
ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Том 110

ANNUAL OF SOFIA UNIVERSITY “ST. KLIMENT OHRIDSKI”

FACULTY OF MATHEMATICS AND INFORMATICS

Volume 110

REAL-TIME DATA INTEGRATION IN INFORMATION SYSTEMS
USING STREAM PROCESSING FOR MEDICAL DATA

MARTIN KOSTOV and KALINKA KALOYANOVA

Real-time data processing in medical information systems is becoming harder with the
increase in data volume. Stream processing is a popular approach for real-time data
processing, which can process large volumes of data including medical in a scalable
manner. In some cases, medical data may not be available in real time because of
privacy and security concerns. In this paper, we will explore the use of stream processing
with static medical data using streaming platforms, Kafka, and Apache Spark. We will
demonstrate how these platforms can be used to work with static data in streams and
discuss the benefits and limitations of the approach. We also present a case study to
illustrate the effectiveness and performance.
Keywords: stream processing, performance comparison, Apache Kafka, Apache Spark,
data analysis, medical data
CCS Concepts:
• Information systems∼Data management systems∼Database management system en-
gines∼Stream management

1. Introduction

Real-time data processing is very important for medical information systems
(MIS), enabling healthcare providers to access and analyze medical data effectively
and fast. Traditional batch processing approaches with relational databases are of-
ten inadequate for handling large volumes of medical data, especially in real time.
Stream processing has emerged as an alternative approach for real-time data inte-
gration, which involves processing and analyzing data in real time as it is generated
or ingested.

However, in some cases, medical data may not be available in real-time or may
not be suitable for streaming due to privacy and security concerns. In such cases, an

DOI: 10.60063/GSU.FMI.110.101-110 101



102 M. Kostov & K. Kaloyanova / Real-time data integration in information systems . . .

alternative approach can be used – processing static data. Stream processing with
static medical data involves processing and analyzing medical data that has been
stored in a predefined format – a database, XML files, etc.

This paper examines the use of stream processing with static medical data
using stream processing with Apache Kafka [13] and Apache Spark [2]. We discuss
the challenges of batch processing in MIS, the advantages of streaming, the main
components of stream processing architecture, and some of the characteristics of
medical data. We also provide a case study to demonstrate the effectiveness of this
approach.

2. Real-time data integration in medical information systems

Medical data is generated continuously. In order to monitor patients adequately,
doctors obtain their medical records – diagnoses, medical histories, lab results, im-
ages, etc., from different systems. Even when these systems are integrated [3] pro-
cessing all patient data from different MIS in real-time could be a challenge.

The batch-processing approaches with relational databases are in use most of
the time. However, it involves processing data in large batches, which can cause
delays in medical data analysis, making it unsuitable for real-time integration in
MIS.

Stream processing emerged as a popular approach for real-time data integration
in MIS. It enables doctors to monitor patient health in real-time and respond quickly.
Stream processing can also provide health trends, enabling healthcare providers to
identify patterns and improve patient outcomes, something that is not possible with
traditional treatment without hospitalization.

3. Overview of streaming solutions

Stream processing architecture typically consists of several components, includ-
ing data sources, stream processing frameworks, and output destinations for our
tests [1]. We will use Kafka for both input and output. Data sources for static data
can include archived medical records or data repositories. Stream processing frame-
works, such as Apache Kafka and Apache Spark [4], provide the necessary tools for
processing and analyzing static data. Outputs can include dashboards, alerts, and
other visualizations that enable doctors to make real-time decisions based on the
processed data.

The key benefit of stream processing with static medical data is its ability to
handle large volumes of data efficiently with a small overhead. Medical data can
be complex and can be from multiple sources, making it difficult to ensure that
the data is accurate and consistent. Stream processing with static data enables
doctors to monitor this data in real time. With stream processing it is possible to
provide insights into patient health trends, enabling doctors to identify patterns and
diagnose better.



Ann. Sofia Univ., Fac. Math. and Inf., 110, 2023, 101–110 103

There are also challenges associated with stream processing static medical data.
One of the main challenges is ensuring the quality and consistency of the data.
Despite these challenges, stream processing with static medical data can provide
significant benefits, including faster response times, improved patient outcomes, and
increased efficiency. In the next section, we will explore the characteristics of medical
data and the challenges of processing medical data in real time, both with static data
and with true streaming data.

4. Stream processing for medical data

Processing medical data in real-time can be difficult due to its specific charac-
teristics - huge volume, different formats, lack of interoperability, etc. But stream
processing framework can be utilized to overcome some of these obstacles to enable
real-time processing of medical data. This approach can significantly enhance the
speed and efficiency of data processing in MIS.

4.1. Medical data distinction

Working with medical data is a complex and diverse field that encompasses a
wide range of data sources and data formats. Sometimes this data is organized in
predetermined schemas – electronic health records (EHRs), patient summaries, etc.
But a huge amount of this data – medical images, sonic representation, physician
notes, patient-generated data, and social media is still not organized in predefined
schemas.

Several characteristics of medical data make it challenging to process this data
in real time. The generated volume is increasing at an unprecedented rate due to
advances in medical technology and the adoption of EHRs. The velocity is also
increasing, with real-time monitoring of patient data becoming more common [12].
Finally, medical data is characterized by variety, with data generated by a variety
of sources, including medical devices, social media, and wearables.

The quality of the data is one of the main challenges to achieve the full pro-
cessing potential [6]. A basic problem of medical data processing still is the need for
standardization of data presentation [8].

4.2. Challenges of processing medical data in real-time

While stream processing can be an effective approach for the real-time pro-
cessing of medical data, there are also challenges associated with processing static
data. One of the biggest challenges is the volume of data, which can be vast and
complex, particularly when dealing with large-scale datasets [11]. Processing static
data also requires specialized hardware and software infrastructure to handle the
volume, complexity, and heterogeneity of the data.

Ensuring data accuracy and consistency is another challenge associated with
processing static data. It can be complex and heterogeneous, with data quality issues



104 M. Kostov & K. Kaloyanova / Real-time data integration in information systems . . .

such as missing data, incomplete data, and data inconsistency leading to inaccurate
results and incorrect diagnoses. This makes it important to establish data validation
processes and ensure that data is cleaned and normalized before it is processed.

Data privacy and security are critical concerns when processing medical data,
particularly when dealing with static data that may be stored for long periods.
Healthcare organizations must implement strict security measures to protect sensi-
tive patient information and comply with local regulatory requirements.

Moreover, interoperability between different MIS can be a challenge when work-
ing with data [10]. Data may be stored in different formats and structures, making
it difficult to exchange and integrate data between different systems [14]. To enable
interoperability, a standardized data schema is needed that can accommodate the
diverse sources of medical data [9].

To enable real-time processing of medical data, it is also important to have a
standardized data schema that can accommodate diverse sources of medical data. A
standardized data schema can also enable interoperability between different systems.

5. Problem definition

With more and more data it is becoming challenging for healthcare institutions
and researchers to process and analyze all of it in an efficient manner. To address
these challenges, there has been growing interest in using stream processing frame-
works such as Apache Spark with distributed messaging systems like Apache Kafka
to handle the medical data processing in real-time. However, there are still many
open questions about how best to design and implement such systems, including
issues related to data quality, scalability, fault tolerance, and security. In this paper,
we explore the use of stream processing medical data processing and identify key
challenges and best practices for designing and implementing such systems.

5.1. Use case dataset for the experiment

In this study, a dataset of 220,000 medical records in XML format is used to
simulate a stream of data. The files present daily information about admitted and
discharged patients, coming from a hospital – patient demographics, medical history,
diagnosis codes, treatment information, etc. The medical records are grouped into
files per day for around a period of two years and file size is between 0.5 MB and
3.5 MB depending on the number of patients for the current day.

Since we do not have real-time data, we will use this dataset to simulate a
stream that is as close as possible to real-time processing. What we will do is read
this dataset, transform it, and publish data to stream. We will measure the mean
time it takes to do the reading from the XML file, the transformation, and the
publishing to stream. We will also measure how many records we can process in one
minute.



Ann. Sofia Univ., Fac. Math. and Inf., 110, 2023, 101–110 105

5.2. Overview of the experiment environment

The experiment described in the paper uses a setup consisting of a CPU Ryzen
5950 with 4×32 GB DDR4-3200 memory modules under the Ubuntu 22.04 operating
system.

We use Apache Kafka – a distributed open-source streaming system where
servers and clients communicate via a high-performance TCP network protocol.

Figure 1. Apache Kafka deployment configuration



106 M. Kostov & K. Kaloyanova / Real-time data integration in information systems . . .

Figure 2. Apache Spark and PostgreSQL deployment configuration

There are two main operations that clients can perform: publish – write to the
stream and consume – read from the stream.

For the purpose of our test, we will use also PostgreSQL – a widespread, open-
source object-relational database system, and Apache Spark – an open-source, dis-
tributed processing system used for big data workloads.

The two applications – Kafka and Postgre will be evaluated in terms of perfor-
mance and efficiency when we are working with streams or based on the size of the
dataset.

As a tool that defines and runs multiple docker containers, Docker Compose is
used. Figure 1 and Figure 2 present the Docker Compose YAML files configuration
used for the deployment of Kafka, PostgreSQL, and Spark.

The test environment includes the latest versions of all mentioned tools – Docker
v4.18.0, Kafka v7.3.0, Postgres v15.2, and Spark v3.3.2.

5.3. Experiment results and discussion

Overall, the medical dataset used for the experiment contains 220762 records
stored in 494 XML files [7]. Every file consists of medical records of daily admitted
or discharged patients in a hospital.

We measure how much time it takes to process and publish such a record to
stream and how many records we can publish per second. We also tested different
batching strategies for the publish to the stream and we see that the publishing
strategy is very important.



Ann. Sofia Univ., Fac. Math. and Inf., 110, 2023, 101–110 107

In the case of batching per file or batching all patient records per day, the
results were slowest. If the batching is time-based, the results are better with more
time between the batches. The best results were with 75 ms, bigger time between
batches was not possible in the existing environment, because the memory of the
machine was not enough.

The results of our study demonstrate that Kafka is more suitable for applica-
tions that require high throughput, such as real-time monitoring of patient records.
By using stream processing with Kafka, healthcare organizations can process medical
data in real time, enabling faster and more accurate diagnoses which can improve
patient outcomes. Both can be used for Streaming Analytics (SA) and Complex
Event Recognition (CER) [5].

Kafka’s improved throughput is likely due to its efficient batch-processing capa-
bilities, which allow it to process larger amounts of medical data at once. However,
this comes at the cost of higher latency, as it takes longer to process larger batches
of medical data. Moreover, if SA or CER is required the throughput will be reduced.

When we process the dataset file by file and publish it to Kafka the throughput
is not optimal as seen in the first row in Table 1. On the other hand, if we use
time-based batching the results are better – the second row.

Table 1. Publishing the medical records to Kafka stream measurements

Publish batching Publish per second Publish mean time (in ms)
Per XML file 4136 0.24
Time-based batching (75 ms) 13 872 0.072

Based on our results we present the following recommendations:

• When working with small to medium datasets without streaming medical
data – Kafka or Spark are not needed as they could lead to more downsides
than benefits.

• When working with small to medium datasets with streaming of medical
data – Kafka can be used as an extension or relational database management
system such as PostgreSQL.

• When working with large datasets – a system like Spark is required as it has
the capabilities to process large datasets. Since Kafka does not provide data
integrity reliable storage is still required.

In Table 2 we have summarized some of the main advantages and disadvantages
of the different platforms we tested.

Healthcare organizations should carefully consider their specific needs and re-
quirements when choosing a stream processing platform and evaluate the perfor-
mance of different platforms using their medical data and specific use cases.



108 M. Kostov & K. Kaloyanova / Real-time data integration in information systems . . .

Table 2. Aggregation source advantages and disadvantages

Spark C# with
Postgres source

Spark C# with
Kafka source

Processing time for aggregation Faster Slower due to
additional I/O

Scalability Limited by PostgreSQL
capabilities

Easy to add
more instances

Data integrity Guaranteed with Postgres Potential for data loss

Use case data size Low to medium
data volumes

High data volumes
with scalability

6. Conclusions

In this study, we discuss the importance of choosing the right stream processing
tools for specific cases of data usage, as well as the need for continued development
and improvement in real-time data integration for medical information systems. We
tested different options for fast processing medical data. We compared two different
data sources – Kafka and PostgreSQL. Overall, stream processing tools such as
Kafka and Spark are important for handling large amounts of data or when real-
time processing with low latency is important. When real-time processing is not
needed or the dataset is not very big, then those tools may not be needed, and the
traditional approach is a good decision.

Future research in this area could focus on the development of new stream
processing tools that are specifically designed for handling medical data in real time,
as well as the integration of machine learning and artificial intelligence techniques
for real-time data analysis and decision-making. Additionally, further testing and
evaluation of existing stream processing tools for medical data could provide valuable
insights into their performance and limitations.

Acknowledgements

This work is supported by the Fund for Scientific Research at Sofia University
“St. Kliment Ohridski” under Grant 80-10-8/11.04.2023 and the project BG05M2OP
001-1.001-0004 (UNITe) funded by Operational Program Science and Education for
Smart Growth co-funded by European Regional Development Fund.

References

[1] A. Akanbi and M. Masinde, A distributed stream processing middleware framework for
real-time analysis of heterogeneous data on big data platform: Case of environmental
monitoring, Sensors 20(11) (2020) 3166, https://doi.org/10.3390/s20113166.

[2] M. Armbrust, R. S. Xin, C. Lian et al., Spark SQL: Relational data processing in
Spark, in: SIGMOD’15: Proc. 2015 ACM SIGMOD Int. Conf. on Management of
Data (2015) 1383–1394, https://doi.org/10.1145/2723372.2742797.

https://doi.org/10.3390/s20113166
https://doi.org/10.1145/2723372.2742797


Ann. Sofia Univ., Fac. Math. and Inf., 110, 2023, 101–110 109

[3] A. Bocevska, S. Savoska, I. Jolevski, N. Blazheska-Tabakovska and B. Ristevski, Imple-
mentation of innovative e-Health services and digital healthcare ecosystem – Cross4all
Project summary, in: Proc. Information Systems & Grid Technologies (ISGT2022),
CEUR Workshop Proceedings, 285–301, http://ceur-ws.org/Vol-3191/paper26.
pdf.

[4] F. Hassan, M.E. Shaheen and R. Sahal, Real-time healthcare monitoring system using
online machine learning and Spark streaming, Int. J. Adv. Comput. Sci. Appl. 11(9)
(2020) 650–658, https://doi.org/10.14569/IJACSA.2020.0110977.

[5] S. Langhi, R. Tommasini and E.D. Valle, Extending Kafka streams for com-
plex event recognition, in: 2020 IEEE Int. Conf. on Big Data (2020) 2190–2197,
https://doi.org/10.1109/BigData50022.2020.9378217.

[6] K. Kaloyanova, I. Naydenova and Z. Kovacheva, Addressing data quality in healthcare,
in: Proc. Information Systems and Grid Technologies (ISGT2021), CEUR Workshop
Proceedings, 155–164, http://ceur-ws.org/Vol-2933/paper16.pdf.

[7] M. Kostov, StreamingMedicalData (2023) https://github.com/KostovMartin/
StreamingMedicalData.

[8] P. Kovachev, E. Krastev, D. Tcharaktchiev, E. Markov and I. Evg. Ivanov, Conver-
sion of Bulgarian observational data to OMOP common data model: Initial results,
in: Proc. Information Systems & Grid Technologies (ISGT’2022), CEUR Workshop
Proceedings, 113–125, http://ceur-ws.org/Vol-3191/paper10.pdf.

[9] E. Krastev, S. Abanos and D. Tcharaktchiev, Health data exchange based on
archetypes of clinical concepts, in: Proc. Information Systems & Grid Technologies
(ISGT2022), CEUR Workshop Proceedings, 98–112, http://ceur-ws.org/Vol-3191/
paper09.pdf.

[10] M. Nisheva, H. Georgiev and P. Pavlov, Building a semantic repository for outpatient
sheets, in: Proc. Information Systems and Grid Technologies (ISGT 2020), CEUR
Workshop Proceedings, 14–29, http://ceur-ws.org//Vol-2656/paper3.pdf.

[11] I. Patias and V. Georgiev, The use of big data in medicine and public health policy-
making: Opportunities and challenges, in: Proc. Information Systems & Grid Tech-
nologies (ISGT2020), CEUR Workshop Proceedings, 7–13, https://ceur-ws.org/
Vol-2656/paper1.pdf.

[12] S. Savoska, A. Bocevska and H. Simonoski, Visualization of sensors’ data in time
series databases for health purposes, in: Proc. Information Systems & Grid Tech-
nologies (ISGT’2022), CEUR Workshop Proceedings, 317–334, http://ceur-ws.org/
Vol-3191/paper28.pdf.

[13] M. J. Sax, G. Wang, M. Weidlich and J.-C. Freytag, Streams and tables: Two sides of
the same coin, in: BIRTE’18: Proc. Int. Workshop on Real-Time Business Intelligence
and Analytics (2018) 1–10, https://doi.org/10.1145/3242153.3242155.

[14] S. Velikov, K. Merdzhanov, N. Leventi and T. Kundurdzhiev, Application of openEHR
platform for data exchange in ophthalmology, in: Proc. Information Systems & Grid
Technologies (ISGT’2022), CEUR Workshop Proceedings, 126–134, http://ceur-ws.
org/Vol-3191/paper11.pdf.

Received on March 31, 2023
Accepted on May 7, 2023

http://ceur-ws.org/Vol-3191/paper26.pdf
http://ceur-ws.org/Vol-3191/paper26.pdf
https://doi.org/10.14569/IJACSA.2020.0110977
https://doi.org/10.1109/BigData50022.2020.9378217
http://ceur-ws.org/Vol-2933/paper16.pdf
https://github.com/KostovMartin/StreamingMedicalData
https://github.com/KostovMartin/StreamingMedicalData
http://ceur-ws.org/Vol-3191/paper10.pdf
http://ceur-ws.org/Vol-3191/paper09.pdf
http://ceur-ws.org/Vol-3191/paper09.pdf
http://ceur-ws.org//Vol-2656/paper3.pdf
https://ceur-ws.org/Vol-2656/paper1.pdf
https://ceur-ws.org/Vol-2656/paper1.pdf
http://ceur-ws.org/Vol-3191/paper28.pdf
http://ceur-ws.org/Vol-3191/paper28.pdf
https://doi.org/10.1145/3242153.3242155
http://ceur-ws.org/Vol-3191/paper11.pdf
http://ceur-ws.org/Vol-3191/paper11.pdf


110 M. Kostov & K. Kaloyanova / Real-time data integration in information systems . . .

Martin Kostov

Faculty of Mathematics and Informatics
Sofia University “St. Kliment Ohridski”
5 James Bourchier Blvd.
1164 Sofia
BULGARIA
E-mail: martinkk@fmi.uni-sofia.bg

Kalinka Kaloyanova

Faculty of Mathematics and Informatics
Sofia University “St. Kliment Ohridski”
5 James Bourchier Blvd.
1164 Sofia
BULGARIA

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8
1113 Sofia
BULGARIA

E-mail: kkaloyanova@fmi.uni-sofia.bg


	Introduction
	Real-time data integration in medical information systems
	Overview of streaming solutions
	Stream processing for medical data
	Medical data distinction
	Challenges of processing medical data in real-time

	Problem definition
	Use case dataset for the experiment
	Overview of the experiment environment
	Experiment results and discussion

	Conclusions

