SMALL MINIMAL (3, 3)-RAMSEY GRAPHS

TitleSMALL MINIMAL (3, 3)-RAMSEY GRAPHS
Publication TypeJournal Article
Year of Publication2016
AuthorsBikov A
JournalAnnuaire de l’Université de Sofia “St. Kliment Ohridski”. Faculté de Mathématiques et Informatique
Volume103
Pagination123-147
Keywordschromatic number, clique number, independence number, Ramsey graph
Abstract
We say that $G$ is a (3, 3)-Ramsey graph if every 2-coloring of the edges of $G$ forces a monochromatic triangle. The (3, 3)-Ramsey graph $G$ is minimal if $G$ does not contain a proper (3, 3)-Ramsey subgraph. In this work we find all minimal (3, 3)-Ramsey graphs with up to 13 vertices with the help of a computer, and we obtain some new results for these graphs. We also obtain new upper bounds for the independence number and new lower bounds for the minimum degree of arbitrary (3, 3)-Ramsey graphs.
2000 MSC

05C55

AttachmentSize
PDF icon 103-123-147.pdf1.35 MB