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In this study, we aim to investigate the use of preprocessing techniques on brain mag-
netic resonance imaging (MRI) scans for the prediction of Methylguanine-DNA methyl-
transferase methylation (MGMT) status in glioma patients. MGMT methylation is a
biomarker that has been linked to treatment response and prognosis in glioma. We
review several studies that have applied preprocessing techniques to brain MRI scans,
along with molecular genetic information, for this purpose. The preprocessing techniques
include but are not limited to image registration, normalization, brain extraction, and
tumor segmentation. We compare the effectiveness of the techniques used in these stud-
ies and evaluate the performance of each technique in terms of accuracy, computational
efficiency and other parameters. Our goal is to identify the most effective preprocess-
ing techniques for radiogenomics applications and to determine the potential of these
techniques for improving the accuracy of predictions in brain MRI scans by combining
different types of data. The results of this study have the potential to serve as a basis
for the development of more accurate and efficient imaging-based diagnostic tools for
glioma patients, and to improve the understanding of the relationship between imaging
and genomics in glioma.
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1. Introduction

Magnetic resonance imaging (MRI) is a widely used modality for non-invasive
imaging of the brain and other organs. It provides high-resolution, multi-dimensional
images of the tissue anatomy and function, which can be used for various clinical and
research purposes. One of the emerging areas of research is radiogenomics, which
aims to integrate imaging data with other types of genomic and clinical data to
improve the diagnosis, prognosis, and treatment of diseases [18]. For example, the
prediction of Methylguanine-DNA methyltransferase methylation (MGMT) status
in glioblastoma, a type of brain cancer, has been shown to be a promising marker
for personalized medicine and targeted therapy [20].

MGMT is a Deoxyribonucleic acid (DNA) repair enzyme that removes alkyl
groups from DNA, and it has been shown to be involved in the resistance of cancer
cells to chemotherapy [11]. MGMT methylation status has been shown to be associ-
ated with the response to chemotherapy and the prognosis of several types of cancer,
including glioblastoma, the most common and aggressive primary brain cancer [11].
There are several methods available to evaluate MGMT promoter methylation, in-
cluding methylation-specific polymerase chain reaction (MSP), multiplex ligation-
dependent probe amplification (MLPA), pyrosequencing (PSQ), quantitative Real-
Time PCR, and immunohistochemistry (IHC) to assess protein expression [19].

Medical imaging, such as brain MRI, can provide valuable information about
the brain tissue and its structural and functional characteristics, which can be use-
ful for predicting MGMT methylation status and other genomic and clinical phe-
notypes [16]. However, medical images are often affected by noise, artifact, and
intensity variations, which can degrade the quality and accuracy of the images, and
hinder the performance of the predictive models [15]. Preprocessing techniques aim
to improve the quality and accuracy of the medical images, by removing the noise,
artifact, and intensity variations, and by enhancing the tissue characteristics [17].

In addition to improving the quality and accuracy of images, preprocessing
techniques also play an important role in the success of Computer-aided detection
and diagnosis (CAD) schemes. CAD schemes have become an increasingly impor-
tant tool in medical imaging to help clinicians read images more efficiently and
make diagnoses more accurately and objectively. The use of CAD schemes in med-
ical imaging is not a new concept, with early CAD schemes being developed in the
1970s. However, the development of CAD schemes has accelerated in recent years,
particularly since the 1990s [8], due to the integration of more advanced machine
learning methods. Conventional CAD schemes typically involve three steps: target
segmentation, feature computation, and disease classification. Target segmentation
is the process of identifying and isolating the region of interest (ROI) in the image,
such as a tumor or lesion. Feature computation involves quantifying the character-
istics of the ROI in terms of size, morphology, margin geometry, texture, and so
on. Finally, disease classification involves using a classification model, such as linear
discrimination analysis (LDA), to identify the malignancy of the ROI.
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Deep learning-based models have become increasingly popular in recent years
and have shown promising results in CAD schemes. These models involve a hier-
archical architecture that can learn important features hidden in the raw image in
a self-taught manner, eliminating the need for manual feature development [14]. In
deep learning-based models, a neural network is trained to identify and amplify im-
portant features related to the specific task, while filtering out irrelevant features.
This process is done in a progressive manner, with the neural network gradually rec-
ognizing and learning more complex features as the number of layers increases [4].

A number of studies have compared the performance of different preprocessing
techniques for medical images, but most of them have focused on specific types of
images and applications, such as CT, PET, or ultrasound [4,9]. It can be concluded
that there is a lack of comprehensive and comparative studies on the performance of
preprocessing techniques for brain MRI scans in the context of radiogenomics appli-
cations, such as predicting MGMT methylation status [1,5,6,12]. This paper aims to
fill this gap by providing a comparative analysis of various preprocessing techniques
for brain MRI scans, using a radiogenomics dataset and assesses the impact of the
preprocessing techniques on the results obtained from deep and machine learning
algorithms.

2. Contemporary research methodologies in predicting MGMT
methylation status

2.1. Findings and study

Several studies have employed various preprocessing techniques on brain mag-
netic resonance imaging (MRI) scans to enhance the predictive capabilities of deter-
mining methylation status of the O6-methylguanine-DNA methyltransferase gene in
brain tumors. The selection of the six studies involved in the comparative analysis
of contemporary research methodologies in predicting MGMT methylation status is
based on several criteria related to their relevance, scientific rigor, and diversity of
methodologies employed. One key criterion for inclusion is the scientific quality and
significance of the studies. The selected studies are likely to have undergone rigorous
peer-review processes and have been published in high-impact journals, ensuring the
reliability and validity of their findings. Another important criterion is the diversity
of methodologies employed in the studies. The selected studies are likely to have
employed a range of different imaging techniques and data preprocessing methods to
enhance the predictive capabilities of determining MGMT methylation status. By
including studies with different methodologies, the comparative analysis can provide
a more comprehensive overview of the current state of research in the field, identify
the strengths and limitations of different approaches, and highlight potential areas
for further improvement. The techniques discussed aim to improve the quality and
information content of the imaging data for more accurate and efficient assessment
of MGMT methylation status. For example, the authors in [2] employed a series of
image preprocessing steps to prepare the imaging data for analysis. The primary
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goal of the preprocessing was to align and standardize the imaging data across dif-
ferent modalities for each patient. First, the authors used the FMRIB Linear Image
Registration Tool (FLIRT) for coregistration of the imaging data across different
modalities. The FLIRT algorithm is based on linear affine transformation and uses
a mutual-information cost function. The reference volume for coregistration was the
highest resolution sequence, most commonly the postcontrast T1-weighted acquisi-
tion. On average, coregistration of a single volume took approximately 1 minute.

In this study, MR imaging data and corresponding molecular genetic informa-
tion were retrospectively obtained from the Cancer Imaging Archives and the Cancer
Genome Atlas for patients with low- or high-grade gliomas. Only patients with full
preoperative MR imaging, including T2, FLAIR, and T1-weighted pre- and post-
contrast acquisitions, were included in the analysis. The molecular information for
each patient was obtained, including IDH1 status, 1p/19q codeletion, and MGMT
promoter methylation.

Subsequently, each input image was independently normalized using z-score
normalization. This step is commonly used to standardize the data, and to ensure
that the mean of the data is zero and the standard deviation is one. The authors
then employed a custom in-house fully automated whole-brain extraction tool, based
on 3D convolutional neural network, to remove extracranial structures. This step
aimed to improve computational efficiency and focus the analysis on relevant regions.

Finally, the authors used a fully automated brain tumor segmentation tool to
identify lesion margins. The algorithm used in this step was the top-performing
tool as evaluated in the international 2016 Multimodal Brain Tumor Segmentation
Challenge. It is based on a serial fully convolutional neural network architecture with
residual connections, and it performs whole-tumor segmentation in approximately 1
second. These segmentations were used to generate cropped slice-by-slice images of
the tumor on all modalities, which were subsequently resized to a 32× 32× 4 input.

It is worth noting that the use of convolutional neural network (CNN) based
algorithm was developed and tested for the purpose of predicting genetic mutations
and methylation status in glioma patients. The algorithm was found to have high
accuracy in predicting IDH1 mutation (mean 94%), 1p/19q codeletion (mean 92%),
and MGMT promoter methylation (mean 83%), as well as good performance in terms
of the area under the curve for these predictions. The CNN was trained for 25,000
iterations before convergence, and the entire imaging workflow takes approximately
5.12 s per patient, which includes time for detection, preprocessing, and classifica-
tion. This approach demonstrated promising results and may have potential clinical
applications.

In a subsequent experiment, discussed in [3], S. Chen et al. obtained approval
from the local Institutional Review Board and recruited 111 patients diagnosed with
WHO grade 2-4 glioma who had undergone surgical resection and received plain
and enhanced scans from the Affiliated Drum Tower Hospital of Nanjing University
Medical School between 2018 and 2020. The patients had not received any prior
treatment such as radiotherapy, chemotherapy or antitumor drugs before surgery
and those with incomplete or poor-quality images were excluded. The data were
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divided into a training group and a validation group with a ratio of 8:2, and MRI
images acquired using 3.0 T MRI scanners and different protocols were used in the
analysis. The image brightness variations due to scanning process were eliminated
and deviation field correction was performed on all images before the analysis.

In addition to the previously described methodology, the authors also employed
a method for extracting radiomics features from the tumor edema and tumor core
area of four sequences, including T1WI, T2WI, T1CE, and ADC. They used a com-
bination of manual segmentation by two radiologists, and an open-source platform
called PyRadiomics to extract a total of 688 features from each patient. These fea-
tures were then normalized by the Z-score and used as input in the deep learning
model. The image sequences were registered to the same physical space in order to
match the same patient ROIs across each sequence. After completing the prepro-
cessing steps, the study subjects were randomly assigned to either the training or
testing group in an 80:20 ratio.

In this study, a ResNet deep learning model based on radiomics features was
used to predict the MGMT promoter methylation status of gliomas. The study
found that among single MRI modalities, the T1CE model based on the Region of
Interest (ROI) of the tumor core achieved the highest AUC value of 0.84. When
multiple MRI modalities were combined, the T1CE model combined with the ADC
model based on the ROI of the tumor core achieved the highest AUC value of 0.90.
The final model, which was a combination of T1CE and ADC modalities, based on
the ROI of the tumor core, showed the best performance among all the models, with
the highest accuracy of 0.91 and AUC of 0.90. Ten features were found to be the
most important radiomics features for the prediction. The study suggests that the
combination of T1CE and ADC MRI modalities could be superior to other single or
multiple MRI sequences in the prediction of MGMT promoter methylation and that
a deep learning model based on radiomics features could help in identifying molecular
biomarkers from routine medical images, and therefore facilitate treatment planning.

In another work [10], the authors used brain MRI scans from patients diagnosed
with glioblastoma multiforme (GBM) in order to analyze the relationship between
methylation status and imaging characteristics. GBM is a highly malignant brain
tumor with a poor prognosis, and identifying biomarkers that can inform diagnosis
and treatment strategies is a crucial area of research.

The MRI scans used in the study were obtained from the Cancer Imaging
Archive (TCIA) and consisted of 5,235 scans from 262 patients. Each scan was a
3-dimensional reconstruction of the brain and were provided in a DICOM format,
which is a non-proprietary data interchange protocol, digital image format, and file
structure for biomedical images and related information. These scans were prepro-
cessed to remove noise by looking at the distribution of Hounsfield Units in the
pixels and only retain the slices that contain the tumor. Additionally, all images
were resized to 128x128 dimensions for consistency.

The study also utilized methylation data from the Cancer Genome Atlas (TCGA)
for 423 unique patients, which were preprocessed to extract methylation sites that
are located in minimal promoter and enhancer regions. These regions are known
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to have a high level of methylation activity and affect MGMT expression, a DNA
repair protein that is commonly inactivated in GBM. Specifically, the study focused
on three methylation sites cg02941816, cg12434587, and cg12981137 which had been
used in previous studies on MGMT methylation and GBM. A patient was considered
to have positive methylation status if any of the three sites had a methylation beta
value of at least 0.2.

The study also employed data augmentation techniques to increase the size of
the dataset and prevent overfitting in the convolutional recurrent neural network
(CRNN) used in the analysis. The data augmentation involved applying image
rotation and reversing the MRI scans, so that the methylation status and location
of the tumor was preserved. The images were rotated every 4∘ from −90∘ to +90∘,
and were flipped so that the MRI scans were represented from superior to inferior
and vice versa. This resulted in a 90-fold increase in the number of MRI scans
available for training the CRNN, which is expected to boost the performance and
robustness of the network.

The study found that the CRNN obtained modest patient-level accuracy of 0.67
on the validation set and 0.62 on the test set. It was also better in performance when
compared to the random forest model. The CRNN also provided a generalizable
platform for visualizing the different filters and layers of deep learning architectures
for brain MRI scans.

In a subsequent research, P. Korfiatis et al. [13] emphasize the importance of
reducing manual steps required by computer-aided diagnosis systems in order to
facilitate the translation of such systems into clinical practice. The proposed system
uses image normalization and bias corrections as the only preprocessing steps, which
are fully automated and computationally efficient, taking less than 2 minutes on a
typical desktop computer. The system also focuses on a three-class problem rather
than a binary approach, enabling the algorithm to operate without the need for
tumor segmentation step, thus reducing the complexity of the process.

This study aims to investigate the relationship between methylation status and
imaging characteristics in patients with newly diagnosed GBM using MRI scans.
The study was approved as minimal risk by the institution’s Internal Review Board
and included 155 presurgery MRI examinations from patients treated at Mayo Clinic
between 2007 and 2015. The inclusion criteria were age ≥ 18 years and preoperative
MR scans with T2 and T1 weighted post-contrast images performed at Mayo Clinic
with known MGMT methylation status. The images were anonymized and the image
processing pipelines were managed with MIRMAID. The study found 66 patients had
methylated and 89 patients had unmethylated tumors. For the methylated group,
53 scans were performed on a 1.5T scanner and 13 were performed on a 3T scanner,
while for the unmethylated group, 76 scans were performed on a 1.5T scanner and
13 were performed on a 3T scanner. For the purpose of this study, only T2 images
were used and N4 was used for bias field correction to eliminate the low-frequency
and smooth signal that corrupts MRI images and potentially affect image analysis
steps.

The authors evaluated the ability of three different residual deep neural net-
work (ResNet) architectures to predict methylation status of the O6-methylguanine
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methyltransferase gene using magnetic resonance imaging without the need for a
distinct tumor segmentation step. The study found that the ResNet50 architec-
ture (50 layers) was the best performing model, achieving an accuracy of 94.90%
for the test set. This performance was statistically significantly better than both
ResNet18 (18 layers) and ResNet34 (34 layers) architectures. This study proposes a
method that eliminates the need for extensive preprocessing and demonstrates that
deep neural architectures can be used to predict molecular biomarkers from routine
medical images.

The authors of [21] use multiparametric MRI images of brain gliomas from
the TCIA and genomic information from the TCGA and TCIA. The final dataset
of 247 subjects included 163 methylated cases and 84 unmethylated cases. Tumor
masks for 179 subjects were obtained through previous expert segmentation and
for the remaining 68 subjects, they were generated by trained 3D-IDH network
and reviewed by two neuroradiologists. The preprocessing steps included: 1) Affine
coregistration using Advanced Normalization Tools, 2) skull stripping using Brain
Extraction Tool (BET), 3) removal of radiofrequency inhomogeneity using N4 Bias
Field Correction, and 4) normalization of intensity to zero-mean and unit variance.
The entire preprocessing took about 5 min per dataset.

In this study, transfer learning was applied to predict the MGMT promoter sta-
tus utilizing a previously trained 3D-IDH network. The decoder part of the network
was fine-tuned for voxel-wise dual-class segmentation of the whole tumor, where
one represents methylated and two represent unmethylated MGMT promoter types.
The authors used a dataset of multiparametric MR images of patients with brain
gliomas obtained from the TCIA database, in combination with genomic information
obtained from both the TCGA and TCIA databases. The data preprocessing steps
applied to the images included: 1) affine coregistration to the SRI24 T2 template
using the Advanced Normalization Tools software package, 2) skull stripping using
the BET from the Oxford Centre for Functional MRI of the Brain Software Library
(FSL), 3) removing radiofrequency inhomogeneity using N4 Bias Field Correction,
and 4) normalizing intensity to zero-mean and unit variance. In order to assess
the network’s performance, the authors implemented a 3-fold cross-validation strat-
egy. The dataset of 247 subjects was randomly shuffled and distributed into three
groups, and then the three groups alternated among training, in-training validation,
and held-out testing groups. The network’s performance was reported only on the
hold-out testing group for each fold because it is never seen by the network during
the training.

Finally, a 3D-IDH network was trained and fine-tuned for determination of
MGMT promoter status using transfer learning method. A three-fold cross-validation
approach was implemented on a dataset of 247 subjects with MRI images and known
MGMT promoter status. The network achieved a mean testing accuracy of 94.73%
across the three folds with a range of 93.98–95.12% (SD 0.66%). Additional evalu-
ation metrics such as sensitivity, specificity, positive predictive value, negative pre-
dictive value and AUC were also computed with high performance, ranging from
91.66% to 96.31% (SD 2.06%). The network showed an average Dice score of 0.82
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(SD 0.008) for tumor segmentation. The network misclassified 13 cases among the
total of 247 subjects.

The authors in [7] aim to build a model for predicting the methylation status
of the O6-Methylguanine-DNA-methyltransferase promoter in glioblastoma multi-
form patients, using a novel radiomics-based machine learning (ML) approach. The
following steps were used to build the model:

1. Data source and collection: The pre-processed and segmented multimodal
magnetic resonance imaging features from the Cancer Genome Atlas – GBM24
collections were downloaded from the Cancer Imaging Archive public database.
Only data entries with MRI modalities such as T1-weighted pre-contrast (T1),
T1-weighted post-contrast (T1-Gd), T2, and T2-FLAIR (fluid-attenuated in-
version recovery) were selected, resulting in 53 GBM patients included in the
study. The 704 radiomics features obtained were classified into seven cate-
gories: first-order statistical features, volumetric features, textural features,
histogram-based features, morphological features, spatial features, and glioma
diffusion properties.

2. A two-stage radiomics feature selection and machine learning classification
approach was used to predict the MGMT methylation status in glioblastoma
and low-grade glioma (LGG) patients using medical imaging data. Three
machine learning models (Random Forest (RF), XGBoost, and Support Vector
Machine (SVM)) were incorporated into a genetic algorithm (GA) algorithm
for feature selection.

The GA-RF model was found to have the best performance with a sensitivity of
0.894, specificity of 0.966, and accuracy of 0.925 in the GBM dataset. The GA-RF
feature set outperformed other feature selection methods with an AUC of 0.93 in
identifying MGMT methylation status from radiomics features. In the LGG dataset,
the GA-RF model outperformed other models with an accuracy of 0.750, sensitivity
of 0.78, and specificity of 0.62. The results indicate the potential of applying the
extracted radiomics features for the prediction of MGMT methylation status in both
high- and low-grade gliomas.

2.2. Conclusions

In these studies, various preprocessing techniques are used to enhance the pre-
dictive capabilities of determining methylation status of the MGMT gene in brain
tumors. The preprocessing of magnetic resonance imaging scans is a crucial step in
improving the quality and increasing the information content of the imaging data.
This is done to obtain a more precise assessment of brain tumors. The commonly
employed preprocessing techniques include image registration, normalization, ex-
traction of the entire brain, and segmentation of the tumors. These techniques are
executed using software tools such as the FMRIB Linear Image Registration Tool
and custom algorithms that utilize convolutional neural networks. Another method
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for preprocessing involves the extraction of radiomics features from various MRI se-
quences, which can be performed using either manual segmentation or open-source
platforms like PyRadiomics. These features are then used as inputs for deep and
machine learning models, such as ResNet, to predict the methylation status of the
O6-methylguanine-DNA methyltransferase gene in brain tumors. The results from
these studies indicate a promising level of performance and have potential applica-
tions in the clinical setting.

3. Discussion

3.1. Discoveries and analysis

In this section we present a comparison, which summarizes the key characteris-
tics of studies investigating the prediction of MGMT methylation status from brain
MRI scans.

The studies mentioned above have used deep or machine learning models to pre-
dict various glioma subtypes based on medical imaging data and genetic information.
The research in Table 1 provides information about the dataset, preprocessing tech-
niques, model architecture, and evaluation metrics used in the studies, arranged in
a clear and organized manner. The studies vary in their specific focus, but all aim
to use machine learning and in particular deep learning models to predict different
glioma subtypes with high accuracy.

Based on the comparison provided in the table, the authors in [13] reported
an accuracy of 94.90% which is the highest among the other studies in the table.
Furthermore, they used a dataset of 155 pre-surgery MRI examinations from patients
treated at Mayo Clinic between 2007 and 2015, which is a relatively small dataset
compared to other studies such as [2] and [10] that used datasets from the Cancer
Imaging Archive. The study used only T2 images from the MRI exams, and applied
normalization and bias correction as the only preprocessing steps, which were fully
automated and computationally efficient. Additionally, the study used ResNet50
architecture, which is a 50-layer deep convolutional neural network, and trained it
to classify the images as either methylated or unmethylated tumors. The study
found that the ResNet50 architecture performed the best out of all the ResNet
architectures tested, achieving an accuracy of 94.90% on the test set. One possible
reason for the high performance of the ResNet50 architecture in this study is the
small size of the dataset used. With a small dataset, it is possible that the model
is able to achieve high performance by overfitting to the training data. Moreover,
the study not used any additional data except MRI images, that makes the results
only based on the ability of the model to extract the relevant information from the
images.

The work of the researchers in [7] is noteworthy for its use of a unique combina-
tion of imaging and genomic data which allows for a more comprehensive analysis and
prediction of MGMT methylation status. They used a combination of multimodal
MRI scans (T1, T1-Gd, T2, and T2-FLAIR) and radiomics features (extracted from
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Table 1

Comparative analysis of MRI preprocessing and modeling techniques in radiogenomics

Authors. Chang et al. [2]
Year. 2018
Dataset. MR imaging data and corresponding molecular genetic information retrospectively ob-
tained from the Cancer Imaging Archives and the Cancer Genome Atlas for patients with low- or
high-grade gliomas.
Preprocessing. FLIRT for coregistration of the imaging data across different modalities. The
FLIRT algorithm is based on linear affine transformation and uses a mutual-information cost func-
tion.
Model. 3D Convolutional Neural Network (CNN)
Accuracy. High accuracy in predicting IDH1 mutation (mean 94%), 1p/19q codeletion (mean
92%), and MGMT promoter methylation (mean 83%)
Validation. IDH1 mutation (mean, 94%; range between cross validations, 90– 96%), 1p/19q
codeletion (mean, 92%; range, 88–95%), and MGMT promoter methylation (mean, 83%; range,
76– 88%) on 5-fold cross-validation
Authors. Han & Kamdar [10]
Year. 2018
Dataset. MRI scans were obtained from the TCIA and consisted of 5,235 scans from 262 patients;
also methylation data from the TCGA for 423 unique patients are used, which were preprocessed
to extract methylation sites.
Preprocessing. Scans were preprocessed to remove noise by looking at the distribution of
Hounsfield Units in the pixels and only retain the slices that contain the tumor; all images were
resized to 128× 128 dimensions for consistency.
Model. Convolutional Recurrent Neural Network (CRNN)
Accuracy. Patient-level accuracy of 0.67 on the validation set and 0.62 on the test set
Validation. Examined predictions on the test set
Authors. Korfiatis et al. [13]
Year. 2017
Dataset. 155 presurgery MRI examinations from patients treated at Mayo Clinic between 2007
and 2015; 66 patients had methylated and 89 patients had unmethylated tumors.
Preprocessing. Normalization and bias corrections as the only preprocessing steps, which are
fully automated and computationally efficient.
Model. ResNet50 architecture (50 layers) is the best performing model
Accuracy. 94.90% accuracy on the test set
Validation. k-fold cross validation
Authors. Yogananda et al. [21]
Year. 2021
Dataset. MRI images of brain gliomas from the TCIA and genomic information from the TCGA
and TCIA
Preprocessing. 1)Affine coregistration using Advanced Normalization Tools, 2) Skull stripping
using Brain Extraction Tool, 3) Removal of radiofrequency inhomogeneity using N4 Bias Field
Correction, 4) normalizing intensity to zero-mean and unit variance
Model. 3D-IDH network
Accuracy. Mean testing accuracy of 94.73% across the 3 folds with a range of 93.98–95.12% (SD
0.66%), AUC ranging from 91.66% to 96.31% (SD 2.06%)
Validation. 3-fold cross validation
Authors. Chen et al. [4]
Year. 2022
Dataset. 111 patients diagnosed with WHO grade 2–4 glioma who had undergone surgical resec-
tion and received plain and enhanced scans from the Affiliated Drum Tower Hospital of Nanjing
University Medical School between 2018 and 2020.
Preprocessing. A combination of manual segmentation, and an open-source platform called
PyRadiomics to extract features from each patient; then Z-score normalization is applied. The
image sequences were registered to the same physical space in order to match the same patient
ROIs across each sequence.
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Model. ResNet
Accuracy. The final model, which was a combination of T1CE and ADC modalities, with the
highest accuracy of 0.91 and AUC of 0.90
Validation. 5-fold cross validation
Authors. Do et al. [7]
Year. 2022
Dataset. Text53 GBM patient data from the Cancer Imaging Archive database with MRI modal-
ities such as T1, T1-Gd, T2, and T2-FLAIR. 704 radiomics features were extracted and classified
into 7 categories: statistical, volumetric, textural, histogram-based, morphological, spatial, and
diffusion properties.
Preprocessing. Already pre-processed and segmented multimodal magnetic resonance imaging
(MRI)
Model. 3 ML models (Random Forest (RF), XGBoost, and Support Vector Machine (SVM)) were
incorporated into a GA algorithm for feature selection.
Accuracy. The GA-RF model was found to have the best performance with a sensitivity of 0.894,
specificity of 0.966, and accuracy of 0.925 in the GBM.
Validation. 5-fold cross validation

the scans and classified into seven categories). The authors utilized three machine
learning models (Random Forest, XGBoost, and Support Vector Machine) and in-
corporated them into a genetic algorithm for feature selection. The results showed
that the GA-RF model had the best performance with a sensitivity of 0.894, speci-
ficity of 0.966, and accuracy of 0.925 on the GBM dataset, based on 5-fold cross
validation.

The results of this study demonstrate the potential for using machine learning
techniques in the analysis of brain MRI scans and radiogenomic data. The combina-
tion of imaging and genomic information has the potential to improve the accuracy
of patient outcomes prediction, which can inform treatment decisions and improve
patient outcomes. Future studies in this direction can focus on further refining the
genetic algorithm for feature selection and incorporating additional machine learning
models. Additionally, larger datasets can be used to validate the results and explore
the potential for using these techniques in a clinical setting. The study provides a
significant contribution to the field of radiogenomics and highlights the importance
of combining imaging and genomic data to improve patient outcomes.

3.2. Conclusions

The main findings from the comparison tables are closely related to the topic of
this paper, which is preprocessing brain MRI scans for predicting MGMT methyla-
tion status. The findings suggest that deep and machine learning-based techniques
and multi-modal approaches may be more effective for this task, and that larger and
more diverse datasets may be more useful for training and evaluating such models.
By considering these findings, researchers can make more informed decisions about
the most appropriate preprocessing techniques and datasets to use for their specific
research questions and goals. Additionally, these findings may also be useful for clin-
icians and healthcare professionals who are interested in using imaging and other
data to predict and manage the treatment of brain tumors in their patients.
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4. Incorporating expert knowledge in medical imaging analysis

Incorporating expert knowledge is a crucial aspect for the development of deep
and machine learning algorithms for radiogenomics applications using brain MRI
scans. The ability to explain and understand the decision-making processes of these
algorithms is essential for their clinical implementation and acceptance. Expert
knowledge, specifically domain knowledge, can aid in the optimization of imaging
data and improve the performance of predictive models.

Embedding expert knowledge into the preprocessing and analysis of brain MRI
scans can address the unique challenges present in medical images, such as high
inter-class similarity and limited labeled data. For example, incorporating anatom-
ical information can improve the registration of multi-modal imaging data, while
incorporating radiomic features can enhance the representativeness of the imaging
data. Additionally, incorporating text reports accompanying images can provide
additional clinical information for the decision-making process [4].

Furthermore, incorporating expert knowledge into the training and validation
process can also improve the interpretability of the models. This can be achieved
through the use of methods such as feature importance analysis and decision tree
visualization. These methods allow for the identification of the most important
features used by the model in its decision-making process and can provide insight into
how the model is using the expert knowledge. This can help researchers and clinicians
understand how the model is making its predictions, which can ultimately lead to
more trust in the model’s predictions. Additionally, the use of expert knowledge
can also lead to the development of more robust models that are able to generalize
better to unseen data.

It is also worth mentioning that expert knowledge does not need to be only
from a radiologist, other experts from different fields such as computer vision, med-
ical physics, or medical informatics can also bring valuable insights to optimize the
algorithms. For example, computer vision experts can help in preprocessing the
images, medical physics experts can help in understanding the underlying physics of
the images and medical informatics experts can help in understanding the clinical
context of the images. Collaboration between different experts can lead to a more
comprehensive approach to radiogenomics.

In conclusion, incorporating expert knowledge in medical imaging analysis is
crucial for the development of deep and machine learning algorithms for radio-
genomics applications using brain MRI scans. Integrating domain expertise into
the preprocessing, analysis, and validation of the data can lead to more accurate
and interpretable models that are better suited for clinical implementation. Collab-
oration between experts from different fields can also bring valuable insights that
can optimize the algorithms further.
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5. Conclusions

In conclusion, the use of preprocessing techniques for brain MRI scans has
been shown to be a useful tool for radiogenomics applications, particularly in the
prediction of MGMT methylation status. A comparative analysis of the studies
listed in the table, such as [2, 3, 7, 10, 13, 21], reveal that each study used different
preprocessing techniques, models and achieved different levels of accuracy. The
results discussed in [7] is particularly noteworthy for its use of a unique combination
of imaging and genomic data, which allows for a more comprehensive analysis and
prediction of MGMT methylation status, and the high accuracy achieved by the
GA-RF model with a sensitivity of 0.894, specificity of 0.966, and accuracy of 0.925
based on 5-fold cross validation of the GBM dataset. This study demonstrates
the potential for combining multiple data sources to improve predictions in medical
imaging.

It has been demonstrated that the integration of various types of data can pro-
vide a more comprehensive understanding of the underlying biology of brain tumors
and potentially enhance the diagnostic and therapeutic decision-making process.
Therefore, it is important for future research to focus on investigating the potential
of incorporating multiple data modalities in radiogenomics applications, in addi-
tion to the development of advanced preprocessing techniques that can optimize the
quality and information content of imaging data for improved prediction accuracy.
Furthermore, with the advancement of deep learning techniques, there is a growing
potential to integrate these models into preprocessing techniques, which can lead
to more accurate and efficient predictions, and also enable to explain the decision-
making process. It is important to consider the use of deep and machine learning
models in future research in order to fully exploit the potential of radiogenomics
applications in the diagnosis and treatment of brain tumors.
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