THE MEASURE OF THE IMAGE OF A DIFFERENTIABLE MAPPING
Ivan Prodanov

The idea to consider the measure of the set of critical values of maps
is due to. Marston Morse. A. P. Morse [1] proved that the critical values of
a function of m variables of class C™ constitute a set of linear measure
zero. This result was generalized by A Sard [2]. He proved that it m>n,
the set of critical values of the mapping

(M) f:B—R* (BCRm)

is of n-dimensional Hausdorff-Saks measure zero provided that f¢ Ce with
gzm—n+1. Using an example of Hassler Whitney [3], he showed that the
hypothesis on ¢ cannot be weakened in this case. In the case m=n Sard
proved that the set of critical values of the mapping (1) is of m-dimensional
Hausdorff-Saks measure zero if f¢ C'. The purpose of this paper is to esta-
blish that it m<n, the conclusion of Sard’s theorem is true without any
hypothesis on the mapping (1) (corollary 2). This statement is a special
case of a natural estimation of the measure of the image of the map (1)
provided that it is diiferentiable in B (theorem 1).

The conception of differentiability is often associated with the ones of
open set in R™ and continuous partial derivative. It seems that this is an
unnecessary restriction of this notion [4]. In the present paper we shall use
the following definition.

Let B be an arbitraty subset of R™ and x¢ B. The mapping (1) is said
to be differentiable at the point x if there are a linear mapping

2) Dy:Rm— R»
and a mapping
3) ¢:B—x—Rn
such that .
(4) fx+B)= fx)+ D)+l kllg(h) (A€ B—x)
and
(5) lim (k) =0*.
h=0

Each of the linear maps (2)is called a total derivativeof f at the
point x. The total derivative is unique if the point x is interior to B but in
general this is not true.

* We denote by B—x the set of all differences b—x (b € B), and by © | the Eue
clidean norm.
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A critical point of the map (1) is a point x in B, such that f is
differentiable at x and there is a total derivative D, of f at x with
dim D, (R™)<min (m, n). A critical value of fis theimage under f of a
critical point of f.

Let E be a metric space and ACE. Denote the diameter of A by d(A).
Given positive quantities m and «, let L, (A, «) be the greatest lower

bound of the sums c,,,Z(d(Ak))"', where A,, Ay . . .,As ... Is an ar-
k=

bitrary countable covering of A by sets with d(4,)<« (k=1}, 2,. . .), and

M_
2

—
2mr(2»+1)

The m-dimensional outer Hausdorff-Saks measure of 4 is
by definition

(6) Ln(Ad)=sup L, (4, ).
a>0

In R™ the outer Hausdorff-Saks measure L,(4) coincides with the
medimensional outer Lebesgue measure of A.
Given a linear mapping

) D:R™ — R* (mZn),

an m-dimensional linear subspace V of R* with D(Rm)CV, and an orthonor-
mal basis of V, let det D be the determinant of D, It is clear that if C is
an m-dimensional cube in Rm, then

@®) Lm(D(C))=|det D| L,,(C).

Lemma 1. Given positive quantities « and ¢, let (7) be a linear map-
ping and C, be the unit cube in R™ Then there is an open covering

Cm

(9) Ul) Uz,..-,Uk,‘..
of D(C,) in R®, such that
(10) dlU)<a (k=1,2,...)
and
(1) c,,,Z’ dUp)m< |det D|+e.
k=1

Proof. The definition of the Hausdorff-Saks measure implies that there
is a covering A, A4;,. . .,4s ... of D(C,) in D(R™) with

(12) ddy<a (k=1, 2,, . .)
and
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(13) em D) (A(AR)Y* <L (D(Cp) +e.

k=1

it follows from (8) and (13) that

(14) Cm f (d(dx)ym < | det D] +e.

k=1

Now we put Uz=0 (4,, %), where », are sufficiently small positive numbers
k=12 .. E. D.

Lemma 2. Let the mapping (1) be differentiable at a point x¢ B, and
D, be a total derivative of f at x. Then for each «>0 and any >0
there is a &(x)>0, such that for every m-dimensional cube C in Rm the

conditions

(15) da(C) <3(x),

and

(16) xeC

imply

an L(A(CNB), a)=:() det D, | +¢&)L,(C).

Proof. Let (9) be an open covering of D,(C,) in R* possessing the
properties (10) and (11) (with D, instead of D), and 4,>0 be such that

(18 ODLCo AU Uy

It follows from (5) that there is a positive number &(x), such that the rela-

tions k¢ B—x, || k|l <&x) imply II“’(h)“*(d(é‘o)

Let now & m-dimensional cube C in Rm™ satisfies (15) and (16). From
(4) and tte choice of &(x) it follows that

FCNBCT()+0DC—x), £L252).

Therefore

JCNBC ) +Die—0+0DLC~e), 553 4,

where ¢ is the center of the cube C. Hence

(19) FENBCf@+Dge—n + 0 555

by (18) and linearity of D,. Let

* We denote by O(Ak, nk) the nk-neighbourhood of Ax in Ra.
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) 4(C) _
Ve=f(x)+D(c—x)+ 4C,) Us (k=1,2,...)
It follows from (19) that the sets V, (k=1, 2, . ) form an open covering

of f(CNB). If &) is chosen with &(x) <d(C,), (10) and (18) imply that
diVy<a(k=12,, , .) Moreover
d(C)

dUy (k=1,2,...)

Hence

Lo (FCNB, aen 37(gic) | @@y

k=1
d(C)

<(ldetD,|+¢ )( ZCo)

) ~(|detD. | +&)L.(C)

by (11). Q. E. D.
Lemma 3. For each map

@1 8:B — (0, ) (BCR™)
there is a sequence
(22) Cl, CZ’ e o o) Ck. T s

of closed m-dimensional cubes in R™ with the following properties:
i) Cx each C; have no common interior points (8/);

iiy BC U Gy

iii) for each k=1, 2,, .. there is a x in B, such that
(23) x€Ch
and
(24) d(C) <8(x).

Proof. Without loss of generality we may suppose that there is a cube
C in Rm such that BCC. For every k=1, 2,, . . we cut each of the edges
of C into 2% equal parls, and denote by I, the set of the so found 27

closed subcubes of C. Let I‘-——kD I's. It is clear that if two cubes of I' have
=]

common interior points, one of them contains the other. We shall say
that a cube y ¢ I' is normal if there is a point x in B[y with d (y) <&(x).
Let I be the set of all maximal (with respect to the inclusion) normal
elements of I', It {s obvious that the cubes of I'" have the desired properties.
Q B D

Theorem 1. Let the mapping (1) be differentiable at every point
x¢B, 120 and

(26) |detD,| SA
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for every x in B. Then
(26) L.(f(B)) =2 L,(B).

Proof. Let « and e be arbitrary positive numbers. Since L, coincides
with the m-dimensional outer Lebesgue measure in R™, there is an open set
U in Rm, such that BC U and

27) Ln(U)<L, (B)+e.
For any point x in B we choose a positive number &(x), such that
(28) O(x, &(x))CU,

and (15) and (16) imply (17). Consider the sequence (22) with the proper-
ties i), ii) and iii). Obviously

(29) Lm(f(B:r 0) ész(f(CknB)’ a)t
k=t
since Bcklj C,. Since the sequence (22) has the properties (23) and (24)
=1
we have
(30) L.(f(CxNB), @)= (A+€)L,(Ch)
by the choice of &(x) and (25). From (29) and (30) it follows that
@1 L,(f(B), )= (A+e) 3" Ln(C)).
k=1

But the cubes C, have no common interior points and CxCU by BCU,
iii) and (28). Hence

(32) 2 L,(C) <Ln(B)+e.
k=1
Now by (27) from (31) and (32) it follows
(£3) L f(B), ®) S(A+¢) (L, (B)+e).
Since « and e are arbitrary positive numbers, (26) follows from (33).
Q. E. D.

Corollary 1. If A20 and 4; is the set of all poinis xin B, such that
the map (1) is differentiable at x and satisfies (25), then
(34) L,( f(AD)YSX L(42).

Corollary 2. The set of the critical values of the map (1) is of
m-dimensional Hausdor{f-Saks measure zero.
Corollary 3. Let

(35) f:la, b]— R (a<b; a, beR)

23 rox. Cod. yuus, dax, N0 mMaTeMaTUKa ¥ MeXaHUKa, T. 63, 1973/74
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be a continuous function, and K be the set of all the points x in B=[a, b},
such that f is differentiable and f'(x)=0. If f(B\K) is of Lebesgue measure
zern, the function (33} is a cownstant.

Proof. Indeed, corollary 2 imnlivs that f(K) is of Lebesgue icoure zovo.
Sisc: f(B;Tf(OUSBK), the set f{) has Lebesgu: measuie zero. On ihe
other hand f(B) is cbviously an interval. Q. E. D.
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MSPKA HA OBPA3A HA IOHUPEPEHIIUPYEMO W3OBPAXKEHHE
ilL. lpoxason

(PE3IOME)

Hinesta na ce pa3srnena MApraTa Ha MHOXKECTBOTO HA KPHTHUYHHTE TOUKH
Ha eIHO m3o6paxkeHue npomsxoxna or Macrsn Mopa. A. [1. Mop3s [1] xo-
KA3a, Ye KPHTHSHHUTE CTORHOCTH Ha enHa OGYHKiIMA HE M NPOMEHJHBH OT
kaac C” o0pa3yBaT MHOXCCTNO C JidHel:aa Msapka Hyaa. Tosu pesyarat Ge
o6o6nted ot A. Capa [Z2). To# nokaza, ye ak0 m>n, MHOXECTBOTO HAa KDH-
THYHHTE CTOHHOCTH Ha K300 axcennero (1) nMa n-mMepua mapica Ha Xaycuopd —
Cakc Hyna, cTHFa [Ja e H3nbaHeHO ycaoswero f€ C? ¢ gzm--n+1. Karo
u3noa3yea enud npumep Ha X. Yurnu [3], Tolt nckasa, ye TO3H pe3yJaTAT He
Moxe na Obne nopobped. B cayyas m<Sn Capn ycTaHOBH, 4e MHOXECTBOTO
Ha KPHTHYHHTe CTOMHOCTH Ha wu3o6paxcennero (1) mMa m-MepHa MaApPKa Ha
Xaycnopdp — Cakc nyn2, cTra pa e najulle ycaosuero f¢ CL B npeanara-
Hata pafoTa ce 10Ka3Ba, 4e N[ MmN 3aKII0YeHHeTO Ha Teopemarta Ha Carn
3ana3pa BalMuIHOCTTA CH 6€3 HUKAKBY NPSANONOXKEHHs 32 WaoOpaxeruero (1)
(cnenctere 2). Tosa TBBLpPLeHEE e cneuuaneH ciaydall OT enHa ecrecTBeHa
OllexXKa Ha MsapKarta Ha o0paza wa u3c6paxeunneto (1), cTura to na e nude-
pe:nunryeMo B B (teopema 1).



