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We investigate the connections between UC and UC* properties for ordered pairs of
subsets (𝐴,𝐵) in metric spaces, which are involved in the study of existence and unique-
ness of best proximity points. We show that the UC property and the UC* property
lead to one and the same corollaries, when iterated sequences, generated by cyclic maps,
are investigated. We introduce some new notions: bounded UC (BUC) property and
uniformly convex set about a function 𝜑. We prove that these new notions are general-
izations of the UC property and that both of them are sufficient to ensure existence and
uniqueness of best proximity points. We show that these two new notions are different
from a uniform convexity and even from a strict convexity. If we consider the underlying
space to be a Banach space, we find a sufficient condition which ensures that from the
UC property follows the uniform convexity of the underlying Banach space. We illus-
trate the new notions with examples. We present an example of a cyclic contraction 𝑇
in a space, which is not even strictly convex and the ordered pair (𝐴,𝐵) does not have
the UC property, but has the BUC property and thus there is a unique best proximity
point of 𝑇 in 𝐴.
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Banach space, UC metric space, UC* metric space
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1. Introduction

A fundamental result in the fixed point theory is the Banach contraction prin-
ciple in Banach spaces or in complete metric spaces. The fixed point theory is an
important tool for solving equations 𝑇𝑥 = 𝑥 for mapping 𝑇 defined on subsets of
metric or normed spaces.

One kind of a generalization of the Banach contraction principle is the notion of
cyclic maps, 𝑇 : 𝐴 → 𝐵 and 𝑇 : 𝐵 → 𝐴 [11]. Because a non-self mapping 𝑇 : 𝐴 → 𝐵
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does not necessarily have a fixed point, one often attempts to find an element 𝑥
which is in some sense “closest” to 𝑇𝑥. Thus we can alter the fixed point problem
into the optimization problem min{‖𝑥 − 𝑇𝑥‖ : 𝑥 ∈ 𝐴 ∪ 𝐵}. Best proximity point
theorems, introduced in [7], are relevant in this perspective. A sufficient condition
for the existence and uniqueness of the best proximity points in uniformly convex
Banach spaces is given in [7]. The uniform convexity of the underlying space ensures
good geometric properties of the space and is a key property in getting the results
of existence and uniqueness of best proximity points.

Naturally [14,15], in solving the optimization problem min{‖𝑥−𝑇𝑥‖ : 𝑥 ∈ 𝐴∪𝐵}
for a cyclic map 𝑇 : 𝐴 → 𝐵 and 𝑇 : 𝐵 → 𝐴, where 𝐴, 𝐵 are subsets of either a Banach
space (𝑋, ‖ · ‖) or a metric space (𝑋, 𝜌), only some specific properties of the domain
of 𝑇 may be needed, i.e., 𝐴 ∪𝐵, instead of the uniform convexity of the underlying
Banach space (𝑋, ‖ · ‖).

This idea to search for good properties of the ordered pair (𝐴,𝐵) of sets, which
defines the domain of the cyclic map, have been firstly initiatedin [15], where the
authors have investigated existence and uniqueness of best proximity points in a
metric space over ordered pairs (𝐴,𝐵) of sets in complete metric spaces. The authors
have introduced the notion of an ordered pair (𝐴,𝐵) of sets to satisfy the UC
property. Some relations of the UC property for sets in a Banach space and the
properties of uniform convexity, uniform convexity in every direction and relatively
compact sets were presented in [15].

Later on a new notion of an ordered pair (𝐴,𝐵) of sets to satisfy the property
UC* was introduced, in order to investigate existence and uniqueness of coupled best
proximity points in complete metric spaces, rather than uniformly convex Banach
spaces [14].

Deep results about fixed points and the geometry of the underlying space can
be found in [2, 3, 12].

Some results about applications of coupled best proximity points for solving of
symmetric [10] and non-symmetric [17] systems of equations have been presented.
It is interesting to mention that the presented technique in [10, 17] enables to find
exact solutions in cases where the classical fixed point methods can find only ap-
proximations. Best proximity point results have been used in searching of market
equilibrium in duopoly markets, where the cyclic maps have been replaced by semi-
cyclic maps [1,6]. The natural underlying space in the market equilibrium theory is
close to non-convex spaces, rather than convex spaces as pointed in [1], where results
about coupled best proximity points have been obtained in reflexive Banach spaces.

Thereafter, it seems interesting to search for some conditions, different from the
uniform convexity of the underlying space, that will ensure some of the properties,
involved in the definitions of UC or/and UC* and will lead to positive conclusions
on the existence and uniqueness of best proximity points.

2. Preliminaries

In what follows we will use the notations: N for the set of natural numbers,
R for the set of real numbers, 𝑆𝑋 and 𝐵𝑋 for the unit sphere and the unit ball,
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respectively, where (𝑋, ‖ · ‖) is a Banach space, 𝐵(𝑥0, 𝑟) = {𝑥 ∈ 𝑋 : ‖𝑥− 𝑥0‖ < 𝑟},
and 𝐵[𝑥0, 𝑟] = {𝑥 ∈ 𝑋 : ‖𝑥 − 𝑥0‖ ≤ 𝑟} for the open and close balls with a center
𝑥0 and radius 𝑟, respectively. Let (𝑋, 𝜌) be a metric space and 𝐴,𝐵 ⊂ 𝑋. We will
denote by dist(𝐴,𝐵) = inf{𝜌(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} the distance between the sets 𝐴
and 𝐵. Whenever the underlying space is a Banach space (𝑋, ‖ · ‖) we will consider
the metric to be the one generated by the norm, i.e., 𝜌(𝑥, 𝑦) = ‖𝑥− 𝑦‖.

Definition 2.1 ([4, 8]). Let (𝑋, ‖ · ‖) be a Banach space. For every 𝜀 ∈ (0, 2]
we define the modulus of convexity of ‖ · ‖ by

𝛿‖·‖(𝜀) = inf

{︂
1−

⃦⃦⃦⃦
𝑥+ 𝑦

2

⃦⃦⃦⃦
: 𝑥, 𝑦 ∈ 𝐵𝑋 , ‖𝑥− 𝑦‖ ≥ 𝜀

}︂
.

The norm is called uniformly convex if 𝛿𝑋(𝜀) > 0 for all 𝜀 ∈ (0, 2]. The space (𝑋, ‖·‖)
is then called a uniformly convex Banach space.

Definition 2.2 ([11]). Let 𝐴 and 𝐵 be two sets. A map 𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵 is
called a cyclic map if it satisfies 𝑇 : 𝐴 → 𝐵 and 𝑇 : 𝐵 → 𝐴.

Definition 2.3 ([7]). Let (𝑋, 𝜌) be a metric space, 𝐴 and 𝐵 be subsets of 𝑋
and 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 be a cyclic map. We say that the point 𝑥 ∈ 𝐴 is a best
proximity point of 𝑇 in 𝐴, if 𝜌(𝑥, 𝑇𝑥) = dist(𝐴,𝐵).

Definition 2.4 ([7]). Let (𝑋, 𝜌) be a metric space, 𝐴 and 𝐵 be subsets of 𝑋.
We say that the map 𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵 is a cyclic contraction map, if it is a cyclic
map and satisfies the inequality

𝜌(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝜌(𝑥, 𝑦) + (1− 𝛼) dist(𝐴,𝐵)

for some 𝛼 ∈ (0, 1) and every 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵.

Theorem 2.5 ([7]). Let 𝐴 and 𝐵 be nonempty closed and convex subsets of a
uniformly convex Banach space (𝑋, ‖ · ‖). Suppose 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 be a cyclic
contraction map, then there exists a unique best proximity point 𝑥 of 𝑇 in 𝐴.

It is also proven in [7], that for any initial guess 𝑥0 ∈ 𝐴, the iterated sequence
𝑥𝑛 = 𝑇𝑛𝑥0, for 𝑛 ∈ N, splits into two sequences, such that {𝑥2𝑛}∞𝑛=1 converges to the
best proximity point 𝑥 of 𝑇 in 𝐴 and {𝑥2𝑛−1}∞𝑛=1 converges to the best proximity
point 𝑇𝑥 of 𝑇 in 𝐵. The a priori and the a posteriori error estimates have been
found [16] of the iterated sequences {𝑥2𝑛}∞𝑛=1 and {𝑥2𝑛−1}∞𝑛=1.

We will investigating sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴 and {𝑦𝑛}∞𝑛=1 ⊂ 𝐵, 𝐴
and 𝐵 be subsets of a metric space (𝑋, 𝜌) that verify one of the following:

lim
𝑛→∞

𝜌(𝑧𝑛, 𝑦𝑛) = dist(𝐴,𝐵) and lim
𝑛→∞

𝜌(𝑥𝑛, 𝑦𝑛) = dist(𝐴,𝐵) (2.1)

or
(i) lim𝑛→∞ 𝜌(𝑧𝑛, 𝑦𝑛) = dist(𝐴,𝐵);
(ii) for every 𝜀 > 0 there is 𝑁 ∈ N so that the inequality

𝜌(𝑥𝑚, 𝑦𝑛) ≤ dist(𝐴,𝐵) + 𝜀 holds for all 𝑚 > 𝑛 ≥ 𝑁 .
(2.2)
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If the underlying space is a Banach space we will consider the metric 𝜌 to be generated
by the norm.

The next lemmas are crucial in getting the results about best proximity points
in uniformly convex Banach spaces.

Lemma 2.6 ([7]). Let (𝑋, ‖ · ‖) be a uniformly convex Banach space. Let 𝐴
and 𝐵 be nonempty and closed subsets of 𝑋. Let 𝐴 be convex. Let {𝑥𝑛}∞𝑛=1 and
{𝑧𝑛}∞𝑛=1 be sequences in 𝐴 and {𝑦𝑛}∞𝑛=1 be a sequence in 𝐵 satisfying (2.1). Then
lim
𝑛→∞

‖𝑥𝑛 − 𝑧𝑛‖ = 0.

Lemma 2.7 ([7]). Let 𝑋 be a uniformly convex Banach space. Let 𝐴 and 𝐵
be nonempty and closed subsets of 𝑋. Let 𝐴 be convex. Let {𝑥𝑛}∞𝑛=1 and {𝑧𝑛}∞𝑛=1

be sequences in 𝐴 and {𝑦𝑛}∞𝑛=1 be a sequence in 𝐵 satisfying (2.2). Then for every
𝜀 > 0 there exists 𝑁0 ∈ N so that for all 𝑚 > 𝑛 ≥ 𝑁0 there holds the inequality
‖𝑥𝑚 − 𝑧𝑛‖ ≤ 𝜀.

Definition 2.8 ([8]). Let (𝑋, ‖ · ‖) be a Banach space. 𝑋 is called a strictly
convex Banach space if ‖𝑥+ 𝑦‖ < 2 for all 𝑥, 𝑦 ∈ 𝑆𝑋 , such that 𝑥 ̸= 𝑦.

The next lemma is actually proven in [15, Proposition 5] without stating it as
a particular proposition.

Lemma 2.9 ([15, Proposition 5]). Let 𝐴, 𝐵 be closed subsets of a strictly
convex normed space (𝑋, ‖ · ‖), such that dist(𝐴,𝐵) > 0 and let 𝐴 be convex. If
𝑥, 𝑧 ∈ 𝐴 and 𝑦 ∈ 𝐵 be such that ‖𝑥− 𝑦‖ = ‖𝑧 − 𝑦‖ = dist(𝐴,𝐵), then 𝑥 = 𝑧.

As pointed in [7], if the sets 𝐴 and 𝐵 satisfy some additional properties, 𝑇 : 𝐴∪
𝐵 → 𝐴 ∪ 𝐵 is a cyclic contraction map and either 𝐴 or 𝐵 is boundedly compact,
then there exists a best proximity point 𝑥 of 𝑇 in 𝐴.

The authors of [15] have found some properties of the sets 𝐴 and 𝐵 that define
the domain of the cyclic contraction map 𝑇 , which ensure the existence and unique-
ness of the best proximity points, without assuming that the underlying space to be
a uniform convex Banach space.

Definition 2.10 ([15]). Let 𝐴 and 𝐵 be nonempty subsets of a metric space
(𝑋, 𝜌). We say that the ordered pair (𝐴,𝐵) satisfies the UC property if for every
sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴 and {𝑦𝑛}∞𝑛=1 ⊂ 𝐵, satisfying (2.1), then there
holds lim

𝑛→∞
𝜌(𝑥𝑛, 𝑧𝑛) = 0.

It is easy to observe that the UC property replaces Lemma 2.6 and that the
assumption in Lemma 2.6 for the sets 𝐴 and 𝐵 to be closed ones and 𝐴 to be convex
is not necessary, when we replace the uniform convexity of the underlying Banach
space with the UC property. We would like to point out that it may happen for the
ordered pair (𝐴,𝐵) to satisfy UC, but the ordered pair (𝐵,𝐴) does not satisfy it.

Some properties of the UC ordered pairs (𝐴,𝐵) of subsets are presented in [15].

Proposition 2.11 ([15]). Let 𝐴 and 𝐵 be nonempty subsets of a uniformly
convex Banach space (𝑋, ‖ · ‖). If 𝐴 is convex, then the ordered pair (𝐴,𝐵) has the
UC property.
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Proposition 2.12 ([15]). Let 𝐴 and 𝐵 be nonempty subsets of a metric space
(𝑋, 𝜌), such that dist(𝐴,𝐵) = 0. Then the ordered pair (𝐴,𝐵) satisfies the property
UC.

Proposition 2.13 ([15]). Let 𝐴, 𝐴′, 𝐵, 𝐵′ be nonempty subsets of a metric
space (𝑋, 𝜌), such that 𝐴 ⊆ 𝐴′, 𝐵 ⊆ 𝐵′ and dist(𝐴,𝐵) = dist(𝐴′, 𝐵′). If the ordered
pair (𝐴′, 𝐵′) satisfies the property UC, then the ordered pair (𝐴,𝐵) satisfies the
property UC too.

If in the next result the underlying metric space (𝑋, 𝜌) is replaced by a uniformly
convex Banach space (𝑋, ‖ · ‖) and 𝐴 and 𝐵 be nonempty closed and convex subsets
then it generalizes Theorem 2.5.

Theorem 2.14 ([15]). Let 𝐴 and 𝐵 be nonempty closed subsets of a complete
metric space (𝑋, 𝜌), such that the ordered pairs (𝐴,𝐵) satisfy the UC property. Let
𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵 be a cyclic map and there exists 𝑘 ∈ [0, 1), so that the inequality

𝜌(𝑇𝑥, 𝑇𝑦) ≤ 𝑘max{𝜌(𝑥, 𝑦), 𝜌(𝑥, 𝑇𝑥), 𝜌(𝑦, 𝑇𝑦)}+ (1− 𝑘) dist(𝐴,𝐵)

holds for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Then there is a unique best proximity point 𝑥 of 𝑇
in 𝐴, the sequence of successive iterations {𝑇 2𝑛𝑥0}∞𝑛=1 converges to 𝑥 for any initial
guess 𝑥0 ∈ 𝐴. There is at least one best proximity point 𝑦 ∈ 𝐵 of 𝑇 in 𝐵. Moreover
the best proximity point 𝑦 ∈ 𝐵 of 𝑇 in 𝐵 is unique, provided that the ordered pair
(𝐵,𝐴) has the UC property.

Examples show that it is possible to have a Banach space (𝑋, ‖ · ‖) that is not
even strictly convex, but there are sets 𝐴 and 𝐵, so that the ordered pair (𝐴,𝐵)
satisfies the UC property.

Example 2.15. Let us consider the spaces 𝑋∞ = (R2, ‖·‖∞), 𝑋1 = (R2, ‖·‖1)
and the sets 𝐴,𝐵 ⊂ 𝑋1 and 𝐵,𝐶 ⊂ 𝑋∞ (Figure 1).

It easy to see that dist(𝐴,𝐵) = inf{‖𝑥− 𝑦‖1 : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} = 1.
If the sequences {𝑎𝑛}∞𝑛=1 ⊂ 𝐴 and {𝑏𝑛}∞𝑛=1 ⊂ 𝐵 satisfy lim𝑛→∞ ‖𝑎𝑛 − 𝑏𝑛‖ =

dist(𝐴,𝐵), then lim𝑛→∞ 𝑎𝑛 = (1, 0) and lim𝑛→∞ 𝑏𝑛 = (2, 0). Therefore if there hold
lim𝑛→∞ ‖𝑥𝑛 − 𝑦𝑛‖ = dist(𝐴,𝐵) and lim𝑛→∞ ‖𝑧𝑛 − 𝑦𝑛‖ = dist(𝐴,𝐵) for {𝑥𝑛}∞𝑛=1,

Figure 1. Example 2.15
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{𝑧𝑛}∞𝑛=1 ⊂ 𝐴 and {𝑦𝑛}∞𝑛=1 ⊂ 𝐵, then there holds lim𝑛→∞ ‖𝑥𝑛 − 𝑧𝑛‖ = 0. Thus the
ordered pair of sets (𝐴,𝐵) has the UC property.

There holds dist(𝐵,𝐶) = inf{‖𝑥−𝑦‖∞ : 𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶} = 1. Let us consider the
sequences {𝑐𝑛}∞𝑛=1 ⊂ 𝐶 and {𝑏𝑛}∞𝑛=1 ⊂ 𝐵 satisfy lim𝑛→∞ ‖𝑏𝑛 − 𝑐𝑛‖ = dist(𝐵,𝐶),
where 𝑐𝑛 = (𝑥𝑛, 𝑦𝑛) and 𝑏𝑛 = (𝑢𝑛, 𝑣𝑛), be such that lim𝑛→∞ 𝑥𝑛 = 5, lim𝑛→∞ 𝑢𝑛 = 4
and 𝑦𝑛, 𝑣𝑛 ∈ [−1/2, 1/2] can be arbitrary. Therefore there exist sequences {𝑥𝑛}∞𝑛=1,
{𝑧𝑛}∞𝑛=1 ⊂ 𝐵, and {𝑦𝑛}∞𝑛=1 ⊂ 𝐶, satisfying lim𝑛→∞ ‖𝑥𝑛 − 𝑦𝑛‖ = dist(𝐵,𝐶) and
lim𝑛→∞ ‖𝑧𝑛 − 𝑦𝑛‖ = dist(𝐵,𝐶), so that lim𝑛→∞ ‖𝑥𝑛 − 𝑧𝑛‖ does not exist. Conse-
quently the ordered pair of sets (𝐵,𝐶) does not have the UC property.

If we consider the set R2 endowed with a uniformly convex norm (for example
the Hilbert norm ‖ · ‖2), then the ordered pair of sets (𝐵,𝐶) has the UC property
according to Lemma 2.6.

Example 2.16. Let us consider the space 𝑋∞ = (R2, ‖ · ‖∞) and the sets 𝐴,
𝐵 and 𝐶 (Figure 2).

Figure 2. Example 2.16

It easy to see that dist(𝐴,𝐵) = dist(𝐵,𝐶) = 1.
If the sequences {𝑎𝑛}∞𝑛=1 ⊂ 𝐴 and {𝑏𝑛}∞𝑛=1 ⊂ 𝐵 satisfy lim𝑛→∞ ‖𝑎𝑛 − 𝑏𝑛‖ =

dist(𝐴,𝐵), then lim𝑛→∞ 𝑎𝑛 = (1, 0) and lim𝑛→∞ 𝑏𝑛 = (2, 0). Therefore if there hold
lim𝑛→∞ ‖𝑥𝑛 − 𝑦𝑛‖ = dist(𝐴,𝐵), lim𝑛→∞ ‖𝑧𝑛 − 𝑦𝑛‖ = dist(𝐴,𝐵) for the sequences
{𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴 and {𝑦𝑛}∞𝑛=1 ⊂ 𝐵, then there holds lim𝑛→∞ ‖𝑥𝑛 − 𝑧𝑛‖ = 0.
Thus the ordered pair of sets (𝐴,𝐵) has the UC property.

By similar arguments we get that the ordered pair of sets (𝐵,𝐶) has the UC
property, never mind the geometry of the unit ball in R2.

By the observations, in the two examples, we see that the UC property depends
on three conditions: the geometry of the unit ball of the underlying Banach space,
the geometry properties of the sets 𝐴 and 𝐵, and the positioning of the sets into the
space.

Definition 2.17 ([5]). Let (𝑋, ‖ · ‖) be a Banach space. For every 𝜀 ∈ (0, 2]
and every 𝑧 ∈ 𝑋 ∖ {0} we define 𝛿‖·‖(𝑧, 𝜀) by

𝛿‖·‖(𝑧, 𝜀) = inf
{︀
1−

⃦⃦
𝑥+𝑦
2

⃦⃦
: 𝑥, 𝑦 ∈ 𝑆𝑋 , ‖𝑥− 𝑦‖ ≥ 𝜀, 𝑥− 𝑦 = 𝜆𝑧 for some 𝜆 ∈ R

}︀
.

We call 𝛿‖·‖(𝑧, 𝜀) the modulus of convexity in the direction 𝑧 ∈ 𝑋∖{0}.
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The norm is called uniformly convex in every direction (UCED) if 𝛿𝑋(𝑧, 𝜀) > 0
for all 𝑧 ∈ 𝑋 ∖{0} and 𝜀 ∈ (0, 2]. The space (𝑋, ‖ · ‖) is then called uniformly convex
in every direction Banach space.

Proposition 2.18 ([15]). Let 𝐴 and 𝐵 be nonempty subsets of a UCED Banach
space (𝑋, ‖ · ‖). If 𝐴 is convex and relatively compact then the ordered pair (𝐴,𝐵)
has the UC property.

A notion that replaces Lemma 2.7 has been introduced in [14] in order to
get existence and uniqueness results about coupled best proximity points in metric
spaces.

Definition 2.19 ([14]). Let 𝐴 and 𝐵 be nonempty subsets of the metric space
(𝑋, 𝜌). We say that the ordered pair (𝐴,𝐵) satisfies the property UC* if (𝐴,𝐵)
satisfies the UC property and if the sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴, {𝑦𝑛}∞𝑛=1 ⊂ 𝐵
satisfy (2.2), then for any 𝜀 > 0 there is 𝑁1 ∈ N so that the inequality 𝜌(𝑥𝑚, 𝑧𝑛) ≤ 𝜀
holds for all 𝑚 > 𝑛 ≥ 𝑁1.

For easier presentation of the results we will slightly alter Definition 2.19 by
removing the assumption that the ordered pair satisfies the UC property.

Definition 19a. Let 𝐴 and 𝐵 be nonempty subsets of the metric space (𝑋, 𝜌).
We say that the ordered pair (𝐴,𝐵) satisfies the weak UC* property (WUC*) if the
sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴, {𝑦𝑛}∞𝑛=1 ⊂ 𝐵 satisfy (2.2), then for every 𝜀 > 0
there is 𝑁1 ∈ N so that the inequality 𝜌(𝑥𝑚, 𝑧𝑛) ≤ 𝜀 holds for all 𝑚 > 𝑛 ≥ 𝑁1.

Proposition 2.20 ([14]). Every ordered pair (𝐴,𝐵) of nonempty subsets of a
metric space (𝑋, 𝜌), so that dist(𝐴,𝐵) = 0, satisfies the property UC*.

Proposition 2.21 ([14]). Every ordered pair (𝐴,𝐵) of nonempty subsets of a
uniformly convex Banach space (𝑋, ‖·‖), such that 𝐴 is convex, satisfies the property
UC*.

Definition 2.22 ([14]). Let 𝐴 and 𝐵 be nonempty subsets of a metric space
(𝑋, 𝜌) and 𝑇 : 𝐴×𝐴 → 𝐵. A point (𝑥, 𝑦) ∈ 𝐴×𝐴 is called a coupled best proximity
point of 𝑇 in 𝐴×𝐴 if 𝜌(𝑥, 𝑇 (𝑥, 𝑦)) = 𝜌(𝑦, 𝑇 (𝑦, 𝑥)) = dist(𝐴,𝐵).

Definition 2.23 ([14]). Let 𝐴 and 𝐵 be nonempty subsets of a metric space
(𝑋, 𝜌). An ordered pair of maps (𝐹,𝐺) is called an ordered pair of cyclic maps (or
for short cyclic maps) if 𝐹 : 𝐴×𝐴 → 𝐵 and 𝐺 : 𝐵 ×𝐵 → 𝐴.

Definition 2.24 ([9,14]). Let 𝐴 and 𝐵 be nonempty subsets of a metric space
(𝑋, 𝜌). An ordered pair of cyclic maps (𝐹,𝐺) is called an ordered pair of cyclic
contraction maps if there exists 𝛼, 𝛽 ∈ [0, 1) with 𝛼+ 𝛽 < 1 so that the inequality

𝜌(𝐹 (𝑥, 𝑦), 𝐺(𝑢, 𝑣)) ≤ 𝛼𝜌(𝑥, 𝑢) + 𝛽𝜌(𝑦, 𝑣) + (1− (𝛼+ 𝛽)) dist(𝐴,𝐵) (2.3)

holds for every (𝑥, 𝑦) ∈ 𝐴×𝐴 and (𝑢, 𝑣) ∈ 𝐵 ×𝐵.
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The case when 𝛼 = 𝛽 is considered in [14].

Theorem 2.25 ([14]). Let 𝐴 and 𝐵 be nonempty closed subsets of a complete
metric space (𝑋, 𝜌), such that the ordered pairs (𝐴,𝐵) and (𝐵,𝐴) satisfy the property
UC*. Let 𝐹 : 𝐴×𝐴 → 𝐵, 𝐺 : 𝐵 ×𝐵 → 𝐴 and (𝐹,𝐺) be a cyclic contraction. Then
there exits a coupled best proximity point (𝑥, 𝑦) of 𝐹 in 𝐴 × 𝐴 and a coupled best
proximity point (𝑢, 𝑣) of 𝐺 in 𝐵 ×𝐵 such that 𝜌(𝑥, 𝑢) + 𝜌(𝑦, 𝑣) = 2 dist(𝐴,𝐵).

It seems that the properties UC and UC* overlap for a wide class of sets with
the key lemmas (Lemma 2.6 and Lemma 2.7) from [7].

By the imposed conditions in Theorem 2.14 and Theorem 2.25 it seems, at
first glimpse, that there may be a gap in the proof of Theorem 2.14, as far as the
generalization of Lemma 2.7, in terms of a UC* property, is missing. We will see
in the next section that it is not the case but the two properties (UC* and UC)
lead to one and the same corollaries, provided that involved sequences {𝑥𝑛}∞𝑛=1,
{𝑧𝑛}∞𝑛=1 ⊂ 𝐴 and {𝑦𝑛}∞𝑛=1 ⊂ 𝐵 are the iterated sequence, generated by a cyclic
contraction 𝑇 .

We will try to find conditions which will ensure that whenever any ordered pair
(𝐴,𝐵) of subsets of a Banach space (𝑋, ‖·‖) satisfies the UC property, then (𝑋, ‖·‖)
will be a uniformly convex Banach space.

We will try to introduce a generalization of the notions of convexity, which will
be different from UC, strict convexity or uniform convexity, but will insure existence
and uniqueness of best proximity points for classes of cyclic maps 𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵.

3. Connection between UC and UC* properties

We will start with some comments on the properties UC and UC*, introduced
in [14, 15]. The notions introduced in [14, 15] search for some good properties to be
satisfied by an ordered pair of sets (𝐴,𝐵). The UC states that for three sequences
{𝑥𝑛}∞𝑛=1, {𝑧𝑛}

∞
𝑛=1 ⊂ 𝐴, {𝑦}∞𝑛=1 ⊂ 𝐵, such that lim

𝑛→∞
𝜌(𝑥𝑛, 𝑦𝑛) = lim

𝑛→∞
𝜌(𝑧𝑛, 𝑦𝑛) =

dist(𝐴,𝐵), then lim
𝑛→∞

𝜌(𝑥𝑛, 𝑧𝑛) = 0.
The UC* requires, at first glimpse, a stronger property by insisting the se-

quences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}
∞
𝑛=1 ⊂ 𝐴 verify that for any 𝜀 > 0 there is 𝑁 ∈ N so that the

inequality 𝜌(𝑥𝑚, 𝑧𝑛) ≤ 𝜀 holds for all 𝑚 > 𝑛 ≥ 𝑁 . Actually if (𝐴,𝐵) has the UC
property, than it has the WUC* property, as we will see in Theorem 3.5 because of
the additional requirement on the sequences {𝑥𝑛}∞𝑛=1 ⊂ 𝐴, {𝑦𝑛}∞𝑛=1 ⊂ 𝐵 to satisfy:
for every 𝜀 > 0 there exists 𝑁 ∈ N, so that the inequality 𝜌(𝑥𝑚, 𝑦𝑛) ≤ dist(𝐴,𝐵)+ 𝜀
holds for all 𝑚 > 𝑛 ≥ 𝑁 .

An auxiliary result in [7, Proposition 3.3] is that for a cyclic contraction map 𝑇 ,
the iterated sequences

{︀
𝑇 2𝑛𝑥0

}︀∞
𝑛=1

,
{︀
𝑇 2𝑛−1𝑥0

}︀∞
𝑛=1

for any arbitrary chosen initial
guess point 𝑥0 ∈ 𝐴 ∪ 𝐵, are bounded ones. The authors in [7] apply Lemma 2.7
only for bounded sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴, {𝑦𝑛}∞𝑛=1 ⊂ 𝐵 to show that the
sequences

{︀
𝑇 2𝑛𝑥0

}︀∞
𝑛=1

,
{︀
𝑇 2𝑛−1𝑥0

}︀∞
𝑛=1

are Cauchy ones.
A crucial lemma in [15] presents a condition for a sequence to be a Cauchy one.
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Lemma 3.1 ([15]). Let 𝐴 and 𝐵 be subsets of a metric space (𝑋, 𝜌). Assume
that the ordered pair (𝐴,𝐵) has the UC property and {𝑥𝑛}∞𝑛=1 ⊂ 𝐴, {𝑦𝑛}∞𝑛=1 ⊂ 𝐵,
so that either of the following holds

lim
𝑚→∞

sup
𝑛≥𝑚

𝜌(𝑥𝑚, 𝑦𝑛) = dist(𝐴,𝐵) or lim
𝑛→∞

sup
𝑚≥𝑛

𝜌(𝑥𝑚, 𝑦𝑛) = dist(𝐴,𝐵).

Then {𝑥𝑛} is a Cauchy sequence.

In the proof of the main result in [15], the authors show that

lim
𝑚→∞

sup
𝑛≥𝑚

𝜌
(︀
𝑇 2𝑚𝑥, 𝑇 2𝑛+1𝑥

)︀
= dist(𝐴,𝐵),

which replaces the assumption that the ordered pair of sets (𝐴,𝐵) satisfies the UC*

property.
As far as the application of Lemmas 2.6 and 2.7 or properties UC or UC* are

for the iterated sequences
{︀
𝑇 2𝑛𝑥0

}︀∞
𝑛=1

,
{︀
𝑇 2𝑛−1𝑥0

}︀∞
𝑛=1

that are bounded ones, we
will introduce a new property for an ordered pair of sets (𝐴,𝐵), which will involve
only bounded sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴.

Definition 3.2. Let 𝐴 and 𝐵 be nonempty subsets of a metric space (𝑋, 𝜌). We
say that the ordered pair (𝐴,𝐵) satisfies the bounded property UC (BUC) if for any
bounded sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴 and an arbitrary sequence {𝑦𝑛}∞𝑛=1 ⊂ 𝐵,
such that, whenever there holds

lim
𝑛→∞

𝜌(𝑥𝑛, 𝑦𝑛) = lim
𝑛→∞

𝜌(𝑧𝑛, 𝑦𝑛) = dist(𝐴,𝐵), (3.1)

then there holds lim𝑛→∞ 𝜌(𝑥𝑛, 𝑧𝑛) = 0.

Let an ordered pair (𝐴,𝐵) has the property UC. If equality (3.1) holds for
bounded sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴 and {𝑦𝑛}∞𝑛=1 ⊂ 𝐵, then (𝐴,𝐵) has the
property BUC.

Remark. It is possible that for the ordered pair (𝐴,𝐵) there are no any
bounded sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴 and {𝑦𝑛}∞𝑛=1 ⊂ 𝐵, to satisfy (3.1), i.e.,
the set of sequences that satisfy (3.1) is the empty set. In this case we agree to say
that the ordered pair (𝐴,𝐵) has the BUC property.

If an ordered pair (𝐴,𝐵) satisfies BUC, then it may happen that there are
unbounded sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴 and {𝑦𝑛}∞𝑛=1 ⊂ 𝐵 so that the as-
sumptions about UC property are not satisfied and thus (𝐴,𝐵) will have the BUC
property, but will not have the UC property.

Example 3.3. Let us consider the sets

𝐴 =

{︂
(𝑥, 𝑦) ∈ R2 : 𝑦 ≥ 1

𝑥− 1
, 𝑥 > 1

}︂
and 𝐵 =

{︂
(𝑥, 𝑦) ∈ R2 : 𝑦 ≥ 1

|𝑥|
, 𝑥 < 0

}︂
.
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1. If we consider 𝐴,𝐵 ⊂ (R2, ‖ · ‖2), then the ordered pair (𝐴,𝐵) has the UC
property.

2. If we consider 𝐴,𝐵 ⊂ (R2, ‖ · ‖∞), then the ordered pair (𝐴,𝐵) does not have
the UC property.

In both cases of Example 3.3 the sequences that satisfy (3.1) are unbounded
ones, therefore the ordered pair (𝐴,𝐵) has the BUC property. We can consider the
sequences {𝑥𝑛}∞𝑛=1 =

{︀(︀
1
𝑛 + 1, 𝑛

)︀}︀∞
𝑛=1

⊂ 𝐴, {𝑧𝑛}∞𝑛=1 =
{︀(︀

1
𝑛 + 1, 𝑛+ 1

)︀}︀∞
𝑛=1

⊂ 𝐴

and {𝑦𝑛}∞𝑛=1 =
{︀(︀

− 1
𝑛 , 𝑛

)︀}︀∞
𝑛=1

⊂ 𝐵.
First we will show that the conditions imposed on the sequences in the definition

of the WUC* property ensure that they are bounded sequences and therefore the
set of the sequences in Definition 3.2 is not the empty set for any ordered set (𝐴,𝐵),
satisfying the WUC* property.

Lemma 3.4. Let (𝑋, 𝜌) be a metric space. If the sequences

{𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1, {𝑦𝑛}∞𝑛=1 ⊂ 𝑋

satisfy

lim
𝑛→∞

𝜌(𝑥𝑛, 𝑦𝑛) = 𝑎 < ∞ (3.2)

lim
𝑛→∞

sup
𝑛≤𝑘<𝑚

𝜌(𝑧𝑚, 𝑦𝑘) = 𝑏 < ∞, (3.3)

then {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1, {𝑦𝑛}∞𝑛=1 are bounded sequences.

Proof. By (3.3) it follows that there exists 𝑛0 ∈ N so that sup
𝑛0<𝑚

𝜌(𝑧𝑚, 𝑦𝑛0) < ∞

and consequently the sequence {𝑧𝑛}∞𝑛=1 is a bounded one. By similar arguments
we get that {𝑦𝑛}∞𝑛=1 is a bounded sequence too. From the boundedness of {𝑦𝑛}∞𝑛=1

and (3.2) it follows that {𝑥𝑛}∞𝑛=1 is a bounded sequence too.

Theorem 3.5. Let (𝑋, 𝜌) be a metric space and 𝐴,𝐵 ⊂ 𝑋. If the ordered pair
(𝐴,𝐵) satisfies the BUC property, then the ordered pair (𝐴,𝐵) satisfies the WUC*

property.

Proof. Let us assume the contrary, i.e., (𝐴,𝐵) satisfies the BUC, but does not sat-
isfy the WUC* property. Then there exist sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ∈ 𝐴 and
{𝑦𝑛}∞𝑛=1 ∈ 𝐵, satisfying

lim
𝑛→∞

𝜌(𝑥𝑛, 𝑦𝑛) = dist(𝐴,𝐵) and lim
𝑛→∞

sup
𝑛≤𝑘<𝑚

𝜌(𝑧𝑚, 𝑦𝑘) = dist(𝐴,𝐵) (3.4)

and lim
𝑛→∞

sup
𝑛≤𝑘<𝑚

𝜌(𝑧𝑚, 𝑥𝑘) ̸= 0. Therefore there exist subsequences {𝑥𝑘𝑖
}∞𝑖=1 ⊂

{𝑥𝑛}∞𝑛=1 and {𝑧𝑚𝑖}∞𝑖=1 ⊂ {𝑧𝑛}∞𝑛=1, so that

lim
𝑖→∞

𝜌(𝑥𝑛𝑖
, 𝑧𝑚𝑖

) ̸= 0. (3.5)
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Let us consider the sequences {𝑥𝑘𝑖}∞𝑖=1, {𝑧𝑚𝑗}∞𝑗=1 ⊂ 𝐴 and {𝑦𝑘𝑖}∞𝑖=1 ⊂ 𝐵. From (3.4)
it follows that

lim
𝑛→∞

𝜌(𝑥𝑘𝑖
, 𝑦𝑘𝑖

) = dist(𝐴,𝐵) (3.6)

and for every 𝜀 > 0, there is 𝑁 ∈ N, so that for all 𝑚𝑗 , 𝑘𝑖 ≥ 𝑁 the following
inequality holds

𝜌(𝑧𝑚𝑗 , 𝑦𝑘𝑖) ≤ dist(𝐴,𝐵) + 𝜀. (3.7)

From (3.7) we get that lim𝑖→∞ 𝜌(𝑧𝑚𝑖
, 𝑦𝑘𝑖

) = dist(𝐴,𝐵). By Lemma 3.4, (3.6)
and (3.7) it follows that the sequences are bounded ones. From the assumption
of the theorem that the ordered pair (𝐴,𝐵) has the BUC property and the se-
quences {𝑥𝑘𝑖

}∞𝑖=1, {𝑧𝑚𝑗
}∞𝑗=1 ⊂ 𝐴 and {𝑦𝑘𝑖

}∞𝑖=1 ⊂ 𝐵 are bounded ones it follows that
lim𝑖→∞ 𝜌(𝑥𝑛𝑖

, 𝑧𝑚𝑖
) = 0, which is a contradiction with (3.6).

Having in mind Lemma 3.4, the conditions imposed on the sequences in the
definition of the WUC* property ensure that they are bounded ones and thus it
follows that from the UC property follows the WUC* property. Consequently we
can replace in Theorem 2.25 the assumption that (𝐴,𝐵) satisfies the UC* by (𝐴,𝐵)
satisfies the UC.

From Theorem 3.5 and [7], where the authors have proven that the iterated
sequence {𝑇𝑛𝑥}∞𝑛=1 for every arbitrary chosen initial guess 𝑥 ∈ 𝐴∪𝐵, is a bounded
one for the maps investigated in Theorem 2.5, it follows that we can present a
generalization of their result. We will illustrate with an example in the last section
that the next theorem is actually a generalization of Theorem 2.5. We will present
an ordered pair (𝐴,𝐵) and a cyclic map 𝑇 , so that (𝐴,𝐵) has the BUC property, but
has not the UC property and 𝑇 satisfies the contracive condition in Theorem 2.5,
see (3.8).

Theorem 3.6. Let 𝐴 and 𝐵 be nonempty closed subsets of a complete metric
space (𝑋, 𝜌), such that the ordered pair (𝐴,𝐵) satisfies the property BUC. Let 𝑇 :
𝐴 ∪𝐵 → 𝐴 ∪𝐵 be a cyclic map and there exists 𝑘 ∈ [0, 1), so that the inequality

𝜌(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝜌(𝑥, 𝑦) + (1− 𝑘) dist(𝐴,𝐵) (3.8)

holds for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Then there is a unique best proximity point 𝑥 of 𝑇
in 𝐴, the sequence of successive iterations {𝑇 2𝑛𝑥0}∞𝑛=1 converges to 𝑥 for any initial
guess 𝑥0 ∈ 𝐴. There is at least one best proximity point in 𝐵 of 𝑇 and if the ordered
pair (𝐵,𝐴) has the BUC property, then this point is unique.

We will show that the iterated sequence {𝑇𝑛𝑥}∞𝑛=1 for every arbitrary chosen
initial guess 𝑥 ∈ 𝐴 ∪ 𝐵 is a bounded one for the maps investigated by [15] in
Theorem 2.14.

Lemma 3.7. Let (𝑋, 𝜌) be a metric space and let 𝐴 and 𝐵 be nonempty subsets
of 𝑋 and 𝑇 : 𝐴 ∪𝐵 → 𝐴 ∪𝐵 be a cyclic map, such that there is 𝜆 ∈ [0, 1) such that
the inequality

𝜌(𝑇𝑥, 𝑇𝑦) ≤ 𝜆max{𝜌(𝑥, 𝑦), 𝜌(𝑥, 𝑇𝑥), 𝜌(𝑦, 𝑇𝑦)}+ (1− 𝜆) dist(𝐴,𝐵) (3.9)
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holds for every 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Then the iterated sequence {𝑇𝑛𝑥}∞𝑛=1 is a bounded
one for every 𝑥 ∈ 𝐴 ∪𝐵.

Proof. Let us denote 𝑥𝑛 = 𝑇𝑛𝑥, for 𝑛 = 0, 1, 2, . . . . We will show that

sup
𝑛∈N

𝜌(𝑥𝑛, 𝑥𝑛−1) = 𝜌(𝑥1, 𝑥0) < ∞. (3.10)

For every 𝑛 ∈ N by (3.9) we have the inequality

𝜌(𝑥𝑛, 𝑥𝑛−1) ≤ 𝜆max{𝜌(𝑥𝑛−1, 𝑥𝑛−2), 𝜌(𝑥𝑛−1, 𝑥𝑛)}+ (1− 𝜆) dist(𝐴,𝐵). (3.11)

The inequality (3.11) reduces to one of the inequalities, either

𝜌(𝑥𝑛, 𝑥𝑛−1) ≤ 𝜆𝜌(𝑥𝑛−1, 𝑥𝑛) + (1− 𝜆) dist(𝐴,𝐵) (3.12)

or
𝜌(𝑥𝑛, 𝑥𝑛−1) ≤ 𝜆𝜌(𝑥𝑛−1, 𝑥𝑛−2) + (1− 𝜆) dist(𝐴,𝐵). (3.13)

If there holds (3.12), then

𝜌(𝑥𝑛, 𝑥𝑛−1) = dist(𝐴,𝐵). (3.14)

For every arbitrary chosen 𝑛 ∈ N there are two cases: for some 0 < 𝑚 < 𝑛
there holds either

𝜌(𝑥𝑚, 𝑥𝑚−1) = dist(𝐴,𝐵) (3.15)

or
𝜌(𝑥𝑚, 𝑥𝑚−1) ≤ 𝜆𝜌(𝑥𝑚−1, 𝑥𝑚−2) + (1− 𝜆) dist(𝐴,𝐵). (3.16)

If there holds (3.16) for every 𝑚 < 𝑛, then we get the chain of inequalities

𝜌(𝑥𝑛, 𝑥𝑛−1) ≤ 𝜆𝜌(𝑥𝑛−1, 𝑥𝑛−2) + (1− 𝜆) dist(𝐴,𝐵)

≤ 𝜆2𝜌(𝑥𝑛−2, 𝑥𝑛−3) + (1− 𝜆2) dist(𝐴,𝐵)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
≤ 𝜆𝑘𝜌(𝑥𝑛−𝑘, 𝑥𝑛−𝑘+1) + (1− 𝜆𝑘) dist(𝐴,𝐵)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
≤ 𝜆𝑛−2𝜌(𝑥2, 𝑥1) + (1− 𝜆𝑛−2) dist(𝐴,𝐵)

≤ 𝜆𝑛−1𝜌(𝑥1, 𝑥0) + (1− 𝜆𝑛−1) dist(𝐴,𝐵) ≤ 𝜌(𝑥1, 𝑥0).

If for some 𝑚 < 𝑛 the case (3.15) is valid, then we get

𝜌(𝑥𝑛, 𝑥𝑛−1) ≤ 𝜆𝜌(𝑥𝑛−1, 𝑥𝑛−2) + (1− 𝜆) dist(𝐴,𝐵)

≤ 𝜆2𝜌(𝑥𝑛−2, 𝑥𝑛−3) + (1− 𝜆2) dist(𝐴,𝐵)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
≤ 𝜆𝑚−𝑛𝜌(𝑥𝑚, 𝑥𝑚−1) + (1− 𝜆𝑚−𝑛) dist(𝐴,𝐵)

≤ dist(𝐴,𝐵) ≤ 𝜌(𝑥1, 𝑥0),
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which concludes the proof of (3.10).
For every 𝑛 from (3.9) we have

𝜌(𝑥2𝑛, 𝑥1) ≤ 𝜆max{𝜌(𝑥2𝑛−1, 𝑥0), 𝜌(𝑥2𝑛−1, 𝑥2𝑛), 𝜌(𝑥1, 𝑥0)}+ (1− 𝜆) dist(𝐴,𝐵).

By (3.10) we get 𝜌(𝑥2𝑛, 𝑥1) ≤ 𝜆max{𝜌(𝑥2𝑛−1, 𝑥0), 𝜌(𝑥1, 𝑥0)} + (1 − 𝜆) dist(𝐴,𝐵).
From the triangle inequality and (3.10) it follows

𝜌(𝑥2𝑛−1, 𝑥0) ≤ 𝜌(𝑥2𝑛−1, 𝑥2𝑛) + 𝜌(𝑥2𝑛, 𝑥1) + 𝜌(𝑥1, 𝑥0) ≤ 2𝜌(𝑥1, 𝑥0) + 𝜌(𝑥2𝑛, 𝑥1).

Therefore we get 𝜌(𝑥2𝑛, 𝑥1) ≤ (2𝜆 + 1)𝜌(𝑥1, 𝑥0) + 𝜆𝜌(𝑥2𝑛, 𝑥1) + (1 − 𝜆) dist(𝐴,𝐵),
i.e.,

𝜌(𝑥2𝑛, 𝑥1) ≤
2𝜆+ 1

1− 𝜆
𝜌(𝑥1, 𝑥0) + dist(𝐴,𝐵).

Consequently {𝑥2𝑛}∞𝑛=0 is a bounded sequence.
By similar arguments we can prove that {𝑥2𝑛+1}∞𝑛=0 is a bounded sequence

too.

From Theorem 3.5 and Lemma 3.7 we can present a generalization of Theo-
rem 2.14.

Theorem 3.8. Let 𝐴 and 𝐵 be nonempty closed subsets of a complete metric
space (𝑋, 𝜌), such that the ordered pair (𝐴,𝐵) satisfies the property BUC. Let 𝑇 : 𝐴∪
𝐵 → 𝐴 ∪𝐵 be a cyclic map and there exists 𝑘 ∈ [0, 1), so that the inequality

𝜌(𝑇𝑥, 𝑇𝑦) ≤ 𝑘max{𝜌(𝑥, 𝑦), 𝜌(𝑥, 𝑇𝑥), 𝜌(𝑦, 𝑇𝑦)}+ (1− 𝑘) dist(𝐴,𝐵)

holds for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Then there is a unique best proximity point 𝑥 of 𝑇
in 𝐴, the sequence of successive iterations {𝑇 2𝑛𝑥0}∞𝑛=1 converges to 𝑥 for any initial
guess 𝑥0 ∈ 𝐴. There is at least one best proximity point in 𝐵 of 𝑇 and if the ordered
pair (𝐵,𝐴) has the BUC property, then this point is unique.

We will show that the iterated sequences generated by the maps in Theorem 2.25
are bounded ones. Following a smart idea from [13] that connects coupled fixed
points and fixed points, we will apply the technique from [13] to show that the maps
involved in Theorem 2.25 can be considered as like as the maps investigated in [7].

Let us point out that instead of considering two maps 𝐹 : 𝐴 × 𝐴 → 𝐵 and
𝐺 : 𝐵 × 𝐵 → 𝐴 (Definition 2.24, Theorem 2.25) we can consider just one map
𝑓 : (𝐴×𝐴) ∪ (𝐵 ×𝐵) → (𝐴×𝐴) ∪ (𝐵 ×𝐵) defined by

𝑓(𝑥, 𝑦) =

{︃
𝐹 (𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝐴

𝐺(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝐵.

Lemma 3.9. Let (𝑋, 𝜌) be a metric space and let 𝐴 and 𝐵 be nonempty subsets
of 𝑋. Let 𝑓 be a cyclic contraction, satisfying (2.3), i.e.,

𝜌(𝑓(𝑥, 𝑥′), 𝑓(𝑦, 𝑦′)) ≤ 𝛼𝜌(𝑥, 𝑦) + 𝛽𝜌(𝑥′, 𝑦′) + (1− (𝛼+ 𝛽)) dist(𝐴,𝐵) (3.17)

for every 𝑥, 𝑥′ ∈ 𝐴, 𝑦, 𝑦′ ∈ 𝐵 and some 𝛼, 𝛽 ≥ 0 and 𝛼+𝛽 ∈ [0, 1). Then the iterated
sequences {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 are bounded ones.
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Proof. Let us consider the metric space (𝑋×𝑋, 𝑑), where 𝑑((𝑥, 𝑦), (𝑢, 𝑣)) = 𝜌(𝑥, 𝑢)+
𝜌(𝑦, 𝑣). Let us define the map 𝑇 : 𝑋 ×𝑋 → 𝑋 ×𝑋, by 𝑇 (𝑥, 𝑦) = (𝑓(𝑥, 𝑦), 𝑓(𝑦, 𝑥)).
The map 𝑇 is a cyclic map as 𝑇 (𝐴 × 𝐴) ⊆ 𝐵 × 𝐵 and 𝑇 (𝐵 × 𝐵) ⊆ 𝐴 × 𝐴. There
holds

dist(𝐴×𝐴,𝐵 ×𝐵) = inf{𝑑((𝑎, 𝑎′), (𝑏, 𝑏′)) : 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵}
= inf{𝜌(𝑎, 𝑏) + 𝜌(𝑎′, 𝑏′) : 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵}
= 2 inf{𝜌(𝑎, 𝑏) : 𝑎,∈ 𝐴, 𝑏 ∈ 𝐵} = 2dist(𝐴,𝐵).

(3.18)

For any two arbitrary chosen 𝑥 = (𝑥, 𝑥′) ∈ 𝐴 × 𝐴 and 𝑦 = (𝑦, 𝑦′) ∈ 𝐵 × 𝐵, by
using (3.17) and (3.18), there holds the chain of inequalities

𝑑(𝑇𝑥, 𝑇𝑦) = 𝑑((𝑓(𝑥, 𝑥′), (𝑓(𝑥′, 𝑥)), (𝑓(𝑦, 𝑦′), (𝑓(𝑦′, 𝑦)))

= 𝜌(𝑓(𝑥, 𝑥′), 𝑓(𝑦, 𝑦′)) + 𝜌(𝑓(𝑥′, 𝑥), 𝑓(𝑦′, 𝑦))

≤ 𝛼𝜌(𝑥, 𝑦) + 𝛽𝜌(𝑥′, 𝑦′) + (1− (𝛼+ 𝛽)) dist(𝐴,𝐵)

+ 𝛼𝜌(𝑥′, 𝑦′) + 𝛽𝜌(𝑥, 𝑦) + (1− (𝛼+ 𝛽)) dist(𝐴,𝐵)

= (𝛼+ 𝛽)(𝜌(𝑥, 𝑦) + 𝜌(𝑥′, 𝑦′)) + 2(1− (𝛼+ 𝛽)) dist(𝐴,𝐵)

= (𝛼+ 𝛽)𝑑((𝑥, 𝑥′), (𝑦, 𝑦′)) + (1− (𝛼+ 𝛽)) dist(𝐴×𝐴,𝐵 ×𝐵).

Consequently the cyclic map 𝑇 satisfies the conditions imposed in [7] and according
to [7] the iterated sequence

𝑢𝑛 = (𝑥𝑛, 𝑦𝑛) = 𝑇𝑢𝑛−1 = 𝑇 (𝑥𝑛−1, 𝑦𝑛−1) = (𝑓(𝑥𝑛−1, 𝑦𝑛−1), 𝑓(𝑦𝑛−1, 𝑥𝑛−1))

for every arbitrary chosen 𝑢0 = (𝑥0, 𝑦0) ∈ 𝐴×𝐴 is a bounded sequence.

From Theorem 3.5 and Lemma 3.9 we can present a generalization of Theo-
rem 2.25.

Theorem 3.10. Let 𝐴 and 𝐵 be nonempty closed subsets of a complete metric
space (𝑋, 𝜌), such that the ordered pairs (𝐴,𝐵) and (𝐵,𝐴) satisfy the property BUC.
Let 𝐹 : 𝐴× 𝐴 → 𝐵, 𝐺 : 𝐵 × 𝐵 → 𝐴 and (𝐹,𝐺) be a cyclic contraction. Then there
exits a coupled best proximity point (𝑥, 𝑦) of 𝐹 in 𝐴×𝐴 and a coupled best proximity
point (𝑢, 𝑣) of 𝐺 in 𝐵 ×𝐵, such that 𝜌(𝑥, 𝑢) + 𝜌(𝑦, 𝑣) = 2 dist(𝐴,𝐵).

4. Characterization of the UC property

We have seen in the examples, that it is possible to have the underlying Banach
space (𝑋, ‖·‖) not to be uniformly convex, but some particularly chosen ordered pair
of subsets (𝐴,𝐵) to be either UC or BUC one. We will try to find some sufficient
conditions that will ensure that an ordered pair of subsets (𝐴,𝐵) is a UC one in an
arbitrary Banach space.

Definition 4.1. Let (𝑋, ‖ · ‖) be a Banach space and 𝐴 ⊂ 𝑋. We say that 𝐴
is a uniformly convex set if for every 𝜖 > 0 there exists 𝜂(𝜖) > 0, such that for every
𝑥, 𝑦 ∈ 𝐴, satisfying the inequality ‖𝑥− 𝑦‖ ≥ 𝜖 there holds 𝐵

(︀
𝑥+𝑦
2 , 𝜂(𝜖)

)︀
⊂ 𝐴.
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From Definition 2.1 and Definition 4.1 it is easy to observe that for every 𝜀 > 0
and for any 𝑥, 𝑦 ∈ 𝐵(𝑋,‖·‖) such that ‖𝑥 − 𝑦‖ ≥ 𝜀 there exists 𝜂(𝜀) > 0, so that
𝐵
(︀
𝑥+𝑦
2 , 𝜂(𝜖)

)︀
⊂ 𝐵𝑋 . We can choose 𝜂(𝜀) = 𝛿𝑋(𝜀). Thus the unit ball in a uniformly

convex Banach space satisfies Definition 4.1.
We have seen in Example 2.16, that if the sets 𝐴 or 𝐵 have some good geometric

properties, then the ordered pair (𝐴,𝐵) will be a UC one.

Theorem 4.2. Let (𝑋, ‖·‖) be a Banach space, 𝐴,𝐵 ⊂ 𝑋 and 𝐴 be a uniformly
convex set. Then the ordered pair (𝐴,𝐵) has the UC property.

Proof. Let us assume the contrary, i.e., there are sequences {𝑥𝑛}∞𝑛=1 ⊂ 𝐴, {𝑧𝑛}∞𝑛=1 ⊂
𝐴 and {𝑦𝑛}∞𝑛=1 ⊂ 𝐵, such that

lim
𝑛→∞

‖𝑥𝑛 − 𝑦𝑛‖ = lim
𝑛→∞

‖𝑧𝑛 − 𝑦𝑛‖ = dist(𝐴,𝐵),

but the sequence {‖𝑥𝑛−𝑧𝑛‖}∞𝑛=1 does not converge to zero. Then there exists 𝜀0 > 0,
so that for every 𝑁 ∈ N there is 𝑛 > 𝑁 and the inequality ‖𝑥𝑛 − 𝑧𝑛‖ > 𝜀0 holds
true. From the assumption that 𝐴 is a uniformly convex set it follows that for 𝜀0
there is 𝜂(𝜀0) so that the inclusion 𝐵

(︀
𝑥𝑛+𝑧𝑛

2 , 𝜂(𝜀0)
)︀
⊂ 𝐴 holds. Consequently we

can write the chain of inequalities

𝜂(𝜖0) + dist(𝐴,𝐵) ≤ dist

(︂
𝑥𝑛 + 𝑧𝑛

2
, 𝐵

)︂
≤

⃦⃦⃦⃦
𝑥𝑛 + 𝑧𝑛

2
− 𝑦𝑛

⃦⃦⃦⃦
≤ ‖𝑥𝑛 − 𝑦𝑛‖+ ‖𝑧𝑛 − 𝑦𝑛‖

2
.

(4.1)

By the choice of the sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 it follows that there
exists 𝑁1(𝜀0) ∈ N, such that for every 𝑛 > 𝑁1 the following inequality holds

‖𝑥𝑛 − 𝑦𝑛‖+ ‖𝑧𝑛 − 𝑦𝑛‖
2

< 𝜂(𝜀0) + dist(𝐴,𝐵), (4.2)

which is a contradiction with (4.1). Thus lim𝑛→∞ ‖𝑥𝑛 − 𝑧𝑛‖ = 0 and we get that
the ordered pair (𝐴,𝐵) has the UC property.

From the results up to now it follows that if 𝐴 is a uniformly convex set, then
every ordered pair of sets (𝐴,𝐵) has the BUC property and the UC property. It
seems that the assumption for 𝐴 to be a uniformly convex set is too restrictive. We
will try to find a weaker property, which will ensure that the ordered pair of sets
(𝐴,𝐵) has the BUC property, without being a UC ordered pair.

Definition 4.3. Let (𝑋, ‖ · ‖) be a Banach space and 𝐴 ⊂ 𝑋. We say that a
function 𝜑 has the positive property about the set 𝐴 if 𝜑 : 𝐴 × R+ → R+ is such
that for every bounded subset 𝐴′ ⊂ 𝐴 and every 𝜖0 > 0 there holds the inequality

inf{𝜑(𝑥, 𝜖) : 𝑥 ∈ 𝐴′, 𝜖 ≥ 𝜖0} > 0.

We will illustrate Definition 4.3 by an example.
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Example 4.4. Let us consider the space 𝑋 = (R2, ‖ · ‖∞), the set

𝐴 =

{︂
(𝑥, 𝑦) ∈ R2 :

1

𝑥
≤ 𝑦, 𝑥 > 0

}︂

and let the function 𝜑 : 𝐴 × R+ → R+ be defined by 𝜑(𝑎, 𝜀) =
𝜀2

320 + 5𝜀2 + 5‖𝑎‖3
.

Then 𝜑 has the positive property about 𝐴.

Let us define the function 𝜑1 : R+ × R+ → R+ by 𝜑1(𝑟, 𝜀) =
𝜀2

320 + 5𝜀2 + 5𝑟3
.

Let us consider the function

𝜑(𝑎, 𝜀) = 𝜑1(‖𝑎‖, 𝜀). (4.3)

From the boundedness of 𝐴′ ∈ 𝐴 follows the existence of 𝑟1 = 𝑟1(𝐴
′), so that

sup{‖𝑎‖ : 𝑎 ∈ 𝐴′} = 𝑟1 < ∞.

For every 𝜀1 > 0 there holds

inf{𝜑1(𝑟, 𝜀) : 0 ≤ 𝑟 ≤ 𝑟1, 0 < 𝜀1 ≤ 𝜀} = 𝜑1(𝑟1, 𝜀1) > 0.

By (4.3) and the definition of 𝑟1 it follows that

inf{𝜑(𝑎, 𝜀) : 𝑎 ∈ 𝐴′, 0 < 𝜀1 ≤ 𝜀} ≥ 𝜑1(sup{‖𝑎‖ : 𝑎 ∈ 𝐴′}, 𝜀1) > 0.

Consequently 𝜑 has positive property about 𝐴.

Definition 4.5. Let (𝑋, ‖ · ‖) be a Banach space, 𝐴 ⊂ 𝑋 and 𝜑 : 𝐴 × R+ →
R+ has the positive property about 𝐴. We say that 𝐴 is a uniformly convex set
about 𝜑 if for every 𝜀 > 0 and every 𝑥, 𝑦 ∈ 𝐴, satisfying ‖𝑥 − 𝑦‖ ≥ 𝜀 there holds
𝐵
(︀
𝑥+𝑦
2 , 𝜑

(︀
𝑥+𝑦
2 , 𝜀

)︀)︀
⊂ 𝐴.

We will show that the set in Example 4.4 is uniformly convex about 𝜑.

Example 4.6. Let us consider the space 𝑋 = (R2, ‖ · ‖∞), the set

𝐴 =

{︂
(𝑥, 𝑦) ∈ R2 :

1

𝑥
≤ 𝑦, 𝑥 > 0

}︂
,

and let the function 𝜑 : 𝐴 × R+ → R+ be defined by 𝜑(𝑎, 𝜀) =
𝜀2

320 + 5𝜀2 + 5‖𝑎‖3
.

Then 𝐴 is uniformly convex about 𝜑.
We have proven in Example 4.4 that 𝜑 has the positive property about 𝐴. It

remains to show that 𝐴 is uniformly convex about 𝜑.
Let 𝜀 > 0 be arbitrary chosen and let 𝑝1 = (𝑥1, 𝑦1) ∈ 𝐴, 𝑝2 = (𝑥2, 𝑦2) ∈ 𝐴

satisfy ‖𝑝1 − 𝑝2‖ = 𝜀. Let us put 𝑝3 = (𝑥, 𝑦) = 𝑝1+𝑝2

2 =
(︀
𝑥1+𝑥2

2 , 𝑦1+𝑦2

2

)︀
.

There are two cases: either 1) |𝑥1 − 𝑥2| = 𝜀 or 2) |𝑦1 − 𝑦2| = 𝜀 is fulfilled.
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Let us begin with the case 1) |𝑥1 − 𝑥2| = 𝜀. Without loss of generality we can
assume that 𝑥1 < 𝑥2. Then for 𝑥 we obtain the equalities

𝑥2 = 𝑥+
𝜀

2
, 𝑥1 = 𝑥− 𝜀

2
. (4.4)

From 𝑝1 ∈ 𝐴 it follows that 𝑥1 > 0 and, therefore, 0 < 𝑥− 𝜀

2
. Thus 𝜀 < 2𝑥.

From the inequalities 𝑦1 ≥ 1
𝑥1

, 𝑦2 ≥ 1
𝑥2

and by using (4.4) we get

𝑦1 ≥ 1

𝑥− 𝜀
, 𝑦2 ≥ 1

𝑥+ 𝜀
and 𝑦 ≥ 𝑥

𝑥2 − 𝜀2

4

.

Thus if 𝑝3 = (𝑥, 𝑦), then 𝑦 ≥ 𝑥

𝑥2 − 𝜀2

4

and 0 < 𝜀 < 2𝑥.

If there holds the case 2) |𝑦1 − 𝑦2| = 𝜀, by similar arguments we get that there
hold 𝑥 ≥ 𝑦

𝑦2 − 𝜀2

4

and 0 < 𝜀 < 2𝑦, provided that 𝑝3 = (𝑥, 𝑦).

Consequently for any 𝜀 > 0 and any 𝑝1 ∈ 𝐴, 𝑝2 ∈ 𝐴, such that ‖𝑝1 − 𝑝2‖ = 𝜀
we get that 𝑝3 = 𝑝1+𝑝2

2 ∈ 𝑃 (𝜀) = 𝐶(𝜀) ∪𝐷(𝜀), where

𝐶(𝜀) =

{︃
(𝑥, 𝑦) ∈ R2 : 𝑥 ≥ 𝑦

𝑦2 − 𝜀2

4

, 0 < 𝜀 < 2𝑦

}︃
,

𝐷(𝜀) =

{︃
(𝑥, 𝑦) ∈ R2 : 𝑦 ≥ 𝑥

𝑥2 − 𝜀2

4

, 0 < 𝜀 < 2𝑥

}︃
.

Thus to show that 𝐴 is uniformly convex about 𝜑, it is enough to estimate
𝜑(𝑝, 𝜀) for 𝑝 ∈ 𝑃 (𝜀).

For every 𝜀 > 0 and 𝑝 ∈ 𝑃 (𝜀) there holds the inequality 𝜑(𝑝, 𝜀) ≤ dist
(︀
𝑝,𝐴

)︀
,

where 𝐴 =
{︀
(𝑥, 𝑦) ∈ R2 : 1

𝑥 = 𝑦, 𝑥 > 0
}︀

and thus 𝐵(𝑝, 𝜑(𝑝, 𝜀)) ∈ 𝐴.

Theorem 4.7. Let (𝑋, ‖ · ‖) be a Banach space, 𝐴,𝐵 ⊂ 𝑋, 𝜑 : 𝐴× R+ → R+

has the positive property about 𝐴 and 𝐴 be a uniformly convex set about 𝜑. Then
the ordered pair (𝐴,𝐵) satisfies the BUC property.

Proof. We will prove the theorem by assuming the contrary, i.e., let the ordered pair
(𝐴,𝐵) does not satisfy the BUC property and 𝐴 be a uniformly convex set about 𝜑.
Then there are three bounded sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴 and {𝑦𝑛}∞𝑛=1 ⊂ 𝐵
such that

lim
𝑛→∞

‖𝑥𝑛 − 𝑦𝑛‖ = lim
𝑛→∞

‖𝑧𝑛 − 𝑦𝑛‖ = dist(𝐴,𝐵), (4.5)

but the sequence {‖𝑥𝑛 − 𝑧𝑛‖}∞𝑛=1 does not converge to zero. Therefore there exists
𝜀0 > 0 such that for every 𝑁 ∈ N there is 𝑛 > 𝑁 so that the inequality ‖𝑥𝑛−𝑧𝑛‖ ≥ 𝜖0
holds true. Thus there is a subsequence {‖𝑥𝑛𝑘

− 𝑧𝑛𝑘
‖}∞𝑘=1 so that ‖𝑥𝑛𝑘

− 𝑧𝑛𝑘
‖ ≥ 𝜀0

for all 𝑘 ∈ N. The sequence
{︁

𝑥𝑛𝑘
+𝑧𝑛𝑘

2

}︁∞

𝑘=1
∈ 𝐴 is a bounded sequence too. By the
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assumption that 𝜑 has the positive property about 𝐴 and that
{︁

𝑥𝑛𝑘
+𝑧𝑛𝑘

2

}︁∞

𝑘=1
∈ 𝐴

is a bounded sequence it follows that there exists 𝛿0, such that the inequality

inf

{︂
𝜑(𝑎, 𝜀) : 𝑎 ∈

{︂
𝑥𝑛 + 𝑧𝑛

2

}︂∞

𝑛=1

, 𝜀 ≥ 𝜀0

}︂
= 𝛿0 > 0 (4.6)

holds true.
From the assumption that 𝐴 is a uniformly convex set about 𝜑 and the fact that{︁

𝑥𝑛𝑘
+𝑧𝑛𝑘

2

}︁∞

𝑘=1
∈ 𝐴 is a bounded sequence, satisfying the inequality ‖𝑥𝑛𝑘

−𝑧𝑛𝑘
‖ ≥ 𝜀0

we get the inclusions

𝐵

(︂
𝑥𝑛 + 𝑧𝑛

2
, 𝛿0

)︂
⊆ 𝐵

(︂
𝑥𝑛 + 𝑧𝑛

2
, 𝜑

(︂
𝑥𝑛 + 𝑧𝑛

2
, 𝜀0

)︂)︂
⊂ 𝐴.

Consequently for all 𝑘 ≥ 𝑁1 there holds the chain of inequalities

𝛿0 + dist(𝐴,𝐵) ≤ dist

(︂
𝑥𝑛𝑘

+ 𝑧𝑛𝑘

2
, 𝐵

)︂
≤

⃦⃦⃦⃦
𝑥𝑛𝑘

+ 𝑧𝑛𝑘

2
− 𝑦𝑛

⃦⃦⃦⃦
≤ ‖𝑥𝑛𝑘

− 𝑦𝑛𝑘
‖+ ‖𝑧𝑛𝑘

− 𝑦𝑛𝑘
‖

2
.

(4.7)

By (4.5) it follows that for 𝛿0 there exists 𝑁1 ∈ N such that for every 𝑘 ≥ 𝑁1 the
inequality

‖𝑥𝑛𝑘
− 𝑦𝑛𝑘

‖+ ‖𝑧𝑛𝑘
− 𝑦𝑛𝑘

‖
2

< 𝛿0 + dist(𝐴,𝐵)

holds true.
Thus we get a contradiction with (4.7) and thus the sequence {‖𝑥𝑛 − 𝑧𝑛‖}∞𝑛=1

converges to zero.

Example 4.8. Let us consider the space 𝑋 = (R2, ‖ · ‖∞) and the sets 𝐴 and
𝐵 are defined as follows

𝐴 =

{︂
(𝑥, 𝑦) ∈ R2 :

1

𝑥
≤ 𝑦, 𝑥 > 0

}︂
, 𝐵 =

{︂
(𝑥, 𝑦) ∈ R2 :

1

𝑥+ 1
− 1 ≥ 𝑦, 𝑥 > −1

}︂
.

Then the ordered pair (𝐴,𝐵) has the BUC property, but does not have the UC
property.

We have proven in Examples 4.4 and 4.6 that there exists a function 𝜑, so
that 𝜑 has the positive property about 𝐴 and 𝐴 is uniformly convex about 𝜑. By
Theorem 4.7 it follows that the ordered pair (𝐴,𝐵) has the BUC property, i.e., for
every two bounded sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴 and a sequence {𝑦𝑛}∞𝑛=1 ⊂
𝐵, such that lim𝑛→∞ ‖𝑥𝑛 − 𝑦𝑛‖ = lim𝑛→∞ ‖𝑧𝑛 − 𝑦𝑛‖ = dist(𝐴,𝐵) the sequence
{‖𝑥𝑛 − 𝑧𝑛‖}∞𝑛=1 converges to zero.

It remains to show that the ordered pair (𝐴,𝐵) does not have the UC property,
i.e., we will show that there are unbounded sequences {𝑥𝑛}∞𝑛=1 ⊂ 𝐴, {𝑧𝑛}∞𝑛=1 ⊂ 𝐴
and a sequence {𝑦𝑛}∞𝑛=1 ⊂ 𝐵, such that

lim
𝑛→∞

‖𝑥𝑛 − 𝑦𝑛‖ = lim
𝑛→∞

‖𝑧𝑛 − 𝑦𝑛‖ = dist(𝐴,𝐵),



Ann. Sofia Univ., Fac. Math. and Inf., 109, 2022, 121–146 139

but the sequence {‖𝑥𝑛 − 𝑧𝑛‖}∞𝑛=1 does not converge to zero.
Let consider the sequences {𝑎𝑛}∞𝑛=0, {𝑏𝑛}∞𝑛=0 and {𝑐𝑛}∞𝑛=0, defined as follows

𝑎𝑛 =

(︂
𝑛,

1

𝑛

)︂
, 𝑏𝑛 =

(︂
𝑛+ 1,

1

𝑛+ 1

)︂
∈ 𝐴, 𝑐𝑛 =

(︂
𝑛,

1

𝑛+ 1
− 1

)︂
∈ 𝐵, 𝑛 ∈ N.

From ‖𝑎𝑛 − 𝑐𝑛‖∞ =
⃦⃦⃦(︁

0, 1
𝑛 − 1

𝑛+1 + 1
)︁⃦⃦⃦

∞
= 1

𝑛 − 1
𝑛+1 + 1 and ‖𝑏𝑛 − 𝑐𝑛‖ =

‖(1, 1)‖∞ = 1 it follows that lim
𝑛→∞

‖𝑎𝑛 − 𝑐𝑛‖∞ = 1 and lim𝑛→∞ ‖𝑏𝑛 − 𝑐𝑛‖∞ = 1.

By ‖𝑏𝑛 − 𝑎𝑛‖∞ =
⃦⃦⃦(︁

1, 1
𝑛+1 − 1

𝑛

)︁⃦⃦⃦
∞

≥ 1 we get lim
𝑛→∞

‖𝑏𝑛 − 𝑎𝑛‖∞ ̸= 0.

From dist(𝐴,𝐵) = 1 it follows that lim
𝑛→∞

‖𝑎𝑛 − 𝑐𝑛‖∞ = lim
𝑛→∞

‖𝑏𝑛 − 𝑐𝑛‖∞ =

dist(𝐴,𝐵) and lim
𝑛→∞

‖𝑏𝑛−𝑎𝑛‖∞ ̸= 0. Consequently the ordered pair (𝐴,𝐵) does not
have the UC property.

5. The UC property and uniform convexity of the underlying space

We will show that in some cases the validity of the UC property in a Banach
space (𝑋, ‖ · ‖) leads to a conclusion that (𝑋, ‖ · ‖) is a uniformly convex Banach
space. We will start with two technical lemmas.

Lemma 5.1. Let (𝑋, ‖ · ‖) be a Banach space. Let {𝑥𝑛}∞𝑛=1, {𝑦𝑛}∞𝑛=1 ∈ 𝑋

be sequences, such that for every 𝑛 ∈ N there hold ‖𝑥𝑛‖ ≤ 𝑎, ‖𝑦𝑛‖ ≤ 𝑏 and
lim𝑛→∞ ‖𝑥𝑛 + 𝑦𝑛‖ = 𝑎 + 𝑏, where 𝑎, 𝑏 ∈ [0,+∞). Then lim𝑛→∞ ‖𝑥𝑛‖ = 𝑎 and
lim𝑛→∞ ‖𝑦𝑛‖ = 𝑏.

Proof. From the chain of inequalities

𝑎 = lim
𝑛→∞

(‖𝑥𝑛 + 𝑦𝑛‖ − 𝑏) ≤ lim
𝑛→∞

(‖𝑥𝑛 + 𝑦𝑛‖ − ‖𝑦𝑛‖) ≤ lim
𝑛→∞

‖𝑥𝑛‖ ≤ 𝑎

it follows that lim𝑛→∞ ‖𝑥𝑛‖ = 𝑎.
By similar arguments we can prove that lim𝑛→∞ ‖𝑦𝑛‖ = 𝑏.

Lemma 5.2. Let (𝑋, ‖ · ‖) be a Banach space and let 𝐵 = {𝑥 ∈ 𝑋 : ‖𝑥‖ ≥ 2}.
If the ordered pair (𝐵𝑋 , 𝐵) satisfies the UC property and the sequences {𝑥𝑛}∞𝑛=1,
{𝑧𝑛}∞𝑛=1 ⊂ 𝐵𝑋 be such that lim𝑛→∞

⃦⃦
𝑥𝑛+𝑧𝑛

2

⃦⃦
= 1, then lim𝑛→∞ ‖𝑥𝑛 − 𝑧𝑛‖ = 0.

Proof. From the assumptions of the lemma we have that

dist(𝐵𝑋 , 𝐵) = 1, ‖𝑥𝑛‖ ≤ 1, ‖𝑧𝑛‖ ≤ 1 and lim
𝑛→∞

‖𝑥𝑛 + 𝑧𝑛‖ = 2. (5.1)

Therefore by Lemma 5.1 it follows

lim
𝑛→∞

‖𝑥𝑛‖ = 1, lim
𝑛→∞

‖𝑧𝑛‖ = 1. (5.2)
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Let us define the sequence {𝑦𝑛}∞𝑛=1 by 𝑦𝑛 = 2
𝑥𝑛 + 𝑧𝑛
‖𝑥𝑛 + 𝑧𝑛‖

. Then ‖𝑦𝑛‖ = 2 for every

𝑛 ∈ N, consequently {𝑦𝑛}∞𝑛=1 ⊂ 𝐵. Now using the assumption that {𝑥𝑛}∞𝑛=1 ⊂ 𝐵𝑋

we get the chain of inequalities

dist(𝐵𝑋 , 𝐵) ≤ ‖𝑦𝑛 − 𝑥𝑛‖ =

⃦⃦⃦⃦
2

𝑥𝑛 + 𝑧𝑛
‖𝑥𝑛 + 𝑧𝑛‖

− 𝑥𝑛

⃦⃦⃦⃦
=

⃦⃦⃦⃦
2

𝑥𝑛 + 𝑧𝑛
‖𝑥𝑛 + 𝑧𝑛‖

− (𝑥𝑛 + 𝑧𝑛) + 𝑧𝑛

⃦⃦⃦⃦
=

⃦⃦⃦⃦(︂
2

‖𝑥𝑛 + 𝑧𝑛‖
− 1

)︂
(𝑥𝑛 + 𝑧𝑛) + 𝑧𝑛

⃦⃦⃦⃦
≤

(︂
2

‖𝑥𝑛 + 𝑧𝑛‖
− 1

)︂
‖𝑥𝑛 + 𝑧𝑛‖+ ‖𝑧𝑛‖.

(5.3)

From (5.1) and (5.2) it follows that

lim
𝑛→∞

(︂(︂
2

‖𝑥𝑛 + 𝑧𝑛‖
− 1

)︂
‖𝑥𝑛 + 𝑧𝑛‖+ ‖𝑧𝑛‖

)︂
= 1 = dist(𝐵𝑋 , 𝐵).

Using (5.3) we get that lim
𝑛→∞

‖𝑦𝑛 − 𝑧𝑛‖ = dist(𝐵𝑋 , 𝐵).
By similar arguments we can prove that lim

𝑛→∞
‖𝑦𝑛 − 𝑧𝑛‖ = dist(𝐵𝑋 , 𝐵).

From the assumption that the ordered pair (𝐵𝑋 , 𝐵) satisfies the UC property
it follows that lim

𝑛→∞
‖𝑥𝑛 − 𝑧𝑛‖ = 0.

Theorem 5.3. Let (𝑋, ‖·‖) be a Banach space and let 𝐵 = {𝑥 ∈ 𝑋 : ‖𝑥‖ ≥ 2}.
If the ordered pair (𝐵𝑋 , 𝐵) satisfies the UC property, then (𝑋, ‖ · ‖) is a uniformly
convex Banach space.

Proof. Let us assume the contrary, i.e., there exists 𝜀 > 0 such that for every 𝛿 > 0
there are 𝑥(𝛿), 𝑧(𝛿) ∈ 𝐵𝑋 , so that the inequalities ‖𝑥(𝛿) − 𝑧(𝛿)‖ ≥ 𝜀 and 1 − 𝛿 ≤⃦⃦⃦
𝑥(𝛿)+𝑧(𝛿)

2

⃦⃦⃦
≤ 1 hold true. Thus we can choose sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ∈ 𝐵𝑋 ,

satisfying ‖𝑥𝑛 − 𝑧𝑛‖ ≥ 𝜀 and 1 − 1
𝑛 ≤

⃦⃦
𝑥𝑛+𝑧𝑛

2

⃦⃦
≤ 1. Therefore lim

𝑛→∞

⃦⃦
𝑥𝑛+𝑧𝑛

2

⃦⃦
= 1,

which contradicts with Lemma 5.2.

Corollary 5.4. Let (𝑋, ‖·‖) be a Banach space. If every ordered pair of subsets
(𝐴,𝐵) has the UC property, where 𝐴 is convex, then (𝑋, ‖ · ‖) is a uniformly convex
Banach space.

6. The UC property and UCED of the underlying space

By Proposition 2.18 it follows that in UCED Banach spaces every ordered pair
(𝐴,𝐵), such that 𝐴 is a convex and relatively compact set, satisfies the UC property.
Unfortunately the sets 𝐴 = {(𝑥, 𝑦) ∈ (R2, ‖·‖) : 𝑦 ≥ 𝑥2}, where ‖·‖ is a UCED norm
or 𝐴 = 𝐵𝑋 , where (𝑋, ‖ · ‖) is a UCED Banach space are not relatively compact
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and therefore for an arbitrary set 𝐵 ⊂ 𝑋 the ordered pair (𝐴,𝐵) does not satisfy
the assumption of Proposition 2.18. The next lemma presents a different condition
on the sets of the ordered pair (𝐴,𝐵) by removing the too restrictive assumption for
the set 𝐴 to be relatively compact.

Lemma 6.1. Let (𝑋, ‖ · ‖) be a Banach space and let 𝐵 ⊂ 𝑋/𝐵𝑋 be such
that dist(𝐵,𝐵𝑋) ≥ 1. If the ordered pair (𝐵𝑋 , 𝐵) satisfies the UC property, there
exists 𝑝 ∈ 𝐵 so that dist(𝑝,𝐵𝑋) = dist(𝐵,𝐵𝑋) and there exist two sequences

{𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐵𝑋 , satisfying lim
𝑛→∞

⃦⃦⃦⃦
𝑥𝑛 + 𝑧𝑛

2

⃦⃦⃦⃦
= 1 and 𝑥𝑛 + 𝑧𝑛 = |𝜆𝑛|𝑝, then

lim
𝑛→∞

‖𝑥𝑛 − 𝑧𝑛‖ = 0.

Proof. From the assumptions we have that ‖𝑥𝑛‖ ≤ 1, ‖𝑧𝑛‖ ≤ 1 and lim
𝑛→∞

‖𝑥𝑛+𝑧𝑛‖ =

2. Therefore from Lemma 5.1 it follows that

lim
𝑛→∞

‖𝑥𝑛‖ = 1, lim
𝑛→∞

‖𝑧𝑛‖ = 1 and lim
𝑛→∞

‖𝑥𝑛 + 𝑧𝑛‖ = 2. (6.1)

Let us define the sequence {𝑦𝑛}∞𝑛=1 by 𝑦𝑛 = 𝑝 for every 𝑛 ∈ N. From the
assumption 𝑥𝑛 + 𝑧𝑛 = |𝜆𝑛|𝑝 it follows that ‖𝑝 − (𝑥𝑛 + 𝑧𝑛)‖ = |‖𝑝‖ − ‖𝑥𝑛 + 𝑧𝑛‖|.
After using the inequalities ‖𝑥𝑛 + 𝑧𝑛‖ ≤ ‖𝑥𝑛‖ + ‖𝑧𝑛‖ ≤ 2, dist(𝐵,𝐵𝑋) + 1 ≥ 2,
and the equality ‖𝑝‖ = dist(𝑝,𝐵𝑋) + 1 = dist(𝐵,𝐵𝑋) + 1 we can write the chain of
inequalities

dist(𝐵,𝐵𝑋) ≤ ‖𝑦𝑛 − 𝑥𝑛‖ = ‖𝑝− 𝑥𝑛‖ = ‖𝑝− (𝑥𝑛 + 𝑧𝑛) + 𝑧𝑛‖
≤ (‖𝑝− (𝑥𝑛 + 𝑧𝑛)‖+ ‖𝑧𝑛‖)
= (|‖𝑝‖ − ‖𝑥𝑛 + 𝑧𝑛‖|+ ‖𝑧𝑛‖)
= (|dist(𝐵,𝐵𝑋) + 1− ‖𝑥𝑛 + 𝑧𝑛‖|+ ‖𝑧𝑛‖)
= dist(𝐵,𝐵𝑋) + 1 + (‖𝑧𝑛‖ − ‖𝑥𝑛 + 𝑧𝑛‖) .

(6.2)

From (6.1) we get

lim
𝑛→∞

(dist(𝐵,𝐵𝑋) + 1 + ‖𝑧𝑛‖ − ‖𝑥𝑛 + 𝑧𝑛‖) = dist(𝐵,𝐵𝑋).

Thus using (6.2) it follows that lim
𝑛→∞

‖𝑦𝑛 − 𝑥𝑛‖ = dist(𝐵𝑋 , 𝐵).
By similar arguments we can prove that lim

𝑛→∞
‖𝑦𝑛 − 𝑧𝑛‖ = dist(𝐵𝑋 , 𝐵).

From the assumption that the ordered pair (𝐵𝑋 , 𝐵) satisfies the UC property
it follows that lim

𝑛→∞
‖𝑥𝑛 − 𝑧𝑛‖ = 0.

Definition 6.2. We say that a Banach space (𝑋, ‖ · ‖) is uniformly convex in
the direction 𝑧 if 𝛿‖·‖(𝑧, 𝜀) > 0 for every 𝜀 ∈ (0, 2].

Theorem 6.3. Let (𝑋, ‖ · ‖) be a Banach space and let 𝐵 ⊂ 𝑋/𝐵𝑋 . If there
holds dist(𝐵,𝐵𝑋) ≥ 1, the ordered pair (𝐵𝑋 , 𝐵) satisfies the UC property and there
is 𝑝 ∈ 𝐵 so that dist(𝑝,𝐵𝑋) = dist(𝐵,𝐵𝑋), then (𝑋, ‖ · ‖) is a uniformly convex in
the direction

𝑝

‖𝑝‖
.
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Proof. Let us assume the contrary, i.e., there exists 𝜀 > 0 such that for every 𝛿 > 0

there are 𝑥(𝛿), 𝑧(𝛿) ∈ 𝐵𝑋 , satisfying ‖𝑥(𝛿) − 𝑧(𝛿)‖ ≥ 𝜀, 1 − 𝛿 ≤
⃦⃦⃦⃦
𝑥(𝛿) + 𝑧(𝛿)

2

⃦⃦⃦⃦
≤ 1

and 𝑥(𝛿) + 𝑧(𝛿) = 𝜆(𝛿)𝑝. Thus we can choose sequences {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ∈ 𝐵𝑋 so

that ‖𝑥𝑛 − 𝑧𝑛‖ ≥ 𝜀, lim
𝑛→∞

⃦⃦⃦⃦
𝑥𝑛 + 𝑧𝑛

2

⃦⃦⃦⃦
= 1 and 𝑥𝑛 + 𝑧𝑛 = 𝜆𝑛𝑝.

Let us construct the sequences {𝑥′
𝑛}∞𝑛=1, {𝑧′𝑛}∞𝑛=1 ⊂ 𝐵𝑋 as follows: 𝑥′

𝑛 = 𝑥𝑛,
𝑧′𝑛 = 𝑧𝑛 if 𝜆𝑛 ≥ 0 and 𝑥′

𝑛 = −𝑥𝑛, 𝑧′𝑛 = −𝑧𝑛 if 𝜆𝑛 < 0. Then {𝑥′
𝑛}∞𝑛=1, {𝑧′𝑛}∞𝑛=1 ∈ 𝐵𝑋 ,

‖𝑥′
𝑛 − 𝑧′𝑛‖ ≥ 𝜀, lim

𝑛→∞

⃦⃦⃦⃦
𝑥′
𝑛 + 𝑧′𝑛
2

⃦⃦⃦⃦
= 1 and 𝑥′

𝑛 + 𝑧′𝑛 = |𝜆𝑛|𝑝, which contradicts with

Lemma 6.1 and consequently (𝑋, ‖ · ‖) is uniformly convex in the direction
𝑝

‖𝑝‖
.

7. Examples and applications

We will finish with an example of a cyclic map, which satisfies the conditions
of Theorem 2.14, but the ordered pair of sets (𝐴,𝐵) that are the domain of the map
𝑇 are just BUC but not UC. Therefore we cannot conclude the existence of best
proximity points using the result of [15].

Example 7.1. Let us consider the space 𝑋 = (R2, ‖ · ‖∞), the sets

𝐴 =

{︂
(𝑥, 𝑦) :

1

𝑥
≤ 𝑦, 𝑥 > 0

}︂
and 𝐵 = 𝐵1 ∪𝐵2,

where

𝐵1 =

{︂
(𝑥, 𝑦) :

1

𝑥+ 1
− 1 ≥ 𝑦, 𝑥 > −1

}︂
,

𝐵2 = {(𝑥, 𝑦) : 𝑦 ∈ R, 𝑥 ≤ −1} .

Let us denote

𝐴 =

{︂
(𝑥, 𝑦) :

1

𝑥
= 𝑦, 𝑥 > 0

}︂
,

𝐵 =

{︂
(𝑥, 𝑦) :

1

𝑥+ 1
− 1 = 𝑦, 𝑥 > −1

}︂
.

Let the map 𝑇 : 𝐴 ∪𝐵 → 𝐴 ∪𝐵 be defined by

𝑇𝑥 =

⎧⎪⎪⎨⎪⎪⎩
(︂
−dist(𝑥,𝐴)

2
,−dist(𝑥,𝐴)

2

)︂
, 𝑥 ∈ 𝐴(︂

1 +
dist(𝑥,𝐵)

2
, 1 +

dist(𝑥,𝐵)

2

)︂
, 𝑥 ∈ 𝐵.

(7.1)

Then 𝑇 is a cyclic map on 𝐴 ∪𝐵 and satisfies the inequality

𝜌(𝑇𝑥, 𝑇𝑦) ≤ 1

2
𝜌(𝑥, 𝑦) +

1

2
dist(𝐴,𝐵) (7.2)

for every 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, i.e., Theorem 3.6 with 𝑘 = 1
2 .
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We will first prove that 𝑇 is a cyclic map, i.e., 𝑇 (𝐴) ⊆ 𝐵 and 𝑇 (𝐵) ⊆ 𝐴.

Let first 𝑧 = (𝑥, 𝑦) ∈ 𝐴. Then 𝑇𝑧 =

(︂
−dist(𝑧,𝐴)

2
,−dist(𝑧,𝐴)

2

)︂
.

By −dist(𝑧,𝐴)

2
≤ 0 it follows that for any 𝑧 ∈ 𝐴, if −dist(𝑧,𝐴)

2
≤ −1 there

holds the inclusion
(︂
−dist(𝑧,𝐴)

2
,−dist(𝑧,𝐴)

2

)︂
∈ 𝐵2. If −dist(𝑧,𝐴)

2
∈ (−1, 0], then(︂

−dist(𝑧,𝐴)

2
,−dist(𝑧,𝐴)

2

)︂
∈ 𝐵1. Thus 𝑇𝑧 ∈ 𝐵 for every 𝑧 ∈ 𝐴.

Let 𝑧 = (𝑥, 𝑦) ∈ 𝐵. Then 𝑇𝑧 =

(︂
1 +

dist(𝑧,𝐵)

2
, 1 +

dist(𝑧,𝐵)

2

)︂
.

From 1 +
dist(𝑧,𝐵)

2
≥ 1 and

1

𝑥
≤ 1 for 𝑥 ≥ 1 it follows

(︂
1 +

dist(𝑧,𝐵)

2
, 1 +

dist(𝑧,𝐵)

2

)︂
∈ 𝐴,

i.e., 𝑇𝑧 ∈ 𝐴.
It remains to show that the map 𝑇 satisfies the inequality (7.2).
It is easy to calculate that

dist(𝐴,𝐵) = inf{‖𝑥− 𝑦‖∞ : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} = 1

and
dist(𝑎,𝐴) + dist(𝐴,𝐵) + dist(𝑏,𝐵) ≤ ‖𝑎− 𝑏‖∞.

Let 𝑎 = (𝑥𝑎, 𝑦𝑎) ∈ 𝐴 and 𝑏 = (𝑥𝑏, 𝑦𝑏) ∈ 𝐵. Then

‖𝑇𝑎− 𝑇𝑏‖∞ =

⃦⃦⃦⃦(︂
1 +

dist(𝑏,𝐵)

2
, 1 +

dist(𝑏,𝐵)

2

)︂
−

(︂
−dist(𝑎,𝐴)

2
,−dist(𝑎,𝐴)

2

)︂⃦⃦⃦⃦
∞

= 1 +
dist(𝑏,𝐵)

2
+

dist(𝑎,𝐴)

2

=
1

2

(︀
dist(𝐴,𝐵) + dist(𝑏,𝐵) + dist(𝑎,𝐴)

)︀
+

1

2
dist(𝐴,𝐵)

≤ 1

2
‖𝑎− 𝑏‖∞ +

1

2
dist(𝐴,𝐵).

The ordered pair of sets (𝐴,𝐵) has the BUC property, but not the UC property
by Example 4.8, therefore, by Theorem 3.8 it follows that there is a unique best
proximity point of 𝑇 in 𝐴. As far as (𝐴,𝐵) does not have the UC property we
cannot use Theorem 2.14 to conclude that there is a best proximity point of 𝑇 in 𝐴.

We have seen that in order for the key lemma from [7] to hold true we need
either to impose good properties on the unit ball 𝐵𝑋 of the underlying Banach space
(𝑋, ‖ · ‖) or to impose good properties on the set 𝐴, from the ordered pair (𝐴,𝐵).
The set 𝐴 in Example 7.1 is a strictly convex set, i.e., for every 𝑥, 𝑦 ∈ 𝐴, there is



144 V. Zhelinski & B. Zlatanov / UC and UC* properties and best proximity points

𝜀 = 𝜀(𝑥, 𝑦) > 0 so that 𝐵
(︀
𝑥+𝑦
2 , 𝜀

)︀
⊂ 𝐴 and we have proven that any ordered pair

(𝐴,𝐵) has the BUC property.
We will show in the next example, where the underlying space is strictly convex

without being uniformly convex. Thereafter we cannot apply Lemma 2.6. We will
show that the ordered pair (𝐵𝑋 , {𝑥 ∈ 𝑋 : ‖𝑥‖ ≥ 2}) has neither BUC nor UC.

Example 7.2. Let us denote 𝐸𝑛 = (𝑅2, ‖·‖𝑛), where ‖(𝑥, 𝑦)‖𝑛 = 𝑛
√︀

|𝑥|𝑛 + |𝑦|𝑛.
Any of the spaces 𝐸𝑛 is a uniformly convex Banach space. Let us consider the space

𝑋 =

(︂ ∞∏︀
𝑛=2

𝐸𝑛, ‖ · ‖
)︂

, where ‖{𝑥𝑛}‖ =

√︃
∞∑︀

𝑛=2
‖𝑥𝑛‖2𝑛 and 𝑥𝑛 ∈ 𝐸𝑛. The space 𝑋 is a

strictly convex Banach space, which is not uniformly convex, i.e., its unit ball 𝐵𝑋 is
a strictly convex set.

Let us denote 𝐵 = {𝑥 ∈ 𝑋 : ‖𝑥‖ ≥ 2}. We will construct three sequences
{𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ∈ 𝐵𝑥 and {𝑦𝑛}∞𝑛=1 ∈ 𝐵 such that lim

𝑛→∞
‖𝑥𝑛 − 𝑦𝑛‖ = dist(𝐵𝑋 , 𝐵),

lim
𝑛→∞

‖𝑧𝑛 − 𝑦𝑛‖ = dist(𝐵𝑋 , 𝐵) and lim𝑛→∞ ‖𝑥𝑛 − 𝑧𝑛‖ > 0, i.e., the ordered pair
(𝐵𝑋 , 𝐵) does not have the UC property.

Let 𝑟𝑥, 𝑟𝑧 : N → R2 be defined by 𝑟𝑥(𝑛) =
(︁

1
𝑛√2

, 1
𝑛√2

)︁
, 𝑟𝑧(𝑛) =

(︁
1
𝑛√2

,− 1
𝑛√2

)︁
.

We can see that ‖𝑟𝑥(𝑛)‖𝑛 = ‖𝑟𝑧(𝑛)‖𝑛 = 1.
Let

𝑥𝑛 = ((0, 0), (0, 0), . . . , (0, 0)⏟  ⏞  
𝑛−1

, 𝑟𝑥(𝑛+ 1), (0, 0), . . . ),

𝑧𝑛 = ((0, 0), (0, 0), . . . , (0, 0)⏟  ⏞  
𝑛−1

, 𝑟𝑧(𝑛+ 1), (0, 0), . . . )

and

𝑦𝑛 = ((0, 0), (0, 0), . . . , (0, 0)⏟  ⏞  
𝑛−1

, (2, 0), (0, 0), . . . ).

From ‖𝑥𝑛‖ = ‖𝑟𝑥(𝑛+1)‖𝑛+1 = 1, ‖𝑧𝑛‖ = ‖𝑟𝑧(𝑛+1)‖𝑛+1 = 1 and ‖𝑦𝑛‖ = 2 it follows
that {𝑥𝑛}∞𝑛=1, {𝑧𝑛}∞𝑛=1 ⊂ 𝐵𝑋 and {𝑦𝑛}∞𝑛=1 ⊂ 𝐵.

For every 𝑛 ∈ N there holds

‖𝑥𝑛 − 𝑦𝑛‖ = ‖𝑟𝑥(𝑛+ 1)− (2, 0)‖𝑛+1 =

⃦⃦⃦⃦(︂
1

𝑛+1
√
2
− 2,

1
𝑛+1
√
2

)︂⃦⃦⃦⃦
𝑛+1

=
𝑛+1

√︃(︂
2− 1

𝑛+1
√
2

)︂𝑛+1

+
1

2
.

Using the inequalities

2− 1
𝑛+1
√
2
=

𝑛+1

√︃(︂
2− 1

𝑛+1
√
2

)︂𝑛+1

≤ 𝑛+1

√︃(︂
2− 1

𝑛+1
√
2

)︂𝑛+1

+
1

2

<
𝑛+1

√︃
2

(︂
2− 1

𝑛+1
√
2

)︂𝑛+1

= 2
𝑛+1
√
2− 1
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for every 𝑛 ∈ N, we get lim
𝑛→∞

‖𝑥𝑛 − 𝑦𝑛‖ = 1.

We can prove that lim
𝑛→∞

‖𝑧𝑛 − 𝑦𝑛‖ = 1 in a similar manner.

From ‖𝑥𝑛 − 𝑧𝑛‖ = ‖𝑟𝑥(𝑛+1)− 𝑟𝑧(𝑛+1)‖𝑛+1 =

⃦⃦⃦⃦(︂
0,

2
𝑛+1
√
2

)︂⃦⃦⃦⃦
𝑛+1

=
2

𝑛+1
√
2

for

every 𝑛 ∈ N it follows that lim
𝑛→∞

‖𝑥𝑛 − 𝑧𝑛‖ = 2.

Thus (𝐵𝑋 , 𝐵) does not have the UC property.

The sequences in the last example are bounded ones, and therefore the ordered
pair (𝐵𝑋 , 𝐵) does not have the BUC property, either.

In view of Theorem 4.7, 𝐵𝑋 is not uniformly convex about any function 𝜑. As
far as 𝐵𝑋 is a strictly convex set it follows that there is a difference between a strict
convexity of a set and a uniform convexity of a set about a function 𝜑.
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