Заглавие | ON THE VERTEX FOLKMAN NUMBERS $F_v(\underbrace{2,...,2}_R;R-1)$ and $F_v(\underbrace{2,...,2}_R;R-2)$ |
Вид публикация | Journal Article |
Година на публикуване | 2013 |
Автори | Nenov N |
Списание | Annuaire de l’Université de Sofia “St. Kliment Ohridski”. Faculté de Mathématiques et Informatique |
Том | 101 |
ключови думи | Folkman graphs, Folkman numbers |
Резюме | For a graph $G$ the symbol $G\overset{v}{\rightarrow}(a_1,...,a_r)$ means that in every $r$-coloring of the vertices of $G$ for some $i\in\{1,2,...,r\}$ there exists a monochromatic $a_i$-clique of color $i$. The vertex Folkman numbers \[F_v(\underbrace{a_1,...,a_r}_r;q) =\min\{|V(G)|:G\overset{v}{\rightarrow}(a_1,...,a_r)\text{ and }K_q\nsubseteq G\}\] are considered. We prove that \[F_v(\underbrace{2,...,2}_r;r-1) = r + 7, r \geq 6\text{ and } F_v(\underbrace{2,...,2}_r;r-2) = r + 9, r \geq 8.\] |
2000 MSC | 05C55 |
Прикачен файл | Размер |
---|---|
![]() | 157.88 KB |