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Abstract. One usually defines the notion of a computable real num-
ber by using recursive functions. However, there is a simple way due to
A. Mostowski to characterize the computable real numbers by using only
primitive recursive functions. We prove Mostowski’s result differently and
apply it to get other simple characterizations of this kind. For instance,
a real number is shown to be computable if and only if it belongs to all
members of some primitive recursive sequence of nested intervals with
rational end points and with lengths arbitrarily closely approaching 0.

Introduction

Let N and Q be the set of the non-negative integers and the set of the rational
numbers, respectively. A function A : N −→ Q is said to be recursive if it can be
represented in the form

A(n) =
u(n)− v(n)
w(n) + 1

, (1)

where u, v, w are recursive functions from N into N (in the case when the values
of A are non-negative the second term in the numerator can be omitted).1 The
notion of a primitive recursive function from N into Q is defined in a similar
way, namely one must replace ”recursive” by ”primitive recursive” in the above
definition. If we regard a function A from N into N as a function from N into
Q then the above notions are clearly equivalent to the ordinary recursiveness
and to the ordinary primitive recursiveness of A, respectively. Of course, we
can treat quite similarly also those Q-valued functions that depend on several
natural arguments.

One usually defines the notion of a computable (or recursive) real number
by using recursive functions.2 Any of the definitions implies the following state-
ment (according to [2], it can be attributed to S. Mazur): a real number α is
1 A definition using effective enumeration of the set Q can also be found in the liter-

ature.
2 Here are several of the places where one can find some (mutually equivalent) defini-

tions of this kind: the paper [4], § 12 of [9], Exercise 15-34 in [5], Lemma 4.2.1 and
Exercise 4.2.1 in [10] (other relevant references can be found in Section II.4 of [3]).
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computable if and only if there is a recursive function A from N into Q that
satisfies for any n in N the inequality

|A(n)− α| ≤ 1
n + 1

(2)

It is not permissible to replace “recursive” by “primitive recursive” in this state-
ment (cf. Appendix 1). Nevertheless A. Mostowski showed in [2] that such a
replacement is possible if we allow the right-hand side of (2) to be a suitable
primitive recursive function from N into Q and to depend on the choice of the
number α (unfortunately the paper [2] has been not known to us when writing
the preliminary version [8] of the present paper). We shall give here another proof
of Mostowski’s result; certain issues related to this result will be also studied.

It will be useful in Section 2 to consider the notion of primitive recursiveness
also for partial functions from N into Q. We adopt the following definition: a
partial function from N into Q is called primitive recursive if it is the restriction of
some primitive recursive total function from N into Q to some primitive recursive
subset of N. The requirement for a partial function A from N into Q to be
primitive recursive is equivalent to its representability in the form

A(n) =
u(n)− v(n)

w(n)
, (3)

where u, v and w are primitive recursive functions from N into N and it is
assumed that the domain of A is {n | w(n) 6= 0}.

1 Total Approximations and Localizations

Definition 1. Let A and E be (total) functions from N into Q. The pair (A, E)
is called a total approximation of a given real number α if

|A(n)− α| ≤ E(n)

for any n in N and there are numbers arbitrarily close to 0 among the values of E.
The pair (A, E) is called primitive recursive if both A and E are primitive
recursive.

Theorem 1. A real number is computable if and only if it has a primitive re-
cursive total approximation.

Proof. Let α be a real number. If (A, E) is a primitive recursive total approxi-
mation of α then the function s : N −→ N defined by

s(n) = min
{

t | t ∈ N, E(t) ≤ 1
n + 1

}

is recursive and we have

|A(s(n)) − α| ≤ 1
n + 1
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for any n in N, hence α is computable. For the other direction of the proof
suppose that α is computable. Then there is a recursive function A : N −→ Q

that satisfies the inequality (2) for any n in N. We shall find now a surjective
primitive recursive function f : N −→ N such that A(f(i)) is a primitive recursive
function of i (this could be done also by an easy application of the lemma
from [2]). Firstly we represent the function A in the form (1) and we choose a
system of four unary primitive recursive functions in N that enumerates the set
of all quadruples of the form (n, u(n), v(n), w(n)), where n ∈ N. Then we take
as f the first one of these four functions. Clearly for all n in N we have the
inequality

|A(f(i)) − α| ≤ 1
f(i) + 1

,

hence the pair (
λi.A(f(i)), λi.

1
f(i) + 1

)
(4)

is a primitive recursive total approximation of α. ut

Remark 1. The way of reasoning in the above proof can be used also in certain
more complicated other situations. In the concrete situation considered here,
however, a simplification is possible, namely the second part of the proof can re-
placed by the following somewhat shorter reasoning. Let α be a computable real
number. Then consider the set of all quadruples (u, v, w, k) of natural numbers
satisfying the inequality

∣∣∣∣ u− v

w + 1
− α

∣∣∣∣ <
1

k + 1
. (5)

This set is not empty and it is recursively enumerable.3 Hence it can be enumer-
ated by a system U, V, W, K of four primitive recursive functions in N, and the
corresponding pair

(
λn.

U(n)− V (n)
W (n) + 1

, λn.
1

K(n) + 1

)

is a primitive recursive total approximation of α.

Suppose we have some primitive recursive total approximations (A, E) and
(B, F ) of two given real numbers α and β and we want to find primitive recursive
total approximations of the numbers α + β and αβ. This turns out to be a little
3 The recursive enumerability in question could be considered well-known. Still let us

mention the following way to see it: we take a recursive function A from N into Q
satisfying (2) for any n in N, and we observe that (5) holds if and only if

�
�
�
�

u − v

w + 1
− A(n)

�
�
�
�
+

1

n + 1
<

1

k + 1

for some some n in N.
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troublesome in the general case, since, roughly speaking, the values of E(n)
and F (n) are not obliged to become small for one and the same values of n. To
overcome this problem we could use certain special kinds of total approximations.

Definition 2. Let (A, E) be a total approximation of a given real number. We
call (A, E) acceptable if the sequence E(0), E(1), E(2), . . . converges to 0,4
and stable if the function E is monotonically decreasing.5

As it is easily seen, if (A, E) and (B, F ) are acceptable total approximations
of the real numbers α and β then (A + B, E + F ) and (AB, |B|E + |A|F + EF )
are acceptable total approximations of α + β and αβ, respectively. Of course,
if (A, E) and (B, F ) are primitive recursive then so are (A + B, E + F ) and
(AB, |B|E + |A|F + EF ).

Clearly any stable total approximation is acceptable. If (A, E) and (B, F ) are
stable primitive recursive total approximations of the real numbers α and β then
the primitive recursive total approximation (A+B, E +F ) of the number α +β
is a stable one, and the pair (AB, (|B(0)|+F (0))E +(|A(0)|+E(0))F +EF ) is a
stable primitive recursive total approximation of the number αβ (unfortunately
the stability of (A, E) and (B, F ) does not always guarantee the stability of the
other total approximation of αβ considered above).

Theorem 2. A real number is computable if and only if it has a stable primitive
recursive total approximation.

Proof. In view of Theorem 1, it is sufficient to show that each primitive recursive
total approximation of a real number can be transformed into a stable one. Let
(A, E) be a primitive recursive total approximation of a real number α. We set

E′(n) = min{E(i) | 0 ≤ i ≤ n} ,

k(n) = min{i | 0 ≤ i ≤ n, E(i) = E′(n)} ,

A′(n) = A(k(n)) .

Then (A′, E′) is a stable primitive recursive total approximation of α. ut

One often uses intervals with rational end points for the localization of a real
number.

4 This condition is not a good one from a constructive point of view. From such
a point of view it would be preferable to impose the stronger requirement that
E(0), E(1), E(2), . . . effectively converges to 0, i.e. to require the existence of a
recursive function ν : N −→ N such that E(n) ≤ 1/(k + 1) whenever k, n ∈ N and
n ≥ ν(k) (such a function surely exists in the case of a stable primitive recursive
total approximation considered later). A relatively simple equivalent requirement
using primitive recursive functions instead of recursive ones is given in Appendix 3.

5 Only stable primitive recursive total approximations have been considered in the
preliminary version [8] of this paper, and they have been called primitive recursive
approximations there.
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Definition 3. Let A0 and A1 be (total) functions from N into Q, and let α be
a real number. The pair (A0, A1) is called a total localization of α if

A0(n) ≤ α ≤ A1(n)

for any n in N and the set {A1(n)−A0(n) | n ∈ N} contains numbers arbitrarily
close to 0.

Definition 4. A total localization (A0, A1) of a given real number is called
nested if the function A0 is monotonically increasing and the function A1 is
monotonically decreasing.6

The next two theorems characterize the computable real numbers in the
terms of primitive recursive total localizations.

Theorem 3. A real number is computable if and only if it has a primitive re-
cursive total localization.

Proof. We apply Theorem 1. If (A0, A1) is a primitive recursive total localization
of a real number α then the corresponding pair

(
A1 + A0

2
,
A1 −A0

2

)
(6)

is a primitive recursive total approximation of α, hence α is computable. Con-
versely, if α is computable and (A, E) is a primitive recursive total approximation
of α, then the corresponding pair (A − E, A + E) is a primitive recursive total
localization of α. ut

Theorem 4. A real number is computable if and only if it has a nested primitive
recursive total localization.

Proof. It is sufficient to show how to transform any primitive recursive total
localization of a real number into a nested one. Let α be a real number and let
(A0, A1) be a primitive recursive total localization of α. If we define functions
A′0 and A′1 from N into Q by setting

A′0(n) = max{A0(i) | 0 ≤ i ≤ n} , A′1(n) = min{A1(i) | 0 ≤ i ≤ n} ,

then (A′0, A′1) will be a nested primitive recursive total localization of α. ut

Remark 2. If α is a real number and (A0, A1) is a nested primitive recursive
total localization of α, then the pair (6) is a stable primitive recursive total
approximation of α. This can be used for proving Theorem 2 in another way.

6 In [8] only nested primitive recursive total localizations have been considered, and
no term for them has been introduced there.
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Remark 3. We succeeded to characterize the computable real numbers by means
of primitive recursive functions mainly because every recursively enumerable set
has a primitive recursive enumeration (cf. the proof of Theorem 1 and especially
Remark 1). One could replace the primitive recursive functions in the above
characterizations by functions elementary in Kalmár’s sense [1] or by lower ele-
mentary functions in Skolem’s sense [6], and also by elementary definable ones
in the sense of [7]7 (all these elementariness notions can be extended to func-
tions from N into Q similarly to the extension of recursiveness and primitive
recursiveness).

2 Partial Approximations and Localizations

The primitive recursive total approximations and total localizations of the com-
putable real numbers have certain drawbacks. The next example illustrates this
for the case of approximations, but the situation is similar also in the case of
localizations.

Example 1. There is no pair of primitive recursive operators that transform each
stable primitive recursive total approximation of a non-zero computable real
number into a primitive recursive total approximation of its reciprocal.8 In fact,
suppose there is a pair of primitive recursive operators with this property. Let
t : N −→ N be a recursive function such that t has a primitive recursive graph,
but t is not primitive recursive. For any k and n in N let us set

ak =
1

t(k) + 1
, Ak(n) =

1
min{t(k), n}+ 1

, E(n) =
1

n + 1
.

Then for any k in N the pair (Ak, E) is a stable primitive recursive total approx-
imation of the number ak. Since Ak(n) is primitive recursive also as a function
of both k and n, the assumption we made allows us to conclude the existence of
A′k(n) and E′k(n) that are primitive recursive as functions of k and n and satisfy
the condition

|A′k(n)− (t(k) + 1)| ≤ E′k(n)

for all k and n in N.9 In particular, we shall have

|A′k(0)− (t(k) + 1)| ≤ E′k(0)
7 The elementary definable functions form a subclass of the lower elementary ones,

but we unfortunately do not know whether the two classes are different.
8 We skip the details concerning the notion of a primitive recursive operator acting

on Q-valued functions of natural arguments. Hopefully it would be enough to men-
tion that a reduction to ordinary primitive recursive operators is possible through
replacing the Q-valued functions by triples of N-valued functions in accordance with
the representation (1).

9 One may use the fact that for any primitive recursive operator its extensions in the
sense of [9], § 11, Subsection 3, preserve the primitive recursiveness (actually we need
the following instance of the mentioned fact: if Γ is a primitive recursive operator
acting on pairs of functions from N into Q and transforming them again into such
functions, then the function λkn.Γ(Ak, E)(n) is primitive recursive).
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and this provides us with a primitive recursive upper bound of the function t.
On the other hand, such an upper bound cannot exist due to the choice of that
function.

In order to avoid the indicated drawbacks, we shall consider now partial
approximations and partial localizations of the real numbers. We start with the
case of approximations.

Definition 5. Let A and E be functions from some subset D of N into Q. The
pair (A, E) is called a (partial) approximation of a given real number α if

|A(n)− α| ≤ E(n)

for any n in D and there are numbers arbitrarily close to 0 among the values of E.
The pair (A, E) is called primitive recursive if both A and E are primitive
recursive.10

Theorem 5. A real number is computable if and only if it has a primitive re-
cursive approximation.

Proof. Let α be a real number. Similarly to the proof of Theorem 1, if (A, E) is
a primitive recursive approximation of α then the function s : N −→ N defined
by

s(n) = min
{

t | t ∈ dom(E), E(t) ≤ 1
n + 1

}

is recursive and we have

|A(s(n)) − α| ≤ 1
n + 1

for any n in N, hence α is computable. On the other hand, if α is computable
then it has a primitive recursive total approximation (A, E) by Theorem 1, and
clearly (A, E) is a primitive recursive approximation of α. ut

Remark 4. The application of Theorem 1 in the above proof brings a certain non-
uniformity in it, since the primitive recursive total approximation constructed
in the proof of Theorem 1 do not depend in a primitive recursive way on the
Gödel number of the given recursive function A from N into Q satisfying (2).11

Nevertheless, Theorem 5 can be proved without introducing the non-uniformity
in question. This can be done as follows. As in the proof of Theorem 1, when we
suppose that α is a computable real number, we take a recursive function A from
N into Q satisfying (2), represent A in the form (1) with recursive u, v, w and
consider the set of all quadruples of the form (n, u(n), v(n), w(n)), where n ∈ N.
10 According to the definition of primitive recursiveness for partial functions from N

into Q, this entails the primitive recursiveness of the set D.
11 The absence of such a primitive recursive dependence is not a defect of the proof of

the mentioned theorem and this can be shown by appropriately using the construc-
tion from Example 1.
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For the new proof, we find a natural number e such that (n, x, y, z) belongs to
this set if and only if some t in N satisfies the condition

T4(e, n, x, y, z, t) ,

where T4 is the primitive recursive predicate from Kleene’s Normal Form The-
orem for the four argument partial recursive functions (the number e can be
constructed from the Gödel number of A by an appropriate application of the
s-m-n Theorem). Let D be the set of the natural numbers i that satisfy the
condition

T4(e, (i)0 , (i)1, (i)2, (i)3, (i)4)

(the notations (i)j have their usual meaning from Recursive Function Theory).
If f is the restriction of the function λi.(i)0 to the set D then the corresponding
pair (4) is a primitive recursive approximation of α.

The next example shows the existence of a pair of primitive recursive oper-
ators that transform each primitive recursive approximation of a non-zero com-
putable real number into a primitive recursive approximation of its reciprocal.12

Example 2. Let (A, E) be a primitive recursive approximation of a real number
α that is distinct from 0. For all n belonging to the common domain of A and
E and satisfying the condition A(n) 6= 0 we have

∣∣∣∣ 1
A(n)

− 1
α

∣∣∣∣ =
|α− A(n)|
|A(n)||α| ≤

E(n)
|A(n)||α| .

Let D be the set of the elements n of the mentioned common domain that satisfy
the stronger inequality |A(n)| − E(n) > 0 (since |A(n)| − E(n) ≥ |α| − 2E(n),
at least the elements n with E(n) < |α|/2 belong to D). Then for all n in D the
inequality ∣∣∣∣ 1

A(n)
− 1

α

∣∣∣∣ ≤ E(n)
|A(n)|(|A(n)| − E(n))

holds. If A′ and E′ are, respectively, the restrictions to D of the functions

λn.
1

A(n)
, λn.

E(n)
|A(n)|(|A(n)| − E(n))

then (A′, E′) is a primitive recursive approximation of 1/α.

Similarly to the case of total approximations, we introduce the notions of
acceptable and of stable approximation.

Definition 6. Let (A, E) be an approximation of a given real number, and let
D be the common domain of the functions A and E. We call this approxima-
tion acceptable if D contains all sufficiently large natural numbers and E(n)
12 The needed notion of a primitive recursive operator can be again reduced to the ordi-

nary notion of such operator, this time using the representation (3) of the considered
Q-valued functions.



304 Dimiter Skordev

converges to 0 when n tends to infinity.13 The approximation (A, E) is called
stable if the set D contains n + 1, whenever it contains n, and the function E
is monotonically decreasing.

Again all stable approximations of a real number are acceptable approxima-
tions of it. Note that the approximation (A′, E′) from Example 2 is acceptable if
(A, E) is acceptable, but (A′, E′) is not necessarily stable when (A, E) is stable.

Theorem 6. A real number is computable if and only if it has a stable primitive
recursive approximation.

Proof. We use Theorem 5. The “if”-direction follows immediately from it. The
other direction of the proof is a slight modification of the corresponding part
of the proof of Theorem 2. Namely, we show that each primitive recursive ap-
proximation of a real number can be transformed into a stable one. Let (A, E)
be a primitive recursive approximation of a real number α, and let D be the
common domain of the functions A and E. We denote by D′ the set of those
numbers from N that belong to D or are greater than some element of D. Let
the functions E′ : D′ −→ Q, k : D′ −→ N and A′ : D′ −→ Q be defined by
setting

E′(n) = min{E(i) | 0 ≤ i ≤ n, i ∈ D} ,

k(n) = min{i | 0 ≤ i ≤ n, i ∈ D, E(i) = E′(n)} ,

A′(n) = A(k(n)) .

Then (A′, E′) is a stable primitive recursive approximation of α. ut

Definition 7. Let A0 and A1 be functions from some subset D of N into Q,
and let α be a real number. The pair (A0, A1) is called a (partial) localization
of α if

A0(n) ≤ α ≤ A1(n)

for any n in D and there are numbers arbitrarily close to 0 among the values of
the function A1 −A0.

Definition 8. Let (A0, A1) be a localization of a given real number, and let D be
the common domain of A0 and A1. We call this localization nested if D contains
n + 1, whenever it contains n, the function A0 is monotonically increasing and
the function A1 is monotonically decreasing.

Theorem 7. A real number is computable if and only if it has a primitive re-
cursive localization.

Proof. We apply Theorem 5 in the same way as we applied Theorem 1 for the
proof of Theorem 3. ut
13 An effective version of this requirement is the following one: there is a recursive

function ν : N−→ N such that n ∈ D and E(n) ≤ 1/(k + 1) whenever k, n ∈ N and
n ≥ ν(k).
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Theorem 8. A real number is computable if and only if it has a nested primitive
recursive localization.

Proof. It is sufficient to show how to transform any primitive recursive localiza-
tion of a real number into a nested one. Let α be a real number and let (A0, A1)
be a primitive recursive localization of α. Let D be the common domain of A0

and A1. We define a set D′ as in the proof of Theorem 6 and then we define
functions A′0 and A′1 from D′ into Q by setting

A′0(n) = max{A0(i) | 0 ≤ i ≤ n, i ∈ D} ,

A′1(n) = min{A1(i) | 0 ≤ i ≤ n, i ∈ D} .

Then the pair (A′0, A′1) is a nested primitive recursive localization of α. ut

3 Co-approximations

There is a way to do almost the same as with partial approximations, but without
using partial functions.

Definition 9. Let A and H be (total) functions from N into Q, and let α be a
real number. The pair (A, H) is called a co-approximation of α if

H(n)|A(n)− α| ≤ 1

for any n in N, all values of H are non-negative and there are arbitrarily large
among them.

Definition 10. Let (A, H) be a co-approximation of a given real number. We
call (A, H) normal if all values of H belong to N, acceptable if H(n) diverges
to infinity when n tends to infinity,14 and stable if the function H is monoton-
ically increasing.15

Clearly all stable co-approximations of a real number are acceptable.

Theorem 9. A real number is computable if and only if it has a primitive re-
cursive co-approximation.

Proof. We shall use Theorem 5. Let α be a real number. Suppose α is computable
and take a primitive recursive approximation (A, E) of α. Let D be the common
domain of A and E. We may assume without a loss of generality that all values of
E are distinct from 0. Now denote by A′ any total primitive recursive extension
of A and by H the function from N into Q defined as follows:

H(n) =
{

1/E(n) if n ∈ D,
0 otherwise.

14 An effective version of this can be also considered, namely: there is a recursive
function ν : N−→ N such that H(n) ≥ k whenever k, n ∈ N and n ≥ ν(k).

15 Only primitive recursive stable normal co-approximations of a real number have been
studied in [8] under the name primitive recursive representations of this number.
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Then (A′, H) is a primitive recursive co-approximation of α. Conversely, suppose
α has a primitive recursive co-approximation (A′, H). Let D be the set of all n
in N such that H(n) 6= 0, and let A be the restriction of A′ to D. Then (A, 1/H)
is a primitive recursive approximation of α. ut

Remark 5. There is no function H : N −→ Q such that every computable real
number has a primitive recursive co-approximation with second member H (cf.
Appendix 2, where an even stronger statement is proved). From here, taking
into account the proof of Theorem 9, we see the non-existence of a function
E : N −→ Q such that every computable real number has a primitive recursive
approximation with second member E.

Theorem 10. A real number is computable if and only if it has a normal stable
primitive recursive co-approximation.

Proof. One direction of the proof is clear from Theorem 9. For the other direc-
tion suppose α is a computable real number. By Theorem 6, there is a stable
primitive recursive approximation (A, E) of α. We may assume that all values
of E are distinct from 0. Then the construction from the proof of Theorem 9 is
applicable, and it is easy to see that the primitive recursive co-approximation
(A′, H) obtained by it is now a stable one. For any n in N let us set h(n) = [H(n)],
where [r] denotes the greatest integer not exceeding r. Then the pair (A′, h) is
a normal stable primitive recursive co-approximation of α. ut

Appendix 1

Let t : N −→ {0, 1} be a recursive function, and let

α =
∞∑

i=0

t(i)
4i

. (7)

Clearly α is a computable real number. We shall show now a way of computing
the values of t on the base of arbitrary sufficiently close rational approximations
of α. Namely, whenever m ∈ N, r ∈ Q and

|r − α| ≤ 1
4m+1

, (8)

the following equality holds:

t(m) =
[
[2 · 4mr + 1/2] mod 4

2

]
. (9)

In fact, the equality

2α =
∞∑

i=0

2t(i)
4i



Characterization of the Computable Real Numbers 307

implies that
[2 · 4mα] mod 4 = 2t(m) .

On the other hand, the inequality (8) implies that

2 · 4mα ≤ 2 · 4mr + 1/2 ≤ 2 · 4mα + 1 ,

hence
[2 · 4mr + 1/2] = [2 · 4mα] + d ,

where d = 0 or d = 1. From this equality and the previous one we get

[2 · 4mr + 1/2] mod 4 = 2t(m) + d ,

and from here the equality (9) follows.
Suppose now a primitive recursive function A : N −→ Q satisfies for any n

in N the inequality (2). Then we can satisfy (8) by taking

r = A(4m+1 − 1) ,

and the equality (9) with this choice of r leads to the conclusion that t is primitive
recursive. Hence if we construct the real number α by using a recursive function
t : N −→ {0, 1} that is not primitive recursive, then there will be no primitive
recursive function A : N −→ Q satisfying for any n in N the inequality (2).

Appendix 2

Let H : N −→ Q be an unbounded non-negative primitive recursive function.
We shall construct a computable real number α such that for any primitive
recursive function A : N −→ Q the function λn.H(n)|A(n) − α| is unbounded
(the result from Appendix 1 can be obtained as a special case of this if we
take H(n) = n + 1). For the construction of the number α we choose a ternary
recursive function z in N such that any binary primitive recursive function in
N can be obtained from z by substituting some constant for its first argument.
Then we define a binary recursive function s and a unary recursive function t in
N as follows:

s(k, m) = min
{
n | H(n) ≥ k · 4m+1

}
, (10)

t(i) = sg z((i)0 , i, s((i)1, i)) , (11)

where sg l = 0 for any l in N\{0}, sg 0 = 1. Making use of the function t, we define
the real number α by means of equality (7) from Appendix 1. Suppose that for
some primitive recursive function A : N −→ Q the function λn.H(n)|A(n)−α| is
bounded. Let k be a positive integer such that H(n)|A(n)−α| ≤ k for all n in N.
From (10) we conclude that for any m in N the inequality (8) from Appendix 1
will be satisfied with r = A(s(k, m)), hence also the equality (9) will hold with
this value of r. The last fact can be written in the form

t(m) = f(m, s(k, m)) , (12)
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if we set

f(m, n) =
[
[2 · 4mA(n) + 1/2] mod 4

2

]
.

Since the function f defined by the above equality is primitive recursive, there
is a j in N such that

f(m, n) = z(j, m, n) (13)

for all m and n in N. From (12) and (13) we get

t(2j · 3k) = z(j, 2j · 3k, s(k, 2j · 3k)) ,

and this contradicts the definition (11) of the function t.

Appendix 3

Let E be a non-negative function from N into Q (or even into the set of the
real numbers). We shall show that the sequence E(0), E(1), E(2), . . . effectively
converges to 0 if and only if there is a monotonically increasing unbounded
primitive recursive function h : N −→ N such that h(n)E(n) ≤ 1 for any n
in N. One direction of the proof is obvious. For the other one suppose that
E(0), E(1), E(2), . . . effectively converges to 0 and choose a recursive function
ν : N −→ N such that E(n) ≤ 1/(k + 1) whenever k, n ∈ N and n ≥ ν(k). Let f
be a ternary primitive recursive function in N such that the equality m = ν(k)
holds if and only if f(m, k, i) = 0 for some i. For any n in N let Sn be the set
(possibly empty) of all k in N such that k ≤ n holds and some numbers m and i
not exceeding n satisfy f(m, k, i) = 0. Then we set h(n) = k + 1 for the greatest
k in Sn if Sn is not empty, and we set h(n) = 0 otherwise. The function h is
evidently primitive recursive. The inequality h(n)E(n) ≤ 1 holds for any n in N,
because (k+1)E(n) ≤ 1 whenever f(m, k, i) = 0 and n ≥ m. Since Sn is a subset
of Sn+1 for any n in N, it is clear that h is monotonically increasing. To show
that h is unbounded, consider an arbitrary k in N, set m = ν(k), consider some
i satisfying f(m, k, i) = 0 and choose an integer n satisfying the inequalities
n ≥ m, n ≥ k, n ≥ i. Then k ∈ Sn, hence h(n) ≥ k + 1.

It can be seen in a similar way that for any non-negative function H defined
on N the sequence H(0), H(1), H(2), . . . effectively diverges to infinity if and only
if there is a monotonically increasing unbounded primitive recursive function
h : N −→ N such that H(n) ≥ h(n) for any n in N.

Some Concluding Remarks

The authors interest in simple definitions of computability of real numbers arose
from the pedagogical problem how to teach undergraduate students this notion
(some of the obtained characterizations of the computable real numbers have
been recently used by the author in a lecture course for such students). Hopefully
the presented approach could be useful also for closer connecting Computable
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Analysis with the problems of numerical computations (estimates of proximity
often play a crucial role there and one looks for possibly simple approximation
processes and corresponding estimates). The results formulated in Remark 5
point also to the possibility of providing the set of the computable real numbers
with some hierarchy concerning the degree of their computability. There are
several different ways to introduce such an hierarchy. For example, a real number
β could be said to be less or equally computable than a real number α if the
set of the second members of the primitive recursive approximations of β is a
subset of the corresponding set for α (the mentioned results show that there is
not a least one among the computable real numbers with respect to the quasi-
ordering introduced in this way). Of course, analogues of this can be considered
also with using, say, lower elementary functions instead of primitive recursive
ones.
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