Title | A DOLBEAULT ISOMORPHISM FOR COMPLETE INTERSECTIONS IN INFINITE-DIMENSIONAL PROJECTIVE SPACE |
Publication Type | Journal Article |
Year of Publication | 2005 |
Authors | Kotzev B |
Journal | Annuaire de l’Université de Sofia “St. Kliment Ohridski”. Faculté de Mathématiques et Informatique |
Volume | 97 |
Keywords | infinite-dimensional complex manifolds, projective manifolds, vanishing theorems |
Abstract | We consider a complex submanifold $X$ of finite codimension in an infinite-dimensional complex projective space $P$ and a holomorphic vector bundle E over X. Given a covering $\mathcal{U}$ of X with Zariski open sets, we define a subcomplex $\mathcal{C}(X, E)$ of the Čech complex corresponding to the vector bundle E and the covering $\mathcal{U}$. For a special class of coverings $\mathcal{U}$, we prove that the complex $\mathcal{C}(X, E)$ is acyclic when X is a complete intersection and P admits smooth partitions of unity. |
2000 MSC | main 32L20, secondary 58B99 |
Attachment | Size |
---|---|
![]() | 59.85 KB |
Attachment | Size |
---|---|
![]() | 3.37 MB |