
ADMISSIBILITY IN �0n ENUMERATIONSA. A. SOSKOVA AND I. N. SOSKOVAbstract. In the paper we introduce the notion of �0n partial enumerationof an abstract structure A. Given a k � n we obtain a characterization ofthe subsets of A possessing �0k pullbacks in all �0n partial enumerations ofA.A. A. Soskova i I. N. Soskov Dopustimost v �0n nomeracii.V stati�ta se v�ve�da pon�tieto �0n qastiqna nomeraci� na abstraktna struk-tura A. Poluqena e harakterizaci� na podmno�estvata na A, prite�avawi �0kp�rvoobrazi v�v vsiqki �0n qastiqni nomeracii, pri k � n.1. IntroductionLet A = (A;R1; R2; : : : ; Rl) be a countable abstract structure, where each Ri isan ai-ary predicate on A.A total mapping f of the set of the natural numbers N onto A is called a totalenumeration of A. Every total enumeration f of A determines a unique structureBf = (N ;Rf1; Rf2 ; : : : ; Rfl ) of the same relational type as A whereRfi (x1; : : : ; xai) () Ri(f(x1); : : : ; f(xai)):Let � < !CK1 . A subset M of Aa is said to be �0� - admissible in A if for everytotal enumeration f of A the pullback f�1(M) of M is �0� in the diagram D(Bf)of Bf .The notion of �01-admissibility with respect to injective total enumerations wasintroduced in 1964 by Lacombe [3] under the name 8-admissibility. Several modi�-cations and generalizations of this notion appear since 1964. Among them we wouldlike to mention the �01-admissibility in partial enumerations introduced in [5] andthe relatively intrinsically �0� sets introduced in [1] and [2] which are de�ned bymeans of �0�-admissibility with respect to injective total enumerations.1991 Mathematics Subject Classi�cation. 03D70, 03D75.Key words and phrases. de�nability, enumerations, forcing.This work was partially supported by the Ministry of education and science, Contract I604/96. 1



2 A. A. SOSKOVA AND I. N. SOSKOVIn [5] the second author made the observation that the sets on an abstract struc-ture which are �01-admissible with respect to partial enumerations with relatively re-cursively enumerable (r. e.) domains coincide with the sets which are �01-admissiblewith respect to total enumerations.In the present paper we are going to study further the interplay between ad-missibility in total and partial enumerations. For we introduce the notion of �0n-admissibility in partial enumerations with relatively �0n domains and more generally,for k � n, �0k-admissibility with respect to partial enumerations with relatively �0ndomains. A normal form of the admissible sets is obtained. It turns out that fork < n the admissible sets coincide with those which are �0k-admissible in all partialenumerations and are described by means of quanti�er free recursive �0k formulas. Ifk = n, then our notion of admissibility leads to a class of sets, described by meansof a simple kind of recursive �0n formulas on the abstract structure in which thequanti�ers ranging over the domain of the structure are existential and appear onlyon the last level.The arguments use the machinery of the so called regular enumerations, whichseems to have a wide range of other applications.2. PreliminariesConsider again the countable structure A = (A;R1; R2; : : : ; Rl), which we shallfrom now on suppose �xed.2.1. De�nition. An enumeration of A is an ordered pair hf;Bfi, where f is a par-tial surjective mapping ofN ontoA with an in�nite domain,Bf = (N ; �1; �2; : : : ; �l)is a structure of the same relational type as A and the following condition holds forevery i 2 [1; l] and all x1; : : : ; xai 2 dom(f):�i(x1; : : : ; xai) () Ri(f(x1); : : : ; f(xai)):2.2. De�nition. Let n � 1. The enumeration hf;Bfi is called �0n if the domainof f is �0n in the diagram D(Bf) of Bf .2.3. De�nition. Let k � 1. A subset M of Aa is �0k-admissible in hf;Bfi if thereexists a �0k in D(Bf) subset W of Na such that for all x1; : : : ; xa 2 dom(f),(x1; : : : ; xa) 2 W () (f(x1); : : : ; f(xa)) 2M:As stated in the introduction our goal is to obtain an explicit characterization ofthe sets which are �0k-admissible in all �0n enumerations, k � n. For we considertwo kinds of recursive �0k formulas in the language L!1! of the structure A, whichwe call "quanti�er-free" and "existential" respectively.The �0k, the �0k and the �0k+1 quanti�er-free formulas are de�ned simultaneouslywith their indices by induction on k. We shall suppose that a coding of the formulasin L is �xed. Given an index v, by �v we shall denote the formula having index v.For every formula �, by �(X1; : : : ; Xa) we shall denote that the free variables in �are among X1; : : : ; Xa.



ADMISSIBILITY IN �0n ENUMERATIONS 3As usual by W0; : : : ;We; : : : we shall denote the standard enumeration of the r.e.sets of natural numbers.2.4. De�nition.(i) The logical constant T and all atomic formulas in L are �00 quanti�er-freeformulas.The logical constant F and all negated atomic formulas in L are �00 quanti�er-free formulas.The �01 quanti�er-free formulas are �nite conjunctions of �00 and �00 quanti�er-free formulas.The indices of the �00, �00 and �01 quanti�er-free formulas are their respectivecodes as formulas in L.(ii) If every element of We is index of some �0k+1 quanti�er-free formula withvariables among X1; : : : ; Xa, then_v2We �v(X1; : : : ; Xa);is a �0k+1 quanti�er-free formula with index h0; k+ 1; ei.If � is a �0k+1 quanti�er-free formula, then :� is a �0k+1 quanti�er-freeformula. For every index h0; k+ 1; ei of �, the triple h1; k+ 1; ei is an indexof :�.If �1; : : : ;�b are �0r or �0r , r � k + 1, then � = �1& : : :&�b is a �0k+2quanti�er-free formula. If v1; : : : ; vb are indices of �1; : : : ;�b respectively,then h2; v1; : : : ; vbi is an index of �.2.5. De�nition. A �0k existential formula, k � 1, is a formula of the form_v2V 9Y1 � � � 9Yqv�v(Y1; : : : ; Yqv ; X1; : : : ; Xa);where V is an r.e. set of indices of �0k formulas.Let M � Aa and �(X1; : : : ; Xa; Z1; : : : ; Zb) be a �0k quanti�er-free or existentialformula.2.6. De�nition. The set M is de�nable by � on A if for some t1; : : : ; tb 2 A(8s1; : : : ; sa 2 A)((s1; : : : ; sa) 2M () A j= �(s1; : : : ; sa; t1; : : : ; tb)):In the rest of the paper we are going to prove the following two theorems.2.7. Theorem. Let M � Aa and 1 � k < n. The set M is �0k - admissible inall �0n enumerations of A if and only if M is de�nable by some �0k quanti�er-freeformula on A.2.8. Theorem. The set M is �0n - admissible in all �0n enumerations of A if andonly if M is de�nable by some �0n existential formula on A.



4 A. A. SOSKOVA AND I. N. SOSKOV3. Generic enumerationsThe proofs of Theorem 2.7 and Theorem 2.8 use a forcing construction. In thissection we shall describe the fundamentals of this construction.3.1. Satisfaction relation.To simplify the notations we shall consider only the subsets of the domain of thestructure A. All results can be easily proved for subsets of Aa, a > 1.Let hf;Bfi be a partial enumeration of the structure A = (A;R1; R2; : : : ; Rl).And suppose that Bf = (N ; �1; �2; : : : ; �l). We shall identify the diagram D(Bf)of Bf with the set consisting of the codes of the atomic and the negated atomicformulas which are true on Bf . In other words, we shall assume thatD(Bf) = fhi; x1; : : : ; xai; "i : �i(x1; : : : ; xai) = "; i 2 [1; l]g:If u 2 N then de�ne f j= u() u 2 D(Bf):If E is a �nite subset of N thenf j= E () f j= u for each u 2 E:Assume also �xed an e�ective coding of all �nite sets of natural numbers. By Evwe shall denote the �nite set with the code v.Let us �x for every n � 1 and each e 2 N a unary predicate letter Fne . We adoptthe notation :iFne (x) = Fne (x) if i = 0 and :iFne (x) = :Fne (x) if i = 1. We shallassume that the code of :iFne (x) is hi; n; e; xi.For each x 2 N and every predicate letter Fne the satisfaction relation f j=:iFne (x) is de�ned by induction on n. Given a �nite set E of natural numbers andn � 1, by f j=n E we shall denote that every element u of E is of the form hi; n; e; xiand f j= :iFne (x).3.2. De�nition.(i) f j= F 1e (x) () 9v(hv; xi 2 We & f j= Ev),f j= :F 1e (x) () f 6j= F 1e (x).(ii) f j= Fn+1e (x) () 9v(hv; xi 2 We & f j=n Ev),f j= :Fn+1e (x) () f 6j= Fn+1e (x).3.3. Proposition.(1) The sets fx : f j= Fne (x)g coincide with the �0n in D(Bf)sets.(2) The sets fx : f j= :Fne (x)g coincide with the �0n in D(Bf)sets.Proof. The proof is by induction on n.For n = 1 note that from the de�nition of "j=" we havef j= F 1e (x)() x 2 �e(D(Bf));where �e is the e-th enumeration operator, see [4].Since N n D(Bf) is enumeration reducible to D(Bf), the r.e. in D(Bf) setscoincide with the sets which are enumeration reducible to D(Bf).



ADMISSIBILITY IN �0n ENUMERATIONS 5The step from n to n + 1 follows easily by the Strong hierarchy theorem, see[4].3.4. Corollary. A set M � A is �0n-admissible in hf;Bfi i� there exists an e 2 Nsuch that for all x 2 dom(f),f j= Fne (x)() f(x) 2M:3.5. Finite parts and forcing.The conditions of the forcing are �nite mappings ofN into A with some additionalproperties which we call �nite parts . We use �; �; � to denote �nite parts.Let [0; q] be an initial segment of N .3.6. De�nition. A �nite part � on [0; q] is an ordered triple h��; H�; D�i with thefollowing properties:(1) �� is a partial mapping of [0; q] into A;(2) H� � [0; q];(3) dom(��) [H� = [0; q] and dom(��) \H� = ;;(4) D� is the diagram of a �nite structure of the same relational type as A anddomain [0; q], and such that if x1; : : : ; xai 2 dom(��), thenhi; x1; : : : ; xai ; "i 2 D� () Ri(��(x1); : : : ; ��(xai)) = ":Let � be the set of all �nite parts.3.7. De�nition. Given �nite parts � and � , let� � � () �� � �� & H� � H� & D� � D� :If hf;Bf i is an enumeration, then let� � hf;Bf i () �� � f & H� \ dom(f) = ; & D� � D(Bf).Let � 2 �.If u 2 N then � 
 u i� u 2 D�.If E = fu1; : : : ; urg is a �nite subset of N , then let� 
 E () � 
 u1 & : : : & � 
 ur:Now we are ready to de�ne the forcing relation � 
 Fne (x) for all e; x 2 N byinduction on n � 1. As before we shall denote by � 
n E that every element u ofthe �nite set E is in the form hi; n; e; xi and � 
 :iFne (x).3.8. De�nition.(i) � 
 F 1e (x) () 9v(hv; xi 2 We & � 
 Ev);� 
 :F 1e (x) () 8�(� � � =) � 6
 F 1e (x)).(ii) � 
 Fn+1e (x) () 9v(hv; xi 2 We & � 
n Ev);� 
 :Fn+1e (x) () 8�(� � � =) � 6
 Fn+1e (x)).From the de�nition above it follows immediately the monotonicity of the forcing,i.e. if � 
 Fne (x) and � � � , then � 
 Fne (x).



6 A. A. SOSKOVA AND I. N. SOSKOV3.9. De�nition. Let Y � �. The enumeration hf;Bfi meets Y if for some � 2 Y ,� � f .3.10. De�nition. A subset Y � � is dense in the enumeration hf;Bfi if(8� � f)(9� 2 Y )(� � �):3.11. De�nition. Let F be a family of subsets of �. An enumeration hf;Bfi isF-generic if whenever Y 2 F and Y is dense in hf;Bf i, then hf;Bfi meets Y .As usual we have that for every countable family F of subsets of � and every � 2� there exists an F-generic enumeration hf;Bf i such that f � �.Let F0 = f;g. For n � 1 set Y ne;x = f� : � 
 Fne (x)g and let Fn = (Se;x Y ne;x)[Fn�1.The following Truth lemma can be proved by induction on n.3.12. Lemma. Let hf;Bfi be an enumeration, n � 0. Then for all e; x 2 N(1) If hf;Bf i is Fn-generic, thenf j= Fn+1e (x) () (9� � f)(� 
 Fn+1e (x)):(2) If hf;Bf i is Fn+1-generic, thenf j= :Fn+1e (x) () (9� � f)(� 
 :Fn+1e (x)):3.13. De�nition. Let � � � . Then �=� is the �nite part h��; H� [ (dom(��) ndom(��)); D�i.By � � � we shall denote that dom(��) = dom(��) and � � � .3.14. Lemma.(1) If � � � , then � � �=�;(2) If � � �1 � �2, then �1=� � �2=�;(3) If � � � and �=� � �, then there exists a �nite part �0 such that � � �0 and�0=� = �.Proof. (3) Let � � � and �=� � �. Then �=� = h��; H� [ (dom(��) ndom(��)); D�i.�=� � � implies � = h��; H� [ (dom(��) n dom(��)) [H 0; D�i, where D� � D� andH 0 \ (dom(��) [H�) = ;.Let �0 = h�� ; H� [ H 0; D�i. Then � � �0 and �0=� = h��; H� [ (dom(��) ndom(��))[H 0; D�i = �.3.15. Stared forcing. We de�ne a stared forcing relation � 
� Fne (x) for alln � 1; e; x 2 N by means of the following inductive de�nition:3.16. De�nition.(i) � 
� F 1e (x) () � 
 F 1e (x);� 
� :F 1e (x) () 8�(� � � =) � 6
� F 1e (x)).(ii) � 
� Fn+1e (x) () 9v(hv; xi 2 We & � 
�n Ev);� 
� :Fn+1e (x) () 8�(� � � =) � 6
� Fn+1e (x)).



ADMISSIBILITY IN �0n ENUMERATIONS 7Here � 
�n Ev means as before that every element of Ev is in the form hi; n; e; xiand � 
� :iFne (x).From the de�nition above it follows immediately that the stared forcing is mono-tone with respect to "�", i.e. � 
� Fne (x) & � � � =) � 
� Fne (x).3.17. Lemma. Let � � � . Then for all e; x 2 N; n � 1(1) � 
 Fne (x) () �=� 
� Fne (x);(2) � 
 :Fne (x) () �=� 
� :Fne (x).Proof. The proof is by induction on n.Since D� = D�=�, (1) holds for n = 1.Suppose now that (1) is true for some n � 1.(2) ()). Let � 
 :Fne (x). Assume that �=� 6
� :Fne (x). Then there is a �nitepart � � �=� such that � 
� Fne (x). By Lemma 3.14 there exists a �nite part �0such that �0 � � and �0=� = �. Then �0=� 
� Fne (x) and by induction �0 
 Fne (x).Clearly �0 � � . A contradiction.(2) ((). Let �=� 
� :Fne (x). Assume that � 6
 :Fne (x). Then there exists � � �such that � 
 Fne (x). By induction �=� 
� Fne (x). By Lemma 3.14 �=� � �=�. Acontradiction.Now, using the respective de�nitions we get immediately that� 
 Fn+1e (x) () � 
� Fn+1e (x):3.18. Lemma. Let � be a �nite part, n � 1, e; x 2 N . Then(1) � 
 Fne (x) () � 
� Fne (x);(2) (9� � �)(� 
 Fne (x)) () (9� � �)(� 
� Fne (x)):Proof. Since �=� = �, (1) follows from the previous lemma. By the same argument� 
 :Fne (x) () � 
� :Fne (x). From here (2) follows by contraposition.4. Regular enumerationsGiven a �nite part � de�ned on [0; q], we shall call q the length of � and denoteit by j�j. If p � q then by ��p we shall denote the restriction of � on [0; p], i.e.��p = h���[0; p]; H��[0; p]; D��[0; p]i. Clearly ��p is a �nite part and ��p � �.Given �nite parts �1 and �2, say that �1 is shorter than �2 if(a) j�1j < j�2j or(b) j�1j = j�2j and the code of the �nite set D�1 is less than the code of D�2 .Notice that "being shorter than" is a recursive relation and for every �nite part �it is a well ordering on the set f� j� � �g.Let F�n be the sequence fXn0 ; Xn1 ; : : : ; Xni ; : : :g of sets of �nite parts, whereX0i = ;and Xni = f� : � 
� Fn(i)0((i)1)g for n � 1.The �nite part � decides Xni if � 2 Xni or (8� � �)(� 62 Xni ). Clearly for every� and i, there exists a � � � such that � decides Xni . By Lemma 3.18, if � decidesXni and � � �, then � also decides Xni .



8 A. A. SOSKOVA AND I. N. SOSKOVLet �n(i; �) = (� if (8� � �)(� 62 Xni );(the shortest �)(� � � & � 2 Xni ) otherwise:Clearly, �n(i; �) decides Xni . Notice also that the length of �n(i; �) depends only onthe length j�j of � and on its diagram D�. Moreover, there exists a recursive in ;(n)function �n such that 8i8�(�n(i; j�j;D�) = j�n(i; �)j):4.1. De�nition. Let � be a �nite part on [0; q]. Then � is n-regular if 0 2 dom(��)and if q0 < q1 < � � � < qr are the elements of dom(��), then(a) (8i < r)(��(qi+1 � 1) = �n(i; ��qi)).(b) � = �n(r; ��qr).We shall denote the number r from the de�nition above by k�k.4.2. Lemma. Let � be an n-regular �nite part, where dom(��) = fq0 < q1 < � � � <qrg. Then for each i < r; ��(qi+1 � 1) is n-regular.4.3. De�nition. An enumeration hf;Bfi of A is called n-regular if for each �nitepart � � f there exists an n-regular �nite part � such that � � � � f .4.4. Lemma. Let hf;Bfi be an n-regular enumeration of A. Then for each naturalnumber r there exists an n-regular �nite part � � f such that k�k = r.Proof. Given an r, consider the �rst r + 1 elements q0 < q1 < � � � < qr of dom(f).Let � be the shortest n-regular �nite part such that fq0; : : : ; qrg � dom(��) and� � f . Assume that k�k > r. Then there exists an element qr+1 of dom(��) suchthat qr < qr+1. By Lemma 4.2 ��(qr+1 � 1) is n-regular. Clearly ��(qr+1 � 1) isshorter than � and fq0; : : : ; qrg � dom(���(qr+1�1)). The last contradicts the choiceof �.Recall the family Fn. Notice that by Lemma 3.18, Fn = F�n.4.5. Proposition. Let hf;Bfi be an n-regular enumeration of A. Then hf;Bf i isFn-generic.Proof. Skipping the trivial case n = 0, suppose that n � 1. We shall show thathf;Bfi is generic with respect to the family F�n. Suppose that Xni is dense inhf;Bfi. We have to prove that hf;Bfi meets Xni , i.e. there is a � � f such that� 2 Xni . By the previous Lemma there exists an n-regular � � f , such that k�k = i.Clearly � decides Xni . Assume that � 62 Xni . Then � 
� :Fn(i)0((i)1) and hence, byLemma 3.17, � 
 :Fn(i)0((i)1). The last contradicts the density of Xni .4.6. Proposition. Let hf;Bfi be an n-regular enumeration of A. Then dom(f) is�0n+1 relative to D(Bf).



ADMISSIBILITY IN �0n ENUMERATIONS 9Proof. We have the following recursive in D(Bf )� ;(n) procedure, which lists theelements of dom(f) in an increasing order.We start by printing out 0. Suppose that the �rst r + 1 elements q0; : : : ; qr ofdom(f) are listed. Consider the �nite part �r � f on [0; qr]. Using the oracleD(Bf) we can obtain the diagram D�r . Let qr+1 be the �rst element of dom(f)greater than qr . Clearly there exists an n-regular �nite part � such that �r � � andqr+1 2 dom(��). By De�nition 4.1, qr+1 = �n(r; qr; D�r) + 1.5. The normal form theoremsIn this section we shall obtain a normal form of the �0k-admissible in all �0nenumerations of A sets, for k � n. We start with the case k = n.Let � be a �nite part, x = j�j+ 1 and s 2 A. By � � s we shall denote the �nitepart h�0; H�; Di, where dom(�0) = dom(��)[ fxg, �� � �0, �0(x) ' s, and D is theappropriate extension of the diagram D�.5.1. Theorem. Let M � A, n � 1 and M be a �0n-admissible in all �0n enumera-tions of A set. Then there exists a �nite part � and a natural number e such thatfor each s 2 A if x = j�j+ 1, thens 2M () (9� � � � s)(� is (n� 1)-regular & � 
� Fne (x)):(5.1)Proof. Assume the opposite. We shall construct an (n� 1)-regular enumerationhf;Bfi of A such that M is not admissible in it.The construction of hf;Bfi will be carried out by steps. On each step j we shallde�ne (n � 1)-regular �nite part �j so that �j � �j+1 and take f = S��j and Bf tobe the structure with diagram SD�j .On the even steps we shall ensure that f is onto A. On the odd steps we shallensure that M is not admissible in hf;Bf i.Let t0; t1; : : : ; ti; : : : be a �xed enumeration of the elements of A.Let �0 be the shortest (n� 1)-regular �nite part such that ��0(0) = t0.Step j = 2e + 1. Let x = j�2ej+ 1. By the assumption there exists s 2 A suchthat :[s 2M () (9� � �2e � s)(� is (n� 1)-regular & � 
� Fne (x))]:We have two possibilities.Case (i). s 2 M and (8� � �2e � s)(� is (n� 1)-regular ) � 6
� Fne (x)). In thiscase let �2e+1 be the shortest (n� 1)-regular �nite part � such that � � �2e � s.Case (ii). s 62M and (9� � �2e � s)(� is (n� 1)-regular and � 
� Fne (x)). In thiscase let �2e+1 be the shortest such � .Step j = 2e+ 2. Let t be the �rst ti 2 A such that t 62 range(��2e+1). Let �2e+2be the shortest (n� 1)-regular �nite part � such that � � �2e+1 � t.Clearly the enumeration hf;Bfi is (n� 1)-regular and hence dom(f) is �0n rela-tive to D(Bf) and hf;Bfi is Fn�1-generic.



10 A. A. SOSKOVA AND I. N. SOSKOVTowards a contradiction assume that M is �0n-admissible in hf;Bfi. Then thereexists an e 2 N such that for all x 2 dom(f)f(x) 2M () f j= Fne (x):Consider the stage j = 2e + 1 of the construction. Let x = j�2ej + 1. Using theTruth lemma (Lemma 3.12), we get thatf(x) 2M () (9�)(�2e+1 � � � f & � 
 Fne (x)):On the other hand, according to our construction this is not the case. So,M is not�0n-admissible in hf;Bfi.5.2. Theorem. Let k < n, M � A and let M be �0k-admissible in all �0n enumer-ations of A. Then there exists a �nite part � and a natural number e such that foreach s 2 A if x = j�j+ 1, thens 2M () (9� � � � s)(� 
� F ke (x)):(5.2)Proof. Assume the contrary. We shall construct an enumeration hf;Bf i of A withthe following properties:(1) hf;Bfi is Fn�1-generic;(2) dom(f) is �0n relative to D(Bf );(3) the set M is not �0k-admissible in hf;Bfi.The construction of the enumeration hf;Bfi is very similar to that used in theproof of the previous theorem. Again it will be carried out by steps. On stepsj = 3e + 1 we shall satisfy that hf;Bfi is a Fn�1-generic enumeration. On stepsj = 3e+ 2 { that M is not �0k-admissible in hf;Bfi. And on steps j = 3e + 3 weshall ensure that f is a mapping onto A.Let t0; t1; : : : ; ti; : : : be a �xed enumeration of the elements of A and let �0 bethe shortest (n� 1)-regular �nite part such that ��0(0) = t0.Step j = 3e+ 1. Let �3e+1 = �n�1(e; �3e).Step j = 3e+ 2. Let x = j�3e+1j + 1. According to the assumption there existsa s 2 A such that :[s 2M () (9� � �3e+1 � s)(� 
� F ke (x))]:Case (i). s 2M and (8� � �3e+1 � s)(� 6
� F ke (x)).Put �3e+2 = �3e+1 � s.Case (ii). s 62M and (9� � �3e+1 � s)(� 
� F ke (x)).In this case let �3e+2 be the shortest such � .Step j = 3e + 3. Find the �rst t 2 A such that t 62 range(��3e+2). Let �3e+3 =�3e+2 � t.The enumeration hf;Bf i is constructed as in Theorem 5.1, i.e. f = S��j andD(Bf) = SD�j .Arguments very similar to those used in the previous section show that hf;Bfiis Fn�1-generic and dom(f) is �0n in D(Bf).



ADMISSIBILITY IN �0n ENUMERATIONS 11Assume that M is �0k-admissible in hf;Bfi. Then there is an e 2 N such thatfor all x 2 dom(f) f j= F ke (x) () f(x) 2M:Consider the stage j = 3e + 2 of our construction and let x = j�3e+1j+ 1. Thereexists s 2 A such thatCase (i). s 2M and (8� � �3e+1 � s)(� 6
� F ke (x)).Since �3e+2 � f , f(x) 2 M . Then f j= F ke (x). Clearly hf;Bfi is Fk�1-generic.By Lemma 3.12 and Lemma 3.18 there exists a �nite part � such that �3e+1 � s �� & � 
� F ke (x): A contradiction.Case (ii). s 62 M and (9� � �3e+1 � s)(� 
� F ke (x)). Since �3e+2 � f , f(x) = s.Using again Lemma 3.12 and Lemma 3.18, we get f j= F ke (x). A contradiction.6. The proofs of Theorem 2.7 and Theorem 2.8In this section we shall prove Theorem 2.7 and Theorem 2.8.If a subset M of A is de�nable by a �0k quanti�er-free formula on A then it isclear thatM is �0k-admissible in all enumerations of A. It is easy to verify also thatif a set M is de�nable by a �0n existential formula on A then M is �0n-admissible inall �0n enumerations of A.The proofs of both theorems in the non-trivial directions make use of the respec-tive normal form theorems.Suppose that the �rst order language L consists of the predicate letters fP1; : : : ; Plgand let var be a recursive one to one mapping of the natural numbers onto the setof all variables.6.1. Lemma. Let K;H;D be �nite sets and K = fz1; : : : ; zrg. Let Z1 = var(z1),: : : , Zr = var(zr). There exists a uniform e�ective way to de�ne a �01 quanti�er-free formula �K;H;D(Z1; : : : ; Zr) such that for all t1; : : : ; tr 2 A,A j= �K;H;D(Z1=t1; : : : ; Zr=tr) () 9�(dom(��) = K & H� = H & D� = D &��(zi) ' ti):Proof. If K\H 6= ; or K[H is not an initial segment [0; q] or D is not a diagram ofa �nite structure of the language L with domain K[H , then set �K;H;D = F. Other-wise, let fu1; : : : ; uvg be all elements ofD such that if uj = hi; x1; : : : ; xai; "i; i 2 [1; l],then fx1; : : : ; xaig � K. For every such uj let Lj = :"Pi(var(x1); : : : ; var(xai)) andde�ne �K;H;D = L1& : : :&Lv.6.2. Corollary. There exists a uniform e�ective way given �nite sets K;H;Dand E to de�ne a �01 quanti�er-free formula �K;H;D;E with free variables amongfvar(z) : z 2 Kg such that if K = fz1; : : : ; zrg and var(zi) = Zi, then for allt1; : : : ; tr 2 A,A j= �K;H;D;E(Z1=t1; : : : ; Zr=tr) () 9�(dom(��) = K & H� = H & D� = D &(8i 2 [1; r])(��(zi) ' ti) & � 
� E):Proof. Set �K;H;D;E = F if E 6� D and let �K;H;D;E = �K;H;D otherwise.



12 A. A. SOSKOVA AND I. N. SOSKOV6.3. Lemma. Let k � 0, � = h��; H�; D�i be a �nite part, dom(��) = fz1; : : : ; zrgand ��(z1) ' t1; : : : ; ��(zr) ' tr. Suppose that var(zi) = Zi. Then there exists auniform in dom(��); H�; D� e�ective way, given natural numbers e; x and �nite setE of natural numbers, to de�ne:(1) A �0k+1 quanti�er-free formula �kdom(��);H�;D�;E(Z1; : : : ; Zr) such thatA j= �kdom(��);H�;D�;E(Z1=t1; : : : ; Zr=tr) () � 
�k E;(2) A �0k+1 quanti�er-free formula �k+1dom(��);H�;D�;e;x(Z1; : : : ; Zr) such thatA j= �k+1dom(��);H�;D�;e;x(Z1=t1; : : : ; Zr=tr) () � 
� F k+1e (x);(3) A �0k+1 quanti�er-free formula 	k+1dom(��);H�;D�;e;x(Z1; : : : ; Zr) such thatA j= 	k+1dom(��);H�;D�;e;x(Z1=t1; : : : ; Zr=tr) () (9� � �)(� 
� F k+1e (x));(4) A �0k+1 quanti�er-free formula �k+1dom(��);H�;D�;e;x(Z1; : : : ; Zr) such thatA j= �k+1dom(��);H�;D�;e;x(Z1=t1; : : : ; Zr=tr) () � 
� :F k+1e (x);Proof. Induction on k. Using Corollary 6.2, we shall suppose that (1) is true fork and proceed to prove (2), (3) and (4). After that we shall show the validity of(1) for k + 1. Let Re;x = fv : hv; xi 2 Weg. Following the de�nition of the staredforcing, we get �k+1dom(�� );H�;D�;e;x = _v2Re;x �kdom(��);H�;D�;Ev :	k+1dom(��);H�;D�;e;x = _H�H�;D�D��dom(�� );H;D & �k+1dom(��);H;D;e;x:�k+1dom(��);H�;D�;e;x = :	k+1dom(��);H�;D�;e;x:So it remains to construct � = �k+1dom(�� );H�;D�;E . Set � = F if not all elements uof E are of the form hi; k + 1; e; xi; i 2 f0; 1g. Otherwise, for every element u =hi; k+ 1; e; xi of E let Lu = �k+1dom(�� );H�;D�;e;x if i = 0 and let Lu = �k+1dom(��);H�;D�;e;xif i = 1. Put � = Vu2E Lu:As a corollary we obtain the proof of Theorem 2.7. Indeed, suppose thatM � A,1 � k < n and M be �0k-admissible in all �0n enumerations. Using Theorem 5.2 weobtain that there exists � and e such that if x = j�j+ 1, then for all s 2 A,s 2M () (9� � � � s)(� 
� F ke (x)):Let dom(��) = fz1; : : : ; zrg; var(zi) = Zi; var(x) = X . Denote by K the �niteset dom(��) [ fxg. Put 	 = 	kK;H�;D�;e;x. Clearly the variables of 	 are amongfZ1; : : : ; Zr; Xg. Let ��(zi) ' ti. Notice that ���s(x) ' s for all s 2 A. Thens 2M () A j= 	(Z1=t1; : : : ; Zr=tr; X=s):



ADMISSIBILITY IN �0n ENUMERATIONS 13Using Lemma 6.3 and the de�nition of the regular �nite parts, one can easilyprove the following:6.4. Lemma. For every n � 0 there exists a uniform e�ective way to construct,given �nite sets K = fz1; : : : ; zrg; H and D, a �nite disjunction 
nK;H;D of �0n+1quanti�er-free formulas with variables among var(z1); : : : ; var(zr) such that if var(zi) =Zi and t1; : : : ; tr are elements of A, thenA j= 
nK;H;D(Z1=t1; : : : ; Zr=tr) () 9�(� is n-regular & dom(��) = K & H� = H&D� = D & (8i 2 [1; r])(��(zi) ' ti)):Now we are ready to prove Theorem 2.8. Let n � 1; M � A. Suppose that Mis �0n admissible in all �0n enumerations. By Theorem 5.1 there exist � and e suchthat if x = j�j+ 1, then for all s 2 A,s 2M () (9� � � � s)(� is (n� 1)-regular & � 
� Fne (x)):Let dom(��) = fz1; : : : ; zrg and ��(zi) = ti. Let var(zi) = Zi and var(x) = X .Given any formula � and �nite set K = fy1 < � � � < yqg, by 9(y 2 K)� we shalldenote the formula 9var(y1) : : :9var(yq)�. Let K� = dom(��)[ fxg. De�ne�(Z1; : : : ; Zr; X) = _K�K�;H�H�;D�D� 9(y 2 K nK�)(
(n�1)K;H;D& �nK;H;D;e;x):Clearly � is a �0n existential formula andA j= �(Z1=t1; : : : ; Zr=tr; X=s) () (9� � � �s)(� is (n�1)-regular & � 
� Fne (x)):References1. C. Ash, J. Knight, M. Manasse, and T. Slaman, Generic copies of countable structures,Ann. Pure Appl. Logic 42 (1989), 195{205.2. J. Chisholm, E�ective model theory vs. recursive model theory, J. Symbolic Logic 55(1990), 1168{1191.3. D. Lacombe,Deux generalizations de la notion de recursivite relative, C. R. de l'Academiedes Sciences de Paris 258 (1964), 3410{3413.4. H. Rogers, Theory of recursive functions and e�ective computability, McGraw-Hill BookCompany, New York, 1967.5. I. N. Soskov, Computability by means of e�ectively de�nable schemes and de�nability viaenumerations, Arch. Math. Logic 29 (1990), 187{200.Department of Mathematics and Computer Science, Sofia University, Blvd."James Bourchier" 5, 1126 Sofia, BulgariaE-mail address: asoskova@fmi.uni-so�a.bg


