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A COINCIDENCE THEOREM FOR ORTHOGONAL MAPS

SIMEON STEFANOV

Csmeon Cmepanoe. TEOPEMA O conmnmnn oA OPTOI'OHAJIBHBIX o'ros-
PAXKEHUNA . A

Monyuena Teopema Tuna reopemn Bopcyx—Y nama ans oproroHanbrEX oToSpamenu
P KOHEHHOMEDHMX BBKAMAOBLIX NPOCTPUHCTBAX. DTOT PE3YNALTAT OKBHBA/ICHTCH QAKTY,
yro I amaxeTca rpynnok Bopcyxu—Ynma OTHOCMTeILEO OPTOTOHAABREX. npeacrasaeruit.
 ChencTeMeM OKAIRHO HECYMECTBOBARME BONYCORPANEHHOCTH MENAY HEKOTOPBIMH CTAE-
AAPTHWMN ARBERRLIMN AMBAMUUECKKME CHCTEMAMM H3 Cdepax. Haxonen noxasamo, uTo
xaxxnan rpynna puas G =A@ Z™OR"OT*, rae A — xomeunas abenens TPYRUS, ABARKETCA
rpyunoli Bopcyxa~ Y nama o'rnoca'renbno op'roronmbum npencrasaeauit.

Simeon Stefa:ov A GOWCIDENGE THEOREM FOR ORI‘HOGONAL MAPS
A Borsuk-Ulam type theorem for orthogonal maps acting in finite-dimensional Euclidean -
spaces is obtained. This result is equivalent to the fact that Z is a Borsuk-Ulam group with respect

wmhogmdwum As a corollary, the nonenstmofasmeomnmy between some-
standard linear dynamical systems on spheres is proved. Finally, it is shown that every group of
the form G = Ael‘"al“mT",whmAuaﬂmteAbehmm xsaBmk—Uhmgmupmth

mpecttomhogonalrepmentwm S ’
. " 1. INTRODUCTION

. Various theorems generalizing the Borsuk-Ulam theorem in different directions
have been obtained (see for example [3, 5, 6, 9, 11, 12]). All these generalizations
usually replace the antipodal map in the sphere by the action of some finite group,
or by a compact Lie group action. However, nothmg is known about the action of
a noncompact group (say Z), as far as we ‘know, even 1f tlns action is orthogonal or

- . unitary.
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- We sha.ﬂ prove, in this artlcle, some Borsuk-Ulam type theorems for orthogonal
maps in Euclidean spaces. Each map gererates an action of the group Z in the
corresponding space. The main result is the following

. Theorem 1. Let E and F be finite-dimensional Euchdeaa spaces aud ‘
U: E—~E,V:F —F be orthogonal maps such that . |

dim E — dim Ey > dim F — dim Fy,
where Ey = {t € E |Uz =z}, Fv_{zeFIVz*-z}
Furthermore, let f : E — F be a continuous map such that

fU(z)= Vf(z) for each z€E.

Then for any open bounded set Q C E wttl& 0 € Q them ezist z € 30 and
k € Z such that Ukz # z but f(Urz) = f(z).
| It is easy to see that if I/ and V are the antipodal maps and 89 S(E) is the
* unit sphere in E, we obtain the classical Borsuk-Ulam théorem, which asserts (in
our notation), that ifdim E > dim F, then there are no odd maps f : S(E) — S(F).
The map U : E—»EmcalledfreelfU*:s-zandk;é()lmplyz:-ﬂ For

- .‘such maps we prove a stronger result:

~* Theorem 2. LetU : E — E and V : F ~F be free ortbogoncl maps and
dme)dnnF Let f: E— F be such thath*Vf |
- Then for any open bounded 0 C E with O € Q there ezists z € O such that
z)=0. )
‘ This result yields that lf m > n, then there isno f: §™ — S" anch that
fU = V§, where U and V are free o:thogonal maps in S™ and S*, respectwely In
the context of discrete time dynamical systems (cf. [7]) it means that no two such
systems are semxcomugated 8o the dynamics of U : S™ — S™ is essentwlly more
complex than the dynarmcs of V: S" - .S"‘ A.n aaalogue of tlus result for flows
s also valid,.
Using the termmology of [12], we may restate the main theorem to say that Z ,
is a Borsuk-Ulam group" with respect to orthogonal representatxona (cf. Section 4
for the definition). Combmmg this mth other known results we prove that every '
'group of the form ‘ ,

| G=49 Z”‘ oR o T‘ |
where Aisa ﬁmte Abehan group, is a. Borsuk-Ulam group mth respect to orthog- -

onal representations. In [12] it is proved for compact Abelian Lie groups. _
~ Naturally, all the results remain valid for unitary maps and representations.

One may ask whether we can take ¥ = 1 in Theorem 1, i. e. whether the o

equation f(Uz) = f(z) has solutions on 0. In Section 5 we show that this is not
always true md answer, manwhﬁe, a question of Wasaerman about. the e:mtence,
- of eqmvanant maps between spheres. A
| "The proof of the main theorem relies he:mly ona recent result of Rablex [8]

| generahzmg the classical Hopf-Rueﬁ theorem 4.
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2. PRELIMINARIES . , L

We shall recall some well—khowh results about the rational dependance of :ea.l
numbers, related to the Kronecker theorem.
Let 8y, ..., 6, be nonzero real numbers and

| (1’)5 ' Z my 9f =0

where m;,p€ L. We shall write briefly (m, 6) =p.
- Definition. We say that the ra.nge of the system 6y, ..., O, equals r, if the
spa.ce o . . | R

. L

| | {mel”l(m,ﬂ)el}
is (n - r)-dxmensxonal over Z. Then we write
V rank(91, On) =r.

In partxcular, the equality ra.nk(&l, 6,,) = n means that the numbers 1, 01, ..
., 6y are rationally independent, go (1) zmphea m=--=mp=p=0. o
The following is a well-known geometrical fact (cf. [1, 2]).
Proposition 1. Let 8; be real numbers with rank(ﬂl, ) =71 Consider
the following subset of the n-torus T™: |

(2) o ‘ A= {(ezknh e 21:::0.) h € z}

“Then the closure 4 is homeomorphic with the union of some (nomntersectmg)
copies of the r-torus T". If (z3,...,%5) € R" are the co-ordinates modulo 1 in T,
then each such copy is a Imear torus represented by the n-plane

:--1 ‘

Here m;; € Z, the range. of the matrix (m,,) equals p—r,and )_m;;0; € Z.
This proposition yields the following generalization of the Kronecker thecrem
Pmposxtmn 2. Let rank(&l, 9,;) =r and 1o be such tkat #

| rank(g, 1, .- n) =r+1l.
Let, furthermore, A be defined by (2), (e*‘"‘“ . ez""”*) cAand 20 € R
Then for any-m €N there ezists ky € N .mclz that
o1 i RIS :
: lkml‘0+P0“'30}<;n“; lkme.f +pf .....yﬂ(..’;;, | '331»“'3“:
for some integers po, ;- | | .
Proof. Consider the set '
B {(gSk'ﬂ,ug 2&:301 . . 2&1‘:8.) ’ k e z}

Accordmg to Proposition 1, B is an union of (r +1)- dumnsxonal tori in T"+!, |
. though the projection of B over T" is A, which is an union of rtori. Therefore |
the projection of B over the first factor of T"*! is the whole circle .S’1 Then
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(e?izo, e2%iv1 . 2"‘W“) € ﬁ that unphes the needed property (passing to co- )«
ordmates modulo 1) ;,

N f

3. SOME LEMMAS

All the maps are assumed to be continuous. '
Given some 6; and 2z = (21,...,2n) € C" we shall furthermore use the notatmn «

traj(z) — {'(8”"“31, ' ztﬂc.zu) l b € z}

This is in fact the trajectory of z with respect to the umta.ty map in C* with
eigen values 3%, Then, as following from Propomtlon 1, the closure tra;(z) is a
(finite) union of tori.

Lemma 1. Let 20 €C", 2z :;6 0 asd' the map ¢ : tra;(zo) — St be sach that

: (3) | ‘PA(czm, Zi,... Sria. zﬂ) — cztmo (31 ’z“)
for any z=(z1,...,23) € tré.j( ) where 9,, Ho are nogzem.
Then I -

 mpg = ijﬂ, +p
for some integer m, m,, p, where m # 0. : “
Proof. We may assume that z; #0 for any J, since otherwise we slmply ignore
the zero co-ordinates. |
Suppose the contrary It means tbat
ra.nk(pp,el, y0n) > rank(&;, ).

Choose 1, ..., Yn 80 that (379, .. £37itn) ¢ Z where A is defined by (2),
and an a.rbltra.ry zo €ER. Then, accordmg to Proposxtmn 2, there is a sequence of
mtegers ky — oo such that |
Eh,,.ﬁcj — c?l’iﬂj 2&...#:;:9 s c?ﬁso o

as m — oo The condition (3) then gweé -
; " (ezk,.xio,z Lyeeey 8”"‘"’“2 ) — e”""‘“"“‘w(n ,Z,,),’

~ and takmgthehmxtasm-eoo,
« @ (ezﬂy;zl ~ zﬂg,z”) - 62““50(31, . "z“)
It turns out that the Iast equa.lxty is true for an arbxttuy zu € R, which is
impossible.

Lemma 2. Let 306(:“ Zo #0 the map ¢ : trq;(zo)-—*Sl aaiuﬁcs (3), aﬂd'
mpg-.-z:m,o,-l-p, m:{:(} mmj,pel

Suppose that ga(zo) 1 mm‘ zo = (v;, vn) For z € traj(zo) cona:der the :
,fuaciron S . o N
o Q(z) = vl ml 5 ‘ . ;;mﬂ x;ul xm;

; Tken ™ (2) = @(z) far any z € trag(zo)
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~ Proof. Let us note, first, the following: if ¢(z) is anothar fnnctwn satisfying

- (8) and $(20) = ¢(z0) = 1, then ¥(z) = @(z) for any z € traj(z). This is due to
the fact that ¢ is uniquely defined on traj(zo) by property (3) and the value 99(20),
80 it is uniquely defined on tra;(zg)

| Oompare now the functions &(z) and p™(z). We have

Q (83’“131, ey eﬁﬁ!, ; ) — v v~m.c2tf2m,ljz?; .. .z,?* e

: L "’"““"I‘(n '3 %n); | N
80 both ®(z) and ™ (z) satisfy (3) with constants 0y, ..., 6, Mpo. MONOVGI',
®(z0) = ¢™(20) = 1, thus &(z) = gp"‘(z) for any z € traj(zg) | |

 The following lemma is the main one in the article. - | p
Lemma 3. Let 6, ..., Oy, Bir oo Hnel be armiconﬁf numbers tmd

P C" — C"*! be such thai : : :
(4) ,’ . o (82'”"‘31', ﬂtiﬁ.z ) — eﬁripgwk(zx zn)

fork=1,...,n-1, and eacl;z_.(z1, ,z,,)GC", where ¢ = (b1, .-, Pn-1).
. Then for any open bounded 2 C C™ with O € Q there exists z € oK such that
p()=0. -
- Proof. We shall reduce this pmpomtmn to a recent result of ﬁabxer [8], whlch
generahzes the classical Hopf~Rueff theorem [4].
| Let rank(ﬂ;, cenyBn) =1 Then by deﬁmtxon

(5)‘ | o zn.jﬂj-l-q,-o et'»-;l e =T,
where the range of the matnx (m;) equala n—r (and all the coeﬁiclents are mtegers)

Bzcall that if
’ A {(62"“" oo zmo.) ls E z}

then Z' is the u union of r-tori, which are represented in co-ordinates (21, - .1 &n) €
R" modulo 1 by some pamllel r-pla.nes |

- (6) En.j:cj +c§ )-0,« i=1,...,n-r,m=1,... mox

| = C -

‘where my is the number of these ton (Proposxtmn 1) Note that gome of the planes
(6) pass through the origin O, since for s = 0, (1,1,...,1) € A, but (1 1) =
o,...,0) modulo 1. Denote the corresponding pla.ne by a, , |

(7’)w o a ):n,,z,'..o i;l,.’..,‘p’%r.
S =l o
It weasytoseethat the rational pomtsm‘e dense in a. Indeed, ifdet(“ii) # 0 o
fori=1,. j-r,j*r-*-l ,n,thenamparametrwedbythem

ables L2 VIR z,, 80 giving them ratmnal valuee we obtam ratwnal aalutwna
Trily cony z,, of (7) : o
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We may guppose - that m(z) # 0 for some z € C", since otherwise we ig-
. nore the k-th component of ¢ and keep on the same reasoning. So, the functions
Yi(z) = er(2)/|lps(2)|} are well-defined on traj(z) and satlsfy (4) Then, accordmg
to Lemma 1,

&, » mk}‘k=§:mj39j+pk, k=1,...,n—1,
‘ , e . »
‘where my # 0. = : | |
. Now we shall prove that there exist mtegers A1, ..., Ay such that:
‘ l) (Alr sAn) €a, : ; :
ll)A, #0forany j=1,.

m)zmng.,#Oforanyk...l ~-1. .
j=1 , ‘

We shall show ﬁrst that the plane a is not contained in a hyperplane Ry~ 1=

{zeR |z = 0} Suppose the contrary: a C R}~!. Then the pla.ne o :
Emjz, +¢=0,¢=1,..., n~r,is parallel to a, therefore z; = const in
‘. -But (6y,.. 9,,) €a (see (5)), thus zj = 0; in o’. On the other hand, the
ratlonal pomts are dense in o/ (as well as in a), consequently b €Q, WhICh is a
contradiction. ...
- Consider now the lmea.r map M : R* — R*-! with a ma.tnx M= (mi;). Let

R;~2 = {z € R*' | z; = 0}. We shall prove that a is not contained in some
M- {1 (R2™?). Really, suppose the contra.ry, then M(a) C R?~2 5o for z € a we

have (M(:l:)),E = 0. Hence the equahtles E: n,,z, =0,i=1,...,n—r, imply

}: mjgz; ‘= 0. Then the vector (mu, 1‘m,,;g) is ‘a linear combmatmn of the

' C ne-r
vectors (nu, ,ng,,), i = 1 ,n -r. So mj;, = Z ﬁm,;, J = 1 oy Ty where

Bi € Q. The last equa.hty together with (8) and (5) nges o

n-r

Mptk = Z(Zﬁ;m})e +pe = Z(Z nsﬁ;)ﬂs +pi = Z(?ée)ﬁe +éh :

J=1 =1 j=1 . i=1

w}nch isa contradlctxon, since the nght—hand slde is ra.tlonal though Hi is 1rrat.mnal :
(and my # 0).
So, we conclude that a is not contained i in the union of the linear spaces R""1

M-? (R” ?). Therefore there exists a rational point (41/B;..., An/B) in a whlch
1s not contained in this union. But then, clea.rly, (At, .. A,‘)f €a, Aj #0, and

| }: m;iAj # 0, hence the conditions 1) — iii) are fulfiled. = ¢

- Consider now the followmg flow deﬁned in C" \by the formula
, (9) ' L - o z\.... (ezstgt Z1yee.,€ zﬂA,.tz ) te R.
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has penodlc trajectorxes, since A, e l It 1s easy w see that the trajéctoxy
e z with respect to tl:(e ﬂow is contmne& in the set tra_}(z) o

U{t: | t € R} ¢ t:a}(z)

, suppose ﬁrst that z, # 0 for any J a.nd conmder the pomt z’
N ,‘-zn/nz,;n) € T". Passing as above in z-co-ordinates modnlo 1 the :
z‘ mt;h respect to the ﬂow is represented by the lme - T

ﬁ,-—-Ajt 3 1 ang te&

’#thm !me obvxously lies in a, for o contmns two o&' its pomts — (ﬁ, )]
g ,A,.) Therefore ~

U{tz |te R} C traj(z’), :

wutee, (10) ‘To obtain the mclusmn (16) for arhxtraty z€ C. , oné
sifuence zm = z, where hlI the eo-ordmaies of Zm afe nonxefo, and

Vk = {f»f: c | m(z) #0%

aliove;y ‘&(z) w( 2)/| p,,(:)n for z € Vg (Blearly, the ﬁmmona ¢g also
. Len ‘Mhen Imxalies timt over each ﬁraj(z) we ha.i?e T o

'l’i"" (z) 3»(2),:

Lo l\ Wf‘.v“' Ao | ‘:‘i (r ._;v;’*“— ¥ m o MV"“’ TR ‘
e Q*(z):: vl ;’ ?‘3,‘,'f??ﬂm‘hzl n zn R :

and‘ze& = (9;, ‘e ,f,x”v,) ma pemt of't.ra.}(z)' mcg; tbat. %(zg) = 1 Smee qb;. eraned
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This is a well-defined map @ : C* — C"~!. Moreover, its k-th co-ordinate
®(x) has the property

Q(ﬁ) (CAIP"'ls ve :(Anzn)":’ CEmjhAjQ(k)(zll “aey zﬂ)

for any ¢ € S. All the powers of { are nonzero integers, as following from i) —
iit).

) Now we refer to a theorem of Rabier, who proved in [8] that for any map
@ : C" — C""! with the above property and for any open bounded @ C C" with
O € Q) there exists zy € 3 such that $(z) = O.

Let 2o € Vi. But then #;(20) # 0 and ®r(z0) # 0, s0 ¥(20) # O, which is a
contradiction.
Lemma 3 is proved.

4. THE MAIN THEOREMS

We shall prove first some propositions concerning periodic orthogonal maps,
essentially following Wasserman [12] (with some insignificant modifications).

Let £ and F be finite-dimensional Euclidean spaces with given (linear) repre-
sentations of a group G. We say, for brevity, that £ and F are representations of
G. Amap f: F — F is equivariant, if f(gz) = gf(z) forany g € G,z € E. It
is said to be isovariant, if it is equivariant and f(gz) = f(z) implies gz = z. An
isovariant map is one-to-one on each orbit. Denote, as usual,

Ec={zcFE|gz==z forany g € G}.

Definition (Wasserman [12]). The group G is a Borsuk-Ulam group if for any
two representations E' and F with a given isovariant map f : E — F we have

dimE - dimEg £ dim F — dim Fg.

It is shown in [12] that every finite Abelian group is a Borsuk-Ulam group.
We shall prove here a stronger version of this result — namely the following
. Lemma 4. Let E and F be representations of the finite Abelian group G,
(2 C E be an open bounded subset with O € Q, and f : E — F be an equivariani
map, whick is isovariani on 8Q. Then o ‘

dimE —dimE¢g £ dim F — dim Fg.

(The map f is isovariant on 8Q if f(g9z) = f(z) implies gz = z for any z € 8Q).

Definition. The group G is a strong Borsuk-Ulam group if for any two rep-
resentations F, F with a given equivariant map f : E — F, which is isovariant on
the boundary 8Q of some open bounded Q C E with O € Q, we have

dimE ~dim Eg £ dim F — dim Fg.

Lemma 4 may be then restated as follows:

Lemma 4'. Every finite Abelian group is a strong Borsuk-Ulam group.

We shall suppose furthermore that all representations are orthogonal, since any
linear representation of a finite group is equivalent to an orthogonal one.
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Lemma 5. The group G = 1, for p prime, is a strong Borsuk-Ulam group.
Proof. Suppose the contrary, i. e. that dim £ — dim E¢g > dim F — dim ¥z and
f: E — F is isovariant on 8€). Decompose £ = Eg ® E', F = Fg @ F’, then
dimE’ > dim F'. Let # : F — F’ denote the projection over the second factor,
S(F’) be the unit sphere in F’, and r : F’\ {O} — S(F’) be the radial projection.
Counpsider the set
(={gz]9€G, z€0},

which is an invariant partition in £ between O and oo (in other terms E\ Q =
Ey U E,, where Ey, E) are open invariant and nonempty, Ey 3 O is bounded). It

is clear that G = Z, acts freely on (N E’, as well as on S{F’), and the map
raf: QN E — S(F')

18 Zp-equivariant. But no such maps exist (for dim E’ > dim F’), as shown for
example in [9].

The following lemma is a reproduction of a proposition of [12] in the context
of strong Borsuk-Ulam groups.

Lemma 6. Let 1 — H — G — K — 1 be an exact sequence of finite groups
and H, K are strong Borsek—Ulam groups. Then G ts also o strong Borsuk-Ulam
group.

(In [12] it is proved for ordinary Borsuk-Ulam groups).

Proof. Let E and F be representations of G and f : E — F be an equivariant
map, which is isovariant on 852, where Q2 C E is an open bounded set with O € Q.
Since f is also H-isovariant on J§1 and H is a strong Borsuk-Ulam group,

dimE —-dmFEg £ dimF — dim Fy.

On the other hand, Eg and Fg are representation spaces for K =~ G/H, more-
over f]EH: Ey — Fy is K-isovariant on 82N Eg. Therefore dim Eyg — dim(Eqg)k.

§ dMFH - dim(Fg)K. Clearly, (EH)K ~ E{;, (FH)K x~ Fg, thus
dimEy — dim Eg £ dim Fy ~ dim Fg.

Consequently
dimE - dimE¢ € dimF — dim Fg.

" .Lemma 4’ is now an immediate consequence of Lemmas 5 and 6.
Pass now to the main theorem. ,
Hereafter F, F are finite-dimensional Euclidean spaces. For a given orthogonal
map U : E — E we shall denote by Eyr the subspace

Ey={zec E|Uz=z}.

Theorem 1. Let U : E — E and V : F — F be orthogonal maps and
f: E — F be such that

fU(z)=Vf(z) forany z€E.
Suppose that dim F — dim Ey > dim F — dim Fy .
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Then for any open bounded set Q@ C E with O € Q there extst z € 55 and
k € 7 such that Uz # = but :

f(U*z) = f(2).
Proof. Let Eper = {z € E | U*z = z for some k # 0}. Clearly, Eper is a linear
subspace of E. Moreover, f(Eper) C Fper- (Where Fper is appropriately defined.)
Let m € Z be such that U™z = z for any 2 € Eye; and V™z =z forany z € Fier.

Then a Z,,-action is defined in Eper and Fpe as follows: if w is the formant of Z,,
let we = Uz in Eper and wz = Vz In Fpe. Obviously, f [ By Eper — Fper 18

Z,n-equivariant, since fU = Vf. If f [ Eo.. is not isovariant on 00 N Eper, then for

some z € 9§ N Epe; and some k € Z we have Uz # z and f (U*z) = f(2), so the

theorem is proved. Suppose now that f|, is isovariant on QN Eper. Then, as
per

following from Lemma 4,

Consider the orthogonal decompositions
E=Epe:®E, F=Fp®F'

By the above inequality and the condition of the theorem we have dim E’
> dimF’. Let # : F — F' be the projection over the second factor. Consider the
map f' = raf]E,: E' — F’, which commutes, clearly, with U and V (f'U =V f').
Note that the restrictions U’ = U l B V' = Vl g+ have no periodic points different
from O, thus E’ and F' are even-dimensional spaces. Then one may diagonalize U’
and V' with an appropriate change of co-ordinates, so that in complex notation we
have £/ = C™, F' = C" and

Uz1,--+12m) = (52”“‘21, .. .,egﬂomzm) ,

Vi(z1,...,20) = (ezﬁ”‘zl, .. .,ez’i”“zn) ,
where 8;, p, are irrational numbers (for U’ and V' have no periodic points different
from ©). Let f' = (¢1,..+,¢n) : C™ — C". The property f'U’ = V'f’ is written
then in the form

wr (ezﬂﬂlzl’ srey g2 i Zm) = egﬁﬁr‘j@r(zl: sy zm)

forr = 1,...,n. But m > n and Lemma 3 implies that f'(z) = O for some
z € MNE'. Then nf(z) = f/(z) = O, thus f(2) € Fper. Let k # 0 be such that
V* f(2) = f(z). Then U*z # z, since z € E’, though

£ (Ur2) = VEf(2) = f(2).
The theorem is proved.
We shall give, in the next section, an example showing that wé cannot claim

the existence of z € 89 such that f(I/z) = f(z), hence the presence of the integer
k in the theorem is inavoidable. However, in case of free U, V' a stronger result is

valid.
Recall that U : E — E is called free, if Uz =z and k # 0 imply z = O.
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Theorem 2. Let U: E — E and V : F — F be free orthogonal maps, and
f: E— F be such that fU = V f. Suppose that dimE > dim F.

Then for any open bounded Q C E with O € Q there exists 2 € JQ such that
flz)=

Pmaf We have Ej o = {0}, Fper = {(‘)} hence, followmg the proof of Theorem
1 we find some z € 9 such that f(z) =

Corollary. Let m > n and U : Sm -8, V. 8§* — S be free orthogonal
map:. Then there is no map f: S™ — S™ such that fU = V{.

This proposition may be interpreted in the context of dynamical systems. In-
deed, U and V define discrete time dynamical systems in S™ and S™, respectively,
and a map f: S™ — S™ such that fU = V f is a semiconjugacy between them (cf.
[7]). Then the corollary claims that no two systems of that type are semiconjugated
for m > n. So, the first system is, in some sence, essentially more complex than
the second one.

Theorem 3. Z is a (strong) Borsuk-Ulam group with respect to orthogonal
representations. .

This theorem is an immediate consequence of Theorem 1 and the definition of
strong Borsuk-Ulam group.

Corollary. R is a (strong) Borsuk-Ulam group with respect to orthogonal
represeniatlions.

Proof. Consider the exact sequence

0—-Z—-R-—S" 1.

It is shown in [3] that (in our terminology) the circle S! is a strong Borsuk-
Ulam group. Then Lemma 6 and Theorem 3 imply that R is also such a group.

As above, we may restate the last corollary in terms of nonexistence of a
semiconjugacy between linear flows on spheres. This result partially intersects
with a theorem in [10] concerning such flows.

Another corollary of Lemma 6 is that the direct sum, G @ G, of two strong
Borsuk-Ulam groups is also such a group. We may formulate then the most general
result of this type.

Theorem 4. Every group of the form

C=AsI™ &R0 T,

where A is a finite Abelian group, is a (strong) Borsuk-Ulam group with respect to
orthogonal representations.
The proof follows from Lemma 4’, Theorem 3 and the previous remarks.

5. AN EXAMPLE

In this section we show that, in the setting of Theorem 1, the equation
J(Uz) = f(z) may not have nonzero solutions. This example answers, meanwhile,
a question of Wasserman [{12].
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Let E =R F=R3, and
U(a,b,¢c,d) = (—d,—c,b,a), V(a,b,c)=(-a,-b,~c).
Then, obviously, Ey = {0}, Fv = {O}. Define f: £ — F by
(11) f(a,b,c,d) = (a® + b — ¢® ~ d? ac + bd, bc — ad).

This is in fact the Hopf fibration when restricted to S®. One easily checks that
JU = V f and that the equality f(Uz) = f(z) implies z = O.

Therefore we cannot take k = 1 in Theorem 1.

Let S(E) denotes the unit sphere in E.

In his paper [12] Wasserman asked whether there exist a group G representa-
tions E and F of G, such that dim E > dim F, Fg = {0} and a G-equivariant map
f: S(E) — S(F). Our example answers affirmatively this questions for G = 4,
gince U/* = idg, V* = idp. It is easy to see then that the map f : E — 5,
defined by (11), transforms S(£} into S(F) and is Z4-equivariant. Note, finally,
that Fg = Fy = {0}. |
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