Петър Пейнов Петров

Петър Пейнов Петров

Главен асистент
Доктор
Имейл: 
peynov@fmi.uni-sofia.bg
Телефон: 
8161-506
Кабинет: 
ФМИ-218

Образование и научни степени

  • Висше образование
  • Научно-образователна степен “Доктор”

Научни интереси

  • Приближения с ограничения
  • Канонични множества от точки
  • Приближения със сплайн-функции
  • Квадратурни и кубатурни формули
  • Екстремални задачи

Списък с публикации

  1. P. Petrov, Shape preserving approximation byfree knot splines, East J.Approx. 2 (1) (1996), 41-48.
  2. P. Petrov, Three-convex approximation by free knotsplines in C[0,1], Constr. Approx.14(1998), 247-258.
  3. P.Petrov, Asymmetrical perfectsplines and optimal recovery, C. R. Acad. Bulg. Sci. 52, #9-10(1999), 15-18.
  4. D. Dryanov, W.Haussmann, P. Petrov,Best one-sided L1-approximation of bivariate functions by sums ofunivariate ones, Arch. Math. (Basel) 75 (2000),125-131.
  5. B. Bojanov, P. Petrov, Gaussian interval quadratureformula, Numer. Math. 87(2001), 625-643.
  6. D. Dryanov, W. Haussmann, P.Petrov, Best one-sided L1-approximation by B2,1- blending functions, In:Recentprogressinmultivariateapproximation,ISNM– 137,W.Haussmann,K.Jetter,M.Reimer(eds.),BirkhauserVerlag,Basel-Boston-Berlin,2001,pp.115-134.
  7. D. Dryanov, P.Petrov, Best one-sided L1-approximation by blending functions of order (2,2), J. Approx. Theory 115 (2002), 72-99.
  8. D. Dryanov, W.Haussmann, P. Petrov,Best one-sided L1-approximation by blending functions and approximatecubatures, In: Approximation theory X: Abstract and classicalanalysis, C. Chui, L. Schumaker, J. Stockler (eds.), VanderbiltUniversity Press, Nashville, TN, 2002, pp. 145-152.
  9. B. Bojanov, P.Petrov, Uniqueness of theGaussian interval quadrature formula, Numer. Math., 95 (2003), 53-62.
  10. P. Petrov, A note on Whitney's theorem, East J.Approx. 9 (2) (2003), 151-156.
  11. P. Petrov, Interpolation withrestricted arc-length, Analysis in Theory and Appl. 19(2)(2003),153-159.
  12. P. Petrov, Amultivariate interpolation formula with applications to bestone-sided L1-approximation and to discreteinequalities, East J. Approx. 9(4)(2003), 459-468.
  13. P. Petrov, On smooth interpolation, In:Approximationtheory:AVolumeDedicatedtoBorislavBojanov;D.K.Dimitrov,G.Nikolov,andR.Uluchev(eds.), Marin Drinov Academic Publishing House, Sofia, 2004, pp.217-224.
  14. P. Petrov, K. Jetter, Transfinite interpolation onthe medians of a triangle and best L1-approximation, Arch. Math. (Basel) 84 (2005),444-460.
  15. P. Petrov, Some sharp inequalities for n-monotonefunctions, Acta Math. Hungar. 108(2005), 37-46.
  16. B. Bojanov, P. Petrov, Gaussian interval quadratureformula for Tchebycheff systems, SIAM J. Numer. Anal. 43(2) (2005), 187-795.
  17. P.Petrov, On an extremal problemabout the arc-length of algebraic polynomials, Monats. Math., 147 (2) (2006), 165-171.
  18. P. Petrov, Minimal quadrature formulae withexterior nodes, East J. Approx. 12 (2) (2006), 203-210.
  19. P. Petrov, W. Miller, H. Guhl, Firstatomistic studies of epitaxial growth of Na0.5Bi0.5TiO3on SrTiO3,phys. stat. sol. (b) 245 (12) (2008) 2649-2656.
  20. P. Petrov, W. Miller, A new kinetic Monte Carlo method for layer growth of perovskites, Surf. Rev. Lett. 16 (6)(2009), 909-916.
  21. P. Petrov, W.Miller, U. Rehse and R. Fornari, A newmethod for calculation of island-size distribution in submonolayerepitaxial growth, Appl. Math. Modell. 35 (2011),1331-1336.
  22. P. Petrov, W. Miller, Kinetic Monte Carlosimulation of the wetting layer in Stranski-Krastanov heteroepitaxialgrowth, Comp. Mater. Sci. 60 (2012), 176-180.
  23. D. Dryanov, P. Petrov, Interpolation and L1-approximation by trigonometric polynomialsand blending functions, J. Approx. Theory 164 (2012),1049-1064.
  24. D. Dryanov, P. Petrov, On trigonometric blending functions andcubature formulae, Result.Math. 62 (2012), 249-264.
  25. D. Dryanov, P. Petrov, Canonical sets of best L1-approximation (review article), J. Func.Spaces Appl. Volume 2012, Article ID 435945, 38 pages.
  26. D. Gogova, P.Petrovetal., Structuraland optical investigation of non-polar (1-100) GaN grown by theammonothermal method, J. Appl. Phys. 113(2013),203513-(1-6).
  27. P.Petrov, W. Miller, Fast kineticMonte Carlo simulation and statistics of quantum dot arrays,Surf. Sci. 621 (2014), 175-183.