\models_{i} F_{e_{u}}(x_{u}))). \end{array}$$

8

Set $f \models_i \neg F_e(x) \iff f \not\models_i F_e(x)$.

The following Lemma can be proved by induction on i.

2.10. Lemma. Let f be a total mapping on \mathbb{N} and $i \leq k$. Then $A \in \Sigma_{i+1}^{J}$ iff there exists e such that for all x, $x \in A \iff f \models_{i} F_{e}(x)$.

Our next goal is the proof of the Truth Lemma. Notice that for all $i \leq k$ the relation \Vdash_i is monotone, i.e. if $\tau \subseteq \rho$ are *i*-regular and $\tau \Vdash_i (\neg)F_e(x)$, then $\rho \Vdash_i (\neg)F_e(x)$.

2.11. Lemma. Let f be a regular enumeration. Then

- (1) For all $i \leq k$, $f \models_i F_e(x) \iff (\exists \tau \subseteq f)(\tau \text{ is } i\text{-regular } \& \tau \Vdash_i F_e(x)).$
- (2) For all i < k, $f \models_i \neg F_e(x) \iff (\exists \tau \subseteq f)(\tau \text{ is } i\text{-regular } \& \tau \Vdash_i \neg F_e(x))$.

Proof. We shall use induction on i. The condition (1) is obviously true for i = 0. Suppose that i < k and (1) is true for i.

First we shall show the validity of (2) for *i*. Assume that $f \models_i \neg F_e(x)$ and for all *i*-regular $\tau \subseteq f, \tau \not\models_i \neg F_e(x)$. Then for all *i*-regular finite parts τ of *f* there exists an *i*-regular $\rho \supseteq \tau$ such that $\rho \Vdash_i F_e(x)$. Fix a $j \in \mathbb{N}$ such that

$$S_i^i = \{ \rho : \rho \in \mathcal{R}_i \& \rho \Vdash_i F_e(x) \}.$$

Let δ be an (i + 1)-regular finite part of f such that $|\delta|_{i+1} > j$. By the definition of the (i+1)-regular finite parts, there exists an *i*-regular $\rho' \subseteq \delta$ such that $\rho' \in S_j^i$. By (1), Since $\rho' \subseteq f$, $f \models_i F_e(x)$. A contradiction. Assume now that $\tau \subseteq f$ is *i*-regular, $\tau \Vdash_i \neg F_e(x)$ and $f \models_i F_e(x)$. By induction there exists an *i*-regular $\rho \subseteq f$ such that $\rho \Vdash_i F_e(x)$. Using the monotonicity of \Vdash_i , we can assume that $\tau \subseteq \rho$ and get a contradiction.

Now having (1) and (2) for i one can easily obtain the validity of (1) for i+1. \Box

2.12. Proposition. Let f be a regular enumeration and $1 \leq i \leq k$. Then $f^{(i)} \equiv_e f \oplus P'_{i-1}$.

Proof. Let $1 \leq i \leq k$. By Proposition 2.8 it is sufficient to show that $f^{(i)} \leq_e f \oplus P'_{i-1}$. Recall that $f^{(i)} = K^0_{f^{(i-1)}} \oplus (\mathbb{N} \setminus K^0_{f^{(i-1)}})$, where $K^0_{f^{(i-1)}} = \{\langle y, z \rangle : y \in \Gamma_z(f^{(i-1)})\}$. Clearly $K^0_{f^{(i-1)}}$ is Σ^0_i in f and hence there exists an e such that $f \models_{i-1} F_e(x) \iff x \in K^0_{f^{(i-1)}}$. From here, using Lemma 2.11, we obtain that

$$x \in K^0_{f^{(i-1)}} \iff (\exists \tau \subseteq f)(\tau \text{ is } (i-1)\text{-regular } \& \tau \Vdash_{i-1} F_e(x)) \text{ and }$$

$$x \in (\mathbb{N} \setminus K^0_{f^{(i-1)}}) \iff (\exists \tau \subseteq f)(\tau \text{ is } (i-1)\text{-regular } \& \tau \Vdash_{i-1} \neg F_e(x)).$$

So, by Proposition 2.6 $K_{f^{(i-1)}}^0$ and $(\mathbb{N} \setminus K_{f^{(i-1)}}^0)$ are *e*-reducible to $f \oplus P'_{i-1}$. Hence $f^{(i)} \leq_e f \oplus P'_{i-1}$. \Box

3. Constructions of regular enumerations

Given a finite mapping τ defined on [0, q-1], by $\tau * z$ we shall denote the extension ρ of τ defined on [0,q] and such that $\rho(q) \simeq z$. If $\vec{k} = q_0, \ldots, q_p$ is a sequence of elements of dom (τ) , then by $\tau(\vec{k})$ we shall denote the sequence $\tau(q_0), \ldots, \tau(q_p)$.

3.1. Lemma. Let $i \leq k$ and τ be an *i*-regular finite part defined on [0, q-1].

- (1) For every $y \in \mathbb{N}, z_0 \in B_0, \dots, z_i \in B_i$, there exists an *i*-regular extension ρ of τ s.t. $|\rho|_i = |\tau|_i + 1$ and $\rho(q) \simeq y, z_0 \in \rho(B_0^{\rho}), \dots, z_i \in \rho(B_i^{\rho})$.
- (2) For every sequence $\vec{a} = a_0, \ldots, a_m$ of natural numbers there exists an iregular m omitting extension δ of τ such that $\delta(K^{\delta}_{\tau}) = \vec{a}$.

Proof. We shall prove simultaneously (1) and (2) by induction on *i*. Clearly (1) is true for i = 0. Now suppose that (1) holds for some i < k. First we shall prove (2). Notice that from (1) it follows that $\mu_i(\delta * a, X_j^i)$ is defined for all $a, j \in \mathbb{N}$ and $\delta \in \mathcal{R}_i$. Next we define recursively the *i*-regular finite parts δ_p for $p \leq m + 1$. Let $\delta_0 = \tau$. For $p \leq m$ let $q_p = \ln(\delta_p)$ and $\delta_{p+1} = \mu_i(\delta_p * a_p, X_{(p,q_p)})$. Let $q_{m+1} = \ln(\delta_{m+1})$. Clearly δ_{m+1} satisfies the requirements of Definition 2.1 with respect to q_0, \ldots, q_{m+1} and $\delta_{m+1}(q_0, \ldots, q_m) = a_0, \ldots, a_m$.

Now we turn to the proof of (1) for i + 1. Let τ be an (i + 1)-regular finite part s.t. dom $(\tau) = [0, q - 1]$. Let $y \in \mathbb{N}, z_0 \in B_0, \ldots, z_{i+1} \in B_{i+1}$ be given. Suppose that $|\tau|_{i+1} = r + 1$ and $n_0, l_0, b_0, \ldots, n_r, l_r, b_r, n_{r+1}$ are the natural numbers satisfying the conditions a)-d) from the definition of the (i + 1)-regular finite parts. Notice that $n_{r+1} = q$. Since τ is *i*-regular, by the induction hypothesis there exists an *i*-regular extension of $\tau * y$. Therefore $\rho_0 \simeq \mu_i(\tau * y, S_{r+1}^i)$ is defined. Let $l_{r+1} = \ln(\rho_0)$. By (2) there exists an *i*-regular r + 1 omitting extension δ of ρ_0 . Let $b_{r+1} = \ln(\delta)$. By induction there exists an *i*-regular finite part $\rho \supseteq \delta$ such that $|\rho|_i = |\delta|_i + 1$, $\rho(b_{r+1}) \simeq z_{i+1}$ and $z_0 \in \rho(B_0^{\rho}), \ldots, z_i \in \rho(B_i^{\rho})$. Set $n_{r+2} = \ln(\rho)$. Clearly ρ satisfies the conditions a)-d) from definition of the (i + 1)-regular finite parts with respect to $n_0, l_0, b_0, \ldots, n_{r+1}, l_{r+1}, b_{r+1}, n_{r+2}$. \Box

Remark. From the proof above it follows that the *i*-regular extension ρ satisfying (1) can be constructed recursively for i = 0 and recursively in P'_{i-1} if i > 0. The construction of δ from (2) is recursive in P'_i .

3.2. Corollary. For every $i \leq k$ there exists an *i*-regular finite part having *i*-rank equal to 1.

As an application of Lemma 3.1 we obtain the following property of the regular enumerations which will be used in the proof of Theorem 1.7:

3.3. Lemma. Let f be a regular enumeration and i < k. Then $f \not\leq_e P_i$.

Proof. A standard forcing argument. Assume that $f \leq_e P_i$. Then the set

 $S = \{\tau : \tau \in \mathcal{R}_i \& (\exists x \in \operatorname{dom}(\tau))(\tau(x) \not\simeq f(x))\}\$

is e-reducible to P_i . Let $S = S_j^i$ and δ be an (i+1)-regular finite part of f such that $|\delta|_{i+1} \ge j+1$. From the definition of the (i+1)-regular finite parts it follows that

either there exists a $\rho \subseteq \delta$ such that $\rho \in S$ or for all *i*-regular $\rho \supseteq \delta$, $\rho \notin S$. Clearly the first is impossible. Let $\ln(\delta) = q$ and $f(q) \simeq y$. By Lemma 3.1 there exists an *i*-regular $\rho \supseteq \delta$ such that $\rho(q) \not\simeq y$ and hence $\rho \in S$. A contradiction. \square

3.4. Corollary. If f is a regular enumeration, then for all i < k, $P_i <_e f^{(i)}$.

Let δ be a k-regular finite part and $1 \leq i \leq k$. By definition the sequence K_i^{δ} has exactly $|\delta|_i$ members. So, by Lemma 2.2 if $1 \leq i \leq k$, then the length of K_i^{δ} is greater than or equal to $|\delta|_k + (k - i)$.

3.5. Lemma. Let i < k, $A \leq_e P_i$ and let τ be an (i + 1)-regular finite part, defined on [0, q - 1]. Suppose that $|\tau|_{i+1} = r + 1$, $y \in \mathbb{N}$, $z_0 \in B_0, \ldots, z_{i+1} \in B_{i+1}$ and $s \leq r + 1$. Then one can construct recursively in $P'_i \oplus A^+$ an (i + 1)-regular extension ρ of τ such that

(i) $|\rho|_{i+1} = r+2;$ (ii) $\rho(q) \simeq y, z_0 \in \rho(B_0^{\rho}), \dots, z_{i+1} \in \rho(B_{i+1}^{\rho});$ (iii) if $K_{i+1}^{\rho} = q_0, \dots, q_s, \dots, q_{r+1}, then$ a) $\rho(q_s) \in A \Rightarrow \rho \Vdash_i \neg F_s(q_s);$ b) $\rho(q_s) \notin A \Rightarrow \rho \Vdash_i F_s(q_s).$

Proof. Let $0 < n_0 < l_0 < b_0, \dots < n_r < l_r < b_r < n_{r+1} = q$ be the natural numbers satisfying the conditions a)-d) from the definition of the (i + 1)-regular finite part τ . Set $\rho_0 \simeq \mu_i(\tau * y, S_{r+1}^i)$ and $l_{r+1} = \ln(\rho_0)$. Let $\delta_0 = \rho_0$. Suppose that p < s and δ_p is defined. Then let $q_p = \ln(\delta_p)$ and $\delta_{p+1} \simeq \mu_i(\delta_p * 0, X_{\langle p, q_p \rangle}^i)$. Now let $q_s = \ln(\delta_s)$. Clearly the set

$$C = \{ x : (\exists \delta \supseteq \delta_s) (\delta \in \mathcal{R}_i \& \delta(q_s) \simeq x \& \delta \Vdash_i F_s(q_s)) \}.$$

is e-reducible to P_i . Since $A \not\leq_e P_i$, there exists an a such that $a \in C$ & $a \notin A$ or $a \notin C$ & $a \in A$. Denote by a_0 the least such a. Notice that a_0 can be found recursively in $P'_i \oplus A^+$. Set $\delta_{s+1} \simeq \mu_i(\delta_s * a_0, X^i_{(s,q_s)})$. By the definition of the function μ_i we have that either $a_0 \in A$ and $\delta_{s+1} \Vdash_i \neg F_s(q_s)$ or $a_0 \notin A$ and $\delta_{s+1} \Vdash_i F_s(q_s)$. Next we extend δ_{s+1} to an *i*-regular r+1 omitting extension ρ_1 of ρ_0 in the usual way. Let $b_{r+1} = \ln(\rho_1)$. Using Lemma 3.1, we can extend ρ_1 to an *i*-regular finite part ρ such that $|\rho|_i = |\rho_1|_i + 1$, $\rho(b_{r+1}) \simeq z_{i+1}$ and $z_j \in \rho(B_j^{\rho})$ for $j \leq i$. Let $n_{r+2} = \ln(\rho)$. Clearly $n_0, l_0, b_0, \ldots, n_{r+1}, l_{r+1}, b_{r+1}, n_{r+2}$ satisfy the conditions a)-d) from the definition of the (i + 1)-regular finite parts. So, ρ is (i + 1)-regular and $|\rho|_{i+1} = r + 2$. Clearly q_s is the s + 1-th member of K^{ρ}_{i+1} and since $\rho \supseteq \delta_{s+1}$, (iii) holds. \Box

3.6. Lemma. Let $k > i \ge 0$, $A \not\le e P_i$ and let τ be a k-regular finite part, defined on [0, q - 1] and $|\tau|_k = r + 1$. Suppose that $y \in \mathbb{N}$, $z_0 \in B_0, \ldots, z_k \in B_k$ and $s \le r + (k - i)$. Then one can construct recursively in $P'_{k-1} \oplus A^+$ a k-regular extension ρ of τ such that

- (i) $|\rho|_k = r + 2;$
- (ii) $\rho(q) \simeq y, z_0 \in \rho(B_0^{\rho}), \ldots, z_k \in \rho(B_k^{\rho});$
- (iii) if $K_{i+1}^{\rho} = q_0, \dots, q_s, \dots, q_{m_i}$, then

a)
$$\rho(q_s) \in A \Rightarrow \rho \Vdash_i \neg F_s(q_s);$$

b) $\rho(q_s) \notin A \Rightarrow \rho \Vdash_i F_s(q_s).$

Proof. We shall use induction on k - (i + 1). The previous Lemma settles the case k = i + 1. Now suppose that k > i + 1. Let $\rho_0 \simeq \mu_{k-1}(\tau * y, S_{r+1}^{k-1})$ and let ρ_1 be a (k-1)-regular r+1 omitting extension of ρ_0 , such that $\rho_1(K_{\rho_0}^{\rho_1}) = 0, 0, \ldots, 0$. Let $b_{r+1} = \ln(\rho_1)$. Suppose that $|\rho_1|_{k-1} = r_1 + 1$. Since $|\rho_1|_{k-1} > |\tau|_{k-1} > |\tau|_k$, $s \leq r_1 + (k-1-i)$. By induction there exists a (k-1)-regular extension ρ of ρ_1 such that $|\rho|_{k-1} = |\rho_1|_{k-1} + 1$, $\rho(b_{r+1}) \simeq z_k$, $z_0 \in \rho(B_0^{\rho}), \ldots, z_{k-1} \in \rho(B_{k-1}^{\rho})$ and such that (iii) holds. Clearly ρ is a k-regular extension of τ with k-rank equal to r+2. \Box

The following lemma can be proved in a similar way:

3.7. Lemma. Let $k \geq 1$ and A_0, \ldots, A_{k-1} be subsets of \mathbb{N} such that $A_i \not\leq_e P_i$. Let τ be a k-regular finite part, defined on [0, q-1]. Suppose that $|\tau|_k = r+1$, $y \in \mathbb{N}, z_0 \in B_0, \ldots, z_k \in B_k$ and $s \leq r+1$. Then one can construct recursively in $P'_{k-1} \oplus A_0^+ \cdots \oplus A_{k-1}^+$ a k-regular extension ρ of τ such that

- (i) $|\rho|_k = r + 2;$
- (ii) $\rho(q) \simeq y, z_0 \in \rho(B_0^{\rho}), \ldots, z_k \in \rho(B_k^{\rho});$
- (iii) if i < k and $K_{i+1}^{\rho} = q_0^i, \dots, q_s^i, \dots, q_{m_i}^i$, then a) $\rho(q_s^i) \in A_i \Rightarrow \rho \Vdash_i \neg F_s(q_s^i);$ b) $\rho(q_s^i) \notin A_i \Rightarrow \rho \Vdash_i F_s(q_s^i).$

Now we turn to the proofs of the formulated in the introduction theorems. Let a total set $Q \ge_e P_k$ be given. Clearly the sets B_0, \ldots, B_k are r. e. in Q. Let us fix some recursive in Q functions $\sigma_0, \ldots, \sigma_k$ which enumerate B_0, \ldots, B_k , respectively. Let y_0, \ldots, y_r, \ldots be a recursive in Q enumeration of the elements of Q.

Proof of Theorem 1.2. By Proposition 2.8 and Proposition 2.12 it is sufficient to show that there exists a regular enumeration f such that $f^{(k)} \equiv_e Q$.

We shall construct f as a recursive in Q union of k-regular finite parts δ_s such that for all $s, \delta_s \subseteq \delta_{s+1}$ and $|\delta_s|_k = s + 1$.

Let δ_0 be an arbitrary finite part such that $|\delta_0|_k = 1$. Suppose that δ_s is defined. Set $z_0 = \sigma_0(s), \ldots, z_k = \sigma_k(s)$. Using Lemma 3.1 construct recursively (in P'_{k-1} , if $k \geq 1$) a k-regular $\rho \supseteq \delta_s$ such that $|\rho|_k = |\delta_s|_k + 1$, $\rho(\ln(\delta_s)) = y_s$ and $z_0 \in \rho(B_0^{\rho}), \ldots, z_k \in \rho(B_k^{\rho})$. Set $\delta_{s+1} = \rho$.

Clearly the obtained this way enumeration f is regular and $f \leq_e Q$. Therefore by Proposition 2.12 $f^{(k)} \leq_e Q$. On the other hand, using the oracle f (and P'_{k-1} , if $k \geq 1$) we can generate as in the proof of Proposition 2.8 consecutively the sequence n_1, \ldots, n_s, \ldots such that $f \upharpoonright n_{s+1} = \delta_s$. By the construction $y \in Q \iff \exists s(f(n_{s+1}) = y)$. Hence $Q \leq_e f \oplus P'_{k-1} \leq_e f^{(k)}$. \Box

Suppose that $k > i \ge 0$ and A is a subset of N such that $A^+ \le_e Q$ and $A \not\le_e P_i$.

Proof of Theorem 1.3. We shall construct a regular enumeration f such that $f^{(k)} \equiv_e Q$ and $A \not\leq_e f^{(i)}$. The construction of f will be carried out again by steps. At each step s we shall define a k-regular finite part δ_s having k-rank equal to s+1.

Compared to the previous proof, we shall ensure in addition that at each step s+1, if $K_{i+1}^{\delta_{s+1}} = q_0, \ldots, q_s, \ldots, q_{m_i}$, then

$$(3.1) \quad (\delta_{s+1}(q_s) \in A \Rightarrow \delta_{s+1} \Vdash_i \neg F_s(q_s)) \& (\delta_{s+1}(q_s) \notin A \Rightarrow \delta_{s+1} \Vdash_i F_s(q_s))$$

We start by an arbitrary k-regular finite part δ_0 having k-rank equal to 1. Suppose that δ_s is defined. Set $z_0 = \sigma_0(s), \ldots, z_k = \sigma_k(s)$. Using Lemma 3.6, construct recursively in Q a k-regular $\delta_{s+1} \supseteq \delta_s$ such that $|\delta_{s+1}|_k = |\delta_s|_k + 1, \delta_{s+1}(\ln(\delta_s)) = y_s$, and $z_0 \in \rho(B_0^{\rho}), \ldots, z_k \in \rho(B_k^{\rho})$ and if $K_{i+1}^{\delta_{s+1}} = q_0, \ldots, q_s, \ldots, q_{m_i}$, then (3.1) holds.

Clearly the whole construction is recursive in Q and hence $f \leq_e Q$. Then $f^{(k)} \equiv_e f \oplus P'_{k-1} \leq_e Q$. The inequality $Q \leq_e f^{(k)}$ can be proved exactly as in the previous proof. It remains to show that $A \leq_e f^{(i)}$. Indeed, assume that $A \leq_e f^{(i)}$. Then the set $C = \{x : f(x) \in A\}$ is also *e*-reducible to $f^{(i)}$. Let *s* be an index such that $\forall x (x \in C \iff f \models_i F_s(x))$. Then for all x

$$(3.2) f(x) \in A \iff f \models_i F_s(x)$$

Consider δ_{s+1} and q_s . Clearly $\delta_{s+1}(q_s) \simeq f(q_s)$. Now assume that $f(q_s) \in A$. Then $\delta_{s+1} \Vdash_i \neg F_s(q_s)$. Hence $f \models_i \neg F_s(q_s)$ which is impossible. It remains that $f(q_s) \notin A$. In this case $\delta_{s+1} \Vdash_i F_s(q_s)$ and hence $f \models_i F_s(q_s)$. The last again contradicts (3.2). So $A \not\leq_e f^{(i)}$. \Box

Now we turn to the proof of Theorem 1.7. Set $B_{k+1} = \mathbb{N}$ and $Q = P_{k+1} = P'_k \oplus B_{k+1}$. Clearly $Q \equiv_e P'_k$. From now on an enumeration f will be called regular if it is regular with respect to $B_0, \ldots, B_k, B_{k+1}$.

Proof of Theorem 1.7. Since Q is a total set, by Theorem 1.2 there exists a regular enumeration g such that $g^{(k+1)} \equiv_e Q$. By Corollary 3.4 for all $i \leq k$, $P_i <_e g^{(i)}$. Finally notice that $g^{(k+2)} \equiv_e Q' \equiv_e P''_k$.

For $i \leq k$, set $G_z^i = \Gamma_z(g^{(i)})$, where Γ_z is the z-th enumeration operator. We shall construct recursively in Q' a regular enumeration f so that

- (1) $f^{(k+2)} \equiv_e Q';$
- (2) if $i \leq k$ and $G_z^i \not\leq_e P_i$, then $G_z^i \not\leq_e f^{(i)}$.

The construction of f will be carried out by steps. At each step s we shall construct a (k + 1)-regular finite part δ_s so that $|\delta_s|_{k+1} \ge s + 1$ and $\delta_s \subseteq \delta_{s+1}$. On the even steps we shall ensure (1), on the odd steps – (2).

Let \mathcal{R}_{k+1} be the set of all (k+1)-regular finite parts and $S_j^{k+1} = \mathcal{R}_{k+1} \cap \Gamma_j(Q)$. By Lemma 2.6 the sequence $\{S_j^{k+1}\}$ is *T*-reducible to Q'. Let $\sigma_0, \ldots, \sigma_{k+1}$ be recursive in Q enumerations of the sets B_0, \ldots, B_{k+1} , respectively.

Let δ_0 be an arbitrary (k + 1)-regular finite part with (k + 1)-rank equal to 1. Suppose that δ_s is defined.

Case s = 2m. Check whether there exists a $\rho \in S_m^{k+1}$ such that $\delta_s \subset \rho$. If so let δ_{s+1} be the least such ρ . Otherwise let δ_{s+1} be the least (k+1)-regular extension of δ_s with (k+1)-rank equal to $|\delta_s|_{k+1} + 1$.

Case s = 2m + 1. Let $|\delta_s|_{k+1} = r + 1 \ge s + 1$. Let $m = \langle z, e \rangle$. We may assume that the recursive coding $\langle ., . \rangle$ is chosen so that $e \le m$. Then e < r + 1. Let $\sigma_0(m) \simeq z_0, \ldots, \sigma_{k+1}(m) \simeq z_{k+1}$. Set $\tau_0 \simeq \mu_k(\delta_s * z_{k+1}, S_{r+1}^k)$. Set $l_{r+1} = \ln(\tau_0)$ and

 $q_0^k = l_{r+1}$. For j < e, let $\tau_{j+1} = \mu_k(\tau_j * 0, X_{\langle j, q_j^k \rangle}^k)$ and $q_{j+1}^k = \ln(\tau_{j+1})$. Now we have defined τ_e and q_e^k . Let

$$C = \{ x : (\exists \tau \supseteq \tau_e) (\tau \in \mathfrak{R}_k \& \tau(q_e^k) \simeq x \& \tau \Vdash_k F_e(q_e^k)) \}.$$

Clearly C is recursive in Q. Since $G_z^k = \Gamma_z(g^{(k)})$ and $g^{(k+1)} \equiv_e Q$, we can check recursively in Q' whether there exists an a such that

$$(3.3) a \in C \& a \notin G_z^k \lor a \notin C \& a \in G_z^k.$$

If the answer is positive, then let a_0 be the least a satisfying (3.3). If the answer is negative, then let $a_0 = 0$. Notice that we can find a_0 recursively in Q'. Next we extend recursively in Q' the finite part $\tau_e * a_0$ to a finite part τ so that τ is a k-regular r + 1 omitting extension of τ_0 . Set $b_{r+1} = \ln(\tau)$.

Now consider the sets G_z^i , i < k. Notice that $g^{(i+3)}$ is recursive in Q'. Since $P_i \leq_e g^{(i)}$ and

$$G_z^i \leq_e P_i \iff \exists u \forall x (x \in \Gamma_z(g^{(i)}) \iff x \in \Gamma_u(P_i)),$$

we can check recursively in $g^{(i+3)}$ for each *i* whether $G_z^i \leq_e P_i$. Set $A_i = G_z^i$, if $G_z^i \not\leq_e P_i$ and $A_i = P_i'$, otherwise. Clearly $A_i \not\leq_e P_i$ and $A_0^+ \oplus \cdots \oplus A_{k-1}^+ \leq_e Q'$. By Lemma 3.7 we can construct recursively in Q' a *k*-regular extension ρ of τ such that

(i) $|\rho|_k = |\tau|_k + 1;$ (ii) $\rho(b_{r+1}) \simeq z_{k+1}$ and $z_0 \in \rho(B_0^{\rho}), \dots, z_k \in \rho(B_k^{\rho});$ (iii) if i < k and $K_{i+1}^{\rho} = q_0^i, \dots, q_e^i, \dots, q_{h_i}^i,$ then a) $\rho(q_e^i) \in A_i \Rightarrow \rho \Vdash_i \neg F_e(q_e^i);$ b) $\rho(q_e^i) \notin A_i \Rightarrow \rho \Vdash_i F_e(q_e^i).$

Set $\delta_{s+1} = \rho$.

Let $f = \bigcup \delta_s$. Clearly f is a regular enumeration and $f \leq_e Q'$. First we shall show that $f^{(k+2)} \equiv_e Q'$. Since f is regular, $P_{k+1} \leq_e f^{(k+1)}$. Therefore $Q' = P'_{k+1} \leq_e f^{(k+2)}$. Clearly for every $z, x, \{\tau : \tau \in \mathcal{R}_{k+1} \& \tau \Vdash_{k+1} F_z(x)\}$ is *e*-reducible to Q. From here, by the even stages of the construction, it follows that for all z, x,

$$f \models_{k+1} (\neg) F_z(x) \iff (\exists \tau \subseteq f) (\tau \in \mathfrak{R}_{k+1} \& \tau \Vdash_{k+1} (\neg) F_z(x)).$$

Using the last equivalence we may conclude as in the proof of Proposition 2.12 that $f^{(k+2)} \leq_e f \oplus Q'$. Hence $f^{(k+2)} \equiv_e Q'$.

Let us turn to the proof of the condition (ii) of the Theorem. Since f is regular we have that if $i \leq k$, then for all e and x,

$$f \models_i (\neg) F_e(x) \iff (\exists \tau \subseteq f) (\tau \in \mathfrak{R}_i \& \tau \Vdash_i (\neg) F_e(x)).$$

Now suppose that $i \leq k$, $A \leq_e g^{(i)}$ and $A \leq_e f^{(i)}$. Assume that $A \not\leq_e P_i$. Fix z and e such that $A = \Gamma_z(g^{(i)})$ and for all x,

$$f(x) \in A \iff f \models_i F_e(x).$$

14

Consider the step $s = 2\langle z, e \rangle + 1$. By the construction, there exists a $q_e^i \in \text{dom}(\delta_{s+1})$ such that

$$(f(q_e^i) \in A \Rightarrow f \models \neg F_e(q_e^i)) \& (f(q_e^i) \not\in A \Rightarrow f \models F_e(q_e^i)).$$

A contradiction. \Box

4. ω -regular enumerations

Let B_0, \ldots, B_k, \ldots be a sequence of subsets of N. We shall call a finite part or an enumeration k-regular if it is regular with respect to B_0, \ldots, B_k .

4.1. Definition. A finite part τ defined on [0, q - 1] is called ω -regular if there exist natural numbers $0 < n_0 < \cdots < n_k = q$ such that for every $j \leq k, \tau \upharpoonright n_j$ is a *j*-regular finite part and $|\tau \upharpoonright n_j|_j = 1$.

4.2. Definition. A total mapping f of \mathbb{N} in \mathbb{N} is called an ω -regular enumeration if the following two conditions are satisfied:

- (i) For every $\delta \subseteq f$ there exists an ω -regular $\tau \subseteq f$ such that $\delta \subseteq \tau$.
- (ii) For every k and $z \in B_k$ there exists a k-regular $\tau \subseteq f$ such that $z \in \tau(B_k^{\tau})$.

Let $P_k = \mathcal{P}(B_0, \ldots, B_k)$ and $P_\omega = \{\langle k, x \rangle : x \in P_k\}$. The set P_ω is total. Indeed, fix z_0 so that for all sets A, $\Gamma_{z_0}(A) = A$. Then

$$\langle k, x \rangle \notin P_{\omega} \iff x \notin P_{k} \iff x \notin \Gamma_{z_{0}}(P_{k}) \iff 2 \langle x, z_{0} \rangle + 1 \in P'_{k} \iff 2 (2 \langle x, z_{0} \rangle + 1) \in P_{k+1} = P'_{k} \oplus B_{k+1} \iff \langle k+1, 2 (2 \langle x, z_{0} \rangle + 1) \rangle \in P_{\omega}.$$

So, $\omega \setminus P_{\omega} \leq_{e} P_{\omega}$.

Using Lemma 2.2 we obtain immediately the following:

4.3. Lemma. If f is ω -regular, then f is k-regular for every k.

4.4. Corollary. If f is ω -regular, then $(\forall k \geq 1)(f^{(k)} \equiv_e f \oplus P'_{k-1})$.

An examination of the proofs of Proposition 2.6 and Proposition 2.8 shows the truth of the following uniform versions:

4.5. Proposition.

- The sets R_k of all k-regular finite parts are uniformly in k e-reducible to P_k and hence the sequence {R_k} is T-reducible to P_ω.
- (2) The sequences $\{S_j^k\}$ and $\{X_j^k\}$ are uniformly in k e-reducible to P_k and hence these sequences are uniformly in k T-reducible to P_{ω} .
- (3) The functions μ_k^S and μ_k^X are uniformly in k partial recursive in P'_k and hence they are uniformly partial recursive in P_{ω} .

4.6. Proposition. If f is an ω -regular enumeration, then the sets B_k and P_k are uniformly in k e-reducible to $f^{(k)}$.

4.7. Corollary. If f is an ω -regular enumeration, then $f^{(\omega)} \equiv_e f \oplus P_{\omega}$.

4.8. Theorem. Let Q be a total set and $P_{\omega} \leq_{e} Q$. There exists an ω -regular enumeration f such that $f^{(\omega)} \equiv_e Q$.

Proof. The construction of f will be carried out by steps. At each step we shall define a s-regular finite part δ_s with s-rank 1. We shall ensure that $\delta_s \subseteq \delta_{s+1}$ and define $f = \bigcup \delta_s$.

Let $\sigma(k,s)$ be a recursive in Q function such that for all $k, \lambda s. \sigma(k,s)$ enumerates B_k . Let y_0, y_1, \ldots be a recursive in Q enumeration of Q.

Define δ_0 on [0, 1] so that $\delta_0(0) \simeq y_0$ and $\delta_0(1) \simeq \sigma(0, 0)$.

Suppose that δ_s is defined. Let $n_0 = \ln(\delta_s)$, $\tau_0 = \mu_s(\delta_s * y_s, S_0^s)$ and $l_0 = \ln(\tau_0)$. Next set $\tau = \mu_s(\tau_0 * 0, X^s_{(0, l_0)})$ and $b_0 = \ln(\tau)$. Notice that τ is a s-regular 0 omitting extension of τ_0 . Using Lemma 3.1, construct a s-regular extension ρ of τ such that $|\rho_s|_s = |\tau|_s + 1, \ \rho(b_0) \simeq \sigma(s+1,0) \text{ and } \sigma(s,1) \in \rho(B_s^{\rho}), \dots, \sigma(0,s+1) \in \rho(B_0^{\rho}).$ Set $\delta_{s+1} = \rho.$

Clearly the obtained by the construction above enumeration f is ω -regular. Since the whole construction is recursive in Q, we have that $f \leq_e Q$ and hence $f^{(\omega)} \equiv_e f^{(\omega)}$ $f\oplus P_{\omega} \leq_{e} Q$. It remains to show that $Q \leq_{e} f\oplus P_{\omega}$. Indeed, let $n^{0}=0$ and $n^{s+1} = \overline{\ln}(\delta_s)$. Clearly we have a recursive in $f \oplus P_{\omega}$ procedure which generates consecutively the finite parts δ_s , $s = 0, 1, \ldots$ Therefore the set $\{n^s : s \in \mathbb{N}\}$ is recursive in $f \oplus P_{\omega}$. Since $y \in Q \iff \exists s(f(n^s) \simeq y), Q \leq_e f \oplus P_{\omega}$. \Box

We shall need the following version of Lemma 3.7 which can be proved in a way similar to the proof of Lemma 3.6:

4.9. Lemma. Let $k \geq 1$, and let τ be a k-regular finite part, defined on [0, q-1]. Suppose that $|\tau|_k = r + 1$. Let $s_{k-1} \leq r + 1, s_{k-2} \leq r + 2, \dots, s_0 \leq r + k$. Let for $i < k \text{ and } j \leq s_i, A_i^i \not\leq_e P_i$. Finally let $y \in \mathbb{N}, z_0 \in B_0, \ldots, z_k \in B_k$. Denote by A the set $\bigoplus_{i < k, j < s_i} (A_j^i)^+$. Then one can construct recursively in $P'_{k-1} \oplus A$ a k-regular extension ρ of τ such that

- (i) $|\rho|_k = r + 2;$
- (ii) $\rho(q) \simeq y, z_0 \in \rho(B_0^{\rho}), \ldots, z_k \in \rho(B_k^{\rho});$
- (iii) if i < k and $K_{i+1}^{\rho} = q_0^i, \dots, q_{s_i}^i, \dots, q_{m_i}^i$, then for $j \le s_i$: a) $\rho(q_j^i) \in A_j^i \Rightarrow \rho \Vdash_i \neg F_j(q_j^i)$; b) $\rho(q_j^i) \notin A_j^i \Rightarrow \rho \Vdash_i F_j(q_j^i)$.

Now we are ready for the main result of this section:

4.10. Theorem. There exist total sets F and G such that $F^{(\omega)} \equiv_e G^{(\omega)} \equiv_e P_{\omega}$ and such that for all k the following conditions hold:

(i) P_k is uniformly e-reducible to $F^{(k)}$ and to $G^{(k)}$, $F^{(k)} \not\leq_e P_k$ and $G^{(k)} \not\leq_e P_k$. (ii) If $A \leq_e F^{(k)}$ and $A \leq_e G^{(k)}$, then $A \leq_e P_k$.

Proof. We shall construct F and G as graphs of ω -regular enumerations f and g. This will ensure by Proposition 4.6 and Lemma 3.4 the condition (i).

Let g be an arbitrary ω -regular enumeration such that $g^{(\omega)} \equiv_e P_{\omega}$.

The construction of f is similar to that in the proof of Theorem 1.7. Let $\sigma(k,s)$ be a recursive in P_{ω} function such that for all $k, \lambda s.\sigma(k,s)$ enumerates B_k . For every k and z, set $G_z^k = \Gamma_z(g^{(k)})$. We start the construction of f by putting $\delta_0(0) \simeq 0$ and $\delta_0(1) \simeq \sigma(0,0)$. Suppose that δ_s is defined and δ_s is a s-regular finite part with s-rank 1. Consider the sets $G_0^s, G_1^{s-1}, G_0^{s-1}, \ldots, G_s^0, \ldots, G_0^0$. For $i \leq s$ and $j \leq s-i$ set $A_j^i = G_{s-i-j}^i$ if $G_{s-i-j}^i \not\leq_e P_i$ and $A_j^i = P_i^i$, otherwise. Clearly this assignment can be done recursively in P_ω . Notice that $A_j^i \not\leq_e P_i$ and $(A_j^i)^+ \leq_e P_\omega$

Let $\tau_0 = \mu_s(\delta_s * 0, S_0^s)$ and $l_0 = \ln(\tau_0)$. Next let a_0 be the least a such that $a \in A_0^s$ is not equivalent to $(\exists \tau \supseteq \tau_0)(\tau \in \mathcal{R}_s \& \tau(l_0) \simeq a_0 \& \tau \Vdash_s F_0(l_0))$. Set $\tau = \mu_s(\tau_0 * a_0, X_{(0,l_0)}^s)$ and $b_0 = \ln(\tau)$. Using Lemma 4.9, construct a s-regular extension ρ of τ such that $|\rho|_s = |\tau|_s + 1$, $\rho(b_0) \simeq \sigma(s+1,0)$ and $\sigma(s,1) \in \rho(B_{s-1}^{\rho}), \ldots, \sigma(0,s+1) \in \rho(B_0^{\rho})$ and if i < s and $K_{i+1}^{\rho} = q_0^i, \ldots, q_{s-i}^i, \ldots, q_{m_i}^i$, then for all $j \leq s - i$

- a) $\rho(q_j^i) \in A_j^i \Rightarrow \rho \Vdash_i \neg F_j(q_j^i);$
- b) $\rho(\vec{q_i}) \not\in A_i^i \Rightarrow \rho \Vdash_i F_j(\vec{q_i})$

Set $\delta_{s+1} = \rho$.

Let $f = \bigcup \delta_s$. Clearly f is ω -regular, $f \leq_e P_\omega$ and hence $f^{(\omega)} \equiv_e P_\omega$. It remains to show the validity of (ii). Fix a k and assume that $A = G_z^k$ and $A \not\leq_e P_k$. We shall show that $A \not\leq_e f^{(k)}$. Assume that $A \leq_e f^{(k)}$. Then the set $C = \{x : f(x) \in A\}$ is also e-reducible to $f^{(k)}$. Let p be such that for all $x, f \models_k F_p(x) \iff x \in C$. Then for all x

(4.1)
$$f(x) \in A \iff f \models_k F_p(x)$$

Consider the step s = k + z + p. Then $A_p^k = G_z^k = A$. By the construction there exists a $q \in \text{dom}(\delta_{s+1})$ such that

$$(\delta_{s+1}(q) \in A \& \delta_{s+1} \Vdash_k \neg F_p(q)) \lor (\delta_{s+1}(q) \notin A \& \delta_{s+1} \Vdash_k F_p(q)).$$

Since f is (k + 1)-regular, by Lemma 2.11 $f(q) \in A \Rightarrow f \not\models_k F_p(q)$ and $f(q) \notin A \Rightarrow f \models_k F_p(q)$. The last contradicts (4.1). \Box

The following corollary should be compared with the respective result in [1]:

4.11. Corollary. Let $A \subseteq \mathbb{N}$, then $A \leq_e P_k$ iff $A \in \Sigma_{k+1}^X$ for all total X such that $X^{(\omega)} \equiv_e P_{\omega}$ and $\forall i (B_i \in \Sigma_{i+1}^X)$ uniformly in *i*.

4.12. Definition. The set A is arithmetical in the sequence $\{B_k\}$ if for some k, $A \leq_e P_k$. The sequence $\{B_k\}$ is arithmetical in X if there exist recursive functions g, h such that $B_k = \Gamma_{g(k)}((X^+)^{(h(k))})$.

4.13. Corollary. The following assertions are equivalent:

- (1) A is arithmetical in $\{B_k\}$.
- (2) A is arithmetical in all X such that $X^{(\omega)} \equiv_e P_{\omega}$ and $\{B_k\}$ is arithmetical in X.
- (3) A is arithmetical in all X such that $X^{(\omega)} \equiv_e P_{\omega}$ and for all k, B_k is arithmetical in X.

Acknowledgments. Thanks to the referee for improving the exposition in this paper and for pointing out the reference to Rozinas' paper.

References

- 1. C. J. Ash, Generalizations of enumeration reducibility using recursive infinitary propositional senetences, Ann. Pure Appl. Logic 58 (1992), 173-184.
- J. Case, Maximal arithmetical reducibilities, Z. Math. Logik Grundlag. Math. 20 (1974), 261-270.
- 3. S. B. Cooper, Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ_2 sets are dense, J. Symbolic Logic 49 (1984), 503-513.
- S.B. Cooper, Enumeration reducibility, nondeterministic computations and relative computability of partial functions, in "Recursion theory week, Oberwolfach 1989" (K. Ambos-Spies, G. Müler, G. E. Sacks, ed.), Lecture notes in mathematics vol. 1432, Springer-Verlag, Berlin, Heidelberg, New York 1990, pp. 57-110.
- 5. K. McEvoy, Jumps of quasi-minimal enumeration degrees, J. Symbolic Logic 50 (1985), 839-848.
- 6. K. McEvoy and S.B. Cooper, On minimal pairs of enumeration degrees, J. Symbolic Logic 50 (1985), 983-1001.
- M. Rozinas, The semi-lattice of e-degrees, Recursive functions, Ivanov. Gos. Univ., Ivanovo, 1978, pp. 71-84, (in Russian).
- A.L. Selman, Arithmetical reducibilities I, Z. Math. Logik Grundlag. Math. 17 (1971), 335-350.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, SOFIA UNIVERSITY, BLVD. "JAMES BOURCHIER" 5, 1164 SOFIA, BULGARIA

E-mail address: soskov@fmi.uni-sofia.bg