PROXIMITY ALGEBRAS AND THEIR COMPACT REPRESENTATIONS

Ivan Prodanov

Let R and X be arbitrary sets. The functions of the type $f: R^m \times X^n \to X$ (m, n=0, 1, 2,...) sometimes are called algebraic operations on X over R. An algebra on X over R is an arbitrary set of algebraic operations on X over R. The general theory of algebras has a relatively long history (see [7]).

The interplay of topological and algebraic concepts is a fruitful mathematical method. In spite of that, the general notion of topological algebra

did not attract much attention.

If R and X are topological spaces, an algebra A on X over R is called topological if all the operations $f \in A$ are continuous. In [2] the functional approach to compact extensions of topological spaces was modified in order to study compact representations of topological algebras.

Yu. M. Smirnov [3], [4] developed the theory of compactifications of proximity spaces which in fact presents a natural way to investigate compact

extensions of spaces.

The present paper might be considered as a further development of [2]; it contains a proximity approach to compact representations of algebras, which are more natural than their compact extensions (see [8]). That is why we use proximities which are not necessarily separated.

1. A PROXIMITY MAPPING EXTENSION THEOREM

Let us remind that a binary relation δ on the power set of a set X is called a proximity on X (see [1]) if δ satisfies the following axioms:

- 1. $A\delta B$ implies $A \neq \emptyset$;
- 2. $A\delta B$ implies $B\delta A$;
- 3. $A \cap B \neq \emptyset$ implies $A \delta B$;
- 4. $A\delta B$ and $B \subset B_1 \subset X$ imply $A\delta B_1$;
- 5. $A\delta B(B \cup C)$ implies $A\delta B$ or $A\delta C$;
- 6. $A \delta B$ implies there exist sets A_1 , $B_1 \subset X$ with $A \subset A_1$, $B \subset B_1$, $A_1 \cup B_1 = X$, $A \delta B_1$, $A \delta B$.

If δ is a proximity on X, the pair (X, δ) is called a proximity s pace.

A typical example of a proximity space arises if a function $h: X \rightarrow Y$ into a compact space Y is given. The relation δ_h defined by $A\delta_h B_h$, if \overline{h} (A) $\bigcap \overline{h(B)} \neq \emptyset$ (A, B \subseteq X) is then a proximity on X. δ_h is called a proximity on X induced by h. If h(X) is dense in Y, h is called a compactification of the proximity space (X, δ_h) . Yu. M. Smirnov [3] proved that every proximity space has compactifications.

The following lemma gives a useful connection between a proximity space X and the convergence of nets in any compactification of X. It was proved by Hadžiivanov in [5] and used by him to show a construction of compacti-

fications of proximity spaces. The proof presented here is more direct.

Lemma 1.

Let X be a proximity space, $\{x_{\gamma}\}_{{\gamma} \in \Gamma}$ be a net in X, and $h: X \to Y$ be a compactification of X. Then the following two conditions are equivalent:

i) the net $\{h(x_{\gamma})\}_{\gamma \in \Gamma}$ is convergent in Y;

ii) the relation $\{x_h: \gamma \in \Gamma_1\} \delta\{x_r: \gamma \in \Gamma_2\}$ hold whenever Γ_1 and Γ_2 are cofinal subsets of Γ .

Proof. Suppose i) is true. Let $\xi = \lim h(x_y)$, and Γ_1 , Γ_2 be cofinal sub-

sets of Γ . Clearly $\xi \in h(\{x_{\gamma}: \gamma \in \Gamma_{\gamma}\})$ ($\gamma = 1, 2$). Since h is a compactification of

X, it follows $\{x_{\gamma}: \gamma \in \Gamma_1\} \delta \{x_{\gamma}: \gamma \in \Gamma_2\}$. Hence i) implies ii). Suppose now that ii) is true, and that the net $\{h(x_{\gamma})\}_{\gamma \in \Gamma}$ does not converge. Since Y is compact, the net $\{x_{\gamma}\}_{{\gamma} \in \Gamma}$ has two different cluster points ξ_1 and ξ_2 . Let U_{γ} be a closed neighbourhood of ξ_{γ} ($\gamma = 1, 2$) with $U_2 \cap U_2 = \emptyset$. Since h is a compactification of X, the relation $h^{-1}(U_1) \delta h^{-1}(U_2)$ holds. Let $\Gamma_{\nu} = \{ \gamma \in \Gamma : h(x_{\nu}) \in U_{\nu} \}$ ($\nu = 1, 2$). It is clear that Γ_{ν} is a cofinal subset of Γ (y=1, 2). On the other hand, $\{x_y: y \in \Gamma_y\} \subset h^{-1}(U_y)(y=1, 2)$. Hence

$$\{x_{\gamma}: \gamma \in \Gamma_1\}\overline{\delta}\{x_{\gamma}: \gamma \in \Gamma_2\}$$

which contradicts ii). Q. E. D.

Let X be a proximity space, R be a topological space, $\rho \in R$, and $\pi: R \times X \to X$ be the corresponding projection. Two subsets A_1 , A_2 of $R \times X$ are said to be close near ρ , if for each neighbourhood U of ρ in R, the relation

(1)
$$(\pi[(U \times X) \cap A_1]) \delta(\pi[(U \times X) \cap A_2))$$

in X holds. In this case we shall write $A_1 \delta A_2 \pmod{\rho}$. Let R be a topological space, and X, X_1 be two proximity spaces. A function $f: R \times X \rightarrow X_1$ is said to be a proximity mapping, if $A \delta B$ (mod ρ) implies

$$f(A)\delta f(B)$$
 (A, $B \subset R \times X$, $\rho \in R$).

It is clear that, if R is a one point space, the above concept of proxi-

mity mapping turns into the standard one.

The following theorem is the main result of the present section. It is a generalisation of the standard theorem of extension of proximity mappings [3].

Theorem 1.

Let R be a topological space, X, X_1 be proximity spaces, $h: X \rightarrow Y$ and $h_1: X_1 \rightarrow Y_1$ be compactifications of X and Y, respectively, and $f: R \times X \rightarrow X_1$ be a function. Then the following two conditions are equivalent:

i) f is a proximity mapping;

ii) there exists a continuous mapping

(2)
$$\hat{f}: R \times Y \rightarrow Y_1$$
 such that the diagram

such that the diagram

(3)
$$\begin{array}{c} R \times X \xrightarrow{f} X_1 \\ \downarrow^{i_R} \times h & \downarrow^{h_1} \\ R \times Y \xrightarrow{f} Y_1 \end{array}$$

is commutative.

Proof. Suppose i) is true. First of all, we prove that if the nets $\{r_{\gamma}\}_{{\gamma} \in \Gamma}$ $(r_{\gamma} \in R)$ and $\{h(x_{\gamma})\}_{{\gamma} \in \Gamma}$ $(x_{\gamma} \in X)$ are convergent, the net $\{h_1(f(x_{\gamma}, r_{\gamma}))\}_{{\gamma} \in \Gamma}$ is also convergent. Let Γ_1 , Γ_2 be cofinal subsets of Γ , and $\rho = \lim_{{\gamma} \in \Gamma} r_{\gamma}$. Let Γ_1 be an arbitrary neighbourhood of Γ , and

(4)
$$A_{\nu} = \{(r_{\gamma}, x_{\gamma}) : \gamma \in \Gamma_{\nu}\}$$
 (\nu = 1, 2).

(5)
$$\pi[(U \times X) \cap A_{\nu}] \supset \{x_{\nu} : \gamma \in \Gamma_{\nu}'\} \qquad (\nu = 1, 2)$$

where Γ_{ν}' is a cofinal subset of Γ_{ν} ($\nu = 1, 2$). It follows from lemma 1 that

(6)
$$\{x_{\gamma}: \gamma \in \Gamma_1'\} \delta\{x_{\gamma}: \gamma \in \Gamma_2'\}.$$

From (5) and (6) it follows that the relation (1) takes place. Hence $A_1 \delta A_2$ (mod ρ). Since f is a proximity mapping, it follows $f(A_1)\delta f(A_2)$, and (4) implies

(7)
$$\{f(r_{\gamma}, x_{\gamma}): \gamma \in \Gamma_1\} \delta \{f(r_{\gamma}, x_{\gamma}): \gamma \in \Gamma_2\}.$$

Now, from lemma 1 it follows that the net $\{h_1(f(r_{\gamma}, x_{\gamma}))\}_{\gamma \in \Gamma}$ is convergent.

Let (Γ, ξ) be an arbitrary element of $R \times Y$. Since h(X) is dense in I there exists a net

(8)
$$\{r_{\gamma}, x_{\gamma}\}_{\gamma \in \Gamma} \qquad (r_{\gamma} \in R, x_{\gamma} \in X)$$
 with

(9)
$$\lim_{\gamma \in \Gamma} r_{\gamma} = r, \quad \lim_{\gamma \in \Gamma} h(x_{\gamma}) = \xi.$$

We have already proved that the limit $\lim_{\gamma \in \Gamma} h_1(f(r_{\gamma}, x_{\gamma}))$ exists. It is not difficult to see that this limit does not depend on the special choice of the net (8) with (9). We define the function (2) by

(10)
$$\hat{f}(r,\xi) = \lim_{\gamma \in \Gamma} h_1(f(r_{\gamma}, x_{\gamma})).$$

It is obvious that the diagram (3) is commutative. Since the space Y_1 is regular, and $h_1(X_1)$ is dense in Y_1 , it follows from a well known theorem [6] that the continuity of \hat{f} will be proved, if we show that the condition

$$\lim_{\gamma \in \Gamma} (r_{\gamma}, \xi_{\gamma}) = (r, \xi) \quad (r_{\gamma}, r \in R; \xi_{\gamma} \in h(X), \xi \in Y)$$

implies

(11)
$$\lim_{\gamma \in \Gamma} \hat{f}(r_{\gamma}, \xi_{\gamma}) = \hat{f}(r, \xi).$$

Let $\xi_{\gamma} = h(x_{\gamma})$ ($x_{\gamma} \in X$). Since the diagram (3) is commutative, we have $\hat{f}(r_{\gamma}, \xi_{\gamma}) = h_1(f(r_{\gamma}, x_{\gamma}))$. Now, the definition (10) implies (11), and the implication i) \implies ii) is proved.

Suppose now that ii) is true. Let $A_{\nu} \subset R \times R$ ($\nu = 1, 2$), $\rho \in R$, and $A_1 \delta A_2$ (mod ρ). That is, for each neighbourhood U of ρ in R, the relation (1) holds. Since h is a compactification of X, from (1) it follows

$$h(\pi[(U\times X)\cap A_1])\cap h(\pi[U\times X)\cap A_2])$$
.

Let ξ_U be an arbitrary element of this intersection. Since the neighbourhoods U of ρ form a directed set, we have a net $\{\xi_U\}$ of elements of the compact space Y. Without loss of generality we may suppose that the net $\{\xi_U\}$ is convergent. Let $\xi_0 = \lim_{U \ni \rho} \xi_U$. From the definition of ξ_U it follows that

(12)
$$\xi_0 \in h(\pi[(\overline{U \times X}) \cap A_{\nu})) \qquad (\nu = 1, 2)$$

for each neighbourhood U of ρ in R. (12) implies that for each neighbourhood U of ρ in R and for each neighbourhood V of ξ_0 in Y there exists a point

$$(13) (r_{UV}, \alpha_{UV}) \in (U \cap X) \cap A_1$$

with

$$(14) h(\alpha_{UV}) \in V.$$

From (13) it follows

$$(15) (r_{UV}, h(\alpha_{UV})) \in (i_R \times h) (A_1)$$

and $r_{U_{\nu}} \in U$. Now, (14) implies

$$(16) (r_{UV}, h(\alpha_{UV})) \in U \times V.$$

Since $U \times V$ is an arbitrary neighbourhood of (ρ, ξ_0) in $R \times Y$, (15) and (16) imply

(17)
$$(\rho, \xi_0) \in (\overline{l_R \times h)(A_1)}.$$

Similarly,

(18)
$$(\rho, \xi_0) \in (\overline{i_R \times h}) (A_2).$$

Since \hat{f} is continuous, (17) and (18) imply

$$\hat{f}((i_R \times h)(A_1)) \cap \hat{f}((i_R \times h)(A_2)) \neq \emptyset$$
.

Now, from the commutativity of the diagram (3), it follows

$$\overline{h_1(f(A_1))} \cap \overline{h_1(f(A_2))} \neq \emptyset.$$

Hence, $f(A_1)\delta f(A_2)$, since h_1 is by condition a compactification of X_1 . Q. E. D.

2. COMPACT REPRESENTATIONS OF ALGEBRAS

At the beginning we reminded the definition of the product of a family of proximity spaces. Let $\{X_a\}_{a\in A}$ be a family of proximity spaces $X=\prod X_a$, and $\pi_a\colon X\to X_a$ ($\alpha\in A$) be the corresponding projections. X usually is endowed with a proximity δ , defined in the following manner. Two subsets A, B of X are called close, if for each finite covering $\{A_\mu\}_{\mu=1}^m$ of A in X and for each finite covering $\{B_\nu\}_{\nu=1}^n$ of B in A there exists $\mu=1,2,\ldots,m$ and $\lambda=1,2,\ldots,n$ such that $\Pi_a(A_\mu)\delta\pi_a(B_\nu)$ in A_α for each $\alpha\in A$. The so found proximity space (X,δ) is called the product of the family $\{X_a\}_{a\in A}$. If is well known that if $h_a\colon X_\alpha\to Y_a$ ($\alpha\in A$) are compactifications, the function $\prod h_a\colon X\to\prod Y_a$ is a compactification of X.

Let R be a topological space, and X be a proximity space. For each non-negative integer n we have just endowed X^n with a proximity. So it makes sense to ask whether an algebraic operation

$$(19) f: R^m \times X^n \to X$$

is a proximity mapping or not. Let A be an algebra on X over R. We shall call A a proximity algebra, if each element (19) of A is a proximity mapping. In this case we shall also say that the proximity of X is compatible with A.

Let R, X, Y be sets, A be an algebra on X over R, and B be an algebra on Y over R. A function

$$(20) h: X \to Y$$

is called a homomorphism if there exists a preserving the number of arguments bljection $f \rightarrow f_h$ between A and B such that the diagram

(21)
$$R^{m} \times X^{n} \xrightarrow{f} X$$

$$\downarrow i_{R}^{m} \times h^{n} \qquad \downarrow h$$

$$R^{m} \times Y^{n} \xrightarrow{f_{n}} Y$$

is commutative for each $f \in A$.

If R and Y are topological spaces, the algebra B is topological and the set h(X) is dense in Y, the homomorphism (20) is called a representation of X into Y. We shall consider representations (20) such that the algebra Y is compact, and will call them compact representations of X.

The next theorem studies the connection between the proximities on X compatible with A and the compact representations of X.

Theorem 2.

Let R be a topological space, X be a set, A be an algebra on X over R, and (20) be a compact representation of A. Then the proximity δ_h on X, induced by h is compatible with A.

Conversely let R be a topological space, X be a proximity space, A be a proximity algebra on X over R, and (20) be a compactification of X. Then there exists a unique topological algebra B on Y over R such that h is a compact representation of A.

Proof. We first prove the first part of the theorem. The function (20) is by definition a compactification of (X, δ_h) . Hence $h^n: X^n \to Y^n$ is a compactification of X^n . Now from the commutativity of the diagram (21) and from theorem 1 it follows that (19) is a proximity mapping. Hence δ_h is compatible with A.

We pass to the proof of the second part of the theorem. Let the function (19) belong to A. Hence f is a proximity mapping. Since $h^n: X^n \to Y^n$ is a compactification of X^n , it follows from theorem 1 that there exists a continuous mapping

$$f_h: \mathbb{R}^m \times Y^n \to Y$$

such that the diagram (21) is commutative. If f runs over A, f_h runs over a topological algebra B on Y over R. It is clear that h is a representation of A into B. The uniqueness of B is trivial. Q. E. D.

We pass to the problem of comparing of compact representations of algebras.

Let R be a topological space, X be a set, A be an algebra on X over R, (20) be a representation of X, and

$$(22) k: X \to Z$$

be another representation of X. The representation h is called finer than k, if there exists a continuous representation $X: Y \to Z$, such that the diagram

$$(23) X \xrightarrow{h} Y \\ k \swarrow \chi \chi$$

is commutative. h and k are said to be equivalent, if each of them is finer than the other; this means that χ in the diagram (23) is an algebraical and topological isomorphism.

Let two proximities δ_1 and δ_2 on a set X are given. They say that the proximity δ_1 is stronger than δ_2 and write $\delta_1 \ge \delta_2$, if $A \delta_1 B$ implies

 $A\delta_2 B$. Clearly, this means that the identity $i_x:(X, \delta_1) \to (X, \delta_2)$ is a proximity mapping.

The following theorem shows a connection between the above two or-

dering relations.

Theorem 3.

Let R be a topological space, X be a set, A be an algebra on X over R, and (20), (22) be compact representations of A. Then h is finer than k if and only if $\delta_h \ge \delta_k$.

Proof. Let h be finer than k. The diagram (23) may be written in

the form

(24)
$$\begin{array}{ccc} (X, \, \delta_h) & \xrightarrow{l_x} (X, \, \delta_k) \\ \downarrow h & & \downarrow k \\ Y & \xrightarrow{\chi} & Z . \end{array}$$

Since h and k are compactifications, and χ is continuous, Theorem 1 implies

that i_x is a proximity mapping. Hence $\delta_h \ge \delta_k$. Let now $\delta_h \ge \delta_k$. Then i_x in (24) is a proximity mapping. Since h and k are compactifications, by Theorem 1 there exists a continuous mapping χ such that the diagram (24) is commutative. Clearly χ is a homomorphism of Y into Z. Hence h is finer than k. Q. E. D.

REFERENCES

- 1. Ефремович, В. А.: Геометрия близости, І, Матем. сб., 31 (73) 1 (1952), 189 200. 2. Проданов, И.: Компактни представяния на непрекъснатите алгебрични структури Год. Соф. унив., Мат. фак., 60 (1965/66), 139 — 148.

 3. Смирнов, Ю. М.: О пространствах близости. Матем. сб., 31 (73) 3 (1952), 543 — 574.
- 4. Смирнов Ю. М.: О полноте пространства близости. Труды Моск. мат. общ., 3 (1954), **27**1 — 306.
- 5. Хаджинванов, Н.: О компактификации пространства близости. Proceedings of the Second Prague Topological Symposium. 1966.

6. Bourbaki, N.: Topologie Générale, Ch. 1. Troisième édition, Paris, 1961.
7. Cohn, P. M.: Universal Algebra. New York and London, 1965.

8. Prodanov, Iv.: Minimal compact representations of algebras. Ann. de l'Université de Sofia, Fac. de Math., 67 (1972/73), 507 — 542.

Постъпила на 14. І. 1976 г.

БЛИЗОСТНИ АЛГЕБРИ И КОМПАКТНИТЕ ИМ ПРЕДСТАВЯНИЯ

И. Проданов

(РЕЗЮМЕ)

Нека R е топологично пространство, а X е близостно пространство. Две подмножества A_1 и A_2 на $R \times X$ се наричат близки около някоя точка $\rho \in R$, когато за всяка околност U на ρ е изпълнено условието (1), където $\pi: R \times X \to X$ е съответната проекция. Едно изображение $f: R \times X \to X_1$, където X_1 е близостно пространство, се нарича близостно непрекъснато, когато за всяка точка $\rho \in R$ и за всеки две подмножества A_1 , A_2 на $R \times X$, които са близки около ρ , е в сила $f(A_1)\delta f(A_2)$.

В първия параграф е доказано следното обобщение на известната теорема на Ю. М. Смирнов [3], [4] за продължаване на близостно непре-

къснати изображения.

Теорема 1. Нека R е топологично пространство, X и X_1 са близостни пространства,

$$h: X \to Y \bowtie h_1: X_1 \to Y_1$$

са компактните разширения на близостните пространства X и X_1 , а $f: R \times X \longrightarrow X_1$ е произволно изображение. Тогава следните две условия са еквивалентни:

- а) изображението f е близостно непрекъснато;
- б) съществува такова непрекъснато изображение (2), че диаграмата (3) е комутативна.

Във втория параграф на работата теорема 1 се използува за изучаване на компактите представяния на близостните алгебри.