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Introduction

I present a review of my PhD dissertation. It is in the field of
computable analysis. The main question is:

What happens if we restrict the generality of computable
processes?
The restriction to the popular classes P,NP,EXP and others is
well-studied. But this is not the case with subrecursive hierarchies.
The aim of the dissertation is to study computable analysis in the
framework of the most popular subrecursive hierarchy -
Grzegorczyk’s hierarchy of primitive recursive functions.
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Grzegorczyk’s hierarchy

We remind informally the definition of Grzegorczyk’s hierarchy.

It
is a strictly increasing sequence

E0 ⊂ E1 ⊂ E2 ⊂ E3 ⊂ . . . . . .

of sets of functions, whose union is the set of all primitive recursive
functions. Each class En is closed under substitution and limited
primitive recursion.
We also consider two other classes M2 and L2.
The class M2 has the same definition as E2, but limited primitive
recursion is replaced by bounded minimization. It turns out that it
coincides with the set of all functions which are bounded by
polynomial and have ∆0-definable graph.
The class L2 has the same definition as E2, but limited primitive
recursion is replaced by bounded summation.
We have M2 ⊆ L2 ⊆ E2 and whether each of these inclusions is
proper is an open question.
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Relative computability of real numbers

The triple of functions 〈f , g , h〉 of type N→ N is a name of the
real number ξ iff for all n ∈ N,∣∣∣∣ f (n)− g(n)

h(n) + 1
− ξ
∣∣∣∣ < 1

n + 1
.

For a class F of functions, a real number ξ is F-computable iff
there exists a triple 〈f , g , h〉 ∈ F3 which is a name of ξ.
Skordev showed that if the class F contains the initial functions
and is closed under substitution and bounded minimization, then
the set of all F-computable real numbers is a real-closed field.This
is true for F ∈ {M2,L2} and for F = En with n ≥ 2. In
particular, all real algebraic numbers are M2-computable.
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Relative computability of famous constants I
Skordev proved that e, π, the Liouville number L and Euler’s
constant γ are E2-computable.

By using some strong results about
∆0-definable functions, Weiermann refined the proofs to show that
e and L are M2-computable.
Later Skordev found a general method for proving F-computability,
where F can be L2 or any En for n ≥ 2.

Definition
A function a : N→ R is F-computable iff there exist binary
functions f , g , h ∈ F , such that for any natural s, the triple
〈λn.f (s, n), λn.g(n, s), λn.h(n, s)〉 names the real number a(s).

Theorem
Let a : N→ R be an F-computable function, such that the series∑∞

s=0 as is convergent and let α be its sum. Let there exist a
function p : N→ N from the class F , such that∣∣∣∑s≥y+1 as

∣∣∣ ≤ 1
n+1 for any natural n and y = p(n). Then the

number α is F-computable.
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Relative computability of famous constants II

This method is not suitable for the class M2, because it is not
known whether this class is closed under bounded summation (that
would be the case if and only if M2 = L2). In my master thesis I
modify the method above and prove the following

Theorem
Let a : N→ R be anM2-computable function, such that the
series

∑∞
s=0 as is convergent and let α be its sum. Let there exist a

function p : N→ N belonging toM2, such that∣∣∣∑s>log2(y+1) as

∣∣∣ ≤ 1
n+1 for all natural n and y = p(n). Then the

number α isM2-computable.

Using these two methods I proved L2-computability and
M2-computability of a large number of constants. Among them is
the number π, which is M2-computable and Euler’s constant γ,
which is L2-computable.
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Continued fractions I
In my master thesis I also consider the representation of real
numbers by continued fractions.

Every positive irrational real number ξ has an expansion as a
simple continued fraction:

ξ = a0 +
1

a1 + 1
a2+

1

...

,

where a0 = bξc is the integer part of ξ and for i ≥ 1, ai is a
non-zero natural number. Conversely, every sequence a of natural
numbers, sucht that ai 6= 0 for i ≥ 1 produces a unique real
number.
Examples:

e = 2 +
1

1 + 1
2+ 1

1+ 1

1+ 1

4+ 1

1+ 1

...

, π = 3 +
1

7 + 1
15+ 1

1+ 1

292+ 1

1+ 1

1+ 1

...

.
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Continued fractions II

Definition
Let F be a class of total functions. The number ξ has continued
fraction in F iff the sequence a belongs to F .

For example, if R is the class of all recursive functions then

ξ is R-computable if and only if ξ has continued fraction in R.

But if PR is the class of primitive recursive functions, then this
equivalence is no longer true.
It is not hard to see that e has continued fraction in E0, but the
complexity of the continued fraction of ξ is not at all clear.
We have the following

Theorem
For n ≥ 2, if ξ has continued fraction in En, then ξ is
En-computable.

An essential part of my dissertation is the study of the converse
theorem. It turns out that it is not true.
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Counterexample for the converse of the theorem

To prove that I strengtened the theorem to the following

Theorem
For n ≥ 2, if the graph {(k , ak)|k ∈ N} of the continued fraction
of ξ is an En-relation, then ξ is En-computable.

We apply that theorem for

ξA = A(0, 0) +
1

A(1, 1) + 1
A(2,2)+ 1

...

,

where A is Ackermann’s function.
It is well-known that λx .A(x , x) is not primitive recursive and it is
also true that its graph is ∆0-definable hence an E0-relation.
So the number ξA is E2-computable (and thus En-computable for
any n ≥ 2).
Its continued fraction is, however, not primitive recursive and it
does not belong to any of the classes En.
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Partial converse of the theorem I

We still hope that combining some natural condition on the
number ξ with En-computability will give us low complexity of the
continued fraction.

Definition
For a class of functions F , the number ξ is F-irrational if there
exists a unary function v ∈ F , such that for all natural m and
n > 0,

∣∣ξ − m
n

∣∣ > 1
v(n) .

For example, it turns out that the E2-irrational numbers are
exactly the numbers, which are not Liouville and Liouville numbers
were the first examples of transcendental numbers.

Theorem
For all n ≥ 2, if the number ξ is En+1-computable and
En-irrational, then ξ has continued fraction in En+1.

It follows that the number π and all real algebraic numbers have
continued fraction in E3 (elementary).



Partial converse of the theorem I

We still hope that combining some natural condition on the
number ξ with En-computability will give us low complexity of the
continued fraction.

Definition
For a class of functions F , the number ξ is F-irrational if there
exists a unary function v ∈ F , such that for all natural m and
n > 0,

∣∣ξ − m
n

∣∣ > 1
v(n) .

For example, it turns out that the E2-irrational numbers are
exactly the numbers, which are not Liouville and Liouville numbers
were the first examples of transcendental numbers.

Theorem
For all n ≥ 2, if the number ξ is En+1-computable and
En-irrational, then ξ has continued fraction in En+1.

It follows that the number π and all real algebraic numbers have
continued fraction in E3 (elementary).



Partial converse of the theorem I

We still hope that combining some natural condition on the
number ξ with En-computability will give us low complexity of the
continued fraction.

Definition
For a class of functions F , the number ξ is F-irrational if there
exists a unary function v ∈ F , such that for all natural m and
n > 0,

∣∣ξ − m
n

∣∣ > 1
v(n) .

For example, it turns out that the E2-irrational numbers are
exactly the numbers, which are not Liouville and Liouville numbers
were the first examples of transcendental numbers.

Theorem
For all n ≥ 2, if the number ξ is En+1-computable and
En-irrational, then ξ has continued fraction in En+1.

It follows that the number π and all real algebraic numbers have
continued fraction in E3 (elementary).



Partial converse of the theorem I

We still hope that combining some natural condition on the
number ξ with En-computability will give us low complexity of the
continued fraction.

Definition
For a class of functions F , the number ξ is F-irrational if there
exists a unary function v ∈ F , such that for all natural m and
n > 0,

∣∣ξ − m
n

∣∣ > 1
v(n) .

For example, it turns out that the E2-irrational numbers are
exactly the numbers, which are not Liouville and Liouville numbers
were the first examples of transcendental numbers.

Theorem
For all n ≥ 2, if the number ξ is En+1-computable and
En-irrational, then ξ has continued fraction in En+1.

It follows that the number π and all real algebraic numbers have
continued fraction in E3 (elementary).



Partial converse of the theorem I

We still hope that combining some natural condition on the
number ξ with En-computability will give us low complexity of the
continued fraction.

Definition
For a class of functions F , the number ξ is F-irrational if there
exists a unary function v ∈ F , such that for all natural m and
n > 0,

∣∣ξ − m
n

∣∣ > 1
v(n) .

For example, it turns out that the E2-irrational numbers are
exactly the numbers, which are not Liouville and Liouville numbers
were the first examples of transcendental numbers.

Theorem
For all n ≥ 2, if the number ξ is En+1-computable and
En-irrational, then ξ has continued fraction in En+1.

It follows that the number π and all real algebraic numbers have
continued fraction in E3 (elementary).



Partial converse of the theorem II

It turns out that another suitable natural condition is a bound on
the growth of the terms of the continued fraction.

Theorem
For all n ≥ 2, if the number ξ is En+1-computable and there exists
a unary function v ∈ En, which majorizes λk .ak (the terms of the
continued fraction of ξ), then ξ has continued fraction in En+1.
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Computing real functions
Skordev embarked on the problem of showing that the set of
M2-computable real numbers is closed under elementary functions
of calculus.

This gradually moved the focus of study to
computability of real functions.
We will denote by Tk the class of all k-ary total functions in N.
By an operator we mean a total mapping of type T k

1 → Tm for
some k ,m ∈ N.
Let k ∈ N and θ : D → R, where D ⊆ Rk . The triple (F ,G ,H),
where F ,G ,H are operators of type T 3k

1 → T1, is called a
computing system for θ if for all (ξ1, ξ2, . . . , ξk) ∈ D and triples
(fi , gi , hi ) that name ξi for i = 1, 2, . . . , k , the triple

(F (f1, g1, h1, f2, g2, h2, . . . , fk , gk , hk),

G (f1, g1, h1, f2, g2, h2, . . . , fk , gk , hk),

H(f1, g1, h1, f2, g2, h2, . . . , fk , gk , hk))

names the real number θ(ξ1, ξ2, . . . , ξk).
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Computing real functions

Let O be a class of operators. The function θ is uniformly
O-computable, if there exists a computing system (F ,G ,H) for θ,
such that F ,G ,H ∈ O.

For example, if O is the class of all computable operators, then the
function θ is O-computable if and only if it is computable in the
classical sense of Grzegorczyk.
There is a more general notion of computability of real functions in
which we allow the operators to be partial, that is they might not
be defined for some tuples of unary total functions, which are not
tuples of names for the arguments of θ.
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F -substitutional operators

We fix a class F of total functions. For any k,m ∈ N we define
inductively the class of F-substitutional operators of type
T k
1 → Tm as follows:

I For any m-argument projection h in N, the operator F defined
by F (f1, . . . , fk) = h is F-substitutional.

I For any i ∈ {1, . . . , k}, if F0 is an F-substitutional operator of
type T k

1 → Tm, then so is the operator F defined by

F (f1, . . . , fk)(n1, . . . , nm) = fi (F0(f1, . . . , fk)(n1, . . . , nm)).

I For any r ∈ N and f ∈ Tr ∩ F , if F1, . . . ,Fr are
F-substitutional operators of type T k

1 → Tm, then so is the
operator F , defined by

F (f1, . . . , fk)(n1, . . . , nm) =

f (F1(f1, . . . , fk)(n1, . . . , nm), . . . ,Fr (f1, . . . , fk)(n1, . . . , nm)).
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Uniformly F -computable real functions

The real function θ : D → R, where D ⊆ Rk is uniformly
F-computable, if there exists a computing system (F ,G ,H) for θ,
such that F ,G ,H are F-substitutional operators.

If F consists of recursive functions, then the F-substitutional
operators are computable and so the uniformly F-computable real
functions are computable in Grzegorczyk’s sense.
All elementary functions of calculus are uniformly M2-computable,
but restricted to compact subsets of their domains.
The reason is that any real function, computable in Grzegorczyk’s
sense is uniformly continuous on the bounded subsets of its
domain.
This rules out the reciprocal function and the logarithmic function.
If the class F contains M2 and is closed under substitution, it
follows easily that the set of all F-computable real numbers is
closed under the elementary functions of calculus.
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Conditional computability of real functions

Let k ∈ N, θ : D → R,D ⊆ Rk and O be a class of operators.

The real function θ is conditionally O-computable, if there exist
operators E : T 3k

1 → T1 and F ,G ,H : T 3k
1 → T2, all belonging to

O, such that for all (ξ1, . . . , ξk) ∈ D and all triples (fi , gi , hi ) that
name ξi for i = 1, 2, . . . , k , the following two hold:

I There exists a natural number s satisfying the equality

E (f1, g1, h1, . . . , fk , gk , hk)(s) = 0.

I For any natural number s satisfying the above equality, the
triple (f̃ , g̃ , h̃) names the real number θ(ξ1, . . . , ξk), where

f̃ = λt.F (f1, g1, h1, . . . , fk , gk , hk)(s, t),

g̃ = λt.G (f1, g1, h1, . . . , fk , gk , hk)(s, t),

h̃ = λt.H(f1, g1, h1, . . . , fk , gk , hk)(s, t).
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Conditional F -computability of real functions

The real function θ : D → R,D ⊆ Rk is conditionally
F-computable if it is conditionally computable with respect to the
class of F-substitutional operators.

If the class F consists of recursive functions, then the conditionally
F-computable real functions are computable in the extended sense.
All elementary functions of calculus, on their whole domains, are
conditionally M2-computable.
Under certain weak assumptions about the class F we have

I conditional F-computability is preserved by substitution,

I all conditionally F-computable real functions are locally
uniformly F-computable,

I the conditionally F-computable real functions with compact
domains are uniformly F-computable.
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Thank you for your attention!


