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In this paper we characterize the minihypers with parameters (66, 21) in the geometry
PG(4, 3). These parameters are important because they are instrumental in solving the
problem of the existence of several hypothetical ternary Griesmer codes of dimension 6.
This classification gives also insight into the classification problem for (𝑣𝑟+2𝑣𝑟−1, 𝑣𝑟−1+
2𝑣𝑟−2)-mimihypers in PG(𝑟, 𝑞) for any 𝑟 ≥ 3 and any prime power 𝑞 ≥ 4.
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1. Introduction

In [10] Sawashima and Maruta tackled the main problem in coding theory for
ternary linear codes of dimension 𝑘 = 6. For these parameters there exist about 100
unsolved cases all of which are considered to be difficult. In this paper, we provide the
classification of the (66, 21)-minihypers in PG(4, 3) which are instrumental in solving
three of the open cases for 𝑘 = 6, 𝑞 = 3. Moreover we prove the reducibility of the
minihypers with parameters (67, 21) and (68, 21) which provides a characterization
also for these two parameter sets. These results are further generalized for blocking
sets with parameters (𝑣𝑟 + 2𝑣𝑟−1, 𝑣𝑟−1 + 2𝑣𝑟−2) in the geometries PG(𝑟, 𝑞), 𝑞 ≥ 4.

2. Preliminaries

In this section we introduce some basic notions and results on multisets of points
in PG(𝑟, 𝑞). A multiset of points is a mapping 𝒦 from the pointset 𝒫 of PG(𝑟, 𝑞) to
the non-negative integers. The multiset 𝒦 can be extended additively to the subsets
of 𝒫. It can be interpreted as an arc or a minihyper depending on whether we put a
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lower or an upper bound on the number of points in a hyperplane. So, an (𝑛,𝑤)-arc
(resp. (𝑛,𝑤)-minihyper) is a multiset of cardinality 𝑛 such that any hyperplane is of
multiplicity at most (resp. at least) 𝑤. A minihyper with point multiplicities 0 and
1 is called a blocking set. The notion of a minihyper was introduced by Hamada.
We use it here to denote a blocking set with multiple points.

The next few results have been proved for linear codes, but can be easily refor-
mulated for arcs and blocking sets in finite projective geometries.

Theorem 2.1 ([13]). Let 𝒦 be an (𝑛,𝑤)-arc (resp. (𝑛,𝑤)-minihyper) in
PG(𝑟, 𝑝), where 𝑝 is a prime. Let further 𝑤 ≡ 𝑛 (mod 𝑝𝑒) for some 𝑒 ≥ 1. Then for
every hyperplane 𝐻 it holds that 𝒦(𝐻) ≡ 𝑛 (mod 𝑝𝑒).

An (𝑛,𝑤)-arc in PG(𝑟, 𝑞) is called 𝑡-extendable if the multiplicities of some of
the points can be increased by a total of 𝑡, so that the obtained arc has parameters
(𝑛+ 𝑡, 𝑤). Similarly, an (𝑛,𝑤)-minihyper is called 𝑡-reducible if the mutiplicities of
some of the points can be reduced by a total of 𝑡, so that the obtained multiset is
an (𝑛 − 𝑡, 𝑤)-minihyper. The following result by R. Hill and P. Lizak was proved
initially for linear codes.

Theorem 2.2 ([5]). Let 𝒦 be an (𝑛,𝑤)-arc (resp. (𝑛,𝑤)-minihyper) in PG(𝑟, 𝑞)
with (𝑛−𝑤, 𝑞) = 1, such that the multiplicities of all hyperplanes are 𝑛 or 𝑤 modulo 𝑞.
Then 𝒦 is extendable to an (𝑛+1, 𝑤)-arc (resp. reducible to an (𝑛−1, 𝑤)-minihyper).

The next theorem is a more sophisticated extension result by Hitoshi Kanda [6]
which applies only for arcs (minihypers) in a geometry over F3.

Theorem 2.3 ([6]). Let 𝒦 be an (𝑛,𝑤)-arc (resp. (𝑛,𝑤)-minihyper) in
PG(𝑟, 3). Assume further that the multiplicity of every hyperplane 𝐻 is congru-
ent to 𝑛, 𝑛+1, or 𝑛+2 modulo 9. Then 𝒦 is extendable to an (𝑛+2, 𝑤)-arc (resp.
reducible to an (𝑛− 2, 𝑤)-minihyper).

3. The classification of (66, 21)-blocking sets in PG(4, 3)

In this section, we denote by ℬ a (66, 21)-minihyper in PG(4, 3). Let us note
that 2−ℬ is then a (176, 59)-arc in PG(4, 3), which is associated with a [176, 5, 117]3
Griesmer code. By Ward’s Theorem this code is divisible and hence, in turn, ℬ is
also divisible. Thus for each hyperplane 𝑆 (in this case 𝑆 is a solid) in PG(4, 3) one
has ℬ(𝑆) ≡ 0 (mod 3).

Furthermore, the plane multiplicities with respect to a (21, 6)-blocking set in
PG(3, 3) are in the set {6, 9, 12, 15, 18, 21} (cf. [7]). By an easy counting argument, we
can prove that for ℬ solids of multiplicities 22, . . . , 27, 31, . . . , 36, 40, . . . , 45, 49, . . . ,
54, 58, . . . , 63 do not exist. This observation is stated in following lemma.

Lemma 3.1. Let ℬ be a (66, 21)-minihyper in PG(4, 3). For every solid 𝑆 in
PG(4, 3) it holds ℬ(𝑆) ∈ {21, 30, 39, 48, 57, 66}.
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Proof. By Ward’s divisibility theorem, solids of multiplicity not divisible by 3 are
impossible. Hence we have to rule out the existence of solids of multiplicity 24, 27,
33, 36, 42, 45, 51, 54, 60, 63.

We shall demonstrate that solids of multiplicity 24 are impossible. The re-
maining multiplicities are ruled out analogously. Let us assume that 𝑆0 is a solid of
multiplicity 24. Obviously ℬ|𝑆0

is a (24, 7)-blocking set. Let 𝜋 be a 7-plane in 𝑆0

and let 𝑆𝑖, 𝑖 = 1, . . . , 3, be the other solids through 𝜋. Since a (21, 6)-minihyper in
PG(3, 3) does not have 7-planes all 𝑆𝑖 are of multiplicity at least 24. Now we have

|ℬ| =
3∑︁

𝑖=0

ℬ(𝑆𝑖)− 3ℬ(𝜋) ≥ 4 · 24− 3 · 7 = 75,

a contradiction.

Since ℬ is a minihyper with respect to the lines (i.e. the multiplicity of each
line is at least 1), a solid of multiplicity ≥ 48 does not have 0-points. Otherwise
|ℬ| ≥ 48 + 27 · 1 > 66. This implies that if ℬ has a solid of multiplicity at least
48 it is the sum of a solid and (26, 8)-blocking set which in turn is the sum of two
planes [8].

It remains to classify the (66, 21)-minihypers for which the hyperplane multi-
plicities are only 21, 30, and 39. For the spectrum of such a blocking set we have

𝑎21 + 𝑎30 + 𝑎39 = 121
21𝑎21 + 30𝑎30 + 39𝑎39 = 66 · 40
210𝑎21 + 435𝑎30 + 741𝑎39 = 2145 · 13 + 27𝜆2 + 81𝜆3

whence 3𝑎39 = 𝜆2 + 3𝜆3.
Let us first assume that the (66, 21)-minihyper ℬ contains a 21-solid 𝑆0 with a

full plane. Let us fix a 6-line 𝐿 which is contained in a 6-plane 𝜋 in 𝑆0. Note that 𝐿
is of type (3, 1, 1, 1) or (2, 2, 1, 1). Consider a projection 𝜙 from 𝐿 in this solid onto
some plane in PG(4, 3) disjoint from 𝐿. The image of 𝑆0 is then a line 𝐿0 of one
of the following types: (a) (15, 0, 0, 0), (b) (12, 3, 0, 0), (c) (9, 6, 0, 0), (d) (9, 3, 3, 0)
(cf. [7] for the classification of the (21, 6)-minihypers in PG(3, 3)).

Denote by 𝑆𝑖 the solids in PG(4, 3) through 𝜋 and set 𝐿𝑖 = 𝜙(𝑆𝑖). By
Lemma 3.1 all lines in the projection plane must have multiplicity which is con-
gruent to 6 (mod 9) and is at least 15.

The induced minihyper 𝜓 = 1
3 (ℬ

𝜙 (mod 9)) is a plane (8, 2)-blocking set. It is
clear that, 0- and 9-points with respect to ℬ𝜙 become 0-points with respect to 𝜓,
3- and 12-points become 1-points and 6-points become 2-points. Now 𝜓 is clearly a
double line or a sum of two different lines.

The first possibility leads to a contradiction since in this case all four lines 𝐿𝑖

are of type (15, 0, 0, 0), or (9, 6, 0, 0). In this case the points of multiplicity ≡ 6
(mod 9) are collinear. If at least two of the lines are of type (15, 0, 0, 0), then we
have a line of multiplicity at least 42, which is the image of a 48-solid. This case
has been already settled. If exactly one of 𝐿𝑖 is of type (15, 0, 0, 0) we have a line
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of type (15, 9, 9, 9), again a 42-line. If all the lines 𝐿𝑖 are of type (9, 6, 0, 0), then
there exist three collinear 0-points, and hence a solid of multiplicity at most 15, a
contradiction.

The second possibility is the case when 𝜓 is the sum of two different lines. Then
one of the lines 𝐿𝑖, 𝐿0 say, is of type (15, 0, 0, 0) or (9, 6, 0, 0), while the remaining
three lines 𝐿1, 𝐿2, 𝐿3 are of type (12, 3, 0, 0) or (9, 3, 3, 0). If 𝐿0 is of type (15, 0, 0, 0)

it is easily checked that either there is a line of multiplicity at least 42 or a line of
multiplicity less than 15. The former has already been treated, and the latter is
contradiction. If 𝐿0 is of type (9, 6, 0, 0), the only possibility which does not lead to
a contradiction is when 𝐿1, 𝐿2, 𝐿3 are all of type (9, 3, 3, 3). In this case, a (66, 21)-
blocking set can be constructed as follows.

Denote by 𝑄 the point of multiplicity 6 on the line 𝐿0. The lines through 𝑄

are 𝐿0 itself, a line of type (6, 9, 9, 9), and two lines of type (6, 3, 3, 3). The point 𝑄
is the image of a 12-plane 𝛿 in PG(4, 3), which is the sum of three lines in 𝛿, 𝐺0, 𝐺1,
𝐺2 say, not necessarily different. One of these lines coincides with the line 𝐿 from
which the projection 𝜙 is defined. The preimage of the line in the projection plane,
which is of type (6, 9, 9, 9), is a solid that contains 𝛿 and that has all points outside
𝛿 with multiplicity 1. The remaining three solids (whose image is of type (6, 3, 3, 3))
contain 𝛿 and have nine further 1-points, which are the points of a plane through
𝐺0, 𝐺1 and 𝐺2 respectively, and are not in 𝛿.

Figure 1 represents the structure of this minihyper when the lines 𝐺𝑖 in 𝛿 are
all different and non-concurrent. The gray points represent 1-points, and the black
points are 2-points. The two small pictures on the right represent the 30-solid, and
any of the 21-solids through 𝛿.

Figure 1. (66, 21)-blocking set of type (B)
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Assume there exists a solid 𝑆0 of type (2) [7, Theorem 6]. Denote by 𝐿 the
5-line of type (2, 1, 1, 1, 0) and by 𝜋 one of the two 6-planes through 𝐿. Let the
other three solids through 𝜋 be 𝑆1, 𝑆2, 𝑆3. All solids are of multiplicity 21 and the
multisets ℬ|𝑆𝑖 are all (21, 6)-blocking sets (in PG(3, 3)) of the same type as 𝑆0. This
is because solids of type (1) have already been dealt with above, and type (3) is
projective (note that 𝐿 has a 2-point).

Consider a projection 𝜙 from 𝐿 onto some plane disjoint from 𝐿. The image
of 𝜋 is a 1-point, 𝑃 say, and the images of the solids 𝑆𝑖 are lines through 𝑃 , say 𝐿𝑖.
All they have type (7, 7, 1, 1) with respect to the induced blocking set ℬ𝜙. Now it is
clear that in the projection plane there exists a line which is incident with at least
three 1-points. It is the preimage of a solid of multiplicity at most 3 · 1+7+5 = 15,
which is a contradiction.

It remains to consider the case when every 21-solid is a (21, 6)-minihyper of
type described in [7, Theorem 6(3)], i.e. all 21-solids are projective. Since every
point is contained in a minimal hyperplane the minihyper ℬ is itself projective (i.e.
it is a blocking set). Hence we have 𝜆2 = 𝜆3 = 0 and 𝑎39 = 0. This implies that

𝑎21 = 110, 𝑎30 = 11.

Define a point set in the dual space in which the 30-solids are 1-points and the 21-
solids are 0-ponts. Obviously, this is an (11, 5)-arc in PG(4, 3), which is associated
with an [11, 5, 6]3 code. This code is unique since it is equivalent to the dual of the
ternary Golay code with parameters [11, 6, 5] that is known to be unique. Both codes
are near-MDS codes (cf. [1]). This implies that there exists exactly one projective
(66, 21)-blocking set in PG(4, 3).

It is possible to give an explicit geometric description of this blocking set.
The 21-solids are (21, 6)-blocking sets projectively equivalent to the blocking sets
described in [7, Theorem 6(3)]. Every 30-solid is equivalent to the complement of a
10-cap (since it is projective). Now consider a 12-plane 𝜋 in a 21-solid and denote
by 𝑆𝑖, 𝑖 = 0, 1, 2, 3, the solids through 𝜋. Without loss of generality, 𝑆0 and 𝑆1 are
21-solids and 𝑆2, 𝑆3 are 30-solids. The three special lines in each of the planes 𝑆0,
𝑆1 meet 𝜋 in collinear points that are incident with two different lines through the
0-point in 𝜋.

Figure 2 represents the structure of the (66, 21)-blocking set we just described.
Thus we have proved the following theorem which provides a characterization

of the (66, 21)-blocking sets in PG(4, 3).

Theorem 3.2. Let ℬ be a (66, 21)-blocking set in PG(4, 3). Then ℬ is one of
the following:

(A) the sum of a solid and two planes;

(B) the sum of an affine space of dimension 3 and three affine planes contained
in the four solids through a common 12-plane which is the sum of three (not
necessarily different lines);

(C) the dual of the (11, 5)-arc in PG(4, 3).
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Figure 2. (66, 21)-blocking set of type (C)

Theorem 3.3. Every (68, 21)-blocking set in PG(4, 3) is reducible to a (66, 21)-
blocking set.

Proof. Let ℬ be a (68, 21)-blocking set in PG(4, 3). Assume there exists a solid of
multiplicity at least 48. This solid does not have 0-points and ℬ is the sum of a
solid and a (28, 8)-blocking set. The latter is the sum of two planes and two points.
Hence in this case ℬ is reducible.

Now assume that all solids have multiplicity smaller than 48. Since a (21, 6)-
blocking set has only planes of multiplicity ≡ 0 (mod 3), we get by an easy counting
that the only multiplicities of a solid are 21, 22, 23, 30, 31, 32, 39, 40, 41. Now ℬ is
extendable by Theorem 2.3.

Remark 3.4. In order to solve the main problem in coding theory for 𝑑 = 343,
344, and 345 one needs blocking sets with maximal point multiplicity 2. So, in the
case of (68, 21)-blocking sets reducible to (66, 21)-blocking sets of type (A) we have
exactly one admissible multiset in which both planes meet the solid in two skew
lines and hence intersect in a point which is outside the solid. Such a blocking set
is unique since it is determined by the skew lines and the common point of the
two planes. This minihyper is presented in Figure 3. In the case of blocking sets

Figure 3. (66, 21)-blocking set of type (A) without 3-points
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reducible to a (66, 21)-blocking sets of type (B) the exceptional 12-plane should be
the sum of three different lines that are non-concurrent.

4. Characterization of the (𝑣𝑟 + 2𝑣𝑟−1, 𝑣𝑟−1 + 2𝑣𝑟−2)-blocking sets
in PG(𝑟, 𝑞) for 𝑞 ≥ 5

It was proved in [7] that every (𝑣3 + 2𝑣2, 𝑣2 + 2𝑣1)-blocking set in PG(3, 𝑞),
𝑞 ≥ 5, is the sum of a plane and two lines. This result can be generalized to the
following theorem.

Theorem 4.1. Every (𝑣𝑟+2𝑣𝑟−1, 𝑣𝑟−1+2𝑣𝑟−2)-blocking set in PG(𝑟, 𝑞), 𝑞 ≥ 5,
is the sum of one (𝑟−1)-dimensional subspace and two (𝑟−2)-dimensional subspaces.

Proof. The proof is by induction on 𝑟. The basis is provided by [7, Theorem 4].
Assume the result is proved for all geometries of dimension 𝑟 − 1 or less. An easy
counting gives that a minimal subspace of codimension 𝑖, 𝑖 = 0, . . . , 𝑟−1 is a blocking
set with parameters (𝑣𝑟−𝑖 + 2𝑣𝑟−𝑖−1, 𝑣𝑟−𝑖−1 + 2𝑣𝑟−𝑖−2).

Consider a minimal subspace 𝑇 of codimension 2. By the induction hypothesis,
𝑇 is the sum of a subspace of codimension 3 and two subspaces of codimension 4.
Hence there exists a hyperplane 𝑈 of 𝑇 in which all points are of multiplicity at
least 1. In fact, this hyperplane is of multiplicity 𝑣𝑟−2+𝜀𝑣𝑟−3+(2−𝜀)𝑣𝑟−4, 𝜀 = 0, 1, 2.

Consider a projection from 𝑈 onto some plane 𝜋 with 𝑈 ∩ 𝜋 = ∅. In the
case 𝜀 = 0 the projection plane has 𝑞 + 1 points of multiplicity 𝑞𝑟−2 + 2𝑞𝑟−4. These
points have to be collinear which implies that the blocking set is the sum of a (𝑟−1)-
dimensional subspace and a (2𝑣𝑟−1, 2𝑣𝑟−2)-blocking set, which, in turn, is the sum
of two (𝑟 − 2)-dimensional subspaces.

The remaining two cases are treated in a similar way.

Remark 4.2. In the case 𝑞 = 4, a (𝑣𝑟 + 2𝑣𝑟−1, 𝑣𝑟−1 + 2𝑣𝑟−2)-blocking set in
PG(𝑟, 4), 𝑟 ≥ 3, is either the sum of a hyperplane and two hyperlines, or is lifted
from a Baer subplane (cf. [7, Theorem 8]).
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