AN EXAMPLE OF A COMPACT HAUSDORFF SPACE
WHICH IS M-CONNECTED
BUT IS NOT STRONGLY M-CONNECTED
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let M be an arbitrary non-empty class of Hausdorff topological spaces
which satisfies the following conditions:

I) f X¢ M and Y is homeomorphic to X, then Y ¢ M.

2) If X¢M and A is a F,-subset of X, then 4 ¢ M.

We shall say that the topological space is M-connected if it cannot
be decomnposed inito t“e suri of two closed proper* subsets whose intersec-
tion belongs to M [1]

We shall say tha t the topological space is strongly M-connected if it
cannot be decomposed into the sum of countably many closed proper sub-
sets whose pairwise interesections belong to M |1].

The M-connectedness and the strong M-connectedness are topologically
invariants. Of course, frcm the strong M-connectedness iollows M-connec-
tedness. It is easy to see that if the Hausdorff space R is M-connected and
contains at least two points then R ¢ M.

Obviously, the space R is {#}-connected if and only if it is connected.
Furthermore, if one space R is M-connected and M'CM then Ris M’-connected.
In particular every M-connected space is connected.

If M, is the class of normal topological spaces whose dimension dim
dots not exceed n—2 (n>l) then M, -satisfies the conditions 1) and 2) above.
The topcl ogical space is M-,ccnnected if and only if it is Cantor n-manifold [2].
The space is strongly M,-connected if and only if it is strongly Cantor n-ma-
nifold [3], [4] and {8]. It -was proved in [3] that the n- dimension cube [* is
strongly M,-connected.

Let < be an infinite cardinal number and M. is the class of topological
spaces which are t-normal and its cardinal dimension 2 does not exceed t
[4]. By virtue of lemma 2 [4], p. 136 follows immediately that M. satisfies
the conditions 1) and 2). One space is M:.connected if and only if it is
Cantor t-manifold and is strongly M.-connected if and only if it is a.rongly Cantor
t-manifold [4}, [B]. It was proved in [4] that the Tychonoff cube J*is strongly
M.-connected.

The famous theorem of Sierpinsky (6], in the terminology which we have
introduced, states as follows: every compact Hausdorff {#}-connected space
is strongly {#}-connected.

* The subset M of a topological space X is called proper if M=+ X.
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The aim of this paper is to show that in rather arbitrary assumptions
for M there are compact and M-connected spaces which are not strongly
M-connected.

Theorem. If a non-trivial M-connected compact Hausdorif space R
exists and M={¢}, then there exists a non-trivially M-connected compact
Hausdorif space K, which is not strongly M-connected.

We use the following two lemmas to prove this theorem.

Lemma 1. There exists a locally compact connected subspace X of R3,

which is not strongly connected, i.e. X:~U1 F, where F; are proper closed
subsets of X (i=1, 2,...) and F;, F;=# when i+/ [7], [8], p. 183.

Proof. Let X be the following subspace of R? (see fig. 1). We consider
on the Ox axis the open segments a,={x:n<x<n+1}, n=0,1,.... In the
plane o, =x0z we construct a right angle, one of which sides begins from
the midpoint of the segment a, and has the length 1 and the other arm is
parallel to Ox and is directed towards the plane yOz. We denote by F,
the figure which consists of the segment a, and the sides of the right
angle.

By induction we construct the plane «,,, which is obtained from «, by
turning it around the Ox axis thorough an angle of =/4.2” in the direction
S indicated in the figure. In the obtained plane a,,;, we construct a right
angle whose onc side begins from the midpoint of the segment @, and has
the length 1/27. The other side is parallel to Ox and is directed towards

;

/

Fig. 1

the plane yOz. We denote by F,4,; the figure which consists of the segment q,
and the sides of the right angle, We define X= U F, (see fig. 1).

It is easy to verify that this space satnshes the above necessary pro-
perties.
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Lemma 2. If X is a connected space and R is a non-trivial Hausdorif
M-connected space, then XX R is a non-trivial M-connected space.*

Proof. Let us suppose the contrary. Then there exist two proper closed
subsets F, and F, of XXR, so that

(1 X>R=F\JF, and F\\F,¢ M.
Let x be an arbitrary point of X. We¢ will now show that only one of
the next two inclusions is true,

(2) {x} > RCF, {x}XRCF,

First of all, let us assume that for some x,¢.X the above inclusions are
true. Then we have {x,] X RC F, ] F,. Obviously the set {x;} X R is
closed in X X R, thus it is closed in F, (] F,. Hence, by virtue of
condition 2) we have {x,} XR¢M. Furthermore, by virtue of condition 1) we
assume that R ¢ M (because {x,}XR and R are homeomorphic). This con-
tradicts to the assumption that R is a non-trivial Hausdorff M-connected
space. Thus we proved that the both inclusions (2) cannot hold at the same
time. Now we shall show that at least one of them holds.
By virtue of the first formula of (1) we obtain.

(3 {x}XR=(({x} X RN F)U({>} }X RINF).

The addends in the right side of this equality are closed subsets of
{x}X R and its Intersection is ({x}XR)NFiNF={x}XR)N FIN{{x}XR)
N F,). This set is a closed subset of F,()F, and with respect to the second
formula of (1) we obtain that ({x}}XRYNF,NF.¢M. As we note above
{x}XR is M-connected and therefore the formula (3) implies that at least
one of the sets ({x} xRN F, and ({x}XR)NF, is not proper, i. e. ({x}XR)
NFi={x} xR, or ({x }>/R)ﬂr2_{x}><R Thus we proved (2).

Let us put X,={x¢X:{x}XRCF}, i=1,2.

As we have already noted above we have

(4) X=XUX,, X,NXy=2.

It is easy to verify that the sets X, i=1, 2, are closed. By (4) and our
assumption of connectedness of X obtain X=X, for some io—l 2. There-
fore, XX RCF, which is contrary to our assumptlon that F, i=1,2 are pro-
per subsets of X XR. Thus, the assumption that the space XXR is not
M-connected leads to a contradiction, hence lemma 2 is proved.

Let us note (the proof is analogical) that if X is strong connected**and
R is a non-trivial Hausdorff strongly M-counected space then X <R is a non-
trivial strongly M-connected space.

We shall now state the theorem formulated above.

. Let us denote
6) L=XxR, K=L|J{w},

* For the proof of this lemma we use condition 1) and the following weaker condi-

tion of condition 2) if X€M and F is closed subset of X, then FeM.
** The space is called strcng connected if it cannot be deconiposed into the snm of

finitely or countably many disjoint proper closed subsets, i. e. it is strong {;25}
connected.

S Tron. ma Cod. vHMB., Dak. M0 MaTeMaTilka 1 MeXaHMKa, T. 69, 1974.75
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where X is the space in lemma 1, R is the space in the formulated theorem
and X is Alexandroff’s compactification of L, where w is the point of
infinity.

We will show that:

a) K is not strong M-connected;

by X is M-connected.

First of all, let us note, that KX is a non-trivial compact Hausdor{f

space.
Proof of a). We know that X-= U, , where F; (i=1,2,...) are disjoint

proper closed subsets of X, i. e. Fﬂz =&, i+j (see Lemina 1). Therefore,

the sets ®,=(F,XR)J{w} are proper closed subszts of KX and K= {J P

n=1
Besides that O,V P;= -{w} when {+%j. Since M==-{¢} it is easy to see that
{w} € M. Thus a} is proved
Proof of b). By virtue of lemma 2 we obtain that L==X <R is M-
connected.
Let us suppose that K is not M-connected. Then there exist two proper
closed subsets K, and K, of K, so that

(6) K=K UK, and X;NK, ¢ M.

Now we shall prove that X,[1K,\{o} ¢ M. Applying condition 2) of M and
the right side of formula (6) it is sufficient to show that K, K,\{w} is a
F-subset of K, [1K, This is true because K[ K,\{w} is a closed subset of
L and £ can be represenicd as a countable sum of compact subspaces.® There-
fore, we have

) L=(&\ o U Fal{w)),

where ihe sets K\\{w} and K,\{w} are closed subsets of L and their inter-
section (X o} (X \{o]) - KN K,\{w} belongs to M. Since L is M-connected
‘we obtain that L =K \{w} for somme [y=1, 2. Hence K=K,, which is a con-
tradiction to our asaumption that Ki(i=1,2) are proper subsets of K. The
obtained contradiction proves our theorem.

Corocllary 1. For every natural number n>1 there exists a compact
subset of Fuclidean space which is Cantor z-manifold but is not strongly Can-
tcr n-munifold, (I

Corollary 2. For every infinite cardinal unumber 7 {here exists a
compact Hausdorfi space which is Cantor t-manifold but is not strongly Can-
tor z-manifold.

It can be verified that if condilion 2) {rom the definition of M is re-
placed wiilr the foliowing i{wo cornidilions

2011 X ¢ M and £ is a closed subsel of X then FEM;

2y 0 XeM and x¢ X, then X\{x}¢ M, then the formulated proposi-
tions above hold and the proofs are analogical.

* X can be represented as a countable sum of compact subspsces Xn and therefore

L=XR:~ U (X2XR). where XuXR, n=1, 2,..., ar¢c compact.

n=1
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[IPUMEP HA M-CBBP3AHO KOMITAKTHO XAYCAOP®OBO
[TPOCTPAHCTBO, KOETO HE E CHJ/IHO M-CBBHP3AHO

H I Xaaxunsenos, A.Jl. XamamMamues

(PE3IOME)

Hexa M e HskaxKhbp KJaac OT TOUOJOIHYHHM NMDOCTPAHCTBA, KOATO YJOBJe-
TBOPABA CJENHUTE YCAOBUS:

1) knacbT M e TONOJNOrHYeCKH 8aTBOPEH ;

2) knaceT M cbAbBpma BCHKO [, -NONMHOMECTBO Ha BCEKH CBOH
€JICMEHT.

Ille kaspame, 4e eaHO TONOJIOPHYHO NPOCTPaHCTBO € M-CBBP3aHO, aKG TO
HE MOXEe Ja ce IpencTaBd BLB BH/ Ha oOeJlHHeHHe Ha JBe CBOH COOCTBCHA
3aTBOPEHN JIOJMHOXECTBA, CCYeHHEeTO HA KouTo npuHasiexd va M. Easo To-
NIOJIOTMYHO IPOCTP&HCTBO I[1l¢ HapuyamMe CHJAHO M-CBBP3aHO, aKo TO He
MOXe Ja ce [peAcTaBH Karo obeauHendHe Ha H3OPOMMO MHOrO CBOH 3aTBO-
peHn coOCTBEHH NOIMHOMNKECTBA, CEYEHHETO HA BCEKM JiBe OT KOMTO € eJe-
MeHT Ha Knaca M. ‘

OcunoBHa Teopema. AkO kaacbT M CBADBPKA €NeMEHT, Pa3adyeH OT
NPa3sOTO MHOMECTEC, M CblUECTBYBa KoMmnakThO xaycaopdoso M-cBbp3ano
IIPOCTPAHCTBO, KOETO MMa NCHE D€ Pa3TuuHH TOYKH, TO CHUECTBYBA HETPH-
BHaNHO KOMNAKTHO xaycnopdoro M-CBBP3aHO INPOCTPAHCTBO, KOETO He e
cunHo M-cpbpzano.

JOK83aTeICTBOTG Ceé OCHOBIABA HMa CJA€JHUTE ABE JIewH:

Jlenma 1. CoiuecTBypa JOKAJAHO KOMIAKTHO CBBP3aHO MOANPOCTPAHCTBO
Ha TPUMEPHUTO €BKJMIOBO NPOCTPAKCTBO, KC@TO He € CUAHO CBbP3aHo.



68 N. Hadziivanov, A. Hamamdziev 6

Jlemma 2. Tonosoru4Ho npoussenesde X >R Ha CBBP3aHOTO NPOCTpaH-
cTBO X H HeTpUBHANTHOTO M-CBDLP3aHO NPOCTPAHCTBO K e CHIIO HETPHBHAJHO

M-cBBp3aHO NPOCTPAHCTRO.
Cnemnctsue 1. 3a NpOM3BOJHO €CTECTBEHO YHCAO /2, n>1, C’bUlECTBYBa

KOMIIAKTHO MOAMOXECTBO Ha €BKJHAOBO [[:GCTPAHCTBO, KOBTO € KaHTOPOBO
n-MHOrooGpasmue, HO He € CHJHO KaHTOPOBO n-MHOroofpasue.

Cnepncrsue 2, 32 npO43BOJAHO KAPDAHHANHO YHCAO T, MO-TOJHMO H/H
paBHO Ha ated HyJa, CbIECTBYBa KOMIAKTHO Xayca0p¢oBO KaHTOPOBO t-MHOrO-
ofpa3ue, KOETO He € CUJHO KaiuTOLO30 T-MHOroobGpasue.

B kpas Ha cratusita ce TNpMlewIaT peadyaraTd, aHaJOCHYHM HA OCHOB-
HaTa TeopeMa.



