The Computable Sets

Definition. Let $A \subseteq \mathbb{N}^n$. The set A is *computable* if the function

$$
\chi_A(x) \sim \begin{cases}
0 & \text{if } x \in A, \\
1 & \text{if } x \notin A.
\end{cases}
$$

is computable.

Theorem. The computable sets are closed under the operations union, intersection and taking the complement. Cartesian product of computable sets is computable.

Theorem. If A is a computable subset of \mathbb{N}^{n+1} then either of the sets

$$
\{ (y, \bar{x}) \mid (\exists z < y)((z, \bar{x}) \in A) \} \text{ and } \{ (y, \bar{x}) \mid (\forall z < y)((z, \bar{x}) \in A) \}
$$

is computable.
The Semi-computable Sets - Definitions

Definition. Let $A \subseteq \mathbb{N}^n$. The set A is *semi-computable* if the function $c_A(x) \simeq \begin{cases} 0 & \text{if } x \in A, \\ \neg! & \text{if } \not\in A. \end{cases}$ is computable.

Theorem. A set A is semi-computable if and only if $A = \text{dom}(\varphi)$ for some computable function φ.

Theorem. A set $A \subseteq \mathbb{N}^n$ is semi-computable if and only if there exist a primitive recursive function ρ of $n + 1$ arguments such that

$$(\forall \bar{x})(\bar{x} \in A \iff (\exists y)(\rho(y, \bar{x}) = 0)).$$
The Semi-computable Sets - Properties

Theorem. Union and intersection of semi-computable sets is semi-computable.

Theorem. Let $A \subseteq \mathbb{N}^n$ be semi-computable. Then either of the following sets is semi-computable:

\[
\{(y, \bar{x})| (\exists z < y)((z, \bar{x}) \in A)\},
\{(y, \bar{x})| (\forall z < y)((z, \bar{x}) \in A)\},
\{\bar{x}| (\exists z)((z, \bar{x}) \in A)\}.
\]

Theorem. *(Post)* A set A is computable if and only if both A and \bar{A} are semi-computable.
The Semi-computable Sets - Properties

Theorem. A partial function φ is computable if and only if the graph G_φ of f is semi-computable.

Theorem. Let A be a non empty semi-computable set of natural numbers. Then there exists a primitive recursive function g such that $A = \text{range}(g)$.

Corollary. A set A of natural numbers is semi-computable if and only if $A = \text{range}(\varphi)$ for some computable function φ.
Theorem. Let A_1, \ldots, A_k be mutually disjoint semi-computable subsets of \mathbb{N}^n. Let f_1, \ldots, f_k be computable functions of n arguments. Then the function g defined below is computable:

$$g(\bar{x}) \simeq \begin{cases}
 f_1(\bar{x}) & \text{if } \bar{x} \in A_1, \\
 f_2(\bar{x}) & \text{if } \bar{x} \in A_2, \\
 \ldots & \ldots \\
 f_k(\bar{x}) & \text{if } \bar{x} \in A_k, \\
 \text{undefined} & \text{otherwise}.
\end{cases}$$
The set K

Definition. For $n \geq 1$ and $a \in \mathbb{N}$, set $W_a^n = \text{dom}(\varphi_a^n)$.

Theorem.

1. *The sequence $W_0^n, \ldots, W_a^n, \ldots$ is an enumeration of the semi-computable subsets of \mathbb{N}^n.***

2. $(\forall a)(\forall \bar{x} \in \mathbb{N}^m)(\forall \bar{y} \in \mathbb{N}^n)((\bar{x}, \bar{y}) \in W_{a+m}^n \iff \bar{x} \in W_{S_n^m(a,\bar{x})}^n)$.

3. *For $n \geq 1$ set $U_n = \text{dom}(\Phi_n)$. Then

 $(\forall a)(\forall \bar{x} \in \mathbb{N}^n)(\bar{x} \in W_a^n \iff (a, \bar{x}) \in U_n)$.

Definition. $K = \{x|x \in W_x\}$.
Properties of K

Theorem.
1. The set K is semi-computable.
2. The set \bar{K} is not semi-computable.
3. The set K is not computable.

Definition. Given two sets A and B of natural numbers set $A \leq_m B$ if there exists a total computable h such that

$$(\forall x)(x \in A \iff h(x) \in B).$$

Note that if $A \leq_m B$ then computability of B implies computability of A and semi-computability of B implies semi-computability of A.

Theorem. If A is a semi-computable set of natural numbers then $A \leq_m K$.

Professor Ivan N. Soskov

Introduction to Computability Theory II
Problem. Show that the semi-computable sets are not closed under the operations taking the complement and unbounded universal quantification.

Problem. Show that for any infinite semi-computable set A of natural numbers there exists a one to one computable function f such that $\text{range}(f) = A$.

Problem. Show that an infinite set A of natural numbers is computable if and only if A is range of some strongly monotonically increasing total computable function.
Problems

Problem. Let $A \subseteq \mathbb{N}^{n+1}$ be semi-computable. Show that there exist a computable function f of n arguments such that

1. $!f(\bar{x}) \iff (\exists y)((\bar{x}, y) \in A)$.
2. $G_f \subseteq A$.

Problem. Show that there exist two disjoint semi-computable sets A and B of natural numbers which are recursively unseparable, i.e. there is no computable set C such that $A \subseteq C$ and $B \subseteq \bar{C}$.

Problem. Let $A, B \subseteq \mathbb{N}^n$. Show that the semi-computable sets A and B are computable if and only if $A \cup B$ and $A \cap B$ are computable.
The Halting Problem

Theorem. The following sets are not computable:

- \(H = \{ (a, x) | \neg \varphi_a(x) \} \).
- \(O = \{ a | \varphi_a = \lambda x.0 \} \).
- \(E = \{ (a, b) | \varphi_a = \varphi_b \} \).
- \(T = \{ a | \varphi_a \text{ is totally defined} \} \).

Definition. Let \(\mathcal{A} \) be a class of unary computable functions. The index set \(I_\mathcal{A} \) of \(\mathcal{A} \) consists of all natural numbers \(a \) such that \(\varphi_a \in \mathcal{A} \).

The class \(\mathcal{A} \) is trivial if \(\mathcal{A} = \emptyset \) or \(\mathcal{A} \) contains all unary computable functions.

Theorem. *(Rice)* If \(\mathcal{A} \) is a non trivial class of unary computable functions then the set \(I_\mathcal{A} \) is not computable.
The Rice-Shapiro Theorem

Theorem. Let A be a class of unary computable functions with a semi-decidable index set. Then for all unary computable functions f the following equivalence holds:

$$f \in A \iff (\exists \theta \subseteq f)(\theta \text{ is finite and } \theta \in A).$$

Corollary. The index set of either of the following classes is not semi-computable.

1. $\{\varphi | \varphi \text{ is finite}\}$.
2. $\{\varphi | \varphi \text{ is total and computable}\}$.
3. For any computable function φ the singleton $\{\varphi\}$.
Given a monotone sequence $f_0 \subseteq f_1 \cdots \subseteq f_k \cdots$ of partial functions of n arguments, denote by $\bigcup_n f_n$ the function g, where

$$g(\bar{x}) \simeq y \iff (\exists k)(f_k(\bar{x}) \simeq y).$$

Theorem. The function g is the least upper bound of the sequence $\{f_k\}$ with respect to the partial ordering \subseteq, i.e. the following two conditions are satisfied:

1. g is an upper bound of $\{f_k\}$,
2. If h is an upper bound of $\{f_k\}$ then $g \subseteq h$.

Proposition. If $\theta \subseteq \bigcup_n f_n$ is finite then for some k, $\theta \subseteq f_k$.
Notation. Finite function will be denoted by \(\theta \).

Definition. A mapping \(\Gamma : F_n \to F_m \) is called *compact operator* if for all \(f \in F_n \), for all \(\bar{x} \in \mathbb{N}^m \) and all \(y \),

\[
\Gamma(f)(\bar{x}) \simeq y \iff (\exists \theta)(\theta \subseteq f \land \Gamma(\theta)(\bar{x}) \simeq y).
\]

Theorem. Every compact operator is monotone, i.e.

\[
(\forall f, g \in F_n)(f \subseteq g \implies \Gamma(f) \subseteq \Gamma(g)).
\]

Theorem. Suppose that \(\Gamma \) and \(\Delta \) are compact operators mapping \(F_n \) into \(F_m \). Let \((\forall \theta \in F_n)(\Gamma(\theta) = \Delta(\theta)) \). Then \(\Gamma = \Delta \).
Theorem. Let Γ be a compact mapping of F_n into F_m. Then for every monotone sequence $\{f_k\}$ of elements of F_n,

$$\Gamma\left(\bigcup f_k\right) = \bigcup_{k} \Gamma(f_k).$$

Theorem. (Knaster and Tarski) Let $\Gamma : F_n \to F_n$ be a compact operator. There exists a partial function $f \in F_n$ satisfying the following conditions:

1. $\Gamma(f) = f$.
2. $(\forall g \in F_n)(\Gamma(g) \subseteq g \Rightarrow f \subseteq g)$.

The function f having the above properties is called least fixed point of Γ.
Definition. An operator Γ is *recursive* if it is effective and compact.

Theorem. *(Myhill-Shepherdson)* Let $\mathcal{E} : \mathcal{F}_n \to \mathcal{F}_m$ be an effective mapping. There exists a recursive operator Γ such that for all computable functions $f \in \mathcal{F}_n$, $\Gamma(f) = \mathcal{E}(f)$.

Theorem. *(First Recursion Theorem)* Let Γ be a recursive operator mapping \mathcal{F}_n into \mathcal{F}_n. Then the least fixed point of Γ is computable.
Problem. Let \mathcal{E} be an effective mapping. Show that if $\varphi \subseteq \psi$ are computable then $\mathcal{E}(\varphi) \subseteq \mathcal{E}(\psi)$

Problem. Let \mathcal{E} and \mathcal{D} be effective mappings of \mathcal{F}_n into \mathcal{F}_m such that for all finite functions θ, $\mathcal{E}(\theta) = \mathcal{D}(\theta)$. Show that $\mathcal{E}(\varphi) = \mathcal{D}(\varphi)$ for all computable functions φ of n arguments.

Problem. Show that for every effective mapping $\mathcal{E} : \mathcal{F}_n \to \mathcal{F}_n$ there exists a computable function φ of n arguments such that $\mathcal{E}(\varphi) = \varphi$ and for all computable functions ψ, if $\mathcal{E}(\psi) \subseteq \psi$ then $\varphi \subseteq \psi$.