PRECOMPACT MINIMAL TOPOLOGIES
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In this paper R will denote a countable Dedekind domain whicy, is not
a field, and in which every non-trivial ideal is of finite index (g art of
the definitions and statements below are valid without so restrictivg pcondi-
tions on R).

An R-module M is called topological R-module if M is 4 004
with a topology such that:

i) M is a topological group with respect to the addition;

if) for each r ¢ R, the function rx (x € M) of x is continuous.

A Hausdorff topological R-module M is said to be minimal (and the
topology of M is called minimal), if every continuous module 180m o phism
h:M — M,, where M, is a Hausdorff topological R-module, is g hgmeo-
morphism. '

A topological R-module M is called precompact, if M is
and there exists a compact R-module which contains M as a den
gical submodule.

All known minimal R-modules are precompact. The study of this special
case is facilitated by the convenlent and powerful Pontrjagin’s theol; of
characters. In [4], [6] precompact minimal abelian groups are conside,qq f);om
that point of view. [6] contains a general approach which among the other
things permits to describe the precompact minimal topologies on Rn (n €N
But the method of [6] can not be used to describe the precompacy minime{i
topologies on the direct sum of countably many copies of R, for . .. 1o

For each topological R-module M, by M* we will denote the ¢ ofp ali
the continuous (additive) group homomorphisms X: M — T! where TI=R/Z
is the one-dimensional torus. Obviously M* is an Abelian group, For each
¥ € M* and for each r ¢ M by rx: M — T! we willdenote the element of M*
defined by (r)(x)=x(rx) for each x ¢ M. In this way M* is e“dO\ved with
an R-module structure. '

It is not difficult to see that an R-module M is precompact, if .,
if the elements of M* separate the points of M, and the topolg of A){’
coincides with the weakest topology on M such that the elementgsyof M*
are continuous. In that case we will endow M* with the discrete topolo

If a topological R-module M is precompact, and the mody, %{**gfs
endowed with the pointwise convergence topology, M** is a “Ompact R-

I‘husdorff,
Se topolo-

module, and there is a natural algebraical and topological embeddu]g
1) is M — M*
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such that {(M) is dense in M** The embedding (1) is defined by (i(x))
(X)=y(») for arbitrary x ¢ M and y ¢ M*. Clearly, M** is the completion of
M, for every precompact R-module M.

An embedding i:M— M, of an R-module M into a topological R-
module M, is called essential if #(Af) is a dense subset of M,
and every closed non-trivial submodule of M, contains non-zero elements
of i (M).

[6])contains a general criterion for minimality which in the present si-
tuation specializes as follows,

Proposition 1.

A precompact R-module Mis minimal if and only if the
embedding (1) is essential

The present paper is a continuation and an improvement of a part of
[6]. It turns out that, if a torsion free precompact module is minimal,
we have
@ me=( TRer)x oy,

pPEP
where P is the set of all the maximal ideals of R, Ry(p ¢ P) is the p-adic
completion of R (R, is compact, since the non trivial ideals of R are of
finite index), a,(p € P) is an arbitrary cardinal number, Q(R) is the field of
fractions of R, and & is an arbitrary cardinal number. The proof of (2) is
given in Section 1.
In the special case

card M<¢(=cardR),

Proposition 1 impose further restrictions to the product on the right side of
(2). In this way a possibility of describing all the precompaet minimal topo-
logles arises. This case Is considered in Section 2.

1. COMPLETION OF A TORSION FREE PRECOMPACT MINIMAL R-MODULE

In this section we prove the relation (2). If R=Z and M is compact,
(2) is well known (see [3]). The proof of (2) is based onthe structural theo-
rem 1 which in the case R=Z is also well known (see [2]).

Let R be a ring. An R-module M is called divisible, if for each
x ¢ M and for each ¢ R with r3-0 there exists an element y of M with
ry=x. M is called injective, if for every R-module N and for every
module homomorphism f: N, -+ M of a submodule N, of N there exists a
module homomorphism g:N — M with g/N;=f. In [1] the Dedekind do-
mains are characterised as such rings R that every divisible R-module is
injective.

The next proposition reduces examining of precompact minimal topolo-
gies on torsion free R-modules to an algebraic problem.

Proposition 2. If M is a precompact minimal torsion
free RRmodule, M* is a divisible module.

Proof. We first prove that M** is torsion free. Assume the contrary.
Let § ¢ M**, r ¢ R be elements with §5=0, r40 and r£=0. Clearly, the set I
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of all the x ¢ R with xE=01is a non-trivial ideal of R, and we have RE=R/I.
Since I is of finite index, the submodule RE of M** is finite and therefore
closed. Now proposition 1 implies that i(M) contains non-zero elements of
RE in contradiction with the fact that M is torsion free. Hence M** is tor-
sion free.

The proposition will be proved, if we show that for each r¢ R with
r=0 the equality

3 rvf* = M*

holds. For this purpose we first prove that the submodule rM* of M* sepa-
rates the points of M**, Let £ ¢ M** and £=50. Then r£40, and hence there
exists X ¢ M* with (#€) (X)F0, i. e. §(rx)==0. The canonical isomorphism bet-
ween M* and (M**)* now shows that (rX)§)5-0, and hence rM** separates
the points of M**. But the compactness of M** implies that M* is a mini-
mal group of continuous characters of M** which separates the points of
M** (see [3]). Thus (3) is proved. Q. E. D.

The following lemma is a preparation for the proof of theorem
1 below.

Lemma 1.

Let Rbe a Dedekind domain, M be a divisible R-module
and A be a divisible submodule of M. Then there exists a
divisible submodule B of M with ANB={0} and A+B=M.

Proof. Since A is a divisible R-module, A is injective. Therefore there
exists a module homomorphism A: M — A with A(x)=x for each x¢ A. Let
B=ker h. We only need to prove that the R-module B is divisible. Let x ¢ B
and r ¢ R, r0. By conditions, there is an element y, ¢ M with ry,=x. Let
y=y,—h(yy). Then y¢€ B, and ry=ry,—f(ry,)=x. Q. E. D.

For an arbitrary maximal ideal p of a Dedekind domain R we denote by
R, the localization of R at p, and by R(p) the R-module defined by

(4) R(p)= QR R

It is not difficult to see that every non-trivial submodule of R(p) is gene-
rated by an element of R(p) of the type

5) o+ Ry (€N, = € p\pY).

Actually, the R-module generated by the element (5) depends on n but does
not depend on the special choice of = ¢ p\p2.

The following theorem is an algebraic background of Section 2.

Theorem 1.

Let Rbea Dedekind domain, and M be a divisible R-mo-
dule. Then M is a direct sum of copies of R (p) (where p
runs over a suitable set of maximal ideals of R) and of co-
pies of O(R).

Proof. Let © be the torsion part of M. Clearly, t is a divisible R-mo-
dule. Hence lemma 1 implies that M=1PM; where M, is a divisible sub-
module of M. Clearly M, is torsion free. Therefore M, is a linear space over
O(R). Hence M, is a direct sum of copies of Q(R).
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For an arbitrary maximal ideal p of R, denote by 1, the set of all
the elements x of t with p"x=0 for a suitable positive integer n. It is well
known that

T= @D Tp
pEP
Therefore the theorem will be proved, if we show that for each p ¢ P, the
R-module <, is a direct sum of copies of R(p).

Let ¢ be an arbitrary non-zero element of tp, with pi=0. Clearly, R¢ is

a one-dimensional linear space over the field R/p. Since the submodule N

of R(p) generated by - —|—R(,,) is also a one-dimensional linear space over

R/p there is a homomorphlsm k:N— Rt with

1
b (R} =t

Since the module 1, is clearly divisible, and R is a Dedekind domain, there
is an extension

(6) h:R(p)—1p

of k. Therefore there exists a module homomorphism (6) with
]

™ bt Ro)-

On the other hand, every non-zero submodule of R(p) contains %-i—R(p).

Hence (7) and {30 imply ker 2=0. Therefore t, contains a copy A of R(p)
with £ ¢ 4.

For each element £ ¢ 7, with £4:0, p£40 choose a copy M, of R(p) with
t ¢ M. Denote by I' a maximal among the sets ACM with the following
two properties: i) ¢ ¢ A implies {+0, pfé=0,; ii) the sum of the modules
{Mi:te A} is direct. The theorem will be proved, if we show that

(8) Tp= 2 M;.

ter

Assume the contrary. Since the module on the right side of (8) is clearly
divisible, it follows from lemma 1 that there is a non-zero submodule H of
T, which is divisible and
(_5] Mt)ﬂH={0}.
ter
Choosing ¢ ¢ H with £3=0 and pf{=0, we obtain a possibility to extend T
which is a contradiction. Q. E. D.
Corollary 1. if Mis a torsion free precompact minimal
R-module, the equality (2) holds.
Indeed, it follows from Proposition 2 that M* is a divisible R-mo-
dule. Therefore the statement follows from Theorem 1, from the well known
equality
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(D Ma)*-* ﬂ Ma*.

aEAd
and from the equalities R(p)*=R, ( pEP) which are fulfilled, since the
non-trivial ideals of R are of finite index (see [6]). Q. E. D.

2. PRECOMPACT MINIMAL TOPOLOGIES ON TORSION FREE R-MODULES
M WITH CARD M<C

This section contains a full description of the precompact minimal topo-
logies on torsion free R-modules M with card M<c. In particular, we
have a more transparent solution of a part of the problems in [6].

Let us denote by H(R) the sét of all the characters y:Q(R)—T with
¥|[R=0. Clearly, H(R) is a closed submodule of Q(R)* and H(R) (Q(R)/R)*
But for every Dedekind domain R we have

QR)/R= @ R(p).
PEP

Hence
HR)= I1R(p)*=I1R,
PEP pEP

for every Dedekind domain R in which every non-trivial ideal is of finite
index. Thus Q(R)* contains a copy of Il R,.

PEP

The following theorem shows that there are only two origins of
precompact minimal topologies on the torsion free R-modules M with
card M<c. ‘

Theorem2Let Rbe a countable Dedekind domain which
isnot a field, and in which every non-trivial ideal is of fi-
nite index. Let M be atorsion free precompact minimal R-
module with card M<c¢c. Then only the following two possi-
bilities may arise:

i) there is a set nCP with M*=TIR,;
péEn

ii) M**=Q (R
Proof. Let p¢P. For an arbitrary £ ¢ R, with £+0, consider the

submodule
' Rp(]’ E)={(X, l&} A ¢ Rp}

of R, X R,. It is clear that if £ runs over R,, the submodule R, (1, §) runs
over a continuum of closed submodules of R,X R, with

R(1, ED)N(RAL, E:))={0},

whenever §,3§,. Since card M<c, the embedding (1) cannot be essential,
if M** contains a copy of R,X R, (p ¢ P). Thus, it follows from Proposition
1 that M** does not contain a product of the type R,XR, (p¢ P). On the
other hand, we have already seen that Q(R)* contains a copy of each R,
P ¢ P). Therefore the Theorem follows from Corollary 1. Q. E. D

I1 roa. ma Cod. yuup., dak. no maTreMaTHKa K MeXanHuka, T. 69, 1974/75



162 1. Prodanov 6

The essential embeddings of R-modules into products of the type IR,
€n
(rCP), are examined in [} Among other things, the following propoléltlon

was proved there.
Proposition 3. A dense submodule M of [1 R, (xCP) is es-

€n
sentlally embedded in HR,,, if and only if Apl contains non-

zero elements of each of the factors R, (p¢€n).
Corollary 2. A free R-module M may be essentially em-
bedded into 1 R, (rCP), if and only if
pPExn
cardn==dimM=Zc.

The essential embeddings of R-modules into Q(R)* were also exa-
mined in [6] Ammong other things, the following propoesition was prov-
ed there.

Proposition 4. Every non-trivial closed submodule of
Q(R)* contains non-zero elements of H(R).

Corollary 3. A dense submodule M of Q(R)* is essential-
ly embedded into Q(R)*, if and only if M contains non-zero
elements of each of the submodules R(p)*=R, (p ¢ P) of Q(R)*

The following theorem is a consequence of Theorem 2, Proposition 1,
Proposition 3, Proposition 4, Corollary 2, and Corollary 3.

Theorem 3. Let R be a countable Dedekind domain
which is not a field, and in which every non-trivial idealis
of finite index. Let Mbe a torsion free precompact minimal
Rmodule with card M<c. Then only the following two pos-
sibilities may arise:

i) the module M* is periodic;

il) the module M* is torsion free.

If i) takes place, there is a set nCP with card sr=dimM
and a homeomorphic embedding

(9) i:M-—»ﬂRp

pé€xn

such that {M) is dense in [IR, and contains a non-zero ele-

113
ment of each of the factors R, (pen). Conversely, every em-
bedding (9) of an ‘R-module M with just enumerated proper-
ties induces a precompact minimal topology on M..
If if) takes place, the inequality card P<dimM holds and
there is a homeomorphic embedding

(10) i:M — Q(R)*

such that (M) is dense in Q(R)* and contains non-zero ele-
ments of each of the submodules R(p)*=R, of Q(R)* Conver-
sely, every embedding (10) of an Rmodule M with just enu-
merated properties induces a precompact minimal topo-
logy on M.
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[Mocrbnana wa 14. 1, 1976 r.

[MPEOKOMNAKTHU MUHHMMAJIHU TOIOJIOI'MHU
B HJKOH MOIYJ/IM BE3 TOP3USl

U. Mporanos

(PE3IOME)

Heka R e u3bpouM nelneKHHIOB INPBCTeH, B KOHTO HeTPHBHAJIHHTE HAe-
and uMar KkpaeH wuHuexc, B mpeusaranata pabora ce ©3yyaBaT MHHHMan-
HATE TOMOJOTHH B R Moay/auTe 6e3 TOpP3HS H ¢ MOIIHOCT NO-MajKa OT
MOLIHOCTTA Ha KOHTHMHyYMa, ETo raaBeuaT pesyarat Ea paborara B cayyas
R=1Z. = '

Teopema 3. Heka M e npenkomnaktHa MHHHManHa rpyna 6e3 Top3us
H ¢ MOIHOCT MO-MaJKa OT MOIIHOCTTa Ha KOHTHHyyma., Torasa rpymara M*
Ha HeNpeKbCHATHTE XapaKTepy HA M HAHM e NMepHOIMYHA, WM HAMA TOP3IHA.
B nbpBHs cayuall cbUIECTBYBd MHOXECTBO T OT NMPOCTH 4YHCAA H XOMEO-
MOpP(HO I'DYNOBO BJaraHe
9) itM— 1IIZ,

PEn-
(kbaeTo Z, e KOMNAaKTHAaTa rpyna Ha LeJXTe p-aAHYHH YHCIA) CBC CBOH-

crBara: rpynara i(M) e rocra B [1Z,; rpynara (M) cpabpxa pasiHyHd OT
pén

HyJIaTa eJeMEHTH OT BCeKH OT MHOxuTenute Z, (p ¢ w). O6parHo, BCAKO MoO-
HoMop(QHOo Biarane (9) ¢ Te3u CBOWCTBAa MHAYIIHpa MHHHMaJHA IpynoBa TOIO-
qorua B M. Bbs Bropust cayyak M e rpyna ¢ 6e3KkpaeH paHr M CblIeCTBYBa

XOMeOMOpP(HO I'PYNOBO BjaraHe
(10) i'M— Q*

cbe cBoiicTBaTa: rpynara (M) e rncta B Q*; 3a BCAKO NPOCTO p rpynara
i(M) cpabBpxKa Pa3NMYHA OT HYJaTa €JEMEHTH Ha KAHOHWYHHA €K3eMIVIAD Ha
rpynata Z, B Q*. OGparno, Bcsk0 MOHOMOPGHO Bnarane (10) c Tesu cBOA-
CTBAa MHAYyUWpa MHHHMAaNHA rPYNoOBa TOMOJOrUs B M. '



