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Let R and X be arbitrary sets. The functions of the type f: R"X X" — X
(m, n=0, 1, 2,...) sometimes are called algebraic operations on X
over R. An algebra on X over R is an arbitrary set of algebraic opera-
tions on X over R. The general theory of algebras has a relatively long
history (see {7}).

The interplay of topological and algebraic concepts is a fruitful mathe-
matical method. In spite of that, the general notion of topological algebra
did not attract much attention.

If R and X are topological spaces, an algebra A on X over R is called
topological if all the operations f¢ A are continuous. In [2] the functio-
nal approach to compact extensions of topological spaces was modified in
order to study compact representations of topological algebras.

Yu. M. Smirnov [3],[4] developed the theory of compactifications of pro-
ximity spaces which in fact presents a natural way to investigate compact
extensions of spaces.

The present paper might be considered as a further development of [2];
it contains a proximity approach to compact representations of algebras, which
are more natural than their compact extensions (see {8]). That is why we
use proximities which are not necessarily separated.

1. A PROXIMITY MAPPING EXTENSION THEOREM

Let us remind that a binary relation & on the power set of a set X
is called a proximity on X (see [I]) if & satisfles the following
axioms:

1. A3B implies A7 ;

2. A8B implies B3A;

3. AN\B&+# implies ASB;

4. ASB and BCB,CX imply ASB,;

5. ASB(BJC) implies A5B or A3C;

6. A3B implies there exist sets A,, B,CX with ACA4,, BCB,, 4,UB,
=X, A8B,, 45B.

If & is a proximity on X, the pair (X, &) is called a proximity
space.
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A typical example of a proximity space arises if a function A:X—Y
into a compact space Y is given. The relation &, defined by 48,8, if £ (A)
NAr(B)+2 (4, BCX) is then a proximity on X. &, is called a proximity on
X induced by A If £(X) is dense in Y, & is called a compactifica-
tion of the proximity space (X, &). Yu. M. Smirnov [3] proved that
every proximity space has compactifications.

The following lemma gives a useful connection between a proximity space
X and the convergence of nets in any compactification of X. It was proved
by HadZiivanov in [5] and used by him to show a construction of compacti-
fications of proximity spaces. The proof presented here is more direct.

Lemma 1.

Let X be a proximity space, {x,},er be a netin X, and
h:X —Y be a compactification of X. Then the following
two conditions are equlvalent

i) the net {A(x,)},er is convergent in Y;

ii) the relation {xn:yel(}¥{x,:v€¢l;} hold whenever I'j and
I, are cofinal subsets of I.

Proof. Suppose i) is true. Let £=lim A(x,), and I'y, [’y be cofinal sub-
y€l

sets of I'. Clearly § ¢ £({x,:y ¢L.,}) (v=1, 2). Since % is a compactification of
X, it follows {x,:y € T',}8{x,:v€I,}. Hence i) implies ii).

Suppose now that ii) is true, and that the net {A(x,)},¢r does not con-
verge. Since Y is compact, the net {x,},¢r has two diiferent cluster pomts
g, and E,. Let U, be a closed neighbourhood of §, (v=1, 2) with U, U,=4.

Since % is a compactification of X, the relation A~}(U,)8k~%U,) holds. Let
Iy={ve¢T:h(x)ecU,} (v=1,2). It is clear that I , is a cofinal subset of I
(v=1, 2). On the other hand, {x,:y¢TI,}CA-%(U,)(v=1, 2). Hence

{x,: Y €T }3{x,:y € T2}

which contradicts ii). Q. E. D.

Let X be a proximity space, R be a topological space, pE€R, and
nt: RX X—X be the corresponding projection. Two subsets $4,, 4, of RX X
are said to be close near p, if for each neighbourhood Uof p in R,
the relation

(1) . (W{UXXHNAD(UX X)) 42)

in X holds. In this case we shall write 4,84, (mod p).

Let R be a topological space, and X, X, be two proximity spaces. A
function f: RXX—JX, is said to be a proximity mapping, if A3B (mod
p) implies

f(AB f(B) (A, BCRXX, p¢R)

It is clear that, if R is a one point space, the above concept of proxi-
mity mapping turns into the standard one.

The following theorem is the main result of the present section. It is a
generalisation of the standard theorem of extension of proximity map-

pings [3].
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Theorem 1.

Let Rbe atopological space, X, X, be proximity spaces,
h:X—Y and h:X;—Y, be compactifications of X and ¥, res-
pectively, and f:RXX—X; be a function. Then the following two
conditions are equivalent:

i) f is a proximity mapping;

ii) there exists a continuous mapping

@) f1RXY—Y,
such that the diagram '
f
RXX ———— Xl
3) liRX/Z lhl
RXY ——— Yl

is commutative.

Proof. Suppose i) is true. First of all, we prove that if the nets {r}er
(r, € R) and {£(x,)} er (x,€X) are convergent, the net {hy(f(x,, 1,)}yer is also
convergent. Let I';,, 'y be cofinal subsets of T, and p=limr, Let U be an

arbitrary neighbourhood of f, and 7er

(4) A,={(r, x,):v¢l,} (v=1, 2).
Clearly, -~

(6) T(UXX)NAD{x,:v ¢ I} (1=1,2)

where I',” is a cofinal subset of I', (v =1, 2). It follows from lemma
1 that

(6) {x iy €IV 8lx, iy eIy}

From (5) and (6) it follows that the relation (1) takes place. Hence A,34,
(modp). Since f is a proximity mapping, it follows f(4,)8f(A,), and (4)
implies

) {f(ry x):y €T 38 f(ry, x,):v€Ts}.

Now, from lemma 1 it follows that the net {4, (f(r, x,)},er is con-
vergent,

Let (I', §) be an arbitrary element of RXY. Since %4(X) is dense in }
there exists a net

(8) {"7, xy)}yé r (rye R} xy E X)
with
9) limr,=r, Ilm lz(x,,) -E.

v€T

We have already proved that the lxmlt lxm hy (f(r,, x,)) exists. It is not dif-

ficult to see that this limit does not depend on the special choice of the
net (8) with (9). We define the function (2) by
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(10) fr, = lim /(S )

‘It is obvious that the diagram (3) is commutative. Since the space Y, is
regular, and £,(X)) is dense in Y, it follows from a well known theorem [6]

that the continuity of f will be proved, if we show that the condition
lig (ry E)=(n8) (r, reR; & €h(X), §¢Y)
implies ’

(11) limf(r,, £)=F(r, E).
y€T

Let §, = &(x,) (x, € X). Since the diagram (3) is commutative, we have

f(ry, &)=nr(f(r,, x,)). Now, the definition (10) implies (11), and the impli-
cation i) => ii) is proved.

Suppose now that ii) is true. Let 4,CRXR (v=1,2), p¢ R, and A,84,
(mod p). That is, for each neighbourhood U of p in R, the relation (1) holds.
Since & is a compactification of X, from (1) it follows

R[(UXX)NADNAEUXX)NAS)) -

Let §, be an arbitrary element of this intersection. Since the neighbourhoods
U of p form a directed set, we have a net {Ey} of elements of the compact
space Y. Without loss of generality we may suppose that the net {§,} is
convergent. Let §,=1im&y. From the definition of &y it follows that

Ujp
(12) Eo € R({(UXxX)N 4,) (v=1,2)

for each neighbourhood U of p in R. (12) implies that for each neighbour-
hood U of p in R and for each neighbourhood V of g, in Y there exists
a point

(13) (rov, avy) € (UNX)NA4,
with

(14) Mayy) € V.

From (13) it follows

(15) (ruv, h(auy)) € (irXH) (Ay
and ry, € U. Now, (14) implies

(16) (ruv, R(ayy)) € UXV.

Since UXV is an arbitrary neighbourhood of (p, &) in RXY, (15) and
(16) imply

(@) (p, Eo) € (iR X B)(AY).
Similarly ,
(19 (6 E) € Gn<h) (Ag)

Since f is continuous, (17) and (18) imply
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Feaxy (A N f(ErXANADES .
Now, from the commutativity of the diagram (3), it follows

h(FADNA(f(A2) £,
Hence, f(A,)5f(A4,), since k, is by condition a compactitication of X,.
Q. E. D.

2. COMPACT REPRESENTATIONS OF ALGEBRAS

At the beginning we reminded the definition of the product of a family

of proximity spaces. Let {X.},c« be a family of proximity spaces X = Il X,,
aGA
and m;: X — X, (« € A) be the corresponding projections, X usually is en-

dowed with a proximity &, defined in the following manner. Two subsets A4,
B of X are called close, if for each finite covering {A,}7 , of A in X

and for each finite covering {B,}"_, of B in X there exists p—l, 2,....m
and v=1, 2,..., nsuch that II,(A )Brca(B,) in X, for each « ¢ 4. The so found
proxtmlty space (X, &) is called the product of the family {x.}ecs-

If is well known that if 4,: X, — Y, (z € A) are compactifications, the func-
tion [1A.: X — I'I Yo is a compactlflcatlon of X.

€A
Let R be a topologxcal space, and X be a proximity space. For each
non-negative integer » we have just endowed X* with a proximity. So it

makes sense to ask whether an algebraic operation
(19) fiRmxXr— X

is & proximity mapping or not. Let A be an algebra on X over R. We shall
call A a proximity algebra, if each ‘element (19) of A is a proximity
mapping. In this case we shall also say that the proximity of X is compa-
tible with A.

Let R, X, Y be sets, A be an algebra on X over R, and B be an al-
gebra on Y over R. A function

(20) B:X Y

is called a homomorphism if there exists a preserving the number of
arguments bijection f-- f, between A and B such that the diagram

Rmscxn L x
@1) li;’xh" lh

I
Rmx¥Yn — Y

is commutative for each f ¢ A.



154 I. Prodanov 6

If R and Y are topological spaces, the algebra B is topological and the
set #(X) is dense in Y, the homomorphism (20) is called a representa-
tion of X into Y. We shall consider representations (20) such that
the algebra Y is compact, and will call them compact representa-
tions of X.

The next theorem studies the connection between the proximities on X
compatible with A and the compact representatfons of X.

Theorem 2.

Let R be a topological space, X be a set, Abe an algebra
on Xover R,and (20) be a compact representation of A. Then
the proximity 8 on X, induced by %2 is compatible with A.

Conversely let Rbe a topological space, X be a proxi-
mity space, A be a proximity algebra on X over R, and (20)
be a compactification of X. Then there exists a unique to-
pological algebra Bon Y over Rsuch thath is a compact
representation of A,

Proof. We first prove the first part of the theorem. The function (20)
is by definition a compactification of (X, &,). Hence A”:X7— Y” is a com-
pactification of X”. Now from the commutativity of the diagram (21) and
from theorem 1 it follows that (19) is a proximity mapping. Hence &, is com-
patible with A.

We pass to the proof of the second part of the theorem. Let the func-
tion (19) belong to A. Hence f is a proximity mapping. Since A*:X”?— ¥
is a compactification of X7, it follows from theorem 1 that there exists a
continuous mapping

thRmXY”% Y

such that the diagram (21) is commutative. If f runs over A, f, runs over a
topological algebra B on Y over R. It is clear that % is a representation of
A into B. The uniqueness of B is trivial. Q. E. D.

We pass to the problem of comparing of compact representations of
algebras.

Let R be a topological space, X be a set, A be an algebra on X over
K, (20) be a representation of X, and

(22) k: X —2Z

be another representation of X. The representation % is called finer than
k, if there exists a continuous representation X:Y -— Z, such that the
diagram

h

X— Y

B\ ‘/X
Z

is commutative. £ and £ are said to be equivalent, if each of them is
finer than the other; this means that y in the dlagram (23) is an algebraical
and topological isomorphism.

Let two proximities 8, and 3, on a set X are given. They say that the
proximity &, is stronger than 8, and write 8,28, if 43, B implies

(23)
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A3yB. Clearly, this means that the identity i.:(X, &) — (X, &,) is a proxi-
mity mapping.

The following theorem shows a connection between the above two or-
dering relations.

Theorem 3.

Let R be a topological space, X be a set, A be an algebra
on X over R, and (20), (22) be compact representations of A.
Then % is finer than % if and only if &,=8&:.

Proof. Let h be finer than k. The diagram (23) may be written in
the form

iy

X, &) — (X, &)

(24) l}z lk
X

Yy -— Z

Since % and k are compactifications, and y is continuous, Theorem 1 implies
that Z, is a proximity mapping. Hence &,28:.

Let now 8,=%,. Then i, in (24) is a proximity mapping. Since 4 and k&
are compactifications, by Theorem 1 there exists a continuous mapping y
such that the diagram (24) is commutative. Clearly y is a homomorphism of
Y into Z. Hence % is finer than k£ Q. E. D.
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BJIM30CTHY AJI'EBPH U KOMITAKTHUTE
UM TMPEOCTABSAHUA

N.Mponanvos

(PE3IOME)

Hexa R e TomosornuHo mnpocTpaHcTBO, & X € 6JH30CTHO NPOCTPAHCTBO.
Jlse moamuoxecTBa A, 1 A, Ha RXX ce HapuHuaT ONH3KH OKOJO HAKOA
TOYKA p € R, xorato 3a BcAKa OKOMHOCT U Ha p € M3MBJAHEHO YycJsaoBHeTo (1),
KbleTo n:RXX-—+ X e cporTBeTHaTa npoexkuus. Exuo nzobpaxenue f:RXX
— X, Kbero X, € O6JH30CTHO MPOCTPAHCTBO, Ce¢ HapuHya O6aU30CTHO Hempe-
K'bCHATO, KOraro 3a BCAKAa TO4YKa p ¢ R ¥ 3a BCeKH JBe MOIMHOXecTBa A4, A,
Ha RX X, KOUTO ca GJHU3KH OKOJO p, € B CHAa f(A4,)d f(Ay).

B nbpBusa naparpad e nokazaHo caeaHOTO 00600lleHWe HA HSBECTHATA
Teopema Ha 1O. M. Cmupuos [3], {4] 3a npoxw/mxaBane Ha 6JH30CTHO Hempe-
K'bCHAaTH U3006paXKeHus.

Teopema |. Heka R e Tomomoruyso mnpocTpasctBo, X u X; ca 6au-
30CTHH NPOCTPAaHCTBA,

h:X—Yn h11X1—+ Y,

€ca KOMIAKTHHTE pa3luMpeHHs Ha GAH30CTHHTEe npocTpaicTBa X M X, a
f:RXX — X, e npou3BosqHo H306paxcenre. ToraBa cAeAHHTe JHBE€ YCAOBHA
Ca eKBHBANEHTHH:

a) H300paxkeHHeTo f e OJMU30CTHO HEMPEKLCHATO;

6) CblecTBYBa TaKkOBa HenmpeK'bCHATO H306paxeHHe (2), ye nuarpamara
(3) e KOoMyTaTHBHa.

BB BrOpHA naparpad Ha paborara Teopema 1 ce H3noa3yBa 3a H3yua-
BaHe HAa KOMMAaKTHHTE MpPEIACTaBsHHA HA 6JIMSOCTHHTe aireGpH.



