ADMISSIBILITY IN X! ENUMERATIONS

A. A. SOSKOVA AND I. N. SOSKOV

ABSTRACT. In the paper we introduce the notion of X2 partial enumeration
of an abstract structure 2. Given a k& < n we obtain a characterization of
the subsets of 2 possessing X pullbacks in all X0 partial enumerations of

A
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B cTaTuATa ce BhbBeR A MOHATAETO Y0 JacTUIHa HOMEep Al Ha aBcTpaKkTHa CTPYK-
typa U. Iomydena e xapakTepusamysa Ha MOAMHOMeCTBaTa Ha U, MpUTERABAIIA Yy
TLpBOOBPA3H BLB BCUUKA Y. YacTWIHN HoMeparmw, mpu k < n.

1. INTRODUCTION

Let A = (A; Ry, Rs, ..., R) be a countable abstract structure, where each R; is
an a;-ary predicate on A.

A total mapping f of the set of the natural numbers N onto A is called a total
enumeration of 2. Every total enumeration f of 2 determines a unique structure
B, = (N; RIRI, .. .,R{) of the same relational type as 2 where

R{(acl, cenZq,) = Ri(f(z1),..., f(za,)).

Let @ < w{. A subset M of A® is said to be X2 - admissible in 2 if for every
total enumeration f of 2 the pullback f~'(M) of M is XY in the diagram D(By)
of %f .

The notion of X9-admissibility with respect to injective total enumerations was
introduced in 1964 by Lacombe [3] under the name V-admissibility. Several modifi-
cations and generalizations of this notion appear since 1964. Among them we would
like to mention the X9-admissibility in partial enumerations introduced in [5] and
the relatively intrinsically 3% sets introduced in [1] and [2] which are defined by
means of 3X2-admissibility with respect to injective total enumerations.
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In [5] the second author made the observation that the sets on an abstract struc-
ture which are ¥.-admissible with respect to partial enumerations with relatively re-
cursively enumerable (r. e.) domains coincide with the sets which are X9-admissible
with respect to total enumerations.

In the present paper we are going to study further the interplay between ad-
missibility in total and partial enumerations. For we introduce the notion of X0-
admissibility in partial enumerations with relatively X2 domains and more generally,
for k < n, 3X9-admissibility with respect to partial enumerations with relatively 2
domains. A normal form of the admissible sets is obtained. It turns out that for
k < n the admissible sets coincide with those which are X7-admissible in all partial
enumerations and are described by means of quantifier free recursive X9 formulas. If
k = n, then our notion of admissibility leads to a class of sets, described by means
of a simple kind of recursive XY formulas on the abstract structure in which the
quantifiers ranging over the domain of the structure are existential and appear only
on the last level.

The arguments use the machinery of the so called regular enumerations, which
seems to have a wide range of other applications.

2. PRELIMINARIES

Consider again the countable structure A = (A4; Ry, Ra, ..., R;), which we shall
from now on suppose fixed.

2.1. Definition. An enumeration of A is an ordered pair (f,B), where f is a par-
tial surjective mapping of N onto A with an infinite domain, By = (N;01,0,,...,0))
is a structure of the same relational type as 2 and the following condition holds for
every ¢ € [1,{] and all ay,...,2,, € dom(f):

oi(T1,. . 2q,) <= Ri(f(z1),..., f(z4,)).

2.2. Definition. Let n > 1. The enumeration (f,B;) is called X if the domain
of fis XY in the diagram D(B;) of B;.

2.3. Definition. Let k£ > 1. A subset M of A% is 30-admissible in (f,B;) if there
exists a X} in D(B;) subset W of N such that for all @4,...,2, € dom(/f),

(1,0 2,) €W <= (f(21),..., f(za)) € M.

As stated in the introduction our goal is to obtain an explicit characterization of
the sets which are X%-admissible in all 3% enumerations, k¥ < n. For we consider
two kinds of recursive X formulas in the language L,,, of the structure 2, which
we call "quantifier-free” and ”existential” respectively.

The X}, the TI} and the A}, quantifier-free formulas are defined simultaneously
with their indices by induction on k. We shall suppose that a coding of the formulas
in L is fixed. Given an index v, by ®¥ we shall denote the formula having index v.
For every formula @, by ®(X1,..., X,) we shall denote that the free variables in ®
are among X,..., X,.
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As usual by Wy, ..., W, ... we shall denote the standard enumeration of the r.e.
sets of natural numbers.

2.4. Definition.

(i) The logical constant T and all atomic formulas in L are Xf quantifier-free
formulas.
The logical constant F and all negated atomic formulas in £ are T3 quantifier-
free formulas.
The A? quantifier-free formulas are finite conjunctions of ¥5 and IT) quantifier-
free formulas.
The indices of the X5, TI5 and AY quantifier-free formulas are their respective
codes as formulas in L.

(ii) If every element of W, is index of some A}, quantifier-free formula with
variables among X, ..., X,, then

\ @ (Xy,..., X,),

veEW,

is a X}, quantifier-free formula with index (0,% + 1,¢€).
If ® is a X, quantifier-free formula, then —® is a II},, quantifier-free
formula. For every index (0,k+ 1, ¢€) of @, the triple (1,k+ 1,€) is an index

of ~®.

If ®1,...,®, are X or 12, r < k+ 1, then x = &1&... &P, is a A},
quantifier-free formula. If vy,...,v, are indices of ®4,..., ¥, respectively,
then (2,vy,...,v;) is an index of y.

2.5. Definition. A X! existential formula, k > 1, is a formula of the form

\/ Yy -3y, (Ve ... Y XL X,

veEV

where V' is an r.e. set of indices of A} formulas.

Let M C A® and ®(Xy,...,X,, Z1,...,Z,) be a 3} quantifier-free or existential
formula.

2.6. Definition. The set M is definable by ® on 2l if for some ¢,,...,t, € A
(Vs1,.ooy 8, € A)((S1,-.-,84) E M <= AED(sy,...,Sa,t1,-..,8)).
In the rest of the paper we are going to prove the following two theorems.

2.7. Theorem. Let M C A® and 1 < k < n. The set M is X9 - admissible in
all X9 enumerations of A if and only if M is definable by some X9 quantifier-free
Jormula on .

2.8. Theorem. The set M is X0 - admissible in all X2 enumerations of A if and
only if M is definable by some X2 existential formula on 2.
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3. GENERIC ENUMERATIONS

The proofs of Theorem 2.7 and Theorem 2.8 use a forcing construction. In this
section we shall describe the fundamentals of this construction.

3.1. Satisfaction relation.

To simplify the notations we shall consider only the subsets of the domain of the
structure 2. All results can be easily proved for subsets of A% a > 1.

Let (f,B;) be a partial enumeration of the structure A = (A; Ry, Ra,..., R)).
And suppose that B; = (N;0;,04,...,0,). We shall identify the diagram D(B;)
of B; with the set consisting of the codes of the atomic and the negated atomic
formulas which are true on B;. In other words, we shall assume that

D(®B;) ={(t,21,...,24,,6) 1 0;(21, ..., 2,,) =&, 1 € [1,{]}.

If w € N then define
fE v ue D(By).
If F is a finite subset of N then

fEF< fEuforeachuecF.

Assume also fixed an effective coding of all finite sets of natural numbers. By F,
we shall denote the finite set with the code v.

Let us fix for every n > 1 and each e € N a unary predicate letter F'. We adopt
the notation =" F*(z) = F*(z) if i = 0 and =" F"(z) = ~F*(x) if i = 1. We shall
assume that the code of =*F" () is (i, n, e, z).

For each @ € N and every predicate letter F the satisfaction relation f =
—='F" () is defined by induction on n. Given a finite set £ of natural numbers and
n > 1, by f |, E we shall denote that every element u of F is of the form (i, n, e, z)

and f | —"F"(z).
3.2. Definition.
() [ F(2) < Fo((v,2) e W & [ |5 B,
[E-F(2)
(i) [ FT(e)
JEAE (@) <= [T (2).
3.3. Proposition.
(1) The sets {x: f |E F(2)} coincide with the X2 in D(B;)sets.
(2) The sets {a: f |E~F"(2)} coincide with the 11 in D(B;)sets.
Proof. The proof is by induction on n.
For n = 1 note that from the definition of 7}=" we have

fE Fz) <z € T.(D(By)),

where I'; is the e-th enumeration operator, see [4].
Since N \ D(B;) is enumeration reducible to D(B;), the r.e. in D(B;) sets
coincide with the sets which are enumeration reducible to D(B;).
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The step from n to n 4+ 1 follows easily by the Strong hierarchy theorem, see
[4]. O

3.4. Corollary. A set M C A is X0 -admissible in (f,B;) iff there exists an e € N
such that for all x € dom(f),

JE (@) < [(x) € M.

3.5. Finite parts and forcing.

The conditions of the forcing are finite mappings of NV into A with some additional
properties which we call finite parts. We use &, T, p to denote finite parts.

Let [0, ¢] be an initial segment of N.

3.6. Definition. A finite part § on [0, ¢] is an ordered triple (o, Hs, Ds) with the
following properties:

(1) a5 is a partial mapping of [0, ¢] into A;

(2) H; C [0, q];

(3) dom(oe(;) U Hs; = [0, ¢] and dom(as) N Hs = 0;

(4) Dy is the diagram of a finite structure of the same relational type as 2 and
domain [0, ¢], and such that if z,,..., 2, € dom(as), then

(l,21,...,24,,6) € D5 <= Ri(as(x1),...,05(xq,)) = €.
Let A be the set of all finite parts.

3.7. Definition. Given finite parts § and 7, let
(SQT < O{égO{T&HégHT&DégDT.
If (f,®B;) is an enumeration, then let
§C(fiBy) &= a; C f& Hsndom(f) =0 & Ds C D(By).

Let § € A.
If we N then &I wiff u € Dy.
If £ ={uy,...,u,} is a finite subset of N, then let

SIFE <= dlFu & ... &§1F u,.

Now we are ready to define the forcing relation § I+ F7(z) for all e,z € N by
induction on n > 1. As before we shall denote by § Ik, F that every element u of
the finite set F is in the form (¢, n, e, z) and § IF =" F" (z).

3.8. Definition.
(i) §IF Fl(2) < TFo({v,2) e W, & § I+ E,);
Sk =F!(2) < Yp(p 206 = plf F!(2)).
(ii) oIk FPt(2) <= Fo((v,2) e W, & 81k, E,);
SIF—FMt(2) < Vp(p D 6= plf FM'(2)).

From the definition above it follows immediately the monotonicity of the forcing,

ie. if §IF F"(z) and 6 C 7, then 7 IF F" ().
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3.9. Definition. Let Y C A. The enumeration (f, B;) meets Y if for some 6 € Y,
5 C f.

3.10. Definition. A subset Y C A is dense in the enumeration (f,B;) if
(¥ C [)(3r € Y)(6 C 7).

3.11. Definition. Let J be a family of subsets of A. An enumeration (f,B;) is
JF-generic if whenever Y € J and Y is dense in (f,B;), then (f,B;) meets Y.

As usual we have that for every countable family JF of subsets of A and every ¢ €
A there exists an J-generic enumeration (f,B;) such that f D 4.
Let Jo = {0}. Forn > 1set Y, = {r:7IF F(z)} and let F,, = (U, , Y, )UFn_1.
The following Truth lemma can be proved by induction on n.
3.12. Lemma. Let (f,B;) be an enumeration, n > 0. Then for all e,z € N
(1) If (f,By) is I, -generic, then

FEF M (z) <= (30 C /0IF 1 ().
(2) If (f,By) is T, 41-generic, then
FEAF (@) &= (306 C )1k ~FI* (@)

3.13. Definition. Let 6 C 7. Then 7/6 is the finite part (a;, H, U (dom(a;) \
dom(as)), D).

By § < 7 we shall denote that dom(as) = dom(«a,) and § C 7.

3.14. Lemma.
(1) If 6 C 7, thend <71/90;
(2) If 6 C 1 C 1o, then /6 < 1o/6;
(3) If § C 1 and 1/d < p, then there exists a finite part p’ such that T < p’ and
p'/6=p.

Proof. (3) Let 6 C 7 and 7/6 < p. Then 7/6 = (a5, H, U (dom(a.) \ dom(as)), D).
7/6 < p implies p = (as, H, U (dom(a,) \ dom(as)) U H', D,), where D, C D, and
N (dom(a,;) U H,) = 0.
Let p = (a;,H, U H',D,). Then 7 < p’ and p'/é = (a5, H, U (dom(a;) \
dom(as))UH',D,) =p. O

3.15. Stared forcing. We define a stared forcing relation ¢ I F7(z) for all
n > 1, e,x € N by means of the following inductive definition:

3.16. Definition.

(i) 01k Fl(2) <— 5| Fl(2);
§IF —F) (x) = <pz b= plf* F(x)).

(ii) § Ik F'ti(2) «— (<v z) € W &SIk Ey);
5l =FrH (@) = Yplp = 6= p* FI4 ().
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Here § IF; E, means as before that every element of F, is in the form (i, n, e, z)
and & IF* =" F"(2).

From the definition above it follows immediately that the stared forcing is mono-
tone with respect to 7<",i.e. §IF* [ (2) & 0 < 7= 7 IF* F! ().

3.17. Lemma. Let § C 7. Then for alle,x € N, n > 1
(1) 7IF F (2) <= 71/ F'(z);
(2) TIF—F2 (2) <= 1/8IF* =F (2).

Proof. The proof is by induction on n.

Since D, = D, /s, (1) holds for n = 1.

Suppose now that (1) is true for some n > 1.

(2) (=). Let 7IF =F”(x). Assume that 7/8 |f* =F7"(z). Then there is a finite
part p = 7/9 such that p IF* I (z). By Lemma 3.14 there exists a finite part p’
such that p’ = 7 and p'/§ = p. Then p'/§ IF* F?(z) and by induction p’ IF F(z).
Clearly p’ O 7. A contradiction.

(2) («). Let 7/8 IF* =F?(z). Assume that 7 If =F(z). Then there exists p O 7
such that p IF I?(2). By induction p/§ IF* F?(z). By Lemma 3.14 p/é = 7/6. A
contradiction.

Now, using the respective definitions we get immediately that

TIE FM N 2) = 7 2 (2). O

3.18. Lemma. Let § be a finite part, n > 1, e,x € N. Then
(1) I F'(z) <= I F'(z);
(2) Br 20)(rIF I7(2)) <= (Bpzd)(plF I (2)).

Proof. Since 6/6 =6, (1) follows from the previous lemma. By the same argument
Sk —F(z) < 61 =F?(x). From here (2) follows by contraposition. [

4. REGULAR ENUMERATIONS

Given a finite part § defined on [0, ¢], we shall call ¢ the length of § and denote
it by |8]. If p < ¢ then by J|p we shall denote the restriction of & on [0, p], i.e.
d1p = (a0, pl, Hs![0, pl, Ds[[0, p]). Clearly §[p is a finite part and d[p C 4.

Given finite parts 7, and 75, say that 7 is shorter than 7 if

(a) 7| <|r2| or

(b) |1| = || and the code of the finite set D., is less than the code of D,,.
Notice that ”being shorter than” is a recursive relation and for every finite part §
it is a well ordering on the set {7|§ < 7}.

Let J% be the sequence { X7, X7, ..., X, ...} of sets of finite parts, where X? =0
and X7 = {r: 71" I ((i)1)} for n > 1.

The finite part 7 decides X if 7 € X or (Vp = 7)(p € X[*). Clearly for every
0 and ¢, there exists a 7 = § such that 7 decides X}. By Lemma 3.18, if 7 decides
X and 7 C p, then p also decides X.
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Let

(i, 6) 5 if (V7= 0)(7 ¢ X7),
n\? 0) = .
a (the shortest T)(6 <7 & 7 € X]') otherwise.

Clearly, p,(¢,0) decides X. Notice also that the length of yu,(7,d) depends only on
the length |§] of § and on its diagram D;. Moreover, there exists a recursive in ()
function A, such that

ViVo(An (1,10, Ds) = |pn (7, 0)])-

4.1. Definition. Let ¢ be a finite part on [0, ¢]. Then ¢ is n-regular if 0 € dom(as)
and if ¢o < q; < --- < ¢, are the elements of dom(as), then

(@) (Vi <r)(0l(giy1 — 1) = pa(7,01q:)).

We shall denote the number r from the definition above by ||4]|.

4.2. Lemma. Let § be an n-regular finite part, where dom(as) = {qo < ¢1 < -+ <
q-+. Then for each i < r,8(q;y1 — 1) is n-regular.

4.3. Definition. An enumeration (f,B;) of U is called n-regular if for each finite
part § C f there exists an n-regular finite part 7 such that § C 7 C f.

4.4. Lemma. Let (f,B;) be an n-regular enumeration of A. Then for each natural
number r there exists an n-regular finite part § C f such that ||§|| = r.

Proof. Given an r, consider the first r + 1 elements ¢y < ¢; < --- < g, of dom(f).
Let § be the shortest n-regular finite part such that {qo,...,¢.} C dom(as) and
d C f. Assume that ||§]| > r. Then there exists an element ¢,,; of dom(a;) such
that ¢, < ¢.41. By Lemma 4.2 §](¢,41 — 1) is n-regular. Clearly 6[(g,41 — 1) is
shorter than ¢ and {qo,...,q,} C dom(oeé[( . The last contradicts the choice
of 6. [

<1r+1—1))

Recall the family J,,. Notice that by Lemma 3.18, J,, = J7..

4.5. Proposition. Let (f,B;) be an n-reqular enumeration of A. Then (f,B;) is
F,-generic.

Proof. Skipping the trivial case n = 0, suppose that n > 1. We shall show that
(f,B;) is generic with respect to the family J%. Suppose that X[ is dense in
(f,B;). We have to prove that (f,B;) meets X, i.e. thereis a § C f such that
d € X. By the previous Lemma there exists an n-regular 6 C f, such that ||§]| = ¢.
Clearly ¢ decides X['. Assume that § ¢ XP. Then 6 IF* =F(}, ((¢):) and hence, by

Lemma 3.17, 8 |- =7} ((¢)1). The last contradicts the density of X['. [I

4.6. Proposition. Let (f,B;) be an n-regular enumeration of A. Then dom(f) is
AL, relative to D(By).
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Proof. We have the following recursive in D(%B;) & 0" procedure, which lists the
elements of dom(f) in an increasing order.

We start by printing out 0. Suppose that the first » + 1 elements ¢q,...,q, of
dom(f) are listed. Consider the finite part 6, C f on [0,¢.]. Using the oracle
D(%B;) we can obtain the diagram Ds . Let ¢, be the first element of dom(f)
greater than ¢,. Clearly there exists an n-regular finite part 7 such that §, C 7 and
¢ry1 € dom(ca;). By Definition 4.1, ¢,y = X\, (r, ¢, Ds,) + 1. O

5. THE NORMAL FORM THEOREMS

In this section we shall obtain a normal form of the ¥{-admissible in all 3°
enumerations of 2 sets, for £ < n. We start with the case k = n.

Let & be a finite part, 2 = [§| + 1 and s € A. By § * s we shall denote the finite
part (o/, Hs, D), where dom(a’) = dom(os) U{z}, a5 C &/, o/(2) >~ s, and D is the
appropriate extension of the diagram Dj.

5.1. Theorem. Let M C A, n > 1 and M be a XL -admissible in all X0 enumera-
tions of /U set. Then there exists a finite part § and a natural number e such that

for each s € A if x = |8| + 1, then
(5.1) SEM < (3rDd+s)(ris (n—1)-reqular & 7+ F'(z)).

Proof. Assume the opposite. We shall construct an (n — 1)-regular enumeration
(f,B;) of A such that M is not admissible in it.

The construction of (f,B;) will be carried out by steps. On each step j we shall
define (n — 1)-regular finite part é; so that é; C ;4 and take f = Jas, and By to
be the structure with diagram (J Ds,.

On the even steps we shall ensure that f is onto A. On the odd steps we shall
ensure that M is not admissible in (f, B;).

Let to,t1,...,t;,... be a fixed enumeration of the elements of A.

Let &y be the shortest (n — 1)-regular finite part such that as, (0) = .

Step j = 2e+ 1. Let @ = || + 1. By the assumption there exists s € A such
that

als € M < (37D bz x 5)(7is (n — 1)-regular & 7 IF* F'(2))].

We have two possibilities.

Case (i). s € M and (V7 D s, * s)(7 is (n — 1)-regular = 7 [f* F'(z)). In this
case let 05,41 be the shortest (n — 1)-regular finite part 7 such that 7 D §y, * s.

Case (ii). s ¢ M and (37 D s x s)(7 is (n — 1)-regular and 7 IF* F”(z)). In this
case let 5041 be the shortest such 7.

Step j = 2e + 2. Let ¢ be the first ; € A such that ¢ ¢ range(as,,,,). Let dscys
be the shortest (n — 1)-regular finite part 7 such that 7 D a4 * ¢

Clearly the enumeration (f,B;) is (n — 1)-regular and hence dom(f) is X2 rela-
tive to D(B;) and (f, B;) is JF,,_ -generic.
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Towards a contradiction assume that M is 32-admissible in (f,B;). Then there
exists an e € N such that for all 2 € dom(f)

J(@) e M — [k F(2).

Consider the stage j = 2e + 1 of the construction. Let @ = |d5.] + 1. Using the
Truth lemma (Lemma 3.12), we get that

fl@)e M <= (31)(b2e01 CTC f & TIFF'(2)).

On the other hand, according to our construction this is not the case. So, M is not

¥0-admissible in (f,B;). O

5.2. Theorem. Let k < n, M C A and let M be 3} -admissible in all 30 enumer-
ations of ™A. Then there exists a finite part § and a natural number e such that for

each s € A if e = |0| + 1, then
(5.2) sEM < (Ir = dx*s)(r I FF(a)).

Proof. Assume the contrary. We shall construct an enumeration (f, B;) of % with
the following properties:

(1) (f,B;) is F,_1-generic;

(2) dom(f) is X2 relative to D(By;);

(3) the set M is not X7-admissible in (f, B;).

The construction of the enumeration (f,B;) is very similar to that used in the
proof of the previous theorem. Again it will be carried out by steps. On steps
J = 3e+ 1 we shall satisfy that (f,B;) is a F,_;-generic enumeration. On steps
J = 3e+ 2 —that M is not Xf-admissible in (f,B;). And on steps j = 3¢+ 3 we
shall ensure that f is a mapping onto A.

Let ty,t1,...,t;,... be a fixed enumeration of the elements of A and let 4§, be
the shortest (n — 1)-regular finite part such that as, (0) = .

Step j =3e+ 1. Let 3.1 = pn_1(e, 03).

Step j = 3e+ 2. Let 2 = |d3.41] + 1. According to the assumption there exists
a s € A such that

als €M = (31 2 Ggeqn * 8)(T I F ()]

Case (i). s € M and (V7 = 83,41 * 8) (7 I FF ().

Put d3c40 = 03041 * 5.

Case (ii). s € M and (37 = 03,41 * s)(7 IF* F*(z)).

In this case let 5,45 be the shortest such 7.

Step j = 3¢+ 3. Find the first t € A such that t ¢ range(as,,,,). Let dzc15 =
0342 * L.

The enumeration (f,B) is constructed as in Theorem 5.1, i.e. f = Jas, and
D(B;) = U Ds,.

Arguments very similar to those used in the previous section show that (f, B;)

is F,_i-generic and dom(f) is AY in D(B;).
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Assume that M is X)-admissible in (f,B;). Then there is an e € N such that
for all z € dom(f)

FEF () &= f(z) e M.

Consider the stage j = 3e + 2 of our construction and let = |d3.41| + 1. There
exists s € A such that

Case (1). s € M and (V7 = 05041 * 8) (7 If* FE(2)).

Since 03c40 C f, f(z) € M. Then f | FF(z). Clearly (f,B;) is Jj_,-generic.
By Lemma 3.12 and Lemma 3.18 there exists a finite part 7 such that 0341 * s <
7 & 7|k FF(2). A contradiction.

Case (ii). s € M and (37 > 0341 * s)(7 IF* FF(x)). Since &3.45 C f, f(z) = s.
Using again Lemma 3.12 and Lemma 3.18, we get f = F*(z). A contradiction. [

6. THE PROOFS OF THEOREM 2.7 AND THEOREM 2.8

In this section we shall prove Theorem 2.7 and Theorem 2.8.

If a subset M of A is definable by a ¥} quantifier-free formula on %[ then it is
clear that M is X.0-admissible in all enumerations of 2. It is easy to verify also that
if a set M is definable by a X2 existential formula on 2( then M is X°-admissible in
all 332 enumerations of 2.

The proofs of both theorems in the non-trivial directions make use of the respec-
tive normal form theorems.

Suppose that the first order language L consists of the predicate letters { Py, ..., B}
and let var be a recursive one to one mapping of the natural numbers onto the set
of all variables.

6.1. Lemma. Let K, H, D be finite sets and K = {z,...,z.}. Let Z; = var(z),
oo, Zy = var(z,). There exists a uniform effective way to define a A} quantifier-
free formula Ny g p(Z1, ..., Z,) such that for all t,,... t, € A,

A= gpgp(Zi/ty, ..., Z,/t,) < Fé(dom(as) =K & Hs=H & Ds =D &
Qs (Zz) ~ tz)
Proof. If KNH # () or KUH is not an initial segment [0, ¢] or D is not a diagram of
a finite structure of the language £ with domain KUH, then set Ilx 5 p = F. Other-
wise, let {u;, ..., u,} be all elements of D such that if u; = (i, 2y, ..., 2,,,£),1 € [1,1],

then {zy,..., 2, } C K. For every such u; let L; = =° F;(var(z),...,var(z,,)) and
define HK,H,D :Ll&&l/v ]

6.2. Corollary. There exists a uniform effective way given finite sets K, H, D
and E to define a AY quantifier-free formula lx g p g with free variables among
{var(z) : z € K} such that if K = {z,...,2.} and var(z) = Z;, then for all
ty,...,t. € A,
QA ): HK,H,D,E(Zl/th .. -7Zr/t7‘) < 35(d0m(045) =K & H5 =H & D5 =D &
(Vi e [1,r])(as(z) ~t;) & §IF FE).

Proof. Set llg g p g =Fift EZ D and let llx gy p g = Uk g p otherwise. [
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6.3. Lemma. Let k > 0, § = (as, Hs, Ds) be a finite part, dom(as) = {z1,..., 2.}
and as(z) >~ ty,...,a5(z.) =~ t.. Suppose that var(z;) = Z;. Then there exists a
uniform in dom(w;s), Hs, Ds effective way, given natural numbers e,z and finite set
FE of natural numbers, to define:

(1) A ARy, quantifier-free formula T, o g, py g(Z15 -+ s Z,) such that
A= Ulonoe) o052 Z1 [ty s ZoJly) = SIFp E

(2) A X, quantifier-free formula O5}! ) Hs,Ds e Z1s -y Zr) such that

dom(as
A= O oy s pece(Zi/ts o 2o [t) = §IF Ff (2);
A X0 quantifier-free formula W5} Ziy ..., Z,) such that
k+1 dom(as),Hs,Ds e,z
A Uk Hosen (Z1/ 1 Zo[t) = (3r = 0)(7 - FIH (2));
A 11°,, quantifier-free formula ®F! Ziy ..., Z,) such that
k41 dom(as),Hs,Ds e,z
A Ot Heps e D/t 2, Jt) = S —FiH (2);

Proof. Induction on k. Using Corollary 6.2, we shall suppose that (1) is true for
k and proceed to prove (2), (3) and (4). After that we shall show the validity of
(1) for k + 1. Let R., = {v: (v,z) € W.}. Following the definition of the stared
forcing, we get

k+1 _
®dom (as),Hs,Ds,e,x — \/ Fdom (as),Hs,Ds ,E,*
VER »

k+1 _ k+1
qjdom(oc(s),Hg,Dg,e,x - \/ Hdom(oc(;),H,D & ®dom (as),H,De,x"
HDHs,DDDs

@k-l—l \I}k-l—l
dom(as),Hs,Ds,e,x — dom(as),Hs,Ds,e,x*

So it remains to construct I' = Ffl:'ni(%) myps e et I'= F if not all elements u
of E/ are of the form (i,k+ 1,e,z),i € {0,1}. Otherwise, for every element u =
(i,k+1,e,2) of F'let L* = 041! if i=0and let L* =& o, .

dom(as),Hs,Ds,e,x
ifi=1. Put I'= A, L"

As a corollary we obtain the proof of Theorem 2.7. Indeed, suppose that M C A,
1 <k <nand M be X0-admissible in all 3 enumerations. Using Theorem 5.2 we
obtain that there exists ¢ and e such that if @ = [6] 4+ 1, then for all s € A,
sEM < (Ir = 5x*s)(rIF FF(a)).

Let dom(as) = {z1,...,2}, var(z) = Z;, var(z) = X. Denote by K the finite
set dom(as) U {z}. Put U = Wi . pyen Clearly the variables of W are among
{Z1,...,Z,, X}. Let as(z) ~ t;. Notice that Qses(2) ~ s for all s € A. Then

s € M <— Q[):\II(Zl/t17...7ZT/tT7X/S).
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Using Lemma 6.3 and the definition of the regular finite parts, one can easily
prove the following:

6.4. Lemma. For every n > 0 there exists a uniform effective way to construct,
given finite sets K = {z,...,2.}, H and D, a finite disjunction Qi 5, of A},
quantifier-free formulas with variables among var(z), ..., var(z.) such that if var(z;) =

Z; and t,...,t. are elements of A, then
A= Qe up(Zi/t,... 2, [t.) <= 3(3 is n-regular & dom(as) = K & Hs = H&
Ds=D & (Vi € [1,r])(as(z) >~ t;)).
Now we are ready to prove Theorem 2.8. Let n > 1, M C A. Suppose that M

is XY admissible in all % enumerations. By Theorem 5.1 there exist ¢ and e such
that if 2 = |§] 4+ 1, then for all s € A,

SEM < (Ir Dd+s)(ris (n— 1)-regular & 7 IF* I ().
Let dom(as) = {z1,..., 2.} and a;(z) = t;. Let var(z) = Z; and var(z) = X.

Given any formula ¢ and finite set K = {y; < --- < y,}, by I(y € K)® we shall
denote the formula Jvar(y;)...Jvar(y,)®. Let K5 = dom(as) U {z}. Define

@(217...7ZT7X): \/ El(y € I(\I(é)(Q(I?,;Il,})& ®TIL(,H,D,6,17)‘

KDKs,HOHs,DJDs
Clearly ® is a XY existential formula and

A= @4 /ty,.... 2. /t,, X/s) < (I7 D é*s)(ris (n—1)-regular & 7 IF* I (2)).
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