ON TURING COMPUTABLE OPERATORS*

Dimiter Skordev

We shall consider Turing computable operators not only on total func-
tions, but also on partially defined ones.

I. Let N be the set of the natural numbers and P be the set of all
functions the domains and the ranges of which are subsets of N. By F
will be denoted the set of all functions belonging to P the domains of
which are equal to N. We shall always identify the elements of P with
their graphs.

The elements of P the domains of which are finite can be effectively
listed in a sequence

Tov fry fore o
We may, for example, set
fr={<x y> (n+1)x=y+1}
Let m be a positive integer and let R and F be given such that
RCPm, F:R-+P.

The mapping F is called a partial recursive operator if there exists a re-
cursively enumerable subset /7 of N7*2 such that for all ¢,,..., ¢ belong-
ing to P and satisfying the condition

<q)}v'~ 9 ipﬂl:i) GIQ
the following equality holds

F(d. oy Ym)={<x, y> gn...q0n(fuCd; &...
&f,,m(:q)m & < hyyeras Bimy X, ¥ £ H))

If the domain R of F coincides with the whole P~ then F is called
4 recursive operator from P™ into P.

Let ¢,,.., dm, ¢ belong to P. The function ¢ is partial recur-
stve in <{..., dn> if there exists a partial recursive operator £ such
that

<o Pn> € Dom F

_ * This is an extended version of a lecture given by the author on February 15,
1973 at the Stefan Banach International Mathematical Center for Raising Resezrch Qua-
lifications in Warsaw, '
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and
:F;:F(Qt)p-'-, "Li?l);
¢ is strongly partial recursive in <¥y,..., bn> if the same
equation holds for some recursive operator F.
If $4,..., U are elements of F, then by Kleene’s Normal form theorem

(Theorem XIX of |2]) every function ¢ be}onGmg to P and partial recur-
stve in & < dy,..., bn>F has a representation of the form

wWx)=U@y 1,%(e, x, y))

and hence % is sirongly pcirtlal recursive in W. Myhill [4] has, however,
shown that there exist ¢ ¢ P and ¢ ¢ F such that % is partial recursive
n ¢ but ¢ is not strongly partial recursive in ¢

II. T shall give only an intuitive definition of the notion of Turing
computable operator because the notion of Turing machine is well-known
and it is a routine work to formulate the precise formal definition for
Turing computability of operators and to make the proofs agree with it
(Turing computable operators are considered, for example, in [2], § 67, in
the form of uniform computability in some given functions; it is not very
essential that these functions are assumed to be total).

Let F be a mapping of P7 into P. The wmarping F is called a Turing
computable operator from P7into P if there exists a deterministic
procedure for computing F(dy,..., Ym) (x) for any given ..., $m, X and
this procedure is fully algorithmical, except that at some stages of the
computation the value of some ¢, at some point y can be demanded and
the computation cannot go on before this value is given to the compu-
ter (in the cases where some demanded value J;(y) happens to be unde-
fined the value F(dy..., ¥m)(x) must be undefined too). A function ¢
is called Turing computable in some m-tuple of functions <d,,...
bm> if o =F(dy,..., Im) for some Turing computable operator F.

A mapping ~ of P” into P is called precursive if A(dy,..., ,) Is
obtainable from ¢,,..., ", and the initial primitive recursive functions by
means of a fixed succession of substitutions, primitive recursions and
applications of the p-operator.

 Teorem 1. An operator is Turing computable iff it is p-recursive,

The proof is essentially contained in § 68 and §69 of [2].

Theorem 2. Every p-recursive operator is recursive.

This is Theorem XVIII of [2].

[II. By Theorem 1 and Theorem 2, Turing computable operators and
p-recursive operators are the same thing and they all are recursive ope-
rators. It is natural to ask whether all this three classes of operators
coincide.

From Kleene's Normal forin theorem it follows that on functions be-
longing to F every recursive operator coincides with some p-recursive
one. The situation is, however, different in {he case where we consider

#'The definition of relative partial recursiveness given above is equivalent to the
definition given in [2].
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the operdtors also on partially defined functions, This was shown by A, V
wuzeecov and me in 1961% as an answer to a question of V. A. Uspen-
<icii. 1 shall give now some examples.

Example 1. Let F be the mapping of P? into P defined hy the
equation

F(dq, do)=(Dom ¢, J Dom d,) x{0;.

i1 is not difficult to prove that F is a recursive operator but this opera’
tor is not Turing computable (Hint: Suppose that F is Turing compu’
rshle and consider the first demanded value J,(y) in the computation of
/by, b)(0). It is obvious that i and y will not depend from the choice
of b, and b, Making usc of that, choose such b, and ¢, that F(dy. $9)(0)
i« defined but ¢;(y) is undefined). ‘

Example 2. Consider the mapping (7 of P into P defined by the

cquation

(D) = (Range ¢) x{0}.
We can prove in a quite similar way as above that ( is also a recursive
operator which is not Turing computable.

IV. We shall give now a necessary and sufficient condition for the
Turing computability of a recursive operator (this condition is a modifi-
cationn of a condition given in [L1]).

Theorem 3 Let m be a positive integer. Then for every re-
cursive operator £ from P7 into P, the following two conditions are
(quivalent:

(i) / is Turing computable.

(ii) There exists a partial recursive functiony of m -1 variables such

it Tor all By 5 ey &

A T I ([ Ch1 & & [, Cdn& x € Dom F (. Um)
= (Hyy -0 Hmy X) € Domy;

D) X (Mg -y iy X)=0 =>x € DOmM F(fuype. -, fo):

) vyvillSism&y (., tm X)=my+i=>y¢Domf,
&YYo Vm(f, Ty & & fr,, Cdm& x € DomF (Yy,..., D) =y €
Dom 4, )]

| Proof. Let F be a recursive operator from P7 into P. Then the func-
nons ¢ defined by the equation

PRy oy M, 'Y)%F(j.rplw-‘~’ fnm,’(x)

s 4 partial recursive function. If condition (i) is satisfied. then we define
the function y in the following way:

= It seems that rhe fact has been known earlier to Orlovskii and Lacombe (see
(G} and 5], 8.4).
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0. if x€DomF(fu,-n fn,,)
Y Pyyeos oy XY gy if fo{y) is the first demanded but not de-
fined value in the Turing computation of

F(fus -+ Jap) (X)-

The function y is partial recursive and y satisfies the conditions a), b),
¢). In order to prove the implication (ii) => (i), suppose that y is a func-
tion of m+1 variables such that conditions a), b), c¢) are satisfied. Then
we can use the following procedure for computing z=F(d..., Ym)(X)
for any given ¢,,..., $m x

1) ny:=a, ny:=a,..., n,:=a, where ais a natural number such that
fa'—:g/e
e = ylng... Mm X)
3) If =0, then go to instruction 4), else go to instruction 6).
4) Zi=p Rpce s Mg X
5) Stop.

8) w: =y y)

9) Find a natural number # such that f,=f, U{<y, w>|

10) n;:=n.

11) Go to instruction 2).

Corollary. Let m be a positive integer and let / and G be recur-
sive operators from P™ into P. If

V(‘pl ---V‘Pm(DomF('Pn--u '~Pm)=DomG(4J1»---, me))

and the operator F is Turing computable, then the operator G is Turing
computable too.

V. The above mentioned question of Uspenskii had a second, more
difficult, part. It was the following: is it possible to construct a pair of
functions ¢ and ¢ such that ¢ is strongly partial recursive in ¢, but ¢
is not Turing computable in ¢ ? The question was answered positively
and a proof of the result can be found in [I11]. However, I prefer now
another proof which gives us a simpler example of such pair. This proof*
is based on two lemmas.

Lemma 1. Let ¢ and ¢ belong to P and let the following conditions
be satisfied: |

a) ¢ is potentially partial recursive;

b) ¢ is Turing computable in ¢;

c) Domg is a productive set.

Then Dom{ has an infinite recursively enumerable subset.

* 1 am describing the proof in a form such that classical logic i1s used. A variant
of the proof using intuitionistic logic can be obtained by slight modifications.
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Proof. Let F be a Turing computable operator such that ¢=F(¢). By
Theorem 3, there exists a partial recursive function v of two wvariables
.uch that for all #, x

a) f,Cd&xe¢DomF (i) => <n, x> ¢ Domy:

by y(n, x)=0 =>x ¢ DomF(f,);

Q) Yyl X)=y - 1& f,C & x eDomF(P)=> y ¢ Dom f, &
y € Dom ).

Then, given any finite subset £ of Dom J. we can effectively construct
1 point y of (Domd¢)— £ in the following way: we find an n such that
{,=9 E and consider Dom F (f,) which will be a recursively enumerable
<ubset of the productive set Dom g; then we find a point x € (Dom ¢) —
Dom F(f,)) and set y=y(n, x)—1.

Lemma 2. There exists a ¢ ¢ P such that

a) ¢ is potentially primitive recursive;

b) Dom Y has no infinite recursively enumerable subset;

c) Range ¢ is a productive set;

d) Dom ¢ and Range ¢ are complements of some recursively enume-
rable subsets of N. '

Proof. We take an immune set 4 and a productive set B such that
4 and B are coniplements of some recursively enumerable subsets of N
and then we set

b={<2". 3, v> ué¢ AdveB&u>v}

The main result is the following:

Theorem 4. There exist p and ¢ belonging to P such that ¢ is
strongly partial recursive in %, 7 is not Turing computable in ¢ and the
iollowing additional conditions are satisfied :

a) ¢ is potentially primitive recursive;

b) Dom+ and Range ¢ are complements of some recursively enume-
rable subsets of N.

Proof. Take 4 as in Lemma 2 and set

¢ = (Range $)> {0}.
Remark 1. From this proof it follows once more that the operator
(i considered in Example 2 is not Turing computable.
V1. We shall now consider a kind of reducibility which will be called
partial c-reducibility.
Let all finite subsets of N be effectively listed in the sequence
Sy Ses, Tosza ¢
We can, lor example, set
Sy = {8y Higys oy Xy

where X, <Xo<... < X, and n=2% 2%~ _  -2%
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Let A, A, .., An be some subsets of N. The <et Jd, is pirtially
c-reducible to <A, .. 4, > f -there exist partial recursive functions
Bian o o By SUCH that

‘40:._{)( A ;s o Sy (6] (X)=1, & & il X)) = ’7’"
&snC A& &S, C Ak

[ we omit the words “partially” and “partial” in this definition, then
we shall have a notion studied by Jockusch in his dissertation (see {5},
Exercise 8—27). But the partial c-reducibility is essentially different [rom
the c-reducibility, because the c-reducibility is a truth-table reducibility
and the partial c-reducibility is not (the Iist can be concluded from the
fact that a non-recursive recursivelv enumcrable set is alwavs partially
c-reducible to a recursive set).

Theotrem &, Let Ay Ages, Ay be subsels of N aud let & %«
am be constant functions such that Dome,= A, for /-0, 1,..., m. Then
the following two conditions are equivalent:

(i) A4, is partially c.reducible to <A, .., 4,>.

(ii) #, is Turing computable in <&, ., om>.

Proof. The verification of the implication i} => (/1)) is straightforward.

In order to prove the converse implication, suppose that

CZ(. = f:(al,. “ oy “"7)

for some Turing computable operator /7 and take recursive [unctions
345+ Bm Such that

o, C S S - kjm-

Then for i=1,..., m define 0, as the set of the pairs <x, n> satisfying
the following condition: x ¢ Dom F (3. fm) end s, is the set of the
natural numbers y for which the wvaluz 3(y) has been demanded in the
Turing computation of F(3,, .., Fm){x).

The partial c-reducibility implies enumeration reducibility, But we
shall show that the partial c-reducibility is stronger than enumeration re-
ducibility. Namely, the following theorem will be proved.

Theorem 6. There exist subsets 4,, 4,, 4 of N such that

a) AU A, is not partiallv c-reducible to <4,, A,>:

by A N Ay=9;

¢) A;={x 2x ¢ A}, Ay={x 2x—~1¢A};

d) A, U 4, is not partially c-reducible to A;

e) each of the sets A,, A, A belongs to the intersection of the
classes X, and T, of the Kleene-Mostowski hierarchy.

Proof Take immune sets B, and B, belonging to %, I, such
that

B\(\By=3, ByUB,=N

# Using classical logic.
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(such pair of finmune sets can actually be constructed). Then take a pro-
ductive set C which is the complement of some recursively enumerable
set and sat

B p (/’ f/l )mc

f'} 5= .’41 ]Oin 145;,.

The conditicns b), ¢) and e) are obviously satisfied. In orderto prove the
statement d), consider the functions

$=(4,UAg) x{0},
fs= A4 {0

and suppose that p 1s Turing comyputable in . Since Dom ¢ is a produc-
tive set, by Lemma 1 we can conclude that the set A has an infinite
recurs: ve}\ enumerable subset and this is impossible, because none of the
sets A, and A, has any infinite recursively enumerable subset. Hence ¢
s not Turing computable in L. Thus, by Theorem 5, A,{J A, is not parti-
ally c-reducible to A. For the prool of the statement a), consider the
tunctious ,, b, where

= Ay {0 (i=1, 2)

From the equations

volX)=d (285 1)

it follows immediately that <, and <, are Turing computable in ¢ and

iherefore (by the transitivity of relative Turing computability) % cannot be

‘z"nrihg computable in <y, L,>. Hence, by Theorem 5, 4,{JA, cannot
¢ partial c-reducible 10 <4, A,> &

Remark 2. The functions ¢ and 4 considered in the proof above
cave the main property formulated in Theorem 4: ¢ is strongly partial

ursive in Y. but ¢ is not Turing computable in .

Remark 3. B\ considering the functions %, 4,, ¢, from the prool
above, we can once more see that the operator F-considered in Example |
i¢ not Turing computable.

Remark 4. It is possible to prove Theorem 6 without making use
of Theorem 5, but in such a direct proof we have to repeat in essence
the proof of Lemma 1.

VII. At the end, I wish to give an account on a relatively simple
etlective enumeration of the Turmg computable operators. This enumera-
tinn, in essence, is contained in [12], |

Let ¢yy.. b De elements of P and let ' - <4,,..., $n>. For e and
. belonging to N, we define the symbol {e} (x) by the following induc-
tive definition: . -
by {a— 12— 1Y (x)=(@a—x)?+2a

for all natural a and x.
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2) Ha+-1P}1¥(x)=a

for all natural a and x.

3) {18 T RO sl ()

for (=1, 2..., m and X € Doy,

4) (a+b—22+2b-+-2}7 (x)={{a}? (x)}* {b}¥ (x))

for all natural a, b, x such that the right side of the equation is de-
fined.

It is not difficult to see that this definition is consistent, i. e. for any
¢ and x there exists at most one z such that {e}”(x)=2z (obviously,
there exist infinitely many pairs <e, x> for which {e}¥(x) will be
undefined).

Theorem 7. Let 7 be a mapping of P7 into P. Then F is a Tu-
ring computable operator iff

deVd: . WOm VX [F (10, dm)(x)={e} ¥ ¥m> (X)].

The proof that every operator F having this representation is Turing
computable is based on the following: from the definition of the symbol
{e}¥(x) it is easy to obtain a deterministic procedure for computing
e} ¥(x) using finitely many values ¢,(y) demanded in the course of the
computation. The statement that every Turing computable operator from
Pm into P has the representation above can be proved by using some
techniques from the combinatory logic approximately so as it is done in
[6] and also in Wagner's papers [8], {9} and in Strong’s paver {7] (The -
rem 1 must be used in the proof too) The possnblhty of applyiny ihese
techniques can be observed from the following lemma.

Lemma 3. There exist natural numbers p, g, £, s with the proper-
ties a) — e) below (where U must be considered as an abbreviation for

<Dy Im>).
a) Yo,.. Yon VX ({pI¥(x)=x ~1);
by Wiy vmy¥X({g}¥ (x)=x=1);
¢) Yago vy, ... vonliR}¥ (@)= b& yx ({6}¥ (x)=a)];
d) vagbvd,...voa[{6}¥ (V) =k & yx({b}¥(x—-1)=a)];
e) Vavodcadvd,...vdul{s}¥(@)=c&{c}¥(b)=d &
vx [{dt¥ (x)={{a}? ()} ¥ {61% (x)]):

For the proof of this lemma, see |13] (the natural numbers p, g,
k, s can be explicitly found; we can set ¢=6, but the values of p, &, s

* There exist Wagner’s publications on the same subject in IBM Res. Rep., earlier
than (8] and |9]. The first of them is in 1963, as well as my paper [6]. Unfortunately,
these publications are inaccessible for me,

Added July 13, 1974: At the present time, copies of those papers are at my dis-
posal by the kindness of Dr. Wagner.
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which 1 can calculate are so greal that it is not convenient to write
them here).

It is worth notice that for recursive operators from P™” into P there
i< an enumeration theorem too (see [1], Chapter 10, Theorem 3.1), but it
is not known whather an enumeration of them is possible which is not
far more complicated than the enumeration of Turing computable operators
considered here.

REFERENCES

Davis, M.: Computability and unsolvability. New York — Toronto—Londen, 1958.

Kleene, S. C.: Intreduction to metamathematics. New York—Toronto, 1952,

Lacombe, D.: La théorie des fonctions récursives et ses applicaticns. Bull. de la

Soc. math. de France, 88 (19€0), 393—468.
Myhill, J.: Note on degrees of partial functions. Proc. of the Amer. Math. Soc,,
12 (1961), 519—521.

5. Rogers, H, Jr.: Theory of recursive functions and effective computability. New
York a. o, 967.

. Skordev, D.: Rekursiv vollstindige arithmetische Operationen. Comptes rendus
de I’Acad. bulgare des Sci., 16 (1963), 465—467.

7 Strong, H. R, Jr.: Algebraically generalized recursive function theory. IBM J.
Res. Develop., 12 (1968), 465—475. .

& Wagner, E.: Uniformly reflexive structures: An axiomatic approach to computa-
bility. Information Sci., 1 (1968/6Y), 313—362. '

g, Wagner, E.: Uniformly reflexive structures: On the nature of Godelization and
relative computability. Trans. of the Amer. Math. Soc., 144 (1969), 1—41.

10. Opaosckui, 3. C.: Yskoanropuduudeckue onepatopol. Tpyan 3-ro Bceecorosm.
MareM. cwe3ia, T. 1V, crp. 87, Mocksa, 1959.

11. Ckopaes, .. V3uucaumMu ¥ p-pekypCHBHH onepaTtopu. ¥13s. Ha Mar. uuct. Ha BAH,
7 (1963), 5—43.

12. Cxopaes, [I.: Hekoropble nmpoctnie npumeps yauBepcasvkbix ¢ynkupi. JAH CCCP,
190 (1970). 45--46.

13. Ckopnes, J.: Hexotopsie npumMepbi YHuBepcanabHbX (QYHKIHH, PeKypCHBHO onpene-

AsievbiX MpPH NoMOINA He6onbUIMX CHCTeM paBeHCTB. MlecaepoBaHuss 1o 1eopuu anro-

pudyoB u MareMatuueckoft soruke, T. 1, crp. 134—177. Mocksa, 1973.

Lo Ny -

-

MMocrenuia nma 7. VIIL 1973 r.

Ob OMEPATOPAX, BbIUHMC/IMMbBIX B CMbICJIE TBIOPUHI' A
d. Cxopaes

{PE3KOME)

B craTtbe v3naraeTcs B HECKOJbKO pAacllUPEHHOM BHIE COHEpXKaHUe
J€KIMY, NPOYUTAHHOH aBTopoM 15 (espans 1973 r. B Mexaynapoanom
MdTeMaTHYeCKOM LieHTpe WM. banaxa B Bapuwase. OnepaTops!, BHYHUC/AHMbLE
B CMbicsie ThiopuHra (p-pexypCHBHBIE ONepaTophl), B 3TOH CTaThe, KaK U B
Gosce paHHol paGoTe aBTopa [11] (Bo3HMKIIeHi B CBI3H € HEKOTOPBIMH
Bompocamu B. A. Ycnesckoro), paccMarpuBaloTCcs He TOMBKO Ha BCIOAY
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onpene/edblX QYHKUUSX, HO U HA 4YaCTHYHO ONpEJIeJeHHbIX., ¥ Ka3biBalTCA
HEKOTOpbIe NPHMEPHl PEKYPCHBHLIX OIEPATOPOB, KOTOPbIE HE BBLIYMCIAHMBL B
cmbicae Tbropusra, U xaetcs OJHO YCJIOBHe, KOTOpOoe Heo6X01HMO H XO-
CTaTOYHO AJS1 ThIOPHHIOBOH BBIUMCJIMMOCTH PEKYPCHBHOIO oOnepaTopa (3To
ycnoBue siBaseTcs Moanduxauuelt oxnoro yceaosus u3 [l11]). Crpoutcs
60nee npocToH, wem B [11], npumep Takofi napel QyHKUMHE ¢ U P, 4TO @
ABJISIETCSH pe3y bTaTOM NPUMEHEHMS] HEKOTOPOro peKypCHBHOFO oOmnepaTtopa
K ¢, HO ¢ He BBIYMCJAHMA B cMbicie ThIOpHHra OTHOCHTEIbHO . BBOAHTCa
MOHSITHE YAaCTHYHOH C-CBOJMMOCTH MHOXKECTB HATYPaJdbHbIX UHCEJ, & HMEHHO
MHOKecTBO A, Ha3biBaeTCsi YACTHYHO C-CBOJASILIMMCH K CHCTEME MHOXECTB.
<A, An>, €CaAM CYIWIECTBYIOT TaKHE YaCTHYHO peKypcuBHBIE (DYHKIHH
O35y bm, uTO MHOXecTBY A, npHHaANeXKAT B TOYHOCTH T€ HATYDPANb-|
Hble uHCAa X, JAJA9 KOTOPBIX omnpenesedbl Bce QyHKkuuu 6, ..., Oy
M KOHEYHble MHOXECTBA HATYPaJbHBLIX YHCEJ CO CTaHAAPTHBIMH HOMe-
pamu 0, (x),. ., U,(x) comepmxkarcss COOTBETCTBEHHO B MHOXECTBax
Ay, .., 4y Hcchenyercs cBsiz3b 3TOr0 MNOHATHS ¢ OTHOCHTEJbHOH THIOPUH~
rOBOH BBIYHCAHMMOCTBLIO # CTPOSITCA HenepecekawllHecs MHOMXECTBAa HaTy-
paiabHblx uncen A, A, ans xoropbix He BepHo, uro A;|JA, YacTHyHO,
C-CBOJMTCH K <A1, A,>. B koHue craThH nNPHUBOLUTCS OIHH OTHOCH-]
T€JAbHO NPOCTOH Croco6 3M(MEKTUBHOTO IMepeunc/ends COBOKYMHOCTH Olle-
PaTOPOR, BLIYMCAMMBIX B cMmbicie Teiopuhra (3707 c¢noco0 OCHOBaH Haj
[IPUMEHEeHHH MeTON0B KOMOGHHATOPHOM MOruKkd B Ayxe paboThl aBTOpa [6]).




