годишник на софийския университет "СВ. климент охридски"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Книга 1 — Математика Том 86, 1992

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques
Tome 86, 1992

A COINCIDENCE THEOREM FOR ORTHOGONAL MAPS

SIMEON STEFANOV

Съмеон Стефанов. ТЕОРЕМА О СОВПАДЕНИИ ДЛЯ ОРТОГОНАЛЬНЫХ ОТОВ-РАЖЕНИЙ

Получена теорема типа теоремы Борсук-Улама для ортогональных отображений в конечномерных обклидовых пространствах. Этот результат оквивалентен факту, что Z является группой Борсука-Улама относительно ортогональных представлений. Следствием доказано несуществование полусопряженности между некоторыми стандартными линейными динамическими системами на сферах. Наконец показано, что каждая группа вида $G = A \oplus Z^m \oplus \mathbb{R}^n \oplus \mathbb{T}^k$, где A — конечная абелева группа, является группой Борсука— Улама относительно ортогональных представлений.

Simeon Stefanov. A COINCIDENCE THEOREM FOR ORTHOGONAL MAPS

A Borsuk-Ulam type theorem for orthogonal maps acting in finite-dimensional Euclidean spaces is obtained. This result is equivalent to the fact that Z is a Borsuk-Ulam group with respect to orthogonal representations. As a corollary, the nonexistence of a semiconjugacy between some standard linear dynamical systems on spheres is proved. Finally, it is shown that every group of the form $G = A \oplus Z^m \oplus \mathbb{R}^n \oplus \mathbb{T}^k$, where A is a finite Abelian group, is a Borsuk-Ulam group with respect to orthogonal representations.

1. INTRODUCTION

Various theorems generalizing the Borsuk-Ulam theorem in different directions have been obtained (see for example [3, 5, 6, 9, 11, 12]). All these generalizations usually replace the antipodal map in the sphere by the action of some finite group, or by a compact Lie group action. However, nothing is known about the action of a noncompact group (say Z), as far as we know, even if this action is orthogonal or unitary.

We shall prove, in this article, some Borsuk-Ulam type theorems for orthogonal maps in Euclidean spaces. Each map generates an action of the group Z in the corresponding space. The main result is the following

Theorem 1. Let E and F be finite-dimensional Euclidean spaces and $U: E \to E, V: F \to F$ be orthogonal maps such that

$$\dim E - \dim E_U > \dim F - \dim F_V$$
,

where $E_U = \{x \in E \mid Ux = x\}, F_V = \{x \in F \mid Vx = x\}.$

Furthermore, let $f: E \to F$ be a continuous map such that

$$fU(x) = Vf(x)$$
 for each $x \in E$.

Then for any open bounded set $\Omega \subset E$ with $0 \in \Omega$ there exist $x \in \partial \Omega$ and $k \in \mathbb{Z}$ such that $U^k x \neq x$ but $f(U^k x) = f(x)$.

It is easy to see that if U and V are the antipodal maps and $\partial\Omega=S(E)$ is the unit sphere in E, we obtain the classical Borsuk-Ulam theorem, which asserts (in our notation), that if dim $E>\dim F$, then there are no odd maps $f:S(E)\to S(F)$.

The map $U: E \to E$ is called free if $U^k x = x$ and $k \neq 0$ imply x = 0. For such maps we prove a stronger result:

Theorem 2. Let $U: E \to E$ and $V: F \to F$ be free orthogonal maps and $\dim E > \dim F$. Let $f: E \to F$ be such that fU = Vf.

Then for any open bounded $\Omega \subset E$ with $0 \in \Omega$ there exists $x \in \partial \Omega$ such that f(x) = 0.

This result yields that if m > n, then there is no $f: S^m \to S^n$ such that fU = Vf, where U and V are free orthogonal maps in S^m and S^n , respectively. In the context of discrete time dynamical systems (cf. [7]) it means that no two such systems are semiconjugated, so the dynamics of $U: S^m \to S^m$ is essentially more complex than the dynamics of $V: S^n \to S^n$. An analogue of this result for flows is also valid.

Using the terminology of [12], we may restate the main theorem to say that Z is a Borsuk-Ulam group with respect to orthogonal representations (cf. Section 4 for the definition). Combining this with other known results, we prove that every group of the form

$$G = A \oplus Z^m \oplus R^n \oplus T^k,$$

where A is a finite Abelian group, is a Borsuk-Ulam group with respect to orthogonal representations. In [12] it is proved for compact Abelian Lie groups.

Naturally, all the results remain valid for unitary maps and representations.

One may ask whether we can take k = 1 in Theorem 1, i.e. whether the equation f(Ux) = f(x) has solutions on $\partial\Omega$. In Section 5 we show that this is not always true and answer, meanwhile, a question of Wasserman about the existence of equivariant maps between spheres.

The proof of the main theorem relies heavily on a recent result of Rabier [8], generalizing the classical Hopf-Rueff theorem [4].

2. PRELIMINARIES

We shall recall some well-known results about the rational dependance of real numbers, related to the Kronecker theorem.

Let $\theta_1, \ldots, \theta_n$ be nonzero real numbers and

(1)
$$\sum m_j \theta_j = p,$$

where $m_i, p \in \mathbb{Z}$. We shall write briefly $(m, \theta) = p$.

Definition. We say that the range of the system $\theta_1, \ldots, \theta_n$ equals r, if the space

$$\{m \in \mathbb{Z}^n \mid (m,\theta) \in \mathbb{Z}\}$$

is (n-r)-dimensional over \mathbb{Z} . Then we write

$$rank(\theta_1,\ldots,\theta_n)=r.$$

In particular, the equality $rank(\theta_1, \ldots, \theta_n) = n$ means that the numbers 1, θ_1 , ..., θ_n are rationally independent, so (1) implies $m_1 = \cdots = m_n = p = 0$.

The following is a well-known geometrical fact (cf. [1, 2]).

Proposition 1. Let θ_j be real numbers with rank $(\theta_1, \ldots, \theta_n) = r$. Consider the following subset of the n-torus \mathbb{T}^n :

(2)
$$A = \left\{ \left(e^{2k\pi i\theta_1}, \dots, e^{2k\pi i\theta_n} \right) \mid k \in \mathbb{Z} \right\}.$$

Then the closure \overline{A} is homeomorphic with the union of some (nonintersecting) copies of the r-torus \mathbb{T}^r . If $(x_1, \ldots, x_n) \in \mathbb{R}^n$ are the co-ordinates modulo 1 in \mathbb{T}^n , then each such copy is a linear torus represented by the n-plane

$$\sum_{j=1}^n m_{ij}x_j=c_i, \quad i=1,\ldots,n-r.$$

Here $m_{ij} \in \mathbb{Z}$, the range of the matrix (m_{ij}) equals n-r, and $\sum m_{ij}\theta_j \in \mathbb{Z}$. This proposition yields the following generalization of the Kronecker theorem: **Proposition 2.** Let rank $(\theta_1, \ldots, \theta_n) = r$ and μ_0 be such that

$$rank(\mu_0, \theta_1, \ldots, \theta_n) = r + 1.$$

Let, furthermore, A be defined by (2), $(e^{2\pi iy_1}, \ldots, e^{2\pi iy_n}) \in \overline{A}$ and $x_0 \in \mathbb{R}$. Then for any $m \in \mathbb{N}$ there exists $k_m \in \mathbb{N}$ such that

$$|k_m\mu_0+p_0-x_0|<\frac{1}{m}, \quad |k_m\theta_j+p_j-y_j|<\frac{1}{m}, \quad j=1,\ldots,n,$$

for some integers po, pj.

Proof. Consider the set

$$B = \left\{ \left(e^{2k\pi i\mu_0}, e^{2k\pi i\theta_1}, \dots, e^{2k\pi i\theta_n} \right) \mid k \in \mathbb{Z} \right\}.$$

According to Proposition 1, \overline{B} is an union of (r+1)-dimensional tori in \mathbb{T}^{n+1} , though the projection of \overline{B} over \mathbb{T}^n is \overline{A} , which is an union of r-tori. Therefore the projection of \overline{B} over the first factor of \mathbb{T}^{n+1} is the whole circle S^1 . Then

 $(e^{2\pi ix_0}, e^{2\pi iy_1}, \dots, e^{2\pi iy_n}) \in \overline{B}$, that implies the needed property (passing to coordinates modulo 1).

3. SOME LEMMAS

All the maps are assumed to be continuous.

Given some θ_j and $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, we shall furthermore use the notation

$$\operatorname{traj}(z) = \left\{ \left(e^{2k\pi i\theta_1} z_1, \dots, e^{2k\pi i\theta_n} z_n \right) \mid k \in \mathbb{Z} \right\}.$$

This is in fact the trajectory of z with respect to the unitary map in \mathbb{C}^n with eigen values $e^{2\pi i\theta_j}$. Then, as following from Proposition 1, the closure $\overline{\operatorname{traj}(z)}$ is a (finite) union of tori.

Lemma 1. Let $z_0 \in \mathbb{C}^n$, $z_0 \neq 0$, and the map $\varphi : \overline{\operatorname{traj}(z_0)} \to S^1$ be such that

(3)
$$\varphi\left(e^{2\pi i\theta_1}z_1,\ldots,e^{2\pi i\theta_n}z_n\right)=e^{2\pi i\mu_0}\varphi(z_1,\ldots,z_n)$$

for any $z = (z_1, \ldots, z_n) \in \overline{\operatorname{traj}(z_0)}$, where θ_j , μ_0 are nonzero.

Then

$$m\mu_0 = \sum m_j \theta_j + p$$

for some integer m, m_i, p , where $m \neq 0$.

Proof. We may assume that $z_j \neq 0$ for any j, since otherwise we simply ignore the zero co-ordinates.

Suppose the contrary. It means that

$$rank(\mu_0, \theta_1, \ldots, \theta_n) > rank(\theta_1, \ldots, \theta_n).$$

Choose y_1, \ldots, y_n so that $(e^{2\pi i y_1}, \ldots, e^{2\pi i y_n}) \in \overline{A}$, where A is defined by (2), and an arbitrary $x_0 \in \mathbb{R}$. Then, according to Proposition 2, there is a sequence of integers $k_m \to \infty$ such that

$$e^{2k_m\pi i\theta_j} \rightarrow e^{2\pi iy_j}, e^{2k_m\pi i\mu_0} \rightarrow e^{2\pi ix_0}$$

as $m \to \infty$. The condition (3) then gives

$$\varphi\left(e^{2k_m\pi i\theta_1}z_1,\ldots,e^{2k_m\pi i\theta_n}z_n\right)=e^{2k_m\pi i\mu_0}\varphi(z_1,\ldots,z_n),$$

and taking the limit as $m \to \infty$,

$$\varphi\left(e^{2\pi iy_1}z_1,\ldots,e^{2\pi iy_n}z_n\right)=e^{2\pi ix_0}\varphi(z_1,\ldots,z_n).$$

It turns out that the last equality is true for an arbitrary $x_0 \in \mathbb{R}$, which is impossible.

Lemma 2. Let $z_0 \in \mathbb{C}^n$, $z_0 \neq 0$, the map $\varphi : \overline{\operatorname{traj}(z_0)} \to S^1$ satisfies (3), and

$$m\mu_0 = \sum m_j \theta_j + p, \quad m \neq 0; \quad m, m_j, p \in \mathbb{Z}.$$

Suppose that $\varphi(z_0) = 1$ and $z_0 = (v_1, \ldots, v_n)$. For $z \in \overline{\operatorname{traj}(z_0)}$ consider the function

$$\Phi(z) = v_1^{-m_1} \dots v_n^{-m_n} z_1^{m_1} \dots z_n^{m_n}$$

Then $\varphi^m(z) = \Phi(z)$ for any $z \in \overline{\operatorname{traj}(z_0)}$.

Proof. Let us note, first, the following: if $\psi(z)$ is another function satisfying (3) and $\psi(z_0) = \varphi(z_0) = 1$, then $\psi(z) = \varphi(z)$ for any $z \in \overline{\operatorname{traj}(z_0)}$. This is due to the fact that φ is uniquely defined on $\operatorname{traj}(z_0)$ by property (3) and the value $\varphi(z_0)$, so it is uniquely defined on $\overline{\operatorname{traj}(z_0)}$.

Compare now the functions $\Phi(z)$ and $\varphi^m(z)$. We have

$$\Phi\left(e^{2\pi i\theta_1}z_1,\ldots,e^{2\pi i\theta_n}z_n\right) = v_1^{-m_1}\ldots v_n^{-m_n}e^{2\pi i\sum_{m_j\theta_j}z_1^{m_1}\ldots z_n^{m_n}} \\
= e^{2\pi im\mu_0}\Phi(z_1,\ldots,z_n),$$

so both $\Phi(z)$ and $\varphi^m(z)$ satisfy (3) with constants $\theta_1, \ldots, \theta_n, m\mu_0$. Moreover, $\Phi(z_0) = \varphi^m(z_0) = 1$, thus $\Phi(z) = \varphi^m(z)$ for any $z \in \text{traj}(z_0)$.

The following lemma is the main one in the article.

Lemma 3. Let $\theta_1, \ldots, \theta_n, \mu_1, \ldots, \mu_{n-1}$ be irrational numbers and $\varphi: \mathbb{C}^n \to \mathbb{C}^{n-1}$ be such that

(4)
$$\varphi_k\left(e^{2\pi i\theta_1}z_1,\ldots,e^{2\pi i\theta_n}z_n\right)=e^{2\pi i\mu_k}\varphi_k(z_1,\ldots,z_n)$$

for $k = 1, \ldots, n-1$, and each $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, where $\varphi = (\varphi_1, \ldots, \varphi_{n-1})$.

Then for any open bounded $\Omega \subset \mathbb{C}^n$ with $0 \in \Omega$ there exists $z \in \partial \Omega$ such that $\varphi(z) = 0$.

Proof. We shall reduce this proposition to a recent result of Rabier [8], which generalizes the classical Hopf-Rueff theorem [4].

Let $rank(\theta_1, \ldots, \theta_n) = r$. Then by definition

(5)
$$\sum_{j=1}^{n} n_{ij}\theta_{j} + q_{i} = 0, \quad i = 1, \ldots, n-r,$$

where the range of the matrix (n_{ij}) equals n-r (and all the coefficients are integers). Recall that if

$$A = \left\{ \left(e^{2s\pi i\theta_1}, \dots, e^{2s\pi i\theta_n} \right) \mid s \in \mathbb{Z} \right\},\,$$

then \overline{A} is the union of r-tori, which are represented in co-ordinates $(x_1, \ldots, x_n) \in \mathbb{R}^n$ modulo 1 by some parallel r-planes

(6)
$$\sum_{j=1}^{n} n_{ij} x_j + c_i^{(m)} = 0, \quad i = 1, \ldots, n-r, \quad m = 1, \ldots, m_0,$$

where m_0 is the number of these tori (Proposition 1). Note that some of the planes (6) pass through the origin 0, since for $s = 0, (1, 1, ..., 1) \in A$, but (1, ..., 1) = (0, ..., 0) modulo 1. Denote the corresponding plane by α ,

(7)
$$\alpha: \sum_{j=1}^{n} n_{ij}x_{j} = 0, \quad i = 1, \ldots, n-r.$$

It is easy to see that the rational points are dense in α . Indeed, if $\det(n_{ij}) \neq 0$ for $i = 1, \ldots, n - r$, $j = r + 1, \ldots, n$, then α is parametrized by the variables x_1, \ldots, x_r , so giving them rational values we obtain rational solutions x_{r+1}, \ldots, x_n of (7).

We may suppose that $\varphi_k(z) \neq 0$ for some $z \in \mathbb{C}^n$, since otherwise we ignore the k-th component of φ and keep on the same reasoning. So, the functions $\psi_k(z) = \varphi_k(z)/||\varphi_k(z)||$ are well-defined on $\overline{\operatorname{traj}(z)}$ and satisfy (4). Then, according to Lemma 1,

(8)
$$m_k \mu_k = \sum_{j=1}^n m_{jk} \theta_j + p_k, \quad k = 1, \ldots, n-1,$$

where $m_k \neq 0$.

Now we shall prove that there exist integers A_1, \ldots, A_n such that:

- i) $(A_1,\ldots,A_n)\in\alpha$,
- ii) $A_j \neq 0$ for any $j = 1, \ldots, n$,
- iii) $\sum_{j=1}^{n} m_{jk} A_j \neq 0 \text{ for any } k = 1, \ldots, n-1.$

We shall show first that the plane α is not contained in a hyperplane $\mathbb{R}_j^{n-1} = \{x \in \mathbb{R}^n \mid x_j = 0\}$. Suppose the contrary: $\alpha \subset \mathbb{R}_j^{n-1}$. Then the plane α' : $\sum n_{ij}x_j + q_i = 0, i = 1, \ldots, n-r$, is parallel to α , therefore $x_j = \text{const}$ in α' . But $(\theta_1, \ldots, \theta_n) \in \alpha'$ (see (5)), thus $x_j = \theta_j$ in α' . On the other hand, the rational points are dense in α' (as well as in α), consequently $\theta_j \in \mathbb{Q}$, which is a contradiction.

Consider now the linear map $M: \mathbb{R}^n \to \mathbb{R}^{n-1}$ with a matrix $M = (m_{ij})$. Let $\mathbb{R}^{n-2}_k = \{x \in \mathbb{R}^{n-1} \mid x_k = 0\}$. We shall prove that α is not contained in some $M^{-1}(\mathbb{R}^{n-2}_k)$. Really, suppose the contrary, then $M(\alpha) \subset \mathbb{R}^{n-2}_k$, so for $x \in \alpha$ we have $(M(x))_k = 0$. Hence the equalities $\sum_{j=1}^n n_{ij}x_j = 0$, $i = 1, \ldots, n-r$, imply $\sum_{j=1}^n m_{jk}x_j = 0$. Then the vector (m_{1k}, \ldots, m_{nk}) is a linear combination of the vectors (n_{i1}, \ldots, n_{in}) , $i = 1, \ldots, n-r$. So $m_{jk} = \sum_{i=1}^{n-r} \beta_i n_{ij}$, $j = 1, \ldots, n$, where $\beta_i \in \mathbb{Q}$. The last equality together with (8) and (5) gives

$$m_k \mu_k = \sum_{j=1}^n \left(\sum_{i=1}^{n-r} \beta_i n_{ij} \right) \theta_j + p_k = \sum_{i=1}^{n-r} \left(\sum_{j=1}^n n_{ij} \theta_j \right) \beta_i + p_k = \sum_{i=1}^{n-r} (-q_i) \beta_i + p_k,$$

which is a contradiction, since the right-hand side is rational, though μ_k is irrational (and $m_k \neq 0$).

So, we conclude that α is not contained in the union of the linear spaces \mathbb{R}_{j}^{n-1} , $M^{-1}(\mathbb{R}_{k}^{n-2})$. Therefore there exists a rational point $(A_{1}/B, \ldots, A_{n}/B)$ in α which is not contained in this union. But then, clearly, $(A_{1}, \ldots, A_{n}) \in \alpha$, $A_{j} \neq 0$, and $\sum_{j=1}^{n} m_{jk} A_{j} \neq 0$, hence the conditions i) — iii) are fulfilled.

Consider now the following flow defined in \mathbb{C}^n by the formula

(9)
$$tz = (e^{2\pi i A_1 t} z_1, \dots, e^{2\pi i A_n t} z_n), \quad t \in \mathbb{R}.$$

It has periodic trajectories, since $A_i \in \mathbb{Z}$. It is easy to see that the trajectory of some z with respect to the flow is contained in the set traj(z):

(10)
$$\bigcup \{tz \mid t \in \mathbb{R}\} \subset \overline{\operatorname{traj}(z)}.$$

Indeed, suppose first that $z_j \neq 0$ for any j and consider the point z' = $(z_1/||z_1||, \ldots, z_n/||z_n||) \in \mathbb{T}^n$. Passing as above in z-co-ordinates modulo 1, the trajectory of z' with respect to the flow is represented by the line

$$x_j = A_j t, \quad j = 1, \ldots, n; \quad t \in \mathbb{R}$$

But this line obviously lies in α , for α contains two of its points — (0, ..., 0)and (A_1, \ldots, A_n) . Therefore

$$\bigcup\{tz'\mid t\in \mathbf{R}\}\subset \overline{\mathrm{traj}(z')},$$

that implies, of course, (10). To obtain the inclusion (10) for arbitrary $z \in \mathbb{C}^n$, one has to find a sequence $z_m \to z$, where all the co-ordinates of z_m are nonzero, and then to take limit as $m \to \infty$.

Consider now the sets

$$V_k = \{z \in \mathbb{C}^n \mid \varphi_k(z) \neq 0\}$$

and let, as above, $\psi_k(z) = \varphi(z)/||\varphi_k(z)||$ for $z \in V_k$. Clearly, the functions ψ_k also satisfy (4). Lemma 2 then implies that over each traj(z) we have

$$\psi_k^{m_k}(z) = \Phi_k(z),$$

where

$$\Phi_k(z) = v_1^{-m_{1k}} \dots v_n^{-m_{nk}} z_1^{m_{1k}} \dots z_n^{m_{nk}},$$

and $z_0 = (v_1, \ldots, v_n)$ is a point of $\overline{\operatorname{traj}(z)}$ such that $\psi_k(z_0) = 1$. Since ψ_k is defined

and continuous in V_k , then Φ_k is also continuous in V_k .

Furthermore, if $\zeta = e^{2\pi it} \in S^1$, then the point $(\zeta^{A_1}z_1, \ldots, \zeta^{A_n}z_n)$ also belongs to $\overline{\text{traj}(z)}$. It follows from (10) and (9). Consequently,

$$\Phi_k\left(\zeta^{A_1}z_1,\ldots,\zeta^{A_n}z_n\right)=\zeta^{\mathfrak{D}m_{jk}A_j}\Phi_k(z_1,\ldots,z_n).$$

This is the crucial property we shall make use of.

Let now $\Omega \subset \mathbb{C}^n$ be an open bounded set with $0 \in \Omega$. Suppose that the lemma is false, i. e. that $\varphi(z) \neq 0$ for any $z \in \partial \Omega$. Then $\partial \Omega \subset \bigcup V_k$. Take real functions $t_k: \mathbb{C}^n \to \mathbb{R}$ defined by

$$\operatorname{dist}(z) = \operatorname{dist}(z, \mathbb{C}^n \setminus V_k).$$

Note that $t_1(\zeta^{A_1}z_1,\ldots,\zeta^{A_n}z_n)=t_k(z_1,\ldots,z_n)$. It is due to the fact that the set V_k is invariant with respect to the flow (9), for φ_k satisfy (4) and the flow has the property (10). Set and a

$$\Phi(z) = \{t_1(z)\Phi_1(z), \ldots, t_{n-1}(z)\Phi_{n-1}(z)\}.$$

This is a well-defined map $\Phi: \mathbb{C}^n \to \mathbb{C}^{n-1}$. Moreover, its k-th co-ordinate $\Phi_{(k)}$ has the property

$$\Phi_{(k)}\left(\zeta^{A_1}z_1,\ldots,\zeta^{A_n}z_n\right) = \zeta^{\sum m_{jk}A_j}\Phi_{(k)}(z_1,\ldots,z_n)$$

for any $\zeta \in S^1$. All the powers of ζ are nonzero integers, as following from i) — iii).

Now we refer to a theorem of Rabier, who proved in [8] that for any map $\Phi: \mathbb{C}^n \to \mathbb{C}^{n-1}$ with the above property and for any open bounded $\Omega \subset \mathbb{C}^n$ with $0 \in \Omega$ there exists $z_0 \in \partial \Omega$ such that $\Phi(z_0) = 0$.

Let $z_0 \in V_k$. But then $t_k(z_0) \neq 0$ and $\Phi_k(z_0) \neq 0$, so $\Phi(z_0) \neq 0$, which is a contradiction.

Lemma 3 is proved.

4. THE MAIN THEOREMS

We shall prove first some propositions concerning periodic orthogonal maps, essentially following Wasserman [12] (with some insignificant modifications).

Let E and F be finite-dimensional Euclidean spaces with given (linear) representations of a group G. We say, for brevity, that E and F are representations of G. A map $f: E \to F$ is equivariant, if f(gx) = gf(x) for any $g \in G$, $x \in E$. It is said to be *isovariant*, if it is equivariant and f(gx) = f(x) implies gx = x. An isovariant map is one-to-one on each orbit. Denote, as usual,

$$E_G = \{x \in E \mid gx = x \text{ for any } g \in G\}.$$

Definition (Wasserman [12]). The group G is a Borsuk-Ulam group if for any two representations E and F with a given isovariant map $f: E \rightarrow F$ we have

$$\dim E - \dim E_G \leq \dim F - \dim F_G.$$

It is shown in [12] that every finite Abelian group is a Borsuk-Ulam group. We shall prove here a stronger version of this result — namely the following

Lemma 4. Let E and F be representations of the finite Abelian group G, $\Omega \subset E$ be an open bounded subset with $O \in \Omega$, and $f : E \to F$ be an equivariant map, which is isovariant on $\partial \Omega$. Then

$$\dim E - \dim E_G \leq \dim F - \dim F_G$$
.

(The map f is isovariant on $\partial\Omega$ if f(gx)=f(x) implies gx=x for any $x\in\partial\Omega$).

Definition. The group G is a *strong* Borsuk-Ulam group if for any two representations E, F with a given equivariant map $f: E \to F$, which is isovariant on the boundary $\partial \Omega$ of some open bounded $\Omega \subset E$ with $\emptyset \in \Omega$, we have

$$\dim E - \dim E_G \leq \dim F - \dim F_G$$
.

Lemma 4 may be then restated as follows:

Lemma 4'. Every finite Abelian group is a strong Borsuk-Ulam group.

We shall suppose furthermore that all representations are orthogonal, since any linear representation of a finite group is equivalent to an orthogonal one.

Lemma 5. The group $G = \mathbb{Z}_p$, for p prime, is a strong Borsuk-Ulam group.

Proof. Suppose the contrary, i. e. that $\dim E - \dim E_G > \dim F - \dim F_G$ and $f: E \to F$ is isovariant on $\partial \Omega$. Decompose $E = E_G \oplus E'$, $F = F_G \oplus F'$, then $\dim E' > \dim F'$. Let $\pi: F \to F'$ denote the projection over the second factor, S(F') be the unit sphere in F', and $r: F' \setminus \{0\} \to S(F')$ be the radial projection. Consider the set

$$\widetilde{\Omega} = \{ gx \mid g \in G, \ x \in \Omega \},\$$

which is an invariant partition in E between O and ∞ (in other terms $E \setminus \widetilde{\Omega} = E_0 \cup E_1$, where E_0 , E_1 are open invariant and nonempty, $E_0 \ni O$ is bounded). It is clear that $G = \mathbb{Z}_p$ acts freely on $\widetilde{\Omega} \cap E'$, as well as on S(F'), and the map

$$r\pi f: \widetilde{\Omega} \cap E' \to S(F')$$

is \mathbb{Z}_{p} -equivariant. But no such maps exist (for $\dim E' > \dim F'$), as shown for example in [9].

The following lemma is a reproduction of a proposition of [12] in the context of strong Borsuk-Ulam groups.

Lemma 6. Let $1 \to H \to G \to K \to 1$ be an exact sequence of finite groups and H, K are strong Borsuk-Ulam groups. Then G is also a strong Borsuk-Ulam group.

(In [12] it is proved for ordinary Borsuk-Ulam groups).

Proof. Let E and F be representations of G and $f: E \to F$ be an equivariant map, which is isovariant on $\partial\Omega$, where $\Omega\subset E$ is an open bounded set with $0\in\Omega$. Since f is also H-isovariant on $\partial\Omega$ and H is a strong Borsuk-Ulam group,

$$\dim E - \dim E_H \leq \dim F - \dim F_H.$$

On the other hand, E_H and F_H are representation spaces for $K \approx G/H$, moreover $f|_{E_H} : E_H \to F_H$ is K-isovariant on $\partial \Omega \cap E_H$. Therefore $\dim E_H - \dim(E_H)_K$. $\leq \dim F_H - \dim(F_H)_K$. Clearly, $(E_H)_K \approx E_G$, $(F_H)_K \approx F_G$, thus

$$\dim E_H - \dim E_G \leq \dim F_H - \dim F_G$$
.

Consequently

$$\dim E - \dim E_G \leq \dim F - \dim F_G$$
.

Lemma 4' is now an immediate consequence of Lemmas 5 and 6.

Pass now to the main theorem.

Hereafter E, F are finite-dimensional Euclidean spaces. For a given orthogonal map $U: E \to E$ we shall denote by E_U the subspace

$$E_U = \{x \in E \mid Ux = x\}.$$

Theorem 1. Let $U: E \to E$ and $V: F \to F$ be orthogonal maps and $f: E \to F$ be such that

$$fU(x) = Vf(x)$$
 for any $x \in E$.

Suppose that $\dim E - \dim E_U > \dim F - \dim F_V$.

Then for any open bounded set $\Omega \subset E$ with $0 \in \Omega$ there exist $x \in \partial \Omega$ and $k \in \mathbb{Z}$ such that $U^k x \neq x$ but

$$f\left(U^{k}x\right)=f(x).$$

Proof. Let $E_{\rm per}=\{x\in E\mid U^kx=x \text{ for some } k\neq 0\}$. Clearly, $E_{\rm per}$ is a linear subspace of E. Moreover, $f(E_{\rm per})\subset F_{\rm per}$. (Where $F_{\rm per}$ is appropriately defined.) Let $m\in \mathbb{Z}$ be such that $U^mx=x$ for any $x\in E_{\rm per}$ and $V^mx=x$ for any $x\in F_{\rm per}$. Then a \mathbb{Z}_m -action is defined in $E_{\rm per}$ and $F_{\rm per}$ as follows: if ω is the formant of \mathbb{Z}_m , let $\omega x=Ux$ in $E_{\rm per}$ and $\omega x=Vx$ in $F_{\rm per}$. Obviously, $f|_{E_{\rm per}}$: $E_{\rm per}\to F_{\rm per}$ is \mathbb{Z}_m -equivariant, since fU=Vf. If $f|_{E_{\rm per}}$ is not isovariant on $\partial\Omega\cap E_{\rm per}$, then for some $x\in\partial\Omega\cap E_{\rm per}$ and some $k\in\mathbb{Z}$ we have $U^kx\neq x$ and $f(U^kx)=f(x)$, so the theorem is proved. Suppose now that $f|_{E_{\rm per}}$ is isovariant on $\partial\Omega\cap E_{\rm per}$. Then, as following from Lemma 4,

$$\dim E_{\operatorname{per}} - \dim E_U \leq \dim F_{\operatorname{per}} - \dim F_V.$$

Consider the orthogonal decompositions

$$E = E_{\rm per} \oplus E', \quad F = F_{\rm per} \oplus F'.$$

By the above inequality and the condition of the theorem we have dim $E' > \dim F'$. Let $\pi: F \to F'$ be the projection over the second factor. Consider the map $f' = \pi \circ f|_{E'}$: $E' \to F'$, which commutes, clearly, with U and V (f'U = Vf'). Note that the restrictions $U' = U|_{E'}$, $V' = V|_{F'}$ have no periodic points different from O, thus E' and F' are even-dimensional spaces. Then one may diagonalize U' and V' with an appropriate change of co-ordinates, so that in complex notation we have $E' = \mathbb{C}^m$, $F' = \mathbb{C}^n$ and

$$U'(z_1,...,z_m) = (e^{2\pi i\theta_1}z_1,...,e^{2\pi i\theta_m}z_m),$$

$$V'(z_1,...,z_n) = (e^{2\pi i\mu_1}z_1,...,e^{2\pi i\mu_n}z_n),$$

where θ_j , μ_r are irrational numbers (for U' and V' have no periodic points different from 0). Let $f' = (\varphi_1, \ldots, \varphi_n) : \mathbb{C}^m \to \mathbb{C}^n$. The property f'U' = V'f' is written then in the form

$$\varphi_r\left(e^{2\pi i\theta_1}z_1,\ldots,e^{2\pi i\theta_m}z_m\right)=e^{2\pi i\mu_r}\varphi_r(z_1,\ldots,z_m)$$

for $r=1,\ldots,n$. But m>n and Lemma 3 implies that f'(z)=0 for some $z\in\partial\Omega\cap E'$. Then $\pi f(z)=f'(z)=0$, thus $f(z)\in F_{\rm per}$. Let $k\neq 0$ be such that $V^kf(z)=f(z)$. Then $U^kz\neq z$, since $z\in E'$, though

$$f\left(U^{k}z\right)=V^{k}f(z)=f(z).$$

The theorem is proved.

We shall give, in the next section, an example showing that we cannot claim the existence of $x \in \partial \Omega$ such that f(Ux) = f(x), hence the presence of the integer k in the theorem is inavoidable. However, in case of free U, V a stronger result is valid.

Recall that $U: E \to E$ is called free, if $U^k x = x$ and $k \neq 0$ imply x = 0.

Theorem 2. Let $U: E \to E$ and $V: F \to F$ be free orthogonal maps, and $f: E \to F$ be such that fU = Vf. Suppose that $\dim E > \dim F$.

Then for any open bounded $\Omega \subset E$ with $\emptyset \in \Omega$ there exists $x \in \partial \Omega$ such that $f(x) = \emptyset$.

Proof. We have $E_{per} = \{0\}$, $F_{per} = \{0\}$, hence, following the proof of Theorem 1 we find some $x \in \partial \Omega$ such that f(x) = 0.

Corollary. Let m > n and $U: S^m \to S^m$, $V: S^n \to S^n$ be free orthogonal maps. Then there is no map $f: S^m \to S^n$ such that fU = Vf.

This proposition may be interpreted in the context of dynamical systems. Indeed, U and V define discrete time dynamical systems in S^m and S^n , respectively, and a map $f: S^m \to S^n$ such that fU = Vf is a semiconjugacy between them (cf. [7]). Then the corollary claims that no two systems of that type are semiconjugated for m > n. So, the first system is, in some sence, essentially more complex than the second one.

Theorem 3. Z is a (strong) Borsuk-Ulam group with respect to orthogonal representations.

This theorem is an immediate consequence of Theorem 1 and the definition of strong Borsuk-Ulam group.

Corollary. R is a (strong) Borsuk-Ulam group with respect to orthogonal representations.

Proof. Consider the exact sequence

$$0 \to \mathbf{Z} \to \mathbf{R} \to S^1 \to 1.$$

It is shown in [3] that (in our terminology) the circle S^1 is a strong Borsuk-Ulam group. Then Lemma 6 and Theorem 3 imply that R is also such a group.

As above, we may restate the last corollary in terms of nonexistence of a semiconjugacy between linear flows on spheres. This result partially intersects with a theorem in [10] concerning such flows.

Another corollary of Lemma 6 is that the direct sum, $G_1 \oplus G_2$, of two strong Borsuk-Ulam groups is also such a group. We may formulate then the most general result of this type.

Theorem 4. Every group of the form

$$G = A \oplus \mathbf{Z}^m \oplus \mathbf{R}^n \oplus \mathbf{T}^k,$$

where A is a finite Abelian group, is a (strong) Borsuk-Ulam group with respect to orthogonal representations.

The proof follows from Lemma 4', Theorem 3 and the previous remarks.

5. AN EXAMPLE

In this section we show that, in the setting of Theorem 1, the equation f(Ux) = f(x) may not have nonzero solutions. This example answers, meanwhile, a question of Wasserman [12].

Let $E = \mathbb{R}^4$, $F = \mathbb{R}^3$, and

$$U(a, b, c, d) = (-d, -c, b, a), V(a, b, c) = (-a, -b, -c).$$

Then, obviously, $E_U = \{0\}$, $F_V = \{0\}$. Define $f: E \to F$ by

(11)
$$f(a,b,c,d) = (a^2 + b^2 - c^2 - d^2, ac + bd, bc - ad).$$

This is in fact the Hopf fibration when restricted to S^3 . One easily checks that fU = Vf and that the equality f(Ux) = f(x) implies x = 0.

Therefore we cannot take k = 1 in Theorem 1.

Let S(E) denotes the unit sphere in E.

In his paper [12] Wasserman asked whether there exist a group G, representations E and F of G, such that dim $E > \dim F$, $F_G = \{0\}$ and a G-equivariant map $f: S(E) \to S(F)$. Our example answers affirmatively this questions for $G = \mathbb{Z}_4$, since $U^4 = \mathrm{id}_E$, $V^4 = \mathrm{id}_F$. It is easy to see then that the map $f: E \to F$, defined by (11), transforms S(E) into S(F) and is \mathbb{Z}_4 -equivariant. Note, finally, that $F_G = F_V = \{0\}$.

REFERENCES

- Arnol'd, V. I. Mathematical methods of classical mechanics. Springer-Verlag, Berlin-Heidelberg-New York, 1978.
- Cornfeld, I. P., S. V. Fomin, Ya. G. Sinai. Ergodic theory. Springer-Verlag, Berlin-Heidelberg-New York, 1982.
- Fadell, E. R., S. Y. Husseini, P. H. Rabinowitz. Borsuk-Ulam theorems for arbitrary S¹-actions and applications. — Trans. Amer. Math. Soc., 274, 1982, 345-360.
- 4. Hopf, H., M. Rueff. Uber Faserung treue Abildungen den Spharen. Comment. Helvet., 11, 1938, 49-61.
- 5. Lusk, E. L. The mod p Smith index and a generalized Borsuk-Ulam theorem. Michigan Math. J., 22, 1975, 151-160.
- Munkholm, H. J. Borsuk-Ulam type theorem for proper Z_p-actions on (mod p homology)
 n-spheres. Math. Scand., 24, 1969, 167-185.
- 7. Nitecki, Z. Differentiable dynamics. The MIT Press, Cambridge London, 1971.
- Rabier, P. J. Topological degree and the theorem of Borsuk for general covariant mappings with applications. — Nonlin. Analysis, 16, 1991, 399-420.
- Stefanov, S. T. Mapping theorems for Z_p-actions with fixed points. Serdica, 16, 1990, 87-93.
- 10. Stefanov, S. T. Nonexistence of orbital morphisms between dynamical systems on spheres.
 Ann. Univ. Sofia, Fac. of Math. and Info., 83, 1989, 123-128.
- 11. Volovikov, A. Ju. Generalization of the Borsuk-Ulam theorem. Math. Sb., 108, (150), 1979, 212-218.
- 12. Wasserman. A. G. Isovariant maps and the Borsuk-Ulam theorem. Topology and its Appl., 38, 1991, 155-161.

Received 9.09.1993