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Was b weisbar ist, soll in der Wissenschaft
nicht ohne Beweis geglaubt werden.
’ Richard Dedekiad

A ring is said to be minimal when it does not possess proper subrings.
Minima! is for example the intersection of all subrings of a given ring. The
structure of the minimal rings is well known: they coincide up to isomor-
phism with the ringof all integers or with its factorrings.

One could, however, define the notion of minimal ring considerably more
economically by following conceptually the approach of Grassmann—Dedekind—
Peano—Landau {1] — {4] for axiomatic description of natural num-
bers, whereas the order, addition, multiplication etc. are defined starting
from a simple unar operation. In the present article it is shown how this
can be done.

The {irst four Peano axioms for naturcl numbers arithmetics express as
a matter of fact that adding of unity generates an injection in the set of
all natural numbers. Therefore, in essence, Peano deals with two axioms only:
an axiom for injection and an axiom for induction. The axiomatic descrip-
tion of minimal rings proposed here also deals with two axioms: an axiom
for bijection and an axiom for bilateral induction. The first of them concerns
the adding and subtracting of unity and the second is a natural minimality
request, characteristic for rminimal rings. In this way one asrives to the notion
of indecomposable bijective system.

In comparison with the axiomatic natural numbers construction soine
simplifications are presented here.So, for example, after choosing arbitrarily a
zero element in an indecornposable bijective system, a natural bijection bet-
ween the system and the group of its isomorphisms arises. This permits to
introduce the addition almost automatically. The ring of homomorphisms of
the additive group so obtained is again in one-to-one correspondence with
thre indecomposable bijective system, which permits it to be transformed in a
minimal ring with the same facility. Paragraph 1 treats the relations between
minimal rings and indecomposable bijective systems.

In the technical paragraph 2 some specixl subsets of an indecomposable
bijective system are discussed. The importance of the recurrent sets in such
kind of questions has beenn pointed out for the first time by Tagamlitzki [5).
The nature of the subject demands a modification of the notion of recurrent
sets. It is interesting to point out that using recurrent sets in the traditional



3686 I. Prodanov, 1. Tchobanov 2

axiomatic construction of natural numbers arithmetics in the sense of Peano
one could [6] introduce order in natural systems independently from the
arithmetical operations in them in contrast to the approach, chosen in [4]. It
is needless to emphasize the gnoseological and historical reasons which make
this approach preferable.

Although in papers like this one should not expect new facts to be
established, the absence of natural order in an arbitrary indecomposable
bijective system made it necessary to introduce and study a surrogate —
the notion of natural direction, to which paragraphs 3 and 4 are dedicat-
ed. There are exactly two natural directions in every indecomposable biject-
ive system, which are in close relation with the addition. Although the
interplay between natural direction and multiplication is not studied here,
it seems that the possibilities of this notion are larger and that its further
exploration is desirable by abstract consideration of directed rings in ana-
logy with the ordered rings, The speculations in paragraphs 3 and 4 could
serve as a model in this attitude,

The last paragraph 5 contains three characteristics of integers in the
class of the indecomposable bijective systems. First of all, they are indecom-
posable bijective systems, in which unilateral induction is not possible. On
the other hand, they are indecomposable bijective systems, in which natural
order exists. At last, they are the infinite indecomposable bijective systems.
Indecomposable bl]ectxve systems, which possess these equivalent properties,
are called integral and the rest are called cyclic.

In paragraph 1— 4 those properties of indecomposable bijective systems
are studied, which are intrinsic to integral as well as to cyclic systems simul-
taneously. In such a sense one could speak abcut absolute arithmetics by
analogy with geometry.

§L INDECOMPOSABLE BIJECTIVE SYSTEMS AND MINIMAL RINGS
Definition 1. Bijective system is called any nonempty set B
with a bijection ’
1 B:B— B.

In what follows B always denotes a bijective system.
It B is a bijective system, for the sake of brevity we put

2) | X =B(x), ‘x=B1(x) (x € B).
Obviously
3) () =(x) =x (x€B).

The elements x" and ‘x of B are called successor and predecessor of
x respectively.

; If in a bijective system B with the bijection (1) we consider the bi-
ection

4 ﬁ—l : B — B,
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we obtain again a bijective system. It is called symmetric to B and
is denoted b‘y B-1, Tl}e successor (predecessor) of an element of B in
the cymmetric to B bijective system B-! coincides with its predecessor
(\-H_-cecsur) in 4.

- More gereraliy, if we cousider in B—! an arbilrary notion N of B, we
obtain again a notion in B. It is called symmetric to N. If in any predi-
cate P in B we substitute every notion with its symmetric, we obtain again
a predicate in B, which is called symmetric to P.

Obviously the following assertion holds.

Princ ple of symmetry. The symmetric staiement of every statement
true in B is true in B.

In what follows the application of the principle of symmetry will not
alweys be emphasized explicitly.

Definition 2. A bijective system f:5— 5 is called indecompo-
sable, when for every ncnempty subset X of S from

6)) X)X, B~I(X)CX
follows
(6) X=_.

In what follows S always denotes an indecomposable bijective system.

Obviously & is an indecemposable bijective system if and only if every
noncmply subset ¢f S, which tcgether with every its elemient contains its
successor end ils predecissor, coincides with &0 When we epply this pro-
perty of S, we say that we accemplish induction in 8.

The notion of indecomposable bijective system is autosymmetric.

If the indecomposable bijective system S consists of the element
x only, then x'=x.If § consists of the different elements x and y
only, then x'=y, y'=x and therefore ‘x=x'. The following proposition
shows, that thess equalities characterize these most simple indecomposable
bijzctive systems.

Proposition 1. If the indecomposable bijective systam S has more
than one element, then

(M xFx x€S)
and if S has more than two elements, then
(8) % % X' (x€S).

Proof. Induction on x.

The following proposition shows, that a bijective system S is indecom-
posable under somewhat weaker conditions than those in definition 2.

Proposition 2. A bijective system § is indecomposable when there
exists such an element s of S, that for every subset X of S containing S
from (5) follows (6).

Proof. Let Y be the set of all those elements y of S, for which from
(5) follows (6) for every subset X of S containing y. By hypothesis s¢Y.
Let y¢ Y. If X is a subset of S with (5) and y' ¢ X, then y=§-'(y)€X an
therefore X=3S because of y¢ Y. Hence y'¢Y. Similarly it Is proved that
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J&e Y. Consequently the set ¥ contains s and possesses the property (5) with
Y instead of X. Therefore, from the hypothesis of the proposition follows
Y=S8. Q E. D.

In [7] it is proved that every bijective system can be represented as an
union of disjoint indecomposable bijective systems.

Every ring A4 is a bijective system with

9 x'=x+1, 'x=x—1 (x € A).

Definition 3. A bijective system 4 with (9) is said to be generat-
ed by the ring 4.

The following theorem gives a criterion for indecomposability of a bi-
jective system, generated by a ring.

Theorem 1. The bijective system generated by a ring is indecompos-
able iif the ring is minimal.

Proof let A be a minimal ring and Y be the intersection of all subsets
X of A, for which

(10) 0¢X, X+1CX, X—1cX
hold. Obviously
(in 0cY, Y4+1CY, Y—ICY.

Let X be the set of all those elements x of Y, for which Y—xCVY
holds; obviously O ¢ X. Let x¢ X. Then

Y—(x+1)=(Y—x)—1CY—1CY

according to (11). This shows, that X+ 1CX, because from (11) follows
x+1¢ Y. Similarly it is proved that also X—1CX. So X possesses the pro-
perties (10). Hence X =Y according to the definition of Y. Therefore Y—YCY,
i e. Y is a subgroup of the additive group of A.

Let now X be the set of all those elements x of Y, for which YxCY
holds. Obviously 07 X. Let x¢X. Then

Yx+DCYx+YCY+YCY,

because Y is a group with respect to the addition. This proves that X+ I1CX.
By analogy it is established that also X—1CX. So X possesses the proper-
ties (10) and consequently X =Y, i. e. Y contains the product of every two
of its elements.

At last, from (11) follows 1¢ 7Y, which proves that Y is a subring of A.
Then Y=A, because the ring 4 is minimal. But Y is contained in every
subset X of A4 with the properties (10). Hance from (10) follows X=4. This
proves that the bijective system generated by the ring A4 satisfies the hy-
pothesis of proposition 2 and is therefore indecomposable.

Let conversely the bijective system generated by the ring 4 be inde-
composable and X be a subring of 4. Then of course X+#, X+1CX and
X—1CX. Hence X=A, because the bijective system A is indecomposable.
The ring A is therefore minimal. Q. E. D.

Corollary 1. Every minimal ring is commutative.
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Procf. Let 4 be a minimal ring and x be an arbitrary element of A.
Let Y be the set of those elements y of 4, that commute with x. Obviously
0¢Y. Let y¢Y. Then

Vx=(y+Dx=yx+x=xy+x=x(y+1)=xy

according to (9). Hence y'¢ Y. Similarly it is proved that also y'¢ Y. There-
fore Y=A, because according to theorem 1 the bijective system generated
by the ring A4 is indecomposable. Q. E. D.

Definition 4. A mapping

(12) hiB,— B,

of the bijective system B, into the bijective system B, is called a bijec-
tive homomorphism, when

(13) hop=8ch

Obviously for every bijective homomorphism (12) the equality
(14) ho f=1=f-10 j
also holds. The equalities (13) and (14) can also be written in the form
(15) Bx") = (h(x)Y (x¢By)
and
(16) k('x)="(h(x)) (x € By).

From (14) it follows that (12) remains a bijective homomorphism also
when each of the systems B, and B, is replaced by its symmetric.

The following two propositions give sufficient conditions for the unique-
ness and surjectiveness of bijective homomorphisms.

Proposition 3. If § is an indecomposable bijective system, B is a bi-
jective system and s¢ S, b¢ B, there do not exist more than one bijective
homomorphism %:.S — B with A(s)=0.

Proof. Induction in S by using (15) and (16).

Proposition 4 lf Bis a bijective system and S is an indecom-
posable bijective system, every homomorphism %#:B — S is a surjection.

Proof. Induction in § by using the equalities (156) and (16).

Definition 5. The mapping (12) is called a bijective antiho-
momorphism, when

17 I o =810 A
Obviously for every bijective antihomomorphism (12) the equality
(18) hofB-1=30c k
also holds. The equalities (17) and (18) can be written in the form
(19) ”(x')="(h(x)) (x¢ By)
and
(20) h(x)=(k(x)Y (x € By)

24 Toa. Cod. ysne. Pax. o maTevatnxa W meXaHuza, T. 68, 1973/74
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If (12) is a bijective antihomomorphism and one of the bijective sys-
tems B, or B, is substituted by its symmetric, # becomes a bijective homo-
morphism. Therefore the properties of the bijective homomorphisms are trans-
ferred mutatis mutandis for bijective antihomomorphisms too. When in what
follows this happens, it will not always be emphasized explicitly.

Definition 6. A bijective homomorphism is called & bijective
isomorphism when it is a bijection.

Obviously the inverse mapping of every bijective isomorphism is a bi-
jective isomorphism. Every bijective system, that is isomorphic with an in-
decomposable bijective system, is also indecomposable.

Definition 7. A bijective antihomomorphism is called a bijective
antiisomorphism, when it is a bijection.

The following proposition gives an example of an antlisomorphism.

Proposition 5. For an arbitrary ring A and for every element a of
A the mapping v: 4 — 4, defined by v(x)=a—x (x¢ A4),is an antiisomorphism
in the bijective system generated by the ring A.

Proof. Clear.

The following theorem shows a class of bijective isomorphisms.

Theorem 2. For every two elements x and y of an indecomposable
bijective system S there exists a unique bijective homomorphism

(21) h:iS— S
with
(22) h(x) = y.

This homomorphism is an isomorphism.

Proof. The uniqueness follows from proposition 3.

To prove the existence let x be an arbitrary fixed element of S and
let Y denote the set of all those elements y of S, for which there exists an
isomorphism (21) with (22). Then x¢Y and hence Y= because the identity
i of § is obviously an isomorphism with i(x)=x. Let y¢Y and let (21) be a
bijective isomorphism with (22). Let us put

(23) k=h - B.

It is immediately verified, that 2 is a bijective isomorphism with k(x)=y'.
Hence y¢ Y. Using the isomorphism

(24) [=h o -1

it is proved similarly that also 'y ¢ Y, Hence Y=3S. Q. E. D.
In what follows 4, , denotes the isomorphism (21) with (22). Now from

from (23) and (24) the equalities

(25) hx.y""hx,y o f (x, yé S)
and

(26) hxyy=Hsy o B2 (x, y €S)
follow.

. In the next proposition it is proved, that the group of isomorphisms of
S is a commutative one.
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Proposition 6. For avery two bijective homomorphisms 2:S — §
and k:5— S the equazlity
(27) hok=kooh
holds.

Proof, Let s be an arbitrary fixed element of S. From theorem 2 it
follows, that (27) will be proved, if we prove

‘28) hS,X Q ,lg,y:"hvs,y Q ’Zs'x (x,ye S)'

For an arbitrary fixed element x of S let ¥ be the set of all those ele-
ments y of S, for which (28) holds. Then s¢ Y and hence Y%, because
hiss is the 1dent1ty of S.Lei yev. From (25), (28) and (13) follows A, o A,
= Hox o« Bsyo 3 =Heyo o hsx=heyo Bsr, Lo ye¥. It is proved
similarly that 'veY Q. E. D

If 4, and A4, are rings and

(29) h:d, — A,

is a ring homomorphism, & is obviously a homomorphism beiween the bi-
jective systems, generated by the rings A, and -, The following proposition
shows that in scme cases the inverse statement is also true.
Proposition 7. If the ring 4, is minimal and (29) is a homomorphism
between the bijective systems, generated by the rings 4, and 4,, for which
h(0)=0 holds, then % is a ring homomorphism.
Proof. From h(1)=h(0)=(%2(0))=0'=1 follows, that /4 maps the unity
of 4, in the unity of 4,
. Let x be an arbitrary element of 4, and Y be the set of all those ele-
ments y of A, for which

(30) Rx +y)=h{x)+(y).

Obviously 0¢Y. Let yeY. Then from k(x+y) = h((x+y)) = (Alx+y))
= (h{x)+A( y)) =h(x)+ (/z( V) =h(x)+k(y') follows y' ¢ Y. It is proved simi-
larly that also "y ¢ Y holds. Now from theorem 1 follows Y=4,; and hence
(30) is true for all x and y from 4,.

Let x again be an arbitrary element of 4, and Y now be the set of all
those elements y of A,, for which

€2)) h(xy)=h(x)r(Y).

From 4(0)=0 follows O¢ Y. Let y¢Y. Then from A(xy)=~h(xy+x)=h(xy)
+h(X)=h ()R (Y)+h(x)=h(x)(Y)) =k (x)E(Y) follows y'¢Y. It is proved
similarly that also y¥'¢Y holds. Hence Y=A; and (31) is true for all x and
y of A4,. Q. E. D.

Corollary 2. If S is an indecomposible bijective system and 0 is an
arbitrary element of S, there do not exist in S more than one structure of
a ring with a zero 0, which generates the bijective system S,

Proof. Theorem 1 and proposition 7 with the identity of S instead
of 4.

According to theorem1 every minimal ring generates an indecomposable
bijective system. The inverse procedure is also possible. One can introduce
in every indecomposable Dbijective system S such a structure of a minimal
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ring, that the bijective system, which this ring generates, coincides with S.
In this direction there is no uniqueness. The construction of such a minimal
ring is possible in so many different ways, as many elements S contains.

Theorem 3. For every indecomposable bijective system S and for
every element O of S there exists a unique structure of a ring in § with
the following properties:

i) O is the zero element of the ring.

ii) The bijective system generated by the ring coincides with S. This
ring is commutative and minimal.

Proof. The uniqueness is established in corollary 2.

To prove the existence we shall first defiiie addition in S. From theo-
rem 2 it follows that for every element x of S there exists a unique bijec-
tive isomorphism

(32) hox:S— S

with

(33) hox(0)=x

and that the mapping, defined by

(34) X hox (x€S)

is a bijection between S and the set’ of all bijective isomorphisms in S. The

last set being a group, the bijection (34) permits S to be transformed into a

group, so that (34) will be a group isomorphism. Let S be supplied with

this group structure. From proposition 6 it follows, that the so constructed

group is commutative, For this reason additive notatfon is accepted for it.
As the mapping defined by (34) is a group isomorphism, we have

(35) x+y — ko o ho, (x, y€S).
On the other hand
(36) x+y""h0,x+y (x.,)’E S)

according to (34). From (35) and (36) follows Agxsy = hox © ko, which
together with the definition of 4;, gives x4 y=/ox+y (0)=/rox (Ko, (), 1. e.

@37) x+y=hox(y) (x, y €5
From (37) follows x+0=4Apx(0), i. e.
(38) x+0=x (x€ S)

according to the definition of A;, Hence O is the zero element of the com-
mutative group S.
Let by definition

(39) 1=0.
From (37) and (39) follows x+1="£g . =(kox(0)), i. e.
(40) X+1=x (x€.9),
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according to the definition of 4.,
From (40) follows

(41) x—1="x.

Before defining multiplication in S let us consider the set of the homo.
merphisms of the additive group S.
If for a group homomorphism

(42) p:S§— 8§

the equality p(1)=0 holds, it is the zero homomorphism. Indeed, obviously
Ker p£#. Let x¢ Kerp. Then p(x+1)=px)+p(1)=0,i. e. x ¢ Ker p ac-
cording to (40). It is proved similarly that alie 'x ¢ Ker p. Hence Ker p=S.

From this it follows, that if for two group homomorphisms (42) and
g:S — S the equality p(1)=¢(1) holds, they coincide. Hence ecvery group
homomorphism (42) is uniquely deterinined by its value p(1).

We shall establish now, that for every element x of S there exists a
group homomorphism (42) with

(43) (D =x.

Let X be the set cof all those elements x of S, for which the statement is
true. Obviously X342, Let x¢X and let (42) be a group homomorphism
with (43). Then p+i, where / is the identity of S, is a group homomorphism
with (p+0) ()=p(1)+il)=x+1=x", hence x' ¢ X. Itis proved similarly
that also ‘x¢ X holds. Therefore X=§ and the statement is proved.

Thus for every element x of S there exists a unique group homomor-
phism

(44) peiS — S
with
(45) px(l)=x.
From this definition immediately follow the equalities
(46) Po=0
and
(47) p1=i- <
From the above it is clear, that the mapping defined by
(48) x — P, (x € S),

is a bijection between S and the ring 3 of the group homomorphisms
in S.

The bijection (48) is an isomorphism between the group S and the ad-
ditive group of the ring S, i. e. the equality

(49) px+}’:px+py (x.yé S)

holds. Indeed p.+p,:S — S is a group homomorphism with (p.+py) (1)
=p1)+p(1)=x+Y.
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As T is a ring, the bijection (48) permits S to be transformed into
a ring, so that (48) will be a ring isomorphism. Let § be supplied with this
ring structure.

From (49) it follows, that the additive group structure in 5, defined by
means of the bijection (34), and the additive ring group structure in S,
defined by means of the bijection (48), coincide. Hence from (38) it follows,
that the element O of the bijective system S coincides with the zero element
of the ring S. In this manner the property i) from the formulationi of the
theorem is established.

As (48) is a ring homomorphism,

(50) L XY= Px o Py (x, 3 €5)

-

holds. From (50) follows x1 — p. o p,=p, according to (47), which together
with the bijectivity of (48) gives x1=x (x¢S8). It is proved similarly that
Ix=x (x¢S) also holds. Hence the element 1 defined by (39) of the bijec-
tive system S is the unity of the ring S. Now (40) shows that pronerty ii)
from the formulation of the theorem is also fulfilled.

From theorem 1 it follows, that the so constructed ring S is minimal
Its commutativity follows from coroilary 1. Q. E. D.

In what follows, when an indecomposable bijective syslem & is given and
we speak about a ring structure in S, we shall understand, that an element
0 of S is fixed and we consider the unique structure of a ring in § with
the properties i) and i) from theorem 3.

§ 2. RECURRENT SETS

Let B be a bijective system, .VGB and Mc:B.
Dctfinition 1. The set M is called r1ght yrecurrent, when from

x &M and x+y follows x'¢ M.

Definition 2. The set M is called left y-recurrent, when from
x¢ M and x3=y follows 'x¢ M,

The notions right and left y-recurrent set are obviously symmetric. The
empty set, as well as the whole set B, are right and left y-reccurent for
every y from B; the one-element set {y} is right as well as left y-recur-
rent. The followmg lemma gives another, not so trivial example.

Lemma 1. For every element y of B the set B\{ '} is right y-recur-
rent and the set B\{'y} is left y-reccurent.

Proof. Immediate application of definitions 1 and 2.

The foliowing proposition permits to construct reccurent sets, in which
induction is possible.

Proposition 1. The intersection of right y-reccurent sets is a right
y-recurrent set and the intersection of left y-recurrent seisis a left y-recur-
rent set.

Proof. Immediate application of deifinitions 1 and 2.

Let B be a bijective system and x, y be elements of 5.

Definition 3. The intersection of all right y-recurrent subscts of B,
which contain x, is called the right y-reccurent closure of x
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Definition 4. The intersection of all left y-recurrent subsets of B,
which contain x, is called the left y-recurrent closure of x.

The right y-recurrent closure of x is denoted by R[x, y] and the left
y-recurrent closure of x is denoted by Ll[x, y].

The notlons right and left y-recurrent closure of x are obviously sym-
metric. From proposition 1 it follows that R[x, y] is a right and L[x, y] is a
ieft y-recurrent set. Obviously R{y, y]={y} and L[y, y]=y.

The following two propositions express some properties of R[x, y] and

Llx, Y} o '
Proposition 2. If x is an element of B, then
(1) B(R[x, 'xDCR[x, 'x]|
and
(2) =i (Lx, ¥DCLx, x').

Proof. Let E¢R[x, 'x]. Then & ¢R[x. 'x] for &%'x, since Rlx, 'x] is a
right ‘x-recurrent set. If £="x, then £ -= x, hence again & ¢ R[x, 'x]. This proves
(1). Now (2) follows from the principle of symmetry, Q. E. D.

Proposition 3. If x is an e¢lement of B, then

(3) Rlx, x'|={x, x'}
and
(4) Lix, 'x]={x, 'x}.

Proof. The set {x, x'} contains x and is right x'-recurrent. Hence
Rlx, x'lC{x, x'}. The opposite inclusion is obvious and so (3) is proved. Now
(4) follows from the principle of symmetry, Q. E. D.

The next theorem studies the behavior of R|x, y] and L[x, y] when one
of the arguments x or y is replaced by its successor or predecessor.
5t l;I‘heorem_ 1. If x and y are different elements of a bijective system

, then

(5) Rlx, 'y]=Rix, y\{yh
(6) Rix'y yiU{x}=R[x, y]
and

(7) Lx, y'1=L{x, yN v}
(8) L[ x, YU {x}=L]x, yl

If B is an indecomposable bijective system, (6) and (8) can be written in
the form

9) RIx', y]=R[x, y)\x}
and
(10 L'x, y]=L{x, y\{x}.

Proof. First of all we shall establish the validity of (5). From x%y
follows

(11) x € Rlx, yNy}
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On the other hand, the set Rix, y\{ y} is right 'y-reccurent. Indeed, let
€ ¢ Rlx, y\{y} and E:,l:y Then &y aqd EeR[x,y] Hence g ¢ R[x, y), be-
cause R[x,y] is right y-recurrent set. But &y, therefore Z'¢ Rlx, y)\{ y}.
Now from (11) follows
(12) Rlx, y)CR[x y){ v}

Obviously

(13) x € Rlx, " y]U{y}

On the other hand, the set R[x, ‘y] U { y} is right y-recurrent. Indeed, let
€ ¢ Rx, y]U{y} and E#y Then EGR[A, v} and therefore &' ¢ R[x, 'y]CRlx, ' y]

U{y} for E=F'y. For §='y we have §'=y, hence again § ¢ R[x, y]U{y}
Now from (11) follows

(14) Rx, yICR[x, ‘yIU{ y}.

From lemma 1 it follows, that the set B\{ y} isright 'y-recurrent. On the
other hand, x ¢ B\{ y}, hence Rx, 'yJCB\{y}, consequently

(15) yeR[x, Y] (x=%y)

Now (5) follows from (12), (14) and (15) and (7) follows from (§) and
from the principle of symmetry.
We shall establish now the validity of {6). Obviously

(16) x € R[x', ylU{x}

On the other hand, the set R[x', y]U{x} is right y-recurrent. Indeed, let
Ee¢ R[x, yJU{x} and Efy. If E¢R[X, y], then & ¢R[x, y|]U{x}, because
R[x', y] is a right y-recurrent set. If £=x, then & ¢ R[x', y]CR[x", y]U{x].
Now from (16) follows

(17) R{x, yICRIx', yU{x}
From x=-y follows

(18) x’ QR[x,,V]-

On the other hand, R[x, y] is a right y-recurrent set, hence Rlx', yJCR{x, y]
and consequently

(19) Rlx, ylU{x}CR[x, ).

Now (6) follows from (17) and (19) and (8) follows from (6) and from
the principle of symmetry.
The equality (9) will be proved, if we show, that

(20) xeR[X, y] .

For an arbitraty fixed y let X denote the set, formed by y and by those
elements x of B different from y, for which (20) holds. Obviously X4,
From proposition 1, § 1 follows y's-y", because B by assumption has more
than one element. Now (15) with y' instead of y and with y” instead of x
shows that y' eR[y", y], which is (20) with x=3’. Hence 3' ¢ X. On the
other hand 'ye{y}=R[y, y], hence y' ¢ X too. Let now x¢X and x3y.
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First we shall establish, that x' € .X. If x'=y, this is ftrivial, therefore let
x'y. From (20) follows x"g¢R[x", y], because the mapping £ —§& (5 € B) is
a bijective isomorphism. But R[x", y]CR[x"’, '] according to (3). Therefore
ve RIx", y], i.e. x'¢X Finally we shall show, that 'x¢ X. If ‘x=3,
this is trivial, therefore let 'x=y. As the mapping £ — '§ (¢ B) is a bijec-
tive isomorphism from (20) follows 'x¢R{[x, 'y], which together with (§)
gives ’(J)c"eR[x, y] because of 'xzy. But this shows, that 'x¢ X and pro-
ves (20).

In this way (9) is proved. Now (10) follows from the principle »i sym-
metry. Q. E. D.

Corollary 1. If x and y are elements of B, then Rx, v] iz a left
v-recurrent set and L[x, y| is a right x-recurrent set.

Proof. Let & ¢ Rlx, y] and E&x. Then Z € R|'x,'y]. But R['x, "v]=R[x,'y]
U{'x} according to (6). As €-'x, then E¢ R[x, v]. Now (5) gives ¢ ¢ Rlx, y]
and the statement for R{x, y] is proved. Now the statement for L[x, y]| fol-
lows from the principle of symmetry., Q. E. D.

Corollary 2. For every element x of § the equality

2n Rlx, 'x]UJLlx, x1=S8
holds.

Proof. Let X be the set in the left side of (21). Obvinusly x¢ X, hence
X2 Let E¢ X If £E¢ Rlx, 'x] and E='x, then & ¢ X, because Rlx, ‘x] is 2
right ‘x-recurrent set. If E='x, then §=x¢ X, Now let &¢ L]x, x'). If €=,
then £ ¢ Lix, x'|CX according to corollary 1. If E=x, then E-:='x according
to proposition 1, § 1. Therefore &'=x"¢ R[x", x]C X holds. This proves
E'¢ X. From the principle of symmetry now follows ‘§¢.X. Hence X=34§.

Q. E. D.
Corollary 3. Ii for some element x of S the relation
(22) "x € Rx, "x]
holds, then
(23) Rlx, x]=8
and if the relation
(24) x" ¢ Llx, x|
holds, then
(25) Lix, x'}=8.

Proof. Let € ¢ R[x, 'x]. Then ‘E¢ R[x, 'x] according to corollary 1 for
§Fx and according to (22) for E=x. Hence B-(R[x, 'xXDCK|y, 'x]. On the
other hand, from proposition 2 follows 3(KR[x, 'xNCR[x, 'x]. Now (23) is prov-
ed Dby induction. The second part of the statement follows from the first
and from the principle of symmetry. Q. E. D.

The next proposition deals with a property of the intervals in §.

Proposition 4. For every two elements x and y of S the inclu-
sions

(26) Rlx, YINK[y, x]C{x, y]
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and
(27) Lix, yINL y, xIC{x, v}

hold.

Proof. Let x be an arbitrary fixed element of S and ¥V be the set of
the elements y of S, for which (26) holds. As R[x, x]={x}, then x¢ Y and
hence Y4#. From proposition 3 follows x’¢ Y, therefore let y¢ ¥ and y¥x.
If y'=x, obviously ¥ ¢V, therefere let v'Zx. Then from (§) and (9) follow
the inclusions

Rlx, yICRlx, yJU{y'} and Rly', xICR[y, x]My}

respectively, Hence
Rix, YINRLY', x|C{x, v’}

according to (26). Consequently from y ¢ Y follows y'¢ Y. The relation 'y ¢ Y
is established by analogy and so (26) is proved. Now (27) follows from (26)
and from the principle of symmetry. Q. E. D.

The next two propositions show, thst if one of the arguments is fixed,
the sets R[x, y] and L[x, y] determine the other one uniquely.

Proposition 5 If x, ¥y and 2z are elements of S, from y¢ Rlx, 2]
and 2¢R|[x, y. as well as from ve¢Lfx, 2] and z¢L[x, y] follows
y=2.
Proof. Let y and 2 be arbitrary fixed eclements of S. For y=2z there
is nothing to prove, therefore let

(28) yFz
and let X be the set of the elements x of S, for which
(29) YeR[x, 2]
or
(30) ZeR[x, ¥
holds.
From (9) and (28) follows zER[2', y), hence
(31) z,(-/Y.
From (28) and R(y, y}={y} follows ZeR]y, y), hence
(32) yeX
It is proved similarly that also
(33) ze X
Let now x¢ .V and let for example (29) hold. We shall prove
(34) ¥eX

Because of (31) we can suppose xz-2. But then from (6) follows
R[x', 2)JCR]x, 2], which together with (29) gives yeR|x, z] and hence (34).
Now we shall prove

(35) %€ X,
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Because of (33) we can suppose ‘xzz. But then (9) gives R[x, 2|
Rlx, 2JU{'x}. Hence either yeR['x, 2] and then (35)! holds, or y ¢ R[’x, 2]
and then because of (29) ‘x=y holds, in which case (35) is true because
of (32).

Consequently for (29) the relations (34) and (35) held. It is proved
similarly that these relations are also true for (30). Herice X=S and the
first part of the statement is proved. Now the second follows from {he prin-
ciple of symmetry. Q. E. D.

Proposition & If x, y and z are elements of §, from yc¢ Rz, x]
and 2€ R[y, x], as well as from y¢ Lz, x] and z¢ Ly, x] follows y=2.

Proof. For z=x the equality R[z, x]={x} holds and the statement is
trivial, therefore let 2Z=x. Then

(36) Rz, x\{z}=R(z) ]

according to (9). If we suppose v =+ 2, from y¢R |2, x] and (36} would
follow y ¢ R{z', x] and therefore R] y, x]CR{2, x|, which contradicts (26) and
z¢ Rly, x]). Hence y -z and the first part of the prorosition is proved. Now
the second follows from the principle of symmetry. Q. E. D. :

§ 3. EQUIDIRECTED TRIPLES

In the present paragraph we discuss bijective systems B and indecom-
posable bijective systems S with three elements at least.

For an arbitrary set M the set of all ordered triples (x, y, 2) of ele-
ments of M with x<:y+z3x is denoted by M.

Definition 1. Two elementsof B are called elementary equid:-
rected, when one of them is obtained from the other by replacing its
first component with its successor or by even permutation of its com-
ponents.

In this way a binary relation A is definad, which is reflexive and sym-
metric, but is not transitive in general. Let ! denote the least equivalence
relation in B, which contains as a subs:t the relation A in B.

Definition 2. Two elements of 7 are called equidirected, when
they are in the relation 1. A
If A and p are equidirected elements of B, we shall write 2 | p. The

relations A sand { in B are obviously autosymmetric.

The following proposition, which enumerates some triples, equidi-
recte? with (x, v, 2), is often used at inductive studying of the rela-
tion 1.

Proposition . It (x, y,2) and (¢ n, §) are elements of B and
Ee{'x, x. XL ne{'y, », ¥}, £€{2 2 2}, then (x, y, 2)1 G , D).

Proof. Immediate verification.

The next proposition gives & connaction between the relation | and
intervals in B.

Proposition 2. If the triple (x, y, 2) Is equidirected with the triple

& n §) from
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(1) y¢ R[x, 2]

follows at least one of the relations

(2) néRE 5, SeR[y, 5], £€RE 7
and from

(3) y€Lx, 2]

follows at lcast one of the relations

€) neLE ¢ C¢Ln &, €eL[g, n)

Proof. First we sghall prove that from (1) follows at least one of the
relations (2), when the firiple {x, y, 2) is elementary equidirected with the
triple (&, %, ). This is obviously true, if the triple (§ ¥, §) is obtained from
the triple (x, 3,2) by an even pzrmutation of its components. Hence accord-
ing to definition 1 we have to consider only the cases (§, n, §)=(x, ¥, ?)
and &, u, §)="x, y, 2), in either of which from (1) follows the first of the
relations (2) according to (9), § 2.

In order to prove, that from (1) {ollows at least one of the relations (2)
in the general case, let 7 denote the set of all triples (u, v, w) of B, for
which at least one of the relations v ¢ Ru, w], w¢R|v, u] or u ¢ Rw, 7]
holds. Let F be the epuivalence relation in B, whose equivalence classes are

T and B\T. From the just proved part of the statement it follows, that

the relation 1 in B is a subset of the relation £. Hence t < E. Therefore
the first part of the statement is proved. Now the second part iollows from
the principle of symmetry. Q. E. D.

Corollary 1. If x is an arbitrary element of B, none of the triples
(‘x, x. x') and (x', x, 'x) Is equidirected with the other.

Proof. If some two of the elements 'x, x and x" coincide, the statement
is trivially true, therefore let all three of them be different from one an-
other. Obviously x ¢ R['x, x'}.1f the statement were not true, from proposition
2 it would follow, that at least one of the relations

(5) x €R[x, 'x], 'x ¢ Rlx, x'], x’ ¢ R['x, x]

would hold. But the first and third of them are impossible according to (5),
§ 2 and (9), § 2 respectively, and the second relation (5) is impossible ac-
cording to proposition 3, § 2. Q. E. D,

The following proposition shows that the directions are fnvariant with
respect to bijective isomorphisms.

Proposition 3. If S isan indecomposable bijective system, A:S— §

IS a bijective’ homomorphism and (&, %, ¢) ¢ S then

(6) (), h(n), RE) €S
and
(N & 0 C) 1 (RE), h), AT))

Proof. The valldity of (6) follows from theorem 2, § 1.
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Let x be an arbitrary fixed element of ¢ ,
S with hA=h,,. Therefore (7) will be proveq\g'ingeereSh?;sfhz? element y of
(8) & n 91 (,5(5), hx;.v(-,])’ hxy((:))

tor every y of & Let } Dbe the set of the , . ,
is true. Obviously x ¢ Y, because _/zx,x is the:er?ggftsit;’ gft g’ i‘{’;n‘,‘fs“;ﬁ‘:gg’
Let y¢V. From (13), § 1 and (20), § 'y foyows h,xw:iﬂ o h,\:y- There-

fore
(9) (e (B), PxyAn), /lX'Y'(C))=(("1x,y(§))', (e y())s Bx(8))).

9 (i siti lows y' ¢ . o
,f;r%rl}.(nge(ngeax}]]q:;g"c);g lElonD‘l follows V" ¢ ¥y is proved similarly that also
Corollary 2. For arbitrary elements .., 1 ¢ 51 § the relations
(10) (o x x) 1 (5 g g

and
(1 (% x 1 E, gz
hold. S €)

Proof. Proposition 3 with A =#h, .
The next proposition strengthens coroll 5.,
Proposition 4. If x, z and § are elements of S then

(l 2) (x, x, z) T (/E) Es E') ('x:i:z:*:x)
and
(13) * w21 € g g (x'd2%x).

Proof. We shall establish first, that
(14) (xx 21 (x x x (x+2£x).

Let Z be the set, consisting of 'x, x an

which (14) is true. Obvious%y Z4-4. Let . Q}f those elements z of S, for
It 2='x, then 2'=x, hence 2’ €Z I " _ . then z'=y" and obviously

(x, % 2) 1 (x, x, x), therefore again 2" € Z. y ot 3.2 Lx If 2’ coincides with

"x or with x, obviously ‘z’ ¢ Z, therefore let = +7/~x. From proposition ! now

follows (x, x, 2) 1 (x, x, 2), which 10 ather with (14) gives (x, x, 2)

; (éxéx’ x') and this shows, that 2 € Z. = Consequently from z ¢ Z follows

It is proved similarly that also ‘2 € Z. Hence Z=S and (14) is q
' = proved.
Now (12) follows from (10) and (14), and I
the principle of symmetry. Q.E. D. (13) follows from (12) and from
1{ndthe following teorem the basic Droperty of the relation 1 is for-
mulated.

Theorem 1. The relation { divides  § into two classes. Al triples of
the type

(16) (% &%) ¢S
belong to one of them, and all triples of 40 type
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(16) €, & D (€eS)
belong to the other.

Proof. From corollaries 1 and 2 it follows, that all the triples of the
type (15) are equivalent between one another, that all the triples of the type
(16) are equivalent between one another and that no triple c¢f the type (15)
is equivalent to a triple of the type (16). Therefore the theorem will be

proved, if we show, that for every triple (x, y, ) from S either

(17 xyv. 221 ({88
or
(18) by, 1€ 8

is true for some & from S.

Let x be an arbitrary fixed element of S and let Y be the set, formed
by x and by all elements y of S with y=-x for which some of the
relations (17) or (18) hold for an arbitrary element (x, y, 2) of S. From
proposition 4 follows YV :l:ﬁ Let v e Y.

I y=x, then (x, y 2)=(x, x, x) | (E g €) accordmg to (12) with x'
instead of x. Hence y €Y. If X:}:x and V' =x, obviously y' ¢V, therefore let
y¥x£y'. Now let (x, y,2)€S, i. e. x2Fy.1f 24y, then (x, y, 2) 1
(x, ¥, 2) according to proposition 1 and as at least one of the relations (17)
or (18) is true, at lcast one of the relations

(19) x, ¥, 1088
o1
(20) o y,2) 1€, 8

will be also true. If z=y, then (x, ¥/, 2)=(x, ¥, ) 1 (W, 3, x) | (§, & 'B)
according to proposition 4, i e. the relation (19) will be true. Consequ-

ently from y ¢ Y follows y’ E Y. Now ‘y¢Y follows from the principle of
symmetry. Q. E. D.

§ 4. NATURAL DIRECTIONS

Definition 1. For an arbitrary set M a subset D of M is called a
direction in M, when It possesses thie [ollowing properties:

i) From (x, y, z) ¢ D follows (y, 2z, x)¢D.

ity Frem (x, y, 2)¢D and (x, 2, t)&U follows (x, y, t) € D.

When in a set M a direction is given, M is called a directed set.

The following proposition strengthens the conditions i) and ii).

Proposition 1. If D Is a direction in M, then:

j) From (x, y, 2) ¢ D follows (2, x, y)¢ D.

jj) From (x, y, 2)¢ D and (x, 2, #) ¢ D follows (y, 2, t) ¢ D.

Proof. j) Clear.

jj) From the hypothesis of the proposition, from j) and i) follow (2, x, nebD
and (2, ¢, x) ¢ D, which together with i) gives (2, ¢, ¥)¢ D. Now the state-
ment follows from j). Q. E. D.
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For a given direction D in M we shall denote by D the set of all ele-
ments (x, y, 2) of M, for which (z, y, x) ¢ D holds.

Proposition 2, [ is a direction in M.

Proof. Let (x, y, 2)¢D, i. e. (2, ¥, x) ¢ D. From j) follows (x, z, y) ¢ D,
i e (V, 2, x) ¢ D, whence the property i) for D is veritied.

Let (x, y, 2)¢D and (x, 2, )¢ D, 1. e. (2 3, x)¢D and (¢ 2, e D.
From j) follows (x, z, y)¢ D and (x, £ z)¢ D. Then from ii) and i) we ob-
tain consecutively (x, ¢, )¢ D and (¢4, 3, x)¢ D, i. e (x, y, D)€ D whence
the progerty 1i) for D is also verified. Q. E. D,

Definition 2, The direction D in M is called opposite to the di-
rection D in M,

Obviously D=D. _

dl-"ropositiom 3. For every direction D in i/ the equality D(N\D=g
holds.

Proof. Otherwise there would exist a tiiple (v, y, 2) with (x, y, 2) ¢ D
and (x, ¥, 2) ¢ D. From the last relation follows (z, ¥, x) ¢ D, which together
with j) gives (x, 2, ¥) ¢ D. Now from (x, ¥, 2) ¢ D and ii) follows (x,2,2)¢D,

which is impossible. Q. E. D.
For a given partial order < in M we shall denote by D(<) the set

of all those elements (x, y, 2) of M, for which one of the conditions

(D xly<Lz,
(2) y<z<x
of

©) z<x<y
holds.

Proposition 4. For every partial order < in M the set D(<) Is a
direction in M.

Proof. Immediate verificativn of conditions i) and li) of the definiti-
on l.

For the direction D(<) in M we shall say, that it is generated by
the order < in M. The opposite to < order generates the opposite to D(<)

direction.
H in M a direction D is glven and s is’an arbitrary element of M, let by

definition

(4) X<y (x; YEM),
when

(5) x=m=%y

or

(6) (m, x, .V) ¢eD

holds. It is verified immediately, that this relation is a partial order in M.
It is called a (m, D)-order in M. Similarly it is immediately verified,
that for it D(<)”D holds. In the general case this inclusion is a strict one.
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Definition 3. A direction D in A is said to be a full one, whep
D\ D=M.

If the order < in M is a full ong, the direction D(<) is also full. Con.
versely, if an order < in an at least three-eleinent set A generates a full
direction in M, thie order is also full.

Proposition 5. If D is a full direction in M and m is an element
of M, the direction in M, geunerated by the (m, D)-order in M, coincides
with D,

Proof. Because of D(<)CD it is sufficlent to prove only the inclusion
DCD(<). Let (x, y, §) ¢ D..It m coincides with some of the elements x, y
or z of M, because of i) and j) without loss of generality we can suppose,
that s ~=x. Then m=y, hence m<y according to the definition of the (m, D)-
order in M. From the same definition follows y<z. Thereiore (1) holds and
consequently (x, y, 2) ¢ D(<). Let now m be different from all three of x, y
and z. As the direction D is a full one, one of the relations

%) (m, x, y)¢D
or

(M (m, y, x)€D
and one of the relations

8 (m,y, ¢ D
or

) (m, z, eD
will hold.

In case of (6) and (8) from the definition of the (m, D)-order in M fol-
lows (1), hence

(10) x, ¥, 2) € D(<).

In case of (7) from i) follows (y, x, m)¢ D. On the other hand, again
from i) and (x, y, 2) ¢ D follows (y, 2z, x) ¢ D. Now ii) and jj) give (y, 2, m)
¢D and (2, x, m)e¢D,i. e. (m, y,2)¢D and (m, 2z x)¢ D according to j),
But then (2) holds, i. e again (10) is true. It is proved similarly that in
case of (9) (10) holds again. Q. E. D.

Definition 4. A ncnempty direction ) in a bijective system B is
called @ natural direction in B, when from (x, y, 2) €D follows
x,y, 2¢D for (x; y,2¢B and (x, y, 2)¢ D for (x, y, 2) ¢ B.

Obviously if there exists a natural direction in B, B is at least a
three-element set- If D is a natural direction in 5, the opposite direction D
of D is also a natural direction in B. The notion natural direction is auto-
symmetric.

The next theorem guarantees the existence and uniqueness of the na-
tural directions in the indecomposable bijective systems.

Theorem 1. In every indecomposable bijective system S with three
elements at least there exist just two natural directions. They coincide with
the equivalence classes, genierated by the relation {, are mutually opposite
and each of them is full,
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Proof. Let D be a natural direction in S. We shall prove first, that
from A€ D and At p follows p ¢ D. Indeed, let E be the equivalence relation
in S, whose equivalence~ classes are D and §\D. From definition 4 follows,
that the relation A in § is a subset of the relation E. Hence { CE and the
statement is proved.

From this follows, that D is an union of equivalence classes in S ge-
nerated by the relation {. As by definition D=:g, the direction D contains
at least one class. If we suppose, that D contains both equivalence
classes in S, generated by the relation t (theorem 1, § 3), we get a contra-
diction with proposition 3. Hence D coincides with one of them. As the
opposite direction D is also a natural one, it coincides with the other equi-
valerice class, generated by {. Therefore the theorem will be proved, if
we establish, that each of these equivalence classes is a natural direc-
tion in S.

So let D be one of the equivalence classes, in which the relation | de-
composes the set S, From definitions 1 and 2 of § 3 follows, that D pos-

sesses the property i).
In order to prove, that D possesses the property ii) also, let

(11) x, 3 2) €D
and
(12) (x, 2, H)¢D.

In order to prove (x, y, £) ¢ S we must establish, that <y, Otherwise we
would have (11) and
(13) (x, 2, y)€D.

Let for example D be the equivalence class, generated by the relation f{,
which contains all the triples (15), § 3. As §¢ R[€, §’], from (11) and propo-
sition 2, § 3 follows, that at least one of tke relations

(14) YERIx, 2}, xeR[z, y}, z¢ Rl y, x]
holds. Analogically, from (13) follows at least one of the relations
(15) Z¢R[x, y), x¢ Ry, 2], y¢€R|z x]

But there is no relation (14), consistent with any relation (15). In order to
prove that it is sufficient, with a view to the symmetry, to show that the
first of the relations (14) is not consistent with the relations (15). Indeed,
from y¢ R[x, z] and z¢ R]x, y] follows y=2z according to proposition 5, § 2,
which is in contradiction with (x» y, 2) ¢ S. Analogically from Yy € R[x, 2] and
x & R y, z] follows x=y according to proposition 6, § 2, which leads to the
same contradiction. Finally, from y¢ R[x, z] and y¢R[2, x] follows y=x
or y=z according to proposition 3, § 2, which-again is a contradiction.
Hence (x, y, §) ¢ S.
Now we shall prove that from (11) and (12) follows

(16) (x, 2 t) ¢ D.

25 roa. Cod. ynun., Gax. uo MaTemaTvxa ¥ Mexawnxa, r, 68, 1973/74
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To this end let x, y and ¢ be arbitrary elements of S with (x, y, )¢ S and
Z b: the set, composed of x, y, £ and of those elements 2z of S, which
arz different from x, y, ¢ and for which from (11) and (12) follows (16).

We shall prove first the relations
a7n xX'eZ,'x¢Z, yeZ 'yeZ t' e Z ‘te¢ Z.

For z=x" the relation (11) and (12) take the form (x, y, x') ¢ D and
(x, X, £) ¢ D respectively and cannot be simultaneously fulfilled, because
the first is equivalent with (x/, x, ¥) ¢ D, which together with the se-
cond gives (x, x, ¥) 1 (x, x, £) in contradiction to proposition 4, § 3 and
corollery 1, § 3. Hence x' ¢ Z. It is proved similarly that 'x ¢ Z.

For z=y' the relations {(11) and (12) take the form (x, Y, y)¢ D and
(x, ', t) ¢ D respectively. From proposition 1,§ 3 follows (x, v t)T(x ¥, b),
hance tie second of these relations implies (16) Hence y'¢ Z. It is proved
similarly that "y % 2.

t7or z=t' the rcdations (11) and (12) take the form (x, ¥, £)¢ D and
G, e reﬂf‘e*ttv“h From propasition 1, § 3  follows (¥, 3, €)1 (x, 3, B),
herice the first of these relstions gmplies (_IC‘ Hamc‘ eZ 1t is proved si-
milarly thet £'¢ 2

Therefore the rolatiorns {17) are proved.

Letz¢ Z, z+x, 2%y, 24 and

(18) (x, y, 2)€D
and
(19) (x, 2, )¢ D.

From (18Y, (19) and preoposition 1, § 3 follow (11) and (12). As z¢ Z, this
implies (16). Hence 2’ ¢ Z. It is proved analogically, that also 'z ¢ Z. There-
fore Z=S and ii) is provead.

Therefore it is proved, that D is a direction in S. From proposliion 1,
§ 3 immediately fcl'ows, that D is a natural direction. Q. E.

Consequenily in every indeccmposcble bijective system S there exist
just two natural directions. Every two elements of each of them are equidi-
rected. According to thecrem 1 and theorem 1, § 3 one of these directions
consists of all those elements of S, which are equidirected with any triple

of the tyre (x, x, x) and the other — of all the elements of S, equidirect-
ed with any mple of the .type (x', x, 'x) (x ¢ S).

Definition 5. The natural direction in S, that contains all triples
(x, x, x) (x€S), is called positive direction in S and the natural di-
rection in S, that contains all triples (x', x, 'x) (x € S), is called negative
direction in S.

From proposition 4, § 3 follows, that the positive direction in § con-
tains also all elements of S of the type ('x, x, 2) and the negative direction

in S contains all elements of S of the type (¥, x, 2). The notions positive
and negative direction are obviously symmetric. It is clear, that positive
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directions are transformed in positive directions and negative direction in
negative directions by isomorphisms between indecomposable bijactive
systems.

For the clements of the positive direction in S is said, that they are
positive directed, and for the elements of the negative direction in S—

that are negative directed. When two elements of Sbelong tothe same
natural direction in S it is said, that they are equally directed, and
otherwise — that are opposite directed.

The next proposition sets up a connection between the arithmetical ope-
rations addition and subtraction and the natural directions in S.

Proposition 6 For every element (x, y, 2) of S and for every ele-
ment a of § the triples (x, y, 2) and (x+a, y+a, z4-a) are equally di-
rected, and the triples (x, y, 2) and (a—x, a—y, a—2) are opposite di-
rected.

Proof. From (37), § 1 follows, that the mapping s — s+a (s¢ S) is a
bijective homomorphisin and the first part of the proposition follows from
proposition 3, § 3.

In order to prove the second part, let us consider together with S also
its symmetric bijective system S—'. The mapping o:8 — S, defined by
o(s)=a—s (s¢S), is a bijective isomorphism according to prcposition 5, § 1.
Therefore it transforms for example the positive direction in S in the posi-
tive direction in S—1 However, the last coincides with the negative direc-

tion in S. Hence o changes the directions of the triples in S. Q. E. D.

§ 5. CYCLIC AND INTEGRAL SYSTEMS

Definition 1. A bijective system

(1) p:C—-C

is called cyclic, when for every nonempty subset X" of C from
) pX)CX

follows

3) X=C.

In what follows C denotes a cyclic system.

Obviously every cyclic system is an indecomposable bijective system.

The definition property of the cyclic systems is, so to say, an axiom
for a right induction. The next proposition shows, that in cyclic systems
left induction can be performed also, i. e, that the notion cyclic system is
autosymmetric.

Proposition 1. A necessary and sufficient condition for the bijec-
tive system (1) to be cyclic is for every nonemnpty subset ¥ of C from

(4) BNy
to follow
(%) Y=C.
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Proof. Necessity. Let, contrary to (5), Y+C and let X=C\Y. Then
Z3+XCC and (2) holds, whence (3) follows in contradiction with Y+Z. The
sufficiency is proved analogically. Q. E. D.

The next two propositions strengthen the axiom for th: righ i.ducti p
aid propceition 1. ,

Proposition 2. A necessary and sufficient condition for thz bijective
system (1) to be cyclic is such an e¢l:meat ¢ of C to exist, that for every

subset X of C from
(6) ceX

and (2) to follow (3).
Proof. Let T be the set of all those elements ¢ of C, for which from

(7) te XcC
and (2) to follow (3). Obviously )
(8) ceT.
Let

9 teT,
(10) te¢XcC

and (2) holds. If X,=XU{¢}, then £¢X,CC and B(X;)CX, because of (2)
and (10). Now from (9) follows X,=C. Hence ‘£¢ X and consequently £¢ X
accord'ng to (2). Then from (2) and (9) follows X=Z. Consequently ¢’ ¢ 7T,
which shows, that

(i1 B(T)CT.
From (8) and (11) follows
(12) T=C.

accor.ing to the condition of the proposition. The equality (12) expresses,
that for every nonempty subset X of C from (2) follows (3). Therefore C is

a cyclic system. Q. E. D.
Proposition 3. A necessary and sufficient condition for the bijective

systam (1) to be cyclic is such an element ¢ of C to exist, that for every
subset Y of C from

(13) ce¢Y

and (4) to follow (5).
Proof. Analogical to that of proposition 2.
Definition 2. A bijective system

(14) B:l—1

is called integral, when it is not cyclic.
This means, that either there exists a subset X of / with

(15) BEX+1
and (2) or there exists a subset Y of / with
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(16) B4 Y]

and (4) (proposition 1).

In what follows / denotes an integral system.

The notion integral system is autosymmetric. No integral system is iso-
morphic with a cyclic system.

The next two prozositions follow directly from the definition of an in-
tegral systemn and jrom propositions 2 and 3.

Proposition 4. A necessary and sufficient condition for the bijec-
tive system (14) to be integral is for every element { of / a subset X of /
to exist with

(17) e X+1
and (2). :

Proposition 5. A necessary and sufficient condition for the bijec-
tive system (14) to be integral is for every element { of / a subset Y of [/
to exist with
(18) icY+l
and (4).

From the definition of a cyclic system, frcm proposition 1 and from

proposition 2, § 2 follows, that for every element ¢ of an arbitrary cyclic
system C the equalities

(19) Rle, ‘c]=C
and
(20) Llc, ']=C

hold, and from propositions 4 and 5 follows, that for every two elements
x and y of an arbitrary integral system / the relations

(21) Rlx, yi*{

and

(22) Lix, y]*1

hold, .

Definition 3. An order < in a bijective system Bis called a right
natural order in B, when from b6¢ B follows 6<b’. An order < in a
bije tive system B is called a left natural order in B, whan from 6% B
follows &<'b.

The noticns right and left natural order in a bij:ctive system are sym-
metric. From definition 3 Immediately follows, that for every right natural
order < in B from b&¢ B follows b6'<b and for every left natural order
< in B from b¢ B follows & < b. The opposite order of every right
natural order in B is a left natural order in B and conversely.

For an arbitrary order < in an arbitrary set M by definition

(23) [m)y={x¢ M:m=x)}
and
(24) (m]={x ¢ M:x=m}

for every element m of M,
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The next proposition sets up a connection between the natural orders
in the indecomposable bijective systems and the operations R and L
in them.

Proposition 6. For every right natural order in an indecomposable
bijective system S and for every clement s of S the equalities

(25) [9)=R]s, ’s]
and
(26) (s]=LUs, 5]

hold and for every left natural order in S and for every element s of S the
equalities

(27) [s)=L]s, §']
and

(-8) (s]=R[s, 's]
hold.

Proof. For symmelry reasons it is suificient to prove only (25). Accord-
ing to the definition of a right natural order B ([s)) C[s) holds and as
s ¢ [s), then
(29) R]s, 'sicC[s).

Anzlogically it is proved, that
(30) Ifs, 1c(s)
We shall prove now, that also
@31) [)CR[s, 's]

holds. To this end let x¢ls). If xeR[s,’s], from corollary 2, § 2 would
follow x ¢ L[s, §'}, which together with (30) would imply x ¢ (s], wherefrom
x=s, contrary to xeXR[s, 'sl. Therewith it is proved (31). Now (25) follows
from (29) and (31). Q. E. D.

Corollary 1. If C is a cyclic systemn, there does not exist a natural
order in C. )

Proof. Let us suppose the contrary and let ¢ ¢ C. If for example < is
a right natural order in C, then c¢<c'. On the other hand, from (19) and (25)
follows ¢’<¢, which is a contradiction. Q. E. D. '

Corollary 2. If / is an integral system, there does not exist in /
more than one richt and more than one left natural order,

Proof. Equalities (25) and (27).

Corollary 3. If §, and S, are indecomposable bijective systems with
right (resp. 1eit) natural orders, for every bijective isomorphism £:S5; — S,
from '

(32) xly (x, y€S)
follows
(33) h(x)<h( y)

and for every bijective antiisomorphism n:S; -+ S, from (32) follows
(34) n( y) <nix).
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Proof. The statement follows from
h(R;s, 's)=RIk(s), '(A(s)] and n(R[s, 's])=Lln( s'), (n(s))]
(resp. irom h(L[s s])--R h(s) (h(<)] and n(Ls, )= [nks), ‘(n{s))] and

from proposition 6. Q. E

The following two Iemn.:as are preparatory for the proof of the existence
of natural orders in the integral systems.

Lemma 1. I} x and v are arbitrary elemenis of /, the conditions

(39) XY,

(36) Rlx, x]=Rly, "y
and

(37) Lx, xj=Ly, ¥']
are equivaient.

Prosf. It i ‘-:a;;‘;'ia;'isf:st i nrave, that fro " follows \;,a) 15} "z?.zis end
it is ‘L}h‘cL‘lﬂ 't i establoly that & iy the only r ent of Rix, ¥, Wi el 1s
not a su ceescor of an clement of Sy, vl Frow (21) and corv‘]arv 3, 8§ 2
follews “xenix, 'z}, i ¢, x indeed is nol a 5uuwmr of an element of

1
(24
Rlx, '] Tru n c'o ollar iy 1, § 2 inilbws, that Ju: cther eliment of Rlx, 'x]
is a successor of an ¢lement of Rix, 'x]. Q. E. D.

Lemma 2. If x and v are arbitrary clements of /, from

(38) xeRly, 'yl
follows

(39) Y€ Rlx, x]
and from

(40) xeldy vyl
follows

(41) .1"'[""’ - ’]

Proof. 1t is suificient {o prove, that from (38) follows (39), since the
second part of the statement follows from the principle of symmatry. Let us
suppose, that along with (38) also

(42) yeRix, 'x]

holds. From (38), (42) and cerollary 2, § 2 follows
(43) x¢L(y, y]

and

(44) v e Ifx, ).

From (43), (44) and from the definition of L follows L[x, x]ZL y, ¥'] and
Ly, yICUx, x, i. e. Lx, x'}=I] y, '], which together with lemma 1 shows,
that x=y, contrary to (38). Q. E. D.

The following theorem guarantees the existence of natural orders in
the integral systems.
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Theorem 1. In every integral system there exists just one right and
just one left natural order. They are mutually opposite and each of them is
a full one.

Proof. The uniqueness is proved in corollary 2.

The existence will be proved, if we construct for example a right
natural order in /. Let by definition x< y just when x+y and y¢ R[x, 'x}

From this definition {ollows immediately, that there does not exist an
element x of / with x<x.

Let now x<y and y<z. Then x+y, y€ R[x, ‘x] and z¢ R[y, 'y]. From
yER[x, 'x] follows the inclusion R{ y, 'yJCR|x, ‘x}. Hence 2 ¢ R|x, 'x). It x=z,
we would have R[x, 'x]=R[z, 2JCR[y, 'yJCR[x, 'x], wherefrom R|[x, 'x]
=R[y, 'y]l. Now from lemma 1 follows x=y, contrary to the condition.

From (21) follows, that / has at Jeast two elements. From proposition 1,
§ 1 follows x+x" and x+'x for every x of /. From x#'x follows x’ ¢ R]x, 'x],
which together with x+x' gives x<x'. Hence < is a right natural or-
der in /.

Now we shall prove, that for every two elements x and y of / at least
one of the following three possibilities

(45) x=y, X<y, y<x

really takes place. If the first two relations (45) do not hold, then x4y and
yeRlx, 'x]. From the last relation and from lemma 2 follows x ¢ R[y, ‘v,
which together with x+y gives the third relation (45).

The opposite order of the so defined right natural order in / is obvious
a left natural order in /[ Therefore the right and the left natural
orders in / are mutually opposite. Q. E. D.

Corollary 4. An indecomposable bijective system S is integral iff
there exists a natural order in it.

Proof. Corollary 1 and theorem 1.

The next proposition shows a characteristic property of the natural or-
ders in the integral systems.

Proposition 7. ® < is the right natural order in /, from

(46) xy

follows

(47) Y=y

and

(48) x<'y

and if < is the left natural order in /, from (46) follows
(49) x=y

and

(50) x=y.

Proof. 1t is sufficient to prove the statement for the right natural order
< in /. From (46) and proposition 6 follows x+y and x¢ L[y, y’], which
together with corollary 1,§ 2 gives x’ ¢ L[y, y'] Now (47) follows from pro-

position 6. It is proved analogically, that from (46) follows (48). Q. E. D.
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Corollary 5. If < is the right natural order in /, for cvery element
! of [ the equalities

(1) [Y={x¢[l:1<x}
and
(52) (i) ={x¢el:x<i}

hold and if <« is the left natural order in /, for every element i of [ the
equalities

(53) [i)={x¢l:i<x})
and

(54) ()={xecl:x<i}
hold.

Proof. Clearly.

Corollary 6. If < is a natural order in /, for every two elements x
and y of / with x<y the interval [x, y] is a finite set.

Proof. Let < be for example the right naturzl order in / and x be an
arbitrary fixed element of /. let Y be the set of those elements y of /
with x< v, for which the statement is true. Obviously x¢VY. Let y¢Y,
From proposition 7 follows |x, y'}=Ix, y]U{y'}), hence y ¢/ Thereiore
R|x, 'x]CY and from fproposition 6 follows [x)CY. Q. E. D.

The following theorem shows, that the natural orders in / are in a cer-
tain sense good.

Theorem 2. If < is a natural order in /, every nonempty minorized
subset of / has a smallest element.

Proof. Let < be for example the right natural order in /, M be a non-
empty minorized subset of / and m be a minorant of M. From proposition
6 follows M C R [m, ‘'m]. Let X be the set of all elements x of
R [m, 'm], which are minorants of M. Obviously m ¢ X and X#R[m, ‘m].
Therefore from the definition of R[m, ‘m] follows, that there exists an ele-
ment & of X with £'¢ X. Since £ is a minorant of M, the statement will be
proved, if we establish, that £ ¢ M. Otherwise for every y of M the inequ-
ality §<y would hold, wherefrom would follow £ <y according to proposi-
tion 7. But this would mean, that £ is a minorant of M and consequently
£’ ¢ X, which is a contradiction. The refore M has a smallest element. Q. E. D.

The next theorem guarantees the existence of bijective homomorphisms
in certain cases.

Theorem 3. Let i and b be arbitrary elements of the integral system
I and of the bijective system B respectively. Then there exists an unique
bijective homomorphism A:/— B with

(55) h(l)=b.

Proof. The uniqueness follows from proposition 3, § I.

In order to prove the existence let < be for example the right natural
order in I. From theorem 2 and from the theorem for definition by induction
in the well ordered sets follows, that there exists a mapping &,:[))— B
with #,())=b and

(56) by(x") = (hy(x)) (x€[D)
and a mapping A,: ({] — B with h,())=b and
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(87) (X)) ="(o(x) (x € ().

Since the right natural order in [/ is a full one, then (/jUi)=/ Thzrefore
the equalities

[r’zl(x) for x ¢[),
L Aa(x) for x ¢ (i

define a mapping 4:/— 3 with (53). From (56) and /67) followg, that tha so
defined £ is a bijective homomorphism Q. E

Corrollary 7. Every two integril sys meS are isomorphic.

Proof. Let [, and [, be integrel systems and i, ¢/, i,¢/,. From theo-
rem 3 follows, that there exist homomorphisms #&,:/,— [, arnd Ak,: 1,1,
with k,(i)=iy and k,({,) ={,. From proposition 3, § 1 follows %, o hl-—-jz,
where j, is the identity of . Q. E. D.

(58) h(x)=

Corollary 8 If [ is an integral syctom and S is an indecomposable
bijective svsiern. ther: exists a rinw esimorphisn L.._ —> .‘F.
Proof. Accordirg to thzorem 3 tharz exists » biective humo norphiu

Il — S, From propasition 7, § 1 follows, that £ is a rinz ho"nnor ‘hison.
Frem pro;,osmon 4, § 1 fo]bws, that & is an epiisorphisng, Q E.

Dcfinition 4. f < is the rlgh‘ natural order in /) the ele mnt
I is called positive when 0<x and regative when x<0,

The notions positive and negative eloment dre symmetric. Frem corol-
lary 5 and proposion 6 and from the definition inequalitizs fcllows, that the
set of the positive elements of / coincides with R[1,0] and the set cf the ne-
gative elements of / coincides with L[—1, 0].

The following theorem shows, that the right natural order < in [ is
coordinated with the ring operations in /.

Theorem 4. The right natural order < in / possesses the following
properties:

i) 0 is not a positive element of /.

ii) For every elament v+0 of [ at least one oftheelements v and — x
is positive,

iiiy The sum of two positive elemzants of / is a positive eiement of /.

iv) The product of two positive elements of / is a positive element
of I.

Proof, i) Clearly.

ily From proposition 5, § 1 follows, that the manping v:/— I, defined
by v(x)=—x(x ¢ /), is an antiisomorphism. Hence from corollaty 3 follows,
that for every negative element x of / the element — x is positive. Now ii)
follows from the completeness of the natural orders in /.

iii) Let x and y be positive element of I. The mzpping A:/ — [, defin-
ed by Z(2)=x+2z (z¢ /), is a bijective isomorphism. Since 0<y, from co-
rollary 3 follows A(MY<k(y), i. e. x<x+y. Now iii) follows from the in-
equality 0<x.

iv) For an arbitrary fixed positive element v of [/ let ¥ ba the set of
all those elements y of R[1,0], for which xy belongs to R[1,0]. Obviously
1¢ Y. Let y¢ Y. Then xy' =x(y+1)=xy+x¢Rjl,0] according to iii). From
he definition of R[1,0] now follows Y=R[1,0]. Q. E. D.
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The next theorem shows a conrection between the natural orders and
the natural directions in /.

Theorem 5. The right natural order in /is the ouly order in /, which
does not possess a smallest element and generates the positive direction in
I and tbe left natural order in / is the only order in /, which does not pos-
sess a largest element and generates the negative order in /.

Proof. 1t is sufiicient to prove the statement for the right ratural order
< in /. We have to prove, that the direction IX<) (proposition 4, § 4) is
the positive direction in /. We shall esteblich first, that il is a naiural di-
rection in /

Let (x, y, z) ¢ D(<). Then at least one of the relations

(59) X< Y<z, y<2<X, 2<xly .
hold: Let yFx'd=2. Then from proposition 7 it follows, that every of the
relations (59) implies the respective relation

(60) Nl y<s, y<le<y, z<x <y

Therefore (x', y, 2) € D(<). It is proved enalogically, that from y+'x+2
follows ('x, y, 2) € D(<). Consequently D(<) is a natural direction in /.

Since for every x of / the inequalities 'x<x<x" hcld, then ('x, x, x')¢
D(<). Therefore D(<) is the positive cirection in /.

Let now { be a direction in / without a smallest element, which gerera-
tes the positive direction in /. Sinice the last cne is full, the order { is also
full. Therefore if we suppoce, that it is not a right naturel order in /, an
element x of / would exist with x'{x. Since the order { does not have a small-
est element, an element y of / would exist with y<x’. Hence the triple
(y, x', x) would be positive directed in contradiction with the properties of the
positive direction in /. Consequently { isthe right natural orderin /. Q.E D.

The next theorem gives a necessary and sufficient condition for an in-
decomposable bijective system to be cyclic.

Theorem 6. An indecomposable bijective system is cyclic iff it is a
finite set.

Proof. Les S be a finite indecomposable bijective system. We suppose
that S is an integral system and denote by < the right naturaf order in S.
For an arbitrary element s of S let us consider the mapping ¢:S— S,
defined by
61) c(x)={

x for x=s,
x' for s<x

From corollary 5, proposition 6, corrolary 3, § 2 and (21) follows, that o
is an injection and that o(S)+S, which contradicts to the finiteness of S.

Let inversely S be a cyclic system. According to corollary 8 there
exists a ring epimorphism %:/— S. It is not a monomorphism, since in such
a case [/ and S would be isomorphic. Therefore there exist different (from O
elements x of / with

(62) h(x)=0.

From theorem 4 follows that without loss of generality we can suppose
0<x. We shall prove that

(63) S=4([0, x)).
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Indeed, obviously 0 ¢ A([0, x)). Let
(64) s € ([0, x]).

Then s=*£{), where i¢]0, x). If i&x, then s§'=A()¢A([0, x]) according to
proposition 7. I{ i=x, then A(@)=A(xi=0=Ak(0) by (62). Therelore s =h(l)
=h(0") £ £([0, x]}, according to proposition 7. Consequently from (64) follows
s € k[0, x)). It is proved analogically, that from (64) follows also “s¢ (|0, x]),
This proves (63). Now corollary 6 shows, that S is a finite set. Q. E. D.
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Moctrnuna na 17. XII. 1974 r.

AKCHMOMU HA NMEAHO 3A MHUHHMAJIHUTE IMPBCTEHU
U.MMponanos, N. Yob6anos

(PE3IOME)

Enun npucTed ce HarKuya MHHHMAJEH, KOTATO He NPHTEXKapa cO6CTEeHM
noAnpbCTeHH. MilHUMased NPBCTEH € HIZNpHMEp CeYeHHEeTO Ha BCHYKUTE NOA-
NPBLCTEHA HA Aajed npbhcreH. V3BeCTHO e Kak H3riexaT MHHHManHHTe Npb-
CTEHH: C TOUHOCT A0 HZOMOP(HIBM Te CHBNAAAT ¢ NPBCIEHA HA LEJAHTE UHCAA
UAH ¢ HeroBH (JAKTOPHPBCTEHH.

Ha noustuero mMunmManes npbcred cofave MOxe Ja ce jA2je W 3HAUH-
TeJIHO NO-TieCTeNMBa JiepuHUIUA, KATO Cce caefBa nneHiHo nvrar va [pac-
mMan — Jlenexnna — [leano — Jlanpay [l] — [4] 3a akcuovaruuyecko omu-
CaHWC HA ECTEeCTBeHMTR yucaa, NpH KOHTO Hapenbata, CHOUpaHeTo, YMHOMKE-
HHETO M mp. ce Aeduanupar, KaTo Cé M3X0XKJAa OT NPOCTa YHAapHA OmepaiHs.
B nacrosmata pa6oTa e NOKAa3aHO LKaK MOXe Ja CTaHe TOBa,

[TbpBHTE YeTHpH akcHOMH Ha [leaHo 3a apHTMeTHKAaTa Ha e€CTECTBEHHTE
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e

3

quCcAa W3PasfBaT B CEINHOCT, ue Npr.6asaneT0 Ha €AMHELATA NOL2XNA HHeK-
qad B MHOXECTBOTO Ha ecTeCcTEeHnTe urcrza. ETo zamo y Ileano no crige-
creo ce Kacae 33 Jee ZFCEROMH: aKCROMAE -a FEEKNVSA H aKCrova 33 HHINYKIHA.
{1 # HPEATTEHOTO TYK aKCKOMATHYEC CUHCAKue Ha LHBRMeJEMIE NP1 CTEHH
CLUlO C€ Kacae 3a Jie aKCHOME: axCcHoMa 3a Cuexnrs W akcmcMa 2a ABY-
cTpania unpykues. [1bpBara onncBa LpuOZBAHETO U H3BANKAAHETO HA €LMHM-
paTa, @ BTOpara € ecTeC1LEeRO KSRCKBZHE 33 MHHEMaJEOCT, X2pakiepha 3a
MUHEMAJIBUTE npbcTeHd. Tarka ce CTHra X0 NOHATKETO HepasaokuMa Ouek-
THBHA CHCTEMa,

B cpaBHenne C aKCHOMAaTHuYeCKOTO IIOCTpPOAB2ZHE LA eCTECTBEHHTE GHCJA
TYK €a HalpIe HAKOW onpocTaBawus. Taka HanprMmep, clien KaTo B €AHAZ He-
pasnoxumMa OHeKTHBHA CHCTeMa Ce h20efe NO NOKZBOJEH HAukH elMH HYJeB
en€MCHT, CbBCEM €CTeCTEeHO EBb3HHKER OMEeKUMsI MexAy wes B rpynara Ha
uaomof usMuTe M., TOBR MO2BCIABA NONTH aBRT( METHYLGTO LLEEXLAHE Ha
c16upadero. [pbeTeHdT Ha xoMoMOp(hR3MUTE KA 18Ka IOJYUeHaTa aJHTHEHA
rpyna OTHOBO Ceé HaMMpa B €JHO3HAUHO OOPA1HMO CBOTLETCTEHE C HEpasie-
#HEMaTa OMeKTHBHAa CHCTEMa, KOETO MNO3BOJSBa TA JAa C€ NpepbLpHE CBC Chb-
glaTa JecHHHa B MHHMMaJeH npbcTedH. Ha BpBbSKaTa MeXAY MHHHMaJHHTE
NpbCTEHH H HEPA3NO0XKHMHTE GHEKTHBHH CHCTeMH € noceeren § 1.

B TexHnueckuss § 2 ce M3yyaBaT HAKOH CHenManHll NOAMKOMECTBA Ha
elHa HepasaoxuMa OHeKTHBHA CHCTEMa. 3HAYEHHETO Ha PEKYPEHTHHTE MLO-
;KecTBa NPH BBNPOCH OT nojobed poa (e K3TEKHATO 3a NpBbB ILT OT Tarame
aunxu [5). EcTecTBOTO Ha HelzaTa HEzara TYK Ja ceé H3ROA3yBa eZHa MOXH-
(puKalusl HAa MOHATHETO [€KYPEHTHO MHOXECTEO, HHTETecHO € sia ce oT0enexH,
ye C NOMOILTA HA PEKYPEHTHH MHOXECTBA IIPH T} aJHIOUOHHOTO 2aKCHOMATH-
yecKkO HM3rpax<jaHe Ha apUTMETHKaTa Ha ecTecTBeduTe uKcaa no [leano na-
pen6ara moxe [6] na ce BbBele HE3ABHCHMO OT apUTMETHUHHTe OMNEPAIMH 3a
pasnnka OT u36pauus B (4] noxox. MsaumHo e na ce H3TBHKBAT HOCEONO-
FHYECKHTE H HCTOPHYECKHTE NDHYMHM, NOPaJH KOMTO TO3H HAayuH € 3a npen-
NOYHTaHe,

Bnnpexn ye B pa6OTH € XapakTepa Ha Hacrosilata Ke 64 TL20B2n0 Aa
ce OYaKBa YCTaHOBSABAaReTO Ha KOBK (PaKTH, OTC'BCTBRETO Ha €CTeCTBEHA Ha-
penla B MPOHSBOJHA HEPA3NOMKEMA OHEKTHBHA CHCTEMA HANCH(M BBBEKAAHETO
H M3yuaBaHETO HA €IHH CYPOTraT — MOHATHETO €CTECTEEHA KOCOKH, HA KOETO
ca nocsetenn § 3 U 4. BBB BCsKa HepazoxuMa OHeKTHBHZ CHCTEMa HMa
TOYHO JiBé €CTeCTBEHH NOCCKH, KOHTO Ca THCHO CBEp3aHH CBC CBOMpaHeTo.
Maxap H TYK Ja He CC Hsyvapa BPBH3KaTd Ha €CTECTEEHHTE NOCOKH C YMHO-
WEHHeTO, BPB3MOXKHOCTHTE HAa Ta3H KCHUENUUS ca, Harnexna, no-roleMy u e
MeJaTeNHO MO-HAaTaThIIHOTO M HM3N0J3YyBake uype3 a0CTPeKTHO H3yucBare Ha
HaCcOUeHHTe DPBCTEHH N0 aHanorks ¢ hapeleHute. Pasrnexrpaunara ot § 3 u
4 Gnxa MOIJIM Ja CNyXaTt 3a mMOJes] B TasH Hacoka.

Nocaenunar § 5 cbA®BPXKA TLH XapaKTePHCTEKE HA I[eJHTE UHCAA B
KJlaca Ha Hepas3noXHMHTe OHeKTHBHM CHCTeMH. [lpeim BcHuko Toza ca Hepas-
N0XUMH OGHEKTHBHH CHCTEMH, B KCHTO He € Bb3MO:KHA €JBOCTPEHHA HHIYK-
uus. OT zpyra cTpaHa, TCBA €3 HE[A3NOXUMM OHEKTHBHY CPCTEMH, B KOMTO
CbUIECTBYBAT ecTecTBeHH Hapeabu. Hali-nocse ToBa ca OeskpaiikuTe Hepace
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JOXHMH OHeKTHBHH cHCTeMH. Hepasnoxumure GHEKTUBHH CHCTEMH, KOMTQ
NPHTEXABAT Te3H EeKBHBATEHTHH IMOMEXAY CH CBOHCTBA, Ca HADEYEHH HHTe-
rpanrHy, a OCTaHaAKTe — IUKIHUYHN.

B § 1 — 4 ce n3yyaBaT oHe3du CBOHCTBAa Ha Hepa3noxHMuTe OHEKTHBHM
CHCTeMH, KOMTO Ca NPHCBUIH KAKTO HAa MHTErpajHMTE, TaKa H HA HUKJIHYHHTe
cdcTeMH. B To3H cMHUCDBA MO aHAJOTHSA C reoMeTpuaTa 6 MOrJao Jda Ceé ro.
BOpY 8a aGCOMIOTHA apHTMETHKA.



