Title | BALANCED VERTEX SETS IN GRAPHS |
Publication Type | Journal Article |
Year of Publication | 2005 |
Authors | Khadzhiivanov N, Nenov N |
Journal | Annuaire de l’Université de Sofia “St. Kliment Ohridski”. Faculté de Mathématiques et Informatique |
Volume | 97 |
Keywords | balanced sequence, generalized r-partite graph, generalized Turan's graph, saturated sequence |
Abstract | Let $v_{1},\ldots,v_{r}$ be a $\beta$-sequence (Definition 1.2) in an $n$-vertex graph $G$ and $v_{r+1},\ldots,v_{n}$ be the other vertices of $G$. In this paper we prove that if $v_{1},\ldots,v_{r}$ is balansed, that is \[ \frac{1}{r}(d(v_{1})+\ldots +d(v_{r})=\frac{1}{n}(d(v_{1})+\ldots +d(v_{n}),\] and if the number of edges of $G$ is big enough, then $G$ is regular. |
2000 MSC | 05C35 |
Attachment | Size |
---|---|
![]() | 61.04 KB |
Attachment | Size |
---|---|
![]() | 1.38 MB |