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The concept of degree of a mapping plays a considerable role in
the axiomatic introduction to homology and cohomology. So for instance it
is essential in the deriving of the well known rules for computation of the
homology and cohomology groups of a finiie cellular polytope. It is of
course desirable the mnotion of the degrce of a mapping to be introduced in
an abstract homology and cohomology theory. In the present paper this is
done for an arbitrary generalized homology theory; as usually everything is
analogical in cohomclogy. Furthermore the exposition does not make
use of the homotopy classification of the mappings of the n-dimensional
sphere into itself. A consequence of this approach is a simple proof of the
well known rule for computation of the degrees of smooth mappings
by means of the signs of the Jacobians of the inverse images of a cer-
tain point.

In what follows mapping means a continuous mapping.

§ 1. U-HOMEOMORPHISMS

As usual S* denotes the n-dimensional sphere, i. e. the set of all x¢ R*+1
n+1

with 2x$=l; S» denotes the upper hemisphere, i.e. the set of all x¢ S
r=1
with x,,,20, and S” the lower hemisphere, i. e. the set of all x ¢ S$" with
xn+1§0.
Definition 1. A subset U of S7 is called simple, whenever there
exists a homeomorphism

(D Q5" — 87
with
@ (U)=35%.

Thus for example the upper and the lower hemispheres are simple sub-
sets. Similarly a simple subset is every n-dimensional simplex in an arbitrary
triangulation of S~

Lemma 1, Let X be a topological space. Suppose f,: X — 8§ (v=0, 1)
are continuous mappings, U is a simple subset of S% ACKX, fola=fil4 and
from x ¢ X\A follows f,(x)e U. Then f, and f, are homotopic.
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Proof. By hypothesis there exists a homeomorphism (1) with (2). It is
easily seen that £¢ fi(x)+ (A —=20@fo(x)5=0 for £¢[0, 1] and x¢X. Thus the
equality

o tp fL(x) +(1 =) ¢ fo(x)
=g~ ( ite fix)+ (1 —=pfolo)ll )

defines a continuous mapping F: X X[0, 1] — S~ This mapping is a homotopy
that connects f, and f,. Q. E. D.
Corollary 1.If two homeomorphisms

3) P, S%— SP (v=0,1)
coincide on a simple subset 4 of §7, then they are homotopic.

Proof. Lemma 1 with X= 5" and U=¢(4)=9,(4).

Definition 2. Let U be a simple subset of S*. A mapping
4 [ 8% ~5 Sn

is called an U-homeomorphism, whenever there exists a homeontorphism
(1) with

(3) flu=¢lv.

Thus for example if the napping (4) is a simplicial mapping and if A,
and A, are n-dimensionel simplexes in $* with

(6) f’(Al)"—"—\zs
then f is a A;-homeomorphism.
Let by
(D h,: 8" — Sn v=,2,. . ,n+0)

be denoted the mapping tiiat preserves all coordinates with exception of the
v-th, whcse sign is changed to the opposite.

It fis an U-homeomorphism and if (3) are homeomorphisms with
Sfiv=0,u (v=0, 1), then corollary 1 implies that ¢, and ¢, are homotopic.
This justifies the following definiiion.

Definition 3. An U-homeomorphism f is called positive on U,
whenever the homeomorphism (1) with (5) is homotopic to the identity
mapping of S#; whenever it is homotopic to #,, f is called negative
on U.

Thus for example the A,-homeomorphism f with (6) is positive on A, if it
preserves the orientation of A, in mapping it onto A,; it is negative on 4,,
if this orientation is changed.

§ 2. BASIC THEOREM

Let H be an arbitrary generalized homology functor: the Steenrod-
Eilenberg axioms hold with a possible exception of the Dimension axiom.

Let us recall that for an arbitrary topological space X, H: (X) denotes the
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reduced k-dimensional homology group of X, i. e. the kernel of the homo-
morphism

P H(X) — Hy(Py),

where P; is an arbitrary one point space and p: X — P; is the only possible

mapping.
[.,emma 2. For every integer 2 and for every E£Hk(S")

(8) Ry = —E

holds.

Proof. Induction on n.

Let 7: Py~ 8¢ and j: Py~ S° are ruppm s defined by 1(P¢)-=—1 and
J(P)=1. From the direct sum theorem {1} it foliows that for every ¢ Hy(S?)
there exist unique n<H(L,) and C¢ He (P,) with

&) § =Ly + /(0.

Since E¢ H,(S% precisely when p(§)=0 and since puy(n)=7 and p,J(9) =8
from (9) it follows, that E¢ Hx(S?) exactly when % and § from (9) satisfy
the condition

(10) n+5=0.

From (9), (10) and from the commutativity of the diagram

\

LA ”i (%)

/

h1:8) = h1sd () + 214 D)

=Js() + 40 = — /O — L) = —§,

which proves (8) for n=0. ,
Let the statement be true for n—1. Then its validity for n follows from

the commutativity of the diagram

follows
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~

~ hl* ~
Hy (S7) — (")

R
H(S" §-%) —— H(S", §")

! 1
n h
Hy(S%, 8™ 2%, Hy(sn, s
7l | 7

~

~ Ry ~
Hpy(S™7)  —— Hp—y(S™D)

and from the fact that the vertical homomorphisms are isomorphisms.

Q. E. D.
Theorem 1. Let

(11) Ul) Uz;. . <« Um

be mutually disjoint simple subsets of $7 and U be a simple subset of S»
Suppose (4) is an U,-homeomorphism (p=1,2,. . ., m),

(12) f(Un)"U (l*"‘l’?v- . -:m')
and
(13) W= 0 U,

”:

If the mapping f is positive on a of the sets (11) and negative on b of
them @+ &=m), then

(14) [{®)=(@a—0b)§
holds.

Proof. Induction on m.

For m=1 and for f positive or negative the statement follows from
definition 3 and lemma 1 or lemma 2 respectively.

Let the statement be true for m—1. Suppose ¢,:S"* — S* are homeo-

m—1
morphisms with @,(U)=8% (p=1, 2,. . ., m), X1=S"\“l;JxU,,, X,=84U,,

) fx) (x€Xy)
) 1(X)=
(15) i@ (P,TI Rosr@uf(x) €U, p=12,...,m—1)

and

(16) £, 0= @ (x €.X),

O Rt Om [ (%) (x € Unm).

Let for definiteness f be for example positive on U,. From the inductive
assumption and from the validity of the statement for m=1 it follows that

(7) fia ) =E
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and

(18) fu®=(@a—b—1)E
The diagram

-~

Dy
Hk(S") —_— Hk(S" S"\ U Uu)
(19) fw fl*rfmt 1 lf*x fl*v fz*

£ 7
A, (57 -2, He(S", SA\U)

(where at the vertical arrows fo and S ]";* and f,, ﬁ* and f,, are taken
simultaneously) is commutative, whence

(20) b (fo—Fia—Fa0) = fo—Fin—Fa b
On the other hand the additivity theorem [1] shows that

(21) fe=Fiet [an
From (20) and (21) follows

(22) .Zk=f;*+f;*:

since the homomorphism i, in the lower row of the diagram (19) obviously
is an isomorphism. Now (14) follows from (17), (18) and (22). Q. E. D.

Corollary 2. For every contintous mapping (4) there exisis an inte-
ger m, such that for any generalized homology thesry H and for any integer
k for the homomorplisti

(23) FeH (S — Fy(S™

the equality

(24) JALE": E¢ H,(S)
holds.

Proof. For any siaplicial approximation g of f let U be an arbitrary
simplex in 8" and (11) be its Inverse images by g Then thecrem 1 is ap-
plicable. Q. E. D.

The integer = from (24) is called degree of f and is denoted by

deg f.

§ 3. DEGREES OF SMOOTH MAPPINGS

It i3 well known that the z-dimensionzl sphere S7 is an orientable smooth
manifold. In what follows we shall suppose {ixed the orientation,generated by
the stereographic projection

{28) p:Si{g}—R" " (@=(0,0,...,0, —=1))

Let £ and » be arbitrary points of 5% T; and T, be the tangcnt spaces
in £ and 7 respectively and D:7;,— T, be a linear isomorphism. Then D
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is called positive, when it preserves the orientation, and negativ e, when
the orientation is changed. In the first case we write signD=1 and in the
second sign D= —1. Obviously this definition does not depend on the choice
of the orientation.

Lemma 3. Let the mapping f:S8*-— S* be diiferentiable at a point
E¢S” and its total differential be nondegenerate. Then there exist closed

neighbourhoods ¥ and W of £ in S”with V(:V?/ and a continuous mapping
(26) g:5%"— §”

with the following properties:

1) glst\w =fls"\w,

ii ) g~f,

iii ) g(x)%=gE€) for x¢ W\V,

iv) g is a V-homeomorphism, which is positive for sign df,=1 and
negative for sign df,=—1.

Proof. Thus the lemma states that the mapping f can be corrected in
a certain sense in vicinity of £. In order to establish this we shall first trans-
fer f to R® with the help of the sterzographic projection (25).

Without loss of generality we can assume that §4=c and f(§)=o.

Let

(27) n=pE&)
and

(28) M =p(f-1()-
Since f(§)+o, then

(29) n¢R\M.

The set M of course is a closed subset of R7", hence the set R™\M is
open.
Let us transfer f to R%, i. e. let us consider the mapping

(30) F:R"\M — R?,
defined by
(31) F=p o f 0 p""l.

Since by hypothesis d f, exists and is nondegenerate, the same is true
for dF,:R* — R". According to the definition of the total differential the
equality

(32) Fy)—F—dF(y—n=r(Nlly—li

holds, where the mapping r: R\M — R" satisfies lim r( y)=0.
Let ¢ be a positive constant, such that yon

(33) HdF( y—m)ll22¢]| y—nl

for every y¢R"® and let the positive real number p be such that B(y, p)
CR"M and the inequality

(34) (e
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holds for || y—nll<p. Furthermore let 0<p’<p and %:R" — [0, 1] be a con-
tinuous mapping such that

(35) ¢(y)=0
for y ¢ R"\B(», p) and
(36) e(y)=1

for y € B(x, ¢')-
Now we correct F in vicinity of ». To this end let us consider the map-
ping G: R\M — R", defined by

37 G(y)=1—=2(WMFW) +(¥) (F)--@Fy—n).
From (35) and (37) follows
(38) G(y)=F(y)

for y€ B{n, p) UM. ]
Let B(n, p) be a closed ball and Jet W=p-1(B(n, ¢)). Now we re-
turn again G on 5% i. e. we consider the mapping g:S5% — 57 defin-

ed by

(39 Zls\w =flsn\w
and
(40) glw=p~t o G o plw

From (31), (38) follows that p—! o G o p coincides with gin a neighbourhood
of W. Therefore (39) and (40) imply that the mapping g:5" — S* so defined
is continuous. This proves i).

From (32) and (37) follows

HG()—FN =N N r(nll Il y—nll,
which together with (33) —(36) gives

(41) G —F(y)ll<cp (y € RM\M).
From (39), (41) and from the obvious inequality || p(x)—p(—x)|| ZV2(xtS"\{c})
follows

(42) f(x)+-8(x)F0

for every x ¢ S7, provided p is so small, that cp<¥2. From (42) follows that
ii) holds.

In order to establish iii) let y¢B(y, p)\B(y, p'). From (32) and (37)
follows

G(N—Gm)=dF(y—n)+A—=p(Nr( NI y—nll,

whence
NG () —Gop il 2 aF L y—) =1 1= N 1.7 (DI y—n]
22|ly—nll=lir(W Il y—ylizelly—nll 2¢p">0,
i e.
(43) G(»)FGm) (y&B, p)\B, o).

Let V=p=1(B(y, ¢')). Now from (43) and (40) follows iii).
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Let at last the mapping &:5" — S" be defined by
(44) 5(x)={P“(F(n)+an» (P(x) =) for xs,

g for x=0,

Clearly & is a homeomorphism with &|,=gly, i. e, g is a ¥V homeomorphism.

From sign df;=1 follows sign dF,=1. Hence the linear mappings
F(p)+dF,(y—) and y with argument y¢ R* are homotopic, all intermediate
mappings being linear and nondegenerate. Therefore this homotopy can be
transferred on the sphere by means of the stereographic projection (25) and
we conclude that in this case

(45) & ~idsn.

Analogically from sign d f;= —1 follows sign dF,= —1 and the mapping
F(y)+d7{ y—n) is homotopic to the linear mapping H,:R" — R" which
changes the sign of the first coordinate only, leaving all other coordinates
unchanged. This homotopy can betransferred on the sphere too and we con-
clude that in this case

(46) 5~/21.

This proves iv). Q. E. D.
Theorem 2. [i the mapping

47 f:St— Sn

and the point »¢S" are such that the set f-1(x) consisis of a finite num-
ber of points x, (u=1,2,. . , m) and if at every point x, the mapping
(47) is differentiable and its total differential df,, is nondegenerate

then
(48) de f= Z signd f,, .

=1

Pro-f Let the nzighbourhoods ¥V, and W, of x,(n=1,2,. .., m) and
the mappings

(49) guis“-*S" (P‘=])20- . ~’m)
be defined by applying lemma 3 for E=x, (p=1,2, . .., m). We can
assume furthermore that W, W,=2 (s + v). Let A&:S5* — §* be defin-
ed by
fx for xg () W,

p=1

gu(x) for x¢ W, ®=1,2...,m.

(50) h(x)=

Lemma 3, i) implies that & is continuous.
Let the mappings f,: 5" — S (u=1, 2,. . ., m) be defined by



9 Degree of a mapping... 363

51) fi=)/) forxe U W,

g,(X) for x GW‘,_ (V=l,2,. ) .’p,)‘

From (51) and lemma 3, i) and ii) follows that the mappings f, are continu-
ous and that

(52) fefi~. o ~fu=h

m O
The set K=S"\{J V, is compact and consequently such is the set & (K).
p=1

Since the points x, (n=1,2,. . ., m) are the only inverse images of %, from
(50) and lemma 3, if) follows that n'¢ 2(K). Then there exists a neighbour-

hood U of 4 with UNA(K)=# and U is a simple subset of S Further-
more obviously

(53) U C U Vi
#‘-’:
Let U,=a-Y(U)NV,. Then
m
(54) Y (U)= U1 U,
u=
From lemma 3, iv) follows that 4 is an U,-homeomorphism (n=1,2,. . ., m),

which is positive or negative depending on signdf,. Besides we have

hU)=U =1, 2, .., m). From (54) and the remark above follows that
theorem 1 is applicable for A, whence

(55) deg hzZ sign d fa .

p=1

From (52) now follows degf=degh. Q. E. D.
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CTEINEH HA U30OBPAXKEHHWE B AKCMOMATHYHHUTE TEOPHHU
HA XOMOJIOFMHUTE KU KOXOMOJIOIT'MHTE

. Kuitumes |, N. [Tporanos, . Ho6aros

(PE3IOME)

[Nonstnero cTenen Ha H3o06paxeHHUE Hrpae CHUIECTBEHA pOJA NPH
aKCHMOMAaTHUHOTO BBBEXJaHE Ha XOMOJOrHuTe H Koxomosoruute. Ha Hero ce
OnMufa CHUIECTBEHO HANPHMED H3BEXKIaHETO HA H3BECTHHTE NpzBHAA 3a npe-
CMsSTaHe HAa XOMOJIOTHHTE H KOXOMOJOTHHTE Ha KpPaeH KJeTbYeH KOMIVICKC.
Xenatenno e, pa3bupa ce, NOHATHETO CTeneH Ha H306pakeHne Ja ce BLBENE
B paMKHTe Ha a0CTPaKTHaTa TEOpPHA HAa XOMOJIOTHMHTE H EOXOMoJorgure. B
nperaarazara pz6oTa TOBA ce H3BDBPIIRA 32 DPOM3BOJAHA EKCTPIOPAKH:[HA
T:O HJ H2 X0OMOJcruuie; pa3bupa ce, NyH KOXOMONCTHHTE HEILATE, KAKTO
¢ GUNHOBEHO, CTONT &hHancoruudo. IIpw TOB2 E3JIOXKEHEETO Ee H3NOKayEa XOMO-
TonHata kaacHrkanka Ha u30€pikeHHsTa Ha n-MepHata cdepa B ce€e ci.
CiefcTBre OT TO3H NOIXOL € M €IHO NMPOCTO JOKA3aTeJCTBO HA HSFECTHOTO
NpaBuiO 3a MPecMsATaHe Ha CTENEeH Ka raaAko H3006, axenue Ha cdepeta B
cebe CH C NOMOWITA HA 3HAuMTe Ha skoOGuanuTe B npoc6pasuTe 1a HAKOA
TOYKa.



