ON THE STRUCTURE OF (t mod q)-ARCS IN FINITE PROJECTIVE GEOMETRIES

TitleON THE STRUCTURE OF (t mod q)-ARCS IN FINITE PROJECTIVE GEOMETRIES
Publication TypeJournal Article
Year of Publication2016
AuthorsRousseva A
JournalAnnuaire de l’Université de Sofia “St. Kliment Ohridski”. Faculté de Mathématiques et Informatique
Volume103
Pagination5-22
ISSN0205-0808
Keywordsarcs, blocking sets, divisible arcs, extendable arcs, finite projective geometries, minihypers, quasidivisible arcs, the griesmer bound
Abstract
In this paper, we introduce constructions and structure results for (t mod q)-arcs. We prove that all (2 mod q)-arcs in PG(r, q) with $r \geq  3$ are lifted. We find all (3 mod 5) plane arcs of small cardinality not exceeding 33 and prove that every (3mod 5)-arc in PG(3, 5) of size at most 158 is lifted. This result is applied further to rule out the existence of (104, 22)-arcs in PG(3, 5) which solves an open problem on the optimal size of fourdimensional linear codes over $\mathbb{F}_5$.
2000 MSC

Main 51A20, 51A21, 51A22, Secondary 94B65

AttachmentSize
PDF icon 103-005-022.pdf231.06 KB