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Abstract. In this note we provide a negative solution to the ω-jump
inversion problem for degree spectra of structures.

1 Introduction

Let A be a countable structure. The spectrum of A is the set of Turing degrees

Sp(A) = {a| a computes an isomorphic copy of A}

For α < ωCK
1 the α-th jump spectrum of A is the set Spα(A) = {a(α)|a ∈

Sp(A)}.
The jump inversion problem for degree spectra of structures can be stated

as follows. Let α < ωCK
1 and A be a countable structure such that all elements

of Sp(A) are above 0(α). Does there exist a structure M such that Spα(M) =
Sp(A)?

A positive solution to the problem for successor ordinals can be found in [1].
Though the problem is not explicitly stated there, the solution is a byproduct of
the construction for all successor ordinals α < ωCK

1 of α-categorical structures
which are not relatively α-categorical.

Another solution for finite ordinals based on Marker’s extensions is given in
[2].

In this note we shall show that in the general case the ω-jump inversion
problem for degree spectra has a negative solution. The proof can be easily
adapted for all recursive limit ordinals.

In what follows we shall define a structure A such that Sp(A) ⊆ {a|0(ω) ≤ a}
and for all countable structures M, Spω(M) ̸= Sp(A). The definition of A is
based on a special property of the ω co-spectra which can be expressed in terms
of enumeration reducibility. Namely we shall show that if M is a countable
structure then every enumeration degree in the ω co-spectrum of M is bounded
by a total enumeration degree which also belongs to the ω co-spectrum of M.

The basic facts about enumeration reducibility and co-spectra of structures
needed for the presentation are summarized below.
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2 Preliminaries

2.1 Enumeration reducibility

Definition 1. Given two sets of natural numbers X and Y , say that X is enu-
meration reducible to Y (X ≤e Y ) if for some e, X = We(Y ), i.e.

(∀x)(x ∈ X ⇐⇒ (∃v)(⟨x, v⟩ ∈ We ∧Dv ⊆ Y )).

Let X ≡e Y if X ≤e Y and Y ≤e X. The enumeration degree de(X) of the
set X consists of all sets Y which are enumeration equivalent to X. By De we
shall denote the set of all enumeration degrees.

Given a set X ⊆ N, by X+ we shall denote X ⊕ (N \ X). We have for all
X,Y ⊆ N that X ≤c.e. Y ⇐⇒ X ≤e Y

+ and X ≤T Y ⇐⇒ X+ ≤e Y
+.

Definition 2. A set X of natural numbers is called total if X ≡e X
+.

The enumeration jump is defined by Cooper in [3]:

Definition 3. Let X ⊆ N. Set Je(X) = {⟨e, x⟩|x ∈ We(X)}. The enumeration
jump X ′ of X is the set Je(X)+.

Clearly for all X ⊆ N, X ′ is a total set. The enumeration jump of X is some-
what weaker than the Turing jump JT (X) of X. Namely (∀X ⊆ N)(JT (X)+ ≡e

(X+)′) henceX ′ ≤T (X+)′ ≤T JT (X). Of course for total setsX,X ′ ≡T JT (X).
We shall use the following property of the enumeration jump:

Proposition 4. There exists a computable function j such that for all e ∈ N
and X ⊆ N, We(X)′ = Wj(e)(X

′).

Proof. Consider a computable function λ such that for every a and e and for all
X, Wa(We(X)) = Wλ(a,e)(X). Then

2⟨a, x⟩ ∈ We(X)′ ⇐⇒ 2⟨λ(a, e), x⟩ ∈ X ′ and
2⟨a, x⟩+ 1 ∈ We(X)′ ⇐⇒ 2⟨λ(a, e), x⟩+ 1 ∈ X ′.

Let j be the computable function yielding for every e an index of the c.e. set

{⟨2⟨a, x⟩, {2⟨λ(a, e), x⟩}⟩ : a, x ∈ N}∪{⟨2⟨a, x⟩+1, {2⟨λ(a, e), x⟩+1}⟩ : a, x ∈ N}.

Then for all e, We(X)′ = Wj(e)(X
′).

2.2 Enumeration reducibility of sequences of sets

Definition 5. Let X = {Xn}n<ω and Y = {Yn}n<ω be sequences of sets of
natural numbers. Then X is enumeration reducible to Y (X ≤e Y) if for all n,
Xn ≤e Yn uniformly in n. In other words, if there exists a computable function
µ such that for all n, Xn = Wµ(n)(Yn).



Definition 6. Let X = {Xn} be a sequence of sets of natural numbers. The
jump sequence P(X ) = {Pn(X )} of X is defined by induction:

(i) P0(X ) = X0;
(ii) Pn+1(X ) = Pn(X )′ ⊕Xn+1.

By Pω(X ) we shall denote the set
⊕

n Pn(X ). Clearly X ≤e P(X ) and hence⊕
n Xn ≤e Pω(X ).

Proposition 7. For all sequences X of sets of natural numbers the set Pω(X )
is total.

Proof. Fix z0 so that for all sets X, Wz0(X) = X. Then

⟨n, x⟩ ̸∈ Pω(X ) ⇐⇒ x ̸∈ Pn(X ) ⇐⇒ x ̸∈ Wz0(Pn(X )) ⇐⇒
2 ⟨z0, x⟩+ 1 ∈ P ′

n(X ) ⇐⇒ 2 (2 ⟨z0, x⟩+ 1) ∈ Pn+1(X ) = P ′
n ⊕Xn+1 ⇐⇒

⟨n+ 1, 2 (2 ⟨z0, x⟩+ 1)⟩ ∈ Pω(X ).

So, N \ Pω(X ) ≤e Pω(X ).

Proposition 8. Let X = {Xn} be a sequence of sets of natural numbers, M ⊆ N
and X ≤e {M (n)}n<ω. Then P(X ) ≤e {M (n)}n<ω.

Proof. Let λ(a, b) be a computable function such that for all Y ⊆ N, Wa(Y ) ⊕
Wb(Y ) = Wλ(a,b)(Y ) and j be the recursive function defined in proposition 4.

Suppose that for all n, Xn = Wµ(n)(M
(n)).

Now P0(X ) = X0 = Wµ(0)(M
(0)). Suppose that Pn(X ) = Wa(M

(n)). Then

Pn+1(X ) = Pn(X )′ ⊕Xn+1 = Wj(a)(M
(n+1))⊕Wµ(n+1)(M

(n+1)) =

Wλ(j(a),µ(n+1))(M
(n+1)).

2.3 Co-spectra of structures

We shall identify the Turing degrees and the total enumeration degrees, i.e. the
enumeration degrees containing a total set. This assumption is safe because of the
standard embedding ι of the Turing degrees into the enumeration degrees defined
by ι(dT (A)) = de(A

+) which is known to preserve also the jump operation.

Definition 9. Let M be a countable structure and α < ωCK
1 . The α-th co-

spectrum of M is the set

CoSpα(M) = {a|a ∈ De ∧ (∀b ∈ Spα(M))(a ≤e b)}.

Definition 10. Let α < ωCK
1 . A subset R of N is Σc

α definable in M if there
exist a computable function γ taking as values codes of computable Σα infinitary
formulas Fγ(x) and finitely many parameters t1, . . . , tm of |M| such that

x ∈ R ⇐⇒ M |= Fγ(x)(t1, . . . , tm).

For the definition of the computable Σα formulae the reader may consult [4].



Theorem 11. ([5]). Let α < ωCK
1 . Then

1. If α < ω then a ∈ CoSpα(M) if and only if all elements of a are Σc
α+1

definable in M.
2. If ω ≤ α then a ∈ CoSpα(M) if and only if all elements of a are Σc

α definable
in M.

3 A property of the ω co-spectra

Theorem 12. Let M be a countable structure and a ∈ CoSpω(M). Then there
exists a total enumeration degree b such that a ≤e b and b ∈ CoSpω(M),

Proof. Fix an element R of a. The set R is Σc
ω definable in M and hence there

exists a computable function γ and parameters t1, . . . , tm of |M| such that

x ∈ R ⇐⇒ M |= Fγ(x)(t1, . . . , tm).

Since each Fγ(x) is a computable Σω formula, i.e. a c.e. disjunction of com-
putable Σn+1 formulae, n < ω, we may assume that there exists a computable
function δ(n, x) such that for all n and x, δ(n, x) yields a code of some com-
putable Σn+1 formula Fδ(n,x) and

x ∈ R ⇐⇒ (∃n)(M |= Fδ(n,x)(t1, . . . , tm)).

Let Rn = {x|x ∈ N ∧ M |= Fδ(n,x)(t1, . . . , tn)}. It is easy to see that if
B is the diagram of some isomorphic copy B of M on the natural numbers
then {Rn} ≤e {B(n)}. Indeed, let κ be an isomorphism from M to B and
x1 = κ(t1), . . . , xm = κ(tm). Then

x ∈ Rn ⇐⇒ B |= Fδ(n,x)(x1, . . . , xm).

Clearly the set of all computable Σn+1 formulae Fδ(n,x) with fixed parameters
x1, . . . , xm which are satisfied in B is uniformly in n enumeration reducible to
B(n).

By proposition 8 we have also that P({Rn}) ≤e {B(n)}. Hence Pω({Rn}) ≤e

B(ω).
Set b = de(Pω({Rn})). As shown above b ∈ CoSpω(M). Notice that b

is a total degree. It remains to see that a ≤e b. Indeed, since x ∈ R ⇐⇒
(∃n)(x ∈ Rn), R ≤e

⊕
n Rn. On the other hand

⊕
n Rn ≤e Pω({Rn}). Therefore

R ≤e Pω({Rn})

Now we are ready to define the structure A promised in the introduction.
Let Y be a set which is quasi-minimal above ∅(ω). This means that ∅(ω) <e Y
and if X is a total set and X ≤e Y then X ≤e ∅(ω). The existence of such sets
is well known in the theory of the enumeration degrees. For example, one can
take Y = ∅(ω) ⊕ G, where G is one-generic relatively ∅(ω), see [6]. Notice that
the enumeration degree of Y does not contain any total set.



Suppose that A is a countable structure with CoSp(A) = {a|a ≤e de(Y )}.
Clearly Sp(A) ⊆ {b|0(ω) ≤T b}. Assume that there exists a countable structure
M such that Spω(M) = Sp(A). Then CoSpω(M) = CoSp(A) and hence there
exists a total degree b in CoSp(A) such that de(Y ) ≤ b. Since de(Y ) is the
greatest element of CoSp(A), b = de(Y ). A contradiction.

It remains to see that there exists a countable structure A with co-spectrum
equal to the set {a|a ≤e de(Y )}. This follows from the fact that every principal
ideal of enumeration degrees can be represented as co-spectrum of some subgroup
of the additive group Q of the rational numbers, see [7]. To make the presentation
self-contained we shall present this short argument here.

Let us fix a non-trivial group G ⊆ Q. Let a ̸= 0 be an element of G. For
every prime number p set

hp(a) =

{
k if k is the greatest number such that pk|a in G,
∞ if pk|a in G for all k.

Let p0, p1, . . . be the standard enumeration of the prime numbers and set

Sa(G) = {⟨i, j⟩ : j ≤ hpi(a)}.

It can be easily seen that if a and b are non-zero elements of G, then Sa(G) ≡e

Sb(G). Let dG = de(Sa(G)), where a is some non-zero element of G.
The following proposition follows from results of Coles, Downey and Slaman

[8]:

Proposition 13. Sp(G) = {b|b is total ∧ dG ≤e b}.

Corollary 14. CoSp(G) = {a|a ≤e dG}.

Proof. Clearly a ∈ CoSp(G) if and only if for all total b, dG ≤e b ⇒ a ≤e b.
According Selman’s Theorem [9] the last is equivalent to a ≤e dG.

Now, let Y ⊆ N. Consider the set S = {⟨i, j⟩ : (j = 0) ∨ (j = 1 & i ∈ Y )}.
Clearly S ≡e Y . Let G be the least subgroup of Q containing the set {1/pji :

⟨i, j⟩ ∈ S}. Then 1 ∈ G and S1(G) = S. So, dG = de(Y ).

References

1. Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R., Solomon, R.: Enu-
merations in computable structure theory. Annals of Pure and Applied Logic 136
(2005) 219–246

2. Soskova, A., Soskov, I.: A jump inversion theorem for the degree spectra. Journal
of Logic and Computation 19 (2009) 199–215

3. Cooper, S.: Partial degrees and the density problem. Part 2: The enumeration
degrees of the Σ2 sets are dense. J. Symbolic Logic 49 (1984) 503–513

4. Ash, C., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy.
Volume 144 of Studies in Logic and the Foundations of Mathematics. North -
Holland, Amsterdam-New York-Tokyo (2000)



5. Ash, C., Knight, J., Manasse, M., Slaman, T.: Generic copies of countable structures.
Ann. Pure Appl. Logic 42 (1989) 195–205

6. Copestake, K.: 1-Genericity in the enumeration degrees. J. Symbolic Logic 53
(1988) 878–887

7. Soskov, I.: Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96 (2004)
45–68

8. Coles, R., Downey, R., Slaman, T.: Every set has a least jump enumeration. Bulletin
London Math. Soc. 62 (2000) 641–649

9. Selman, A.: Arithmetical reducibilities I. Z. Math. Logik Grundlag. Math. 17 (1971)
335–350


