
SOFIA UNIVERSITY ST. KLIMENT OHRIDSKI

MASTER THESIS

Modal definability: two commuting
equivalence relations

Author:
Yana GEORGIEVA,
Faculty number: 26192,
Logic and Algorithms
(Mathematics)

Supervisor:
Prof. Tinko TINCHEV

A thesis submitted in fulfillment of the requirements
for the degree of master in Mathematical logic and Algorithms

in the
Department of Mathematical Logic and Applications

March 21, 2021

https://www.uni-sofia.bg/
https://store.fmi.uni-sofia.bg/fmi/logic/tinchev/
https://store.fmi.uni-sofia.bg/fmi/logic/

iii

SOFIA UNIVERSITY ST. KLIMENT OHRIDSKI

Abstract
Faculty of Mathematics and Informatics

Department of Mathematical Logic and Applications
master in Mathematical logic and Algorithms

Modal definability: two commuting equivalence relations

by Yana GEORGIEVA

The bimodal logic S5 × S5 (S52) corresponds to the equality and substitution free fragment
of two-variable first-order logic FOL2, via the standard translation of modal formulae to first-
order formulae. This fragment of first-order logic was shown to be decidable a long time ago,
rending the logic S52 to be decidable. The study of the extensions of S52 is reduced to the
fact that this fragment of FOL is decidable as well as to properties of bounded morphisms,
rending them also decidable with a better complexity of the satisfiability problem than S52
itself.

Here the problem of modal definability is really something relating more to the properties
of the first-order properties of the theories of the classes of structures, models of S52. We
examine some classes of those classes due to the fact that S52 is Kripke complete w.r.t. each
of them. This is the reason why we examine the properties of different classes of structures
in this work and why that is enough.

Those structures in which the equivalence relations commute, but are not “rectangular”,
are considered as non-standard models of S52. In the present work we prove that the modal
definability problem w.r.t. the class of all structures with two commuting equivalence re-
lations is undecidable. The status of the modal definability problem in the other examined
classes will be done in future works.

This is the motivation why we study the first-order theories of these classes of structures.
It is inevitable that if we want to know more about the definability problems in this logic, we
must know a bit more of the first-order properties of its models.

HTTPS://WWW.UNI-SOFIA.BG/
https://www.fmi.uni-sofia.bg/en
https://store.fmi.uni-sofia.bg/fmi/logic/

v

Contents

Abstract iii

1 Preliminaries 1
1.1 General . 1
1.2 First-order logic . 4

1.2.1 Syntax . 4
1.2.2 Semantics . 8
1.2.3 Some foundational theorems of RFOL . 11

1.3 Equivalence relations . 14
1.3.1 Two commuting equivalence relations . 14

1.4 A method to prove a theory undecidable . 18
1.4.1 Relative elementary definability . 19

1.5 A method to prove a theory decidable . 22
1.5.1 Ehrenfeucht–Fraïssé games . 22
1.5.2 Decidability and finite model property for first-order logic 24

1.6 Propositional modal logic . 26
1.6.1 Syntax . 26
1.6.2 Semantics . 27

1.7 Correspondence theory . 31
1.7.1 Relativization in FOL . 32
1.7.2 Stable classes of frames and modal definability 33

1.8 Some history on related theories . 34
2 A tale of three theories 35

2.1 Formulation of the problem . 35
2.2 How can we describe the structures? . 36
2.3 Do they differ? . 38

2.3.1 Th(commute) is a proper subtheory of Th(rectangle) 38
2.3.2 Th(rectangle) is a proper subtheory of Th(square) 38

2.4 Are the classes axiomatizable? . 39
2.5 Undecidability of Th(commute) . 42
2.6 Decidability of Th(rectangle) and Th(square) . 46

2.6.1 Decidability of Th(rectangle) . 48
2.6.2 Decidability of Th(square) . 54

2.7 rectangle and square have FMP . 56
2.7.1 rectangle has FMP . 56
2.7.2 square has FMP . 58
2.7.3 Another way to see that rectangle has FMP 59
2.7.4 Another way to see that square has FMP 61

3 Modal definability problem in commute 63

4 Summary and further work 67

Bibliography 69

1

Chapter 1

Preliminaries

1.1 General

For the purposes of talking about mathematical objects and their properties we will have in the
metalanguage a vocabulary of symbols {¬¬ , && ,∨∨ ,⇐⇒, ⇐⇒,⇐⇐,∃∃,∀∀,∈,≖,⇋, ⊆, ⊇}, which
will aid us to keep our reflections shorter without losing any of their meaning.

• ¬¬ will be an abbreviation for “not . . . ”;
• && will be an abbreviation for “. . . and . . . ”;
• ∨∨ will be an abbreviation for “. . . or . . . ”;
• ⇐⇒ will be an abbreviation for “. . . if and only if . . . ”;
• ⇐⇒ will be an abbreviation for “if . . . then . . . ”;
• ∃∃ will be an abbreviation for “there exists . . . ”;
• ∀∀ will be an abbreviation for “for all . . . ”;
• ∈ will be an abbreviation for “. . . is in . . . ”;
• ⊆ will be an abbreviation for “all elements of . . . are elements of . . . ”;
• ≖ will be an abbreviation for “. . . syntactically matches . . . ”;
• ⇋ will be an abbreviation for “. . . is defined as . . . ”;
• WLOG will be an abbreviation for “without loss of generality”;
• FTSOC will be an abbreviation for “for the sake of contradiction”;
• w.r.t. will be an abbreviation for “with respect to”;

The set of natural numberswill be denoted with ! and the set of positive natural num-
bers with !+ ⇋ ! ⧵ {0}. The cardinal number card(A) is the cardinality of a set A. We
remind that ! is the set of all finite cardinals and afterward we have ℵ0, ℵ1,… . max{} will
denote the operation taking in an arbitrary number of cardinal numbers and returning the
greatest among them.

The power set of a set A will be denoted by (A). The Cartesian product of the sets
A and B is A × B. The elements of A × B are called ordered pairs and are denoted by
⟨a, b⟩ ∈ A × B. An n-tuple ⟨a1,… , an⟩ is an element of the Cartesian product of the sets
A1,… , An denoted A1 ×⋯ × An and by pri(.) we will mean the i-th projection defined on
the elements of the product by pri(⟨a1,… , an⟩) = ai for 1 ≤ i ≤ n.

2 Chapter 1. Preliminaries

Remark 1.1.0.1:
For easier notation n-tuples, for some n ∈ ! and a1,… , an ∈ A will be denoted by ā,
and we will also write ā ∈ An, where An = A ×⋯ × A (n − 1) times. Depending on the
context we will distinguish what n-tuple it is.
Let A and B be sets and let R ⊆ A×B be a binary relation. We will sometimes write aRb

and the meaning is the same as that of ⟨a, b⟩ ∈ R.
The domain of R is Dom(R) and its range is Range(R). The inverse R−1 ⊆ B × A of R

is R−1 = {⟨b, a⟩ | ⟨a, b⟩ ∈ R}.
If A0 ⊆ A, the restriction R↾A0 ⊆ A0 × B of R to A0 is:

R↾A0 = {⟨a, b⟩ | ⟨a, b⟩ ∈ R&& a ∈ A0}.

If a ∈ A, the R-successors of a are R[a] = {b ∈ B | ⟨a, b⟩ ∈ R}.
LetR ⊆ B×C and S ⊆ A×B be relations and A, B and C are sets. Then the composition

(“R after S”) of R and S we define as:
R◦S = {⟨a, c⟩ | (∃∃b ∈ B)[⟨a, b⟩ ∈ S && ⟨b, c⟩ ∈ R]}.

A partially ordered set or poset P = ⟨P ,⩽⟩ is a set P together with a relation ⩽ on P
that is reflexive, transitive, and antisymmetric.

Let P = ⟨P ,⩽⟩ be a poset. Given a subset A ⊆ P , we say that a ∈ P is a lower bound
for A if (∀∀b ∈ A)[a ⩽ b]. Define the infimum of A, if it exists, to be an element a = inf (A)
such that a is a lower bound for A and if a0 is a lower bound for A, then a0 ⩽ a.

We define upper bound and supremum analogously.
In the above definition, we use the operators inf and sup to denote infimum and supre-

mum. The symbols ⋏ and ⋎ are used to indicate infimum and supremum. That is to say,
⋏
a∈A

a = inf (A) and ⋎
a∈A

a = sup(A). When considering the infimum and supremum of indi-
vidual elements: x ⋏ y denotes the greatest lower bound for a pair of elements x and y or
meet of x and y, and x⋎ y denotes the least upper bound for a pair of elements x and y or
join of x and y.

A poset P = ⟨P ,⩽⟩ is called a lattice if for all x, y ∈ P , both x ⋏ y and x ⋎ y exist.
A function f ∶ A→ B is a relation f ⊆ A×B which is functional. f ⊆ g means that g

is an extension of f . We denote an injective function f from A into B like this f ∶ A ↣ B,
a surjective function f from A onto B with f ∶ A ↠ B, and a bijective function f between
A and B with f ∶ A↣↠ B. The identity function on a set A is IdA.

If A0 ⊆ A, the characteristic function ΥAA0 ∶ A → {0, 1} of A0 in A is defined by
ΥAA0(a) = 1 for a ∈ A0 and ΥAA0(a) = 0 otherwise.LetA ⊆ !. The set A is said to be decidable (or recursive/solvable/computable) if there
exists an algorithm which takes a number n ∈ ! as input and terminates after a finite amount
of time, depending on n, with a correct answer whether the number n belongs to the set A or
not. A set A ⊆ ! which is not decidable, is called undecidable (or not recursive/not solv-
able/noncomputable). A set A ⊆ ! is called recursively enumerable or r.e. (computably
enumerable/semidecidable/provable/Turing-recognizable), if there is an algorithm such
that the set of input numbers for which the algorithm halts is exactly A , i.e., there is an algo-
rithm that stops it work only if the input is a member of the set A and will run forever if the
input is not an element of the set A.

A set A is called co-recursively enumerable or co-r.e. if its complement ! ⧵ A is r.e.
Let Γ and Δ be disjoint sets. Γ and Δ are recursively inseparable if there exists no

recursive set Λ such that Γ ⊆ Λ and Δ ∩ Λ = ∅. Neither Γ, nor Δ is recursive.
A characterization of the property for a set to be decidable is:

1.1. General 3

Theorem 1.1.0.1 [Complementation Theorem (Post)]:
A set A is decidable if and only if both A and the complement of A are semidecidable.

4 Chapter 1. Preliminaries

1.2 First-order logic

We are about to introduce what we will mean by a (formal) (first-order logic) language
(we may skip the mentioning of “formal” and “first-order logic” at times and substitute “first-
order logic” for FOL). We will use the letter L and variations of it with upper or/and lower
indices to denote the languages. This language will have unambiguous syntax and a clear
semantics.

1.2.1 Syntax

We will divide a first-order language into two parts: logical and non-logical.
Definition 1.2.1.1 [Logical part]:

It consists of the following sets of symbols (we may call them also alphabets):
• an infinite enumerable alphabet of individual variables designated
arL ⇋ {x, y, z,… x1, y1z1,… , x′, y′, z′,…}. We will use lower Latin letters x, y, z,
t, w, u of the Latin alphabet and variations of them with upper or/and lower indices;
• an alphabet of quantifiers {∃};
• an alphabet of auxiliary symbols {, , (,)};
• an alphabet of propositional/boolean connectives {¬,∨};
• it may or may not contain a symbol .= which we will call formal equality;

Definition 1.2.1.2 [Non-logical part]:
It consists of the following changing in size sets of symbols:

• an alphabet of all individual constant symbols onstL. We will mostly use the
Latin letters a, b, c, d, e and variations of them with upper or/and lower indices;
• an alphabet of all function symbols uncL. We will mostly use the Latin letters f,
g, h and variations of them with upper or/and lower indices;
• an alphabet of all predicate/relation symbols redL. Likewise, we will mostly
use the Latin letters p, q, r and variations of them with upper or/and lower indices;
• We have a function arity(.) ∶ uncL ∪ redL → !+ called the arity of the non-
logical symbol, and it gives us the number of arguments that the symbols takes.

Definition 1.2.1.3 [Signature]:
The set onstL ∪ uncL ∪ redL(∪{

.
=}) we will call a signature for a FOL L.

Definition 1.2.1.4 [Relational signature]:
The set redL(∪{

.
=}) we will call a relational signature for a FOL L.

Definition 1.2.1.5 [Cardinality of a language]:
The cardinality of a language L, denoted card(L) will be the cardinality of its signature
without counting the presence of formal equiality.

Remark 1.2.1.1:
In this work we will mainly use only pure relational FOL languages meaning that the
sets onstL and uncL are empty (we will call them RFOL languages for short). Every
individual constant symbol can be representedwith a fresh unary relation symbol true only
for the interpretation of the individual constant symbol and every n-ary function symbol
for n ∈ !+ can be represented with a fresh (n+1)-ary relation symbol true only for the

1.2. First-order logic 5

arguments and respectful functional values of the interpretation of the function symbol.
Thus, we will have only relational signatures. That is why from now on we assume that
we work only with RFOL languages and the rest of the definitions will be suited for a
RFOL language.

Remark 1.2.1.2:
Let us fix a RFOL language L until the end of this subsection. If we need to specify that
some property is about a more specific RFOL, we will mention it explicitly.

Definition 1.2.1.6 [Term]:
A term in L is an element of the set arL. Thus, with  ermL we denote the set of terms
for L, arL =  ermL.

Definition 1.2.1.7 [Atomic formula]:
An atomic formula of L is:

• p(�1,… , �n), where p ∈ redL , arity(p) = n and �1,… , �n ∈  ermL;
• (�

.
= �) if L has formal equality �, � ∈  ermL;

We will denote the set of all atomic formulae for L withtomicL.
Definition 1.2.1.8 [Predicate formula]:

A (predicate) formula of L is:
• an atomic formula;
• if is a formula, then ¬ is a formula;
• if ' and are formulae, then (' ∨) is a formula;
• if is a formula, then ∃x is a formula, where x ∈ arL.

Every formula can be constructed by a finite amount of application of the previous rules
or the base case. We will use ', , �, �,  ,,… to denote formulae and variations of
them with upper or/and lower indices. We will denote the set of all predicate formulae
for L with orm(L).

Remark 1.2.1.3:
If we use only the first three rules of the definition above, we can obtain all quantifier-free
formulae which means formulae without quantifiers.

Remark 1.2.1.4:
We define the other propositional connectives {∧,→,↔} as usual. The first-order formula
∀x' is obtained as the well-known abbreviation: ∀x'⇋ ¬∃x¬'.

Remark 1.2.1.5:
The propositional connectives are listed in decreasing order of precedence: ¬,∧,∨,→↔,
where ∀,∃ bind as strong as ¬.

Also, ¬ is a unary connective, {∧,∨,↔} are left-associative connectives and → is a
right-associative connective.
The set of variables occurring in ' we will denote with Var[']. The set of variables

freely occurring in ' is Varfree['] and the set of variables which are bounded in ' is
Varbound[']. A formula ' is a sentence if Varfree['] = ∅. The set of all sentences of the
language L is denoted by ent(L).

6 Chapter 1. Preliminaries

Definition 1.2.1.9 [Quantifier rank of a formula]:
Let ' ∈ orm(L).

The quantifier rank qr(') ∈ ! of ' is defined in the following manner.
• ' ∈ tomicL, then qr(') = 0;
• ' ≖ ¬ , then qr(') = qr();
• ' ≖ (1 ∨ 2), then qr(') = max{qr(1), qr(2)};
• ' ≖ ∃x for x ∈ arL, then qr(') = 1 + qr();

A k-rank formula is a formula having quantifier rank exactly k.
If ' is a formula and x1, x2,… , xn ∈ arL are distinct variables, we use the notation

'(x1, x2,… , xn), a (focused) formula, to show that we are interested in the free occurrences
of the variables xi in '.

If '(x1, x2,… , xn) is a focused formula and y1, y2,… , yn ∈ arL, then '(y1, y2,… , yn)
denotes the formula ' where all free occurrences of xi are replaced by yi.
Definition 1.2.1.10 [Prenex normal form]:

Let ' ∈ orm(L).
We say that ' is in prenex normal form (PNF) if:
1. ' ≖ Q1x1Q2x2…Qnxn (x1, x2,… , xn);
2. each Qi ∈ {∀,∃} for 1 ≤ i ≤ n and Q1x1Q2x2…Qnxn is called the quantifier

prefix of ';
3. (x1, x2,… , xn) is a quantifier-free formula and is called the matrix of '.

Remark 1.2.1.6:
A formula may have many prenex normal forms.

Definition 1.2.1.11 [Disjunctive normal form]:
Let ' ∈ orm(L).

We say that ' is in disjunctive normal form (DNF) if ' is in prenex normal form
and the matrix of ' is a quantifier-free which is a disjunction, where every element of it
is a conjunction of atomic formulae or negations of atomic formulae.

Lemma 1.2.1.12:
Every RFOL formula can be written in DNF.
A formula does not change its meaning if a bound variable is changed to another variable.

Definition 1.2.1.13 [Variant]:
Let ', ∈ orm(L).

We say that is a variant of ' if can be obtained from ' by a sequence of re-
placements of the type: replace a parts ∃x� of ' by ∃y�[x∕y], where y ∉ Varfree[�]
and �[x∕y] denotes the simultaneous substitution of all free occurrences of the individual
variable x in � by the individual variable y.

Theorem 1.2.1.14 [Variant theorem]:
If is a variant of ', then ⊢ '↔ .
We adopt the standard rules for omission of the parentheses.

1.2. First-order logic 7

Definition 1.2.1.15 [Provability]:
Starting from the work of Frege (the Begriffsschrift), Peano, and Whitehead Russell

(Principia Mathematica), several equivalent proof/deduction systems (inference rules +
axioms and/or axiom schemes) for FOL were formalized by Hilbert and others. We will
omit the formulations of a standard framework of predicate calculus where we can pre-
cisely formulate the concepts of proof, deduction, theorem. We fix one of these FOL
proof systems and provability will from now on be stated in terms of it. We need not
quibble about the details of the proof system, but there are some properties that all such
systems share and that we will invoke as needed. Here is one called theClosure theorem:

A formula ' is provable ⇐⇒ the sentence ∀x1…∀xn' is provable, where
Varfree['] = {x1,… , xn}.

This allows us to use, WLOG just sentences in the following definitions. If Σ is a set of
sentences, and a single sentence we write Σ ⊢ when there exists an FOL proof/de-
duction of that can use sentences from Σ as additional axioms.

When Σ = ∅ we just write ⊢ . An important property that FOL provability inherits
from propositional logic is the following:

If Σ is a finite set of sentences then Σ ⊢ ⇐⇒⊢
⋀

Σ → ,

where ⋀

Σ is the conjunction of all the sentences in Σ.
Further, we introduce notations for the set of sentences provable in FOL and for the
provable/deductive consequences of a set of sentences.

rovable ⇋ {' | ⊢ '}
educible(Σ)⇋ {' | Σ ⊢ '}

Remark that rovable = educible(∅).
We say that a set Σ of sentences is inconsistent if Σ ⊢ ' and Σ ⊢ ¬' for some

sentence ' and consistent otherwise. The consistency of ∅ is the “consistency” of the
FOL proof system (that we fixed) itself.
Because proofs are finite and because it is decidable when a finite object is a proof as well

as what formula it proves, the concept of FOL provability is “computational” in the following
sense:
Theorem 1.2.1.16:

rovable is semidecidable.
FOL is just a framework for specifying mathematical theories and the theorems of such a

theory. This can be done both syntactically and semantically. Here we will see the syntactical
definition:
Definition 1.2.1.17 [First-order theory]:

A set of sentences T ⊆ ent(L) is called a first-order theory if it is closed w.r.t. the
logical operations of deduction , i.e., educible(T) = T . The theorems of T are simply
the sentences in T.

Definition 1.2.1.18 [Axiomatized theory]:
Let Σ ⊆ ent(L) and T be a first-order theory for L.

Σ axiomatizes T if and only if educible(Σ) = T . In this case we say that Σ is a set
of (non-logical) axioms for T .

8 Chapter 1. Preliminaries

T is called axiomatizable if there exists a semidecidable set of sentences Σ, which
when closed w.r.t. the logical operations of deduction, equals T , i.e., educible(Σ) = T .

Some examples are first-order Peano arithmetic PA and algebraic theories like the
theory of groups.

Definition 1.2.1.19 [Recursively axiomatizable theory, finitely axiomatizable theory]:
Let Σ ⊆ ent(L) and T be a first-order theory for L.

The theory T is called recursively axiomatizable if it has a decidable set of non-
logical axioms. If this set of non-logical axioms is finite, then T is called finitely axiom-
atizable.

Σ is a finite/recursive axiomatization for T if and only if Σ axiomatizes T and Σ is
a finite/decidable set.

Theorem 1.2.1.20 [Craig’s theorem]:
Every theory that admits a semidecidable set of axioms can be recursively axiomatized.

Theorem 1.2.1.21:
If the theory T is axiomatizable, then the set of syntactically derived theorems of T is
semidecidable , i.e., if we have a set of sentences Σ and Σ is decidable, theneducible(Σ)
is semidecidable

1.2.2 Semantics

Now we will discuss briefly how we can give a clear semantic of a relational first-order logic
language given some universe. Most importantly, we must talk about how we interpret the
non-logical symbols of the RFOL language in this universe.

Again, let us fix a RFOL language L until the end of this subsection.
Definition 1.2.2.1 [Structure]:

A structure for L will be an ordered pair A = ⟨A, I⟩ such that:
• A is a non-empty set called a universe or domain of the structure;
• I is a mapping, which we call an interpretation of the non-logical symbols of L
in the universe A; thus, for p ∈ redL, then I(p) = pA ⊆ Aarity(p); thus, the predicate
symbols are interpreted with relations on the universe;

We will use the letters A,B,ℭ,F,G to denote structures and variations of them with
upper or/and lower indices. WithA,B, C, F we will denote the universes of the structures
and variations of them with upper or/and lower indices. A structure is finite if its universe
is finite, otherwise it is called infinite.

Definition 1.2.2.2 [Truth]:
An assignment on a structure A for the language L is a function � assigning to each
individual variable x ∈ arL an individual �(x) in the universe A.

The modified assignment � on a structure A w.r.t. an individual a ∈ A and an indi-
vidual variable x, denoted �xa , is the assignment �xa on A such that �xa(x) = a and for all
individual variables y ∈ arL ⧵ {x}, �xa(y) = �(y).The satisfiability of a first-order formula ' of L w.r.t. an assignment � in a struc-
ture A, denoted A �

|⇐⇐⇐ ', is inductively defined as follows.
• If ' ≖ p(x1,… , xn) for p ∈ redL and arity(p) = n, then

A �
|⇐⇐⇐ p(x1,… , xn)⇐⇒ ⟨�(x1),… �(xn)⟩ ∈ pA;

• If ' ≖ (x
.
= y) and if L has formal equality and x, y ∈ arL, then

A �
|⇐⇐⇐ (x

.
= y)⇐⇒ �(x) = �(y);

1.2. First-order logic 9

• If ' ≖ ¬ , then A �
|⇐⇐⇐ ¬ ⇐⇒ A �

|⇐⇐⇐ ;
• If ' ≖ (1 ∨ 2), then A �

|⇐⇐⇐ (1 ∨ 2)⇐⇒ A �
|⇐⇐⇐ 1 ∨∨A

�
|⇐⇐⇐ 2;

• If ' ≖ ∃x for x ∈ arL, then A �
|⇐⇐⇐ ∃x ⇐⇒ (∃∃a ∈ A)[A

�xa
|⇐⇐⇐].

As a result, A �
|⇐⇐⇐ ∀x ⇐⇒ (∀∀a ∈ A)[A

�xa
|⇐⇐⇐].

Let ' and �, �′ be two assignments in A such that (∀∀x ∈ Varfree['])[�(x) = �′(x)].
Then:

A �
|⇐⇐⇐ '⇐⇒ A �′

|⇐⇐⇐ '

Let ' = '(x1,… , xn) and � be an assignment in A such that �(x1) = a1,… , �(xn) =
an for a1,… , an ∈ A. By writing A |⇐⇐⇐ '[[a1,… , an]] we mean A �

|⇐⇐⇐ '.
A first-order formula ' is valid in a structure A, denoted A |⇐⇐⇐ ', if ' is satisfied

w.r.t. all assignments in A.
A set of formulae Σ is valid in a structure A, we denote it A |⇐⇐⇐ Σ, when each of the

formulae in Σ is valid in A, read “A is a model of Σ”.
Here is the semantic equivalent to the Closure theorem:

A �
|⇐⇐⇐ ' for all valuations � ⇐⇒ A is a model of the sentence ∀x1…∀xn', where

Varfree['] = {x1,… , xn}.

I.e., WLOGwe can use just sentences in the definitions that follow unless we want to state
a more peculiar property.

A sentence is satisfiable if it has a model; therefore,, a set Σ of sentences is satisfiable
if A |⇐⇐⇐ Σ for some structure A.

Let ', ∈ ent(L). ' and are called logically equivalent, denoted ' |⇐⇐⇐| if they
have the same models.

If is a prenex normal form of the formula ', then ' |⇐⇐⇐| .
' is valid in a class of structures, denoted |⇐⇐⇐ ', if ' is valid in all structures in

.
We also define the set of valid FOL sentences: alid ⇋ {' | ∀∀A[A |⇐⇐⇐ ']} as well as

the notion of logical consequence: onsequences(Σ)⇋ {' | ∀∀A[A |⇐⇐⇐ Σ ⇐⇒ A |⇐⇐⇐ ']}.
Note that alid = onsequences(∅), and, thus, for any structure A we have A |⇐⇐⇐

alid.
Remark 1.2.2.1:

There are many other important notions and properties which are not noted here and one
may consult (Shoenfield, 1967).

Remark 1.2.2.2:
With  fin we will denote the class of all the structure of a class of structures  having a
finite universe.

Definition 1.2.2.3 [Axiomatized class of structures]:
Let Σ ⊆ ent(L) and  be a class of structures for L.

Σ axiomatizes the class of structures  if for all structures A for L [A |⇐⇐⇐ Σ ⇐⇒
A ∈ ].

Definition 1.2.2.4 [Finitely axiomatized class of structures]:
Let ' ∈ ent(L) and  be a class of structures for L.

' finitely axiomatizes the class of structures  if for all structures A for L
[A |⇐⇐⇐ '⇐⇒ A ∈ ].

10 Chapter 1. Preliminaries

Definition 1.2.2.5 [Finitely axiomatized class of finite structures]:
Let ' ∈ ent(L) and  be a class of finite structures for L.

' finitely axiomatizes the class of finite structures  if for all structures A for L
[A is finite ⇐⇒ [A |⇐⇐⇐ '⇐⇒ A ∈ ]].

Definition 1.2.2.6 [Theory of a class of structures]:
Let  be a class of structures for L.

We call the theory of the class of structures the set of all sentences of the language
L which are valid in , and we denote it by Th()⇋ {' | (∀∀A ∈ )[A |⇐⇐⇐ ']}.

The most common way in which we use this definition is to talk about the theory
defined by a single model , i.e.,  = {A}, written just as Th(A).

Some examples are Number theory and Presburger arithmetic.
Definition 1.2.2.7 [k-equivalent structures]:

Let A and B be structures for L.
The structures A and B are called k-equivalent, denoted A ≡k B, if they satisfy the

same i-rank first-order sentences for 0 ≤ i ≤ k.
Lemma 1.2.2.8:

Let L′ be a finite RFOL language and A and B be structures for L′.
For all n ∈ !, variables {x1,… , xk} ⊆ arL there exist a finite number of formulae

with quantifier rank less to equal to n and free variables among x1,… , xk which are not
logically equivalent.

Proof. We can prove it using double induction on n ∈ ! and k, and using the property that
every formula has a disjunctive normal form lemma 1.2.1.12. ■

Definition 1.2.2.9 [Elementarily equivalent structures]:
Let A and B be structures for L.

A andB are called elementarily equivalent, denotedA ≡ B, if they satisfy the same
first-order sentences, i.e., Th(A) = Th(B).

Remark 1.2.2.3:
Let A and B be structures for L and card(L) ≤ ℵ0.

If A ≡k B for all k ∈ !, then A ≡ B.
Definition 1.2.2.10 [Substructure]:

Let A and B be structures for L.
A is a substructure or reduct ofB, denotedA ⊑ B, ifA ⊆ B and each n-ary relation

pA of A is the restriction to A of the corresponding relation pB of B , i.e., pA = pB↾A.
⊑ is a partial-order relation and ifA ⊑ B, then card(A) ≤ card(B). We say thatB is

an extension of A if A is a substructure of B.
Definition 1.2.2.11 [Isomorphic structures]:

Let A and B be structures for L.
A is isomorphic to B, denoted A ≅ B, if there is a bijective mapping f ∶ A↣↠ B

such that for each n-ary relation symbol p ∈ redL and for every a1,… , an ∈ A:
⟨a1,… , an⟩ ∈ pA ⇐⇒ ⟨f (a1),… , f (an)⟩ ∈ pB.

A function f that satisfies the above is called an isomorphism ofA ontoB, or an isomor-
phism between A and B.

We use the notation f ∶ A ≅ B to denote that f is an isomorphism of A onto B.
≅ is an equivalence relation and furthermore, it preserves powers, that is, if A ≅ B,

then card(A) = card(B).

1.2. First-order logic 11

Combining the above two notions:
Definition 1.2.2.12 [Isomorphically embedded structures]:

Let A and B be structures for L.
We say that A is isomorphically embedded in B if there is a structure ℭ and an

isomorphism f such that f ∶ A ≅ ℭ and ℭ ⊑ B.
In this case we call the function f an isomorphic embedding of A in B. If A is iso-

morphically embedded in B, then B is isomorphic to an extension of A.
Definition 1.2.2.13 [Elementary extension]:

Let A and B be structures for L.
We say thatB is an elementary extension ofA ifB is an extension ofA and for any

formula '(x1,… , xn) ∈ orm(L) and any a1,… , an ∈ A:
A |⇐⇐⇐ '[[a1,… , an]] ⇐⇒ B |⇐⇐⇐ '[[a1,… , an]].

We denote it by A ≼ B. When B is an elementary extension of A, we also say that
A is an elementary substructure of B.

Definition 1.2.2.14 [Elementary embedding]:
Let A and B be structures for L.

A mapping f ∶ A→ B is said to be an elementary embedding ofA intoB, denoted
f ∶ A ≼ B, if and only if for all formulae '(x1,… , xn) ∈ orm(L) and any individuals
a1,… , an ∈ A, we have:

A |⇐⇐⇐ '[[a1,… , an]] ⇐⇒ B |⇐⇐⇐ '[[f (a1),… , f (an)]].

Remark 1.2.2.4:
An elementary embedding ofA intoB is the same thing as an isomorphism ofA onto an
elementary substructure of B.

Definition 1.2.2.15 [Direct product of two structures]:
Let A and B be structures for L.

We call A × B the direct product of A and B, which is a structures for L and is
defined as following:

• The universe is A × B;
• For every k-ary relation symbol p ∈ redL and every c1,… , ck ∈ A × B we have
that:
⟨c1,… , ck⟩ ∈ pA×B ⇐⇒ [⟨pr1(c1),… , pr1(ck)⟩ ∈ pA&& ⟨pr2(c1),… , pr2(ck)⟩ ∈ pB].

Remark 1.2.2.5:
All definitions and properties are valid for FOL having individual constant symbols or/and
function symbols with or without some changes.

1.2.3 Some foundational theorems of RFOL

Let L be a RFOL language and let ' ∈ ent(L).
Proposition 1.2.3.1:

' is satisfiable if and only if¬' is not valid and' is valid if and only if¬' is not satisfiable.
Theorem 1.2.3.2 [Soundness]:

Σ ⊢ ' ⇐⇒ Σ |⇐⇐⇐ '.

12 Chapter 1. Preliminaries

Corollary 1.2.3.2.1:
rovable is consistent.
The next property to worry about is whether the proof system is powerful enough to match

logical consequence.
Theorem 1.2.3.3 [Gödel’s Completeness theorem]:

Σ |⇐⇐⇐ ' ⇐⇒ Σ ⊢ '.
In view of soundness, for all Σ we have onsequences(Σ) = educible(Σ).
What is the computational nature of alid? Going by its definition, how can we “check”

truth in all models? Gödel’s Completeness theorem tells that this highly complex concept
with the following consequence:
Corollary 1.2.3.3.1:

alid is semidecidable.
Corollary 1.2.3.3.2:

The set of satisfiable FOL sentences is co-semidecidable.
Canwe actually decide first-order provability (hence logical consequence)? This question,

known as the Entscheidungsproblem (Halting problem) has a negative answer:
Theorem 1.2.3.4 [Turing/Church’s Undecidability Theorem]:

Let L′ be a RFOL language with one at least binary relation symbol.
alidL′ is undecidable , i.e., there does not exist an algorithm such that given a sen-

tence ' ∈ ent(L′) can effectively determine if ' is satisfiable.
But:

Theorem 1.2.3.5:
There is an algorithm which given a sentence ends its execution if and only if the sentence
is not satisfiable and continues to work infinitely long if the sentence is satisfiable.
Also:

Theorem 1.2.3.6 [Löwenheim, 1915]:
Let L′ be aRFOL language with only unary relation symbols, with or without formal
equality.

There is an algorithm which decides whether a sentence of L′ is satisfiable or not.
Remark 1.2.3.1:

If a FOL language L′ has at least one function symbol, then the decision problem of va-
lidity is an undecidable problem via Turing/Church’s Undecidability Theorem (functions
are relations).
Other properties of FOL we will use are that of Compactness theorem and the Downward

Löwenheim–Skolem theorem.
Theorem 1.2.3.7 [Compactness theorem]:

Let Σ be a set of sentences in L.
Σ is called finitely satisfiable if and only if every finite subset Σ0 of Σ is satisfiable.

Therefore, Σ is satisfiable if and only if it is finitely satisfiable.
Theorem 1.2.3.8 [Downward Löwenheim–Skolem theorem]:

Let B be an infinite structure for L and let � be an infinite cardinal number such that
card(L) ≤ � ≤ card(B).

Then for any X ⊆ B with card(X) ≤ � there exists a structure A such that X ⊆ A,
card(A) = � and A ≼ B.

1.2. First-order logic 13

In computer science we are concerned mostly with finite structures so this is very natural
to ask about whether the logical consequence is decidable.

Let alid fin ⇋ {' | A |⇐⇐⇐ ' for all finite A}.
Unfortunately, finite validity is also undecidable (not semidecidable), it is

co-semidecidable-complete. I.e., we cannot axiomatize finite validity.
Theorem 1.2.3.9 [Trakhtenbrot’s Theorem]:

Let L′ be a RFOL language with one at least binary relation symbol.
The set of alid fin

L′ is not semidecidable.
A stronger result (rephrasing Turing/Church’s Undecidability Theorem and Trakhten-

brot’s Theorem). Note that alid ⊆ alid fin.
Theorem 1.2.3.10:

Let L′ be a RFOL language with one at least binary relation symbol.
There is no recursive set X such that alidL′ ⊆ X ⊆ alid fin

L′ .
Corollary 1.2.3.10.1:

Neither alidL′ or alid fin
L′ are decidable.

Remark 1.2.3.2:
By Gödel’s Completeness theorem, alidL′ is semidecidable and it can be shown that
alid fin

L′ is co-semidecidable. Thus,the previous theorem implies that alidL′ and the
complement of alid fin

L′ form a recursively inseparable pair of recursively enumerable
sets.

We can conclude that:
1. Gödel’s Completeness theorem fails in the finite since completeness implies recursive

enumerability.
2. Compactness theorem also fails in the finite.
3. There is no recursive function f such that if ' has a finite model, then it has a model

of size at most f ('). In other words, there is no effective analogue to the Downward
Löwenheim–Skolem theorem in the finite.

14 Chapter 1. Preliminaries

1.3 Equivalence relations

A binary equivalence relation R on a set A is a subset of A × A such that it is reflexive,
symmetric and transitive.

Let the set of all equivalence relations on a set A be denoted with quiv(A).
If a ∈ A then the equivalence class of the element a modulo R is denoted

[a]R ⇋ {b | b ∈ A&& ⟨a, b⟩ ∈ R}. For phonetic reasons we will also call the equivalence
classes of R blocks.

With #R we will denote the cardinality of the set {[a]R | a ∈ A}.
A partition P of a set A is a subset of P ⊆ (A) ⧵ {∅} such that ⋃P = A and

(∀∀C1 ∈ P)(∀∀C2 ∈ P)[C1 ≠ C2 ⇐⇒ C1 ∩ C2 = ∅].
Let the set of all partitions on a set A be denoted with artit(A).
The elements of a partition will be called blocks.
The first theorem is a very basic one, but it is essential for this work:

Theorem 1.3.0.1:
Let A be a set. Then:

• If R ∈ quiv(A) then {[a]R | a ∈ A} the set of all equivalence classes form a
partition of A;
• If P ∈ artit(A), then the relation

R⇋ {⟨a, b⟩ | a ∈ A&& b ∈ A&& (∃C ∈ P)[a ∈ C && b ∈ C]}

is an equivalence relation on A.
I.e., a partition of a set and an equivalence relation on a set are the same mathematical
object, described from different view points.

We denote by RP the equivalence relation associated to the partition P and PR the
partition associated to the equivalence relation R.

1.3.1 Two commuting equivalence relations

Definition 1.3.1.1 [Commuting equivalence relations]:
Let A be a set and R,S ∈ quiv(A).

We say that two relations R and S commute when R◦S = S◦R.
Wewill be interested in proving some properties of such relations. For further reading one

may consult section 3 of The Logic of Commuting Equivalence Relations (Finberg, Mainetti,
and Rota, 1996).
Lemma 1.3.1.2:

Let A be a set and R,S ∈ quiv(A).
R and S commute if and only if R◦S ∈ quiv(A).

Proof. (⇐⇒): Let R◦S = S◦R.
Let a ∈ A. Since R and S are reflexive, then ⟨a, a⟩ ∈ R and ⟨a, a⟩ ∈ S. By the definition

of composition, then ⟨a, a⟩ ∈ R◦S meaning R◦S is reflexive.
Let a, b ∈ A such that ⟨a, b⟩ ∈ R◦S. Then by the definition of composition of two

relations (∃∃c ∈ A)[⟨c, b⟩ ∈ R&& ⟨a, c⟩ ∈ S].
Let c0 ∈ A be a witness. R and S are symmetric; therefore, ⟨b, c0⟩ ∈ R and ⟨c0, a⟩ ∈ S

which fits the definition for membership of ⟨b, a⟩ in S◦R. R◦S = S◦R; therefore, R◦S is
symmetric.

1.3. Equivalence relations 15

Let a, b, c ∈ A and let ⟨a, b⟩, ⟨b, c⟩ ∈ R◦S. Then by the definition of composition of two
relations (∃∃d ∈ A)[⟨d, b⟩ ∈ R&& ⟨a, d⟩ ∈ S] and (∃∃d ∈ A)[⟨d, c⟩ ∈ R&& ⟨b, d⟩ ∈ S].

Let da ∈ A and dc ∈ A be a witnesses such that [⟨da, b⟩ ∈ R&& ⟨a, da⟩ ∈ S] and
[⟨dc , c⟩ ∈ R&& ⟨b, dc⟩ ∈ S].

Then ⟨dc , da⟩ ∈ R◦S from ⟨dc , b⟩ ∈ S and ⟨b, da⟩ ∈ R, and R and S being symmetric.
But R◦S = S◦R; hence, (∃∃e ∈ A)[⟨e, da⟩ ∈ S && ⟨dc , e⟩ ∈ R] and let e0 ∈ A be a witness.

Then R and S are symmetric, so we have ⟨da, e0⟩ ∈ S and ⟨e0, dc⟩ ∈ R.
From the fact that S is transitive and ⟨a, da⟩ ∈ S and ⟨da, e0⟩ ∈ S we have ⟨a, e0⟩ ∈ S.
Since R is transitive and ⟨dc , c⟩ ∈ R and ⟨e0, dc⟩ ∈ R we have ⟨e0, c⟩ ∈ R.
Finally, from the last two memberships we obtain ⟨a, c⟩ ∈ R◦S; therefore, R◦S is tran-

sitive.
We conclude that R◦S ∈ quiv(A).
(⇐⇐): Let R◦S ∈ quiv(A).
Let ⟨a, c⟩ ∈ R◦S. Then ⟨c, a⟩ ∈ R◦S because R◦S is symmetric.
Let b0 ∈ A be such that ⟨b0, a⟩ ∈ R and ⟨c, b0⟩ ∈ S. S and R are symmetric, so we have

⟨a, b0⟩ ∈ R and ⟨b0, c⟩ ∈ S, and we can conclude that ⟨a, c⟩ ∈ S◦R.
The other direction is analogous, and so we obtain that R◦S = S◦R , i.e., R and S

commute. ■

Lemma 1.3.1.3:
Let A be a set and R,S ∈ quiv(A).

If R◦S ∈ quiv(A), then ⋂

{T | T ∈ quiv(A) &&R ⊆ T &&S ⊆ T } which is the
least equivalence relation on A containing both R and S is equal to R◦S.

Proof. LetH ⇋ {T | T ∈ quiv(A) &&R ⊆ T &&S ⊆ T } = {T | T ∈ quiv(A) &&R ∪ S ⊆
T }.

(⇐⇒): Let ⟨a, c⟩ ∈ R◦S. Then by the definition of composition of two relations (∃∃b ∈
A)[⟨b, c⟩ ∈ R&& ⟨a, b⟩ ∈ S]. Let b0 ∈ A be a witness.

Let T be an arbitrary element ofH. Since by the definition ofH,R∪S ⊆ T , then ⟨b0, a⟩ ∈
T and ⟨c, b0⟩ ∈ T . But for T ∈ quiv(A), then T is transitive and symmetric; hence, ⟨a, c⟩ ∈
T .

Since T ∈ H was arbitrary, then we have ⟨a, c⟩ ∈ ⋂

H .
(⇐⇐): We will show that R◦S ∈ H . We must show that S ⊆ R◦S and R ⊆ R◦S.
Let ⟨a, b⟩ ∈ S. Since R is reflexive, then ⟨b, b⟩ ∈ R; hence, ⟨a, b⟩ ∈ R◦S. Analogously

R ⊆ R◦S. From the assumption we have R◦S ∈ quiv(A), so we can conclude that R◦S ∈
H .

Since R◦S ∈ H , then⋂H ⊆ R◦S.
From (⇐⇒) and (⇐⇐) we conclude that R◦S = ⋂

H . ■

Proposition 1.3.1.4:
Let A be a set and R,S ∈ quiv(A).

If R ∪ S ∈ quiv(A), then R◦S = R ∪ S.
Proof. (⇐⇒): Let ⟨a, c⟩ ∈ R◦S. Let b0 ∈ A be a witness for (∃∃b ∈ A)[⟨b, c⟩ ∈ R&& ⟨a, b⟩ ∈
S]. So ⟨b, c⟩ ∈ R ∪ S and ⟨a, b⟩ ∈ R ∪ S which implies ⟨a, c⟩ ∈ R ∪ S, because R ∪ S is
transitive.

(⇐⇐): Let ⟨a, c⟩ ∈ R∪S. WLOG let ⟨a, c⟩ ∈ S. Since ⟨c, c⟩ ∈ R, becauseR is reflexive,
then this implies that ⟨a, c⟩ ∈ R◦S.

From (⇐⇒) and (⇐⇐) we conclude that R◦S = R ∪ S. ■

The set of partitions of a set A artit(A), is endowed with the partial order of refine-
ment: for P ,Q ∈ artit(A) we say that P ⩽ Q when every block of P is contained in a

16 Chapter 1. Preliminaries

block of Q. The refinement partial order has a unique maximal element 1̂, namely, the parti-
tion having only one block, and a unique minimal element 0̂, namely, the partition for which
every block has exactly one element. The partially ordered set artit(A) is a lattice (check
the definition). Lattice meets and joins, denoted by P ⋎ Q and P ⋏ Q, can be described by
using the equivalence relations RP and RQ as follows:
Lemma 1.3.1.5:
(1) RP⋏Q = RP ∩ RQ
(2) RP⋎Q = RP ∪ RP◦RQ ∪ RP◦RQ◦RP ∪⋯ ∪

∪ RQ ∪ RQ◦RP ∪ RQ◦RP◦RQ ∪…

Proof. The proof of lemma 1.3.1.5.(1) is immediate. For lemma 1.3.1.5.(2) we use the defi-
nition of P ⋎Q that it is the smallest partition containing both P and Q:

P ⋎Q =
⋂

{T | T ∈ artit(A) &&P ⊆ T &&Q ⊆ T }.

Now using transitivity of RP⋎Q we obtain the right-hand side of the equality. ■

Theorem 1.3.1.6:
RP⋎Q = RP◦RQ ⇐⇒ RP◦RQ = RQ◦RP .

Proof. (⇐⇒): Let RP⋎Q = RP◦RQ.
Then by lemma 1.3.1.5.(2) we have RP◦RQ ⊆ RQ◦RP . Now by taking the inverses and

applying equivalent transformations, and RP , RQ being equivalence relations, we conclude
RP◦RQ ⊇ RQ◦RP :

RQ◦RP = R−1Q ◦R
−1
P = (RP◦RQ)−1 ⊆ (RQ◦RP)−1 = R−1P ◦R

−1
Q = RP◦RQ

(⇐⇐): Let RP◦RQ = RQ◦RP .
Then by transitivity and RP , RQ ⊆ RR◦RQ (easily proved) the right-hand side of

lemma 1.3.1.5.(2) is reduced to only RP⋎Q = RP◦RQ.
■

Let A be a set and P ,Q ∈ artit(A).
Two equivalence relations RP , RQ or, equivalently, two partitions P and Q are said to be

independent when, for any two blocks p ∈ P , q ∈ Q, we have p ∩ q ≠ ∅.
Remark 1.3.1.1:

Independent relations commute, since RP⋎Q = R1̂ = RQ◦RQ.
If A0 ⊆ A, then P↾A0 means restriction of the partition P to the set A0, that is, the

partition whose blocks are the intersections of the blocks of P with the setA0, whenever such
an intersection is not empty.
Lemma 1.3.1.7:

Let A be a set and P ,Q ∈ artit(A).
Two equivalence relations RP and RQ commute if and only if, for any elements

a, b ∈ A such that ⟨a, b⟩ ∈ RP⋎Q, there exist elements c, d ∈ A such that:
⟨c, b⟩ ∈ RP and ⟨a, c⟩ ∈ RQ and ⟨d, b⟩ ∈ RQ and ⟨a, d⟩ ∈ RP .

Proof. (⇐⇒): LetRP◦RQ = RQ◦RP and let a, b ∈ A such that ⟨a, b⟩ ∈ RP⋎Q. From theorem
1.3.1.6 and the assumption we have thatRP⋎Q = RP◦RQ = RQ◦RP ; therefore, the existence
of the elements with the desired properties is immediate from the definition of the composition
of two relations.

(⇐⇐): Let the right-hand side of the "if and only if" be true.

1.3. Equivalence relations 17

Let ⟨a, b⟩ ∈ RP◦RQ. From lemma 1.3.1.5.(2) we have that RP◦RQ ⊆ RP⋎Q and a, b ∈
A. Therefore, we can apply the right-hand side and let c0, d0 ∈ A be witnesses such that:

⟨c0, b⟩ ∈ RP and ⟨a, c0⟩ ∈ RQ and ⟨d0, b⟩ ∈ RQ and ⟨a, d0⟩ ∈ RP
From ⟨d0, b⟩ ∈ RQ and ⟨a, d0⟩ ∈ RP we have ⟨a, b⟩ ∈ RQ◦RP .

The other direction is analogous, and so we obtain that RP◦RQ = RQ◦RP . ■

Lemma 1.3.1.8:
If RP and RQ commute, and P ⋎ Q = 1̂, then the equivalence relations RP and RQ are
independent.

Proof. Let p ∈ P and q ∈ Q be blocks and let a ∈ p and b ∈ q be elements. Since 1̂ = P ⋎Q,
then ⟨a, b⟩ ∈ RP⋎Q. By assumption RP and RQ commute, then apply 1.3.1.7 and obtain a
witness c0 ∈ A such that ⟨a, c0⟩ ∈ RP and ⟨c0, b⟩ ∈ RQ , i.e., c0 ∈ p ∩ q; therefore,
p ∩ q ≠ ∅. ■

Theorem 1.3.1.9 [Dubreil-Jacotin theorem]:
Two equivalence relationsRP andRQ associated with partitions P and Q commute if and
only if for every block C of the partition P ⋎Q, the restrictions P↾C ,Q↾C are independent
partitions.

Proof. Suppose RP and RQ commute. Then RP ↾C and RQ↾C commute too.
Moreover, in the lattice artit(C) of partitions of the block C, we have P↾C ⋎ Q↾C =

(P ⋎Q)↾C = 1̂C by definition of the join of partitions, where 1̂C is the maximum element of
the partition lattice artit(C). By lemma 1.3.1.8, the equivalence relations RP and RQ are
independent.

The converse is that independent relations commute, since we have remark 1.3.1.1 and
lemma 1.3.1.6. ■

18 Chapter 1. Preliminaries

1.4 A method to prove a theory undecidable

Before describing one of the many methods used to prove that a first-order theory is undecid-
able, we will introduce some definitions.

We have attached a precise meaning to the notion of decidable theory, axiomatizable
theory and other similar notions; thus, we can now assign to each formula of a RFOL language
a certain number. In what follows we shall use only the numbering of the set of all formulae
of a given enumerable relational signature � of a RFOL language L. Also, if �1 and �2
are two such relational signatures for RFOL language L1 and L2, it will be convenient to have
the formulae of signature �1 ∪ �2 numbered to extend the numbering of the formulae of the
signature �1 as well as that of formulae of the signature �2 (, i.e., such that the number of any
formula of signature �2 , in the numbering of all formulae of signature �2 , coincides with its
number in the numbering of all formulae of signature �1 ∪ �2 and by L1 ∪ L2 we mean the
�1 ∪ �2). An example numbering can be found in (Ershov, Lavrov, Taimanov, and Taitslin,
1965) chapter 1, section 2.

In this way to every formula ' of a given RFOL language L a number is assigned which
we shall write as ⌜'⌝. It is clear that any natural number can be the number of not more than
one formula.

If T is a theory for L, then let ⌜T ⌝⇋ {⌜'⌝ | ' ∈ T }.
Definition 1.4.0.1 [Effective mapping on formulae]:

Let ⌜.⌝ be a numbering of the formulae of a RFOL language L0. Suppose that to each
formula ' of L0 there corresponds a formula '∗ a RFOL language L1. Let:

f (n) =

{

⌜'∗⌝, if n = ⌜'⌝ for some ' ∈ ent(L0)
0, otherwise

We say that the correspondence ∗ is effective if the function f is decidable.
Theorem 1.4.0.2:

Let ⌜.⌝ be a numbering of the formulae of a RFOL language L0 ∪ L1.
Suppose that the theory T in L0 is undecidable and that each sentence ' ∈ ent(L0)

is effectively associated with a sentence '∗ ∈ ent(L1).
If T1 is a theory in L1 and

' ∈ T ⇐⇒ '∗ ∈ T1,

then the theory T1 is undecidable.
Proof. If the characteristic function ΥT1(n) of the set ⌜T1⌝ were recursive, then ΥT1(f (n)),the characteristic function of the set ⌜T ⌝ would also be recursive by the second assumption,
but this contradicts the undecidability of T. ■

Definition 1.4.0.3 [Hereditarily undecidable theory]:
Let T be a first-order theory for a RFOL language L.

Then T is called hereditarily undecidable if every subtheory of T for the same lan-
guage is also undecidable.

Definition 1.4.0.4 [Essentially undecidable theory]:
Let T be a first-order theory for a RFOL language L.

Then T is called essentially undecidable if every theory for which T is a subtheory
for the same language is also undecidable.

1.4. A method to prove a theory undecidable 19

Lemma 1.4.0.5:
Let T be a theory for a RFOL language L, ' ∈ ent(L) and suppose that the theory T’
with added non-logical ' is undecidable. Then T is also undecidable.

Proof. We have by the Deduction theorem that:
 ∈ T ′ ⇐⇒ '→ ∈ T

for every ∈ ent(L). We can form ' → effectively so by theorem 1.4.0.2 the lemma
follows.

■

Remark 1.4.0.1:
If a theory T0 is hereditarily undecidable and the theory T1 is a subtheory of T0, then T1
is also hereditarily undecidable.

Corollary 1.4.0.5.1:
Let L be a RFOL language.

Every finitely axiomatizable undecidable theory T ⊆ ent(L) is hereditarily unde-
cidable.

Proof. Let T ′ be a theory such that T ′ ⊆ T . Let 'T ∈ T finitely axiomatizes T . Let T0 be the
theory of T ′ ∪{'T }. Then T ⊆ T0 (because 'T axiomatizes T) and T0 ⊆ T (because T ′ ⊆ T
and 'T ∈ T). Therefore, T = T0 rending T0 hereditarily undecidable. By remark 1.4.0.1 T
is hereditarily undecidable. ■

1.4.1 Relative elementary definability

Relative elementary definability introduced by Ershov is derived from Tarski’s method of
interpretations which is one of the methods for proving undecidability, but it differs slightly.
You can find the original work in (Ershov, 1980) that we closely follow.

LetL0 be a RFOL language with formal equality and (k+1) predicate symbols p0, p1,… ,
pk with arities arity(p0) = n0, arity(p1) = n1,… , arity(pk) = nk. LetL1 be a RFOL language
with formal equality. Let0 be a class of structures for the language L0 and1 be a class of
structures for the language L1.

We say that the class 0 is relatively elementary definable in the class 1 if there exist
such formulae:

 (x̄; ȳ);

(x̄1; x̄2; ȳ);
�0(x̄1; x̄2;… ; x̄n0 ; ȳ), �1(x̄1; x̄2;… ; x̄n1 ; ȳ),… , �k(x̄1; x̄2;… ; x̄nk ; ȳ)

of the RFOL language L1 (where hereinafter x̄i ⇋ ⟨xi1, x
i
2,… , xim⟩ and ȳ ⇋ ⟨y1, y2,… , yn⟩)

such that for any structure A ∈ 0 there is a structure B ∈ 1 and elements
b1, b2,… , bn ∈ B, satisfying the conditions:

(1) the set C ⇋ {ā | ā ∈ Bm&&B |⇐⇐⇐  (ā; b̄)} is not empty;
(2) the formula (x̄1; x̄2; b̄) defines a congruence relation � of structuresℭ of the RFOL
language L0, the universe of which is C , and the interpretation of the predicate symbol
pi is defined by the formula �i(x̄1; x̄2;… ; x̄ni ; b̄) for i ∈ {0, 1,… , k}. We say that
�i(x̄1; x̄2;… ; x̄ni ; b̄) is a possible definition for pi;
(3) the factor structure ℭ∕� ≅ A.

20 Chapter 1. Preliminaries

Remark 1.4.1.1:
If a class of structures′

1 for the language L1 and′
1 ⊇ 1 and the class of structures0

for the language L0 is relatively elementary definable in the class1, then0 is relatively
elementary definable in the class ′

1.
Theorem 1.4.1.1:

If the class of structures 0 is relatively elementary definable in the class of structures
1 and the theory Th(0) is hereditarily undecidable, then the theory Th(1) is also
hereditarily undecidable.

Proof. For every formula '(x1, x2,… , xn) ∈ orm(L1) we will effectively produce a for-
mula '̄(x̄1; x̄2;… ; x̄n; ȳ) ∈ orm(L0) using the following recursive rules.

• If '(x1, x2,… , xn) ≖ (xi
.
= xj) for some 1 ≤ i, j ≤ n, then:

'̄(x̄1; x̄2;… ; x̄n; ȳ)⇋ (x̄i; x̄j ; ȳ);

• If '(x1, x2,… , xn) ≖ pi(xj1 ,… xjni) for some indices {j1,… jni} ⊆ {1,… , n} and
ni-ary predicate symbol pi of L1, 0 ≤ i ≤ k, then:

'̄(x̄1; x̄2;… ; x̄n; ȳ)⇋ �i(x̄1; x̄2;… x̄ni ; ȳ);

• If'(x1, x2,… , xn) ≖ ('1(x1, x2,… , xn) � '2(x1, x2,… , xn)) for � ∈ {∨,∧,→,↔}
and we have '̄1, '̄2 by the induction hypothesis, then:

'̄(x̄1; x̄2;… ; x̄n; ȳ)⇋ ('̄1(x̄1; x̄2;… ; x̄n; ȳ) � '̄2(x̄1; x̄2;… ; x̄n; ȳ));

• If '(x1, x2,… , xn) ≖ ¬ (x1, x2,… , xn) and we have ̄(x̄1; x̄2;… ; x̄n; ȳ) by the
induction hypothesis, then:

'̄(x̄1; x̄2;… ; x̄n; ȳ)⇋ ¬ ̄(x̄1; x̄2;… ; x̄n; ȳ);

• If '(x1, x2,… , xn) ≖ ∃xn+1 (x1, x2,… , xn, xn+1) and we have
 ̄(x̄1; x̄2;… ; x̄n; x̄n+1; ȳ) by the induction hypothesis, then:

'̄(x̄1; x̄2;… ; x̄n; ȳ)⇋ ∃xn+11 …∃xn+1m ( (x̄n+1; ȳ) ∧ ̄(x̄1; x̄2;… ; x̄n; x̄n+1; ȳ));

• If '(x1, x2,… , xn) ≖ ∀xn+1 (x1, x2,… , xn, xn+1) and we have
 ̄(x̄1; x̄2;… ; x̄n; x̄n+1; ȳ) by the induction hypothesis, then:
'̄(x̄1; x̄2;… ; x̄n; ȳ)⇋ ∀xn+11 …∀xn+1m ( (x̄n+1; ȳ)→ ̄(x̄1; x̄2;… ; x̄n; x̄n+1; ȳ)).

1.4. A method to prove a theory undecidable 21

Let (ȳ) = (y1, y2,… , yn) be the following formula:
∃x̄ (x̄; ȳ) ∧ (∀x̄0∀x̄1∀x̄2(

⋀

0≤i≤2
 (x̄i; ȳ)→

(x̄0; x̄0; ȳ)∧
((x̄0; x̄1; ȳ)→ (x̄1; x̄0; ȳ))∧

((x̄0; x̄1; ȳ) ∧ (x̄1; x̄2; ȳ)→ (x̄0; x̄2; ȳ))))∧
⋀

0≤i≤k
(∀x̄1…∀x̄ni∀z̄1…∀z̄ni(

⋀

0≤j≤ni

( (x̄j ; ȳ) ∧ (z̄j ; ȳ) ∧ (x̄j ; z̄j ; ȳ))

∧�i(x̄1; x̄2;… ; x̄ni ; ȳ)→ �i(z̄1; z̄2;… ; z̄ni ; ȳ)))),

where Qȳ means Qy1…Qym for Q ∈ {∀,∃}.
The last formula describes that the universe is non-empty,  is a congruence relation and

�1,…�k are invariant w.r.t.  .
Finally, for every formula ' ∈ ent(L0) let:

'∗ ⇋ ∀y1∀y2…∀yn((y1, y2,… , yn)→ '̄(y1, y2,… , yn)).

Let us establish the following fact: the set T ∗ ⇋ {' | ' ∈ ent(L0) &&'∗ ∈ Th(1)} is a
theory for the language L0 such that T ∗ ⊆ Th(0).

Let ∗
0 be the class of all structures A for the language L0 such that there is a structure

B ∈ 1 and elements b1, b2… , bn ∈ B satisfying the conditions (1), (2) and (3) defined
above. Then by the hypothesis of the theorem we have that ∗

0 ⊇ 0. From the definition of
the effective mapping '→ '∗ it follows that ' ∈ Th(∗

0)⇐⇒ '∗ ∈ Th(1) for any sentence
' ∈ ent(L0); therefore, T ∗ = Th(∗

0) and since 0 ⊆ ∗
0, then T ∗ ⊆ Th(0).

If the theory Th(1) is decidable, then having the equivalence ' ∈ T ∗ ⇐⇒ '∗ ∈ Th(1)
and the effective mapping ' → '∗ gives us a decision procedure for the theory T ∗. Since
the theory Th(0) is hereditarily undecidable, then the theory T ∗ is undecidable. Therefore,
the theory Th(1) is also undecidable. It is clear that if we take a subtheory T ′ ⊆ Th(1),
then the class of structures ′

1 ⇋ {B | B |⇐⇐⇐ T ′}, ′
1 ⊇ 1. By remark 1.4.1.1 the class ′

1also satisfies the condition of the theorem; therefore, Th(′
1) = T ∗ is undecidable. We can

conclude that Th(1) is hereditarily undecidable. ■

22 Chapter 1. Preliminaries

1.5 A method to prove a theory decidable

1.5.1 Ehrenfeucht–Fraïssé games

Mostly the definitions and formulations in this book (Ebbinghaus and Flum, 1995) will be
used.

The Ehrenfeucht–Fraïssé games present a purely game theoretic characterization of the
relation≡k,for some k ∈ !. It helps us to understand the expressive power of first-order logic,
capture structure equivalence, etc. One of the central ingredients of the characterization are
partial isomorphisms.

Until the end of this subsection, let be a L finite FOL language such that it has no function
symbols.
Definition 1.5.1.1 [Partial isomorphism]:

Let A and B be structures for L.
Let h be a mapping such that Dom(ℎ) ⊆ A and Range(ℎ) ⊆ B. h is called a partial

isomorphism from A to B if:
• it is injective;
• we have Dom(ℎ) ⊆ A and Range(ℎ) ⊆ B, and (∀∀c ∈ onstL)[ℎ(cA) = cB];
• for all n-ary relation symbol p ∈ redL and for every a1,… , an ∈ Dom(ℎ):

⟨a1,… , an⟩ ∈ pA ⇐⇒ ⟨ℎ(a1),… , ℎ(an)⟩ ∈ pB.

We will denote the set of all partial isomorphisms from A to B with art(A,B).
Remark 1.5.1.1:

If onstL = ∅, then ∅ ∈ art(A,B).
Proposition 1.5.1.2:

Let A and B be structures for L.
Then for all m-tuples ā ∈ Am and b̄ ∈ Bm the following are equivalent:
(1) The mapping ℎ having the properties ℎ(ai) = bi for 1 ≤ i ≤ m and ℎ(cA) = cB

for all c ∈ onstL is a partial isomorphism from A to B (we will denote this with
ā → b̄ ∈ art(A,B) omitting the constants);
(2) for all quantifier-free formulae of L '(x1,… , xm):

A |⇐⇐⇐ '[[a1,… , am]] ⇐⇒ B |⇐⇐⇐ '[[b1,… , bm]];

(3) for all atomic formulae of L '(x1,… , xm):
A |⇐⇐⇐ '[[a1,… , am]] ⇐⇒ B |⇐⇐⇐ '[[b1,… , bm]];

The basic idea behind the algebraic characterization of ≡k we have in mind is that the
k-equivalence of structures amounts to the existence of partial isomorphisms that can be ex-
tended k times.
Definition 1.5.1.3 [Ehrenfeucht–Fraïssé games]:

Let A and B be structures for L and k ∈ !.
TheEhrenfeucht–Fraïssé gameGk(A,B) is played by two players called thepoiler

and theuplicator. Each player has to make kmoves in the course of a play. The players
take turns. In his i-th move the poiler first selects a structure, A or B, and an element
in this structure. If the poiler chooses si ∈ A then theuplicator in his i-th move must

1.5. A method to prove a theory decidable 23

choose an element di ∈ B. If the poiler chooses di ∈ B then the uplicator must
choose an element si ∈ A.

Let {⟨si, di⟩ | 1 ≤ i ≤ k} be the corresponding choices for all rounds. Theuplicator
wins if and only if s̄ → d̄ ∈ art(A,B). If k = 0, then we need a mapping ℎ such that
Dom(ℎ) = {cA | c ∈ onstL}, Range(ℎ) = {cB | c ∈ onstL} and ℎ ∈ art(A,B).
Otherwise, the poiler wins.

Equivalently, the poiler wins if, after some i < k, s1… si → d1… di ∉ art(A,B).
A strategy is a system of rules which tells the player what move to make, depending

on the history of the game up to the current moment.
We say that a player has a winning strategy in Gk(A,B), or shortly, a player wins

Gk(A,B), if it is guaranteed that he is always thewinner of the game (followingmindlessly
the strategy).
The proof of the items of the following proposition is immediate from the definition of

the Ehrenfeucht–Fraïssé games. ∅ ∈ art(A,B)
Remark 1.5.1.2:

Let A be a structure for L. Let a ∈ A. By (A, a) we will denote the structure which is
for an extension of the language L with one new individual constant symbol ca, such that
cAa ⇋ a.

Proposition 1.5.1.4:
Let A and B be structures for L and k ∈ !.

(1) The uplicator wins G0(A,B) ⇐⇒ there exists a mapping ℎ such that Dom(ℎ) =
{cA | c ∈ onstL}, Range(ℎ) = {cB | c ∈ onstL} and ℎ ∈ art(A,B);

(2) Splitting lemma : for k > 0 the following are equivalent:
(i) The uplicator wins Gk(A,B)
(ii) The following two properties hold:

(forth): (∀∀a ∈ A)(∃∃b ∈ B)[the uplicator wins Gk−1((A, a), (B, b))]
(back): (∀∀b ∈ B)(∃∃a ∈ A)[the uplicator wins Gk−1((A, a), (B, b))]

(3) If theuplicator winsGk(A,B) and t ∈ !, t < k, then theuplicator winsGt(A,B).
Now one of the main results:

Theorem 1.5.1.5 [Fraïssé–Hintikka theorem]:
For all k ∈ !, for all finite FOL languages without function symbols L and for all struc-
tures A and B for L the following are equivalent:
(i) The uplicator has a winning strategy for Gk(A,B);
(ii) A ≡k B.

Lemma 1.5.1.6:
Let A and B be structures for L and let k ∈ ! is a natural number.

If the A1 ≡k B1 and A2 ≡k B2, then A1 ×A2 ≡k B1 ×B2.
Proof. Suppose A1 ≡k B1 and A2 ≡k B2. By Fraïssé–Hintikka theorem there are winning
strategies for the uplicator has winning strategies for Gk(A1,B1) and Gk(A2,B2). Let S1
andS2 be winning strategies for the games Gk(A1,B1) and Gk(A2,B2) respectively.

We will create a winning strategy for theuplicator for the gameGk(A1×A2,B1×B2).
The poiler and the uplicator play the game Gk(A1 × A2,B1 × B2), but the uplicator
also hiddenly simulates the games Gk(A1,B1) and Gk(A2,B2).

24 Chapter 1. Preliminaries

Suppose that in his i-th move the poiler chooses, say, ⟨a1, a2⟩ ∈ A1 × A2 for the game
Gk(A1 × A2,B1 × B2). Then the uplicator hiddenly applies the strategy S1 for a1 w.r.t.
the history of the game Gk(A1,B1) up to now to get an element b1 ∈ B1. Also he applies
hiddenly the strategyS2 for a2 w.r.t. the history of the game Gk(A2,B2) up to now to get an
element b2 ∈ B2. Finally he answers the move of the poiler with the move ⟨b1, b2⟩ for the
game Gk(A1 ×A2,B1 ×B2). ■

1.5.2 Decidability and finite model property for first-order logic

Definition 1.5.2.1 [Finite model property (FMP)]:
A class of structures for a RFOL language L has the finite model property FMP if for
any sentence ' of the language L:

Th() |⇐⇐⇐ '⇐⇒ Th( fin) |⇐⇐⇐ ',

i.e., Th() = Th( fin).
An equivalent formulation is the following:

A class of structures  for a RFOL language L has FMP if for any sentence ' of the
language L:

Th() |̸⇐⇐⇐ ' ⇐⇒ (∃∃B ∈  fin)[B ̸|⇐⇐⇐ '].

Theorem 1.5.2.2:
Let L be a finite RFOL language.

If the theory of a class of structures has FMP and Th() is axiomatized by a finite
set of sentences Γ, Γ ⊆ ent(L), then Th() is decidable.

Proof. To check if a sentence ' ∈ orm(L) is valid in all structures of , we start to enu-
merate simultaniously two lists, one with all finite structures A and the other with all proofs
Γ ⊢ . Since we have thatL has finitelymany non-logical symbols (only relation in this case),
then we have a finite number (up to isomorphism, what is in the universe of the structure does
not really matter; therefore, in any case we can use the initial segment of natural numbers as
a universe) structures of cardinality one, finite number of structures of cardinality two and so
on. Also since the theory is axiomatized by the finite set Γ it is recursively enumerable (or
semidecidable) by theorem 1.2.1.21, so we can list all of the members of the theory.

If ' ∉ Th() then there is a finite model in which ' is not valid and will show up in the
first list.

If ' ∈ Th() then it will be listed in the second list by Gödel’s Completeness theorem.
Thus, we have an effective procedure for deciding if ' ?

∈ Th(). We can conclude that
Th() is decidable. ■

Proposition 1.5.2.3:
Let L be a finite RFOL language and let T and T ′ be theories for L.

If T ′ is a finite extension of T (only finitely many non-logical axioms are added to T
to form T ′) and T is decidable, then so is T ′.

Proof. Let T ′ be a finite extension of T and T be decidable.
We may assume that T ′ is the theory of T with added the non-logical axiom '. Then for

all ∈ ent(L):
 ∈ T ⇐⇒ '→ ∈ T ′

by the Deduction theorem.

1.5. A method to prove a theory decidable 25

By assumption, there is an algorithm which can recognize the theorems of T and we can
form effectively ' → . Therefore, to decide if a sentence ∈ ent(L) is a theorem of T ′,
apply the algorithm to '→ . ■

26 Chapter 1. Preliminaries

1.6 Propositional modal logic

1.6.1 Syntax

We are about to introduce what we will mean by a (formal) (propositional) modal logic lan-
guage (we may skip the mentioning of “formal” and “propositional” at times and substitute
“propositional modal logic” with PML). We will use the symbols  and variations of it
with upper or/and lower indices to denote the languages.
Definition 1.6.1.1 [Propositional modal language]:

A propositionalmodal language (PML) consists of a countable alphabet of propo-
sitional variables VAR = {p, q, r,… , p1, q1,… , p′, q′,…} (mainly we will use the
letters p, q, r and variations of them with upper or/and lower indices), a finite alphabet
of propositional/boolean connectives {∨,¬}, a finite alphabet of assisting symbols
{, , (,)}, a finite alphabet of constants {⊥,⊤} and an enumerable alphabet of possibility
modality
 eccesary = {21,22,…}.

Definition 1.6.1.2 [Cardinality of a PML]:
Let  be a PML.

Then card() = card( eccesary).
Definition 1.6.1.3 [k-modal PML]:

Let  be a PML and card() = k such that k ∈ !+.
Then is called a k-modal PML.
If k = 1, then  is called an unimodal PML and if k = 2, then  is called a

bimodal PML and so on.
Remark 1.6.1.1:

In this work we will only work with finite PML; therefore, from now on we will only talk
about properties of finite PML.

Remark 1.6.1.2:
For the sake of simplicity we will define all the notions in these section for an unimodal
languages. They are easily generalized for more than one modality.

Definition 1.6.1.4 [Modal formula]:
Let  be an unimodal PML.

A modal formula of  is:
• a propositional variable;
• ⊥ or ⊤;
• if A is a modal formula, then so is ¬A;
• if A and B are modal formulae, then so is (A ∨ B);
• if A is a modal formula, then so is 2A;

Every formula can be constructed by a finite amount of application of the previous rules
or the base case.

We will use A, B, C, D,… to denote formulae and variations of them with upper or/and
lower indices.

We will denote the set of all modal formulae for with orm().
If a formula A if formed using only the constants ⊥,⊤ and the propositional connec-

tives, that is, it does not have any variables in it, we will call it a variable free modal
formula.

1.6. Propositional modal logic 27

Remark 1.6.1.3:
We define the other propositional connectives {∧,→,↔} as usual. The modal formula
3A is obtained as the well-known abbreviation: 3A ⇋ ¬2¬A.
The set of variables occurring in A we will denote with Var[A].
If A is a formula and p1, p2,… , pn ∈ VAR are distinct variables, we use the notation

A(p1, p2,… , pn), a (focused) formula, to show that we are interested in all the occurring
variables pi in A.

If A(p1, p2,… , pn) is a focused formula and q1, q2,… , qn ∈ VAR, then
A(q1, q2,… , qn) denotes the formula A where all free occurrences of pi are replaced by qi.

We adopt the standard rules for omission of the parentheses.
Definition 1.6.1.5 [Normal modal logic]:

A set of-formulas which contains:
• all tautologies of the classical propositional calculus;
(K): 2(p→ q)→ (2p→ 2q);
• and closed under the following rules of inference:

Modus Ponens (MP): from A and A → B infer B;
Substitution (Subst): given a formula A(p1,… , pn), derive the formula

A[p1∕B1,… , pn∕Bn] which is obtained by uniformly substituting formulas
B1,… , Bn instead of the variables p1,… , pn in A, respectively.

Necessitation (N): from A infer 2A;
is called a normal modal logic.

Remark 1.6.1.4:
As in the section about first-order logic we will omit the formulations of a standard frame-
work of propositional modal calculus where we can precisely formulate the concepts of
proof, deduction, theorem. We fix one of these PML proof systems and provability will
from now on be stated in terms of it.

1.6.2 Semantics

Now we will discuss briefly the most commonly used semantics of interpreting the modal
language in some universe of all possible worlds, that is Kripke semantics.

Let us fix an unimodal PML.
Definition 1.6.2.1 [Kripke frame]:

A (Kripke) structure or frame (for) will be an ordered pairF = ⟨W ,R⟩ such that:
• W is a non-empty set called a universe or domain of the frame;
• R ⊆ W ×W a binary relation onW .

We will use the letters A,B,ℭ,F,G to denote frames and variations of them with upper
or/and lower indices.

With A,B, C, F we will denote the universes of the frames and variations of them
with upper or/and lower indices.

A frame is finite if its universe is finite, otherwise it is called infinite.
Remark 1.6.2.1:

Let  be a finite PML and card() = k such that k ∈ !+ and F is a structure for
.

28 Chapter 1. Preliminaries

If k = 1, thenF is called an unimodal frame and if k = 2, thenF is called a bimodal
frame and so on.

Definition 1.6.2.2 [Kripke subframe]:
Let F = ⟨W ,R⟩ be a Kripke frame.

F′ = ⟨W ′, R′⟩ is called a substructure or subframe of F, denoted F′ ⊑ F if
W ′ ⊆ W and R′ ⇋ R ∩ (W ′ ×W ′).

Remark 1.6.2.2:
Sometimes for short we may write that a world a ∈ F, and we understand that a is an
element of the universe of F.

Definition 1.6.2.3 [Kripke model]:
Let F = ⟨W ,R⟩ be a Kripke frame.

A (Kripke) model based on a frame F = ⟨W ,R⟩ is a triple M = ⟨W ,R, V ⟩,
where V is a function assigning to each propositional variable p a subset of W , i.e.,
V ∶ VAR → (W). V is called an assignment and the idea is that V (p) is the set
of all worlds in which p is true.

Wewill use the lettersM,N to denote frames and variations of themwith upper or/and
lower indices.

Remark 1.6.2.3:
Sometimes for short we may write that a world a ∈ M, and we understand that a is an
element of the universe of the frame on whichM is based upon.

Definition 1.6.2.4 [Truth]:
Let M = ⟨W ,R, V ⟩ be a Kripke model.

The satisfiability of a modal formula A at a world a ∈ M, denoted M, a |⇐⇐⇐ A, is
inductively defined as follows:

• If A ≖ p for p ∈ VAR, thenM, a |⇐⇐⇐ p⇐⇒ a ∈ V (p);
• If A ≖ ⊥, thenM, a ̸|⇐⇐⇐ ⊥;
• If A ≖ ⊤, thenM, a |⇐⇐⇐ ⊤;
• If A ≖ ¬B, thenM, a |⇐⇐⇐ ¬B ⇐⇒ M, a ̸|⇐⇐⇐ B;
• If A ≖ (B1 ∨ B2), then M, a |⇐⇐⇐ (B1 ∨ B2)⇐⇒ [M, a |⇐⇐⇐ B1 ∨∨M, a |⇐⇐⇐ B2];
• If A ≖ 2B, thenM, a |⇐⇐⇐ 2B ⇐⇒ (∀∀b ∈ W)[⟨a, b⟩ ∈ R ⇐⇒ M, b |⇐⇐⇐ B].
As a result, M, a |⇐⇐⇐ 3B ⇐⇒ (∃∃b ∈ W)[⟨a, b⟩ ∈ R&&M, b |⇐⇐⇐ B].
Let A be a modal formula and V , V ′ be assignments in a frameF = ⟨W ,R⟩, such that

(∀∀p ∈ Var[A])[V (p) = V ′(p)]. Then for all a ∈ W :
⟨W ,R, V ⟩, a |⇐⇐⇐ A ⇐⇒ ⟨W ,R, V ′

⟩, a |⇐⇐⇐ A.

I.e., the truth value of A depends only on the variables occurring in A.
We shall say that a modal formula A is true in a model M, denoted M |⇐⇐⇐ A, if A is

satisfied at all worlds inM.
A modal formula A is said to be true in a frame F (or valid in a frame F) and a

world a, denoted F, a |⇐⇐⇐ A, if A is true in all models based on F.
We shall say that amodal formula A is valid in a class of frames, denoted |⇐⇐⇐ A,

if A is valid in all frames in .
A frame F is said to be weaker than a frame F′, denoted F ⪯ F′ , if for all modal

formulas A, if F |⇐⇐⇐ A then F′
|⇐⇐⇐ A.

1.6. Propositional modal logic 29

A modal formula A is said to be satisfiable if there is a frame F, a model M based
on F and a world x ∈ F such thatM, x |⇐⇐⇐ A.

A modal formula A is said to be (generally) valid if it is valid in all Kripke frames.
Now we can give a semantical characterization of (at least some) modal logics by estab-

lishing a connection between logics and frames.
Let  be an arbitrary class of frames. Then

Log()⇋ {A ∈orm() | (∀∀F ∈ )[F |⇐⇐⇐ A]}

is a modal logic called the logic of .
A modal logic L is said to be sound w.r.t.  (or -sound) if

(∀∀A ∈ L)(∀∀F ∈ )[F |⇐⇐⇐ A],

i.e., L ⊆ Log().
L is complete w.r.t.  (or -complete) if

(∀∀A ∈orm())[(∀∀F ∈ )[F |⇐⇐⇐ A] ⇐⇒ A ∈ L],

i.e., Log() ⊆ L.
We say that L is determined (or characterized) by  if L is both -sound and -

complete, that is, Log() = L. If L is determined by some class of frames, we call L Kripke
complete. A Kripke complete logic L can be characterized by different classes of frames. If
L is Kripke complete then it is clearly determined by the class Fr(L) of all frames for L , i.e.,
L = Log(Fr(L)).
Remark 1.6.2.4:

There are many other important notions and properties which are not noted here and one
may consult (Chagrov and Zakharyaschev, 1997) and (Kurucz, Wolter, Zakharyaschev,
and Gabbay, 2003).

Definition 1.6.2.5 [Modal product of two unimodal frames]:
Let F = ⟨W ,R⟩ and G = ⟨U,S⟩ be two unimodal Kripke frames.

Then F ×
mod

G = ⟨F ×G,ℍ,V ⟩ is called the modal product of F and G is a bimodal
Kripke frame and is defined as follows:

• The universe is F × G;
• ⟨⟨a1, b1⟩, ⟨a2, b2⟩⟩ ∈ ℍ ⇐⇒ [⟨a1, a2⟩ ∈ R&& b1 = b2];
• ⟨⟨a1, b1⟩, ⟨a2, b2⟩⟩ ∈ V ⇐⇒ [a1 = a2&& ⟨b1, b2⟩ ∈ S];
Wewill use⬓ for themodality which uses theℍ for horizontal, and◧ for themodality

which uses the V for vertical relation.
Their meaning is defined as usual:

M, w |⇐⇐⇐ ⬓A⇐⇒ (∀∀w′ ∈ F)[⟨w,w′⟩ ∈ ℍ ⇐⇒ M, w′ |⇐⇐⇐ A].

M, w |⇐⇐⇐ ◧A⇐⇒ (∀∀w′ ∈ G)[⟨w,w′⟩ ∈ V ⇐⇒ M, w′ |⇐⇐⇐ A].

Definition 1.6.2.6 [Product of Kripke complete unimodal logics]:
Let L1 and L2 be two Kripke complete unimodal logics.

30 Chapter 1. Preliminaries

Then their product is defined as following:
L1 × L2 = Log({F1 ×

mod
F2 | F1 ∈ Fr(L1) &&F2 ∈ Fr(L2)}).

We will note a structural operation on frames which leave modal satisfaction unaffected.
Definition 1.6.2.7 [Bounded morphism]:

Let F = ⟨W ,R⟩ and F′ = ⟨W ′, R′⟩ be frames.
A function f ∶ W → W ′ assigning to each world in F a world in F′ is called a

bounded morphism from F to F′ if the following conditions are satisfied:
1. (∀∀a ∈ W)(∀∀b ∈ W)[⟨a, b⟩ ∈ R ⇐⇒ ⟨f (a), f (b)⟩ ∈ R′];
2. (∀∀a ∈ W)(∀∀b′ ∈ W ′)[⟨f (a), b′⟩ ∈ R′ ⇐⇒ (∃∃b ∈ W)[⟨a, b⟩ ∈ R&& f (b) = b′]].

F′ is said to be a bounded morphic image of F if there exists a surjective bounded
morphism from F to F′.
Bounded morphic images give rise to the following lemma:

Lemma 1.6.2.8 [Bounded morphism lemma]:
Let F and F′ be frames.

If F′ is a bounded morphic image of F then F ⪯ F′.
Proof. See (Chagrov and Zakharyaschev, 1997), Theorem 2.15. ■

1.7. Correspondence theory 31

1.7 Correspondence theory

Let F = ⟨W ,R⟩ be an unimodal Kripke structure for an unimodal PML language . On
the other hand on may think of this structure as a FOL structure for the RFOL L(R,

.
=) which

is the FOL language with one relation symbol R and .
=. Depending on the context we will

determine whether we are talking about a structure from the viewpoint of modal or first-order
logic.

Let us fix an unimodal PML language.
Definition 1.7.0.1:

Let A ∈orm() and ' ∈ ent(L(R,
.
=)).

We say that ' defines A or alternatively A defines ' if for every structure F:
F |⇐⇐⇐ A ⇐⇒ F |⇐⇐⇐ '.

Definition 1.7.0.2:
• A modal formula A is called FOL definable if there exists a FOL sentence
' ∈ ent(L(R,

.
=)) which defines her.

• A FOL sentence ' is called modally definable if there exists a modal formula A ∈
orm() which defines her.
• Let A ∈ orm() and ' ∈ ent(L(R,

.
=)). They are called equivalent if '

defines A or A defines '.
In the end of the 60-ties and the beginning of the 70-ties, Henrik Sahlqvist managed to

separate a syntactical class of modal formulae with the splendid property for each modal for-
mula from the class there exists a FOL formula having the same models and many other good
properties. Johan van Benthem demonstrates an algorithm which can syntactically transform
every formula from the Sahlqvist class into a FOL equivalent. Benthem continues to pose
questions about formulae other than the one in Sahlqvist’s class and in time three problems
are formulated:

FO-def Is there an algorithm which given a modal formula can determine whether it is
FO definable?

MD-def Is there an algorithm which given a FOL sentence can determine whether it is
modally definable?

Corr Is there an algorithm which given a modal formula and a FOL sentence can deter-
mine whether they are equivalent?

Lilia Chagrova proved in her dissertation that all three problems are undecidable over the
class of all Kripke frames Kripke. So why not restrict the problems to some smaller classes
of structures and see what happens?
Remark 1.7.0.1:

In this case when we restrict the problems to some smaller classes of structures, the pre-
vious definitions will stay the same, but “relativized” w.r.t. a class of structures . For
example “' defines A” will become “' defines A w.r.t. the class of structures ”.
In their paper (Balbiani and Tinchev, 2005) Balbiani and Tinchev proved that all problems

over the class of all partitions equiv are decidable and are in fact PSPACE-complete. After
this result they formulated a more general method to obtain lower bounds for the complexity
of the problem of modal definability over specific classes of frames called stable classes.
They relate the problem of deciding the modal definability of sentences w.r.t. a stable class of

32 Chapter 1. Preliminaries

frames  to the problem of deciding the validity of sentences in . In this respect, a special
role plays the notion of FOL relativization, so we can understand their method.
Remark 1.7.0.2:

All notions can be extended for PML languages and FOL languages having the same
number of modalities to relation symbols and the FOL language having formal equality.

1.7.1 Relativization in FOL

Let us fix a L RFOL language until the end of this subsection.
Definition 1.7.1.1 [Relativization of formulae]:

Let �, ' ∈ orm(L) and x ∈ arL. Let Varfree[�] = {y1,… , ym}.
The relativization of � w.r.t. ' and an individual variable x, denoted (�)'x , is

inductively defined as following:
• If � ≖ (yi

.
= yj) for some 1 ≤ i, j ≤ m, then:

(�)'x ⇋ (yi
.
= yj);

• If � ≖ p(yi1 ,… , yik) for some indices {i1,… , ik} ⊆ {1,… , n} and k-ary predi-
cate symbol p, then:

(�)'x ⇋ p(yi1 ,… , yik);

• If � ≖ (�1 ∨ �2), then:
(�)'x ⇋ (�1)'x ∨ (�2)

'
x ;

• If � ≖ ¬�1, then:
(�)'x ⇋ ¬(�1)'x .

• If � ≖ ∃z�1, then:
(�)'x ⇋ ∃z('[x∕z] ∧ (�1)'x),

where '[x∕z] denotes the simultaneous substitution of all free occurrences of the indi-
vidual variable x in ' by the individual variable z.

When we write (�)'x , we will always assume that Var[�] ∩ Var['] = ∅.
Proposition 1.7.1.2:

Let �, ' ∈ orm(L) and x ∈ arL.
Then Varfree[(�)'x] ⊆ (Varfree['] ⧵ {x}) ∪ Varfree[�].

Proof. It can be proven with induction on the formula � . ■

Corollary 1.7.1.2.1:
Let � ∈ ent(L), ' ∈ orm(L) and x ∈ arL.

Then Varfree[(�)'x] ⊆ Varfree['] ⧵ {x}.
Definition 1.7.1.3 [Relativized substructure]:

Let A and A0 are structures for L.
A0 is called a relativized substructure or relativized reduct of A if there exist a

FOL formula '(x, x1,… , xn) ∈ orm(L) and there exists a list of individuals ā inA such

1.7. Correspondence theory 33

that A0 is the substructure of A with universe {b | b ∈ A&&A |⇐⇐⇐ '[[b, ā]]}. In this case
we say that A0 is called a relativized substructure of A w.r.t. '(x, x1,… , xn) and ā.

Remark 1.7.1.1:
A possesses a relativized reduct w.r.t. '(x, x1,… , xn) and ā if and only if
A |⇐⇐⇐ ∃x'[[ā]].

Theorem 1.7.1.4 [Relativization theorem]:
Let A and A0 are structures for L, '(x, x1,… , xn) ∈ orm(L) and ā be a list of individ-
uals in A.

IfA0 is a relativized substructure ofAw.r.t. '(x, x1,… , xn) and ā, then for all FOL
formula �(y1,… , ym) and all list of individuals c̄ in A0:

A |⇐⇐⇐ (�)'x [[ā; c̄]] ⇐⇒ A0 |⇐⇐⇐ �[[c̄]].

Proof. One may consult (Hodges, 2008), Theorem 5.1.1. ■

1.7.2 Stable classes of frames and modal definability

Definition 1.7.2.1 [Stable class of frames]:
Let  be a class of frames.

 is called a stable class of frames if there exists a first-order formula'(x, x1,… , xn)
and there exists a sentence such that:
(1) for all frames F in , for all lists ā of individuals in F and for all frames F′, if F′

is the relativized reduct of F w.r.t. '(x, x1,… , xn) and ā then F′ is in ;
(2) for all frames F0 in , there exists frames F, F′ in  and there exists a list ā of
individuals in F such that:

(a) F0 is the relativized reduct of F w.r.t. '(x, x1,… , xn) and ā;
(b) F |⇐⇐⇐ and F′ ̸|⇐⇐⇐ ;
(c) F ⪯ F′.

In this case, ⟨'(x, x1,… , xn), ⟩ is called a witness of the stability of .
Theorem 1.7.2.2:

If  is stable then the problem of deciding the validity of sentences in  is reducible to
the problem of deciding the modal definability of sentences w.r.t. .

Proof. See in (Balbiani and Tinchev, 2017), Theorem 1. ■

This tight relationship between the problem of deciding the modal definability of sen-
tences w.r.t.  and the problem of deciding the validity of sentences in  constitutes the
main result of the method of Balbiani and Tinchev.

34 Chapter 1. Preliminaries

1.8 Some history on related theories

Let us have a RFOL language L(R, .=)with formal equality .= having only one binary relation
symbol R and a RFOL language L(R1, R2, .=) with formal equality .= having only two binary
relation symbols R1 and R2.

Let equiv be the class of all structures for L(R, .=) such that the predicate symbol is
interpreted as an equivalence relation on the universe of the structure.

In (Janiczak, 1953) we have a proof of the decidability of the theory of the class equiv.
It is folklore thatequiv has FMP and the validity of sentences restricted to the classequiv is
PSPACE-complete. Nevertheless one can consult (Balbiani and Tinchev, 2006) for a proof.
In (Boerger, Grädel, and Gurevich, 1997) we have a proof that (finite) satisfiability problem
restricted to the class equiv is PSPACE-complete.

Let 2S5 the class of all structures for L(R1, R2, .=) such that the relation symbols are
interpreted as two equivalence relations on the universe of the structure.

Rogers in (H. Rogers, 1956) and Janiczak in (Janiczak, 1953) independently of each
other proved that Th(2S5) is undecidable through different methods. The theory is finitely
axiomatizable so by corollary 1.4.0.5.1 it is hereditarily undecidable.

The monadic second-order (MSO) extension of the first-order logic is obtained by
adding new unary predicate variables and quantifiers over them. Usually in this way the
expressive power of FOL is increased.

In (Ershov, Lavrov, Taimanov, and Taitslin, 1965) Ershov proves that MSO logic is de-
cidable over the class of structures with one equivalence relation. But taking into account
Janiczak’s result (Janiczak, 1953) that Th(2S5) is undecidable the direct generalization of
Ershov’s result for MSO logic with more than one equivalence relation is impossible.
In their work (Georgiev and Tinchev, 2008) they restrict the equivalence relations and study
the MSO logic over structures with finite number of unary predicates and equivalence rela-
tions in local agreement, the latter meaning that the equivalence classes of every element of
the universe, modulo the respective equivalence relations, are linearly ordered (form a chain)
w.r.t. set-theoretic inclusion. Using Ehrenfeucht–Fraïssé games they show that theMSO logic
is decidable over the class of all structures with unary predicates and equivalence relations
in local agreement. Moreover, they show that over these structures every MSO formula has
a translation in the first-order language which has exactly the same models. The translated
FOL formula is very complex, compared to the original MSO formula.

35

Chapter 2

A tale of three theories

2.1 Formulation of the problem

Let us have a RFOL languageL(R1, R2, .=)with formal equality .= having only two binary
relation symbols R1 and R2.

Since we have Downward Löwenheim–Skolem theorem, from the last condition we get
that Th(A) = Th(B), because being an elementary substructure yields elementarily equiva-
lence between the structures in question.

Then applying it to our case with the language L(R1, R2, .=) that has cardinality
card(L(R1, R2,

.
=)) < ℵ0 = card(!) and the semantic definition of a theory of a class of

structures  to be Th() =
⋂

A∈
Th(A), we can limit ourselves to only consider structures

with an enumerable (at most countable) universe. Therefore, from here until the end of this
chapter we will only work with enumerable structures and classes of enumerable structures
(even if not said explicitly).

The subject of our studieswill be a particular type of structures for this languageL(R1, R2, .=
): all structures A = ⟨A,RA

1 , R
A
2 ⟩, where the interpretations of RA

1 and RA
2 are such that

RA
1 , R

A
2 , R

A
1 ◦R

A
2 ∈ quiv(A) , i.e., they are all equivalence relations on A.

Let us define three classes of structures of this type such that each consecutive class is a
refinement of the previous:

commute ⇋ {⟨A,RA
1 , R

A
2 ⟩ | R

A
1 , R

A
2 , R

A
1 ◦R

A
2 ∈ quiv(A)}

rectangle ⇋ {A1 ×
mod

A2 | A1,A2 ∈ equiv}

square ⇋ {A ×
mod

A | A ∈ equiv}
Remark 2.1.0.1:

square ⊆ rectangle ⊆ commute

In this chapter we are going to ask ourselves the following questions concerning the the-
ories of these three classes Th(commute), Th(rectangle), Th(square) respectively:

1. How can the structures of the classes be represented in a strict mathematical manner
with a strong intuitive meaning?

2. Th(commute)
?
⫋ Th(rectangle)

?
⫋ Th(square)?

3. Are there classes axiomatizable?
4. Are the theories decidable?
5. Do the classes have the finite model property?

36 Chapter 2. A tale of three theories

2.2 How can we describe the structures?

We will concern ourselves with the class commute.
Let A ∈ commute be such that A = ⟨A,RA

1 , R
A
2 ⟩. Then from lemma 1.3.1.2 RA

1 ◦R
A
2 ∈

quiv(A), and, thus, A is a set of blocks w.r.t. the equivalence relation RA
1 ◦R

A
2 .We will prove the following simple proposition:

Proposition 2.2.0.1:
Let c ∈ A and a, b ∈ [c]RA

1 ◦R
A
2
.

Then [a]RA
1
⊆ [c]RA

1 ◦R
A
2
and [b]RA

2
⊆ [c]RA

1 ◦R
A
2
and [a]RA

1
∩ [b]RA

2
≠ ∅.

Proof. Since a, b ∈ [c]RA
1 ◦R

A
2
, then we have ⟨c, a⟩ ∈ RA

1 ◦R
A
2 and ⟨c, b⟩ ∈ RA

1 ◦R
A
2 .

But RA
1 ◦R

A
2 ∈ quiv(A), so then ⟨b, a⟩ ∈ RA

1 ◦R
A
2 . By the definition of composition of

relations, then (∃∃d ∈ A)[⟨b, d⟩ ∈ RA
2 && ⟨d, a⟩ ∈ RA

1]. Let d0 ∈ A be a witness. Then
d0 ∈ [a]RA

1
and d0 ∈ [b]RA

2
; therefore, [a]RA

1
∩ [b]RA

2
≠ ∅ is true.

Now let e ∈ [a]RA
1
. Then ⟨a, e⟩ ∈ RA

1 . Also, by assumption, we have that ⟨c, a⟩ ∈
RA
1 ◦R

A
2 , so by definition of composition of relations (∃∃d ∈ A)[⟨c, d⟩ ∈ RA

2 && ⟨d, a⟩ ∈ RA
1].

Let d0 ∈ A be a witness. RA
1 ∈ quiv(A), so then ⟨d0, e⟩ ∈ RA

1 . As a result we obtain
⟨c, e⟩ ∈ RA

1 ◦R
A
2 ; thus, [a]RA

1
⊆ [c]RA

1 ◦R
A
2
.

The reasoning for [b]RA
2
⊆ [c]RA

1 ◦R
A
2
is similar. ■

Now let c ∈ A and let p⇋ [c]RA
1 ◦R

A
2
.

Let us enumerate all the blocks of RA
1 w.r.t. p: {a�}�<� and enumerate all the blocks of

RA
2 w.r.t. p: {b�}�<�, where card(p∕RA

1) = � and card(p∕RA
2) = � (p∕RA

1 is the quotient set
p w.r.t. RA

1).Let us denote c�,� ⇋ a� ∩ b� . We have that:
• c�,� ≠ ∅ (by proposition 2.2.0.1);
• c�,� ∩ c�′,�′ = ∅ for ⟨�, �⟩ ≠ ⟨�′, �′⟩;
• ⋃

�<�
�<�

c�,� = p.

I.e., the family {c�,�}�<��<�
is a partition of p. So we can think of p as a “matrix of the type

� × �” of non-empty, mutually disjoint sets. We will call an element of the family {a�}�<� a
“row” and we will call an element of the family {b�}�<� a “column”. A set c�,� we will call
a “cell”.

2.2. How can we describe the structures? 37

. . .
...

...
...

...
...

... . . .

. 67 1 . . .

.

. . . 2 ℵ0 21 2 . . .

. 500

. . . ℵ1 .. 2 2179 . . .
. . .

...
...

...
...

...
...

. . .

FIGURE 2.1: An example “matrix” with “rows” (RA
1 classes) and “columns”

(RA
2 classes). In the intersections is written or omittedwith “..” the cardinality

of the respective “cells”

In the other direction, if we have such a family {c�,�}�<��<�
a partition of p, how can we

define the interpretation of the relation symbols R1 and R2 on p so to generate a structure in
commute?

Let:
⟨a, b⟩ ∈ RB

1 ⇐⇒ (∃∃� < �)[a, b ∈
⋃

�<�
c�,�]

⟨a, b⟩ ∈ RB
2 ⇐⇒ (∃∃� < �)[a, b ∈

⋃

�<�
c�,�].

ThenB = ⟨p, RB
1 , R

B
2 ⟩ is a structure with two equivalence relations, which commute and

#RB
1 ◦R

B
2
= 1. Thus,B ∈ commute.

So all the structuresA = ⟨A,RA
1 , R

A
2 ⟩ ∈ commute are a collection of matrices {M(
)}
<�

of the type �
 × �
 ,
 < �, for #RA
1 ◦R

A
2
= �.

Remark 2.2.0.1:
By using Dubreil-Jacotin theorem we get a similar characterization of the relationships
between the RA

1 and RA
2 blocks w.r.t. a block [c]RA

1 ◦R
A
2
.

One of the benefits of this representation is that the construction of such interesting struc-
tures can be done easier as demonstrateed in a proof of in section 2.5.
Remark 2.2.0.2:

Let A ∈ rectangle. If:
1. A is finite; thus, there is a natural number n ∈ ! such that card(A) = n and;
2. A = A1 ×A2, card(A1) = k1, card(A2) = k2, such that k1, k2 ∈ !, n = k1.k2 and;
3. #RA

1
= m1, #RA

2
= m2,

then k2|m1, k1|m2, #RA
1 ◦R

A
2
= m1.m2. In particular if A ∈ square and is finite, then

card(A) and #RA
1 ◦R

A
2
are always square natural numbers.

38 Chapter 2. A tale of three theories

2.3 Do they differ?

2.3.1 Th(commute) is a proper subtheory of Th(rectangle)

Let us define the formula '=(x, y) of L(R1, R2, .=) in the following manner:
'=(x, y)⇋ (R1(x, y) ∧ R2(x, y)).

Let = be the following sentence:
 = ⇋ ∀x∀y('=(x, y)↔ x

.
= y).

Then = is true for all structures of rectangle. Let A ∈ rectangle. Let a, b ∈ A, then:
A |⇐⇐⇐ '=(x, y)[[a, b]] ⇐⇒

[⟨pr1(a), pr1(b)⟩ ∈ RA
1 && pr2(a) = pr2(b) && pr1(a) = pr1(b) && ⟨pr2(a), pr2(b)⟩ ∈ RA

2]⇐⇒

[pr1(a) = pr1(b) && pr2(a) = pr2(b)]⇐⇒

A |⇐⇐⇐ (x
.
= y)[[a, b]].

Therefore, we can conclude that A |⇐⇐⇐ =.
Let A0 be defined as: A0 = ⟨{0, 1}, RA0

1 , R
A0
2 ⟩, where RA0

1 = RA0
2 = A0 × A0. Then

A0 ∈ commute and A0 ̸|⇐⇐⇐ =.

2.3.2 Th(rectangle) is a proper subtheory of Th(square)

Let us define a number of formulae this time:
'R1◦R2(x, y)⇋ ∃z(R1(x, z) ∧ R2(z, y)).

'oneBlockR1◦R2 ⇋ ∃x∀y('R1◦R2(x, y)).

'twoOrLessIndividuals ⇋ ∃x∃y∀z(x
.
= z ∨ y

.
= z).

'oneIndividual ⇋ ∃x∀y(x
.
= y).

The intended semantics of the formulae is explained in the name of the formula. Let dot
be the following sentence:

 dot ⇋ 'oneBlockR1◦R2 ∧ 'twoOrLessIndividuals → 'oneIndividual.

Then dot is true for all structures of square. Let A ∈ square. Let a, b ∈ A. If A has
more than one equivalence class in RA

1 ◦R
A
2 and if A has more than two individuals in its

universe, then dot is trivially true.
Let A |⇐⇐⇐ 'oneBlockR1◦R2 ∧ 'twoOrLessIndividuals. Then:

A |⇐⇐⇐ 'oneBlockR1◦R2 ∧ 'twoOrLessIndividuals ⇐⇒

A has exactly one block w.r.t. RA
1 ◦R

A
2 of cardinality one.

By remark 2.2.0.2 the cardinality of the universe of a finite structure from the classsquare
is a square number; therefore, we haveA |⇐⇐⇐ 'oneIndividual, and; therefore, we have equivalence
between the last the expressions.

Let A0 be defined as: A0 = ⟨{0, 1} × {2}, RA0
1 , R

A0
2 ⟩, where RA0

1 = {0, 1}2 and
RA0
2 = {2}2. Then A0 ∈ rectangle and A0 ̸|⇐⇐⇐ dot.

2.4. Are the classes axiomatizable? 39

2.4 Are the classes axiomatizable?

Proposition 2.4.0.1:
commute is finitely axiomatizable.

Proof. Let Γ be the set of consisting of the sentences:
'1 ⇋ ∀xR1(x, x).
'2 ⇋ ∀x∀y(R1(x, y)→ R1(y, x)).
'3 ⇋ ∀x∀y∀z(R1(x, y) ∧ R1(y, z)→ R1(x, z)).
'4 ⇋ ∀xR2(x, x).
'5 ⇋ ∀x∀y(R2(x, y)→ R2(y, x)).
'6 ⇋ ∀x∀y∀z(R2(x, y) ∧ R2(y, z)→ R2(x, z)).
'7 ⇋ ∀x∀y(∃z(R1(x, z) ∧ R2(z, y))↔ ∃z(R2(x, z) ∧ R1(z, y))).

Let 'commute
⇋

⋀

Γ. Then for any structure A for L(R1, R2, .=):
A ∈ commute ⇐⇒ A |⇐⇐⇐ 'commute

.

■

Corollary 2.4.0.1.1:
fin

commute is finitely axiomatizable.
Proof. By remembering definition 1.2.2.5 and using the previous proposition 2.4.0.1, we have
that the same 'commute

finitely axiomatizes fin
commute. ■

Even though this class of structures is finitely axiomatizable, its theory is undecidable
as shown in section 2.5. Moreover by being finitely axiomatizable and applying corollary
1.4.0.5.1 it is hereditarily undecidable. Then Janiczak’s theorem about the undecidability of
Th(2S5) is an immediate corollary (only remove axiom '7).
Remark 2.4.0.1:

There is use to try and prove that in a finite RFOL language fin is not axiomatizable,
because it is not true.

Let L be a finite RFOL language and let  be some class of finite structures for L.
Then for every n ∈ !+, there are a finite number of structures in  of cardinality n up
to isomorphism. That is because for a structure A ∈ , card(A) = n, we can write a
sentence 'A such that for all structures B for L [B |⇐⇐⇐ 'A ⇐⇒ A ≅ B]. Therefore, if n
is the sentence saying that in the universe there are exactly n elements, the set
{ n → ('A1

∨… ∨ 'Akn
) | n ∈ !+} axiomatizes .

Remark 2.4.0.2:
All rectangle, square, fin

rectangle and fin
square are not closed w.r.t. isomorphisms. That is

because if we take a structureA ∈ rectangle, then it is of the type ⟨A1×A2, RA
1 , R

A
2 ⟩. Letthe set B be such that card(A) = card(B) and the elements of B are not tuples. Then

A ≅ ⟨B,RA
1 , R

A
2 ⟩, but ⟨B,RA

1 , R
A
2 ⟩ ∉ rectangle (the same reasoning can be applied for

the other classes).
Therefore, rectangle, square, fin

rectangle and fin
square are not axiomatizable.

The question is if we close the classes w.r.t. isomorphisms, can we (finitely) axioma-
tize the new classes?

Let us denote with I() ⇋ {A | (∃∃B ∈ )[A ≅ B]} the closure of the class 
w.r.t. isomorphisms.

40 Chapter 2. A tale of three theories

Proposition 2.4.0.2:
I(rectangle) and I(square) are not axiomatizable.

Proof. We will do the proof for I(rectangle). The same proof can be used for I(square).
Suppose it is axiomatizable. Then there exist a set of sentences of L(R1, R2, .=) Σ such

that for all structures A for L(R1, R2, .=):
[A |⇐⇐⇐ Σ⇐⇒ (∃∃B ∈ I(rectangle))[B ≅ A]].

LetA ∈ rectangle (alsoA ∈ square) be such a structure that it has four matrices and each
of the matrices is of the type ℵ0 × ℵ0:

ℵ0 × ℵ0

{

.
ℵ0 × ℵ0

{

.
⏟⏟⏟ ⏟⏟⏟

ℵ0 × ℵ0 ℵ0 × ℵ0

LetB be such a structure that it has four matrices and three of the matrices is of the type
ℵ0×ℵ0 and one is of the type 2ℵ0 ×2ℵ0 (any cardinal numbers �, � such that � ≥ ℵ0, � ≥ ℵ0
and at least one of them > ℵ0 will be sufficient for forming the matrix):

2ℵ0 × 2ℵ0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

. . . ⎫

⎪

⎬

⎪

⎭

2ℵ0 × 2ℵ0

ℵ0 × ℵ0

{

. . .
ℵ0 × ℵ0

{

.
⏟⏟⏟ ⏟⏟⏟

ℵ0 × ℵ0 ℵ0 × ℵ0

Then A ≡ B (for every n ∈ ! we can prove that the uplicator has a winning strategy
for the n-round Ehrenfeucht–Fraïssé games, and; thus,, A ≡n B).

An alternative proof of A ≡ B is using Downward Löwenheim–Skolem theorem. By
applying it we get a countable elementary substructure ℭ ≼ B. Then ℭ ≡ B. We can say
with a formula that there are exactly four matrices in the universe ofB, so then ℭ has exactly
four matrices. Can we say that some matrix is finite in ℭ? If we could, then we can describe
it with a first-order formula, but then it must be true inB, which is not the case. Thus, all the
matrices of ℭ are infinite, but ℭ is countable, so the matrices must be also countable. As a
result ℭ ≅ A which implies ℭ ≡ A; therefore, A ≡ B.

As a result B |⇐⇐⇐ Σ. But B ∉ I(rectangle). We obtained a contradiction.
■

Proposition 2.4.0.3:
I( fin

rectangle) and I( fin
square) are not finitely axiomatizable.

Proof. We will do the proof for I( fin
rectangle). The same proof can be used for I(square).

2.4. Are the classes axiomatizable? 41

Suppose it is finitely axiomatizable. Then there exist a sentence ' of L(R1, R2, .=) such
that for all structures A for L(R1, R2, .=):

[A is finite ⇐⇒ [A |⇐⇐⇐ '⇐⇒ A ∈  fin
rectangle]].

Let qr(') = k.
LetA ∈  fin

rectangle (alsoA ∈  fin
square) be such a structure that it has four matrices and each

of the matrices is of the type k × k:
k × k

{

.
k × k

{

.
⏟⏟⏟ ⏟⏟⏟

k × k k × k

LetB be such a structure that it has four matrices and three of the matrices is of the type
k×k and one is of the type (k+1)×(k+1) (any cardinal numbers �, � such that � ≥ k, � ≥ k
and at least one of them > k will be sufficient for forming the matrix):

(k + 1) × (k + 1)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

. . . ⎫

⎪

⎬

⎪

⎭

(k + 1) × (k + 1)
k × k

{

. . .
k × k

{

.
⏟⏟⏟ ⏟⏟⏟

k × k k × k

Then A ≡k B (we can prove that the uplicator has a winning strategy for the k-round
Ehrenfeucht–Fraïssé games).

As a result B |⇐⇐⇐ '. But B ∉ I( fin
rectangle). We obtained a contradiction. ■

42 Chapter 2. A tale of three theories

2.5 Undecidability of Th(commute)

We are going to define a class of structures which will be of interest to us:
irref, sym ⇋ {⟨A,RA

⟩ | RA is symmetric and irreflexive in A}
for the language L(R, .=).

Remark 2.5.0.1:
In (H. Rogers, 1956) it is demonstrated that the theory Th(irref, sym) with added

non-logical axiom ∀x∀y∀z(R(x, y) ∧ R(y, z) → ¬R(x, z)) is undecidable. This theory
is finitely axiomatizable so by corollary 1.4.0.5.1 it is hereditarily undecidable; therefore,
we have that Th(irref, sym) is hereditarily undecidable as well.

In (Lavrov, 1963) there is a proof that the sets Th(irref, sym) and
ent(L(R1, R2,

.
=)) ⧵ Th( fin

irref, sym) are recursively inseparable from which follows the
undecidability of Th(irref, sym) and Th( fin

irref, sym). Moreover, in (Ershov, 1980) there is a
proposition stating that  fin

irref, sym has a hereditarily undecidable theory.
Now we will use the method of Relative elementary definability to demonstrate that

commute has an undecidable theory.
Let uni

commute be all structures from commute which have exactly one matrix.
Let k, m ∈ !+ be positive natural numbers such that k ≠ m. For simplifying the following

steps let us fix k = 1 and m = 2.
Theorem 2.5.0.1:

The class irref, sym is relatively elementary definable in the class uni
commute.

Proof. Let A ∈ irref, sym, A = ⟨A,RA
⟩.

Let us define the following formulae for the language L(R1, R2, .=):
'onePointCell(x)⇋ ∀y(R1(x, y) ∧ R2(x, y)→ y

.
= x).

'twoPointCell(x, y)⇋ R1(x, y) ∧ R2(x, y) ∧ x ̸
.
= y∧

∀z(R1(x, z) ∧ R2(x, z)→ z
.
= x ∨ z

.
= y).

oint(x)⇋ 'onePointCell(x) ∧ ∀y(¬(x
.
= y) ∧ (R1(x, y) ∨ R2(x, y))→ ¬'onePointCell(y)).

dge(x, y)⇋ ¬(x
.
= y) ∧ oint(x) ∧ oint(y) ∧ ∃x1∃x2∃y1∃y2('twoPointCell(x1, x2)∧

'twoPointCell(y1, y2) ∧ R1(x, y1) ∧ R2(y, y1) ∧ R2(x, x1) ∧ R1(y, x1)).
quality(x, y)⇋ x

.
= y.

dge(x, y) is a possible definition for the binary relation symbol R of L(R, .=). We will
call elements satisfying oint(x) 1-points and elements satisfying dge(x, y) 2-edges (by
the choices for k and m).

Let {a�}�<� is an enumeration of the elements of A, where card(A) = �.
We can construct such a structureB ∈ uni

commute usingA having a matrix (only one block
in the composition of the relations) such that:

card(c�,�) =
⎧

⎪

⎨

⎪

⎩

1, if � = �
2, if ⟨a�, a�⟩ ∈ RA

3, otherwise

3 was chosen as an arbitrary number different from k and m.

2.5. Undecidability of Th(commute) 43

a b

c

1 3 2
3 1 2
2 2 1

FIGURE 2.2: Example for a three node graph

Here is such a construction.
Let f, g be functions such that:

• Dom(f) = Dom(g) = A × A;
• for a, b ∈ A, f (a, b) is a two element set and if ⟨a, b⟩ ≠ ⟨a′, b′⟩ for a′, b′ ∈ A, then
f (a, b) ∩ f (a′, b′) = ∅;
• for a, b ∈ A, g(a, b) is a three element set and if ⟨a, b⟩ ≠ ⟨a′, b′⟩ for a′, b′ ∈ A,
then g(a, b) ∩ g(a′, b′) = ∅;
• ⋃

Range(f) ∩
⋃

Range(g) = ∅ and (⋃Range(f) ∪
⋃

Range(g)) ∩ A = ∅.
For example such functions satisfying these conditions are:

f (a, b)⇋ {⟨0, ⟨a, b⟩⟩, ⟨1, ⟨a, b⟩⟩};
g(a, b)⇋ {⟨2, ⟨a, b⟩⟩, ⟨3, ⟨a, b⟩⟩, ⟨4, ⟨a, b⟩⟩},

for a, b ∈ A. WLOG we can assume that the elements of A are not ordered pairs with first
coordinate an integer between 0 and 4.

Then let:
• B ⇋ A∪

⋃

{f (a�, a�) | ⟨a�, a�⟩ ∈ RA}∪
⋃

{g(a�, a�) | a� ≠ a� && ⟨a�, a�⟩ ∉ RA};
• ⟨a, b⟩ ∈ RB

1 ⇐⇒ (∃� < �)[a, b ∈ {a�} ∪
⋃

{f (a�, b�) | � ≠ �&& � < �} ∪
⋃

{g(a�, b�) | � ≠ �&& � < �}], for a, b ∈ B;
• ⟨a, b⟩ ∈ RB

2 ⇐⇒ (∃� < �)[a, b ∈ {a�} ∪
⋃

{f (a�, b�) | � ≠ �&& � < �} ∪
⋃

{g(a�, b�) | � ≠ �&& � < �}], for a, b ∈ B.
Let C ⇋ {a ∈ B | B |⇐⇐⇐ oint[[a]]}. Then we have that the structure B satisfies the

following conditions:
• C ≠ ∅;
• there exists a bijection ℎ ∶ A ↣↠ C , such that whenever a, b ∈ A it is true that
⟨a, b⟩ ∈ RA ⇐⇒ B |⇐⇐⇐ dge[[ℎ(a), ℎ(b)]].

Now if we take the quotient of C w.r.t. the congruence quality(x, y), because of the
simplicity for quality(x, y) and the choice for k = 1, the elements of the quotient set will
be singletons. I.e., we trivially fulfill one of Ershov’s conditions for the application of theo-
rem 1.4.1.1 (in the its full form we may need the points of A to be represented in B by some
configurations and then we need to do factorization w.r.t. quality). LetRℭ ⇋ {⟨a, b⟩ | a, b ∈
C &&B |⇐⇐⇐ dge[[a, b]]}. The structure ℭ = ⟨C,Rℭ

⟩ is already isomorphic to A and we have
not yet applied factorization w.r.t. quality(x, y). We will not need to care for the congruence.
If k ≠ 1, that will not be the case.

44 Chapter 2. A tale of three theories

We can prove by induction on the formula (x1, x2,… , xn) ∈ orm(L(R,
.
=)) that for all

c1, c2,… , cn ∈ C:
B |⇐⇐⇐ ∗[[c1, c2,… , cn]] ⇐⇒ ℭ |⇐⇐⇐ [[c1, c2,… , cn]],

where ∗ ⇋ ̄ as in the proof of theorem 1.4.1.1.
It is immediate now that A ≅ ℭ.

■

The following figures are some examples howwe can represent a finite graph in a structure
of uni

commute:

a b

cd

1 3 2 3
3 1 2 3
2 2 1 3
3 3 3 1

a b 1 2
2 1

a b

c

1 2 2
2 1 2
2 2 1

Theorem 2.5.0.2:
Th(uni

commute) is hereditarily undecidable, and, therefore, undecidable.
Proof. By theorem 2.5.0.1 we get thatirref, sym is relatively elementary definable in the class
uni

commute and since irref, sym is hereditarily undecidable we enter the conditions of theorem
1.4.1.1 making uni

commute hereditarily undecidable. ■

Theorem 2.5.0.3:
Th(commute) is hereditarily undecidable, and, therefore, undecidable.

Proof. From theorem 2.5.0.2 we have that Th(uni
commute) is hereditarily undecidable, but

Th(commute) is a subtheory of Th(uni
commute) making it also undecidable. By remark 1.4.0.1

Th(commute) is also hereditarily undecidable. ■

Corollary 2.5.0.3.1 [Janiczak, Rogers]:
Th(2S5) is undecidable.

Corollary 2.5.0.3.2:
Th(2S5) is hereditarily undecidable.

Theorem 2.5.0.4:
Th( fin

commute) is hereditarily undecidable.

2.5. Undecidability of Th(commute) 45

Proof. From remark 2.5.0.1 we have that Th( fin
irref, sym) is hereditarily undecidable.Remark that if the structureA is finite, then the construction in the proof of theorem 2.5.0.1

shows that B is also finite. Therefore, Th( fin
irref, sym) is relatively elementary definable in

Th(( fin
commute)uni) and by theorem 1.4.1.1 Th(( fin

commute)uni) is hereditarily undecidable, rend-
ing Th( fin

commute) also hereditarily undecidable. ■

Corollary 2.5.0.4.1:
Th(fin

2S5) is hereditarily undecidable.
Remark 2.5.0.2:

Since Th(commute) ⊆ Th( fin
commute), then theorem 2.5.0.3 is a corollary of theorem 2.5.0.4.

Lemma 2.5.0.5:
There exists a theory forL(R1, R2, .=) having Th(commute) as a subtheory which is finitely
axiomatizable and decidable.

Proof. Let ⇋ 'commute
∧ ∀x∀y(R1(x, y) ↔ R2(x, y)). Then this extension of the theory is

the theory of equiv, which is decidable ('commute
is used in proposition 2.4.0.1).

There are a lot of syntactical complete (i.e., for every formula ' of the language of the
theory either ' or ¬' is a theorem of theory) extensions of the theory Th(commute). If we
take a finite structure A ∈ fin

commute, then the formula 'A characterizing the structure up to
isomorphism can be added to the theory to obtain, yet again another finitely axiomatizable
and decidable extension.
For example let the structure A for L(R1, R2, .=) be defined as in this figure:

a b c

d e

FIGURE 2.6: RA
1 is in dark blue and RA

2 is in cyan

It is immediate that A ∈ commute. Thus,Th(commute) ⊆ Th(A).
The Th(A) is finitely axiomatizable and the problem of validity of a sentence in it is

decidable. ■

Corollary 2.5.0.5.1:
Th(commute) is not essentially undecidable.

Lemma 2.5.0.6:
commute does not have FMP.

Proof. Ifcommute had FMP, then by being finitely axiomatizable by proposition 2.4.0.1, then
by theorem 1.5.2.2 it will have a decidable theory; hence, a contradiction. ■

In the next section we will see what happens with some of its subclasses rectangle and
square.

46 Chapter 2. A tale of three theories

2.6 Decidability of Th(rectangle) and Th(square)

Remark 2.6.0.1:
Since inrectangle and insquare bothmodel ∀x∀y(x .

= y↔ R1(x, y)∧R2(x, y)); therefore,
automatically all cells have cardinality one.
Now we will take an alternative approach to see the decidability of Th(rectangle).
Let us have a structureA = ⟨A,RA

⟩ for the language L(R, .=). We will effectively gener-
ate two new in a way expansions ofA for the language L(R1, R2, .=) in the following manner:

Let A=2 = ⟨A,RA=2

1 , RA=2

2 ⟩ be such that the interpretation of RA=2

1 is the same as that of
RA and the interpretation ofRA=2

2 will be that of equality of individuals of A (formal equality
in the structure A). Similarly, we generate an expansion A=1 = ⟨A,RA=1

1 , RA=1

2 ⟩ such that
the interpretation of RA=1

1 will be that of equality of individuals of A and the interpretation of
RA=1

2 is the same as that of RA.
We can also obtain a structureA = ⟨A,RA

⟩ for the language L(R, .=)when havingA=i =
⟨A,RA=i

1 , RA=i

2 ⟩ for the language L(R, .=) by having the universes to be the same and having
the interpretation of R be the same as RA=i

i .
Let us take a formula ' from L(R,

.
=). We can effectively generate two formulae '=2 and

'=1 like this:
• For '=2 we substitute all occurrences of the predicate symbol R for R1, and we substi-

tute all occurrences of the formal equality .
= for R2.

• For '=1 we substitute all occurrences of the formal equality .= forR1, and we substitute
all occurrences of the predicate symbol R for R2.

In turn by taking a formula ' from L(R1, R2,
.
=) we can obtain a formula from the lan-

guage L(R, .=) by substituting all occurrences of the symbol R1 with R and substituting all
occurrences of the symbol R2 with .

=. We will denote it as '[R1∕R,R2∕ .
=] or tr2('). We

can do also this translation '[R1∕ .
=, R2∕R] or tr1(').

We will show an example:
Let ' ⇋ ∀x∀y∀z((R(x, y) ∧ x

.
= y) ∨ x

.
= y) be a formula from L(R,

.
=). Then '=1 ≖

∀x∀y∀z((R2(x, y) ∧R1(x, z)) ∨R1(x, y)) and tr1('=1) ≖ ∀x∀y∀z((R(x, y) ∧x .
= z) ∨x

.
= y).

If we want to return to the language L(R1, R2,
.
=) we do not know which .

= comes from a
substitution of the symbol Ri with .

= or was originally .
=; thus, we do not have injectivity of

the translation, but at least every formula from L(R1, R2,
.
=) has a translation (totality).

We can prove:
Lemma 2.6.0.1:

For any formula '(x1,… , xn) from the language L(R, .=), for any structureA for L(R, .=)
and for any individuals a1,… , an ∈ A we have:

A |⇐⇐⇐ '[[a1,… , an]] ⇐⇒ A=2
|⇐⇐⇐ '=2[[a1,… , an]] ⇐⇒ A=1

|⇐⇐⇐ '=1[[a1,… , an]].

Proof. Induction on the construction of the formula '(x1,… , xn). ■

Corollary 2.6.0.1.1:
If the structure A for L(R, .=) has a decidable theory, then so do the structures A=1 and
A=2.

Remark 2.6.0.2:
Let =i ⇋ {A=i

| A ∈ } for i = 1, 2.

2.6. Decidability of Th(rectangle) and Th(square) 47

Corollary 2.6.0.1.2:
If the class of structures for L(R, .=) has a decidable theory, then so do the classes=1

and =2.
Proof. Let have a decidable theory. Therefore, for any sentence ' in the language L(R, .=):

' ∉ Th()⇐⇒

(∃∃A ∈ )[A ̸|⇐⇐⇐ ']⇐⇒

(∃∃A ∈ )[A |⇐⇐⇐ ¬']
lemma 2.6.0.1

⇐⇒

(∃∃A ∈ )[A=1
|⇐⇐⇐ ¬'=1]⇐⇒

(∃∃A ∈ )[A=1 ̸|⇐⇐⇐ '=1]⇐⇒

(∃∃A ∈ =1)[A ̸|⇐⇐⇐ '=1]⇐⇒

'=1 ∉ Th(=1).

Therefore, Th(=1) is decidable. The same goes for Th(=2). ■

Lemma 2.6.0.2:
For any formula '(x1,… , xn) from the language L(R1, R2, .=), for any structure A for
L(R,

.
=) and for any individuals a1,… , an ∈ A we have:

A=i
|⇐⇐⇐ '[[a1,… , an]] ⇐⇒ A |⇐⇐⇐ tri(')[[a1,… , an]]

for i = 1, 2.
Proof. Induction on the construction of the formula '(x1,… , xn). ■

We remind that equiv is the class of all structures for L(R, .=) such that the predicate
symbol is interpreted as an equivalence relation on the universe of the structure.

Why was all this introduced and why is it useful? The reason is that it gives us a decon-
struction of the models of rectangle.

If we have A1,A2 ∈ equiv, then A=2
1 ×A=1

2 will be such a structure that:
• the universe is A1 × A2;
• the interpretation of RA=2

1 ×A
=1
2

1 is such that for any ⟨a, b⟩, ⟨c, d⟩ ∈ A1 × A2:

⟨⟨a, b⟩, ⟨c, d⟩⟩ ∈ R
A=2
1 ×A

=1
2

1 ⇐⇒ ⟨a, c⟩ ∈ R
A=2
1

1 && ⟨b, d⟩ ∈ R
A=1
2

1 ⇐⇒

⟨a, c⟩ ∈ R
A=2
1

1 && b = d.

• the interpretation of RA=2
1 ×A

=1
2

2 is such that for any ⟨a, b⟩, ⟨c, d⟩ ∈ A1 × A2:

⟨⟨a, b⟩, ⟨c, d⟩⟩ ∈ R
A=2
1 ×A

=1
2

2 ⇐⇒ ⟨a, c⟩ ∈ R
A=2
1

2 && ⟨b, d⟩ ∈ R
A=1
2

2 ⇐⇒

a = c&& ⟨b, d⟩ ∈ R
A=1
2

2 .

Proposition 2.6.0.3:
(1) A1 ×

mod
A2 = A=2

1 × A=1
2 , i.e., the direct product and the modal product coincides for

these specific structures.
(2) rectangle

def.
= {A1 ×

mod
A2 | A1,A2 ∈ equiv} = equiv ×

mod
equiv

2.6.0.3.(1)=

{A=2
1 ×A=1

2 | A1,A2 ∈ equiv} = =2
equiv ×=1

equiv.

48 Chapter 2. A tale of three theories

2.6.1 Decidability of Th(rectangle)

Now we will talk about the decidability of the theory of rectangle. By using old results on
decidability of generalized products and powers from the 50-ties started by Mostowski and
continued by Feferman and Vaught, we will prove a corner case corollary which will yield
one means with which we will show the decidability of Th(rectangle). The original papers are
(Mostowski, 1952) and (Feferman and Vaught, 1959).

Before we prove the decidability of the theories, we will make some preparations.
Let L be a finite RFOL language with or without formal equality .=. In order for the proof

of the proposition and theorem to go smoothly, we will think that the first-order predicate
formulae for L have some additional properties.

• First, we wish ' to not contain the connectives and quantifier {↔,→,∀} (usage of
equivalent transformations);

• Second, when we write '(x1,… , xn) we will mean that
V arfree['] ∪ V arbound['] ⊆ {x1,… , xn};

• Third, we wish that for ', V arfree['] ∩ V arbound['] = ∅ (usage of the 1.2.1.14);
• Forth, we wish that if we have a formula ∃x', then the variable x does not occur as a

bounded variable in ' (usage of the 1.2.1.14);
Until the end of the proof of proposition 2.6.1.3 we will think of the formulae of L to have
these properties.

We will need to evaluate '(x1,… , xn) in A × B for A and B some structures over L.
Then the x1,… , xn are ordered tuples with their first coordinate fromA and second coordinate
from B. Let us take fresh distinct variables y1,… , yn, z1,… , zn and then associate with each
variable xi the variables yi, zi.

We will now define a very specific finite set of ordered pairs of formulae for each formula
'(x1,… , xn) of the language L which will be evaluated in a product of two structures.
Definition 2.6.1.1:

Let '(x1,… , xn) be a formula from L.
Then we define ⟨⟨'⟩⟩ ⇋ {⟨ 1i (y1,… , yn), 2i (z1,… , zn)⟩ | i ∈ I}, where I is a non-

empty finite set of indices, using induction on the construction of the formula.
• If '(x1,… , xn) ≖ (xi

.
= xj) for some 1 ≤ i, j ≤ n, then:

⟨⟨'⟩⟩ ⇋ {⟨(yi
.
= yj), (zi

.
= zj)⟩};

• If '(x1,… , xn) ≖ p(xi1 ,… , xik) for some indices {i1,… , ik} ⊆ {1,… , n} and
k-ary predicate symbol p, then:

⟨⟨'⟩⟩ ⇋ {⟨p(yi1 ,… , yik), p(zi1 ,… , zik)⟩};

• If '(x1,… , xn) ≖ ('1 ∨ '2) and we have ⟨⟨'1⟩⟩, ⟨⟨'2⟩⟩ by the induction hypoth-
esis, then:

⟨⟨'⟩⟩ ⇋ ⟨⟨'1⟩⟩ ∪ ⟨⟨'2⟩⟩;

• If '(x1,… , xn) ≖ ('1 ∧ '2) and we have ⟨⟨'1⟩⟩, ⟨⟨'2⟩⟩ by the induction hypoth-
esis, then:

⟨⟨'⟩⟩ ⇋ {⟨(11 ∧
1
2), (

2
1 ∧

2
2)⟩ | ⟨

1
1 ,

2
1 ⟩ ∈ ⟨⟨'1⟩⟩&& ⟨ 12 ,

2
2 ⟩ ∈ ⟨⟨'2⟩⟩};

2.6. Decidability of Th(rectangle) and Th(square) 49

• If '(x1,… , xn) ≖ ¬ and we have ⟨⟨ ⟩⟩ = {⟨�1i , �2i ⟩ | i ∈ I} by the induction
hypothesis, then:

⟨⟨'⟩⟩ ⇋ {⟨
⋀

i∈J
¬�1i ,

⋀

j∈I⧵J
¬�2j ⟩ | J ∈ (I)}

(the size of the new set stays finite, but jumps exponentially);
• If '(x1,… , xn) ≖ ∃xi and we have ⟨⟨ ⟩⟩ = {⟨�1i (y1,… , yn), �2i (z1,… , zn)⟩ |

i ∈ I} by the induction hypothesis, then:
⟨⟨'⟩⟩ ⇋ {⟨∃yi�1∃zi�2⟩ | ⟨�1, �2⟩ ∈ ⟨⟨ ⟩⟩}.

Then we can prove this proposition for this effective mapping with induction on the con-
struction of a formula from the language L:
Proposition 2.6.1.2:

Let A1 and A2 be structures for L.
For all formulae '(x1,… , xn) for L and any n individuals ⟨a1, b1⟩,… , ⟨an, bn⟩ from

A1 × A2 we have that:
A1 ×A2 |⇐⇐⇐ '[[⟨a1, b1⟩,… , ⟨an, bn⟩]] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨'⟩⟩)[A1 |⇐⇐⇐
1[[a1,… , an]] &&A2 |⇐⇐⇐

2[[b1,… , bn]]].

Proof. Let A1 and A2 be structures for L.
We will prove the proposition using induction on the construction of ' in L.
• If ' ≖ (xi

.
= xj) for some 1 ≤ i, j ≤ n. Let ⟨a1, b1⟩,… , ⟨an, bn⟩ be individuals from

A1 × A2. Then:
A1 ×A2 |⇐⇐⇐ (xi

.
= xj)[[⟨a1, b1⟩,… , ⟨an, bn⟩]] ⇐⇒

⟨ai, bi⟩ = ⟨aj , bj⟩ ⇐⇒

ai = aj && bi = bj ⇐⇒

A1 |⇐⇐⇐ (yi
.
= yj)[[a1,… , an]] &&A2 |⇐⇐⇐ (zi

.
= zj)[[b1,… , bn]] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨(xi
.
= xj)⟩⟩)[A1 |⇐⇐⇐

1[[a1,… , an]] &&A2 |⇐⇐⇐
2[[b1,… , bn]]].

• If ' ≖ p(xi1 ,… , xik) for some indices {i1,… , ik} ⊆ {1,… , n} and k-ary predicate
symbol p. Let ⟨a1, b1⟩,… , ⟨an, bn⟩ be individuals from A1 × A2. Then:

A1 ×A2 |⇐⇐⇐ p(xi1 ,… , xik)[[⟨a1, b1⟩,… , ⟨an, bn⟩]] ⇐⇒

⟨⟨a1, b1⟩,… , ⟨an, bn⟩⟩ ∈ pA1×A2 ⇐⇒

⟨a1,… , an⟩ ∈ pA1 && ⟨b1,… , bn⟩ ∈ pA2 ⇐⇒

A1 |⇐⇐⇐ p(yi1 ,… , yik)[[a1,… , an]] &&A2 |⇐⇐⇐ p(zi1 ,… , zik)[[b1,… , bn]] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨p(xi1 ,… , xik)⟩⟩)[A1 |⇐⇐⇐
1[[a1,… , an]] &&A2 |⇐⇐⇐

2[[b1,… , bn]]].

50 Chapter 2. A tale of three theories

• If ' ≖ ('1 ∨ '2) and we have induction hypothesis for '1 and '2. Let ⟨a1, b1⟩,… ,
⟨an, bn⟩ be individuals from A1 × A2. Then:

A1 ×A2 |⇐⇐⇐ ('1 ∨ '2)[[⟨a1, b1⟩,… , ⟨an, bn⟩]] ⇐⇒

A1 ×A2 |⇐⇐⇐ '1[[⟨a1, b1⟩,… , ⟨an, bn⟩]] ∨∨A1 ×A2 |⇐⇐⇐ '2[[⟨a1, b1⟩,… , ⟨an, bn⟩]]
(i.ℎ)
⇐⇒

(∃∃⟨ 11 ,
2
1 ⟩ ∈ ⟨⟨'1⟩⟩)[A1 |⇐⇐⇐

1
1 [[a1,… , an]] &&A2 |⇐⇐⇐

2
1 [[b1,… , bn]]] ∨∨

(∃∃⟨ 12 ,
2
2 ⟩ ∈ ⟨⟨'2⟩⟩)[A1 |⇐⇐⇐

1
2 [[a1,… , an]] &&A2 |⇐⇐⇐

2
2 [[b1,… , bn]]] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨'1⟩⟩ ∪ ⟨⟨'2⟩⟩)[A1 |⇐⇐⇐
1[[a1,… , an]] &&A2 |⇐⇐⇐

2[[b1,… , bn]]] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨('1 ∨ '2)⟩⟩)[A1 |⇐⇐⇐
1[[a1,… , an]] &&A2 |⇐⇐⇐

2[[b1,… , bn]]].

• If ' ≖ ('1 ∧ '2) and we have induction hypothesis for '1 and '2. Let ⟨a1, b1⟩,… ,
⟨an, bn⟩ be individuals from A1 × A2. Then:

A1 ×A2 |⇐⇐⇐ ('1 ∧ '2)[[⟨a1, b1⟩,… , ⟨an, bn⟩]] ⇐⇒

A1 ×A2 |⇐⇐⇐ '1[[⟨a1, b1⟩,… , ⟨an, bn⟩]] &&A1 ×A2 |⇐⇐⇐ '2[[⟨a1, b1⟩,… , ⟨an, bn⟩]]
(i.ℎ)
⇐⇒

(∃∃⟨ 11 ,
2
1 ⟩ ∈ ⟨⟨'1⟩⟩)[A1 |⇐⇐⇐

1
1 [[a1,… , an]] &&A2 |⇐⇐⇐

2
1 [[b1,… , bn]]] &&

(∃∃⟨ 12 ,
2
2 ⟩ ∈ ⟨⟨'2⟩⟩)[A1 |⇐⇐⇐

1
2 [[a1,… , an]] &&A2 |⇐⇐⇐

2
2 [[b1,… , bn]]] ⇐⇒

(∃∃⟨ 11 ,
2
1 ⟩ ∈ ⟨⟨'1⟩⟩)(∃∃⟨ 12 ,

2
2 ⟩ ∈ ⟨⟨'2⟩⟩)

[A1 |⇐⇐⇐ (11 ∧
1
2)[[a1,… , an]] &&A2 |⇐⇐⇐ (21 ∧

2
2)[[b1,… , bn]]] ⇐⇒

(∃∃⟨(11 ∧
2
1), (

1
2 ∧

2
2)⟩ ∈ ⟨⟨('1 ∧ '2)⟩⟩)

[A1 |⇐⇐⇐ (11 ∧
1
2)[[a1,… , an]] &&A2 |⇐⇐⇐ (21 ∧

2
2)[[b1,… , bn]]] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨('1 ∧ '2)⟩⟩)[A1 |⇐⇐⇐
1[[a1,… , an]] &&A2 |⇐⇐⇐

2[[b1,… , bn]]].

• If ' ≖ ¬'1 and we have induction hypothesis for '1. Let ⟨a1, b1⟩,… , ⟨an, bn⟩ be
individuals from A1 × A2. Assume that ⟨⟨'1⟩⟩ = {⟨ 1i , 2i ⟩ | i ∈ I}. Then:

A1 ×A2 |⇐⇐⇐ ¬'1[[⟨a1, b1⟩,… , ⟨an, bn⟩]] ⇐⇒

A1 ×A2 ̸|⇐⇐⇐ '1[[⟨a1, b1⟩,… , ⟨an, bn⟩]]
(i.ℎ)
⇐⇒

(∀∀⟨ 1, 2⟩ ∈ ⟨⟨'1⟩⟩)[A1 ̸|⇐⇐⇐ 1[[a1,… , an]] ∨∨A2 ̸|⇐⇐⇐ 2[[b1,… , bn]]]
def.⟨⟨'1⟩⟩
⇐⇒

(∀∀i ∈ I)[A1 ̸|⇐⇐⇐ 1i [[a1,… , an]] ∨∨A2 ̸|⇐⇐⇐ 2i [[b1,… , bn]]] ⇐⇒

(∀∀i ∈ I)[A1 |⇐⇐⇐ ¬ 1i [[a1,… , an]] ∨∨A2 |⇐⇐⇐ ¬ 2i [[b1,… , bn]]]. (i)
Let the last equivalent reformulation be denoted as (i).
First (⇐⇒).
Let A1 ×A2 |⇐⇐⇐ ¬'1[[⟨a1, b1⟩,… , ⟨an, bn⟩]]. Then we have (i). Let:

J1 ⇋ {i | i ∈ I &&A1 |⇐⇐⇐ ¬ 1i [[a1,… , an]]}
and

J2 ⇋ {i | i ∈ I &&A2 |⇐⇐⇐ ¬ 2i [[b1,… , bn]]}.

2.6. Decidability of Th(rectangle) and Th(square) 51

By (i) it holds J1 ∪ J2 = I . Therefore, we have:
A1 |⇐⇐⇐

⋀

i∈J1

¬ 1i [[a1,… , an]] &&A2 |⇐⇐⇐
⋀

i∈J2

¬ 2i [[b1,… , bn]].

Thus, from I ⧵ J1 ⊆ J2 follows:
A1 |⇐⇐⇐

⋀

i∈J1

¬ 1i [[a1,… , an]] &&A2 |⇐⇐⇐
⋀

i∈I⧵J1

¬ 2i [[b1,… , bn]].

But ⟨ ⋀
i∈J1

¬ 1i ,
⋀

i∈I⧵J1
¬ 2i ⟩ ∈ ⟨⟨¬'1⟩⟩; therefore, we get:

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'1⟩⟩)[A1 |⇐⇐⇐
1[[a1,… , an]] &&A2 |⇐⇐⇐

2[[b1,… , bn]]].

Remark 2.6.1.1:
⋀

i∈∅
¬�i = ∀x(x

.
= x) , i.e., it is the trivial truth, for whatever formulae �i.

Now (⇐⇐).
Let (∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'1⟩⟩)[A1 |⇐⇐⇐ 1[[a1,… , an]] &&A2 |⇐⇐⇐ 2[[b1,… , bn]]].
Let ⟨ 1, 2⟩ be witnesses. Then by the definition of ⟨⟨¬'1⟩⟩ there exists a J ⊆ I , such
that 1 ≖ ⋀

i∈J
¬ 1i and 2 ≖ ⋀

i∈I⧵J
¬ 2i .

Then:
[A1 |⇐⇐⇐

⋀

i∈J
¬ 1i [[a1,… , an]]] && [A2 |⇐⇐⇐

⋀

i∈I⧵J
¬ 2i [[b1,… , bn]]] ⇐⇒

(∀∀i ∈ J)[A1 |⇐⇐⇐ ¬ 1i [[a1,… , an]]] && (∀∀i ∈ I ⧵ J)[A2 |⇐⇐⇐ ¬ 2i [[b1,… , bn]]] ⇐⇒

(∀∀i ∈ I)[A1 |⇐⇐⇐ ¬ 1i [[a1,… , an]] ∨∨A2 |⇐⇐⇐ ¬ 2i [[b1,… , bn]]].

But the last expression is (i) which is equivalent with:
A1 ×A2 |⇐⇐⇐ ¬'1[[⟨a1, b1⟩,… , ⟨an, bn⟩]].

52 Chapter 2. A tale of three theories

• If ' ≖ ∃x1'1 and we have induction hypothesis for '1 (WLOG let xi be x1). Let
⟨a1, b1⟩,… , ⟨an, bn⟩ be individuals from A1 × A2. Then:

A1 ×A2 |⇐⇐⇐ ∃x1'1[[⟨a1, b1⟩, ⟨a2, b2⟩,… , ⟨an, bn⟩]] ⇐⇒

(∃∃u ∈ A1 × A2)[A1 ×A2 |⇐⇐⇐ '1[[u, ⟨a2, b2⟩,… , ⟨an, bn⟩]]] ⇐⇒

(∃∃a′1 ∈ A1)(∃∃b
′
1 ∈ A2)(∃∃u ∈ A1 × A2)

[u = ⟨a′1, b
′
1⟩&&A1 ×A2 |⇐⇐⇐ '1[[u, ⟨a2, b2⟩,… , ⟨an, bn⟩]]] ⇐⇒

(∃∃a′1 ∈ A1)(∃∃b
′
1 ∈ A2)(∃∃⟨

1, 2⟩ ∈ ⟨⟨'1⟩⟩)

[A1 |⇐⇐⇐
1[[a′1, a2,… , an]] &&A2 |⇐⇐⇐

2[[b′1, b2,… , bn]]] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨'1⟩⟩)(∃∃a′1 ∈ A1)(∃∃b
′
1 ∈ A2)

[A1 |⇐⇐⇐
1[[a′1, a2,… , an]] &&A2 |⇐⇐⇐

2[[b′1, b2,… , bn]]] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨'1⟩⟩)

(∃∃a′1 ∈ A1)[A1 |⇐⇐⇐
1[[a′1, a2,… , an]]] && (∃∃b′1 ∈ A2)[A2 |⇐⇐⇐

2[[b′1, b2,… , bn]]] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨'1⟩⟩)

[A1 |⇐⇐⇐ ∃y1 1[[a1, a2,… , an]] &&A2 |⇐⇐⇐ ∃z1 2[[b1, b2,… , bn]]] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨∃x1'1⟩⟩)[A1 |⇐⇐⇐
1[[a1, a2,… , an]] &&A2 |⇐⇐⇐

2[[b1, b2,… , bn]]].

■

This corollary has been formulated and given a sketchy proof in the book of Ershov, but
here we will prove it in full:
Proposition 2.6.1.3:

Let L be a finite RFOL language
(1) If A1 and A2 are structures for the language L such that Th(A1) and Th(A2) are

decidable, then Th(A1 ×A2) is also decidable.
(2) If 1 and 2 are classes of structures for language L such that Th(1) and

Th(2) are decidable, then Th(1 ×2) is also decidable.
(3) Let  be a class of structures for language L such that Th() is decidable and

let ′ ⇋ {A ×A | A ∈ }. Then Th(′) is also decidable.
Proof. Proof of (1):

Let A1,A2 be structures for L such that Th(A1) and Th(A2) are decidable.
Let ' ∈ ent(L). Then we construct ⟨⟨'⟩⟩ following the definition. We have two cases

for the validity of ' in A1 ×A2.
(i) Let A1 ×A2 |⇐⇐⇐ '. Then by proposition 2.6.1.2 we have that
(∃∃⟨ 1, 2⟩ ∈ ⟨⟨'⟩⟩)[A1 |⇐⇐⇐ 1&&A2 |⇐⇐⇐ 2].
(ii) Let A1 ×A2 ̸|⇐⇐⇐ '. Then by proposition 2.6.1.2 we have that
(∀∀⟨ 1, 2⟩ ∈ ⟨⟨'⟩⟩)[A1 ̸|⇐⇐⇐ 1 ∨∨A2 ̸|⇐⇐⇐ 2].

Our decision procedure will be the following:
One by one we analyze the tuples ⟨ 1, 2⟩ ∈ ⟨⟨'⟩⟩. For each tuple ⟨ 1, 2⟩ ∈ ⟨⟨'⟩⟩,

since Th(A1) and Th(A2) are decidable, we can recognize if A1 |⇐⇐⇐ 1 and if A2 |⇐⇐⇐ 2.
Let for there exists a tuple ⟨ 1, 2⟩ ∈ ⟨⟨'⟩⟩ such that A1 |⇐⇐⇐ 1 and A2 |⇐⇐⇐ 2, then we

stop the procedure and we state that A1 ×A2 |⇐⇐⇐ '.
Let for all tuples ⟨ 1, 2⟩ ∈ ⟨⟨'⟩⟩ is true that A1 ̸|⇐⇐⇐ 1 or A2 ̸|⇐⇐⇐ 2, then we stop the

procedure and we state that A1 ×A2 ̸|⇐⇐⇐ '.

2.6. Decidability of Th(rectangle) and Th(square) 53

Since ⟨⟨'⟩⟩ is constructed from ' effectively and ⟨⟨'⟩⟩ is a finite non-empty set of pairs of
sentences, then we have a decision procedure for the validity problem for A1 ×A2.

Proof of (2): Let 1 and 2 are classes of structures for L such that Th(1) and Th(2)
are decidable. Note that 1 ×2 = {A1 ×A2 | A1 ∈ 1&&A2 ∈ 2}.

For all ' ∈ ent(L) we have that
' ∉ Th(i)⇐⇒ (∃∃Ai ∈ i)[Ai ̸|⇐⇐⇐ '],

for i = 1, 2. Since Th(i) is decidable, then given a sentence ' ∈ ent(L) the problem
' ∉ Th(i) is also decidable for i = 1, 2. Let (*) denote this fact.

Let ' ∈ ent(L).
' ∉ Th(1 ×2)⇐⇒

(∃∃A1 ∈ 1)(∃∃A2 ∈ 2)[A1 ×A2 ̸|⇐⇐⇐ ']⇐⇒

(∃∃A1 ∈ 1)(∃∃A2 ∈ 2)[A1 ×A2 |⇐⇐⇐ ¬']
prop. 2.6.1.2

⇐⇒

(∃∃A1 ∈ 1)(∃∃A2 ∈ 2)(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A1 |⇐⇐⇐
1&&A2 |⇐⇐⇐

2]⇐⇒

(∃∃A1 ∈ 1)(∃∃A2 ∈ 2)(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A1 ̸|⇐⇐⇐ ¬ 1&&A2 ̸|⇐⇐⇐ ¬ 2]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃A1 ∈ 1)(∃∃A2 ∈ 2)[A1 ̸|⇐⇐⇐ ¬ 1&&A2 ̸|⇐⇐⇐ ¬ 2]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[(∃∃A1 ∈ 1)[A1 ̸|⇐⇐⇐ ¬ 1] && (∃∃A2 ∈ 2)[A2 ̸|⇐⇐⇐ ¬ 2]].

Nowwewill demonstrate a prodecure which given a sentence' ∈ ent(L) can determine
if ' ∉ Th(1 ×2).

We construct ⟨⟨¬'⟩⟩ following the definition. One by onewe analyze the tuples ⟨ 1, 2⟩ ∈
⟨⟨¬'⟩⟩.

Let for there exists a tuple ⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩ such that (∃∃A1 ∈ 1)[A1 ̸|⇐⇐⇐ ¬ 1] and
(∃∃A2 ∈ 2)[A2 ̸|⇐⇐⇐ ¬ 2]. By (*) we have that the latter are decidable problems. By
2.6.1.3.(1) A1 ×A2 |⇐⇐⇐ ¬'. Then we stop the procedure and we state that A1 ×A2 ̸|⇐⇐⇐ '.

Let for all tuples ⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩ is true that ¬¬ (∃∃A1 ∈ 1)[A1 ̸|⇐⇐⇐ ¬ 1] or
¬¬ (∃∃A2 ∈ 2)[A2 ̸|⇐⇐⇐ ¬ 2]. By (*) we have that the latter are decidable problems. By
2.6.1.3.(1) A1 ×A2 ̸|⇐⇐⇐ ¬'. Then we stop the procedure and we state that A1 ×A2 |⇐⇐⇐ '.

Since ⟨⟨¬'⟩⟩ is constructed from ¬' effectively and ⟨⟨¬'⟩⟩ is a finite non-empty set of
pairs of sentences, then we have a decision procedure for the validity problem for 1 ×2.

Proof of (3): Let  L such that Th() is decidable.
For all ' ∈ ent(L) we have that

' ∉ Th()⇐⇒ (∃∃Ai ∈ )[A ̸|⇐⇐⇐ '].

Since Th() is decidable, then given a sentence ' ∈ ent(L) the problem ' ∉ Th() is also
decidable. Let (**) denote this fact.

Let ' ∈ ent(L).
' ∉ Th(′)⇐⇒

(∃∃A ∈ )([A ×A ̸|⇐⇐⇐ ']⇐⇒

(∃∃A ∈ )([A ×A |⇐⇐⇐ ¬']
prop. 2.6.1.2

⇐⇒

(∃∃A ∈ )(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A |⇐⇐⇐ 1&&A |⇐⇐⇐ 2]⇐⇒

(∃∃A ∈ )(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A |⇐⇐⇐ (1 ∧ 2)]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃A ∈ )[A ̸|⇐⇐⇐ ¬(1 ∧ 2)].

54 Chapter 2. A tale of three theories

Nowwewill demonstrate a prodecure which given a sentence' ∈ ent(L) can determine
if ' ∉ Th(′).

We construct ⟨⟨¬'⟩⟩ following the definition. One by onewe analyze the tuples ⟨ 1, 2⟩ ∈
⟨⟨¬'⟩⟩.

Let for there exists a tuple ⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩ such that (∃∃A ∈ )[A ̸|⇐⇐⇐ ¬(1 ∧ 2)]. By
(**) we have that the latter is a decidable problem. By 2.6.1.3.(1)A×A |⇐⇐⇐ ¬'. Then we stop
the procedure and we state that A ×A ̸|⇐⇐⇐ '.

Let for all tuples ⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩ is true that ¬¬ (∃∃A ∈ )[A ̸|⇐⇐⇐ ¬(1 ∧ 2)]. By (**)
we have that the latter are decidable problems. By 2.6.1.3.(1)A×A ̸|⇐⇐⇐ ¬'. Then we stop the
procedure and we state that A ×A |⇐⇐⇐ '.

Since ⟨⟨¬'⟩⟩ is constructed from ¬' effectively and ⟨⟨¬'⟩⟩ is a finite non-empty set of
pairs of sentences, then we have a decision procedure for the validity problem for ′.

■

Theorem 2.6.1.4:
The theory of rectangle is decidable.

Proof. We know equiv has a decidable theory discussed in subsection 1.8. Therefore, by
corollary 2.6.0.1.2, so do=2

equiv and=1
equiv. As a result from applying proposition 2.6.1.3.(2)

we have that =2
equiv × =1

equiv has a decidable theory which by proposition 2.6.0.3.(2) means
that rectangle has a decidable theory. ■

Remark 2.6.1.2:
By proposition 1.5.2.3 uni

rectangle has a decidable theory since it is a finite extension of
rectangle with the addional non-logical axiom ∀x∀y'R1◦R2(x, y).

2.6.2 Decidability of Th(square)

Remark 2.6.2.1:

square
def.
= {A ×

mod
A | A ∈ equiv}

2.6.0.3.(1)= {A=2 ×A=1
| A ∈ equiv}.

Proposition 2.6.2.1:
The theory of square is decidable.

Proof. Let ' be a sentence from L(R1, R2,
.
=). Then:

' ∉ Th(square)⇐⇒

(∃∃A ∈ equiv)[A=2 ×A=1 ̸|⇐⇐⇐ ']⇐⇒

(∃∃A ∈ equiv)[A=2 ×A=1
|⇐⇐⇐ ¬']

prop. 2.6.1.2
⇐⇒

(∃∃A ∈ equiv)(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A=2
|⇐⇐⇐ ¬ 1&&A=1

|⇐⇐⇐ ¬ 2]
lemma 2.6.0.1

⇐⇒

(∃∃A ∈ equiv)(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A |⇐⇐⇐ ¬tr2(1) &&A |⇐⇐⇐ ¬tr1(2)]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃A ∈ equiv)[A |⇐⇐⇐ (¬tr2(1) ∧ ¬tr1(2))] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃A ∈ equiv)[A |⇐⇐⇐ ¬(tr2(1) ∨ tr1(2))] ⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃A ∈ equiv)[A ̸|⇐⇐⇐ (tr2(1) ∨ tr1(2))]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[(tr2(1) ∨ tr1(2)) ∉ Th(equiv)].

2.6. Decidability of Th(rectangle) and Th(square) 55

Where tr2(1) and tr1(2) are translations of formulae from the language ofL(R1, R2, .=)
to formulae of the language of L(R, .=). We have that ⟨⟨¬'⟩⟩ is a non-empty finite set of pairs
of sentences and that � ∈ Th(equiv) is a decidable problem, rending � ∉ Th(equiv) also a
decidable problem for � ∈ ent(L(R1, R2,

.
=)). Then we can conclude that square also has

a decidable theory.
■

Remark 2.6.2.2:
By proposition 1.5.2.3uni

square has a decidable theory since it is a finite extension ofsquare
with the addional non-logical axiom ∀x∀y'R1◦R2(x, y).

56 Chapter 2. A tale of three theories

2.7 rectangle and square have FMP

2.7.1 rectangle has FMP

We will show that rectangle has FMP and also show decidability of the theory of  fin
rectangle.

Lemma 2.7.1.1:
Let L be a RFOL language.
(1) If1 and2 be classes of the structures for L have FMP, then1 ×2 has FMP.
(2) Let  be a class of structures for language L such that it has FMP and let
′ ⇋ {A ×A | A ∈ }. Then ′ is also has FMP.

Proof. Proof of (1): Let ' ∈ ent(L) and let A be an arbitrary structure from 1 ×2 such
that A ̸|⇐⇐⇐ '.

Since A ∈ 1 × 2, then there exist structures A1 ∈ 1 and A2 ∈ 2 such that A =
A1 ×A2. Let A1 and A2 be witnesses.
Then:

A ̸|⇐⇐⇐ '⇐⇒

A1 ×A2 ̸|⇐⇐⇐ '⇐⇒

A1 ×A2 |⇐⇐⇐ ¬'
prop.2.6.1.2
⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A1 |⇐⇐⇐
1&&A2 |⇐⇐⇐

2]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A1 ̸|⇐⇐⇐ ¬ 1&&A2 ̸|⇐⇐⇐ ¬ 2]
def. 1.5.2.1

⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃B1 ∈  fin
1)(∃∃B2 ∈  fin

2)[B1 ̸|⇐⇐⇐ ¬ 1&&B2 ̸|⇐⇐⇐ ¬ 2]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃B1 ∈  fin
1)(∃∃B2 ∈  fin

2)[B1 |⇐⇐⇐
1&&B2 |⇐⇐⇐

2]⇐⇒

(∃∃B1 ∈  fin
1)(∃∃B2 ∈  fin

2)(∃∃⟨
1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[B1 |⇐⇐⇐

1&&B2 |⇐⇐⇐
2]

prop.2.6.1.2
⇐⇒

(∃∃B1 ∈  fin
1)(∃∃B2 ∈  fin

2)[B1 ×B2 |⇐⇐⇐ ¬']⇐⇒

(∃∃B ∈  fin
1 × fin

2)[B |⇐⇐⇐ ¬']⇐⇒

(∃∃B ∈  fin
1 × fin

2)[B ̸|⇐⇐⇐ '].

Thus, 1 ×2 has FMP.
Proof of (2): Let ' ∈ ent(L) and let ℭ be an arbitrary structure from ′ such that

ℭ ̸|⇐⇐⇐ '.
Since ℭ ∈ ′, then there exists a structure A ∈  such that ℭ = A × A. Let A be a

witness.

2.7. rectangle and square have FMP 57

Then:
ℭ ̸|⇐⇐⇐ '⇐⇒

A ×A ̸|⇐⇐⇐ '⇐⇒

A ×A |⇐⇐⇐ ¬'
prop.2.6.1.2
⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A |⇐⇐⇐ 1&&A |⇐⇐⇐ 2]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A |⇐⇐⇐ (1 ∧ 2)]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A ̸|⇐⇐⇐ ¬(1 ∧ 2)]
def. 1.5.2.1

⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃B ∈ fin)[B ̸|⇐⇐⇐ ¬(1 ∧ 2)]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃B ∈ fin)[B |⇐⇐⇐ (1 ∧ 2)]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃B ∈ fin)[B |⇐⇐⇐ 1&&B |⇐⇐⇐ 2)]⇐⇒

(∃∃B ∈ fin)(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[B |⇐⇐⇐ 1&&B |⇐⇐⇐ 2)]
prop.2.6.1.2
⇐⇒

(∃∃B ∈ fin)[B ×B |⇐⇐⇐ ¬']⇐⇒

(∃∃B′ ∈ (′)fin)[B′
|⇐⇐⇐ ¬']⇐⇒

(∃∃B′ ∈ (′)fin)[B′ ̸|⇐⇐⇐ '].

Thus, ′ has FMP. ■

Proposition 2.7.1.2:
(1) If we have two classes of finite structures 1 and 2 for the same RFOL language L ,

then 1 ×2 is also a class of finite structures.
(2) If we have a class of finite structures for L(R, .=), then=2 and=1 are also classes

of finite structures.
Proof. Proof of (1):

Each of the universes of structures of 1 ×2 is a Cartesian product of a finite universe
of a structure of1 and a finite universe of a structure of2 which is again a finite universe.

Proof of (2): To each structure of the class  we only add an interpretation of a new
relation symbol of the language and nothing is added to the universe of the structure making
the resulting structure again finite. ■

Remark 2.7.1.1:
For a class of structures  for the language L(R, .=), (=i) fin = ( fin)=i for i = 1, 2.

Remark 2.7.1.2:
Let  fin

equiv be the class of finite partitions.
 fin

rectangle = (
fin
equiv)

=2×( fin
equiv)

=1 2.7.1.1= (=2
equiv)

fin×(=1
equiv)

fin is also a class of finite
structures.

Proposition 2.7.1.3:
Let  be a class of structures for L(R, .=).

If  has FMP then =i has FMP for i = 1, 2.
Proof. Let  has FMP. We will show that =1 (the proof for =2 is analogous).

58 Chapter 2. A tale of three theories

Let ' ∈ ent(L(R1, R2,
.
=)).

' ∉ Th(=1)⇐⇒

(∃∃A=1 ∈ =1)[A=1 ̸|⇐⇐⇐ ']⇐⇒

(∃∃A=1 ∈ =1)[A=1
|⇐⇐⇐ ¬']

lemma 2.6.0.1
⇐⇒

(∃∃A ∈ )[A |⇐⇐⇐ ¬tr1(')]⇐⇒

(∃∃A ∈ )[A ̸|⇐⇐⇐ tr1(')]
def. 1.5.2.1

⇐⇒

(∃∃B ∈ fin)[B ̸|⇐⇐⇐ tr1(')]⇐⇒

(∃∃B ∈ fin)[B |⇐⇐⇐ ¬tr1(')]
lemma 2.6.0.1

⇐⇒

(∃∃B=1 ∈ (fin)=1)[B=1
|⇐⇐⇐ ¬']⇐⇒

(∃∃B=1 ∈ (fin)=1)[B=1 ̸|⇐⇐⇐ ']
rem. 2.7.1.1
⇐⇒

(∃∃B=1 ∈ (=1)fin)[B=1 ̸|⇐⇐⇐ '].

Thus, =1 has FMP. ■

Theorem 2.7.1.4:
rectangle has FMP.

Proof. From equiv has FMP we have from 2.7.1.3 and 2.7.1.1.(1) that =2
equiv × =1

equiv has
FMP, i.e., rectangle has FMP by remark 2.7.1.2. ■

Corollary 2.7.1.4.1:
Th( fin

rectangle) is decidable.
Proof. rectangle has FMP by theorem 2.7.1.4; therefore, Th( fin

rectangle) = Th(rectangle).
rectangle is decidable by theorem 2.6.1.4, so Th( fin

rectangle) is also decidable. ■

2.7.2 square has FMP

Remark 2.7.2.1:
Let  fin

equiv be the class of finite partitions.
 fin

square = {A=2 ×A=1
| A ∈ fin

equiv} is also a class of finite structures.
Theorem 2.7.2.1:

square has FMP.

2.7. rectangle and square have FMP 59

Proof. Let ' ∈ ent(L(R1, R2,
.
=)).

' ∉ Th(square)⇐⇒

(∃∃A ∈ equiv)[A=2 ×A=1 ̸|⇐⇐⇐ ']⇐⇒

(∃∃A ∈ equiv)[A=2 ×A=1
|⇐⇐⇐ ¬']

prop.2.6.1.2
⇐⇒

(∃∃A ∈ equiv)(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A=2
|⇐⇐⇐ 1&&A=1

|⇐⇐⇐ 2]
lemma 2.6.0.1

⇐⇒

(∃∃A ∈ equiv)(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A |⇐⇐⇐ tr2(1) &&A |⇐⇐⇐ tr1(2)]⇐⇒

(∃∃A ∈ equiv)(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A |⇐⇐⇐ (tr2(1) ∧ tr1(2))] ⇐⇒

(∃∃A ∈ equiv)(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[A ̸|⇐⇐⇐ ¬(tr2(1) ∧ tr1(2))]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃A ∈ equiv)[A ̸|⇐⇐⇐ ¬(tr2(1) ∧ tr1(2))]
def. 1.5.2.1

⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃B ∈ fin
equiv)[B ̸|⇐⇐⇐ ¬(tr2(1) ∧ tr1(2))]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃B ∈ fin
equiv)[B |⇐⇐⇐ (tr2(1) ∧ tr1(2))]⇐⇒

(∃∃⟨ 1, 2⟩ ∈ ⟨⟨¬'⟩⟩)(∃∃B ∈ fin
equiv)[B |⇐⇐⇐ tr2(1) &&B |⇐⇐⇐ tr1(2)]

lemma 2.6.0.1
⇐⇒

(∃∃B ∈ fin
equiv)(∃∃⟨

1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[B |⇐⇐⇐ tr2(1) &&B |⇐⇐⇐ tr1(2)]
lemma 2.6.0.1

⇐⇒

(∃∃B ∈ fin
equiv)(∃∃⟨

1, 2⟩ ∈ ⟨⟨¬'⟩⟩)[B=2
|⇐⇐⇐ 1&&B=1

|⇐⇐⇐ 2]
prop.2.6.1.2
⇐⇒

(∃∃B ∈ fin
equiv)[B

=2 ×B=1
|⇐⇐⇐ ¬']⇐⇒

(∃∃B ∈ fin
equiv)[B

=2 ×B=1 ̸|⇐⇐⇐ '].

Therefore, square has FMP. ■

Corollary 2.7.2.1.1:
Th( fin

square) is decidable.
Proof. square has FMP by theorem 2.7.2.1; therefore, Th( fin

square) = Th(fin
square).

square is decidable by proposition 2.6.2.1, so Th( fin
square) is also decidable.

■

2.7.3 Another way to see that rectangle has FMP

Wewill not be satisfied with having only one method demonstrateing thatrectangle has FMP.
We will show another method using Ehrenfeucht–Fraïssé games and the fact that equiv has
FMP and the methods used by Tinchev and Balbiani for obtaining it by reducing the cardi-
nality of structures in equiv to finite ones as in (Balbiani and Tinchev, 2006).

This method gives us more information about the exact upper bound of the complexity
of the membership problem to Th(rectangle) than the previous. In the previous the amount of
pairs in a set ⟨⟨'⟩⟩ for a sentence' jumps exponentially on each encounter of the propositional
connective ¬ as well as the lengths of the formulae jump drastically (syntactically a lot of
formulae are generated on each step which are logically equivalent; for each quantifier ∀ we
get formulae of exponential length); thus, rending the previous solution to have an exponential
space complexity.

We will use a property about the Ehrenfeucht–Fraïssé game strategies formulated for the
direct product × of the “playing boards” for which have lemma 1.5.1.6.

60 Chapter 2. A tale of three theories

Proposition 2.7.3.1:
Let A be a structure for the language L(R, .=) and let k ∈ !. Then the uplicator has a
winning strategy for Gk(A,A=2) and Gk(A,A=1).

Proof. In the structures A=2 and A=1 we have only added a new relation symbol interpreted
with the formal equality of the structureA, so it is trivial for theuplicator to win the k-round
games by just copying the moves of the poiler. ■

Let us denote by red2(k) the composition of the two refinements used in (Balbiani and
Tinchev, 2006) to reduce structures of the class equiv to finite ones. The first refinement
cuts down on the size of the blocks of the equivalence relation to blocks having no more than
k elements and the second refinement cuts down on the number of blocks with a specific
cardinality, that is, for 1 ≤ i ≤ k there are no more than k blocks of cardinality i.
Proposition 2.7.3.2:

=2
equiv and =1

equiv have FMP.
Proof. First of all we remind that equiv has FMP.

We will show that =2
equiv has FMP. The reasoning for =1

equiv is analogous. Let ' be a
sentence of L(R1, R2, .=) and let qr(').

Let (i) be the following corollary of proposition 2.7.3.1 and the Fraïssé–Hintikka theorem:
(∀∀A ∈ equiv)[A ≡∗k A

=2],

whereby the ∗ we denote that the formulae must be translated between the structures in the
manner described in the beginning of the section. Note that qr(tri(')) = qr(') = k for
i = 1, 2.

Let (ii) denote the fact that:
(∀∀A ∈ equiv)[(Ared2(k))=2 ≅ (A=2)red2(k)].

Let (iii) denote the facts:
(∀∀A ∈ equiv)[Ared2(k) ≡k A] and (∀∀A ∈ =i

equiv)[A
red2(k) ≡k A],

for i = 1, 2.
Then:

' ∉ Th(=2
equiv)⇐⇒

(∃∃A=2 ∈ =2
equiv)[A

=2 ̸|⇐⇐⇐ ']⇐⇒

(∃∃A=2 ∈ =2
equiv)[A

=2
|⇐⇐⇐ ¬']

(i)
⇐⇒

(∃∃A ∈ equiv)[A |⇐⇐⇐ ¬tr2(')]⇐⇒

(∃∃A ∈ equiv)[A ̸|⇐⇐⇐ tr2(')]
(iii)
⇐⇒

(∃∃A ∈ equiv)[Ared2(k) ̸|⇐⇐⇐ tr2(')]⇐⇒

(∃∃A ∈ equiv)[Ared2(k)
|⇐⇐⇐ ¬tr2(')]

(i)
⇐⇒

(∃∃A ∈ equiv)[(Ared2(k))=2 |⇐⇐⇐ ¬']⇐⇒

(∃∃A ∈ equiv)[(Ared2(k))=2 ̸|⇐⇐⇐ ']
rem. 2.7.1.1 and (ii)

⇐⇒

(∃∃ℭ ∈ (=2
equiv)

fin)[ℭ ̸|⇐⇐⇐ '].

2.7. rectangle and square have FMP 61

Therefore, =2
equiv has FMP. ■

Theorem 2.7.3.3:
rectangle has FMP.

Proof. Let ' be a sentence in the language L(R1, R2, .=) such that qr(') = k. By combing
all the previous results plus some previous subsection, we get:

' ∉ Th(rectangle)⇐⇒

(∃∃A1 ∈ =2
equiv)(∃∃A2 ∈ =1

equiv)[A1 ×A2 ̸|⇐⇐⇐ ']
prop. 2.7.3.2 and lemma 1.5.1.6 and (iii)

⇐⇒

(∃∃A1 ∈ =2
equiv)(∃∃A2 ∈ =1

equiv)[A
red2(k)
1 ×Ared2(k)

2 |⇐⇐⇐ ¬']
rem. 2.7.1.1 and (ii)

⇐⇒

(∃∃B1 ∈ (=2
equiv)

fin)(∃∃B2 ∈ (=1
equiv)

fin)[B1 ×B2 ̸|⇐⇐⇐ ']⇐⇒

(∃∃ℭ ∈  fin
rectangle)[ℭ ̸|⇐⇐⇐ '].

■

2.7.4 Another way to see that square has FMP

Proposition 2.7.4.1:
square has FMP.

Proof. Let ' be a sentence in the language L(R1, R2, .=) such that qr(') = k. By combing
all the previous results plus some previous subsections, we get:

' ∉ Th(square)⇐⇒

(∃∃A ∈ equiv)[A=2 ×A=1 ̸|⇐⇐⇐ ']
lemma 1.5.1.6 and (iii)

⇐⇒

(∃∃A ∈ equiv)[(A=2)red2(k) × (A=1)red2(k) ̸|⇐⇐⇐ ']
(ii)
⇐⇒

(∃∃A ∈ equiv)[(Ared2(k))=2 × (Ared2(k))=1 ̸|⇐⇐⇐ '] ⇐⇒

(∃∃B ∈  fin
equiv)[B

=2 ×B=1 ̸|⇐⇐⇐ ']⇐⇒

(∃∃ℭ ∈  fin
square)[ℭ ̸|⇐⇐⇐ '].

Thus,square has FMP. ■

63

Chapter 3

Modal definability problem in
commute

In section 1.7 we discussed a method developed by Balbiani and Tinchev for reducing the
problem of deciding the validity of sentences over some class of structures to the problem of
modal definability over the same class of structures.

We are interested in their results regarding the class of all bi-partitioned frames 2S5 ,
i.e., coincidesthe two relations are interpreted as equivalence relations w.r.t. the universe.

The notion of Stable class of frames is too restricting by fixing the formula so early on.
If the conditions in the definition are relaxed it can be proven that the problem of deciding the
validity of sentences in 2S5 is reducible to the problem of modal definability problem w.r.t.
2S5.
Theorem 3.0.0.1:

The problem of deciding the validity of sentences in 2S5 is reducible to MD-def w.r.t.
2S5.

Proof. See in (Balbiani and Tinchev, 2017), Theorem 10. ■

Corollary 3.0.0.1.1:
MD-def w.r.t. 2S5 is undecidable.

Proof. See in (Balbiani and Tinchev, 2017), Corollary 9. ■

Theorem 3.0.0.2:
The problem of deciding the validity of sentences in  fin

2S5 is reducible to MD-def w.r.t.
 fin

2S5.
Proof. See in (Balbiani and Tinchev, 2017), Theorem 11. ■

We will consern ourselves with the class commute ⊆ 2S5 and show that the problem
of deciding the validity of sentences in commute is reducible to MD-def w.r.t. commute by
following the proof of that of 2S5. We will prove it in full reproducing the proof of 3.0.0.1
in the following theorem:
Theorem 3.0.0.3:

The problem of deciding the validity of sentences in commute is reducible to MD-def
w.r.t. commute.

Proof. Let ' ∈ orm(L(R1, R2,
.
=)) be defined '(x, x1) ⇋ ¬∃z(R1(x1, z) ∧ R2(z, x)). Re-

mark that x1 and x will differ, because in the structures of commute the composition of the
two relations is an equivalence relations.

64 Chapter 3. Modal definability problem in commute

Let � ∈ ent(L(R1, R2,
.
=)) be such that qr(�) = k for some k ∈ ! and define the

sentence to depend on qr(�) in the following manner:
 ⇋ ∃y1…∃yk+1(

⋀

1≤i<j≤k+1
R1(yi, yj) ∧

⋀

1≤i<j≤k+1
¬R2(yi, yj)∧

∀z∀t(R1(y1, z) ∧ R2(z, t)→ R1(y1, t))∧

∀z(R1(y1, z)→ ∃t1…∃tk(
⋀

1≤i<j≤k
¬(ti

.
= tj) ∧

⋀

1≤i≤k
R2(z, ti)))).

The sentence says that there exists an R2-closed equivalence class modulo R1 containing
at least k+1mutually disjoint equivalence classes moduloR2 and everyR2-equivalence class
has at least k elements. In our terminology it says that there exists a matrix w.r.t. R1◦R2 such
that it has only one row with at least k+ 1 cells in it, each of which has at least k elements in
it. It looks like this:

≥ k ≥ k ≥ k . . . ≥ k
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥ k + 1
Let � ⇋ ∃x1(∃x'(x, x1) ∧ ¬(�)

'(x,x1)
x) ∧ be a sentence of L(R1, R2, .=). We will prove

that commute |⇐⇐⇐ � ⇐⇒ � is modally definable w.r.t. commute.
(⇐⇒): Let commute |⇐⇐⇐ � . We will show that ⊥ is a modal definition of � w.r.t. commute.

FTSOC suppose (∃∃F ∈ commute)[F |⇐⇐⇐ �] and let F0 be a witness.
Then F0 |⇐⇐⇐ ∃x1(∃x'(x, x1) ∧ ¬(�)

'(x,x1)
x) and let a1 ∈ F0 be a witness. Therefore,

F0 |⇐⇐⇐ ¬(�)
'(x,x1)
x [[a1]] , i.e., F0 ̸|⇐⇐⇐ (�)

'(x,x1)
x [[a1]]. Let F′ be the relativized reduct of F0 w.r.t.

'(x, x1) and a1 and it exists by remark 1.7.1.1. This means that F′ is the set of all matrices
from F0 that do not contain a1; therefore, F′ ∈ commute. Since F′ is the relativized reduct
of F0 w.r.t. '(x, x1) and a1, by Relativization theorem we have:

F0 |⇐⇐⇐ (�)
'(x,x1)
x [[a1]] ⇐⇒ F′

|⇐⇐⇐ �. (i)
Since F0 ̸|⇐⇐⇐ (�)

'(x,x1)
x [[a1]], by (i) F′ ̸|⇐⇐⇐ � . But F′ ∈ commute; therefore, F′

|⇐⇐⇐ � . We
obtained a contradiction.

(⇐⇐): Now let � be modally definable w.r.t. commute and let A be a modal definition of
� w.r.t. commute. FTSOC suppose commute ̸|⇐⇐⇐ � . Let F0 = ⟨W0, R01, R02⟩ ∈ commute
such that F0 ̸|⇐⇐⇐ � . Let F1 = ⟨W1, R11, R12⟩ ∈ commute be the same structure as F with
the exception that every matrix which has only one row with at least k + 1 cells in it, each of
which has at least k elements in it, is replaced by a matrix such that it has only one row with
exactly k cells in it, each of which has exactly k elements in it.

≥ k ≥ k ≥ k . . . ≥ k
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥ k + 1

←→
k k . . . k
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k

FIGURE 3.1: How the specific matrices in F0 are replaced with “smaller”
matrices in F1

It is immediate thatF1 ̸|⇐⇐⇐ . We can easily prove that theuplicator has a winning strat-
egy for Gk(F0,F1); hence, by Fraïssé–Hintikka theorem we have that F0 ≡k F1. Therefore,
since F0 ̸|⇐⇐⇐ � and qr(�) = k, then F1 ̸|⇐⇐⇐ � .

Chapter 3. Modal definability problem in commute 65

LetW i be k + 1 sets such that:
• card(W i) = k, for 1 ≤ i ≤ k + 1;
• for 1 ≤ i < j ≤ k + 1W i ∩W j = ∅;
• LetWu ⇋

⋃

1≤i≤k+1
W i. ThenWu ∩W1 = ∅.

Let a1 ∈ W 1 be a witness of the non-emptiness ofW 1.
Let us define the frame F = ⟨W ,R1, R2⟩:

• W ⇋ W1 ∪Wu;
• R1 ⇋ R11 ∪Wu ×Wu;
• R2 ⇋ R12 ∪

⋃

1≤i≤k+1
(W i ×W i).

I.e. we add to F1 this matrix:

W 1 W 2 W 3 . . . W k+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k + 1

The added equivalence classes form a new equivalence class in the composition of the
relations, because the union of the added classes form an equivalence relation and by 1.3.1.4
we have that they commute. Since F1 ∈ commute and the newly added class commutes, then
F ∈ commute.

Let us define the frame F′ = ⟨W ′, R′1, R
′
2⟩:

• W ′ ⇋ W1 ∪ {a1};
• R′1 ⇋ R11 ∪ {⟨a1, a1⟩};
• R′2 ⇋ R12 ∪ {⟨a1, a1⟩}.

Again the added equivalence classes form a new equivalence class in the composition of the
relations, because the union of the added classes form an equivalence relation and by 1.3.1.4
we have that they commute. Since F1 ∈ commute and the newly added class commutes, then
F′ ∈ commute.

I.e. we add to F1 this matrix:

a1
⏟⏟⏟

1

Then F1 is a relativized reduct of F w.r.t. '(x, x1) and a1, F |⇐⇐⇐ , F′ ̸|⇐⇐⇐ and F′ is a
bounded morphic image of F, for example a bounded morphism is f ∶ W ↠ W ′:

f (x)⇋

{

a1, if x ∈ Wu,
x, if x ∈ W1.

66 Chapter 3. Modal definability problem in commute

W 1 W 2 W 3 . . . W k+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k + 1

f
←←←←←←→

a1
⏟⏟⏟

1

FIGURE 3.2: How a witness bounded morphism f “compresses” the matrix
added to F1 to form F

By Bounded morphism lemma we have that F ⪯ F′.
Since F′ ̸|⇐⇐⇐ , then F′ ̸|⇐⇐⇐ �. But A is a modal definition of � w.r.t. commute, F,F′ ∈

commute and F ⪯ F′; therefore, F ̸|⇐⇐⇐ �. Since, F |⇐⇐⇐ , then F ̸|⇐⇐⇐ ∃x1(∃x'(x, x1) ∧
¬(�)'(x,x1)x).

F1 is a relativized reduct of F w.r.t. '(x, x1) and a1, so by Relativization theorem we
have: i

F |⇐⇐⇐ (�)'(x,x1)x [[a1]] ⇐⇒ F1 |⇐⇐⇐ �. (ii)
Moreover F |⇐⇐⇐ ∃x'[[a1]].

But F ̸|⇐⇐⇐ ∃x1(∃x'(x, x1) ∧ ¬(�)
'(x,x1)
x); hence, F |⇐⇐⇐ (�)'(x,x1)x [[a1]]. Now using (ii) we

get that F1 |⇐⇐⇐ � , which is a contradiction.
From (⇐⇒) and (⇐⇐) we conclude that commute |⇐⇐⇐ � ⇐⇒ � is modally definable w.r.t.

commute.
■

Corollary 3.0.0.3.1:
MD-def w.r.t. commute is undecidable.

Proof. By theorem 2.5.0.3 the problem of deciding the validity of sentences in commute is
undecidable; therefore, by theorem 3.0.0.3 we have our statement. ■

Theorem 3.0.0.4:
The problem of deciding the validity of sentences in fin

commute is reducible to MD-def
w.r.t. fin

commute.
Proof. Remark that if the frameF0 is finite then the construction in the proof of theorem 3.0.0.3
shows that F and F′ are also finite. Therefore, the problem of deciding validity of sentences
in fin

commute is reducible toMD-def w.r.t. fin
commute. ■

Corollary 3.0.0.4.1:
MD-def w.r.t. w.r.t. fin

commute is undecidable.

67

Chapter 4

Summary and further work

The main results of this work can be summarized in the following table:
Classes and status of validity in them

Classes of structures Arbitrary cardinality Finite cardinality
uni

commute undecidable undecidable
commute undecidable undecidable
uni

rectangle decidable decidable
rectangle decidable decidable
uni

square decidable decidable
square decidable decidable

Also,MD-def w.r.t. commute is undecidable. In future works we will be interested in the
status of MD-def and FO-def in all classes mentioned. We conjecture that for some of the
abovementioned classesMD-def is a decidable problemw.r.t. the particular class in question.

An object of interest in our study of MD-def will be also some subclasses of structures
of commute with various “constraints” like the following:

• Let for each n ∈ !+ R1≤n
commute be the class of all structures from commute such that for

each matrix in the structure the rows have ≤ n number of cells.
• Let for each n ∈ !+ R1≤n,R2<w

commute be the class of all structures from R1≤n
commute such that

for each matrix in the structure the columns have a finite number of cells.
We conjecture that they have FMP. The classes R1≤n

commute for n ∈ !+ are finitely axiom-
atizable. All the classes of these types can be proven to have decidable theories. The even
tighter classes R1≤n,R2≤m

commute for n, m ∈ !+ are finitely axiomatizable and decidable.
We will also be interested in syntactically complete extensions of Th(commute). For ex-

ample let 1,∞,∞,∞
commute be a subclass of commute such that each structure is a collection of are

infinitely many matrices and each matrix has infinitely many columns, infinitely many rows
and all cells are of cardinality 1. We conjecture that the theory of 1,∞,∞,∞

commute is decidable
and syntactically complete. Is it possible to describe all syntactically complete extensions of
commute? What about MD-def w.r.t. these classes.

69

Bibliography

Mostowski, A. (1952). “On Direct Products of Theories”. In: The Journal of Symbolic Logic
17.1, pp. 1–31.

Janiczak, A. (1953). “Undecidability of some simple formalized theories”. In: Fundamenta
Mathematicae 40.2, pp. 131–139.

H. Rogers, Jr (1956). “Certain Logical Reduction and Decision Problems”. In: Annals of
Mathematics, Second Series 64.2, pp. 264–284.

Feferman, S. and R. Vaught (1959). “The first order properties of products of algebraic sys-
tems”. In: Fundamenta mathematical 47.1, pp. 57–103.

Lavrov, I. A. (1963). “The effective non-separability of the set of identically true formulae
and the set of finitely refutable formulae for certain elementary theories”. In: Algebra i
Logika. Sem. 2.1, pp. 5–18.

Ershov, Yu. L. et al. (1965). “Elementary theories”. In: Uspekhi Mat. Nauk 20.4.
Shoenfield, J. R. (1967). Mathematical logic). Addison-Wesley Series in Logic. Addison-

Wesley Publishing Company.
Ershov, Yu. L. (1980). Problems of decidability and constructive models. Nauka, Moscow,

pp. 265–275.
Ebbinghaus, H. and J. Flum (1995). Finite Model Theory. Springer-Verlag Berlin Heidelberg,

pp. 13–26.
Finberg, D., M. Mainetti, and G.-C. Rota (1996). “The Logic of Commuting Equivalence

Relations”. In: Lecture Notes in Pure and Applied Mathematics 180, pp. 69–97.
Boerger, E., E. Grädel, and Y. Gurevich (1997). The classical decision problem. Springer-

Verlag Berlin Heidelberg.
Chagrov, A. and M. Zakharyaschev (1997). Modal Logic. Oxford Logic Guides. Clarendon

Press.
Kurucz, Agi et al. (2003). Many-dimensional modal logics: Theory and applications. Else-

vier.
Decidability and Complexity of Definability within the Class of All Partitions (2005), pp. 26–

33.
Balbiani, Ph. and T. Tinchev (2006). “Definability over the class of all partitions”. In: Journal

of Logic and Computation 16.5, pp. 541–557.
Georgiev, G. and T. Tinchev (2008). “Second-order logic on equivalence relations”. In: Jour-

nal of Applied Non-Classical Logics 18.2-3, pp. 229–246.
Hodges, W. (2008).Model Theory. Encyclopedia of Mathematics and its Applications. Cam-

bridge University Press.
Balbiani, Ph. and T. Tinchev (2017). “Undecidable problems for modal definability”. In: Jour-

nal of Logic and Computation 27.3, 901––920.

	Abstract
	Preliminaries
	General
	First-order logic
	Syntax
	Semantics
	Some foundational theorems of RFOL

	Equivalence relations
	Two commuting equivalence relations

	A method to prove a theory undecidable
	Relative elementary definability

	A method to prove a theory decidable
	Ehrenfeucht–Fraïssé games
	Decidability and finite model property for first-order logic

	Propositional modal logic
	Syntax
	Semantics

	Correspondence theory
	Relativization in FOL
	Stable classes of frames and modal definability

	Some history on related theories

	A tale of three theories
	Formulation of the problem
	How can we describe the structures?
	Do they differ?
	Th(Kcommute) is a proper subtheory of Th(Krectangle)
	Th(Krectangle) is a proper subtheory of Th(Ksquare)

	Are the classes axiomatizable?
	Undecidability of Th(Kcommute)
	Decidability of Th(Krectangle) and Th(Ksquare)
	Decidability of Th(Krectangle)
	Decidability of Th(Ksquare)

	Krectangle and Ksquare have FMP
	Krectangle has FMP
	Ksquare has FMP
	Another way to see that Krectangle has FMP
	Another way to see that Ksquare has FMP

	Modal definability problem in Kcommute
	Summary and further work
	Bibliography

