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Expressum facit cessare tacitum

Teopzu Yobanos, Hearn Yobanoe. HHEIAIVIH‘IECRHE AKCI’IOMM HbHOTO-
HA ¥ 9AJIEPA. III. AKCHOMBI. |

DTa pabora apasercs Tperbeit YACTBIO CEPUM UCCAeNOBAaHUA NoJ ODIMM HauMe-
HoBannem Junamuvecxue axcuomet Hyromona u Diiaepa, nepsuie ABe 9acTH KOTOPOH
onyBGiukoBanu B 79-ToM ToMe »Toro Eocezoonuxa 1985 r. (xuura 2 — Mezanuxa).
lleanio -aTolM cepuM ABJIACTCA MCCIENOBANME POAK AMHAMMYECKMX akcuoMm HbloToHa
¥ Jilgepa B NpoUecce JOTMYECKOH KOHCONMIANUHM MATEMATHYECKMX OCHOB IVUHAMUKH
MacCOBHIX TOYEK M TBEPABLIX Tej, a Takke TOUHOTO MeCTa, KOTOpOe 3TH (yHIaMeH-
TaflbHBle AMHAMHMYECKHE MOCTYAATH 3aHMMAIOT B CHCTEME AHAMUTHUECKOW MEXauuKu.
B s1oM cMbIciie BONPOCHAA CepUs NPEACTaBAAET NPUHOC K PEIeHHIo WecTol npobieme
Puanbepra oTHOCHTENBHO aKCHOMATHYECKOTO MOCTPOCHMA aHaAMTHUeCKo# MeXaHHKN.
CuenuanpHoe BHuManie o6pallieHo NOHATHIO MHEPUHAABHOCTH TBEPIBIX CUCTEM OTCYe-
Ta Kak coraacHo Hpjotona, tak u Dinepa (npeanoxennn 11 - 13), ocoBeRHO B CaIydae
AVIHaMMKM MACCOBBIX TOUEK M TBEPABIX TeJ C NPOMEHIMBBIMU MACCAMA. -

Georgi Chobanov, Tvan Chobanov. NEWTONIAN AND EULERIAN DYNAMICAL
AXTIOMS.III. THE AXIOMS.

This paper is the third part of a series of studies under the general title Newtonian and
Eulerian dynamical azioms, the first two parts of which have been published in the 79th
volume of this Annualfor 1985 (book 2 — Mechanics). The aim of the series is to examine
the role of the Newtonian and Eulerian dynamical axioms in the process of the logical
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consolidation of the mathematical foundations of mass-point and rigid body dynamics, as
well as the exact place these basic dynamical postulates take up in the edifice of the science
analytical mechanics. In such a sense the series in question represents a contribution to the
solution of Hilbert’s sixth problem concerning the axiomatical construction of analytical
mechanics. Special attention is paid to the notion of inertiality of rigid systems of reference
- according to both Newton and Euler (Pr 11 ~ Pr 13), particularly in the case of dynamics
of mass-points and rigid bodies with variable masses.

This paper is the third part of a series of studies under the general title New-
“ tonian and Eulerian dynamical azioms, the first two parts of which have been
published in the 79th volume of this Annual for 1985 (book 2 — Mechanics). The
aim of the series is to examine the role the Newtonian and Eulerian dynamical
axioms play in the process of the logical consolidation of the mathematical founda-
tions of mass-point and rigid body dynamics, as well as the exact place these basic
dynamical postulates take up in the edifice of the science analytical mechanics.
This may be accomplished by a thorough analysis of all the aspects of Newtonian .
and Eulerian dynamical axioms. In such a sense the series in question represents a
contribution to the solution of Hilbert’s sixth problem concerning the axmma.tlcal
construction of analytical mechanics. .

The Newtonian and Eulerian dynamical axioms have a crucial role in the
historical development of analytical dynamics. As a matter of fact, the mass-
point dynamics has been borne in 1687 with the publication of Newton’s famous
Philosophiae Naturalis Principia Mathematica; and the rigid body dynamics — in
1775, when Euler wrote his Nova methodus motum corporum rigidorum defermi-
nandi, a work unfortunately still obscure even among professional mechanicians.
That is why in the first part of the series a historical review has been proposed on
the meanders that analytical mechanics was ‘destined to wandér about before the
laws or principles of momentum and of moment of momentum of mass-»pomts and -
rigid bodies have been discovered. :

In the second part a review has been proposed on the manner these fundamen-
tal dynamical laws are represented (or sooner mxsrepresented) in the tradltmnai
literary sources on analytical dynamics.
| The present third part is dealing with the axioms themselves. It contains strict
mathematical formulations of these axioms along with several preliminary defini-
tions of mechanical entities, thérein involved, and some immediate but important
corollaries. ‘

Sch 1. For the sake of brevity the symbols Sgn, sgn:, Ax, Df, Pr, Dm, and Sch
replace the words notation, denotes by definttion, aziom, deﬁnztwn proposilion,
proof, and scholium respectively, and the letters, R and C are reserved for the
fields of all real and all complex numbers respectively.”

 Sch 2. The bibhogra.phy of all three parts of the series has a umﬁed numera-
t:on

" Sch 3. Numbers in brevier refer to the Appendiz in the end of the artlcle

Sch 4. Quotations from the Appendir are made in the following manner: rela-
tion (17) and proposition 19 therein are cited simply as (17) and Pr 19 respectively
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in the Appendiz itself, but as App(17) and AppPr 19 resépectively elsewhere.

Sch 5. Similarly, relation (17) and proposition 19 from the main tezt of this
paper are cited simply as (17) and Pr 19 respectively in the main text itself, but
as M(17) and M Pr 19 respectively in the Appendiz.

The whole of mass-point dynamics is based upon, and is developed from, the
following two postulates.

Ax 1 N (fisrt Newlonian dynamical® arioms, alias law or principle of mo-
mentdm of mass-point). There exists such a rigid system of reference S that, all
derivatives being taken with respect to S, for any mass-point P and for any system
of forces F acting on P, the derivative with respect to the time of the momentum

of P equals the basis of F

Df 1 N. Any system ) of reference, satlsfymg Ax 1 N, is called inertial accordmg
to Newton.

Ax 2 N (second Newtonian dynamical aziom, alias law or principle of moment
of momentum (kinelical moment) of a mass-point). If S is an inertial according to
‘Newton system of reference and all derivatives are taken with respect to S, then
for any mass-point P and for any system of forces F acting on P, the derivative

with respect to the time of the moment of momentum of P equals the moment of
¥, both moments being taken with respect to the origin of S.

The whole of rigid body dynamics is based upon, and is deveioped from, the
following two postulates.

Ax 1 E (first Eulerian dynamical aziom, alias law or principle of momentum
of rigid body). There exists such a rigid system of reference S that, all derivatives
- being taken with respect to S, for any rigid body B and for any system of forces
F acting on B, the derivative with respect to the time of the: momentum of B

| equafs the basis of F

~ Df1E. Any svstem of teference satisfying Ax 1 E is called mema! accarcimg
to Euler

Ax 2 E (second Eulertan dynamical axiom,'alias law or principle of moment
of momentum (kinetical moment) of rigid body). If S is an inertial according to
Euler system of reference and all derivatives are taken with respect to S, then for
any rigid body B and for any system of forces F acting on B, the derivative with

respect to the time of the moment of momentum of B equals the moment of F

both moments being taken with respect to the origin of S.

Sch 6. These formulations of the Newtonian and Eulerian dynamical axioms
may be found nowhere in the current literature on analytical dynamics of mass-
points and rigid bodies. Instead, amorphous redactions of imitations of Ax 1 N
and possibly of Ax 1 E are proposed to the reader, the role of the inertial systems
of reference according to Newton, as well as to Euler, being as a rule completely
economized if not surpressed. As regards Ax 2 N'and Ax 2 E, in the traditional
literature on analytical dynamics these dynamical suppositions or hypotheses are
taken down from their logical pedestal of dynamical axioms to the unenviable level
of theorems, being labelled “the theorem of kinetical moment” of mass-points and of
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rigid bodies respectively. Moreover, even Ax 1 E is called, by some authors at least,
“the theorem of momentum” of rigid bodies, with the claim that it is derivable from
Ax 1 N. This is a most unpardonable logical error rooted in a deep ignorance of the
real state of affairs in analytical mechanics, at least as far as its logical foundations
are concerned. It is a topic we shall discuss at length subsequently.

Sch 7. For the time being we confine ourselves to the most categorical decla-
ration that Ax 1 N, Ax 2N, as well as Ax 1 E, Ax 2 E, are unprovable mathematical
statements, as unprovable at least, as for instance Euclid’s fifth postulate or Pascal’s
principle of mathematical induction are.

~ Sch 8.-One of the aspects of these realities lies in the fact that the Newtonian
and the Eulerian axioms involve mechanical terms which are unsusceptible to ex-
* plicit mathematical definitions. Since this mathematical phenomenon is one of the
most important, let us sumbit it to a closer analysis.

The meaning of both Newtonian and Eulerian dynamical axioms is out, of reach
unless and until the meaning of any term these verbal propositions involve is made
clear. These terms are: system of reference, rigid system of reference, derivative of
a vector function with respect to a system of reference, mass-point and rigid body,
momentum and moment of momentum (kinetical moment) of a mass-point and a
rigid body, system of forces, basis and moment of a system of forces with respect
to a given point (pole), origin of a system of reference, time, and acting (a system
of forces is “acting” on a mass-point and a rigid body). If all these terms were
susceptible to explicit mathematical definitions, then the Newtonian and Eulerian
dynamical axioms would turn out to be (true or false) mathematical theorems.

‘And if not?

The answer of this question, as regards more elementary mathematical theo-
ries than analytical mechanics (as, for instance, arithmetic and Euclidean geome-
try), was known to nobody until the end of the last century*. According to the
proclaimed in 1899 Hilbert’s aziomatical principle, a system of axioms for a math-
ematical theory must unconditionally include a certain number of void of explicit
- definitions terms of this theory. Now all the terms, numbered above and involved in
Ax1 N, Ax 2 Nand Ax 1 E, Ax 2 E, are susceptible to strict explicit mathematical
definitions with the only exception of the last two ones, namely time and acting.
Those are primary notions of the mathematical theory called analytical mechanics,
and they are defined implicitly namely by the aid of Ax 1 N, Ax 2N and Ax 1 E, Ax
2 E (along with other mechanical axioms which will not be formulated manifestly
here for the time being). At that, the term time is a primary not:on-obyeciz and
the term acting is a primary notion-relation®.

Sch 9. Ax 1 N and Ax 1 E are existance statements. Any of them asserts that
there exists one at least system of reference with certain properties, and Df 1 N,
Df 1 E give special appelations of these kinds of systems of reference.

" There is a definite lack of information in Ax 1 N, Ax2 N and Ax1E, Ax 2 E,
however. Indeed, if a particular system of reference S is given, then neither Ax 1
N, Ax 2 N nor Ax 1 E, Ax 2 E give any passibility to decide whethet S is inertial
according to Newton or according to Euler respectwely This is a question that will
be discussed in detail below.
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Sch 10. There is also a lack of distinctness about the relation between iner-
tialities according to Newton and according to Euler. In other words, on the basis
of Ax 1 N, Ax 2 N and Ax 1 E, Ax 2 E only, one cannot answer the question
whether there exists one at least inertial according to Newton system of reference
which is, or is not, inertial according to Euler too. Alias, Ax 1 N, Ax 2 N and Ax
1 E, Ax 2 E are tolerant to any of these alternatives.

Sch 11. A mere glance at the Newtonian and Eulerian dynamlcal axioms
displays at once that the notions of mass-point and of rigid body play a central role
among all other notions these axioms involve. Their role is comparable to that the
notion of integral plays in mathematical analysis. As well as it is impossible to
build-up a logically irreproachable mathematical analysis without a strict math-
ematical definition of the term infégral, it is not lesser impossible to construct a
logically unimpeachable analytical mechanxcs without strict mathematlcal defini-
tions of the terms mass-point and rigid bod :

Sch 12. A last general remark concermng the Newtonian and Eulerian dy-
namical axioms affects the striking similitude, the complete analogy between Ax
1 N, Ax 2 N, on the one hand, and Ax 1 E, Ax 2 E respectively, on the other
hand. No great perspicacity is needed, indeed, to see that it is quite sufficient to
substitude the term rigid body for the term mass-point in Ax 1 N, Ax 2 N in order
to obtain automatically Ax 1 E, Ax 2 E respectively.

- This formal resemblance between the Newtonian and the Eulerian dynamical
axioms quite naturally brings forward the question: was there as much marifet
needed, factually, as to ascribe Euler’s name to the laws of momentum and of
moment of momentum of rigid bodies? After all, once disposing with Ax 1 N and
Ax 2 N, is it not a trivial whim to substitute in them the word mass-point by rigid
body in order to obtain Ax 1 E and Ax 2 E respectively? Is there a great merit in
such a procedure jn order to perpetuate someone’s name?® , :

“Such an attitude toward the Eulerian dynamical axioms may be evinced only
by someone who is entirely ignorant of the very essence of rigid body dynamics.
Cum grano salis, to support such an outlook is as unwise as to uphold that a woman
may be created out of a man by a mere substitution of the pronoun she for he.

Sch 13. First of all, neither Newton nor Euler have had the slightest idea
of the above’ formulatmns of their dynamical laws”. Those are formulations that
only modern mathematics could propose: it is hardly accidental that, as already
underlined, they are nowhere to be seen even in the current mechanical literature.
Euler did not dispose of Ax 1 N and Ax 2 N in order to substitute in them rigid body
~ for mass-point and to obtain, in such a parrot way, Ax 1 Eand Ax2 E respectlvely

Sch 14. The most that Euler took from Newton'’s Principia was Lex II.
Besides, Euler did never have the slightest idea that Ax 1 E and Ax 2 E are beyond
proof. A son of his epoch, he believed he had proved them. He never understood
that his “demonstrationes” are, at the best, only plausible inferences. The nature of
his reasonings is bordering on physical intuition. In his arguments, let us emphasize
that once more, Newton’s Lex Il has played a most essential role.

All these circumstances being bien entenduy, let us at last give a formal mathe-
matical redaction of the Newtonian and Eulerian dynamical axioms, together with

t
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some immediate corollaries.
V denoting the real standard vector spaces a mass-point P is defined as an
ordered palr (r, m) of a vector function®

(1) o r: R—V

(the radius-vector of P) and a scalar function

2 . m:R—-—»RU“ . (0 <mit), teR)

(the mass of P). Under these notations it is written P(r, m).

Let Ozyz be a right-hand orientaied orthonormal Cartestan system of reference
and let 1, 3, k be the #nit vectors of the axes Oz, Oy, Oz respectively. If P(r,
m) is a mass-point, its radius-vector (1) being taken with respect to O, then the
derivative

10

- dr
(3 D=7
( i) | S vsgn: — =7
of r with 1.'espuﬂ:ct11 to Ozyz is called the velocity of P with respect to Ozyz:
- The quantlty

(4) -~ ksgn: mv

¥

" is called the momentum of P with respect to Ozyz, and the quantity -

- (5) | | Isgn: r x mo

is calléd the mameni of momentum (kinetical moment) of P with respect to Ozyz.
Let now P be under the action of the system

€ - Fsg: {F,,},,-l
of forces
M | Fosg: (Fo, M,) Cw=1,..., n),

where by definition
® F,=M,=0 | (1<v<n)
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or otherwise

) F,#0, F,M,=0, (1<v<n),

all moments M, (v =1,. n) being taken w1th respact to 0.
For the sake of brevlty let

n n
(10) F sgn: ZF,,, M sgn : ZM,,.

y=1 v*l

be the basis and the moment (with respect to O) of (6) respectwely

If the system of reference Ozyz is, by hypothesis, inertial according to Newton,
then the mathematical expressions of Newton’s dynamlcal axioms Ax 1 N and Ax
2 N are o ;

(11) ‘ %’(mv) =F
and \ |
(12) - i(r xmv)=M

respectively, the denvatwes in the left-hand sides of (11) and (12) bemg taken with
respect to Ozryz.
Using the abbreviated notations (4), (5) instead of (11) and (12) one can write

(13) | o~ F = ‘o
and | \ | | |
14 i-M=0
respectively.

While the notion of mass-point is a most simple one, the notion of rigid body
15, on the contrary, a most complicated one. We are,devoid of the opportunity of
entering here in any details in this connection and we are compelled to refer the
reader to the articles [44, 87 - 89]. Still some explications are impreventable with
a view to better comprehensmn of the exposition. .

‘Let B be arigid body and P be any of its points. If r = OP, then (3) defines
the velocity of P with respect to Ozyz. The definition of B requires the prescription
of a function

(15) w: V——[0, c0)

N
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(density of B at r). If djs denotes an element of arc, area, or volume of B, according
to the dimensions of B (1-dimensional, 2-dimensional, or 3-dimensional rigid body
respectively!?), then the differential

(16) . | dm = s(r)dp

is called the element of mass (mass-element, elementary mass) of B at ».
Extremely important for rigid body dynamics are the following kinetical quan-
tities:

(17) | m sgn : / dm
(mass of B),
(18) - : rG Sgn : -l—-/rdm

(radius-vector with reépect to O of the mass-center G of B),

(19) | S K osgn: jvdm

(momentum of B with respect to Ozyé), and

(20) L sgn: /r x vdm

(moment of momentum, alias kinetical moment, of B with respect to Ozyz).

It is seen that while the mass of a rigid.body is invariant with respect to the
chosen system of reference, all the other three quantities (18) ~ (20) are not. At
that, all integrals in the right-hand sides of (17) — (20) are taken over the occupied
by the rigid body!'? space.

- If the rigid body B is under the action of the system (6) of forces (7) with

(8), (9) and the notations (10) are accepted, and if the system of reference Ozyz
" is, by hypothesis, inertial according to Euler, then the mathematical expressions of
Euler’s dynamical axioms Ax 1 E and Ax 2 E are

(21) B %/vdrﬁ:F



and

(22) | %j}xvanzhf

respectively, the derivatives in the left-hand sides of (21) and (22) being taken with
respect to Ozyz.

Using the abbreviated notations (19) (20) instead of (21) and (22) one can
write :

(23)  K-F=0
and |

(24) N . L-M=o0
respéctively. |

Sch 15. The complete analogy between (23), (24), on the one hand, and (13),
(14) respectively, on the other hand, is obvious. This similitude is only formal
though, as a mere glance at the definitions (4), (5), on the one hand, and (19), (20) .
respectively, on the other hand, at once displays. This juxtapositiqn throws a new
light on the raised in Sch 12 — Sch 14 questlon concerning Euler’s attributions in-
rigid body dynamics, which are now seen in its true colours. '

The difference betwéen the momenta and the moments of momenta of mass
points, on the one hand, and of ngld bodies, on the other hand, are tremendous
indeed. One should not be deceived by the fact that such radically different math-
ematical objects as (4) and (19), as well as (5) and (20), are called with the same
names. If, as underlined, the analogy between (13) and (23), as well as between
(14) and (24), is perfect, yet one is at a loss to see the nuclei, or the germs, or the
embrios of K and L in k and I respectively, to say nothing about some similarity
whatever. The blind Euler managed to see K and L through k and I respectively,
as well as (21) and (22) through (11) and (12). How did he succeed in domg so?

The only answer we can give is: Frankly, we don’t know.

We have our suspicions, though. They will be exposed somewhat later.

The following three propositions are almost obvious:
Pr 1 N. (11), (12)

(25) ‘ . F=0
imply
(26) M =0.

Dm. (11) implies

(27) T X g-i(mv) =rxF.
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On the other hand, obviously

d

(28) T X m(mv) = -i(r X mv).
Now (27), (28) imply
d

(29) a—g(‘r xmv)=rxF
and (12), (29); (25) imply (26).

Pr 2 N. (11), (12) imply
(30) | FM =0.

~ Dm. (12), (29) imply

,(31) | ' rxF=M
and (31) implies (30).

- Pr 3 N. (11), (12) Impiy
(32) | rM =0.

Dm. (31).
PraN.IfPisa mas&poxnt; and F is a system of forces acting on P, then

(33) . _ rank F #1

and |
ey, rank F #3.

Dm. If a system of foreces F is given, then it gives rise to a mapping

(35) p:V—V
defined by | |
- .(36) : p(r) = mom, F ,

where by deﬁnition
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(37) « mom, F  sgn: M+ Fxr

" is the moment of F with respect to r (the r-moment of F ), F and M being, as
until now, the bas}:and the moment (with respect to o)-:)} F respectively. The
‘mapping (35), defined by (36), is called the momental field of F. Now the rank
of F (symbolically — rank F ) is defined as the maximal num”k;;r of the linearly
ind;;endent elements of the ;n:age #(V) of V. According to the rank-theorem [90].

(0 iff F=0, M =0,
1 if F=0, M #0,
2 fF#£0, FM#0,
(3 iff FM =0.

(38) rank F = ¢

Now (38), Pr 1 N, Pr 2 N imply (33), (34).
Sch 16. Pr 4 N is very instructive. It manifests prohlbltaons in mass-point
dynamics. According to it, a mass-point P and a system of forces F' acting on P

being given, then necessarily rank F =0orrank F =2.

Pr 5 N. P being a mass-point under the action of the system of forces F the
latter is equivalent to the zero-force or to a smgle non-zero force with a directrix -
passing through P.

Dm. Pr 4 N, [90] Pr 2, (31).

Sch 17. A direct, though not purely mathematical, corollary from Pr4N
consists in the conclusion that the rigid body dynamics cannot be derived from, or
be reduced to, the mass-point one. Indeed, as particular problems of rigid body
dynamics display at once, the systems of acting on rigid Bodies forces may be quite
arbitrary; in particular, their ranks may equal 1 or 3. In other words, the systems of
forces that are warrantable to competition as regards their actions on mass-points
form an inessential part of the set of all systems of admissible to actions on rxg:d
bodies forces. Quod erat demonstrandum.

Let us analyse the possibilities of the following alternative for Ax 2N postulate

Ax 2 N bis. If § is an inertial according to Newton system of reference, then -
for any mass-point P(r, m) and for any system of forces F (F M) acting on P,

the relation (31) holds, both » and M being taken with respect to the origin of S.

The following proposition is almost obvious.

Pr 6 N. The system of axioms Ax 1N, Ax 2 N and Ax 1 N Ax 2 N bis are
equivalent. ,

Dm. Ax 1 N and Ax 2 N imply Ax 2 N bis (Pr 2 N). Inversely, Ax 1 N and
Ax 2 N bis, alias (11) and (31), imply (12), i.e. Ax 2 N by virtue of (28). -

75



Sch 18. It has been mentioned in App 7 that Newton “thought wrongly that”
Ax 2 N “s an immediate corollary from Lex II”, i.e. from Ax 1 N. Now Pr6 N
displays that this idea of Newton is a half-truth: Ax 2 N is a corollary from Ax 1
N and Ax 2 N bis coniunctim rather than from Ax 1 N alone. It is clear that on
the logical background of that epoch Newton’s error is easy to be explained.

Sch 19. It must not be left unobserved that Ax 2 N bis, in its simplest form
at least, is a much 'more natural and intuitively clear proposition than Ax 2 N.
‘Indeed, Ax 2 N speaks nothing to the physical experience. On the contrary, if the
mass-point P(r, m) is acted on by a single non-zero force '

(39) - o F =(F, M),

 then Ax 2 N bis simply states that its directrix must unconditionally pass through
P. This supposition is as natural as to seem obvious. No wonder the authors of
“text-books on analytical dynaimics never bothered to formulate it exph(:ltly

Sch 20. The relation (31) is certainly satisfied in the case

(40) rxF, =M, - (v=1,..., ),

as it is immediately seen by virtue of (10). Since any of the relations (40) represents
(provxded the radius-vector r of P is fluent) the equation of the directrix of the force

F (v =1,..., n) respectively, these relations give expression to the requxrement
that any of these directrices must pass through the mass-point P. This is what
all physicists bear in mind when asserting that there “would be but a single law
of motion”!4. Although physically quite natural, mathematically this requirement
follows from no other hypothesis of mass-pomt dynamlcs and is, consequently, a
new dynamical supposition.’

Being unprovable, it may be raised to the rank of a new dynammal axiom,
namely:

Ax 2 N bis bis. Ifa system of forces is acting on a mass-point P, then P
lies on the directrix of any of these forces..

Sch 21. Naturally, it is possible to build a mass-point dynamics founded on
Ax 1 N and Ax 2 N bis bis instead‘ of Ax 1 N and Ax 2 N. The range of action of
this hypothetical dynamics is, however, considerably narrower than the Newtonian
one. It is true that Ax 1 N and Ax 2 N bis bis imply Ax 2 N, but the inverse is not
true: Ax 1 N and Ax 2 N.may be satisfied while Ax 2 N bis bis may not.

Sch 22. In such a way we are faced with the alternative: on the one hand, to
develop the Newtonian mass-point dynamics on the basis of Ax 1 N, Ax 2 N; on
the other hand, to develop an entirely identical dynamics on the basis of Ax 1 N,
Ax 2 N bis. Both ways are completely equal in rights, as regards the Newtonian
mass-point dynamics solely. If, however, the last is regarded together with the
Fulerian rigid body dynamics, then the first way is preferable from an aesthetic
point of view at least. Indeed, as it has been mentioned above, there i1s a complete
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parallelism between Ax 1 N, Ax 2 N, on the one hand, and Ax 1 E, Ax 2E, on the
other hand. This parallelism, however, vanishes into thin air, if one chooses Ax 2
N bis instead of Ax 2 N, since Ax 2 E bis analogous to Ax 2 N bis simply does not
exist: in the Eulerian rigid body dynamics there is no true proposition (axiom or
theorem) similar to Ax 2 N bis.

In other words, in rigid body dynamical the analogue of Ax 2 N bis, if any,
is simply and purely false: whereas (31) implies (30), in rigid body dynamics, as
underlined in Sch 17, there is no obligatory relation connecting the basis and the
moment of a system of forces acting on a rigid body — both these quantities may
be absolutely arbitrary in a parti¢ular dynamical problem concerning rigid bodies.

Sch 23. Let us now display how “proofs” of the Eulerian dynamical axioms
Ax 1 E and Ax 2 E are fabricated by most authors of text-books, treatises and
monographs on analytical dynamics. To this end let P,(r,, m,) (v =1,..., n) be
mass-points on which the systems of forces F,,(F,, M) (v = 1,..., n) respectively

are acting, the moments M » (v =1;..., n) being taken with respect to O. Then
Ax 1 N and Ax 2 N imply |

d , . -
(41) a-t-(myv,,) =F, (v=1,..., n)
‘a.nd
d | « | |
(42) | -C-E(ryxm,,v,,)zM,, (v=1,..., n)
respectively, provided v, =+, (v = 1,..., n),:the derivatives being taken ivith

respect to the inertial according to Newton system of reference OQzyz. Adding (41)
‘and (42) together and adopting the notations (10) one obtains

. d 1 .
7 (43) - ‘ 7 Zm”vy =F
: V vzjl '
Y.
and
‘ . . d n o, B
(44) 5 }:m xmyv, =M
p=1 .

. respectively. The quantities

(45) k, sgn : Zm,vy»
’ . v=1
and
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n

(46) ' A l, sgn: er X myv,

r=l

are by definition the momentum and the moment of momentum (kinetical moment)

respectively of the system S, of mass-points P, (v =1,..., n). Now (43) — (46)
ir’nply ‘ -
(47) - | kn—F=0
and
(48) | | R . M=0
| respectwely ~

The formal analogy between the laws (47), (48), on the one hand, and (23),
(24) respectively, on the other hand, is obvious. Not so obvious is the sinNlitide
between the relations (43), (44), on the one hand, and (21), (22) respectively, on
the other hand. Some words in this connection are therefore not pointless.

Let us imagine, to this end, that a partition of a rigid body B is accomplished
by the aid of three series of mutually perpendicular planes into a system of paral-
lelepipeds, n = m3 in number, in such a manner that all dimensions of any of them
‘tend to zero with increasing m. Let p, denote the v-th of these parallelepipeds, m,
— its mass, and P, — any point inside of p, (v =1,..., n).

If now one condescends to follow the logical process of those authors of text-
books on analytical dynamics which are pretending to “prove” the Eulerian dy-

- namical axioms Ax 1 E and Ax 2 E, then one could fancy that the rigid body

B'is “substituted” by a system of mass-points P,(r,, m,), provided r, = OP,
(v =1,..., n). According to these authors, this peculiar imitation of B is as much
more adequate as greater n is, with the tendency to transmute into a complete
identity with the infinitely increasing n. According to this current of thoughts the
discrete r,, v,, and m, (v = 1,..., n) in the right-hand sides of (45) and (46) are
“transformed into the general, depnved of individuality, r, v, and dm respectively in
“the right-hand sides of (19) and (20) respectively. Accordmg to the same ideas, the
dynamical equations (43) and (44) are transmuted into the dynamical equations
(21) and (22) respectively: the Eulerian dynamica.l axioms are proved!

There are, however, two at least points in connection with this Hakﬁs Po}ms
that badly need exphcatxons

First of all, let us remind the way the relations (43) and (44) have been ob-
tained. We arrived at them by adding together the equations (41) and (42) re-
spectively, ip other words the latter are jnescapable for our gains. If one does not.
‘dispose of (41) and (42) in any particular case, then one simply and purely has no
right, both logical and ethical, to appeal to (43) at all. Now in the above reasonings
one is entirely denuded of the possibility to write down (41) and (42), since there is
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no information about the forces in the right hand sides of these equations. In other
words, one knows nothing, but nothing indeed (nichts, rien de rien, nada, niente,
nuwmo) about both the bases F, and the moments M, of those hypothetical forces
(7) which are acting (in the heads of eminent authors at least) on the mass-points
P, of p, (v =1,..., n). All that is known is the system of forces acting on the
rigid body B itself. As far as the problem is concerned how are these latter forses
decomposed (mentally at least, if not actually, alias physically) or distributed in
order to act on those mass-points which, in their Mannigfaltigkeit, are intended to
replace B in the above reasonings — its only answer is ignoramus et ignorabimus.

In such a manner, the whole mental procedure, described above, remains hang-
ing in the air. It is rotten through and through. In my end is my begining, the
proverb says. As regards the efforts to prove the Eulerian dynamical axioms, their
end is in their beginning. Reasonings of the sort just exposed should not be written
in black and white. The addle eggs must be cast out of the nest.

As regards the passage from m, (v =1,..., n) to dm, mentioned above, the
things stand topsyturvy. ,

Physically the notion of density of a ngld body. B at any of its points P is |
defined as follows. Let

(49) ’ AI} A?r"'aén:*"

be an infinite seqlllenée of parts of B, any of which involves P and is deposited in
the preceding one, and let their dimensions in every direction tend to zero with in-
creasing n. Let v, and m, denote the volume and the mass of Ay (v=12,...,n)
respectively. Then the fraction

(50) s, = X  w=12..)

vy

is called the mean dqens'z'iy of A,. Tts Iimit v

(51) , N - 3= Lim 3,
‘ . Y e 50 )
is called the density of B at P. (The physicists take for gospel truth the hypothesis
that s is a function of P only, independently of the partlcular sequence (49) by
means of which it is defined.)

Mathematically, however, the whole procedure is unrecognizably reversed. The
densityof a rigid body B at any of its points P is a beforehand given function (15)
of the radius-vector » of P that takes part in the very definition of B. (Naturally,
certain additional conditions about this function must be hypothesized, in the first
place its integrability in a certain sense; in view of the definition (16) of the ele-
mentary mass dm and its participation in all the integrals (17) — (20), etc.) This
function being known, the mass of the part A, of B is defined by the integral
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(52) | ' | my,= fdm:z /x(r)dp
‘ Ay

a,

according to (17), taken over A, (v =1, 2,...), the meaning of du being explained -
above. .

This analysis displays once more the complete bankruptcy of the mechanical
texts pretending to give “proofs” of the Eulerian dynamical laws of momentum and
. of kinetical moment. ' _

Sch 24. And yet, this approach has been broadly useéd in mechanics in times'
- gone by So, for instance, the mass of a system S, of masspomts P,(r,, m,)
(v=1,..., n) is defined by

(53) 'm’sgn : Zm,,;
' ’ v=1
the radius-vector rg of its mééé;centf{:’ G by
. | - -
(54) TG sgn: Y myry;

and its kinelic energy by

I
(55) | T sgn : 3 ; m,v,,
‘providedw, =7, (v =1,..., n). éompletely similar to (53) —/(55) the mass

and the mass-center of a I’Igid body B are, as already mentioned, deﬁned by (17)
and (18) respectlvely, and its kinetic energy by

(56) - T sgn : %/ vidm.

E Now, not a word could be said justly against the definitions (17), (18), and (56),

no matter that, treating the continual case, they are suggested by the definitions
(53) - (55) respectively, treating the discrete one. The role of (53) — (55) for the
- formulation of the definitions (17), (18), and (56) respectively, however, is purely |
suggestive, inductive, heuristic, by no means logical. As regards the theorems, none
of them can be proved for continua on the basw of facts known in the dlscrete case
only, i.e. by analogy.
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Sch 25. The question, raised at the end of Sch 15, namely — how did Euler
arrive at the idea of his dynamical laws, may now be concretisized: did he use
the logical process described in Sch 23, — or in other words, did he attain to
Ax 1 E and Ax 2 E through (43) and (44) respectively? Although it is rather
tempting to answer this last question in the affirmative, the justice requires some
cautiousness. It is true that the equations (43), (44) are Euler’s discoveries. It is
-also true that the heuristic approaches, described in Sch 24, have been widely used
“in Euler’s days for definitional goals. At that, the associative abilities of Euler’s mind
were proverbial; as regards the formal analogies, he was a universally recognized
master (let us remind the established by him relation between the exponential and
‘the trigonometrical, functions, or his summations of divergent series — to cite a
few examples out of a legion). At last, it is true that in the epoch immediately
_foregoing the French revolution the mental picture of a rigid body as composed of
a large number of mass-points has been most popular. And yet, the mathematical
creation is a phenomenon that belongs to psychology rather than to mathematics
itself. Let us remind that someone had said: he, who states categorically something
that lies outside pure mathematics, is at least imprudent.

It has been underlined in Sch 9 that, S being a particular rigid system of
reference, neither Ax 1 N, Ax 2'N, nor Ax 1 E, Ax 2 E, give any possibility to
decide whether S is inertial or not according to Newton or to Euler respectively.
We are now in a position to subject this problem to a detailed analysis.

The following propositions play an auxiliary role in solving this problem.

Pr 7. If a and 3 are rigid systems of reference, the function

(57) - p: R—V

is differentiable, and W, is the nstantaneous angular velocity of g w1th respect to
a, then -

\ | dap _ dsp | ~
(58) , —a-t-— T +Wag X P , : (tER).

- Dm. Let by definition

(59) - B Sgn { b tf}v—-la

where

(60) ~ Fusen: (b, BY) (=12 9),
(61) " b :R—V w=1, 2 3),
(62) B, R—V w=1,2 3),
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(63) | b(t) X ba(t) - ba(t) #0 | (teR),

$

(64) bu()B, (1) + b, ()B,(t) = 0 (v=1123 teR),

) 2 B (1) =0  mv=lL23%teR

(Sch 10). Then &T,p is defined as the 6nly solution of the system of vector equations

- da.b, ’
‘namely
' | 1 dgb
(67) - aaﬁzi‘}_':b;l x ‘;t" - (tER)
r=1

[91], the reciprocal vectors b, ! of b, (v =1, 2, 3) being defined as in Sch 10.. 1t is
- proved that W,y satisfies also the system

dob;?
dt
The definition App (17) impli&i

(68) = Wap X b1 v=1,2 3; teR).
V «

: - dﬂP -1 ‘ 7

(69) | Z ( 58 ) . | (t € R).
It is proved that 1f the functions |

(70) ' p,: R—V | (v =1, 2)

are differentiable, then for ahy rigid system of reference a

iy T dppy) d A
m (?f )4 STipy+ Pyt :fz - (eR)

The relation (71) implies

, ' -1
4 b = o2y 4 plebe

& +p 4 " (tER)

(72)

i
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(ff =1, 2, 3), and (72), (68) imply

(73) dt@”?l) ZoPp;t b pxTap B (teR)

(v=1, 2, 3). Now (69), (73) imply

(74) ‘ | dﬂp z: ( an-I) b + Z:(p % waﬁ kl)by

p=1

(t € R), and (74), App (16) wit

: | dgp dap | :
(75) . V ‘ '“CE--—- dt +pxwa,a ‘ ‘ (feR),

whence (58). ,
Pr 8. If a and 3 are rigid systems of reference and W,g is the instantaneous
angular velocity of # with respect to «, then :

| 3 | dop _ dﬂp ‘ |
(18) | - (teR)

for any differentiable function (57) if, and only if,

™ . Tu=o . en,

Dm. Pr 7.
~ Sch 26. The relation (58) is usually called the connection between the local
derivatives of a vector function with respect to two systems of reference.
Sch 27. Let us note in passing that | ‘

(78) Wpa = —Wag.

" Indeed, Pr 7 impfies

: | dgp dap o |
(79) PR +@ga X P ~ (t€R).

~ Now (58) and (79) imply

(80) (@ap +Tpa) X P = 0.
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Since (80) is satisfied for any differentiable function (57), it implies (78).

Pr 9. If a and B are rigid systems of reference with origins A and B respec-
tively, @, g is the instantaneous angular velocity of # with respect to «a, P is any
moving point and :

- (81) r=AP, rg=AB, p=BP,
then |
' dov _ doTp d dsp
(82) = +Wap X P+ — 7 (t € R).

Dm. (81) and the obvious identity AP = AB + BP imply

(83)' r=rpg+7,

whence (82).
Sch 28. If « is a rigid system of reference, n is a natural number, and the
. function (57) is n + 1 times differentiable, then by definition

dgHP Cdadyp
a8 T

The left-hand side of (84) is called the (n + 1)th derivative of p with respect 10
or the local (with respect to a) (n + 1)th derivative of p.

Sch 29. If r denotes the radius-vector of a moving point with respect to
the origin of the rigid system of reference a, then the first and the second local
“derivatives of r with respect to « are usually called respectively the local velocity
and the local acceleration of P with respect to «. If there is no danger of collision
- of notations, they are traditionally denoted by v and w respectively.

Pr 10. If « and 8 are rigid systems of reference with origins A and B respec-
tively, @qp is the instantaneous angular velocity of # with respect to a,

(84)

‘ | doT,
(85) |  Eap sgn : 5 e

is by definition the instantaneous angular ‘acceiergztion of @ with respect to o, P is
a mass-point with two-times differentiable mass

(86) ‘ m: R-—-——-rR

~and (81) hold, then
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do dor _ do d.7p —y - - —
(87) T (ma-) =3 (m 7 ) +Zop X MP + Tap X (Fap X Mp) -

_ dgp = dp(mp) dg [ dgp '
+ Wap X (m di -+ di + 2‘{ m—a—i‘- (t € R)

Dm. (82) implies

‘ dor  daTg _ dgp
(88) m"(‘ﬁ" — m i +Wap X Mp + m‘:i"i-
(t € 'R), whence

' , | da dor _ do dorp \ =
(89) E (m—:{?) = ?{t— (m i )+ gaﬁ xmp

__da(mp) _ da (dsp |
+ Wap X 7 +3?(m'a—t— | -(t€R)
in view of (85). On the other hand, Pr 7 implies
‘ do(mp) dg(mp) _ _ |
(90) S:“’) - ‘3(;’”) +Tap X MP (teR),
 daf dgp\ _dg [ dsP\ , _ dsp

(91) ;f? (m—”) = E m-E; +wa;3 X m-ﬁ ‘ | (t € R)

Now (89) — (91) imply (87).

Sch 30. Now we are capable of proving some 1mportant prop051t10ns sheddmg
some light on the problem of inertiality according to Newton and Euler of rigid
systems of reference. With a view to a better comprehension of these propositions
they are somewhat dismembered. :

- Pr 11 N. If a and 8 are inertial according to Newton systems of reference
with origins A and B respectively, T,p is the instantaneous angular velocity of 8
with respect to o and rp = AB, then |

' ' do daTB _ : « '
92) | -‘-E(m i )--o (teR)
for any function (86) and ~ |

(93) | Wop =0 .~ (teR).
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Dm. o and f being iner,tial aécofding to Newton by hypothesis, Df 1 N and
Ax 1 N imply - : '

do | dor\ _ | ,
(94) | o (m"‘t—) =F ~ (teR),
dp\ dﬁ?‘ _ .

provided (81), m denoting the mass of any mass-point P and F — the basis of any
system of forces acting on P. Then (94), (95), and (87) imply

- dg doTp _. — — —
(96) ) (m 7 ) + Eap X mg-{-wa,s X (@ap X MP)
=, dsp | dg(mp) . ’
+,“"“ﬁ X (m 7 + d? . (t c R).

Since Ax'1 N holds for any mass-point and for any system of forces acting on
it, the corollary (96) from (94), (95) holds for any m and p. Let us first choose

(97) | ' p=o0 | (t € R).
Then (96) implies (92), and (96), (92) imply

(98)  Tap X MP+Tap X (Tap X MP) +Tap X (mdf + dﬁS’:ﬁ)) 0o
(t € R). Théreupon let us choose
(99) I m=1 | (t € R),.
o | - dgp .
Then (98) — (100) imply
(101) Zap X 'ﬁ+ Tap X (Tap X P) = 0 . (t € R).

Scalar multiplication of (101) with 7 implies
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(102) (@ap xP)2 =0 | (t € R),
whence
(103) . Wap XP=o0 ‘ - (teR).

In particular , if one puts in (103) successively 5 = b; and p = b;, then one obtains
the system of vector equations

(104) - ' waﬁxb,;mo (v=1, 2 te R).

Since by hypothesm b1 x ba # o according to (63), the system (104) has exactly
one solution, namely (93).

Pr 12 N If « is an inertial according to Newton system of reference and fisa
rigid system of reference, with origins A and B respectively, rp = AB, Wyg is the
instantaneous angular velocity of 8 with respect to «, then (92) for any function
(86) and (93) imply that 3 is inertial according to Newton too.

Dm. a being inertial according to Newton by hypothesis, Df 1 N and Ax 1 N
imply (94) provided (81), m denoting the mass of any mass-point P and F — the
basis of any system of forces acting on P. Then (87), (92) — (94) imply (95), i.e.
B is inertial according to Newton (Df 1 N, Ax 1 N).

Pr 13 N. If a and S are rigid systems of reference with origins A and B respec-
tively, r8 = AB, Wap is the instantaneous angular velocity of 8 with respect to a,
then necessary and sufficient conditions in order that a and 8 are simultaneously
inertial according to Newton are (92) for any function (86) and (93). .

‘ Dm. Pr 11 N, Pr 12 N.

Sch 31. Before proceeding further, let us make some remarks in connectlon
with Pr 13 N. : ‘

In the formulation of the Newtonian dynamical axioms no hypotheses have
been made concerning the mathematical nature of the masses of the mass-points.
Following the Newtonian tradition, however, for a long period of time the classical
mechanics has worked under the acceptance (not explicity formulated, it is true)
that the masses are absolute constants, especially, that they are invariant with -
respect to the tjme. In any case, such has been the state of affairs in mass-point
and rigid body dynamics until the end of the last century.

~ In 1904, however, the Russian nechanician Meshtcherski proposed the differ-
ential equation

(105) - m%.:i_r+$1+$2 ‘ ~ (teR)

for the motion of mass-points with variable masses. At that, by definition
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- dm,,

- (106) ¢, sgn : TR v=1, 2)
are additional forces generaﬁed‘by the alterations of the masses, where %1? is the
'rate of change of the outgo of m and i;—?- — that of its income; v; is the relative

velocity of the “particles separating from the mass-point” (according to Meshtch-
erski’s mechanical ideas) and v, the relative velocity of the “particles added to the
mass-point”; ®; is called the “reactive traction” and ®, — the “arresting force”.
1t is supposed that the equation (105) is related to an inertial according to Newton
system of reference: After Meshtcherski’s work a new branch of analytical dynamics
germinated: variable mass dynamics (although mainly mass-point problems have
been discussed).

Sch 32. As it will be shown soon, the necessary and sufficient conditions,
formulated in Pr 13 N, for the 51multane0us inertiality according to Newton of two
rigid systems of reference do not coincide in the cases of constant masses, on the
one hand, and of variable masses, on the other hand. In view of the importance
of this circumstance for the Newtonian mass-point dynamics in general, we shall
subject it to a close analysis.

To this end we shall formulate two addxtlona,l dynamical hypotheses which are
mutually exclusive, i.e. inconsistent coniunctim. Afterwards we shall re-redact Pr
13 N separately for any of these cases. ‘

Hpth NC. If m is the mass of any mass-point, then

dm _
dt

Hpth NV. There exists one at least mass-point, the mass of which satisfies

(107) (t € R).

(108) o %?;eo . (en).

Pr 14 NC. Under. the conditions and notations of Pr 13 N,(the .supp'ovksition
Hpth NC implies that the relation (92) is equivalent with

2
dirp

az -° - leR)

(109)

Dm. Clear.
Pr 14 NV. Under the condltxons and notations of Pr 13 N, the supposition

Hpth NV implies that the relation (92) is equivalent with

(110) dats _, (t € R).

dt
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Dm. Since (92) must hold for any function (86), let (99) hold. Then (92)
implies (109). Now (86) is equivalent with

dm d,F d’rp -
(111) R el (t€R)
and (111), (109), (108) imply (110).

Sch 33. If (109), (93) hold, then it is said that the motion of § with respect
to a is a rectilinear uniform translation. On the other hand, if (110), (93) hcld,
then obviously 3 is at rest with respect to a. Indeed, (110) implies that the origin
B of 3 does not move with respect to o, whereas (93) and (66) imply that the axis
vectors b, (v = 1, 2, 3) of B do not move with respect to a.

 Using this terminology, we may re-redact Pr 13 N, splitting it into two propo-
sitions, the one corresponding to Hpth NC and the other — to Hpth NV.

Pr 15 NC. I there exists no mass-point with variable mass, then a necessary
and sufficient condition in order that two rigid systems of reference are simulta-
neously inertial according to Newton is that they move with a rectilinear uniform
translation with respect to each other. o |

Dm. Pr 13 N, Pr 14 NC, Sch 33. ,

Pr 15 NV. If there exists one at least mass-point with a variable mass, then
a necessary and sufficient condition in order that two rigid systems of reference are
similtaneously inertial according to Newton is that they are at rest with respect to
each other. | |

Dm. Pr 13 N, Pr 14 NV, Sch 33 |

Sch 34. Let us note that the necessary and sufficient conditions of Pr 14
"NV are obviously considerably more restrictive than those of Pr 14 NC. In such

a manner, as regards these two propositions, we are faced with a problem that,
. poetically at least, may be compared with the Gordian knot. ‘

Pr 14 NC represents a fundamental credo of the classical Newtonian mass-
point dynamics. Moreover, appropriate versions of this theorem belong to the
basic acceptance of the Eulerian rigid body dynamics too, as well as of the theory of

elasticity and of fluid mechanics, in other words, of the classical rational mechanics
as a whole. In the mathematical reference book [91], for instance, chosen at random
by the way, one reads:

“Bcakad cucTeMa oTcUeTa, K—p&fl ABWXeTCA oTHocuTeabHo M. ¢. o. np.ﬂ-
MomHeliHO ¥ paBHoMepHo, aBnserca M. c. 0.”1® (p. 562). ‘

Now Pr 14 NV seems to destroy this dynamical credo. Indeed, according to it,
if «r is an inertial according to Newton system of reference, then the rigid system 3
is inertial according to Newton if, and only if, it does not move with respect to a
(Pr 15 NV). .

Sch 35. Physxcal arguments are personae non grale in mathematics. And yet,
they may serve as a compass or, if one likes it better, as Ariadne’s thread, even for
pure mathematicians. For doubtlessly Newton and Euler have been striving at the
shaping of a rational mechanics, applicable in the real world they were livingin. In
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‘this connection let us underline that Pr 14 NC has successfully sustamed the trials
of practlcal examinations for two clear centuries.

Sch 36. Things standing as they ar, Pr 14 NV will persist in being anguis in
herba, a logical trap for analytical dynamics until its contradictions with Pr 14 NC
are abolished. It is obvious that in the eyes of a Newtonian purist the very idea.
that two rigid systems of reference are similtaneously inertial according to Newton -
only in case of mutual rest would seem a little short of heresy. One must not forget,
however, that nothing in mathematics is heresy enough to be worthy of the name,
the greatest virtue of a genuine mathematician consisting in his only ideology to
have no ideology.

- In its long adventuresome life mathematics has overlived qulte a lot of mental
shocks in order to be impressed of any. The fiest one has been when mathematics
- was in cunabula: /2 turned out to be no broken number! Then the collapse of
the hopes for trisecting angles, doubling cubes, and squaring circles. And the fifth
postulate — a far cry from what it has been imagined! To say nothing about tan-
gentless curves, Mengenlehre-antinomies, the choice axiom, or the crash of Hilbert’s
axiomatical expectations... There is hardly something on God’s earth to disturb
mathematician’s peace of mmd nowadays.

Exits out of the logical pitfall that Pr 14 NC has dnven mass-point dynamics
in may be sought in several directions.

Sch 37. The first line of conduct may be capltulatory one: the avowal that the
acceptance of (110) and (93) in the capacity of necessary and sufficient conditions
of inertiality is OK. This is the easiest and at the same time the silliest solution.

In the second place, one could hypothesize the impossibility of (108) in the
_ frames of Ax 1 N and Ax 2 N. This.is equivalent to the acceptance of Hpth NC
along with Ax 1 N and Ax 2 N, alias with the postulate that no Newtonian mass-
. point dynamics with variable masses exists.

~ Third, and last as we can see, one could come at the idea that a slight refor-
mulation of Ax 1 N may render a helpful assistance. |

Since there is an extremism in the air in the cases of the first two possibilities,
we shall fix our attention on the last of these alternatives.

Sch 38. Entre paranthéses, the second of the above three opportunities is not
as radical as it may seem at first glance. Indeed, the following questions may quite
naturally arise. Is up to now classical mechanics to such an extent and so closely
intimate with variable mass-point problems — sensible at that, not concocted,
though the meaning of the last requirement is somewhat vague — that it could
. by no means divorce them? Is the classical example of Meshtcherski’s dynamical
equation (105) as blameless indeed, as it may seem at first sight? Is it not an
underhand constant mass-point problem disguised as variable, as a matter of faet?

. dm - TR . e e
For —— does not take part in this equation, as it should, and nothing in it suggests

that m is variable with the time. Let us quote an excerpt from Ax 1 N: “for any
mass-point P and for any system of forces F', acting on it”. In other words, the

genuine mathematical equivalent of Ax 1 N in the variable mass-point, case should

be
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- dm dv
(112) —- v+m dt =F,

the function (86) being prescribed for any particular mass-point problem and F

. : . . dm d
— involving all the forces acting on P. It is true that —d{}- and —:;:—2
in (105), but m; and m; have nothing to do with m. In the same time it is also
true that additional forces ®; and @, are supplemented to F in the right-hand
side of (105), unwarranted by (112). And so on, and so forth, etcetera... All
these questions badly need a thorough mathematical analysis. Instead of it, in the
mechanical literature one finds only texts written currente calamo.

Sch 39. In the constant mass-point case (107) the equation (112) reduces to

are at hand

(113) mw = F

prov1ded w = ©. In other words, if (107) holds, then (11) and (113) coincide.

The question now arises, whether Pr 14 NC could be saved in the variable
mass-point case (108) too if (113) is substituted for the first Newtonian axiom
(11)? In other words, let us try the possibilities of the following variant of Ax 1 N:

Ax 1 N bis. There exixts such a system of reference S that, all derivatives
being taken with respect to S, for any mass-point P and for any system of forces
F acting on P, the product of the mass and the acceleration of P equals the basis

ofF

It is easy to prove now that Ax 1 N bis implies a theorem analogous to Pr 15
NC, making, however, no use of the hypothesis Hpth NC. Beforehand the following
definition must be recognized. :

Df 1 N bis. Any system of reference satxsfymg Ax 1 N bis is called inertial
according to Newton.

Pr 11 N bis. Ax 1 N bis bemg accepted, if a and f are inertial accordmg
to Newton systems of reference with origins A and B respectively, &g is the
instantaneous velocxty of B with respect to @ and rg = AB, then (109) and (93}
hold.

Dm. The demonstration imitates that of Pr 11 N. The relatlon (82) implies

' ' d2r  d2r | |
(114) = = ;tf +Eap X P+ Tap X (@ap X P)
dsp  d2p
+ 2Wap X ;3;9 + —El};_? (te R),
whence |
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d2 dz'I'B

(119) mar T "

+ m€yp X P+ MWap X (waﬁ X p)

dgp | d5P
4 T ™ae

+ 2midag X (i € R).

The systems of reference a and g being by hypothesis inertial according to
‘Newton to the effect of Df 1 N bis, the latter together with Ax 1 N bis imply

dir ~ |
. Cdp
(117) d’;’g =F - (t€R)

| provided (81}, m denoting the mass of any mass-point P and F — the basis of any
‘system of forces acting on P. Then (115) — (117) imply

, d2
(118) dtg +Eap X P+waﬂ X (Wap X P)
 4p @
+ Wap X gf + | (t€R)

after canceling m.
Disposing of the equation (118) applying to any 7, in the partlcular case (97)
it implies (109), and ( 109) and (118) imply

d?
(119) Eap X P+ Wap X (“‘"a,@ X p)+ 2Wap x d:.:ip d)izp - O‘
(t € R). Thereupon (119) and the choice (100) imply (101). Afterwards (93) is
proved in the same way as in the proof of Pr 11 N.

Pr 12 N bis. Ax 1 N bis being accepted, if « is an inertial according to
Newton system of reference and § is a rigid system of reference with origins A
and B respectively, rg = AB, W,p is the instantaneous angular velocity of 8 with
respect to a, then (109) and (93) imply that g is inertial according to Newton too.

Dm. a being inertial according to Newton by hypothesis, Df 1 N bis and Ax
1 N bis imply (116) provided (81), m denoting the mass of any mass-point P and
F — the basis of any system of forces acting on P. Then (115), (116), (109), (93)
imply (117), i.e. 3 is inertial accordmg to Newton (Df 1 N bis, Ax 1 N bis).
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Pr 13 N bis. Ax 1 N bis being accepted, if @ and § are rigid systems of
reference with origins A and B respectively, rg = AB, W,g is the instantaneous
angular velocity of # with respect to «, then necessary and sufficient conditions in
order that a and g are simultaneously inertial according to Newton are (109) and
(93).

Dm. Pr 11 N bis, Pr 12 N bis.

Pr 15 N bis. Ax 1 N bis being accepted, a necessary and sufficient condition

in order that two rigid systems of reference are simultaneously inertial according
to Newton is that they move with a recmhnear uniform translation with respect to
each other. :

Dm. Pr 13 N bis, Sch 33.

Sch 40. Coming back to the general case let us note that by virtue of Df 1
N the only criterion for the inertiality accordmg to Newton of a rigid system of
reference is the answer to the question whether is satisfies Ax 1 N or not: if yes,
then it is inertial; if not, it isn’t. That is why no use of Ax 2 N has been made in
the proof of the formulated in Pr 13 N criterion,

'And yet, a pending question remains in connection with Ax 2 N and it is: is the
axiom stable with respect to the established by Pr 13 N inertiality criterion? Since
the meaning of this formulation is somewhat vague, let us make it moré precise.

Suppose that a and 3 are rigid systems of reference for which the conditions
(92), (93) hold and let « be inertial according to Newton. Then « eo ipso satisfies
Ax 2 N. On the other hand 3 is inertial according to Newton in view of Pr 12 N,
hence it also must eo ipso satisfy Ax 2 N. Now the question arises: it must, but
does it indeed? : :

In other words, if P(r, m) is any mass-pont and F (F, M ) is any system of

forces acting on it, then it is certain that

(120) | | ‘—ig»(rxmgﬁ-)zM - (teR)

(under the notations already repeatedly used) by virtue of Ax 2 N, o being inertial
according to Newton by hypothesis and M being taken with respect to the origin
A of a. On the other hand, Pr 12 N warrants that 3 is inertial according to Newton
too and, consequently, the equation

d dsp | -
(121) d—f (;—;,x m-ff) = Mpg (t € R)
(where |
(122) Mg=M+F xrg

-

is the moment of F with respect to the origin B of 8) must also be satisfied by

virtue of Ax 2 N. The meaning of the question, brought up above 1s: ts it satisfed
indeed, in other words, can (121) be proved? ‘
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It is obvious that this question must unconditionally be answered in the affir-
mative.

Technically thls problem is equivalent with the question: do (120), (92), (93),
(122) imply (121)?

There are two ways leading to the answer.

The first of them is the direct one. Let (120), (92) hold for any function (86),
as well as (93) and (122). Because of (93) the identity (88) becomes

da? da‘r B dgp

(123) ‘ =m +m ‘(iER)

| Ty dt dt
and (123), (83) imply
(124) rxmim (rp+P)xm fB-}»(r F{-ﬁ))«:*miii‘?-E
‘ a VB dt B dt
(te R), ie.
‘ dor _ dov  _ _ dgp
(325) rxrm—a-t-_rgxm—zf--i-pxm?t—
_dorp ﬁﬁ ,
+Pxm— +rp B X m—r (t e R). .
On the other hand, (93) and Pr 8 imply (76) for any differentiable function
(57). ‘ |
The equation (125) therefore implies
da dar ; da dafB
(126)’ “ 5 (r X.m“&}“) =— (1-3 X m—p )
dg (_dgp’ dgp ., daTB
+2¥(pxm“d—t')+ @ "
dy [ darp | d.Tp dpp dp dﬁﬁ
+p><dt (m 5 )+ Xm——+rp X < m-

(t € R). But obviously o

i da darB - da da’B
(127) | gﬁ ( *B X m-:—-—-—dt ) rp X 2-%- (m—-——dt s
| ‘ dgp | dotp | darp dgp _
(128) a " d@ @t e o
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dg dpp)
(129) = (m - F

(t € R), the latter equation by virtue of Pr 13 N, i.e. (95). Now (126) — (129),
(92), (120) imply

(130) :—ﬁ—(pxmgf)-i-?gxf'- (t e R)
and (130), (122) imply (121).
The second way to the proof of (121) is extraordinary tricky. According to Pr
6, (120) may be written in the equivalent form |

(131) rxF=M
and (131), (83), (122) imply

(132) pxF=Mg.
On the other hand, § is inertial according to Newton by virtue of Pr 13 N, hence
(95) holds. Now (132) (95) lmply

| dg ( d
(133) P x d? ( '@p) =Mp (teR),

whence (121).

Sch 41. Acta est fabula. For the time being this is almost all one could say
apropos of inertiality according to Newton. Now it is high time to proceed to the
discussing of analogous problems concerning inertiality according to Euler.

Comparing (11), (12), on the one hand, with (21), (22) respectively, on the
other hand, one should observe that these latter problems promise to be consider-
ably harder. This is true. In the same time it is also true that up to now we have
accumulated a certain experience in such matters.
| Let the Cartesian system of reference Ozyz be inertial according to Euler and

let Q€n¢ be a Cartesian system of reference invariably connected with the rigid
body B, its origin coinciding with the mass-center G of B. As it is well known
from rigid body kinematics, then the following identity takes place

(134) - | v=vg+TXP,

provided r = OP for any point P of B, rg = OG, v = ¥, vg = 7g,

(135) r=rg+p,
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@ denoting the instantaneous angular velocity of Q€7¢ with respect to Ozyz, all
derivatives being taken with respect to Ozy:z.
The identity (135) implies

(136) j}é’dm =o0

in view of the definition (18). Then (134), (136), (17) imply
(137) ’ ‘ /vdm = muvg
and (137), (21) imply

. (138) %(mvg) =F S (t € R),

F denoting the basis of any system of forces acting on B.

In other words, the equation (138) may be chosen in the capacity of a mathe-
matical formulation of Euler’s law of momentum, alias of Ax 1 E. It expresses the
famous theorem.of Euler according to which the mass-center of any rigid body is
moving like a mass-point with mass equal to the mass of the body and dcted on by
all forces acting on the body.

Sch 42. The reader should not Iet himself be misled by the resemblance
between (138) and (11). It is only formal. In other words, directly contrary to the
wide-spread belief of all physicists, mechanicians, and mathematicians, the mass-
center of a rigid body is no mass-point.

Indeed, if it was, then Ax 2 N would imply

(139) | | ff - (76 % mog) = M | (t€R),

whence (30) by virtue of Pr 2 N, which is an absurdity.
By the way, another absurdity is obtainable in the following manner. First,

(134) and (135) imply
(140) /r X vdm = /(ra +7) % (vg +@ x p)dm

3‘/"6 X v(;dm-}-/rg x(w'x‘ﬁ)dm-‘i-/ﬁx vgdm-i-/‘p‘x(wxﬁ)dm
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(t € R). On the other hand, (17) and (136) imply

(141) frg X vgdm=rg X vgfdm = rg X mvg,
(142y | jFG X (@ x p)dm =rg x (@ x /,‘o’dm) = o,
(143) : /Exvgdm.:/”p"dmxvazo

(t € R) and (140) — (143) imply

(144) /rxvdm::fgxmvg-{-/ﬁx(ﬁxﬁ)dm

(t € R). Now (144) and (22) imply

o d | d
(145) Zf(rG X mvc} +"§f /p X (@xpdm=M
(t € R) and (145)‘, (135) imply the absurdity

d

(o) @

/px(wx;))dm-o (tE‘R).

Sch 43. The analogy between (138) and Ax 1 N bemg entlrely formal, it is
all the same enough for our goal, namely to use it in order 'to economize all the
reasoning and reconings spent in connection with Pr 11 N — Pr 15 N bis, to say
nothing about the enigmatical Hpth NC and Hpth NV.

The reader has certainly become aware of the trade dodge, long ago notori-
ous as Steiner’s tea-kettle principle: reduce unknown to known. In our case it is
practicable in the following manner: Pr 11 N — Pr 15 N bis being demonstrable
on the basis of Ax 1 N only and (138) imitating Ax 1 N up to the least, to prove
anew their rigid body analogies would certainly mean useless efforts and needless
time-wasting. The formal analogy between (138) and (11) secures the validity of
these theorems in the rigid body case too (with the obvious mutatis mutandis, of
course) without any specific proofs whatever.
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We shall save the reader the bitter cup of reiteration of all those formulations.
They are obvious and reducible to substitutions of the terms rigid body and inertial
according 1o Euler for the terms mass-point and inertial according to Newton re-
spectively in these propositions. Naturally, all the fuss in connection with variable
masses jumps out again and is settled in the same way. No, the rigid body case
deserves no special attention after the pains we have taken in connection with the
mass-point dynamics. Instead, we shall turn our interest to another topic.
| Sch 44. The economy we have realized by avoiding explicit formulations of the

rigid body analogues of Pr 11 N — Pr 15 N bis imposes the following convention. -
If some of them has to be quoted, we shall cite it under the same number as in the
corresponding mass-point case, substltutmg E for N. In such a manner Pr 14 NV,
say, becomes Pr 14 EV, etc. -
: Sch 45. Summing up we may now state that on the basis of the criteria of

Pr 11 N — Pr 15 N bis (Pr 11 E — Pr 15 E bis), it is enough and to spare to know
that a particular system of reference a is inertial according to Newton (Euler) in
~order to decide, for any rigid system of reference 3, whether it is inertial accordmg

to Newton (Euler) or not. The point now consists in this peculiar system o.

Physically the choice of an inertial (no matter whether according to Newton
or to Euler) system of reference is a matter of experiment. There are ‘quite a lot of
physical phenomena (declination toward east of a body falling freely in the northern.
hemisphere, the effect of Ber!”, etc.) indicating that no invariably connected with
the Earth system of reference may be qualified as inertial. On the other hand, there
are not a few physically quite trustworthy grounds to state that any rigid system-
of reference, the origin of which coincides with the mass-center of the Sun while
its axes are directed toward immovable (far distant) stars, may be accepted in the
capacity of an inertial one.

Mathemadtically, however, a being any particular rigid system of reference,
there is no reason either to incriminate it as non-inertial or to make a fetish of it as
- inertial. In other words, any such system may be qualified as inertial, as well as non-
inertial. Alias, all rigid systems of reference are allowed to competition as regards
the title “inertial”. Mathematically this qualification is a matter of definition, of
definition only, and of nothing but definition.

Nevertheless there is a but there. In mathematical affairs there is an author-
itative rule, the principle of economy. In other words, the most desirable case is
the most simple one. But what in our case does actually most simple mean? The
answer is given in the following two proposltlons

Pr 16. If V |
| (147) e, €V (v=1,2),
, 1 =v
(148) €y ey = { (p ) (’-‘:V — 1; 2),
0 (u#v) |
(149) €3 sgn: e X ey,
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then -

1 =V |
(150) e,e, = { (# ) ‘ (n,v=1, 2, 3),
0 (H#v) :
(151) A e x ey e3> 0.
Dm. Clear.
Pr 17. If (147) — (149)
(152) : - e, sgn: (e, 0) (v=1, 2, 3),
(153) € sgn: | {?,,},:1,

then ¢ is a rigid right-hand orientated orthonormal Cartesian system of reference
and o is its origin.

Dm. App (1) — (6), App (12) — (14), App (9), Pr 16.

We now manifest the following dynamical axiom.

Ax 3 N. The defined by (153) system of reference ¢, provided (147) —(149),
(152), is inertial according to Newton.

Sch 46. On the basis of Pr 11 N — Pr 15 N bis and Ax 3N one is capable
of determining, for any rigid system of reference, whether it is inertial accordmg to
Newton or not. Especially: -

Pr 18 N. If |
(154) - e €V | . (v=1,2,3),
(158) N -~ vay1xaz-a3#£0,

(156) | o A eV (v =’1, 2, 3),
(157) | | ;;,,A,, +a,A, =0 - (v =1,2, 3):

App (1) — (2) then « is inertial according to Newton
. Dm. Ax 3 N, Pr 14 NC, Pr 14 NV.

‘Sch 47. In such a way, the problem about inertiality according to Newton is
settled. As regards Euler, we are faced with the following alternative:

- 1. There exists no system of reference mertlal according to both Newton and
Euler. :
2. There exists one at least system of reference inertial accordlng to both
Newton and Euler.

Tertium non datur.
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For the time being we are ignorant which of these two possibilities is true.. As
a matter of fact, any of them could be true, or could be untrue. Indeed, if « is
any particular ugxd system of reference, then we can deade, on the basis of Ax
3 N, whether-it is inertial according to Newton or not. As regards its inertiality
according to Euler, for the time being at least, we know as much as nothing. Before
-answering the question which of the above possibilities is true, let us make a little
thinking.

If the first situation is realized and S '~ and Sg are systems of reference inertial
according to Newton and Euler respectively, then no proposition of the Newtonian
‘mass-point dynamics does hold in Sg and no proposition of the Eulerian rigid body
dynamics does hold in' Sy (under the supposition that these propositions are not
invariant with respect to the systems of reference). In other words, in the first case
there exist two entirely distinct dynamical theories which are completely alienate
from one another. In particular, no dynamical problem, simultaneously treating a
mass-point and a rigid body coniunctum, can be solved by the direct application
of both Ax 1 N, Ax 2 N and Ax 1 E; Ax 2 E (although there are indirect methods
“to this end). It is obvious that such a perspective does not seem a very attractive

one. ' . ~ :
Besides, in this first case a rather. complicated problem arises in connection
with the fime-notion. As already explained in Sch 8, this notion is incapable of
an explicit mathematical definition, being a primary notion-object of analytical
mechanics, definable implicitly by means of Ax 1 N,Ax2Nand Ax 1 E, Ax2E
namely.

As a matter of fact there are two rather than one t;me-notxons the one de—-
fined by the aid of Ax 1 N, Ax 2 N, and the other — by means of Ax 1 E, Ax
2 E. Correspondingly one should speak of Newtonian time and of Fulerian time
- and nobody knows apriory do they have in general something in common at all.
This circumstance once again makes the first of the above possibilities entirely
unacceptable \ ‘
_ In the second case any rigid system of reference is either inertial or non-inertial

both according to Newton and Euler. Indeed, let the system. of reference S be
inertial both according to Newton and Euler and let the system ¥ be inertial
according to Newton. Then by virtue of Pr 11 N — Pr 15 N bis, the motion of &
“with respect to S is necessarily a rectilinear uniform translation or possibly a rest
respectively. This condition, however, is sufficient for the inertiality of £ according
to Euler by virtue of the corresponding criterion among Pr 11 E — Pr 12 E bis.
And vice versa, if ¥ is inertial according to Euler, then by virtue of Pr 11 E — Pr 15
E bis its motion with respect to S is necessarily a rectilinear uniform translation or
possibly a rest respectively. This condition is, however, sufficient for the inertiality
of ¥ according to Newton by virtue of the corrésponding criterion among Pr 11
"N — Pr 15 N bis. Hence, the Newtonian and Eulerian dynamical axioms hold for
~exactly the same sets of rigid systems of reference. In other words, i n the second of
the above cases there will exist a general dypamics, the Newton — - Eulerian mass-
point and rigid body dynamlcs That is why this posmbihty is beyond comparison
more temptmg than the first one.
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These considerations justify the acceptance of the following axiom.

Ax 3 E. The defined by (153) system of reference €, provided (147) — (149),
(152), is inertial according to Euler. V

The following proposition is an immediate corollary from Ax 3 N, Ax 3 E and
from the argumentation-adduced above.

Pr 19 NE. Any system of reference which is inertial accordmg to Newton is
inertial according to Euler and vice versa.

Pr 19 NE and Pr 18 N imply:

Pr 18 E. If (154) — (157) and App (1) — (2), then the system of reference o
is inertial according to Euler.

Pr 19 NE justifies the advisability of the following definition:

Df 2 NE. A system of reference is called inertial if it is inertial accordmg to
Newton.

Pr 20 E. A system of reference is inertial if, and only if, xt is inertial accordmg
to Euler.

Dm. Pr 19 NE, Df 2 NE.

Sch 48. A question of intransient interest for analytlcal dynarmcs is the
formulation and use of both Newtonian and Eulerian dynamical axioms and of
their corollaries for non-inertial rigid and non-rigid systems.of reference. This is,
however, a topic we shall not discuss here.

Sch 49. A problem similar to that formulated and solved in Sch 40, comes into
bemg in rigid body dynamics too. Making a long story short, it may be formulated
in the following manner. If B is any rigid body and i (F, M) is any system of

forces acting on it, then it is certain that

| | Cdy [ dar, |

| (ﬁnder the notations already repeatedly used) by virtue of Ax 2 E, a being inertial
according to Euler by hypothesis and M being taken ‘with respect to the origin A

of a. On the other hand, Pr 12 E warrants that if (92), (93) hold, then 8 is inertial
according to Euler and consequently the equation '

dg dgp | | |
(159) | - “E/p ~pdm = M.«; | (t € R),

provided (122), must hold. The pro’blem mentioned above now is: does it hold
indeed.
In order to solve it let us note that because of (93) the ldentlty (82) implies

(160) d""d a7 4 4 I0P 457 PPam (t€R)

dt o dt dt
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and (160), (83) imply

' (A161.)‘( | / d“rdm f(rB + p) x da B
+](r3+ﬁ)i<fl§-t€dm . (t € R),
le.
(162) /r)g.mdm /rgx Bdm-i-/px%i-dm
B dgp o |
+]p>< 7 dm+]r3x~§7dm : (t € R).

On the ot,her hand (93) and Pr 8 imply (76) for any differentiable function
¢67.
: The equamon ( 162) therefore implies

y do dor dy derp ,
huiid =2 d
(163) 7 | T dt —dm = 5 f?'s X dm

o dafdavs, \ . [davn _dsp, / ds (dsp )
”'f“’"‘&{( & d"“)* a <@t e

(t € R). Obviously

dy dor dy darp
(}64) ) 2}- rB‘x a1 dmwrgx-gz-(m o) ),

dﬁp dors [darp _ dsp
@ @ Y g X g m T

(165)
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(166) f‘;‘: (d"”“’d ) jdﬂ“’d

(te Rj, the latter equation by virtue of Pr 13 E. Now (163) — (166), (92), (158)
imply

| dg dg-ﬁ ‘ _ da dic.rrB;H A

(t € R) and (167), (122) imply

ds d,@p ] deo Vdarg‘ ' )

(t € R) It is lmrnedxately seen that (168) would imply (159) if, and only if, the
relation

(169) | /p X % (d‘;:”dm) =0 ' (t € R).

Now (169) would surely hold if

170) | i(dm):O |  (teR),

i.e. in the constant mass case. Indeed then (17) lmphes (107) and (107), (92) :
(170) imply |

A ' da dar B d2 TB -
am) .; E?( "5 ) "2 i (teR)
and (171), (109) imply (169). ,

In such a manner, the affirmative answer r of this problem depends on the mass-
constancy problem. In view of the logical difficulties of the latter we leave things
here as they are.

Finally let us note again that the considerations in this article, as already
mentioned, are intended to revive the mathematician’s interest in Hilbert’s sixth
problem concerning the axiomatical construction of rational mechanics in general, .
and of analytical mechanics in particular, as well as to constribute, humble as it is,
to its headway. In our mind, such efforts are not useless on the background of not a
few argumenta ad ignorantiam, one has the chance to see printed in black and white
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in the literary sources on this domain. The maxim hoc volo; sic jubeo, sil pro ratione
. voluntas, often carried out in everyday life, sounds ridiculously in the mathematical
routine. Volens nolens, the mechanicians must become reconciled with the fact
that rational mechanics “in its relation to experience, intuition, abstraction, and
everyday life does not differ in essence from other branches of mathematics”!8, that
the axiomatical consolidation of its logical foundations is hence forthcoming.

APPENDIX

1. As a matter of fact, this problem has been looked on as a circulus vitiosus
or, more picturesquely, as a dog stnvmg to bite its tail. Indeed, a geometrical
notion Z, for instance, is defined by means of one or several geometrical notions
Y, X, etc. Going back, one arrives in the long run at several geometrical notions
A, B, C, etc., which are so fundamental, so elementar, and so simple, that there
are no other geometrical notions by means of which these A, B, C, etc. could be
defined explicitly. In such a manner, at first sight at least, the circuit seems to
close and the geometers’ honourable intentions for an 1rreproachable consolidation
of the logical foundations of their science seem to be a complete failure.

A way out of this dead-lock has been discovered by Hilbert. In his non-pareil
work [13] marking a new mathematical era simultaneously with the change of two
centuries, he proclaimed a new mathematical principle ordained to break up the an-
cient mental stereotypes as only the theory of relativity did. According to Hilbert’s
aziomatical principle, in the process of logical consolidation of the foundations
of any mathematical theory T certain primary notions-objecls Ay, ..., A, and
certain primary notions-relations By, ..., By of T must be discovered, or se-
lected, or proclaimed, which are unsusceptible to explicit definitions by the aid of
any other notions of T. These primary notions of T must be defined implicitly
by the aid of a system of arioms of T, i.e. a set of statements Ax 1, ..., Ax
N, involving A,, ..., A, and By, ..., By and stating elementary properties of
Ay, ..., A,, suggested by the intuition, or by the naive ideas primarily incarnated
in Ay, ..., A4, or on the basis of God knows what reasons. The question about
the authenticity, or reliability, or trustworthiness, etc. of Ax 1, ..., Ax N does
not come into being at all: according to the axiomatical principle of Hilbert this
> question is pointless, i.e. unsubstantiated, devoid of sense, empty of matter. The

Ax 1,..., Ax N of T are true by definition, or by hypothesis, or by decree, etc.,
inasmuch a< two adamant conditions are satisfied. First, the system of statements
Ax 1, ..., Ax N must be unconditionally consisient, i.e. free from inner contra-

dictions. Second, its logical corollaries, must form a system identical to T rather
than to some of its far away cousins: any theorem of T must be demonstrable on
the basis of Ax 1,...; Ax N. (A system of axioms for the Euclidean geometry is
proposed in the Appendiz of the article [85, p. 160 — 161], while a system of axioms
for arithmetic of natural numbers is given ibidem, p. 161 — 162.)

2. As, for instance, the notion point, line, and plane in geometry.

3. As for instance, the notion incident (zusammengehort liegt, see [85, p. 160])
in geometry :
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4. The rigid body dynamics is the main subject in analytical mechanics. As it
is well known, traditionally the latter is divided into three parts: kinematics, statics
and dynamics. In their turn, any of them is divided into two parts: kinematics of
points and rigid bodies, statics of mass-points and rigid bodies, dynamics of mass-
points and rigid bodies. The first ones of all these, namely kinematics of points,
statics of mass-points, and dynamics of mass-points respectively, belong to the most
trivial parts of analytical mechanics.

On the other hand, statics of rigid bodies is a trivial part of analytical me-
chanics of rigid bodies too, having to deal, first, with the most restricted case when
the rank of the system of forces acting on the rigid body (both active and passive
forces, alias forces determined by the conditions of the particular statical problem
under consideration and reactions of the geometrical constraints imposed on the
rigid body respectively) is equal to zero, and, second, with algebraic mathemati-
cal conditions if equilibrium, rather than thh systems of differential equa.tlons of
motion as in the dynamical case. -

As regards. kinematics of rigid bodies, its role in the system of analytical me-
chanics may be assessed as an auxiliary one. Indeed, its predetermination is to
supply the analytical mechanics with the necessary geometry. As a matter of fact,
rigid body kinematics could be qualified as the geometry of motion. Its main aim is
to define and describe such fundamental for analytical mechanics mathematical en-
tities, as for instance the notions of affine and rigid Cartesian systems of reference,
motion of such systems, local derivatives of vector functions with respect to these
systems, affine and rigid kinematical bodies along with their basic attributes, as
for instance partial and total instantaneous angular velocities, as well as the proofs
of Eulerian theorems concerning the relations between linear and angular velocities
and of Euler’s kinematical equations involving the Eulerian angles angd their time-
derivatives, and so on, and so forth, etcetera, to say nothing about the definition
of the most important for the whole of rigid body dynamics notion of kinetical
rigid body, with its basic attributes: mass, mass-centcr ~momentum, and kinetical
moment.

In such a manner, in the long run, analytical dynamics of rigid bodies remains |
the specific part of analytical mechanics in general — its genuine core, as a matter
of fact.

~ 5. Before proceeding farther let us say some more words concerning the rigid
body notion in its dynamical as well as kinematical aspect.

As already emphasized i in the previous parts of this article, the rigid body con-

cept is traditionally looked upon by the authors of writings on analytical mechanics
as' an apriori notion of this science. This attitude is due to the fact they have not
yet overcome the mentality of the puberty period in the history of mechanlcs pre-
“tending rational mechanics to be physics in its substance. It is not. The erroneaus
belief that it is resulted in the deplorable state of affairs as far as the axiomatical
consolidation of its logxca.l fundaments are concerned-and has postponed the exe-
cution of Hilbert’s program towards its axiomatical construction [85, p. 158 - 159,
166} ad calendas graecas. - |
Rational mechanics in general analytical mecha.mcs in partlcular are mental,
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not experimental, as well as geometry is mental, not instrumental, “and in its
‘relations to experience, intuition, abstraction, and everyday life it does not differ
in essence from” (1, p. 336] the theory of numbers, say. “In this audience, I am
sure, mathematics itself needs no defence. It is unnecessary to persuade you that
mathematics is trying to be physics or trying to be engeneering. It should also be
unnecessary to point out that mathematics, however abstract and however precise,
is a science of experience, for eXperience is not confined to the gross senses: Also the
human mind can experience, and we need not be so naive as to see in an oscilloscope
an instrument more precise than the brain of a man” [ibid.].

Analytical mechanics is pure mathematics par ezcellence, and this is borne by

the fact that it is now, in our days, as much a deductive science — neither more nor
- less — as arithmetic and geometry for instance are. It is true that long ago, in its
embryonic inductive state, analytical mechanics belonged to physics. (One should
not forget that Newton christened his first-borne child namely Philosophiae Natu-
ralis Principta Mathematica, and that Philosophia Naturalis meant exactly physics
in his days.) In the same time it is also true that the degree of this appurtenance,
of these affiliations, has not been higher than those of arithmetic and geometry.
For, once upon a time, there has been a period when arlthmetlc and geometry were
parts of physics too: in their experimental and instrumental age respectively, when
~commutativity of multiplication has been established by check-ups, and volumes of
solids have been determinated by the aid of sand and water. Let us not forget the
historical truth that even Leibniz knew by a physical expenment rather than by
proof that 2 times 2 makes 4.

6. Such objections are not made up, or fabricated, or concocted. They corre- -
spond to, they reflect scientific reality. They have been not once nor twice brought
forward before us even by highly educated professional mathematicians who, how-
ever, as far as analytical mechanics is concerned, behave (a not infrequent phe-
" nomenon) as haughtily as only dilletanti could (improvising mechanics, as a matter.
of fact, entirely forgetting that they have settled their accounts with rational me-
chanics as late as they have left their student’s desks).

7. Newton’s dynamical ideas culminated in his famous postulate: A

Lex II. Mutationem motus proportionalem esse vi moirici tmpresse el fiert
secundum lineam rectam qua vis illp ymprimitur (alias, the alteration of motion is
ever proportional to the motive force impressed, and is made in the direction of the
right line in which that force is impressed).

Now, a mere glance at Lex II and its modern version Ax 1 N at once displays
an essential flaw in Newton’s formulation: the total absence of the notion of system
of reference in it, to say nothing of derivatives with respect to such systems. But
Lex II is not unconditionally true: it is true for some systems of reference (inertial
according to Newton) and untrue for other ones. : |

., As regards Ax 2 N, it is completely wanting among Newton’s ariomata sive
leges motus [30, p. 129]. Undoubtedly, Newton knew and used it. Nevertheless, he
thought wrongfully that it is an immediate corollary from Lex II. It is not. The
erroneous bglief that it is represents a prejudice shared even by modern authors of
text-books, treatises and monographs on analytical mechanics. Its analysis is put
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off until later.

8. For an axiomatical definition of V see, for instance, [86].

9. For the sake of simplicity the definitional domain of (1) is hypothes‘zed
here to be R rather than some appropriate subset of R.

10. An affine Cartesian system of reference « is defined as the set

@ C asg: {@ P

x?here | | | ‘

(2) | o, sgn (a,, A,) (v=1, 2, 3),
provided -
(3) - a,: R—V |  (w=1,2,3),
(4) | A”:‘R-——*V' - (=123

are given vector functions with

(5) a(t) x az(t)-as(t) #0 : (t € R),

6 a,(t) A1) + a, ()AL =0 - (teRr)

(p,v =1, 2, 3). The arrows (2) are called the azes of o and the vectors a, are

called the azis vectors of a , (v =1, 2, 3) respectively.
By virtue of (5), (6) the system of vector equations

(7) ' axa,=A, (v=1, 2, 3}
has exactly one éolution | . |
(8) V -~ a: R—V,
namely
. 1 | 3 L
‘ _1 1 A
(9) a-—-2g;la,, XAy,

provided
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V | _ Qyi1 X Gyy2 :
1 1 . =1, 2 ‘
( 0) V : a,  sgn @1 X ap - a3 (V 1, 2, 3)

with
(11) | avyzsgn: a, o (v=1,2)

are the recipr'ocdl vectors of the reper (3). The function (8), defined by (9), is called
the origin of a. It is the intersecting point of the three axes of a.
The system of reference (1) is called rigid if

a2  @baw=0  (eR

(p,v =1, 2, 3). It is called orthonormal if

(13) " | o k“n(f)au’(t) = {1 =) (mv=1, 2, 3)
S 0 (n#v) .

(t € R) and right-kand oriented if

(14) . C au(t) x aalt) -as(t) >0 | (t € R).

11. The system of reference a being defined as above and the functions (3),
(4) being differentiable, let

(15) o p: R—V

be any differentiable function. Then

. ’ B . 3 ',
(16) -~ p=) _(pa;la,
Cv=l
and the function

(1M —;’? sgn 2 (Eg(pa:l))ia,,
- v=1 : ,

is called the derivative of p with respect to & or the local (with respect to a) derivative
of p. If the context permits no collision of notations, a simpler symbolics is used.
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So for instance the derivatives with respect to Ozyz are usually denoted by =

. dq
instead of e In the special case when ¢ represents tlme, dots are traditionally

used, for msta.nce

‘ v . _dp
(18) o pP=—

12. Examples of 1-dimensional rigid bodies are the so-called rings, wires, rods,
etc.; examples of 2-dimensional rigid bodies are the so-called discs, lamellae, plates,
slabs, etc.; with the exception of these extravagant samples, all “normal” rigid
bodies are 3-dimensional.Naturally, the dimensions of rigid bodies are described
stnctly in the mathematical deﬁmmon of the rigid body concept in any particular
case. As regards this part of the exp031t10n an appeal is made to the reader’s own
experience in analytical mechanics. :

13. Over the whole space V, as a matter of fact, in the mathematical def-
inition-of the rigid body concept. At that, it is supposed that »x = D outside
the “geometrical borders” or the “delineations” of .the partlcular rigid body under
consideration. -

14. “It is clear enough that in statics the equlhbnum of moments is not insured
by the equilibrium of forces, nor vice versa. In dynamics, the principle of moment
of momentum developed late, and much of the earlier work concerning it gives the -
impression that the two principles were somehow hoped to be equivalent, so that
there would be but a single law of motion. This illusion is fostered in the teaching
of mechanics by physicists today ... The law of moment of momentum is subtle,
often misunderstood even today” 1, p. 128 - 129].

15. Strange though it may seem, the simple corollaries (47) and (48) from Ax
1 N and Ax 2 N respectively concerning S,, nowadays known as Newton’s laws of
-~ momentum and of kinetical moment respectively for a system of finite number of
discrete mass-points, are nowhere to be found in Newton’s Principia. They have
been discovered by Euler about half a century a.fter the publication of Newton’s
work. | ‘
' 16. .Any system of reference, which is moving ,rectlllnearly and umformly
“without rotation with respect to an mertlal system of reference 1s an inertial system
‘of reference itself.

17. Kapn Maxcumosnu Bap (1792 — 1876), Russian natural scientist. In
1857 he explained the erosion of the right (left) banks of rivers flowing in the
directions’of the meridians in the northern (southern) hemxsphere by means of the
Earth revolution.

18. We beg the reader’s pardon for citing for the second time this position of
Truesdell. We shall, however, never get tired in repeating it over and over again,
as long as some mechanician’s mental constitutions make it so timely and topical.
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