Triffon Anchev Triffonov

Triffon Anchev Triffonov

Associate professor
PhD
Email: 
triffon@fmi.uni-sofia.bg
Room: 
FMI-536

Publications

  1. Trifonov T. Quasi-linear Dialectica Extraction. In CiE (Ferreira F., B. Löwe, E. Mayordomo, and L. M. Gomes, Eds.), Vol. 6158, Lecture Notes in Computer Science. Springer, 2010, 417–426.
  2. Trifonov T. Dialectica Interpretation with Marked Counterexamples. In CL&C 2010 (van Bakel S., S. Berardi, and U. Berger, Eds.). MFCS & CSL, 2010, 86–98. Workshop in Honour of Helmut Schwichenberg.
  3. Trifonov T. Dialectica Interpretation with Fine Computational Control. Vol. 5635, LNCS. Springer Berlin/Heidelberg, 2009, 467–477. Proceedings of 5th Conference on Computability in Europe, CiE 2009, Heidelberg, Germany, July 19-24, 2009.
  4. Ratiu D. and T. Trifonov. Exploring the Computational Content of the Infinite Pigeonhole Principle. Draft at http://www.math.lmu.de/~trifonov/papers/iph.pdf, 2009. To appear in Proceedings of CiE 2008, Journal of Logic and Computation.
  5. Hernest M.-D. and T. Trifonov. Light Dialectica Revisited. Annals of Pure and Applied Logic, Vol. 161, No. 11, August 2010, 1313–1430.
  6. Mengov G., K. Georgiev, S. Pulov, T. Trifonov, and K. Atanassov.Fast Computation of a Gated Dipole Field. Neural Networks,Vol. 19, No. 10, 2006, 1636–1647.
  7. Atanassov K. and T. Trifonov. Two new intuitionistic fuzzyimplications. Advanced Studies in Contemporary Mathematics,Vol. 13, No. 1, 2006, 69–74.
  8. Trifonov T. and K. Atanassov. On some intuitionistic propertiesof intuitionistic fuzzy implications and negations. In ComputationalIntelligence, Theory and Applications (Reusch B., Ed.), Vol. 38,Advances in Soft Computing, Dortmund, Germany. Springer, Berlin,September 2006, 151–158.
  9. Trifonov T. and K. Georgiev. GNTicker — A software tool forefficient interpretation of generalized net models. In Issues inIntuitionistic Fuzzy Sets and Generalized Nets, Vol. 3.Warsaw, 2005, 71–78.
  10. Atanassov K. and T. Trifonov. On A New Intuitionistic FuzzyImplication From Gödel’s Type. Proceedings of the JangjeonMathematical Society, Vol. 8, No. 2, December 2005, 147–152.
  11. Atanassov K. and T. Trifonov. Towards Combining Two Kinds OfIntuitionistic Fuzzy Sets. Notes in Intuitionistic Fuzzy Sets,Vol. 11, No. 2, 2005, 1–11.
  12. Trifonov T., K. Georgiev, and G. Mengov. Interactions In An ArtNeural System. Advanced Studies in Contemporary Mathematics,Vol. 16, No. 1, 2008, 105–114.
  13. Georgiev K. and T. Trifonov. A Generalized Net Model Of AMultiagent Distributed Search Engine. In Issues in theRepresentation and Processing of Uncertain and Imprecise Information(Atanassov K. T., J. Kacprzyk, M. Krawczak, and E. Szmidt,Eds.). Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2005, 117–126.
  14. Georgiev K., T. Trifonov, and G. Mengov. Efficient OrientingSubsystem in an Adaptive Resonance Theory (ART) Neural Network.Proceedings of the Bulgarian Academy of Sciences, Vol. 56, No.5, 2005, 531–536.
  15. Georgiev K., T. Trifonov, and S. Hadjitodorov. A Generalized NetModel Of A Client/Server Multiagent System With Agent Tracking. InInternational IEEE Symposium on Intelligent Systems, Varna.IEEE, 2004, 81–85.
  16. Atanassov K., B. Djakov, J. Alexieva, T. Trifonov, and G. Jones.A Generalized Net Model Of A Material-Processing Reactor EquippedWith Chromatic Monitoring And Control Based On Intuitionistic FuzzyEvaluation Of The Chromaticity. In Third Conference of EuropeanSociety for Fuzzy Logic and Technology, Zittau, Germany. EUSFLAT,2003, 214–217.
  17. Mengov G., S. Pulov, K. Atanassov, K. Georgiev, and T. Trifonov.Modelling Neural Signals With a Generalized Net. Advanced Studiesin Contemporary Mathematics, Vol. 7, 2003, 155–166.
  18. Koycheva E., T. Trifonov, and H. Aladjov. Modelling of UMLsequence diagrams with generalized nets. In International IEEESymposium on Intelligent Systems, Varna. IEEE, 2002, 79–84.