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Abstract. We present the definition and a normal form of a class of
operators on sets of natural numbers which generalize the enumeration
operators.

1 Introduction

In his book [1, p.145] Rogers gives the following intuitive explanation of the
notion of enumeration reducibility:

Let sets A and B be given. . . . To put it as briefly as possible: A is
enumeration reducible to B if there is an effective procedure for getting
an enumeration of A from any enumeration of B.

On the next page Rogers continues with the formal definition of the enu-
meration reducibility, where Wz denotes the c.e. set with Gödel number z and
Du denotes the finite set having canonical code u.

Definition 1. A is enumeration reducible to B (notation: A ≤e B) if

(∃z)(∀x)[x ∈ A ⇐⇒ (∃u)[〈x, u〉 ∈ Wz & Du ⊆ B]].

A is enumeration reducible to B via z if

(∀x)[x ∈ A ⇐⇒ (∃u)[〈x, u〉 ∈ Wz & Du ⊆ B]].

Finally Rogers defines for every z the enumeration operator Φz : P(IN) →
P(IN).

Definition 2. Φz(X) = Y if Y ≤e X via z.

Though the relationship of the intuitive definition with the formal one is well
explained in [1] it is tempting to formalize the intuitive definition in a more
direct way. Consider again the sets A and B. To get an enumeration of B we
need an oracle X and if we have such an enumeration relative to X than B will
be c.e. in X , so B = W X

b for some b ∈ IN, where W X
b denotes the domain of

the b-th Oracle Turing Machine using as oracle the characteristic function of X .



From the intuitive remarks it follows that if A ≤e B, and B = W X
b , then there

exists an a such that A = W X
a and we can obtain such an a from b in a way

which does not depend on the oracle X . So it seems reasonable to consider the
following definition of a class of operators which we call uniform operators.

Definition 3. A mapping Γ : P(IN) → P(IN) is called uniform operator if there
exists a total function γ on the natural numbers such that for all b ∈ IN and
X ⊆ IN we have that Γ (W X

b ) = W X
γ(b).

The following result shows that the intuitive remarks quoted at the beginning
correspond exactly to the formal definition of the enumeration operators.

Theorem 4. The uniform operators coincide with the enumeration operators.

The theorem above can be considered as a uniform version of a result of
Selman [2].

Theorem 5 (Selman).

A ≤e B ⇐⇒ ∀X(B is c.e. in X ⇒ A is c.e. in X).

Selman’s theorem is generalized by Case [3] and Ash [4]. Following the same
fashion we come to the following definition.

Definition 6. Let n, k ∈ IN. A mapping Γ : P(IN) → P(IN) is uniform operator
of type (n → k) if there exists a total function γ on the natural numbers such

that for all b ∈ IN and X ⊆ IN we have that Γ (W X(n)

b ) = W X(k)

γ(b) .

The characterization of the uniform operators of type (n → k) uses the notion
of enumeration jump defined in Cooper [5] and further studied by McEvoy [6].
Here we shall use the following definition of the e-jump which is m-equivalent
to the original one, see [6]:

Definition 7. Given a set A, let K0
A = {〈x, z〉 : x ∈ Φz(A)}. Define the e-jump

A′
e of A to be the set K0

A ⊕ (IN \ K0
A).

For any set A by A
(n)
e we shall denote the n-th e-jump of A.

Theorem 8. 1. Let k < n. Then the uniform operators of type (n → k) coin-
cide with the constant mappings λB.S, where S is some Σ0

k+1 set.
2. Let n ≤ k. Then the uniform operators of type (n → k) are exactly those

mappings of Γ : P(IN) → P(IN) for which there exists an enumeration oper-

ator Φ such that for all B ⊆ IN, Γ (B) = Φ((B ⊕ ∅(n))
(k−n)
e ).

Finally let us consider the general case.

Definition 9. Let k0 < . . . < kr and k be natural numbers. A mapping Γ :
P(IN)(r+1) → P(IN) is a uniform operator of type (k0, . . . , kr → k) if there exists
a function γ : INr+1 → IN such that for all b0, . . . , br ∈ IN and X ⊆ IN,

Γ (W X(k0)

b0
, . . . , W X(kr )

br
) = W X(k)

γ(b0,...,br).



Let us fix the natural numbers k0, . . . , kr. Denote by k̄ the sequence k0, . . . , kr.

Given sets of natural numbers B0, . . . , Br, we define the set P
(k)

k̄
(B0, . . . , Br) by

induction on k.

Definition 10. (i) Set

P
(0)

k̄
(B0, . . . , Br) =

{

B0, if k0 = 0,
∅, otherwise.

(ii) Let

P
(k+1)

k̄
(B0, . . . , Br) =

{

(P
(k)

k̄
(B0, . . . , Br))

′
e, if k + 1 6∈ {k1, . . . , kr},

(P
(k)

k̄
(B0, . . . , Br))

′
e ⊕ Bi, if k + 1 = ki.

For example, for any two natural numbers n and k and any B ⊆ IN we have
that

P
(k)
n (B) =

{

∅(k), if k < n,

(∅(n) ⊕ B)
(k−n)
e , if n ≤ k.

The theorem below is our main result.

Theorem 11. 1. The uniform operators of type (k0, . . . , kr → k) are exactly
those mappings Γ : P(IN)r+1 → P(IN) for which there exists an enumeration
operator Φ such that for all subsets B0, . . . , Br of IN,

Γ (B0, . . . , Br) = Φ(P
(k)
k0,...,kr

(B0, . . . , Br)).

2. For every uniform operator Γ of type (k0, . . . , kr → k) there exists a total
computable function γ(b0, . . . , br) such that for all b0 . . . , br ∈ IN and X ⊆ IN,

Γ (W X(k0)

b0
, . . . , W X(kr)

br
) = W X(k)

γ(b0,...,br).

In the rest of the paper we present a proof of Theorem 11.

2 Regular Enumerations

The proof of Theorem 11 uses the technique of the regular enumerations, pre-
sented in [7] and [8].

Let us consider a sequence {Bi} of sets of natural numbers.
Roughly speaking a k-regular enumeration f is a kind of generic function

such that for all i ≤ k, Bi is computably enumerable in f (i) uniformly in i.
Let f be a total mapping on IN. We define for every i, e, x the relation f |=i

Fe(x) by induction on i:

Definition 12. (i) f |=0 Fe(x) ⇐⇒ ∃v(〈x, v〉 ∈ We & (∀u ∈ Dv)(f((u)0) =
(u)1));



(ii)

f |=i+1 Fe(x) ⇐⇒ ∃v(〈x, v〉 ∈ We & (∀u ∈ Dv)((u = 〈eu, xu, 0〉 &
f |=i Feu

(xu)) ∨ (u = 〈eu, xu, 1〉 & f 6|=i Feu
(xu)))).

Set f |=i ¬Fe(x) ⇐⇒ f 6|=i Fe(x).
The following lemma can be easily proved by induction on i:

Lemma 13. For every i there exists a total computable function hi(a) such that
for all a,

W f (i)

a = {x : f |=i Fhi(a)(x)}.

In what follows we shall use the term finite part for finite mappings of IN into
IN defined on finite segments [0, q − 1] of IN. Finite parts will be denoted by the
letters τ, δ, ρ. If dom(τ) = [0, q − 1], then let lh(τ) = q.

We shall suppose that an effective coding of all finite sequences and hence
of all finite parts is fixed. Given two finite parts τ and ρ we shall say that τ is
less than or equal to ρ if the code of τ is less than or equal to the code of ρ.
By τ ⊆ ρ we shall denote that the partial mapping ρ extends τ and say that ρ

is an extension of τ . For any τ , by τ � n we shall denote the restriction of τ on
[0, n − 1].

Set for every i, Bi = IN ⊕ Bi.
Below we define for every i the i-regular finite parts.
The 0-regular finite parts are finite parts τ such that dom(τ) = [0, 2q + 1]

and for all odd z ∈ dom(τ), τ(z) ∈ B0.
If dom(τ) = [0, 2q +1], then the 0-rank |τ |0 of τ is equal to the number q +1

of the odd elements of dom(τ). Notice that if τ and ρ are 0-regular, τ ⊆ ρ and
|τ |0 = |ρ|0, then τ = ρ.

For every 0-regular finite part τ , let Bτ
0 be the set of the odd elements of

dom(τ).
Given a 0-regular finite part τ , let

τ 0 Fe(x) ⇐⇒ ∃v(〈x, v〉 ∈ We & (∀u ∈ Dv)(τ((u)0) ' (u)1))

τ 0 ¬Fe(x) ⇐⇒ ∀(0-regular ρ)(τ ⊆ ρ ⇒ ρ 60 Fe(x)).

Proceeding by induction, suppose that for some i we have defined the i-
regular finite parts and for every i-regular τ – the i-rank |τ |i of τ , the set Bτ

i

and the relations τ i Fe(x) and τ i ¬Fe(x). Suppose also that if τ and ρ are
i-regular, τ ⊆ ρ and |τ |i = |ρ|i, then τ = ρ.

Set X i
j = {ρ : ρ is i-regular & ρ i F(j)0((j)1)}.

Given a finite part τ and a set X of i-regular finite parts, let µi(τ, X) be the
least extension of τ belonging to X if any, and µi(τ, X) be the least i-regular
extension of τ otherwise. We shall assume that µi(τ, X) is undefined if there is
no i-regular extension of τ .

A normal i-regular extension of an i-regular finite part τ is any i-regular
finite part ρ ⊇ τ such that |ρ|i = |τ |i + 1.



Let τ be a finite part defined on [0, q−1] and r ≥ 0. Then τ is (i+1)-regular
with (i + 1)-rank r + 1 if there exist natural numbers

0 < n0 < l0 < m0 < b0 < n1 < l1 < m1 < b1 . . . < nr < lr < mr < br < nr+1 = q

such that τ � n0 is an i-regular finite part with i-rank equal to 1 and for all j,
0 ≤ j ≤ r, the following conditions are satisfied:

a) τ � lj is a normal i-regular extension of τ � nj ;
b)

τ � mj =

{

µi(τ � (lj + 1), X i
〈p,lj〉

), if τ(nj) ' 〈i + 1, p〉+ 1,

a normal i-regular extension of τ � lj , otherwise;

c)

τ � bj =

{

µi(τ � (mj + 1), X i
〈p,q〉), if τ(mj) ' 〈p, q〉 + 1,

a normal i-regular extension of τ � mj , if τ(mj) ' 0;

d) τ(bj) ∈ Bi+1;
e) τ � nj+1 is a normal i-regular extension of τ � bj .

The following lemma shows that the (i + 1)-rank is well defined.

Lemma 14. Let τ be an (i + 1)-regular finite part. Then

1. Let n′
0, l

′
0, m

′
0, b

′
0, . . . , n

′
p, l

′
p, m

′
p, b

′
p, n

′
p+1 and n0, l0, m0, b0, . . . , nr, lr, mr, br, nr+1

be two sequences of natural numbers satisfying a)–e). Then r = p, np+1 =
n′

p+1 and for all j ≤ r, nj = n′
j , lj = l′j , mj = m′

j and bj = b′j.
2. If ρ is (i + 1)-regular, τ ⊆ ρ and |τ |i+1 = |ρ|i+1, then τ = ρ.
3. τ is i-regular and |τ |i > |τ |i+1.

Let τ be (i + 1)-regular and n0, l0, m0, b0, . . . , nr, lr, mr, br,nr+1 be the se-
quence satisfying a)–e). Then let Bτ

i+1 = {b0, . . . , br} and Mτ
i+1 = {m0, . . . , mr}.

To conclude with the definition of the regular finite parts, let for every (i+1)-
regular finite part τ

τ i+1 Fe(x) ⇐⇒ ∃v(〈x, v〉 ∈ We & (∀u ∈ Dv)((u = 〈eu, xu, 0〉 & τ i Feu
(xu))∨

(u = 〈eu, xu, 1〉 & τ i ¬Feu
(xu)))).

τ i+1 ¬Fe(x) ⇐⇒ (∀(i + 1)-regular ρ)(τ ⊆ ρ ⇒ ρ 6i+1 Fe(x)).

Definition 15. Let f be a total mapping of IN in IN. Then f is a k-regular
enumeration (with respect to {Bi}) if the following conditions hold:

(i) For every finite part δ ⊆ f , there exists a k-regular extension τ of δ such
that τ ⊆ f .

(ii) If i ≤ k and z ∈ Bi, then there exists an i-regular τ ⊆ f such that z ∈ τ(Bτ
i ).

(iv) If i < k, then for every pair 〈p, q〉 of natural numbers, there exists an i + 1-
regular finite part τ ⊆ f such that for some m ∈ M τ

i+1, τ(m) ' 〈p, q〉 + 1.



Clearly, if f is a k-regular enumeration and i ≤ k, then for every δ ⊆ f , there
exists an i-regular τ ⊆ f such that δ ⊆ τ . Moreover there exist i-regular finite
parts of f of arbitrary large rank.

Given a regular f , let for i ≤ k, B
f
i = {b : (∃τ ⊆ f)(τ is i-regular & b ∈ Bτ

i )}.

Clearly f(Bf
i ) = Bi.

Now let us turn to the properties of the regular finite parts and of the regular
enumerations.

3 Properties of the regular enumerations

First of all, notice that the clause (iv) of the definition of the regular enumer-
ations ensures that a k-regular enumeration f is generic with respect to the
family {X i

j : i < k, j ∈ IN}. So we have the following Truth Lemma:

Lemma 16. Let f be a k-regular enumeration. Then

1. For all i ≤ k, f |=i Fe(x) ⇐⇒ (∃τ ⊆ f)(τ is i-regular & τ i Fe(x)).
2. For all i < k, f |=i ¬Fe(x) ⇐⇒ (∃τ ⊆ f)(τ is i-regular & τ i ¬Fe(x)).

Let us define for every natural k the set Pk by induction on k:

Definition 17. (i) P0 = B0;
(ii) Pk+1 = (Pk)′e ⊕ Bk+1.

Denote by Ri the set of all i-regular finite parts.
For j ∈ IN let µi(τ, j) ' µi(τ, X

i
j),

Y i
j = {τ : (∃ρ ⊇ τ)(ρ is i-regular & ρ i F(j)0 ((j)1))}

Zi
j = {τ : τ is i-regular & τ i ¬F(j)0 ((j)1)}.

Proposition 18. For every i ∈ IN the following assertions hold:

1. There exists an enumeration operators Ri such that for every sequence {Bi}
of sets of natural numbers, Ri = Ri(Pi).

2. There exist computable functions xi(j) and yi(j) such that for every j and
every sequence {Bi} of sets of natural numbers,

X i
j = Φxi(j)(Pi) and Y i

j = Φyi(j)(Pi).

3. There exists a computable function zi(j) such that for every j and every
sequence {Bi} of sets of natural numbers,

Zi
j = {zi(j)}

P ′

i .

4. There exists an Oracle Turing Machine mi such that for every sequence {Bi}
of sets of natural numbers,

µi = {mi}
P ′

i .



The following proposition is important for the proof of Theorem 11.

Proposition 19. For every i ∈ IN there exists an Oracle Turing Machine bi

such that for every sequence {Bi} of sets of natural numbers and every k-regular
with respect to {Bi} enumeration f ,

(∀i ≤ k)(Bi = W
f (i)

bi
).

Proof. We shall define the machines bi by induction on i. Clearly for every se-
quence {Bi} of sets of natural numbers and every k-regular with respect to {Bi}

enumeration f , B0 = {x : 2x + 1 ∈ B0}, B0 = f(Bf
0 ) and B

f
0 is equal to the set

of all odd numbers.
So we may define the machine b0 as follows:

input X;

Y:= 0;

while (2X + 1 =\= f(2Y+1)) do

Y := Y+1;

end.

Suppose that i < k and the machines b0, . . . , bi are defined. Following the
definition of Pi we can define an oracle machine p′ which given a sequence {Bi}
and a k-regular f computes the characteristic function of P ′

i using f (i+1) as an
oracle. So it is sufficient to show that we can enumerate the set Bi by means of
P ′

i and f , uniformly in P ′
i and f .

Since f is (i + 1)-regular, for every finite part δ of f there exists an (i + 1)-
regular τ ⊆ f such that δ ⊆ τ . Hence there exist natural numbers

0 < n0 < l0 < m0 < b0 < n1 < l1 < m1 < b1 < . . . < nr < lr < mr < br < . . . ,

such that for every r ≥ 0, the finite part τr = f � nr+1 is (i + 1)-regular
and n0, l0, m0, b0, . . ., nr, lr, mr, br, nr+1 are the numbers satisfying the condi-
tions a)–e) from the definition of the (i + 1)-regular finite part τr. Clearly

B
f
i+1 = {b0, b1 . . .}. We shall describe a procedure which lists n0, l0,m0, b0, . . .

in an increasing order using the oracles P ′
i and f .

Clearly f � n0 is i-regular and |f � n0|i = 1. By Lemma 18 Ri is uniformly
computable in P ′

i . Using f we can generate consecutively the finite parts f � q

for q = 1, 2 . . .. By Lemma 14 f � n0 is the first element of this sequence which
belongs to Ri. Clearly n0 = lh(f � n0).

Suppose that r ≥ −1 and n0, l0, m0, b0, . . . , nr, lr, mr, br, nr+1 have already
been listed. Since f � lr+1 is a normal i-regular extension of f � nr+1 it is the
shortest finite part of f which extends f � nr+1 and belongs to Ri. So we can
find the number lr+1. Now, we have to consider two cases:

a) f(nr+1) = 0 or f(nr+1) = 〈j, p〉+1, where j 6= i+1. Then again f � mr+1

is the shortest finite part of f which belongs to Ri and extends f � lr+1.
b) f(nr+1) = 〈i + 1, p〉+ 1. Then f � mr+1 = µi(f � (lr+1 + 1), X i

〈p,lr+1〉
).



In both cases we can find f � mr+1 effectively in f and P ′
i . Clearly mr+1 =

lh(f � mr+1). From mr+1 we reach br+1 in a way similar to the previous one.
Finally, from br+1 we reach nr+2 using the fact that f � nr+2 is a normal i-
regular extension of f � br+1. Now we have a machine which decides the set
B

f
i+1 using the oracle f (i+1). From here, since B = f(Bf

i+1) we can easily obtain
the machine bi+1. ut

4 Constructions of regular enumerations

Suppose that a sequence {Bi} of sets of natural numbers is fixed.
Given a finite mapping τ defined on [0, q − 1], by τ ∗ z we shall denote the

extension ρ of τ defined on [0, q] and such that ρ(q) ' z.

Lemma 20. Let τ be an i-regular finite part defined on [0, q−1]. Let x, y1, . . . yi ∈
IN and z0 ∈ B0, . . . , zi ∈ Bi. There exists a normal i-regular extension ρ of τ

such that:

1. ρ(q) ' x;
2. (∀j < i)(yj+1 ∈ ρ(Mρ

j+1)).
3. (∀j ≤ i)(zj ∈ ρ(Bρ

j )).

Proof. Induction on i. The assertion is obvious for i = 0. Let τ be an (i +
1)-regular finite part s.t. dom(τ) = [0, q − 1]. Let x, y1, . . . , yi+1 ∈ IN, z0 ∈
B0, . . . , zi+1 ∈ Bi+1 be given. Suppose that |τ |i+1 = r+1 and n0, l0, m0, b0, . . . , nr,
lr, mr, br, nr+1 are the natural numbers satisfying the conditions a)–e) from the
definition of the (i+1)-regular finite parts. Notice that nr+1 = q. Since τ is also
i-regular, by the induction hypothesis there exists a normal i-regular extension
ρ0 of τ ∗ x such that (∀j < i)(yj+1 ∈ ρ(Mρ

j+1)) and (∀j ≤ i)(zj ∈ ρ(Bρ
j )). Let

lr+1 = lh(ρ0). Clearly there exists a normal i-regular extension δ of ρ0 ∗ 0 and
hence the function µi(ρ0 ∗ 0, X i

p) is defined for all p ∈ IN. Set

ρ1 =

{

δ, if x = 0 ∨ (∃j)(x = 〈j, p〉 + 1 & j 6= i + 1),
µi(ρ0 ∗ 0, X i

p), if x = 〈i + 1, p〉.

Set mr+1 = lh(ρ1). Let ν be a normal extension of ρ1 ∗ yi+1 and set

ρ2 =

{

ν, if yi+1 = 0,

µi(ρ0 ∗ 0, X i
yi+1−1), if yi+1 > 0.

Set br+1 = lh(ρ2) and let ρ be a normal i-regular extension of ρ2 ∗ zi+1. ut

Corollary 21. If i ≤ k, then every i-regular finite part of rank 1 can be extended
to a k-regular finite part of rank 1 and to a k-regular enumeration.

Using similar arguments we may prove and the following proposition.

Proposition 22. Let δ be an i-regular finite part. Let y = 0 or y = 〈j, p〉 + 1
for some j > i. There exists a normal i-regular extension ρ of δ ∗ y such that
(∀x ∈ dom(ρ))(x > lh(δ) ⇒ ρ(x) ' 0).



Corollary 23. For every i ∈ IN there exists a canonical i-regular finite part δi

of rank 1 such that (∀x ∈ dom(δi))(δi(x) ' 0).

Now we are ready to present a proof of Theorem 11.

Proof (of Theorem 11).
Let us fix natural numbers k0 < . . . < kr and k. Given sets A0, . . . , Ar of

natural numbers, we define the sequence {Bi} by setting

Bi =

{

Aj , if i = kj ,

∅, if i 6∈ {k0, . . . , kr}.

We call a finite part or an enumeration i-regular with respect to A0, . . . , Ar

if it is i-regular with respect to the sequence {Bi}.
As in the previous sections by Bi we denote IN⊕Bi and by Pi we denote the

set
(...((B0)

′
e ⊕ B1)

′
e ⊕ . . . ⊕ Bi − 1)′e ⊕ Bi.

Clearly there exist computable functions p1(i) and p2(i) which do not depend
on the choice of the sets A0, . . . , Ar and such that

Pi = Φp1(i)(P
(i)
k0,...,kr

(A0, . . . , Ar)) and P
(i)
k0,...,kr

(A0, . . . , Ar) = Φp2(i)(Pi).

Now let us consider a uniform operator Γ of type (k0, . . . , kr → k). Let
γ be the respective index function of Γ . By Proposition 19 there exist Oracle
Turing Machines bk0 , . . . , bkr

such that for every i ≥ kr, every sequence of sets
A0, . . . , Ar and every i-regular enumeration f ,

A0 = W
f (k0)

bk0
, . . . , Ar = W

f (kr)

bkr
.

Let b = γ(bk0 , . . . , bkr
). Clearly for every sequence A0, . . . , Ar of sets, for every

i ≥ kr and every i-regular enumeration f we have that

Γ (A0, . . . , Ar) = W
f (k)

b .

Therefore there exists a c such that for every sequence A0, . . . , Ar of sets, every
i ≥ kr and every i-regular enumeration f ,

(∀n)(f(n) ∈ Γ (A0, . . . , Ar) ⇐⇒ f |=k Fc(n)).

Consider the canonical k-regular finite part δk of rank 1. Set n0 = lh(δk).
Let δ be a normal k-regular extension of δk ∗ (〈k + 1, c〉 + 1) such that (∀x ∈
dom(δ))(x > lh(δk) ⇒ δ(x) ' 0). Let lh(δ) = l0. We shall show that

x ∈ Γ (A0, . . . , Ar) ⇐⇒ (∃τ ⊇ δ)(τ is k-regular with respect to A0, . . . , Ar &
τ(l0) ' x & τ k Fc(l0)).

Indeed, suppose that there exist a τ ⊇ δ which is k-regular with respect to
A0, . . . .Ar, τ(l0) ' x and τ k Fc(l0). Then there exists a max(kr, k+1)-regular



with respect to A0, . . . , Ar enumeration f which extends the least such τ . Clearly
f |=k Fc(l0) and f(l0) ' x. So, x ∈ Γ (A0, . . . , Ar).

Suppose now that x ∈ Γ (A0, . . . , Ar). Consider a max(kr, k + 1)-regular
enumeration f which extends δ∗x. Then f(l0) ' x and hence f |=k Fc(l0). Then
there exists a τ ⊆ f such that τ k Fc(l0). Clearly we may assume that δ ⊆ τ

and τ(l0) ' x.
From here using Proposition 18 one can find easily an enumeration operator

Φ such that for all A1, . . . , Ar,

Γ (A0, . . . , Ar) = Φ(P
(k)
k0,...,kr

(A0, . . . , Ar)).

By this we have proved the nontrivial part of the theorem. The proof of the
rest is routine. ut
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