Заглавие | PARTIAL DIFFERENTIAL EQUATIONS OF TIME-LIKE WEINGARTEN SURFACES IN THE THREE-DIMENSIONAL MINKOWSKI SPACE |
Вид публикация | Journal Article |
Година на публикуване | 2013 |
Автори | Mihova V, Ganchev G |
Списание | Annuaire de l’Université de Sofia “St. Kliment Ohridski”. Faculté de Mathématiques et Informatique |
Том | 101 |
ключови думи | natural parameters on time-like W-surfaces in Minkowski space, natural PDE's of time-like W-surfaces in Minkowski space, Time-like W-surfaces in Minkowski space |
Резюме | We study time-like surfaces in the three-dimensional Minkowski space with diagonalizable second fundamental form. On any time-like W-surface we introduce locally natural principal parameters and prove that such a surface is determined uniquely (up to motion) by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution of the Lund-Regge reduction problem for time-like W-surfaces with real principal curvatures in Minkowski space. We apply this theory to the class of linear fractional time-like W-surfaces with respect to their principal curvatures and obtain the natural partial differential equations describing them. |
2000 MSC | main 53A10, secondary 53A05 |
Прикачен файл | Размер |
---|---|
101-143-165.pdf | 265.86 KB |