ON A PROPERTY OF A CLASS OF LINEAR POSITIVE OPERATORS

Blagovest Sendov and Borislav D. Boyanov

In [1] is given the following definition of left, respectively right, slant convergence.

Definition 1. Suppose f_1, f_2, \ldots is a sequence each term of which is a real-valued function on [0, 1] and x is in [0, 1]. The statement that f_1, f_2, \ldots left slant converges at x means that there is a number L_x so that if $\varepsilon > 0$ there exists a number Δ , $0 \le \Delta < x$, so that if $\Delta < d < x$, there is a positive number N such that if n is an integer greater than N and $\Delta \le q \le d$, then $|f_n(q) - L_x| < \varepsilon$.

The definition for right slant convergence is entirely analogous.

Definition 2. We say that the operators $L_n(f; x)$ (n=1, 2, ...) are operators of Korovkin type if

a) L_n is a linear positive operator,

b) L_n (1; x) = 1 + $\alpha_n(x)$, L_n (t; x) = $x + \beta_n(x)$, L_n (t^2 ; x) = $x^2 + \gamma_n(x)$,

where $\alpha_n(x)$, $\beta_n(x)$, $\gamma_n(x)$ converge uniformly to zero on the finite interval [a, b].

We shall now prove

Theorem 1. Let $\{L_n(f;x)\}_{i}^{\infty}$ be a sequence of operators of Korov-kin type and let the functions

(*)
$$h_z = \begin{cases} 1, & 0 \leq x < z \\ 0, & z \leq x \leq 1 \end{cases}, \quad 0 < z < 1,$$

are contained in the domain of the operators L_n (n=1, 2, ...). Suppose f(x) is a bounded real-valued function on [0, 1] and lies in the domain of the given operators. If f(t-0) exists for some $t \in (0, 1)$, then the sequence $\{L_n(f; x)\}_1^{\infty}$ left slant converges at t to f(t-0).

The particular case where L_n is the Bernstein polynomial operator is discussed in [1].

In the proof of Theorem 1. we shall make use of a result of one of the authors [2] concerning the approximation of a function relative to the Hausdorff metric. We now recall some definitions. We refer the reader to [2] and [3] for details and proofs of the matter summarized in this section.

Definition 3. Let f(x) be a bounded function defined on an interval [a, b]. By the completed graph \overline{f} of the function f(x) we mean the intersection of all closed and convex (relative to the Y axis) point sets in the plane which contain the graph of the function f(x). Notice that the completed graph of a continuous function coincides with its graph.

Definition 4. For each pair of bounded functions f(x) and g(x)

we define the Hausdorff distance r(f, g) as

$$r(f, g) = \max \{ \max_{X \in \overline{f}} \min_{Y \in \overline{g}} ||X - Y||_0, \max_{X \in \overline{g}} \min_{Y \in \overline{f}} ||X - Y||_0 \},$$

where

$$X-Y_{10} = ||X(x_1, y_1)-Y(x_2, y_2)||_0 = \max[|x_1-x_2|, |y_1-y_2|].$$

Definition 5. Denote by $\mu(f; \delta)$ the modulus of non-monotonicity of the function f(x):

$$\mu(f; \delta) = \sup_{|x_1 - x_2| \le \delta} \{ \sup_{x_1 \le x \le x_2} [|f(x_1) - f(x)| + |f(x_2) - f(x)|] - |f(x_1) - f(x_2)| \}.$$

We say that the function f(x) is locally monotonic if

$$\lim_{\delta \to 0} \mu(f; \delta) = 0.$$

Theorem 2. Let $L_n(f; x)$ (n=1, 2...) be a sequence of operators of Korovkin type. If the function f(x) defined on the interval [a, b] is locally monotonic, continuous at the points a and b and lies in the domain of definition of the operators $L_n(n=1, 2, ...)$, then the sequence $\{L_n(f; x)\}_{1}^{\infty}$ converges relative to the Hausdorff distance to the function f(x).

The proof is given in [2].

We are able now to prove Theorem 1.

Proof. Let & be an arbitrary positive number. Denote

$$M = \sup_{x \in [0, 1]} f(x)$$
, $T = f(t-0)$, $\varepsilon_0 = \varepsilon/4$.

Since f(t-0) exists there is a number $y \in (0, t)$, such that $|f(x)-T| < \varepsilon_0$ for $y \le x < t$.

It is seen that the functions

$$\theta_{1}(x) = \begin{cases} M & 0 \leq x < y \\ T + \epsilon_{0} & y \leq x < t \\ M & t \leq x \leq 1 \end{cases} \qquad \theta_{2}(x) = \begin{cases} -M & 0 \leq x < y \\ T - \epsilon_{0} & y \leq x < t \\ -M & t \leq x \leq 1 \end{cases}$$

are locally monotonic, lie in the domain of definition of L_n and satisfy the inequality

$$\theta_1(x) \le f(x) \le \theta_2(x)$$
 $x \in (0, 1]$

It follows from the above inequality and the positivity of L_n that

(1)
$$L_n(\theta_1; x) \leq L_n(f; x) \leq L_n(\theta_2; x).$$

Chose $\Delta = y + (t - y)/4$. Let $\Delta < d < t$. By Theorem 2 there exists a positive integer N, so that if n > N then

$$r(L_n(\theta_i), \theta_i) < \varepsilon_1$$
 $(i=1, 2),$

where $\varepsilon_1 = \min [\varepsilon_0, (t-d)/4]$. Since $\theta_1(x)$ and $\theta_2(x)$ are constants on $[\Delta, d]$ we get

$$T-\epsilon_0-\epsilon_1 \leq L_n(\theta_1; x), L_n(\theta_2; x) \leq T+\epsilon_0+\epsilon_1$$

for $x \in [\Delta, d]$. This with (1) gives

$$L_n(f;x)-T \leq \varepsilon_0+\varepsilon_1 < \varepsilon \qquad x \in [\Delta,d],$$

which is what we wanted to show.

REFERENCES

- 1. Johnson, G. G.: A note on Bernstein polynomials. Nieuw Archief voor Wiskunde, (3), XIV (1966), 40—42.
- 2. Сендов., Бл.: Върху сходимостта на редици от линейни положителни огератоји, Год. на Соф. унив., Мат. фак., 60 (1967), 279—296.

 3. Сендов, Бл.: Некоторые вопросы теории приближений функций и множеств в Хаусдорфовой метрике. Успехи мат. наук, т. XXIV, 5 (149) (1969), 141—178.

Постъпила на 10. XI. 1970 г.

ОБ ОДНОМ СВОЙСТВЕ ОДНОГО КЛАССА ЛИНЕЙНЫХ ПОЛОЖИТЕЛЬНЫХ ОПЕРАТОРОВ

Бл. Сендов и Б. Д. Боянов

(РЕЗЮМЕ)

Исследовано свойство косой (slant) сходимости одной последовательности функции в данной точке. Доказана следующая

Теорема. Пусть $\{L_n(f;x)\}_1^\infty$ последовательность линейных положительных операторов типа Коровкина и пусть функции (*) $h_z(x)$ принадлежат области определения D операторов L_n , $n=1,2,\ldots$ Пусть f(x) вещественная функция, определенная и ограниченная на (0, 1) и $f(x) \in D$. Если f(t-0) существует для некоторого $t \in (0, 1)$, то последовательность $\{L_n(f; x)\}_1^\infty$ стремится косо слева к f(t-0) в точке t.