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Abstract. Let us call an approximator of a complex number α any
sequence γ0, γ1, γ2, . . . of rational complex numbers such that

|γt − α| ≤ 1
t + 1

, t = 0, 1, 2, . . .

Denoting by N the set of the natural numbers, we shall call a representa-
tion of α any 6-tuple of functions f1, f2, f3, f4, f5, f6 from N into N such
that the sequence γ0, γ1, γ2, . . . defined by

γt =
f1(t) − f2(t)

f3(t) + 1
+

f4(t) − f5(t)
f6(t) + 1

i, t = 0, 1, 2, . . . ,

is an approximator of α. For any representations of the members of a
finite sequence of complex numbers, the concatenation of these represen-
tations will be called a representation of the sequence in question (thus
the representations of the sequence have a length equal to 6 times the
length of the sequence itself). By adapting a proof given by P. C. Rosen-
bloom we prove the following refinement of the fundamental theorem of
algebra: for any positive integer N there is a 6-tuple of computable op-
erators belonging to the second Grzegorczyk class and transforming any
representation of any sequence α0, α1, . . . , αN−1 of N complex numbers
into the components of some representation of some root of the corre-
sponding polynomial P (z) = zN + αN−1z

N−1 + · · · + α1z + α0.

Keywords: Fundamental theorem of algebra, Rosenbloom’s proof, com-
putable analysis, computable operator, second Grzegorczyk class.

1 Introduction

In the paper [4] a proof is given of the fact that for any positive integer N and
any complex numbers α0, α1, . . . , αN−1 the polynomial

P (z) = zN + αN−1z
N−1 + · · · + α1z + α0 (1)

has at least a root in the complex plane, and the proof is constructive in some
sense. Making use of the notion of approximator considered in the abstract,
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we may describe the constructive character of the proof as follows: the proof
shows implicitly (after some small changes) that for any positive integer N
there is a computable procedure for transforming any approximators of any
α0, α1, . . . , αN−1 into some approximator of some root of the corresponding
polynomial P (z).1 Clearly the following more rigorous formulation of this can
be given, where F consists of all total mappings of N into N: for any positive
integer N there are recursive operators Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 with domain F 6N

such that whenever an element f̄ of F 6N is a representation of some N -tuple
α0, α1, . . . , αN−1 of complex numbers, then Γk(f̄), k = 1, 2, 3, 4, 5, 6, belong to F
and form a representation of some root of the corresponding polynomial P (z).2

The present paper is devoted to the fact that one can replace the words “re-
cursive operators” in the above formulation by “computable operators belonging
to the second Grzegorczyk class” (the fact was established in the first author’s
master thesis [3] written under the supervision of the second author).

2 The Notion of Computable Operator of the Second
Grzegorczyk Class

For any natural number k let Fk be the set of all total k-argument functions in the
set N (thus F1 = F ). For any natural numbers n and k we shall consider operators
acting from Fn into Fk. The ones among them that are computable operators
of the second Grzegorczyk class will be called E2-computable operators for short.
The class of these operators can be defined by means of a natural extension of a
definition of the class of functions E2 from the hierarchy introduced in [1] (such a
step would be similar to the extension in [2] of the definition of E3 by introducing
the notion of elementary recursive functional). Roughly speaking, we can use the
same initial functions and the same ways of construction of new functions as in
the definition of E2, except that we must add to the initial functions also the
function arguments of the operator and to consider only constructions that are
uniform with respect to these arguments. Skipping the details of the definition3,
we note the following properties of the E2-computable operators, where f̄ is used
as an abbreviation for the n-tuple f1, . . . , fn of functions from F .

1. For any k-argument function g belonging to the class E2 the mapping λf̄ .g
of Fn into Fk is an E2-computable operator.

2. The mappings λf̄ .fj, j = 1, . . . , n, of Fn into F are E2-computable
operators.

1 By certain continuity reasons, a dependence of this root not only on the coefficients
α0, α1, . . . , αN−1, but also on the choice of their approximators, cannot be excluded
in the case of N > 1.

2 This statement holds also for a more usual notion of approximator based on the
inequality |γt − α| ≤ 2−t instead of the inequality |γt − α| ≤ 1

t+1 (cf. for example
the approach to computable analysis by Cauchy representations in [6]). However,
the main result of the present paper would be not valid in that case, as it can be
seen by means of an easy application of Liouville’s approximation theorem.

3 See, however, the remark on the next page.
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3. Whenever Γ0 is an E2-computable operator from Fn into Fm, Γ1, . . . , Γm are
E2-computable operators from Fn into Fk, and Γ is the mapping of Fn into
Fk defined by

Γ (f̄)(x1, . . . , xk) = Γ0(f̄)(Γ1(f̄)(x1, . . . , xk), . . . , Γm(f̄)(x1, . . . , xk)),

then Γ is also an E2-computable operator.

4. Whenever Γ0 is an E2-computable operator from Fn into Fm, Γ1 is an E2-
computable operator from Fn into Fm+2, Γ2 is an E2-computable operator
from Fn into Fm+1, the mapping Γ of Fn into Fm+1 is defined by

Γ (f̄)(0, x1, . . . , xm) = Γ0(f̄)(x1, . . . , xm),
Γ (f̄)(t + 1, x1, . . . , xm) = Γ1(f̄)(Γ (f̄)(t, x1, . . . , xm), t, x1, . . . , xm),

and for all f̄ , t, x1, . . . , xm the inequality

Γ (f̄)(t, x1, . . . , xm) ≤ Γ2(f̄)(t, x1, . . . , xm)

holds, then Γ is also an E2-computable operator.

5. Whenever Γ0 is an E2-computable operator from Fn into Fm+1, and the
mapping Γ of Fn into Fm+1 is defined by

Γ (f̄)(t, x1, . . . , xm) = min { s | s = t ∨ Γ0(f̄)(s, x1, . . . , xm) = 0 } ,

then Γ is also an E2-computable operator.

6. Whenever Γ0 is an E2-computable operator from Fm into Fk, Γ1, . . . , Γm

are E2-computable operators from Fn into Fl+1, and Γ is the mapping of
Fn into Fk+l defined by

Γ (f̄)(x1, . . . , xk, y1, . . . , yl) =

Γ0(λt.Γ1(f̄)(y1, . . . , yl, t), . . . , λt.Γm(f̄)(y1, . . . , yl, t))(x1, . . . , xk),

then Γ is also an E2-computable operator.

7. If Γ is an E2-computable operator from Fn into Fk, and the functions
f1, . . . , fn belong to Grzegorczyk class Em, where m ≥ 2, then the function
Γ (f̄) also belongs to Em.

Remark. The properties 1–4 can be used as the clauses of an inductive definition
of the notion of E2-computable operator. Moreover, in such a case one can reduce
the property 1 to its instances when g is the function λxy. (x + 1) · (y + 1) or
some of the functions λx1 . . . xk. xj , j = 1, . . . , k. In order to eliminate the
not effectively verifiable domination requirement in the clause corresponding to
property 4, one could omit this requirement and replace the right-hand side of
the second equality by the expression

min{Γ1(f̄)(Γ (f̄)(t, x1, . . . , xm), t, x1, . . . , xm), Γ2(f̄)(t, x1, . . . , xm)}.
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3 E2-Computable Functions in the Set of the Complex
Numbers

Let C be the set of the complex numbers. A function ϕ from C
N into C will be

called E2-computable if six E2-computable operators Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 from
F 6N into F exist such that, whenever an element f̄ of F 6N is a representation
of some N -tuple ζ1, . . . , ζN of complex numbers, then the corresponding 6-tuple
Γ1(f̄), Γ2(f̄), Γ3(f̄), Γ4(f̄), Γ5(f̄), Γ6(f̄) is a representation of the complex num-
ber ϕ(ζ1, . . . , ζN ). The following properties are evident or easily provable.4

1. All functions ϕ from C
N into C that have the form ϕ(z1, . . . , zN) = zj with

j ∈ {1, . . . , N} are E2-computable.
2. For any rational complex number γ the constant function ϕ(z1, . . . , zN) = γ

is E2-computable.
3. The functions λz. z̄, λz1z2. z1 + z2 and λz1z2. z1 · z2 are E2-computable.
4. If ϕ is an E2-computable function from C

m into C, and ψ1, . . . , ψm are E2-
computable function from C

N into C then the function θ defined by

θ(z1, . . . , zN) = ϕ(ψ1(z1, . . . , zN), . . . , ψm(z1, . . . , zN))

is also E2-computable.
5. The real-valued function λz. |z|2 is E2-computable.
6. For any given positive integer N , the value of a polynomial P (z) of the

form (1) as well as the corresponding value of |P (z)|2 are E2-computable
functions of the coefficients α0, α1, . . . , αN−1 and the argument z.

7. For any given positive integer N , if P (z) is an arbitrary polynomial of the
form (1), and α is an arbitrary complex number, then the coefficients of the
polynomial that is the quotient of P (z) − P (α) and z − α are E2-computable
functions of α0, α1, . . . , αN−1 and α.

8. If ϕ is an E2-computable function from C
N+1 into C, then there are E2-

computable operators Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 from F 6N into F7 such that, when-
ever an element f̄ of F 6N is a representation of some N -tuple ζ1, . . . , ζN of
complex numbers, then for any natural numbers y1, y2, y3, y4, y5, y6 the 6-
tuple of the functions

λu. Γj(f̄)(u, y1, y2, y3, y4, y5, y6), j = 1, 2, 3, 4, 5, 6,

is a representation of the complex number

ϕ

(
ζ1, . . . , ζN ,

y1 − y2

y3 + 1
+

y4 − y5

y6 + 1
i

)
.

4 The property 5 can be derived from the properties 3, 4 and the equality |z|2 = z · z̄.
The properties 3, 4 and 5 imply the property 6, and it implies the property 7. The
proof of the property 8 makes use of property 6 from section 2 (with k = 1, l = 6)
and of the fact that for any natural numbers y1, y2, y3, y4, y5, y6 the 6-tuple of the
constant functions λt. y1, λt. y2, λt. y3, λt. y4, λt. y5, λt. y6 is a representation of the
rational complex number

y1 − y2

y3 + 1
+

y4 − y5

y6 + 1
i.
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Remark. Except for the case of N = 1, there is no E2-computable function ϕ
from C

N into C such that for any complex numbers α0, α1, . . . , αN−1 the number
ϕ(α0, α1, . . . , αN−1) is a root of the corresponding polynomial (1). This follows
from the non-existence of a continuous function with such a property.

4 On Rosenbloom’s Proof of the Fundamental Theorem
of Algebra

P. C. Rosenbloom’s proof in [4] of the fundamental theorem of algebra makes
use of an analogue of Cauchy’s theorem from the theory of analytic functions.
In its complete form the result obtained in the proof of this analogue can be
formulated as follows (see Lemma 2, Theorems 1, 2 and Corollary 1 in [4]).

Theorem R. Let N be a positive integer, α0, α1, . . . , αN−1 be complex numbers,
P (z) be the corresponding polynomial (1), and ε be a positive real number. If

A = max{|α0|, |α1|, . . . , |αN−1|, 1}, γ =
(

N + 1
[(N + 1)/2]

)
,

a is a real number not less than 5NA, K = 2(3N/2)+6γ3A3a3N+3, and n is an
integer greater than K/ε3, then

∣∣
∣
∣P

(
(u + vi)a

n

)∣∣
∣
∣ < ε

for some integers u and v with |u| ≤ n, |v| ≤ n.
The further presentation in [4] goes through the following statement (its for-

mulation here coincides with the original one up to inessential details).

Lemma 3. Let N be a positive integer, α0, α1, . . . , αN−1 be complex numbers,
P (z) be the corresponding polynomial (1), and ε be a positive real number less
than 1. Then we can find points z1, . . . , zN such that

|P (zj)| < ε, j = 1, . . . , N,

and such that if |P (z)| < δ, where ε ≤ δ < 1, then

min
1≤j≤N

|zj − z| < 2δ1/2N

.

The proof of the lemma in the paper (after the elimination of a small prob-
lem5) can be adapted to the needs of the present paper. However, a strengthen-
ing of the lemma is possible that is more convenient for us, namely by adding
5 The problem is in the induction used for actually proving a strengthening of

the lemma with the factor 21−1/2N

in place of 2 in the last inequality. Namely
the inequality (2δ)1/2 < 1 is needed for being able to use the inductive hypothesis
at the final step, but the assumption δ < 1 is not sufficient for the truth of this
inequality. Fortunately, as the first author observed, this problem can be eliminated
by replacing the inequality δ < 1 in the formulation of the lemma with the inequality
δ < 2.
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the words “with rational coordinates” after the phrase “we can find points
z1, . . . , zN”. We shall prove constructively even the slightly stronger statement
with 2δ1/2N−1

instead of 2δ1/2N

.

Lemma 3
′
. Let N be a positive integer, α0, α1, . . . , αN−1 be complex numbers,

P (z) be the corresponding polynomial (1), and ε be a positive real number less
than 1. Then we can find rational complex numbers z1, . . . , zN such that
|P (zj)|<ε, j = 1, . . . , N , and such that if |P (z)| < δ, where ε ≤ δ < 1, then

min
1≤j≤N

|zj − z| < 2δ1/2N−1
.

Proof. Our reasoning will be very close to the proof of Lemma 3 in [4]. We see
as there that all complex numbers z with |P (z)| ≤ 1 satisfy the inequality

|z| < 1 + N max
0≤k<N

|αk|.

If N = 1 then we take a rational complex number z1 such that |z1 + α0| < ε.
Clearly |P (z1)| < ε, and if |P (z)| < δ, where ε ≤ δ < 1, then

|z1 − z| ≤ |z1 + α0| + |z + α0| < ε + δ ≤ 2δ = 2δ1/2N−1

Suppose now N > 1, and the statement of Lemma 3′ is true for N − 1. Let (as
in the original proof) ε1 = ε/C, where C = 3 + NA + (N − 1)NA(1 + NA)N−1,
and A = max{|α0|, |α1|, . . . , |αN−1|, 1}. Clearly ε1 < ε. By Theorem R (applied
with some rational number a) we find a rational complex number z1 such that
|P (z1)| < ε1, hence |P (z1)| < ε < 1, and therefore |z1| < 1 + NA. Now

P (z) = P (z1) + (z − z1)P1(z),

where

P1(z) =
N−1∑

m=0

βmzm, |βm| =

∣
∣∣
∣
∣

N∑

k=m+1

αkzk−m−1
1

∣
∣∣
∣
∣
< NA(1 + NA)N−1.

By the inductive assumption we can find rational complex numbers z2, . . . , zN

such that |P1(zj)| < ε1, j = 2, . . . , N , and

min
2≤j≤N

|zj − z| < 2δ1/2N−2
,

whenever |P1(z)| < δ and ε1 ≤ δ < 1. If j is any of the numbers 2, . . . , N , then
|P1(zj)| < 1, hence |zj | < 1 + (N − 1)NA(1 + NA)N−1, and therefore

|P (zj)| ≤ |P (z1)| + (|zj | + |z1|)|P1(zj)| < ε1 + (|zj | + |z1|)ε1 < Cε1 = ε.

Now let |P (z)| < δ, where ε ≤ δ < 1. Then

|z1 − z||P1(z)| = |P (z1) − P (z)| ≤ |P (z1)| + |P (z)| < ε + δ ≤ 2δ ≤ 2δ1/2N−1
δ1/2,
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hence |z1 − z| < 2δ1/2N−1
or |P1(z)| < δ1/2. In the case of |P1(z)| < δ1/2 we have

the inequality
min

2≤j≤N
|zj − z| < 2(δ1/2)1/2N−2

= 2δ1/2N−1

since ε1 < δ < δ1/2 < 1. Therefore in both cases

min
1≤j≤N

|zj − z| < 2δ1/2N−1
. ��

The concluding part of Rosenbloom’s proof is in his Theorem 3. Making use of
Lemma 3′ instead of Lemma 3, we can strengthen Theorem 3 by constructing
a sequence of rational complex numbers converging to a root of the polynomial.
In the original proof Lemma 3 is applied with values of ε of the form 2−n2N

,
n = 1, 2, . . . , and this leads to the inequality |zn+1 −zn| < 21−n for the members
of the constructed sequence z1, z2, . . . Of course this can be done also through
Lemma 3′, and the rate of the convergence is quite good. Unfortunately the ex-
ponential dependence of 2−n2N

on n is an obstacle to realize such a construction
of the sequence by means of E2-computable operators. Therefore it is appropri-
ate to change the construction. Namely an inequality |zn+1 − zn| < (n + 1)−2

would still give an admissible rate of convergence, and this inequality can be
achieved by using values of ε of the form 2−2N−1

(n + 1)−2N

, n = 1, 2, . . . (since
these values are used also as values of δ when n + 1 is considered instead of n,
and we have 2δ1/2N−1

= (n + 1)−2 for δ = 2−2N−1
(n + 1)−2N

).

5 Construction of the Needed E2-Computable Operators

We shall first formulate three theorems, and then we shall sketch their proofs.
The first two of these theorems (corresponding to Theorem R and to Lemma 3′

from the previous section) describe the major preliminary steps in the construc-
tion of the E2-computable operators needed to get the promised refinement of
the fundamental theorem of algebra. The third theorem is the refinement itself.

Theorem 1. For any positive integer N there are E2-computable operators
Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 from F 6N into F such that, whenever an element f̄ of F 6N

is a representation of an N -tuple α0, α1, . . . , αN−1 of complex numbers, and P (z)
is the polynomial (1) corresponding to this N -tuple, then

∣
∣
∣∣P

(
Γ1(f̄)(t) − Γ2(f̄)(t)

Γ3(f̄)(t) + 1
+

Γ4(f̄)(t) − Γ5(f̄)(t)
Γ6(f̄)(t) + 1

i

)∣
∣
∣∣ <

1
t + 1

, t = 0, 1, 2, . . .

Theorem 2. For any positive integer N there are E2-computable operators
Γ1j , Γ2j , Γ3j , Γ4j , Γ5j , Γ6j , j = 1, 2, . . . , N , from F 6N into F such that, when-
ever an element f̄ of F 6N is a representation of an N -tuple α0, α1, . . . , αN−1 of
complex numbers, and P (z) is the polynomial (1) corresponding to this N -tuple,
then for any natural number t and

zj =
Γ1j(f̄)(t) − Γ2j(f̄)(t)

Γ3j(f̄)(t) + 1
+

Γ4j(f̄)(t) − Γ5j(f̄)(t)
Γ6j(f̄)(t) + 1

i , j = 1, 2, . . . , N,
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the inequalities |P (zj)| < (t + 1)−1 , j = 1, 2, . . . , N , hold, and

min
1≤j≤N

|zj − z| < 2δ1/2N−1

for all δ and z satisfying the inequalities (t + 1)−1 ≤ δ < 1, |P (z)| < δ.

Theorem 3. For any positive integer N there are E2-computable operators
Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 from F 6N into F such that, whenever an element f̄ of F 6N

is a representation of an N -tuple α0, α1, . . . , αN−1 of complex numbers, and
P (z) is the polynomial (1) corresponding to this N -tuple, then the 6-tuple of
the functions Γ1(f̄), Γ2(f̄), Γ3(f̄), Γ4(f̄), Γ5(f̄), Γ6(f̄) is a representation of some
root of P (z).

The proof of Theorem 1 is based on the statement of Theorem R and does not
use any details from its proof. Let N be a positive integer. One easily constructs
E2-computable operators Δ1 and Δ2 from F 6N into F0 such that, whenever an
element f̄ of F 6N is a representation of an N -tuple α0, α1, . . . , αN−1 of com-
plex numbers, and P (z) is the polynomial (1) corresponding to this N -tuple,
the natural number Δ1(f̄) is not less than the number 5NA from Theorem R
for the given numbers N, α0, α1, . . . , αN−1, and the natural number Δ2(f̄) is
not less than the number K for the given numbers N, α0, α1, . . . , αN−1 and for
a = Δ1(f̄). In this situation, if t is an arbitrary natural number then an appli-
cation of Theorem R with ε = 1

2(t+1) , a = Δ1(f̄), n = 8(t + 1)3Δ2(f̄) + 1 and
with the substitution u = r − n, v = s − n allows concluding that

∣
∣∣
∣P

(
rΔ1(f̄) − Δ′1(f̄)(t)

Δ′2(f̄)(t) + 1
+

sΔ1(f̄) − Δ′1(f̄)(t)
Δ′2(f̄)(t) + 1

i

)∣
∣∣
∣

2

<
1

4(t + 1)2
(2)

for some natural numbers r and s not greater than Δ′2(f̄)(t), where Δ′1 and Δ′2
are the mappings of F 6N into F defined by

Δ′2(f̄)(t) = 8(t + 1)3Δ2(f̄), Δ′1(f̄)(t) = (Δ′2(f̄)(t) + 1)Δ1(f̄)

(clearly Δ′1 and Δ′2 are also E2-computable operators). By the properties 6 and 8
from Section 3, there are E2-computable operators Γ and Δ from F 6N to F4
such that, whenever an element f̄ of F 6N is a representation of an N -tuple
α0, α1, . . . , αN−1 of complex numbers, and P (z) is the polynomial (1) corre-
sponding to this N -tuple, then the absolute value of the difference

Γ (f̄)(u, r, s, t)
Δ(f̄)(u, r, s, t) + 1

−
∣
∣
∣∣P

(
rΔ1(f̄) − Δ′1(f̄)(t)

Δ′2(f̄)(t) + 1
+

sΔ1(f̄) − Δ′1(f̄)(t)
Δ′2(f̄)(t) + 1

i

)∣
∣
∣∣

2

is not greater than (u + 1)−1 for any r, s, t, u in N. With u = 4(t + 1)2 − 1 we
get that

Γ (f̄)(4(t + 1)2 − 1, r, s, t)
Δ(f̄)(4(t + 1)2 − 1, r, s, t)) + 1

<
1

2(t + 1)2
(3)
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for all natural numbers r, s, t satisfying the inequality (2), and
∣∣
∣
∣P

(
rΔ1(f̄) − Δ′1(f̄)(t)

Δ′2(f̄)(t) + 1
+

sΔ1(f̄) − Δ′1(f̄)(t)
Δ′2(f̄)(t) + 1

i

)∣∣
∣
∣

2

<
3

4(t + 1)2
<

1
(t + 1)2

for any r, s, t in N that satisfy (3). It is a routine work (making use of the
property 5 from Section 2) to construct two E2-computable operators Δ3 and Δ4
from F 6N to F such that Δ3(f̄) and Δ4(f̄) transform any natural number t into
natural numbers r and s not greater than Δ′2(f̄)(t) and satisfying (3), whenever
such r and s exist. Then Theorem 1 will hold with Γ2 = Γ5 = Δ′1, Γ3 = Γ6 = Δ′2
and Γ1(f̄)(t) = Δ3(f̄)(t)Δ1(f̄), Γ4(f̄)(t) = Δ4(f̄)(t)Δ1(f̄) .

The proof of Theorem 2 is actually an operator refinement of the one of
Lemma 3′ and follows closely it. In the case of N = 1 we, roughly speaking, use
rational approximations of the number −α0 that can be constructed by means of
the representation f̄ of α0. For the inductive step, we suppose the existence of the
needed 6(N − 1)-tuple of E2-computable operators for the case of polynomials
of degree N − 1, and use them to construct the needed 6N -tuple of ones for
polynomials of degree N , making use also of the E2-computable operators from
Theorem 1 for this case and of the properties 7 and 8 from Section 3.

Of course the operators Γ1j , Γ2j , Γ3j , Γ4j , Γ5j , Γ6j , j = 1, 2, . . . , N , from The-
orem 2 are used in the proof of Theorem 3. For any element f̄ of F 6N and any
natural number n we set

γ f̄
n,j =

Γ1j(f̄)(tn) − Γ2j(f̄)(tn)
Γ3j(f̄)(tn) + 1

+
Γ4j(f̄)(tn) − Γ5j(f̄)(tn)

Γ6j(f̄)(tn) + 1
i, j = 1, 2, . . . N, (4)

where tn = 22N−1
(n + 1)2

N − 1. Then, for any element f̄ of F 6N , we define
a sequence jf̄

0 , jf̄
1 , jf̄

2 , . . . of integers from the set {1, 2, . . . , N} in the following
recursive way: we set jf̄

0 = 1 and, whenever jf̄
n is already defined, we set jf̄

n+1 to

be the first j ∈ {1, 2, . . . , N} such that j = N or
∣∣
∣γ f̄

n+1,j − γ f̄

n,jf̄
n

∣∣
∣ < (n + 1)−2.

Finally, we set

Γk(f̄)(n) = Γ
kjf̄

n
(f̄)(tn), k = 1, 2, 3, 4, 5, 6, n = 0, 1, 2, . . . (5)

The E2-computability of the constructed operators is easily verifiable, thus it
remains only to prove the other property formulated in Theorem 3. Let an ele-
ment f̄ of F 6N be a representation of an N -tuple α0, α1, . . . , αN−1 of complex
numbers, and P (z) be the polynomial (1) corresponding to this N -tuple. Then
for any natural number n the inequalities |P (γ f̄

n,j)| < (tn +1)−1 , j = 1, 2, . . . , N ,
hold, and whenever |P (z)| < δ, where (tn+1 + 1)−1 ≤ δ < 1, then

min
1≤j≤N

|γ f̄
n+1,j − z| < 2δ1/2N−1

.

By the first part of this statement limn→∞ P (γ f̄

n,jf̄
n

) = 0. Applying the second one

with z = γ f̄

n,jf̄
n

, δ = (tn +1)−1, we see that |γ f̄

n+1,jf̄
n+1

− γ f̄

n,jf̄
n

| < (n + 1)−2, since
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2δ1/2N−1
= (n + 1)−2 for this value of δ. To complete the proof, it is sufficient to

use the equality (4) with j = jf̄
n , as well as the equality (5) and the inequality

(n + 1)−2 + (n + 2)−2 + · · · + (n + p)−2 ≤ (n + 1)−1.

6 Some Corollaries from Theorem 3

By induction on N one easily proves

Corollary 1. For any positive integer N there are E2-computable operators
Γ1j , Γ2j , Γ3j , Γ4j , Γ5j , Γ6j , j = 1, 2, . . . , N , from F 6N into F such that, whenever
an element f̄ of F 6N is a representation of an N -tuple of complex numbers
α0, α1, . . . , αN−1, and P (z) is the polynomial (1) corresponding to this N -tuple,
then the N -tuples Γ1j(f̄), Γ2j(f̄), Γ3j(f̄), Γ4j(f̄), Γ5j(f̄), Γ6j(f̄), j = 1, 2, . . . , N ,
are representations of some complex numbers z1, z2, . . . , zN with the property
that for all z the equality P (z) = (z − z1)(z − z2) · · · (z − zN) holds.

This implies the following statement (derivable also from Theorem 2.5 of [5]).

Corollary 2. If an N -tuple of complex numbers α0, α1, . . . , αN−1 has a repre-
sentation consisting of functions from Grzegorczyk class Em, where m ≥ 2, then
any root of the corresponding polynomial (1) has a representation consisting of
functions from the same class Em.

Remark. Neither of the indicated two proofs of Corollary 2 yields an interpre-
tation of the existential statement in the conclusion via recursive operators using
as input an Em-representation of the sequence α0, α1, . . . , αN−1 and an arbitrary
representation of the considered root. The existence of such operators (even of
E2-computable ones) was additionally shown by the second author.
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