Uniform Operators

Ivan N. Soskov

Faculty of Mathematics and Computer Science, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria, soskov@fmi.uni-sofia.bg

Abstract. We present the definition and a normal form of a class of operators on sets of natural numbers which generalize the enumeration operators.

1 Introduction

In his book [1, p.145] ROGERS gives the following intuitive explanation of the notion of enumeration reducibility:

Let sets A and B be given. ... To put it as briefly as possible: A is *enumeration reducible* to B if there is an effective procedure for getting an enumeration of A from *any* enumeration of B.

On the next page ROGERS continues with the formal definition of the enumeration reducibility, where W_z denotes the c.e. set with Gödel number z and D_u denotes the finite set having canonical code u.

Definition 1. A is enumeration reducible to B (notation: $A \leq_{e} B$) if

 $(\exists z)(\forall x)[x \in A \iff (\exists u)[\langle x, u \rangle \in W_z \& D_u \subseteq B]].$

A is enumeration reducible to B via z if

$$(\forall x)[x \in A \iff (\exists u)[\langle x, u \rangle \in W_z \& D_u \subseteq B]].$$

Finally ROGERS defines for every z the enumeration operator $\Phi_z : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$.

Definition 2. $\Phi_z(X) = Y$ if $Y \leq_e X$ via z.

Though the relationship of the intuitive definition with the formal one is well explained in [1] it is tempting to formalize the intuitive definition in a more direct way. Consider again the sets A and B. To get an enumeration of B we need an oracle X and if we have such an enumeration relative to X than B will be c.e. in X, so $B = W_b^X$ for some $b \in \mathbb{N}$, where W_b^X denotes the domain of the *b*-th Oracle Turing Machine using as oracle the characteristic function of X.

From the intuitive remarks it follows that if $A \leq_e B$, and $B = W_b^X$, then there exists an *a* such that $A = W_a^X$ and we can obtain such an *a* from *b* in a way which does not depend on the oracle *X*. So it seems reasonable to consider the following definition of a class of operators which we call *uniform operators*.

Definition 3. A mapping $\Gamma : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is called *uniform operator* if there exists a total function γ on the natural numbers such that for all $b \in \mathbb{N}$ and $X \subseteq \mathbb{N}$ we have that $\Gamma(W_b^X) = W_{\gamma(b)}^X$.

The following result shows that the intuitive remarks quoted at the beginning correspond exactly to the formal definition of the enumeration operators.

Theorem 4. The uniform operators coincide with the enumeration operators.

The theorem above can be considered as a uniform version of a result of SELMAN [2].

Theorem 5 (Selman).

 $A \leq_{e} B \iff \forall X(B \text{ is c.e. in } X \Rightarrow A \text{ is c.e. in } X).$

Selman's theorem is generalized by CASE [3] and ASH [4]. Following the same fashion we come to the following definition.

Definition 6. Let $n, k \in \mathbb{N}$. A mapping $\Gamma : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is uniform operator of type $(n \to k)$ if there exists a total function γ on the natural numbers such that for all $b \in \mathbb{N}$ and $X \subseteq \mathbb{N}$ we have that $\Gamma(W_b^{X^{(n)}}) = W_{\gamma(b)}^{X^{(k)}}$.

The characterization of the uniform operators of type $(n \rightarrow k)$ uses the notion of *enumeration jump* defined in COOPER [5] and further studied by MCEVOY [6]. Here we shall use the following definition of the *e*-jump which is *m*-equivalent to the original one, see [6]:

Definition 7. Given a set A, let $K_A^0 = \{\langle x, z \rangle : x \in \Phi_z(A)\}$. Define the *e-jump* A'_e of A to be the set $K_A^0 \oplus (\mathbb{N} \setminus K_A^0)$.

For any set A by $A_{e}^{(n)}$ we shall denote the *n*-th e-jump of A.

- **Theorem 8.** 1. Let k < n. Then the uniform operators of type $(n \to k)$ coincide with the constant mappings $\lambda B.S$, where S is some Σ_{k+1}^0 set.
- 2. Let $n \leq k$. Then the uniform operators of type $(n \to k)$ are exactly those mappings of $\Gamma : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ for which there exists an enumeration operator Φ such that for all $B \subseteq \mathbb{N}$, $\Gamma(B) = \Phi((B \oplus \emptyset^{(n)})_{e}^{(k-n)})$.

Finally let us consider the general case.

Definition 9. Let $k_0 < \ldots < k_r$ and k be natural numbers. A mapping Γ : $\mathcal{P}(\mathbb{N})^{(r+1)} \to \mathcal{P}(\mathbb{N})$ is a *uniform operator of type* $(k_0, \ldots, k_r \to k)$ if there exists a function $\gamma : \mathbb{N}^{r+1} \to \mathbb{N}$ such that for all $b_0, \ldots, b_r \in \mathbb{N}$ and $X \subseteq \mathbb{N}$,

$$\Gamma(W_{b_0}^{X^{(k_0)}}, \dots, W_{b_r}^{X^{(k_r)}}) = W_{\gamma(b_0,\dots,b_r)}^{X^{(k)}}$$

Let us fix the natural numbers k_0, \ldots, k_r . Denote by \bar{k} the sequence k_0, \ldots, k_r . Given sets of natural numbers B_0, \ldots, B_r , we define the set $\mathcal{P}_{\bar{k}}^{(k)}(B_0, \ldots, B_r)$ by induction on k.

Definition 10. (i) Set

$$\mathcal{P}_{\bar{k}}^{(0)}(B_0,\ldots,B_r) = \begin{cases} B_0, \text{ if } k_0 = 0, \\ \emptyset, \text{ otherwise.} \end{cases}$$

(ii) Let

$$\mathcal{P}_{\bar{k}}^{(k+1)}(B_0,\ldots,B_r) = \begin{cases} (\mathcal{P}_{\bar{k}}^{(k)}(B_0,\ldots,B_r))'_{\mathrm{e}}, & \text{if } k+1 \notin \{k_1,\ldots,k_r\}, \\ (\mathcal{P}_{\bar{k}}^{(k)}(B_0,\ldots,B_r))'_{\mathrm{e}} \oplus B_i, & \text{if } k+1=k_i. \end{cases}$$

For example, for any two natural numbers n and k and any $B\subseteq \mathbb{N}$ we have that

$$\mathcal{P}_n^{(k)}(B) = \begin{cases} \emptyset^{(k)}, & \text{if } k < n, \\ (\emptyset^{(n)} \oplus B)_{\mathrm{e}}^{(k-n)}, & \text{if } n \le k. \end{cases}$$

The theorem below is our main result.

Theorem 11. 1. The uniform operators of type $(k_0, \ldots, k_r \to k)$ are exactly those mappings $\Gamma : \mathcal{P}(\mathbb{N})^{r+1} \to \mathcal{P}(\mathbb{N})$ for which there exists an enumeration operator Φ such that for all subsets B_0, \ldots, B_r of \mathbb{N} ,

$$\Gamma(B_0,\ldots,B_r)=\Phi(\mathbb{P}^{(k)}_{k_0,\ldots,k_r}(B_0,\ldots,B_r)).$$

2. For every uniform operator Γ of type $(k_0, \ldots, k_r \to k)$ there exists a total computable function $\gamma(b_0, \ldots, b_r)$ such that for all $b_0 \ldots, b_r \in \mathbb{N}$ and $X \subseteq \mathbb{N}$,

$$\Gamma(W_{b_0}^{X^{(k_0)}}, \dots, W_{b_r}^{X^{(k_r)}}) = W_{\gamma(b_0,\dots,b_r)}^{X^{(k)}}$$

In the rest of the paper we present a proof of Theorem 11.

2 Regular Enumerations

The proof of Theorem 11 uses the technique of the regular enumerations, presented in [7] and [8].

Let us consider a sequence $\{B_i\}$ of sets of natural numbers.

Roughly speaking a k-regular enumeration f is a kind of generic function such that for all $i \leq k$, B_i is computably enumerable in $f^{(i)}$ uniformly in i.

Let f be a total mapping on \mathbb{N} . We define for every i, e, x the relation $f \models_i F_e(x)$ by induction on i:

Definition 12. (i)
$$f \models_0 F_e(x) \iff \exists v(\langle x, v \rangle \in W_e \& (\forall u \in D_v)(f((u)_0) = (u)_1));$$

 $f \models_{i+1} F_e(x) \iff \exists v(\langle x, v \rangle \in W_e \& (\forall u \in D_v)((u = \langle e_u, x_u, 0 \rangle \& f \models_i F_{e_u}(x_u)) \lor (u = \langle e_u, x_u, 1 \rangle \& f \not\models_i F_{e_u}(x_u)))).$

Set $f \models_i \neg F_e(x) \iff f \not\models_i F_e(x)$.

The following lemma can be easily proved by induction on i:

Lemma 13. For every *i* there exists a total computable function $h_i(a)$ such that for all *a*,

$$W_a^{f^{(i)}} = \{ x : f \models_i F_{h_i(a)}(x) \}.$$

In what follows we shall use the term *finite part* for finite mappings of \mathbb{N} into \mathbb{N} defined on finite segments [0, q-1] of \mathbb{N} . Finite parts will be denoted by the letters τ, δ, ρ . If dom $(\tau) = [0, q-1]$, then let $\ln(\tau) = q$.

We shall suppose that an effective coding of all finite sequences and hence of all finite parts is fixed. Given two finite parts τ and ρ we shall say that τ is less than or equal to ρ if the code of τ is less than or equal to the code of ρ . By $\tau \subseteq \rho$ we shall denote that the partial mapping ρ extends τ and say that ρ is an extension of τ . For any τ , by $\tau \upharpoonright n$ we shall denote the restriction of τ on [0, n - 1].

Set for every $i, \overline{B}_i = \mathbb{N} \oplus B_i$.

Below we define for every i the i-regular finite parts.

The 0-regular finite parts are finite parts τ such that dom $(\tau) = [0, 2q + 1]$ and for all odd $z \in \text{dom}(\tau), \tau(z) \in \overline{B}_0$.

If dom(τ) = [0, 2q + 1], then the 0-rank $|\tau|_0$ of τ is equal to the number q + 1 of the odd elements of dom(τ). Notice that if τ and ρ are 0-regular, $\tau \subseteq \rho$ and $|\tau|_0 = |\rho|_0$, then $\tau = \rho$.

For every 0-regular finite part τ , let B_0^{τ} be the set of the odd elements of dom (τ) .

Given a 0-regular finite part τ , let

$$\tau \Vdash_0 F_e(x) \iff \exists v(\langle x, v \rangle \in W_e \& (\forall u \in D_v)(\tau((u)_0) \simeq (u)_1))$$

$$\tau \Vdash_0 \neg F_e(x) \iff \forall (0\text{-regular } \rho)(\tau \subseteq \rho \Rightarrow \rho \not\models_0 F_e(x)).$$

Proceeding by induction, suppose that for some *i* we have defined the *i*-regular finite parts and for every *i*-regular τ – the *i*-rank $|\tau|_i$ of τ , the set B_i^{τ} and the relations $\tau \Vdash_i F_e(x)$ and $\tau \Vdash_i \neg F_e(x)$. Suppose also that if τ and ρ are *i*-regular, $\tau \subseteq \rho$ and $|\tau|_i = |\rho|_i$, then $\tau = \rho$.

Set $X_i^i = \{\rho : \rho \text{ is } i\text{-regular } \& \rho \Vdash_i F_{(j)_0}((j)_1)\}.$

Given a finite part τ and a set X of *i*-regular finite parts, let $\mu_i(\tau, X)$ be the least extension of τ belonging to X if any, and $\mu_i(\tau, X)$ be the least *i*-regular extension of τ otherwise. We shall assume that $\mu_i(\tau, X)$ is undefined if there is no *i*-regular extension of τ .

A normal *i*-regular extension of an *i*-regular finite part τ is any *i*-regular finite part $\rho \supseteq \tau$ such that $|\rho|_i = |\tau|_i + 1$.

(ii)

Let τ be a finite part defined on [0, q-1] and $r \ge 0$. Then τ is (i+1)-regular with (i+1)-rank r+1 if there exist natural numbers

 $0 < n_0 < l_0 < m_0 < b_0 < n_1 < l_1 < m_1 < b_1 \dots < n_r < l_r < m_r < b_r < n_{r+1} = q$

such that $\tau \upharpoonright n_0$ is an *i*-regular finite part with *i*-rank equal to 1 and for all j, $0 \le j \le r$, the following conditions are satisfied:

a) $\tau \upharpoonright l_j$ is a normal *i*-regular extension of $\tau \upharpoonright n_j$; b)

 $\tau \upharpoonright m_j = \begin{cases} \mu_i(\tau \upharpoonright (l_j+1), X^i_{\langle p, l_j \rangle}), & \text{if } \tau(n_j) \simeq \langle i+1, p \rangle + 1, \\ \text{a normal } i\text{-regular extension of } \tau \upharpoonright l_j, \text{ otherwise;} \end{cases}$

c)

$$\tau \upharpoonright b_j = \begin{cases} \mu_i(\tau \upharpoonright (m_j + 1), X^i_{\langle p, q \rangle}), & \text{if } \tau(m_j) \simeq \langle p, q \rangle + 1, \\ \text{a normal } i\text{-regular extension of } \tau \upharpoonright m_j, \text{ if } \tau(m_j) \simeq 0; \end{cases}$$

- d) $\tau(b_j) \in \overline{B}_{i+1};$
- e) $\tau \upharpoonright n_{j+1}$ is a normal *i*-regular extension of $\tau \upharpoonright b_j$.

The following lemma shows that the (i + 1)-rank is well defined.

Lemma 14. Let τ be an (i + 1)-regular finite part. Then

- 1. Let $n'_0, l'_0, m'_0, b'_0, \dots, n'_p, l'_p, m'_p, b'_p, n'_{p+1}$ and $n_0, l_0, m_0, b_0, \dots, n_r, l_r, m_r, b_r, n_{r+1}$ be two sequences of natural numbers satisfying a)-e). Then $r = p, n_{p+1} = n'_{p+1}$ and for all $j \le r, n_j = n'_j, l_j = l'_j, m_j = m'_j$ and $b_j = b'_j$. 2. If ρ is (i + 1)-regular, $\tau \subseteq \rho$ and $|\tau|_{i+1} = |\rho|_{i+1}$, then $\tau = \rho$.
- 3. τ is *i*-regular and $|\tau|_i > |\tau|_{i+1}$.

Let τ be (i + 1)-regular and $n_0, l_0, m_0, b_0, \dots, n_r, l_r, m_r, b_r, n_{r+1}$ be the sequence satisfying a)-e). Then let $B_{i+1}^{\tau} = \{b_0, \dots, b_r\}$ and $M_{i+1}^{\tau} = \{m_0, \dots, m_r\}$.

To conclude with the definition of the regular finite parts, let for every (i+1) -regular finite part τ

 $\tau \Vdash_{i+1} F_e(x) \iff \exists v(\langle x, v \rangle \in W_e \& (\forall u \in D_v)((u = \langle e_u, x_u, 0 \rangle \& \tau \Vdash_i F_{e_u}(x_u)) \lor (u = \langle e_u, x_u, 1 \rangle \& \tau \Vdash_i \neg F_{e_u}(x_u)))).$

$$\tau \Vdash_{i+1} \neg F_e(x) \iff (\forall (i+1)\text{-regular } \rho) (\tau \subseteq \rho \Rightarrow \rho \not\Vdash_{i+1} F_e(x)).$$

Definition 15. Let f be a total mapping of \mathbb{N} in \mathbb{N} . Then f is a *k*-regular enumeration (with respect to $\{B_i\}$) if the following conditions hold:

- (i) For every finite part $\delta \subseteq f$, there exists a k-regular extension τ of δ such that $\tau \subseteq f$.
- (ii) If $i \leq k$ and $z \in \overline{B}_i$, then there exists an *i*-regular $\tau \subseteq f$ such that $z \in \tau(B_i^{\tau})$.
- (iv) If i < k, then for every pair $\langle p, q \rangle$ of natural numbers, there exists an i + 1-regular finite part $\tau \subseteq f$ such that for some $m \in M_{i+1}^{\tau}$, $\tau(m) \simeq \langle p, q \rangle + 1$.

Clearly, if f is a k-regular enumeration and $i \leq k$, then for every $\delta \subseteq f$, there exists an *i*-regular $\tau \subseteq f$ such that $\delta \subseteq \tau$. Moreover there exist *i*-regular finite parts of f of arbitrary large rank.

Given a regular f, let for $i \le k, B_i^f = \{b : (\exists \tau \subseteq f) (\tau \text{ is } i\text{-regular } \& b \in B_i^{\tau})\}.$ Clearly $f(B_i^f) = B_i$.

Now let us turn to the properties of the regular finite parts and of the regular enumerations.

3 Properties of the regular enumerations

First of all, notice that the clause (iv) of the definition of the regular enumerations ensures that a k-regular enumeration f is generic with respect to the family $\{X_j^i : i < k, j \in \mathbb{N}\}$. So we have the following Truth Lemma:

Lemma 16. Let f be a k-regular enumeration. Then

- 1. For all $i \leq k$, $f \models_i F_e(x) \iff (\exists \tau \subseteq f)(\tau \text{ is } i\text{-regular } \& \tau \Vdash_i F_e(x)).$ 2. For all i < k, $f \models_i \neg F_e(x) \iff (\exists \tau \subseteq f)(\tau \text{ is } i\text{-regular } \& \tau \Vdash_i \neg F_e(x)).$

Let us define for every natural k the set P_k by induction on k:

Definition 17. (i) $P_0 = \overline{B}_0$; (ii) $P_{k+1} = (P_k)'_e \oplus \overline{B}_{k+1}$.

> Denote by \mathcal{R}_i the set of all *i*-regular finite parts. For $j \in \mathbb{N}$ let $\mu_i(\tau, j) \simeq \mu_i(\tau, X_j^i)$,

$$Y_j^i = \{ \tau : (\exists \rho \supseteq \tau) (\rho \text{ is } i\text{-regular } \& \rho \Vdash_i F_{(j)_0}((j)_1)) \}$$

 $Z_i^i = \{\tau : \tau \text{ is } i \text{-regular } \& \tau \Vdash_i \neg F_{(i)_0}((j)_1)\}.$

Proposition 18. For every $i \in \mathbb{N}$ the following assertions hold:

- 1. There exists an enumeration operators R_i such that for every sequence $\{B_i\}$ of sets of natural numbers, $\mathfrak{R}_i = R_i(P_i)$.
- 2. There exist computable functions $x_i(j)$ and $y_i(j)$ such that for every j and every sequence $\{B_i\}$ of sets of natural numbers,

$$X_{j}^{i} = \Phi_{x_{i}(j)}(P_{i}) \text{ and } Y_{j}^{i} = \Phi_{y_{i}(j)}(P_{i})$$

3. There exists a computable function $z_i(j)$ such that for every j and every sequence $\{B_i\}$ of sets of natural numbers,

$$Z_{i}^{i} = \{z_{i}(j)\}^{P_{i}'}$$

4. There exists an Oracle Turing Machine m_i such that for every sequence $\{B_i\}$ of sets of natural numbers,

$$\mu_i = \{m_i\}^{P'_i}.$$

The following proposition is important for the proof of Theorem 11.

Proposition 19. For every $i \in \mathbb{N}$ there exists an Oracle Turing Machine b_i such that for every sequence $\{B_i\}$ of sets of natural numbers and every k-regular with respect to $\{B_i\}$ enumeration f,

$$(\forall i \le k)(B_i = W_{b_i}^{f^{(i)}}).$$

Proof. We shall define the machines b_i by induction on i. Clearly for every sequence $\{B_i\}$ of sets of natural numbers and every k-regular with respect to $\{B_i\}$ enumeration f, $B_0 = \{x : 2x + 1 \in \overline{B}_0\}$, $\overline{B}_0 = f(B_0^f)$ and B_0^f is equal to the set of all odd numbers.

So we may define the machine b_0 as follows:

```
input X;
Y:= 0;
while (2X + 1 =\= f(2Y+1)) do
Y := Y+1;
end.
```

Suppose that i < k and the machines b_0, \ldots, b_i are defined. Following the definition of P_i we can define an oracle machine p' which given a sequence $\{B_i\}$ and a k-regular f computes the characteristic function of P'_i using $f^{(i+1)}$ as an oracle. So it is sufficient to show that we can enumerate the set \overline{B}_i by means of P'_i and f, uniformly in P'_i and f.

Since f is (i + 1)-regular, for every finite part δ of f there exists an (i + 1)-regular $\tau \subseteq f$ such that $\delta \subseteq \tau$. Hence there exist natural numbers

$$0 < n_0 < l_0 < m_0 < b_0 < n_1 < l_1 < m_1 < b_1 < \ldots < n_r < l_r < m_r < b_r < \ldots,$$

such that for every $r \geq 0$, the finite part $\tau_r = f \upharpoonright n_{r+1}$ is (i+1)-regular and $n_0, l_0, m_0, b_0, \ldots, n_r, l_r, m_r, b_r, n_{r+1}$ are the numbers satisfying the conditions a)-e) from the definition of the (i+1)-regular finite part τ_r . Clearly $B_{i+1}^f = \{b_0, b_1 \ldots\}$. We shall describe a procedure which lists $n_0, l_0, m_0, b_0, \ldots$ in an increasing order using the oracles P'_i and f.

Clearly $f \upharpoonright n_0$ is *i*-regular and $|f \upharpoonright n_0|_i = 1$. By Lemma 18 \mathcal{R}_i is uniformly computable in P'_i . Using f we can generate consecutively the finite parts $f \upharpoonright q$ for q = 1, 2... By Lemma 14 $f \upharpoonright n_0$ is the first element of this sequence which belongs to \mathcal{R}_i . Clearly $n_0 = \ln(f \upharpoonright n_0)$.

Suppose that $r \ge -1$ and $n_0, l_0, m_0, b_0, \ldots, n_r, l_r, m_r, b_r, n_{r+1}$ have already been listed. Since $f \upharpoonright l_{r+1}$ is a normal *i*-regular extension of $f \upharpoonright n_{r+1}$ it is the shortest finite part of f which extends $f \upharpoonright n_{r+1}$ and belongs to \mathcal{R}_i . So we can find the number l_{r+1} . Now, we have to consider two cases:

a) $f(n_{r+1}) = 0$ or $f(n_{r+1}) = \langle j, p \rangle + 1$, where $j \neq i+1$. Then again $f \upharpoonright m_{r+1}$ is the shortest finite part of f which belongs to \mathcal{R}_i and extends $f \upharpoonright l_{r+1}$.

b) $f(n_{r+1}) = \langle i+1, p \rangle + 1$. Then $f \upharpoonright m_{r+1} = \mu_i (f \upharpoonright (l_{r+1}+1), X^i_{\langle p, l_{r+1} \rangle})$.

In both cases we can find $f \upharpoonright m_{r+1}$ effectively in f and P'_i . Clearly $m_{r+1} = \ln(f \upharpoonright m_{r+1})$. From m_{r+1} we reach b_{r+1} in a way similar to the previous one. Finally, from b_{r+1} we reach n_{r+2} using the fact that $f \upharpoonright n_{r+2}$ is a normal *i*-regular extension of $f \upharpoonright b_{r+1}$. Now we have a machine which decides the set B^f_{i+1} using the oracle $f^{(i+1)}$. From here, since $\overline{B} = f(B^f_{i+1})$ we can easily obtain the machine b_{i+1} .

4 Constructions of regular enumerations

Suppose that a sequence $\{B_i\}$ of sets of natural numbers is fixed.

Given a finite mapping τ defined on [0, q - 1], by $\tau * z$ we shall denote the extension ρ of τ defined on [0, q] and such that $\rho(q) \simeq z$.

Lemma 20. Let τ be an *i*-regular finite part defined on [0, q-1]. Let $x, y_1, \ldots, y_i \in \mathbb{N}$ and $z_0 \in \overline{B}_0, \ldots, z_i \in \overline{B}_i$. There exists a normal *i*-regular extension ρ of τ such that:

1. $\rho(q) \simeq x;$ 2. $(\forall j < i)(y_{j+1} \in \rho(M_{j+1}^{\rho})).$ 3. $(\forall j \le i)(z_j \in \rho(B_j^{\rho})).$

Proof. Induction on *i*. The assertion is obvious for i = 0. Let τ be an (i + 1)-regular finite part s.t. dom $(\tau) = [0, q - 1]$. Let $x, y_1, \ldots, y_{i+1} \in \mathbb{N}, z_0 \in \overline{B}_0, \ldots, z_{i+1} \in \overline{B}_{i+1}$ be given. Suppose that $|\tau|_{i+1} = r+1$ and $n_0, l_0, m_0, b_0, \ldots, n_r, l_r, m_r, b_r, n_{r+1}$ are the natural numbers satisfying the conditions a)-e) from the definition of the (i+1)-regular finite parts. Notice that $n_{r+1} = q$. Since τ is also *i*-regular, by the induction hypothesis there exists a normal *i*-regular extension ρ_0 of $\tau * x$ such that $(\forall j < i)(y_{j+1} \in \rho(M_{j+1}^{\rho}))$ and $(\forall j \leq i)(z_j \in \rho(B_j^{\rho}))$. Let $l_{r+1} = \ln(\rho_0)$. Clearly there exists a normal *i*-regular extension δ of $\rho_0 * 0$ and hence the function $\mu_i(\rho_0 * 0, X_p^i)$ is defined for all $p \in \mathbb{N}$. Set

$$\rho_1 = \begin{cases} \delta, & \text{if } x = 0 \lor (\exists j)(x = \langle j, p \rangle + 1 \& j \neq i + 1), \\ \mu_i(\rho_0 * 0, X_p^i), & \text{if } x = \langle i + 1, p \rangle. \end{cases}$$

Set $m_{r+1} = \ln(\rho_1)$. Let ν be a normal extension of $\rho_1 * y_{i+1}$ and set

$$\rho_2 = \begin{cases} \nu, & \text{if } y_{i+1} = 0, \\ \mu_i(\rho_0 * 0, X^i_{y_{i+1}-1}), & \text{if } y_{i+1} > 0. \end{cases}$$

Set $b_{r+1} = \ln(\rho_2)$ and let ρ be a normal *i*-regular extension of $\rho_2 * z_{i+1}$.

Corollary 21. If $i \leq k$, then every *i*-regular finite part of rank 1 can be extended to a k-regular finite part of rank 1 and to a k-regular enumeration.

Using similar arguments we may prove and the following proposition.

Proposition 22. Let δ be an *i*-regular finite part. Let y = 0 or $y = \langle j, p \rangle + 1$ for some j > i. There exists a normal *i*-regular extension ρ of $\delta * y$ such that $(\forall x \in dom(\rho))(x > lh(\delta) \Rightarrow \rho(x) \simeq 0).$

Corollary 23. For every $i \in \mathbb{N}$ there exists a canonical *i*-regular finite part δ_i of rank 1 such that $(\forall x \in dom(\delta_i))(\delta_i(x) \simeq 0)$.

Now we are ready to present a proof of Theorem 11.

Proof (of Theorem 11).

Let us fix natural numbers $k_0 < \ldots < k_r$ and k. Given sets A_0, \ldots, A_r of natural numbers, we define the sequence $\{B_i\}$ by setting

$$B_i = \begin{cases} A_j, \text{ if } i = k_j, \\ \emptyset, \text{ if } i \notin \{k_0, \dots, k_r\} \end{cases}$$

We call a finite part or an enumeration *i*-regular with respect to A_0, \ldots, A_r if it is *i*-regular with respect to the sequence $\{B_i\}$.

As in the previous sections by \overline{B}_i we denote $\mathbbm{N}\oplus B_i$ and by P_i we denote the set

$$(...(\overline{B}_0)'_{e} \oplus \overline{B}_1)'_{e} \oplus ... \oplus \overline{B}i - 1)'_{e} \oplus \overline{B}_i.$$

Clearly there exist computable functions $p_1(i)$ and $p_2(i)$ which do not depend on the choice of the sets A_0, \ldots, A_r and such that

$$P_i = \Phi_{p_1(i)}(\mathcal{P}_{k_0,\dots,k_r}^{(i)}(A_0,\dots,A_r)) \text{ and } \mathcal{P}_{k_0,\dots,k_r}^{(i)}(A_0,\dots,A_r) = \Phi_{p_2(i)}(P_i).$$

Now let us consider a uniform operator Γ of type $(k_0, \ldots, k_r \to k)$. Let γ be the respective index function of Γ . By Proposition 19 there exist Oracle Turing Machines b_{k_0}, \ldots, b_{k_r} such that for every $i \ge k_r$, every sequence of sets A_0, \ldots, A_r and every *i*-regular enumeration f,

$$A_0 = W_{b_{k_0}}^{f^{(k_0)}}, \dots, A_r = W_{b_{k_r}}^{f^{(k_r)}}.$$

Let $b = \gamma(b_{k_0}, \ldots, b_{k_r})$. Clearly for every sequence A_0, \ldots, A_r of sets, for every $i \ge k_r$ and every *i*-regular enumeration f we have that

$$\Gamma(A_0,\ldots,A_r)=W_b^{f^{(k)}}.$$

Therefore there exists a c such that for every sequence A_0, \ldots, A_r of sets, every $i \ge k_r$ and every *i*-regular enumeration f,

$$(\forall n)(f(n) \in \Gamma(A_0, \dots, A_r) \iff f \models_k F_c(n)).$$

Consider the canonical k-regular finite part δ_k of rank 1. Set $n_0 = \ln(\delta_k)$. Let δ be a normal k-regular extension of $\delta_k * (\langle k+1, c \rangle + 1)$ such that $(\forall x \in \text{dom}(\delta))(x > \ln(\delta_k) \Rightarrow \delta(x) \simeq 0)$. Let $\ln(\delta) = l_0$. We shall show that

$$x \in \Gamma(A_0, \dots, A_r) \iff (\exists \tau \supseteq \delta)(\tau \text{ is } k \text{-regular with respect to } A_0, \dots, A_r \& \tau(l_0) \simeq x \& \tau \Vdash_k F_c(l_0)).$$

Indeed, suppose that there exist a $\tau \supseteq \delta$ which is k-regular with respect to $A_0, \ldots, A_r, \tau(l_0) \simeq x$ and $\tau \Vdash_k F_c(l_0)$. Then there exists a $\max(k_r, k+1)$ -regular

with respect to A_0, \ldots, A_r enumeration f which extends the least such τ . Clearly $f \models_k F_c(l_0)$ and $f(l_0) \simeq x$. So, $x \in \Gamma(A_0, \ldots, A_r)$.

Suppose now that $x \in \Gamma(A_0, \ldots, A_r)$. Consider a $\max(k_r, k+1)$ -regular enumeration f which extends $\delta * x$. Then $f(l_0) \simeq x$ and hence $f \models_k F_c(l_0)$. Then there exists a $\tau \subseteq f$ such that $\tau \Vdash_k F_c(l_0)$. Clearly we may assume that $\delta \subseteq \tau$ and $\tau(l_0) \simeq x$.

From here using Proposition 18 one can find easily an enumeration operator Φ such that for all A_1, \ldots, A_r ,

$$\Gamma(A_0,\ldots,A_r) = \Phi(\mathcal{P}_{k_0,\ldots,k_r}^{(k)}(A_0,\ldots,A_r)).$$

By this we have proved the nontrivial part of the theorem. The proof of the rest is routine. $\hfill \Box$

References

- 1. Rogers Jr., H.: Theory of recursive functions and effective computability. McGraw-Hill Book Company, New York (1967)
- 2. Selman, A.: Arithmetical reducibilities I. Z. Math. Logik Grundlag. Math. **17** (1971) 335–350
- Case, J.: Maximal arithmetical reducibilities. Z. Math. Logik Grundlag. Math. 20 (1974) 261–270
- Ash, C.: Generalizations of enumeration reducibility using recursive infinitary propositional sentences. Ann. Pure Appl. Logic 58 (1992) 173–184
- 5. Cooper, S.: Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ_2 sets are dense. J. Symbolic Logic **49** (1984) 503–513
- McEvoy, K.: Jumps of quasi-minimal enumeration degrees. J. Symbolic Logic 50 (1985) 839–848
- Soskov, I.: A jump inversion theorem for the enumeration jump. Arch. Math. Logic 39 (2000) 417–437
- Soskov, I., Baleva, V.: Regular enumerations. J. Symbolic Logic 67 (2002) 1323– 1343