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Abstract

The purpose of this note is to correct an absurd mistake in [3, Theo-
rem 3.4(i)], which lead to a mistake in the description of the trivial class
of the family of the Kantorovich sampling operators in variable exponent
Lebesgue spaces. In addition, we extend slightly the results in the above-
mentioned paper dropping the assumption that the exponent function is
finite.
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Lebesgue space

Let f : R → R be a locally Lebesgue integrable function and χ : R → R.
Bardaro, Butzer, Stens and Vinti [1] introduced the Kantorovich-type sampling
operators

(1) (Sχ
wf)(x) :=

∑
k∈Z

w

θk

∫ tk+1/w

tk/w

f(u) duχ(wx− tk), x ∈ R, w > 0,

where {tk}k∈Z is a sequence of reals such that θ ≤ θk := tk+1 − tk ≤ Θ for all
k ∈ Z with some constants θ,Θ > 0. It is assumed that both f and χ satisfy
certain assumptions, which provide the convergence of the series in (1) at least
almost everywhere in R.

We consider approximation in variable exponent Lebesgue spaces. Let us
recall their definition.

Let p : R → [1,+∞] be Lebesgue measurable. As it is customary in this
setting, to emphasize that p is generally non-constant, we will write p(·). It is
the exponent function of the variable exponent Lebesgue space.

We set
p∗ := ess inf

x∈R
p(x), p∗ := ess sup

x∈R
p(x)

and
Rp(·)

∞ := {x ∈ R : p(x) = +∞}.
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Next, for a Lebesgue measurable function f on R, we set

ρp(·)(f) :=

∫
R\Rp(·)

∞

|f(x)|p(x)dx+ ess sup
x∈Rp(·)

∞

|f(x)|.

The variable exponent Lebesgue space Lp(·)(R) is the set of all Lebesgue mea-
surable functions f on R, for which there exists λ > 0 such that

ρp(·)(f/λ) < ∞.

It is a Banach space with the norm (see e.g. [2, Theorem 2.25])

∥f∥p(·) := inf{λ > 0 : ρp(·)(f/λ) ≤ 1}.

As is known, if f ∈ Lp(·)(R), then f is locally Lebesgue integrable (see e.g. [2,
Corollary 2.27]); hence the integral terms in (1) are defined.

In [3, Theorems 1.2 and 1.3] we established a direct estimate and a matching
two-term strong converse one for ∥Sχ

wf−f∥p(·) by means of moduli of smoothness
in Lp(·)(R) with finite exponent p(·) such that p∗ > 1 and 1/p(·) ∈ LH(R).
Crucial in the proofs was the boundedness of the Hardy-Littlewood maximal
operator, which follows from p∗ > 1 and 1/p(·) ∈ LH(R) regardless of whether
p(·) is finite or not. As usual, LH(R) denotes the space of the log-Hölder
continuous functions on R. We refer to [2, Definition 2.2] for its definition.

The assumption that p(·) is finite was made only for convenience and is
not actually related to the proof of [3, Theorems 1.2 and 1.3] and, hence, their
validity. That is also true for the assertions concerning the saturation class
and rate of {Sχ

w}w>0 stated in [3, Theorem 1.5]. The description of its trivial
class, however, needs clarification; moreover, the statement concerning it in [3,
Theorem 1.5] is not quite correct—it holds for finite p(·) only if, in addition,
p∗ < ∞.

Below, we give the complete and correct description of the saturation prop-
erty of the family {Sχ

w}w>0. In its statement, W r
p(·)(R) is the variable exponent

Sobolev space

W r
p(·)(R) := {f ∈ Lp(·)(R) : f ∈ ACr−1

loc (R), f (r) ∈ Lp(·)(R)},

Mα(χ) is the discrete absolute moment of χ of order α ≥ 0 w.r.t. {tk}k∈Z, which
is given by

Mα(χ) := sup
u∈R

∑
k∈Z

|tk − u|α|χ(u− tk)|,

and |S| is the Lebesgue measure of the set S ⊆ R provided that it exists.

Theorem 1. Let r ∈ N+ and p(·) be an exponent function on R such that
p∗ > 1 and 1/p(·) ∈ LH(R). Let χ ∈ Cr+1(R) be such that:

(i) Mr+1(χ),Mr(χ
(r+1)) < ∞,

(ii)
∑
k∈Z

χ(u− tk) ≡ 1,
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(iii)

j∑
ℓ=0

(
j + 1

ℓ

)∑
k∈Z

θj−ℓ
k (tk − u)ℓχ(u− tk) ≡ 0, j = 1, . . . , r − 1, if r ≥ 2,

(iv)

r∑
ℓ=0

(
r + 1

ℓ

)∑
k∈Z

θr−ℓ
k (tk − u)ℓχ(u− tk) ≡ const ̸= 0.

In addition, let the series∑
k∈Z

|tk − u|r−1|χ(u− tk)| and
∑
k∈Z

|tk − u|r−1|χ(r+1)(u− tk)|

be uniformly convergent on the compact intervals of R.
Then the approximation process {Sχ

w}w>0 is saturated in Lp(·)(R) with order
O(w−r), its saturation class is W r

p(·)(R) and its trivial class consists of

(i) the functions which are equal to 0 a.e. if p∗ < ∞ and |R\Rp(·)
∞ | = ∞,

(ii) the functions which are equal to a const a.e. if p∗ = ∞ or |R\Rp(·)
∞ | < ∞.

In particular, if p(·) is finite, then the trivial class of {Sχ
w}w>0 consists of

the functions which are equal to 0 a.e. if p∗ < ∞, and of the functions which
are equal to a const a.e. if p∗ = ∞.

As we already pointed out, the assertions concerning the saturation class and
rate follow by the same argument as in the case of the additional assumption
that p(·) is finite. Those about the trivial class follow from a property of the
moduli of smoothness used in [3]. The moduli are given by

Ωr(f, t)p(·) := sup
0<h≤t

∥∥∥∥∥ 1h
∫ h

0

∆r
uf du

∥∥∥∥∥
p(·)

and

Ωr(f, t)p(·) := sup
0<h≤t

∥∥∥∥∥ 1h
∫ h

0

|∆r
uf | du

∥∥∥∥∥
p(·)

,

where ∆r
uf is the forward finite difference of order r and step u of f , that is,

∆uf(x) := f(x+ u)− f(x), x, u ∈ R, and ∆r
u := ∆u(∆

r−1
u ).

Now, let us state their property that directly implies the last part of Theo-
rem 1.

Proposition 2. Let r ∈ N+, p(·) be an exponent function on R such that p∗ > 1
and 1/p(·) ∈ LH(R). Let f ∈ Lp(·)(R) and Ωr(f, t)p(·) = o(tr). Then:

(i) f = 0 a.e. if p∗ < ∞ and |R\Rp(·)
∞ | = ∞,

(ii) f = const a.e. if p∗ = ∞ or |R\Rp(·)
∞ | < ∞.
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The assertions remain valid with Ωr(f, t)p(·) in place of Ωr(f, t)p(·).

Assertion (i) corrects [3, Theorem 3.4(i)].

Proof. By virtue of [3, Theorem 3.2], either Ωr(f, t)p(·) = o(tr) or Ωr(f, t)p(·) =
o(tr) implies that f coincides a.e. with an algebraic polynomial of degree at
most r−1. The function f needs to be in Lp(·)(R), that is, ρp(·)(f/λ) < ∞ with

some λ > 0. Since p(x) ≥ 1 on R and at least one of the sets R\Rp(·)
∞ or Rp(·)

∞ is
not bounded, then f = c ∈ R a.e.

It remains to determine those c ∈ R for which

(2)

∫
R\Rp(·)

∞

∣∣∣ c
λ

∣∣∣p(x) dx < ∞ with some λ > 0.

If p∗ < ∞, then p(x) is bounded above on R. Consequently, if |R\Rp(·)
∞ | < ∞,

then any c ∈ R satisfies (2), whereas if |R\Rp(·)
∞ | = ∞, then only c = 0 does.

Let p∗ = ∞. As it follows from the definition of the log-Hölder continuity,
1/p(x) tends to a nonnegative real r∞ as x → ±∞ (we apply [2, Definition 2.2]
with r(x) = 1/p(x)). Since p∗ = ∞, then r∞ = 0 and

p(x) ≥ 1

C∞
log(e+ |x|), x ∈ R,

with some C∞ > 0.
Now, we see that any c ∈ R satisfies (2) with λ > 0 such that

|c|
λ

≤ 1

e2C∞
.

Indeed, then ∣∣∣ c
λ

∣∣∣p(x) ≤ 1

(e+ |x|)2
, x ∈ R,

hence ρp(·)(c/λ) < ∞.
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