TOTALLY MINIMAL TOPOLOGICAL GROUPS

Dikran Dikranjan, Ivan Prodanov

A Hausdorif topological group G is said to be minimal (and the to-
pology of G is called minimal group topology) if every continuous
group isomorphism k:G — G,, where G, is a Hausdorff topological group, is
a homeomorphism. lf a topological group is compact, it is obviously minimal.
Stephenson [8] and Doitchinov [3] give examples of non-compact minimal
topological groups. In [6] and [7] all minimal group topologies on a finitely
generated free Abelian group are described. In this paper totally minimal
topological groups are considered. They are nearer to the compact ones
than the minimal topological groups. All the groups considered here are
Hausdorff.

A Hausdorff topological group G is said to be totally minimal (and
the topology of G is called totally minimal group topology) if
every continuous group epimorphism #:G -+ G, where G, is a Hausdorff
topological group, is open. This means that for each closed normal subgroup
N of G the quotient group G/N is minimal. Clearly every compact group is
totally minimal, and every totally minimal group is minimal. The example
4 given below shows that these three classes are different.

A subgroup H of atopological group (G is called totally dense if
for every closed normal subgroup N of G the group N (| / is dense in N.
For N=G it is clear that every totally dense subgroup of G is dense in G.
If the group G is simple the converse is also true. Other examples of totally
dense subgroups are given below.

Theorem 1. Let G be a Hausdorff topological group, and H be a
dense subgroup of G. Then H is totally minimal if and only if G is totally
minimal and / is totally dense in G.

The proof of Theorem 1 is based on two lemmas. The second of them
is formulated in [9] and [4], and [9] contains a proof for the Abelian case.

Lemma 1.Let G and G, be Hausdorff topological groups, / be a
dense subroup of G, and f:G-— G, be a continuous group epimorphism.
If the restriction fln: H— f(f1) is open, then the epimorphism f is
also open.

Proof. Let U be a neighourhood of the neutral element ¢ of G. Denote
by V a symmetric neighbourhood of e with V.V U. Then V(N H is a neigh-
bourhood of e in H. Hence, f(V(\H) is a neighbourhood of the neutral
element e, of f(H). Therefore, there is a neighbourhood W of e, in G, such
that WNf(H)Cf (VA H). Now it follows that

(1) FUW)NHCY ket f.
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The statement will be proved if we show that W < f(U). Let
ye¢W and x be an element of G with y=f(x). Then Vx[f~(W) is a neigh-
bourhood of x in G. Since / is dense in G it follows that Vx( f~ (W) H+2.
Now (1) implies Vx[\V ker f+#. Therefore, x¢V2kerf and hence y=f(x)
e f(V)HCf(U) QE.D. | -

Lemma 2. Let G be a Hausdorff topological group, N be a closed
normal subgroup of G, /7 be a dense subgroup of G, and p:G— G/N be
the corresponding canonical homomorphism. Then the restriction p 5 : H— p(H)
is open if and only if N=[NNH}*

Proof. Suppose the restriction p'g:H—p(H) is open, and U is an
arbitrary neighbourhood of the neutral element e of G. We prove that

(2) NC(NOH)U.

Let ¥ be a symmetric neighbourhood of e in G such that V. VcCU. Then
p(HN\V) is a neighbourhood of the neutral element e, of G/N in p(H).
Hence, there is an open neighbourhood W of e, in G/ such that

) p ()NWCpHN V).
First of all we prove that
4 (P*W)MNHT(NOH)V.

Let for this purpose h¢(p—(W)N)(NH. Then there are elements v and n
such that Z=wvn, n¢ N, v€d, p(v)¢ W. Therefore,
pep (H)NW
and (3) implies p(h)¢ p(HO V). That is, there are A, ¢ HO\V and n,¢N such
that 2Z=n,h,. Clearly n,¢ N H. Hence,
k¢ (NN H) (HNV)CWNNH)Y
and (4) is proved. Since p~Y(W)N is an open set in G, the density of H im-
plies p~YW)NC[(p~(W)N)(H]. Applying (4) we obtain
NCp-(WNCIINNHV SN H)V NN H)U

which proves (2). Therefore, N=[N{)H] and the necessity is proved.

Suppose now N=[N{\H]|, and prove that the restriction p'y : H— p(H)
is open. Let U be an arbitrary neighbourhood of e in /, and ¥ be a sym-
metric neighbourhood of e in H with V?CU. Then [V] is a neighbourhood

of e in G, and therefore, p([V]) is a neighbourhood of e, in G/N. First of
all we prove that

() VDN p(ECp(U).

Let for this purpose p(k)¢p((V]) (k¢ H). Clearly h=vn where v ¢ [V] and
n¢N. But N=[NNH| and there is a net {n,}CNH with lim n,=n. At the

same time there is a net {v,}CCV with limv,=v. Therefore, lim hn;'faa" =¢,

* [X] denotes the closure of a subset X of G in G.
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and hence for each suificiently large @ we have kn_'v_ !¢V because n,¢ H,

v,€¢ H. From this it follows that k¢ Vo,n.C V2N, and p(}z)e p(VH”p(U) which
proves (5). Since p([V]) is a neighbourhood of e, in G/N (5) implies that the
restriction p g is open. Q. E. D.

Proof of theorem 1. Let H be a totally minimal subgroup of G. First
we prove that G is also fotally minimal. Let for this purpose G, be a Haus-
dorff topological group and f:G-— G, be a continuous epimorphism. The
restriction f'y: H — f(H) is open by the definition of a totally minimal group.
Now lemma 1 implies that the epimorphism f is open, and therefore, G is
totally minimal. Now we prove that / is totally dense in G. Let N be a
closed normal subgroup of G, and f:G — G/N be the corresponding cano-
nical epimorphism, Since the group H is totally minimal, the restriction fig
is open. Applying Lemma 2, we find N=[N [ H] and the necessity is
proved. ,

Let now G be totally minimal, and /7 be a totally dense subgroup of
G. Consider an arbitrary continuous epimorphism f:H — H,, where F, is a
Hausdorff topological group. Then the intersection N = ([f~*(W)] where W
runs over all neighbourhoods of the neutral element of H, is a closed nor-
mal subgroup of G. Since the group H, is Hausdofff we have NN H=ket f.
Now H being totally dense implies N=[kerf]. Denote by p:G— G/N the
corresponding canonical epimorphism. Endow G/N with the topology t having
as a base of neighbourhoods of the neutral element the set {p([f~'(W)})}
where W runs over all the neighbourhoods of the neutral element of A,
Since [f~YW)] are neighbourhoods of e in G the topology t is weaker than
the quotient topology N on G/N. On the other hand the definition of N im-
plies that t is Hausdorff and the minimality of 7 implies 7 =<. Consider the
monomorphism g:H, —G/N defined by g(f(x))=p(x) for each x¢ H. We
find a commutative diagram

[

H— G
/| . |7
H,~—» GIN

where [ is the canonical embedding of A in G. It follows from Lemma 2
that the restriction p/p: H—g(H,) is open. On the other hand the defini-
tion of t implies that g: H, — g(H,) is a homeomorphism, and since the same
is true for i: — H, we find that the epimorphism f is open. Q. E. D.

The above argument gives more. Let Q be a class of continuous epi-
morphisms of Hausdorif topological groups, with the properties:

1. If in the diagram F—— G —— H g is a topological group isomors
phism and f¢ Q then g o f€Q;

g
2. If in the diagram F — G —> H g is a topological group isomor-
phism and f¢Q then fo g¢Q;
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3. Every open group epimorphism belongs to Q;

4, If G and G, are Hausdorff topological groups, f:G— G, is a conti-
nuous epimorphism, and /H is a dense subgroup of @, the restriction flx:
H— f(H) belongs to Q if and only if f belongs to Q.

Obviously the class of all continuous epimorphisms has the properties
1—4. An epimorphism f:(G - U, of Hausdorif topological groups G and G,
is called almost-open if for each neighbourhood U of the neutral element
of G the set { f(U)] is a neighbourhood of the neutral element of G,. It
is clear that the class of all continuous almost-open epimorphisms also has
the propertxes 1—4,

A Hausdorff topolog1c31 group G is said to be Q-totally minimal
if every epimorphism f:G— G, with fe¢Q is open. If Q coincides with the
class of all continuous epimorphisms this definition gives totally minimal
topological groups. If Q is the class of all almost-open continuous epimor-
phisms we obtain B — complete groups, which are studied by various au-
thors ([1], [4], [5], [9]). Each totally minimal topological group is obviously
Q-totally minimal for each class Q with the properties 1—4,

Of course, the notion of Q-minimal topological group may be introdu-
ced. A Hausdorff topologieal group G is called Q-minimal if every con-
tinuous group isomorphism £:G— G, with £2¢Q is a homeomorphism. I Q
coincides with the class of ait contmuous epimorphisms this definition gives
minimal topological groups. If Q is the class of all almost-open epimorphisms
we obtain B,-complete groups studied in [1], [4], [5], [9]. Obviously G is
Q-totally minimal if and only if for each closed normal subgroup N of G
the quotient group G/N is Q minimal. .

Theorem 2. Let G be a Hausdorff topological group and /{ be a
dense subgroup of G. Then:

i) H is Q-totally minimal if and only if G is Q totally minimal and /f
is totally dense in G;

ii) H is Q-minimal if and only if G is Q-minimal and for each closed
normal subgroup N of G the group N[/ does not reduce to the neutral
element of G.

The proof of i) is a Q-version of the proof of Theorem 1, -and the proof
of ii) is analogous; we will omit them. Let us note that Theorem 2 genera-
lise also Theorem 1.4 of [4] (see also [8]).

Example 1. Let H be a dense subgroup of the group SO(3). Then
H is totally minimal. Indeed, the group SO!3) is compact and so is totally
minimal, and H is totally dense because SO(3) is simple.

Example 2. Let G be a compact Lie group, and / be the sub-
group of G generated by the all the periodic elements of G. Then H is to-
tally minimal.

Indeed, let N be a closed subgroup of G. Then N is a compact Lie
group and the set of all the periodic elements of G is dense in N. There-
fore, N=[NH]

In particular, if Q is the additive group of rationals, and Z is the sub-
group of integers, the group (Q/Z)* is 'totally minimal for each natural
number 7.
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Indeed, (Q/Z)* is the subgroup of the periodic elements of the n-dimen-
sional torus 7™,

Example 3. A group topology on Z~" is totally minimal if and only
it it is induced by a dense embedding

(6) Q: Z7—Zp X Lp, X .. X Loy,

where £<n, P P2y Dy are different prime numbers, and Z, are the cor-
responding compact groups of p-adic integers, with

(7) P(ZHNOX. .. XOX(Z,\p,Z,) X0X...X0)F &

for each i=1,2,..., &

Indeed, [6] contains description of all the precompact minimal topolo-
gies on Z" From [7] we know that every totally minimal group topology on
Z7 is precompact. From Theorem 7.3 of [6] it follows that the desired topo-
logies are induted by dense embeddings (6) with

(8) PZHNOX...X0X(Z,\0)X0X...X0)F &

for each i=1, 2,..., k.

Now we prove the necessity. Let Z” be endowed by a totally minimal
group topology. Then there is a dense embedding (6) with (8). Let N=
0><...><0><pr><0><...><0 (i=1,2,..., k). Clearly N is a closed subgroup of

k
nZ,,l.. Now Theorem 1 implies that

(9) N=[NNo(Z"].

Since 0X...X0X(Z,,/p.Zp)}0X...X0 is a non-empty open subset of N, (9)

implies (7), and the necessxty is proved.
To prove the sufficiency let (6) be a dense embedding with (7). Let N be

a non-trivial closed subgroup of “ Z,. 1t is known that then there are clo-
i=l1

sed subgroups 4; of Z, (i=1,2,..., k), such that
(10) N:ALXAZX"‘XAIP
In the same way we find closed subgroups B; of A4; (i=1, 2,..., k) with

(11) [NNG(Z)]=Bi X ByX. .XBs.
Let for example B;+A,. Then A,#{0}, B,Cp,4,, and (10), (11) imply
(12) A XA X . . XANAZNCTP, A1 X A X oo X Ap.

But 4,=p,’ Zpl, ({=0, 1,...) and (12) contradicts (7) with {=1. Hence B;=A4,.
In the same way we prove B,=4; (i=2, 3,..., k). Now (10) and (11) imply
N=[NN®(Z")] and the sufficiency follows from Theorem 1.
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Example 4. Let p and ¢ be different prime numbers and ¢:7Z2—1Z,
XZ, be the embedding defined by ¢(1,0)=(1,1), ¢(0,1)=(0, ¢): Since (8)
takes place the topology on Z2? induced by ¢ is minimal. Let A=¢(Z?)
N(0x1Z,). Clearly A is a closed subgroup of ¢(Z?). But the topological
group ¢(Z%/A may be identified with the subgroup B of Z,xZ, generated
by the element (1,1), and the topology of B is not minimal.

Example 5. In [6] it is shown that Z, induces a minimal topology on
every subgroup GCZ,, and that this property characterises the groups Z, in
the class of compact Abelian groups. It is not difficult to see that Z, in-
duces a totally minimal topology on every subgroup G Z, and that this
property characterizes the groups Z, in the class of compact Abelian
groups.

Example 6. Let G be a compact Abeliangroup and 7 be the subgroup
of the periodic elements of G. Then every dense totally minimal subgroup
H of G contains T.

Indeed, for each x¢7 the subgroup N generated by x is finite, and
hence closed in G. Now Theorem 1 implies N=[N[H|. But N H is also
finite and [NNH]=NH. Therefore, x¢ H.

Example 7. Let n be a natural number, {G,} be a family of finite
Abelian groups with nG,=0 for each «. Then every totally minimal subgroup

of ”G.. is compact.
Indeed, let H be a totally minimal subgroup of G= I—I G,. It follows

Irom Example 6 that /1 is closed in G since [H] is a compact periodic Abe-
ian . group.
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TOTAJIHO MMHHMMAJIHU TOITOJIOTUUHU T'PYINHU
. luxpaunan U [Ilponanos

(PE3IOME)

Eansa xaycnopdoBa TomonormyHa rpyna G ce Hapuya MHHHMAJHa,
aKO BCEeKH HelpeKbCHAT rpynoB u3omopdussm f: G — G,, kprero U, e xayc-
nopdoBa Tomoaoruyna rpymna, € xoMeomoppuszbm. QueBHIHO BCAKAa KOMNAKTHA
TOIOJOrHYHA rpyna e MUHHUManNHa. [IbpBHTE NpUMepu 3a HEKOMIIAKTHH MHHH-
MaJHH TONOJIOTHYHH TpynH ca naizenH B [3] u [8]. B Tasm pabora ce pasriex-
JaT TOTA/JHO MHHUMaJHH TOMOJOTHYHH TPyNH, KOHTO ca MO-6JH30 A0 KOM-
NaKTHHTE, OTKOMIKOTO MHHHMAJIHHTE.

Enua xaycnopgoBa TonosnorHuHa rpyna ( ce HapHua TOTAaJHO MHHH-
MaJHa, ako BCeKH HenpekbcHaT enumopdusvM f:(U— G, xbreT0o G, €
xaycnopdoma TONOJOrHYHAa rpyna, € oTBopedH. OueBHAHO BCAKA KOMIAKTHA
rpyna e torandHo MuHMManHa. OT pasrieJlaHHTe [PHMEPH Ce BHXKJIa, Y€ HMa
TOTAJHO MWHUMAJIHH TPYNH, KOHTO HE Ca KOMIAKTHH, a CBIIO H MHHHUMAJHH
rpynd, KOUTO He ca TOTalHO MHHHUManAHH. Jloka3asa e cJjenHara TeopeMa.

Teopema 1. Hexka G e xaycmopdoBa Tononoruyda rpyna u H e HelHa
HaBcAKbIE I'bCTa noarpyna. Torasa H € TOTaJHO MHHHMMAa/iHa TOraBa H caMo
Torasa, koratro (J e TOTa/HO MHHHMaJHa H 3a BCSKA 3aTBODeHa MHBapHaHTHA
noarpyna N Ha G nogrpynata N[)/{ e waBcakbae rocta B N.



