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In [1] is given the following definition of left, respectively right, slant
couvergernce.

Definition 1. Suppose f,, fs, ... is a sequence each term of which
is a real-valued function on [0, 1] and x is in [0, 1]} The statement that
fl, fo... left slant converges at x means that there is a number

Le SO that if e>0 there exists a number A, 0=A < x, so that if
A<d<x, there is a positive number N such that 1f n is an integer grea-
ter than NV and A ==¢ <d, then | fa(q)—L:| <.

The definition for right slant convergence is entirely analogous.

Definition 2. We say that the operators Lu(f; x) (n=1, 2,. ..)
are operators of Korovkin type if

a) L, Is a linear positive operator,

b) L, (1; x)=140n(x),

Ln (t; x)=x+Ba(x),
Ln (£; X)=x>+1a(x),
where a(x), Ba(x), ya(x) converge uniformly to zero on the finite inter-
val [a, b
We shall now prove
Theorem 1. Let {L.(f; x)};* be a sequence of operators of Korov-

kin type and let the functions

. L, 0=x<z2
* h,=§ ' — = , 0<z<],
©) ‘ 0, z2=x=1 <E<

are contained in the domain of the operators L, (n=1, 2,...). Suppose
f(x) is a bounded real-valued function on [0, 1] and lies in the domain

of the given operators. If f(£—0) exists for some £ ¢ (0, 1), then the se-
quence {La(f; x)}¢ left slant converges at £ to f(¢t—0).

The particular case where L, is the Bernstein polynomial operator is
discussed in {1]

In the proof of Theorem 1. we shall make use of a result of one
of the authors [2] concerning the approximation of a function relative to
the Hausdorff metric. We now recail some definitions. We refer the reader
to [2] and [3] for details and proofs of the matter summarized in this
section,
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Definition 3. Let f(x) be a bounded function defined on an in-
terval [a, b]. By the completed graph f of the function f(x) we
mean the Intersection of all closed and convex (relative to the Y axis)
point sets in the plane which contain the graph of the function f(x). No-
tice that the completed graph of a continuous function coincides with
its graph.

Definition 4. For each pair of bounded functions f(x) and g(x)
we define the Hausdorff distance r(f, g) as

r(f, g)=max {max min! X—Y !, max min; X—Y 1},
Xer Yeg Xeg YeEf
where
X—Y =11 X(x1 1)—Y(Xq, Yg)io=Max[| X, —Xo!, | ¥1—Y5:i]
Definition 5. Denote by p(f; &) the modulus of non-monotonicity
of the function f(x):
p(f; 8)= sup {Sup [f(xo ~f(x) |+ 1 fxg)—F) 1] — flx1)—f(x2): ).

X=X | S8 x=x=x
We say that the function f(x) is locally monotonic if
lim p( f; 8)=0.
=0

Theorem 2. Let L,(f; x) (n=1,2...) be a sequence of operators
of Korovkin type. If the function f(x) defined on the interval [a, 6] is
locally monotonic, continuous at the points a and & and lies in the do-
main of definition of the operators L,(rn=1,2,...), then the sequence
{Lu(f; x)}7 converges relative to the Hausdorff dlstance to the func-
tion f(x).

The proof is given in (2]

We are able now to prove Theorem 1.

Proof.-Let ¢ be an arbitrary -positive number. Denote

M= S}lp ]5f(x), T=f(t—0), e,=¢/4.
x €[0, 1
Since f(t —0) exists there is a number y ¢ (0, £), such that | f(x)—T <,
for y=< v <L
It is seen that the functions

M 0=x<y -M 0=x<y
0i(x)={ T+e, " y=x <t Bi(x)={ T—ey, y=x<I{
M F <x=1 —M t =x=l

are locally monotonic, lie in the domain of definitfon of L, and satisfy
the inequality

0,(x) = f(x) = 04(x) x &0, 1]
It follows from the above inequality and the positivity of L, that
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(1) La(8,; x) = Luf; x) == La(8g; X).

Chose A=y--({—y)4. lLet A<d<t By Theorem 2 there exists a
positive integer N, so that if n > N then

r(La(0:), 8:) <e, (1=1,2),
where e;=min g, ({—d)/4}. Since 6,(x) and 8,(x) are constants on [4, d]
we get
T—ey—e; = La(0y5 ), La(By; X) =T +gy+¢

for x €[A, d). This with (1) gives
Ln(f; X)—*T ; §€0+51 < e X € [A; d])
which is what we wanted to show.
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OB OJHOM CBOWCTBE OJHOI'O KJ/IACCA
JIMHEMHBIX MOJIOXKUTEJIbHBIX OMNEPATOPOB

ba. Cesnpos 8 B. [I. bosuoB
(PE3IOME)

Hccnenosano croiicTBO koco# (slant) cxonumocTH omHoH nocnenona-
TeNbHOCTH (QYHKUMH B LAHHOH TOYke, [JoKadaHa cJaenymolas
Teopema. [lyets { Li(f; x) }° nmocnenoBaTeabHOCTb JIMHEHHBIX MOJO-

KHTeJbHBIX onepaTopos Tuna KoposkuHa M nyctb (ysxuuu (¥) k. (x) npu-
Hagsexxar oOnacth onpenenedus [ oneparopoB L, n=1,2,.... [lyctb
f(x) BemecrtBenHas GyHKIMsA, OnpelesneHHas W orpanuyeHHas Ha (0, 1) u
fix) € D. Ecin f(f—0) cymectByet aas sexkotoporo ¢ ¢ (0, 1), To mocnexo-
BaTeAbHOCTb {Lx(f; X)}° cTpemurcs koco cneBa x f(f—O0) B Touke ¢.



