Ортогонален базис от фрактални функции за компресия на образи

Благовест Сендов

В памет на чл.-кор. проф. д-р Благовест Долапчийев, един прекрасен човек, учен, педагог и гражданин

Благовест Сендов. ОРТОГОНАЛЬНЫЙ БАЗИС ФРАКТАЛЬНЫХ ФУНКЦИЙ ДЛЯ КОМПРЕССИИ ОБРАЗОВ

Цель настоящей работы построить в L_2 ортогональную систему, составленную из функции данной фрактальной размерности. Этот аппарат является подходящим средством для аппроксимации объектов определенной фрактальной размерности. Здесь рассматривается только одномерный случай, но рассуждения можно легко перенести и на случаи большей размерности.

Blagovest Sendov. ORTHOGONAL BASIS OF FRACTAL FUNCTIONS FOR COMPRESSSION OF IMAGES

The aim of this paper is to build an orthogonal system in L_2, consisting of functions of a given fractal dimension. It is a tool for approximation of objects of certain fractal dimension. Here only the one-dimensional case is approached, however the considerations could be easily transferred to cases of higher dimension.

1. ВВЕДЕНИЕ

Едно ново име на априксимацията е компресия. То се наложи от големия интерес към нови обекти за априксимиране, които са представени във вид на числови данни. Най-често това са дигитализирани сигнали и дигитализирани (пикселизирани) образи. За да се минимизират разходите
по запомнянето и пренасянето на тези данни чрез средствата за комуникация, естествено е да се потърсят методи за тяхното компресиране и след това декомресиране на мястото за използване.

Има универсални методи за компресия на информация, които са независими от нейната специфика и се основават на теорията на информацията на Шенън. Методите за компресия на сигнали и образи, които се основават на спецификата на числовата информация, представляща тези обекти, използват теорията на апроксимациите.

Основен принцип в теорията на апроксимациите е съгласуването на инструмента за апроксимиране с обекта, който ще се апроксимира. Естествено е периодичните функции да се апроксимират с тригонометрични полиноми, а функциите, дефинирани в краен интервал — с алгебрични полиноми.

През втората половина на нашия век благодарение на високите изчислителни мощности на компютрите теорията на апроксимациите се ориентира към все нови и нови инструменти, за да разширят обектите, които се апроксимират. Новите обекти, предлагани от практиката за апроксимиране, са все по-негладки и с локални особености. Това породи сплайн-функциите, които са „на части“ полиноми и не са безкрайно гладки. Нуждата да се апроксимират локалните особености създава модния денес апарат на кърдиците (уейблетите, ондулетите), които са гладки, но имат „малки“ носители, т. е. те са равни на нула извън даден интервал, който може да бъде произволно малък. Инструментът на кърдците е изключително ефективен за апроксимиране на обекти с локални особености, каквито са например образите. Фотографският образ на лицето на един човек или рентгеновата снимка на един тумор са обекти с подчертани локални особености. С това може да се обясни ефективността на кърдците при апроксимиране на образи или, както е модерно да се казва днес, при компресията на образи.

Голям интерес през последните години предизвика и един друг математически обект като естествен инструмент за апроксимиране — това е множеството на фракталите. Фракталните структури са известни в математиката от миналия век, но са били използвани главно като страни контрапримери. Типичен случай е функцията на Вайерщрас:

\[W_h(t) = \sum_{n=0}^{\infty} \gamma^{nh} \cos(2\pi \gamma^{-n} t), \quad 0 < h < 1, \quad 0 < \gamma < 1, \]

която е непрекъсната във всяка точка, но няма производна в няколко точка.

Ако дължината на графиката на дадена непрекъсната функция на една променлива е крайна, тя има фрактална размерност 1. Дължината на графиката на функцията на Вайерщрас във всеки краен интервал е безкрайна и има фрактална размерност 2 − \(\gamma > 1 \). Фракталната размерност е своеобразна мярка за негладност. Оказва се, че ако разглеждаме образите като функции на две променливи, те са много негладки. Това предизвика
интереса към използването на фрактални структури за апроксимиране на образи.

Фракталните структури се получават естествено чрез свивания изображения или т. нар. итерационни функционални системи (IFS) [2].

Нашата цел в тази работа е да построим ортогонална система в \(L_2 \), съставена от функции с дадена фрактала размерност. Това е апарат за апроксимиране, който е подходящ за обекти с определена фрактала размерност. Тук разглеждаме само едномерния случай, но нещата лесно се пренасят и за повече измерения.

2. ОСНОВНИ ДЕФИНИЦИИ

Всяко число \(x \in (0,1) \) може да се представи в двойчна форма

\[x = a_1(x)2^{-1} + a_2(x)2^{-2} + a_3(x)2^{-3} + \ldots, \]

където \(a_n(x) \) е 0 или 1. Числото \(x \) е двойчно рационално, ако \(a_n(x) = 0 \) за безбройно много индекси \(n \) и \(a_n(x) = 1 \) за безбройно много индекси \(n \).

Нека \((k;p) \), където \(k, p \) са неотрицателни цели числа и \(p < 2^k \), е множество от всички двойчно рационални числа от интервала \((p2^{-k}, (p + 1)2^{-k})\). Множеството \((k;p) \) се нарича двойчен интервал от ранг \(k \). Двоичният интервал \((0;0) \subset [0,1] \) е от ранг 0. Очевидно \((k;p) = (k + 1 + 2p) \cup (k + 1; 2p + 1)\) и \((k;p) \subset (k - 1; [p/2])\), където \([x]\) е цялата част на \(x \).

Функциите \(a_n(x) \) от (2.1) са еднозначно дефинирани в \((0;0)\), но това не е така, ако \(x \) е двойчно рационално число. Всяко двойчно рационално число \(x \) има две различни представления във формата (2.1) — едното е с краен брой \(a_n(x) = 1 \), а другото с краен брой \(a_n(x) = 0 \).

Нека \(k, p \) са цели неотрицателни числа и \(p < 2^k \). Тогава

\[x = a_1(x)2^{-1} + a_2(x)2^{-2} + a_3(x)2^{-3} + \ldots + a_k(x)2^{-k} + 2^{-k-1} \]

\[= a_1(x)2^{-1} + a_2(x)2^{-2} + a_3(x)2^{-3} + \ldots + a_k(x)2^{-k} + 2^{-k-2} + 2^{-k-3} + 2^{-k-4} + \ldots \]

В този случай ще използваме следните оценения:

\[\lim_{t \to x, t < x} t = x - 0 = a_1(x)2^{-1} + \ldots + a_k(x)2^{-k} + 2^{-k-2} + 2^{-k-3} + \ldots, \]

\[\lim_{t \to x, t > x} t = x + 0 = a_1(x)2^{-1} + \ldots + a_k(x)2^{-k} + 2^{-k-1}, \]

и съответно за стойностите \(a_n(x - 0) \) и \(a_n(x + 0) \) за двойчно рационално \(x \).

Дефиниция 2.1. Ще наричаме функционалата \(f \) фрактала функция, ако тя е дефинирана в двойчния интервал \((0;0)\).

Множеството от всички фрактални функции означаваме с \(\mathcal{F}(0;0) = \mathcal{F} \).
Множеството от всички непрекъснати и ограничени фрактални функции означаваме с $BC_{(0,0)} = BC$.

Очевидно една фрактална функция може да е непрекъсната и неограничена.

Всяка ограничена и непрекъсната фрактална функция f от BC е интегрируема по Лебег в интервала $[0,1]$, тъй като f не е дефинирана само в множество с мярка нула в този интервал.

Във функционалното пространство BC ще използваме равномерната норма

$$\|f\| = \sup\{|f(x)| : x \in (0;0)\}$$

и L_2-нормата

$$\|f\|_2 = \left(\int_0^1 f^2(x) \, dx\right)^{\frac{1}{2}}.$$

В BC ще използваме още и т. нар. метрика на Хаусдорф [8], която се дефинира чрез допълнението графики на съответните функции.

Ако $f \in BC$, то съществуват границите

$$\lim_{h \to +0} f(p2^{-k} + h) = f(p2^{-k} + 0) \quad \text{и} \quad \lim_{h \to +0} f(p2^{-k} - h) = f(p2^{-k} - 0)$$

за $k = 1, 2, 3, \ldots$, $p = 1, 2, 3, \ldots, 2^k - 1$ и границите

$$\lim_{h \to +0} f(h) = f(+0) \quad \text{и} \quad \lim_{h \to +0} f(1 - h) = f(1 - 0).$$

Дефиниция 2.2. Нека $f \in BC$ и

$$\underline{f}(x) = \min\{f(x-0), f(x+0)\}, \quad \overline{f}(x) = \max\{f(x-0), f(x+0)\} \quad \text{за} \ x \in (0,1),$$

$$f(0) = \underline{f}(0) = f(+0), \quad f(1) = \overline{f}(1) = f(1 - 0).$$

Сегментнозначната функция

$$F(f; x) = [\underline{f}(x), \overline{f}(x)]; \ x \in [0,1]$$

се нарича допълнена графика на функцията f [7].

Ако $f \in BC$, то за всяко ирационално $x \in (0;0)$ функцията $F(f; \cdot)$ е еднозначна и $F(f; x) = f(x)$.

Графиката $F(f)$ на функцията $F(f; \cdot)$ е ограничено и затворено точково множество в равнината [4].

Хаусдорфовото разстояние между функциите $f, g \in BC$ се дефинира чрез хаусдорфово разстояние между техните допълнени графики като точкови множества в равнината. За конкретна дефиниция на това разстояние трябва да се избере конкретно разстояние между точките в равнината. За нашите цели е удобно да използваме "бокс" разстоянието:

$$\rho_p(A(x_1, y_1), B(x_2, y_2)) = \max\{|x_1 - x_2|, p|y_1 - y_2|\}, \ p > 0.$$

За простота ще използваме $\rho_1 = \rho$.

412
Дефиниция 2.3. Хаусдорфовото разстояние между две функции \(f, g \in \mathcal{BC} \) е равно на числото

\[
\rho(f, g) = \max \left\{ \sup_{A \in F(f)} \inf_{B \in F(g)} \rho(A, B), \sup_{A \in F(g)} \inf_{B \in F(f)} \rho(A, B) \right\}.
\]

Не е трудно да се съобрази [8], че \(\rho(f, g) \) е метрика в \(\mathcal{BC} \), за която \(\rho(f, 0) = \|f\| \), но в общия случай \(\rho(f, g) \leq \|f - g\| \). Последното показва, че функционалното пространство \(\mathcal{BC} \), метризирано с хаусдорфовата метрика, не е банахово пространство.

Дефиниция 2.4. Нека \(f \in \mathcal{BC} \) и

\[
v((k; p), f) = \sup \{ |f(x') - f(x'')| : x', x'' \in (k; p) \}.
\]

Ще наречем

\[
\tau(f; 2^{-k}) = \max \{ v((k; p), f) : p = 0, 1, 2, \ldots, 2^k - 1 \}
\]

фрактален модул на непрекъснатост.

Дефиниция 2.5. Една фрактала функция ще наречем хаусдорфово непрекъсната, ако

\[
\lim_{s \to \infty} \tau(f; 2^{-s}) = 0.
\]

Множеството от всички хаусдорфово непрекъснати фрактала функции ще означаваме с \(\mathcal{NC} \).

Дефиниция 2.6. Фракталната функция \(f \) удовлетворява фракталното условие на Хьолдер със степен \(\alpha > 0 \) и константа \(C \geq 0 \), ако

\[
\tau(f; 2^{-k}) \leq C2^{-\alpha k}; \quad k = 0, 1, 2, \ldots
\]

Ако \(f \in C_{[0,1]} \) и удовлетворява условието на Хьолдер

\[
|f(x') - f(x'')| \leq C|x' - x''|^\alpha, \quad \alpha > 0,
\]

то рестрикцията на \(f \) върху двоичния интервал \((0;0)\) е фрактала функция, удовлетворяваща фракталното условие на Хьолдер. Очевидно обратното не е изобщо вярно.

Дефиниция 2.7. За всяка функция \(f \in \mathcal{BC} \) дефинираме

\[
V_s(f) = \sum_{k=1}^{2^k-1} \sum_{p=1}^{2^{k-1}} \{ |f(p2^{-k} + 0) - f(p2^{-k} - 0)| + v((k; p), f) \}
\]

и наречем числото

\[
\kappa(f) = \lim_{s \to \infty} s^{-1} \log_2 2^s (V_s(f) + 1)
\]

хаусдорфова или фрактала размерност на функцията \(f \).

Тази дефиниция съвпада с обичайната дефиниция на хаусдорфова размерност [8] на допълнената графика на функцията \(f \) и \(1 \leq \kappa(f) \leq 2 \).
Дефиниция 2.8. Функцията $f \in \mathcal{BC}$ се нарича пикселна функция с разрешение s, ако f е константа във всеки двоичен интервал от ранг s.

Множеството от всички пикселни функции с разрешение s означаваме с \mathcal{P}_s.

Множеството от всички пикселни функции и всички функции, които са поточкови граници на пикселни функции, означаваме с $\mathcal{P}_{(0,0)} = \mathcal{P} \cup \bigcup_{s=0}^{\infty} \mathcal{P}_s$.

По-късно ще докажем, че $\mathcal{P} = \mathcal{HC}$.

Дефиниция 2.9. Операторят $\Phi : \mathcal{BC} \to \mathcal{P}_s$ се нарича фрактalen филтър с разрешение s, ако той е проектиращ оператор, т.е. от $f \in \mathcal{P}_s$ следва $\Phi(f) = f$.

Ще използваме два фрактални филтъра — линейния усредняващ фрактalen филтър с разрешение s:

$$
\Phi_s(f; x) = f^{[s]}(x) = 2^s \int_{(s; p)} f(t) \, dt \quad \text{за} \quad x \in (s; p), \; p = 0, 1, 2, \ldots, 2^s - 1,
$$

и хаусдорфовия фрактalen филтър $\Theta_s(f; x) = f^{[s]}(x)$ с разрешение s, който е дефиниран по-долу.

За $f \in \mathcal{B}$ и за двоичния интервал $(s - 1; q)$ нека

$$
\bar{f}(s - 1; q) = \inf \{ f(x) : x \in (s - 1; q) \}, \quad \overline{f}(s - 1; q) = \sup \{ f(x) : x \in (s - 1; q) \},
$$

$$
L_{s, q} = |\bar{f}(s - 1; q) - f(q2^{-s+1} + 0)|, \quad U_{s, q} = |\overline{f}(s - 1; q) - f(q2^{-s+1} + 0)|, \quad q = 0, 1, 2, \ldots, 2^s - 1.
$$

За $x \in (s; 2q)$ дефинираме

$$
\Theta_s(f; x) = f^{[s]}(x) = \begin{cases}
\bar{f}(s - 1; q), & \text{ако} \ L_{s, q} \leq U_{s, q}, \\
\overline{f}(s - 1; q), & \text{ако} \ L_{s, q} > U_{s, q}
\end{cases}
$$

и за $x \in (s; 2q + 1)$ дефинираме

$$
\Theta_s(f; x) = f^{[s]}(x) = \begin{cases}
\overline{f}(s - 1; q), & \text{ако} \ L_{s, q} \leq U_{s, q}, \\
\bar{f}(s - 1; q), & \text{ако} \ L_{s, q} > U_{s, q}
\end{cases}
$$

Лесно е да се види, че Θ_s е проектиращ оператор от $\mathcal{B} \cap \mathcal{BC}$ в \mathcal{P}_s.

Лема 2.1. За всяка функция $f \in \mathcal{B}$ е в сила неравенството

$$
r(f, \Theta_s(f)) \leq 2^{-s+1}.
$$

Доказателство. Нека $\overline{(s; p)}$ е сегментът $[p2^{-s}, (p + 1)2^{-s}]$ и $x \in \overline{(s; p)} \subset [0, 1]$. От дефиницията на Θ_s следва, че за всяка точка $(x, y) \in F(f; x$) съществува точка $(\xi, \eta) \in F(\Theta_s; x)$, такава че $\rho((x, y), (\xi, \eta)) \leq 2^{-s+1}$. Също така за всяка точка $(x, y) \in F(\Theta_s; x)$ съществува точка $(\xi, \eta) \in F(f; x)$, такава че $\rho((x, y), (\xi, \eta)) \leq 2^{-s+1}$, и следователно (2.5) е изпълнено.

414
Лема 2.2. За всяка функция \(f \in \mathcal{B}C \) е в сила неравенството
\[
\|f - \Phi_s(f)\|_2 \leq \tau(f; 2^{-s}).
\]

Доказателство. Нека \(x \in (s; p) \subset (0; 0) \). Тогава
\[
(f(x) - \Phi_s(f; x))^2 = \left(2^s \int_{(s;p)} f(x) \, dt - 2^s \int_{(s;p)} f(t) \, dt \right)^2
\]
\[
\leq 2^s \int_{(s;p)} (f(x) - f(t))^2 \, dt \leq (\tau(f; 2^{-s}))^2.
\]
От това следва (2.6).

3. РАШИРЕНА ОРТОНОРМАЛНА СИСТЕМА НА ХААР

Ще разглеждаме хилбертовото пространство \(\mathcal{B}C_2 \) с \(L_2 \)-норма. Нека \(g_i \in \mathcal{B}C_2, \ i = 0, 1, 2, \ldots, \) е ортонормална и пълна система, т. е.
\[
\int_{0}^{1} g_i(x) g_j(x) \, dx = \begin{cases} 0 & \text{за } i \neq j, \\ 1 & \text{за } i = j, \end{cases}
\]
и всяка функция \(f \in \mathcal{B}C_2 \) има представянето
\[
f(x) = \sum_{i=0}^{\infty} c_i(f) g_i(x),
\]
където
\[
c_i(f) = \int_{0}^{1} f(x) g_i(x) \, dx; \ i = 0, 1, 2, \ldots,
\]
са фуриеровите коефициенти.

Дефиниция 3.1. Една ортонормална система в \(\mathcal{B}C_2 \) се нарича филтрирана, ако за всяка функция \(f \in \mathcal{B}C_2 \) с представяне
\[
f(x) = \sum_{i=0}^{\infty} c_i g_i(x)
\]
имаме
\[
\Phi_s(f; x) = f^{(s)}(x) = \sum_{i=0}^{2^s-1} c_i g_i(x).
\]

Пример за филтрирана ортонормална система в \(\mathcal{B}C \) ни дава системата на Хаар
\[
h_0(x) = 1, \quad h_1(x) = \begin{cases} -1 & \text{за } x \in (1; 0), \\ 1 & \text{за } x \in (1; 1), \\ 0 & \text{за } x \notin [0, 1], \end{cases}
\]
\[
h_{2^k+p}(x) = 2^{k/2}h_1(2^k x - p),
\]
415
Дефиниция 3.2. Дефинираме функциите (вж. (2.1))

\[
b_0(x) = 1, \quad b_n(x) = 2a_n(x) - 1; \quad n = 1, 2, 3, \ldots,
\]
\[
c_n(x) = \begin{cases}
 b_n(x) & \text{за } x \in (1; 0) \subset (0, 1/2), \\
 b_n(1 - x) & \text{за } x \in (1; 1) \subset (1/2, 1), \\
 0 & \text{за } x \notin [0, 1],
\end{cases} \quad n = 2, 3, 4, \ldots,
\]
\[
c_{n,k,p}(x) = 2^{k/2}c_n(2^k x - p);
\]
\[
n = 2, 3, 4, \ldots, \quad k = 0, 1, 2, \ldots, n - 2, \quad p = 0, 1, 2, \ldots, 2^k - 1.
\]

Системата от функциите \(g_i(x); \quad i = 0, 1, 2, \ldots, k+1\) е вида

\[
g_0(x) = 1, \quad g_2^n(x) = b_n(x); \quad n = 0, 1, 2, \ldots,
\]
\[
g_{2^n+2^k+p}(x) = c_{n-k,k,p}(x);
\]
\[
n = 2, 3, 4, \ldots, \quad k = 0, 1, 2, \ldots, n - 2, \quad p = 0, 1, 2, \ldots, 2^k - 1,
\]

дефинирана в \((0; 0)\), ще наричаме разширенна система на Хаар.

Лема 3.1. Разширената система на Хаар е филтрирана и ортонормална.

Доказателство. От дефинициите на \(b_n(x)\) и \(c_n(x)\) следва, че

\[
b_n(x)^2 = (2a_n(x) - 1)^2 = 1 - 4a_n(x)(1 - a_n(x)) = 1,
\]

тъй като \(a_n(x)\) е 0 или 1. Тогава \(c_n(x)^2 = 1\) и

\[
\int_0^1 b_n(x)^2 \, dx = \int_0^1 c_n(x)^2 \, dx = 1.
\]

По същия начин

\[
2^k \int_0^1 (c_n(2^k x - p))^2 \, dx = 2^k \int_{(k:p)} (c_n(2^k x - p))^2 \, dx
\]

\[
= 2^{k-2} \int_0^1 (c_n(t))^2 \, dt = 1.
\]

От друга страна, веднага се вижда, че

\[
\int_0^1 b_m(x)b_n(x) \, dx = 0 \text{ за } n \neq m,
\]

416
\[
\int_0^1 b_m(x)c_n(2^k x - p)\,dx = \int_{(k;p)} b_m(x)c_n(2^k x - p)\,dx
\]

\[
= 2^{-k} \int_0^1 b_m(2^{-k}(t + p))c_n(t)\,dt = 0
\]

за произволни \(m\) и \(n\); \(k = 0, 1, 2, \ldots, n - 2\), \(p = 0, 1, 2, \ldots, 2^k - 1\).

Имаме още

\[
\int_0^1 c_m(2^k x - q)c_n(2^k x - p)\,dx = 0 \quad \text{за} \quad p \neq q,
\]

tъй като носителите на \(c_m(2^k x - q)\) и \(c_n(2^k x - p)\) не се пресичат.

За \(l > k\) носителите на \(c_m(2^k x - q)\) и \(c_n(2^k x - p)\) се пресичат, ако \((l;q) \subset (k;p)\) или ако \(q = [p/2^{l-k}]\). Следователно

\[
\int_0^1 c_m(2^l x - [p/2^{l-k}])c_n(2^k x - p)\,dx = \int_{(i;p)} c_m(2^l x - [p/2^{l-k}])c_n(2^k x - p)\,dx
\]

\[
= \int_0^1 c_m(t)c_n(2^{k-l}(t + [p/2^{l-k}]) - p)\,dt = \int_0^1 c_m(t)b_{n+k-l}(t)\,dt = 0
\]

за произволни \(m\) и \(n\).

С това доказваме, че разглежданата система е ортонормална. Тази система е и филтрирана, тъй като за всяко \(m \geq 2^s\) пикселната функция \(g_m(x)\) има разрешение \(> s\) и

\[
\int_{(s;p)} g_m(x)\,dx = 0; \quad p = 0, 1, 2, \ldots, 2^s - 1,
\]

следователно \(g_m^{(s)}(x) = 0\).

Веднага се вижда, че

\[
\tau(h_n; 2^{-s}) = \begin{cases} 2^{n/2+1} & \text{за} \ s < n, \\ 0 & \text{за} \ s \geq n, \end{cases}
\]

\[
\tau(b_n; 2^{-s}) = \begin{cases} 2 & \text{за} \ s < n, \\ 0 & \text{за} \ s \geq n, \end{cases}
\]

\[
\tau(c_m,k,p; 2^{-s}) = \begin{cases} 2^{k/2+1} & \text{за} \ s < m + k, \\ 0 & \text{за} \ s \geq m + k. \end{cases}
\]

Теорема 3.1. Разширената система на Хаар е пълна в множеството на хаусдорфово непрекъснатите фрактални функции, т. е. ако фракталната
функция f есть хусдорфова непрерывная, то $f \in \mathcal{P}$ и f представляет в виде

$$(3.7) \quad f(x) = \sum_{n=0}^{\infty} b_n(f)b_n(x) + \sum_{k=0}^{\infty} \sum_{n=k+2}^{\infty} \sum_{p=0}^{2^k-1} c_{n,k,p}(f)c_n(2^k x - p),$$

как

$$b_n(f) = \int_{0}^{1} f(x)b_n(x) \, dx, \quad c_{n,k,p}(f) = \int_{0}^{1} f(2^{-k}(x+p))c_n(x) \, dx,$$

и в виде

$$(3.8) \quad f(x) = \sum_{k=0}^{\infty} f_k(x),$$

как

$$f_0(x) = \sum_{n=0}^{\infty} b_n(f)b_n(x),$$

$$f_{k+1}(x) = \sum_{n=k+2}^{\infty} c_{n,k,p}(f)c_n(2^k x - p) \text{ для } x \in (k;p), \quad p = 0, 1, 2, \ldots, 2^k - 1.$$

Доказательство. Тогда ортогональная система $b_n(x)$, $c_n(2^k x - p)$ есть фильтрирование, за всяко естественно число s имаме

$$f^{(s)}(x) = \sum_{n=0}^{s} b_n(x) + \sum_{k=0}^{s-2} \sum_{n=k+2}^{s} \sum_{p=0}^{2^k-1} c_{n,k,p}(f)c_n(2^k x - p)$$

и за $x \in (s;p)$ —

$$|f(x) - f^{(s)}(x)| \leq 2^s \int_{(s;p)} |f(x) - f(t)| \, dt \leq \tau(f;2^{-s}).$$

Следовательно для всякого $x \in (0;0)$ есть в сила равенството

$$\lim_{s \to \infty} f^{(s)}(x) = f(x).$$

От теоремы (3.1) следва, что $\mathcal{H} \subseteq \mathcal{P}$.

Дефиниция 3.3. Фрактальная функция $f \in \mathcal{P}$ ще наричаме нечетно проста, ако за всяко $x \in (0;0)$ тя има представянето

$$f(x) = \sum_{n=1}^{\infty} b_n(f)b_n(x),$$

и четно проста, ако за всяко $x \in (0;0)$ има представянето

$$f(x) = \sum_{n=2}^{\infty} c_n(f)c_n(x).$$
Функцията \(f \in \mathcal{P} \) ще наричаме четно проста от ранг \(k \), ако \(f \) е четно проста във всеки двоичен интервал от ранг \(k \).

Очевидно е, че ако \(f \in \mathcal{P} \), е пикселна функция с разрешение \(s \) и ако \(f \) е още нечетно проста, то \(f \) има представянето

\[
f(x) = \sum_{n=1}^{s} b_n(f) b_n(x) \quad \text{за} \quad x \in (0; 0),
\]

и ако \(f \) е четно проста, то \(f \) има представянето

\[
f(x) = \sum_{n=2}^{s} c_n(f) c_n(x) \quad \text{за} \quad x \in (0; 0).
\]

Още, ако \(f \in \mathcal{P} \), е пикселна функция с разрешение \(s \) и освен това е четно проста от ранг \(k \), то \(f \) има представянето

\[
f(x) = \sum_{n=k+2}^{s} c_{n,k,p}(f) c_n(x) \quad \text{за} \quad x \in (k; p).
\]

4. ФРАКТАЛИЗИРАНЕ НА ОРТОНОРМАЛНА СИСТЕМА

Всяко естествено число \(n \) има единствено представяне от вида

\[
n = 2^{\nu(n)} + \mu(n),
\]

където \(\nu(n) \) е неотрицателно цяло число и \(\mu(n) \in \{0, 1, 2, \ldots, 2^{\nu(n)} - 1\} \).

Равенството (4.12) дефинира функциите \(\nu(n) \) и \(\mu(n) \) за всяко естествено число \(n \).

Нека \(\mu^{0}(n) = n \), \(\mu(\mu^{s}(n)) = \mu^{s+1}(n); \quad s = 1, 2, 3, \ldots \) Тогава всяко естествено число \(n \) има представянето

\[
n = \sum_{s=0}^{k} 2^{\nu(\mu^{s}(n))},
\]

където

\(\nu(n) > \nu(\mu(n)) > \nu(\mu^{2}(n)) > \ldots > \nu(\mu^{k}(n)) \geq 0. \)

За всяко реално число \(\lambda > 0 \) и за всяко неотрицателно число \(n \) дефинираме редицата \(\{\sigma_{n,i}(\lambda)\}_{i=1}^{\infty} \), както следва:

\[
\sigma_{0,i}(\lambda) = 1 \quad \text{за} \quad i = 1, 2, 3, \ldots,
\]

\[
\sigma_{n,i}(\lambda) = \begin{cases}
\sigma_{\mu(n),i}(\lambda) & \text{за} \quad i = 1, 2, 3, \ldots, q, \\
-\lambda^{-2q} \sigma_{\mu(n),i-q}(\lambda) & \text{за} \quad i = q + 1, q + 2, \ldots, 2q, \\
\sigma_{n,i-2q}(\lambda) & \text{за} \quad i = 2q + 1, 2q + 2, \ldots,
\end{cases}
\]

където \(q = 2^{\nu(n)} \).
Зався п редизата \(\{ \sigma_{n,i}(\lambda) \}_{i=1}^{\infty} \) е периодична с минимален период \(2^{\nu(n)+1} \). Всяко число от вида \(2^k \) за \(k \geq \nu(n) + 1 \) е период на редицата \(\{ \sigma_{n,i}(\lambda) \}_{i=1}^{\infty} \). Първите 8 редици са:

\[
\begin{align*}
\sigma_{0,i}(\lambda) &= 1, 1, 1, 1, 1, 1, 1, 1, 1, \ldots \\
\sigma_{1,i}(\lambda) &= 1, -\lambda^{-2}, 1, -\lambda^{-2}, 1, -\lambda^{-2}, 1, -\lambda^{-2}, \ldots \\
\sigma_{2,i}(\lambda) &= 1, 1, -\lambda^{-4}, -\lambda^{-4}, 1, 1, -\lambda^{-4}, -\lambda^{-4}, \ldots \\
\sigma_{3,i}(\lambda) &= 1, -\lambda^{-2}, -\lambda^{-4}, -\lambda^{-6}, 1, -\lambda^{-2}, -\lambda^{-4}, -\lambda^{-6}, \ldots \\
\sigma_{4,i}(\lambda) &= 1, 1, 1, 1, -\lambda^{-8}, -\lambda^{-8}, -\lambda^{-8}, -\lambda^{-8}, \ldots \\
\sigma_{5,i}(\lambda) &= 1, -\lambda^{-2}, -\lambda^{-4}, -\lambda^{-4}, -\lambda^{-8}, -\lambda^{-8}, -\lambda^{-8}, -\lambda^{-8}, \ldots \\
\sigma_{6,i}(\lambda) &= 1, 1, -\lambda^{-4}, -\lambda^{-4}, -\lambda^{-8}, -\lambda^{-8}, -\lambda^{-8}, -\lambda^{-8}, \ldots \\
\sigma_{7,i}(\lambda) &= 1, -\lambda^{-2}, -\lambda^{-4}, -\lambda^{-4}, -\lambda^{-8}, -\lambda^{-8}, -\lambda^{-8}, -\lambda^{-8}, \ldots
\end{align*}
\]

Лема 4.1. За всяко неотрицателно цяло число \(n \) и \(k = \nu(n) + 1, \nu(n) + 2, \nu(n) + 3, \ldots \) е в сила равенството

\[
(4.15) \quad \sum_{i=1}^{2^k} \lambda^{2i} \sigma_{n,i}^2(\lambda) = \frac{\lambda^{2(1-n)}(1 - \lambda^{2k+1})}{1 - \lambda^2}.
\]

Доказателство. Ще използваме индукция по \(n \).

За \(n = 0 \) и произволно \(k \)

\[
\sum_{i=1}^{2^k} \lambda^{2i} \sigma_{0,i}^2(\lambda) = \sum_{i=1}^{2^k} \lambda^{2i} = \frac{\lambda^{2(1-0)}(1 - \lambda^{2k+1})}{1 - \lambda^2}.
\]

Нека (4.15) е доказано за всички \(m < n \) и за \(k = \nu(m) + 1, \nu(m) + 2, \nu(m) + 3, \ldots \). Тогава за \(q = \nu(n) \) от (4.14) имаме

\[
(4.16) \quad \sum_{i=1}^{2^{\nu(n)+1}} \lambda^{2i} \sigma_{n,i}^2(\lambda) = \sum_{i=1}^{q} \lambda^{2i} \sigma_{\mu(n),i}(\lambda) + \lambda^{-4q} \sum_{i=q+1}^{2q} \lambda^{2i} \sigma_{\mu(n),i-q}(\lambda)
\]

\[
= (1 + \lambda^{-2q}) \sum_{i=1}^{q} \lambda^{2i} \sigma_{\mu(n),i}(\lambda) = \lambda^{-2q} (1 + \lambda^{2q}) \frac{\lambda^{2(1-\mu(n))}(1 - \lambda^{2q})}{1 - \lambda^2}
\]

\[
= \frac{\lambda^{2(1-n)}(1 - \lambda^{4q})}{1 - \lambda^2} = \frac{\lambda^{2(1-n)}(1 - \lambda^{2\nu(n)+2})}{1 - \lambda^2}.
\]

От друга страна, нека \(k - \nu(n) - 1 = s \geq 0 \) и \(q = 2^{\nu(n)} \). Тогава

\[
(4.17) \quad \sum_{i=1}^{2^k} \lambda^{2i} \sigma_{n,i}^2(\lambda) = \sum_{j=0}^{2^s - 1} \sum_{i=1}^{2q} \lambda^{2i+4qj} \sigma_{n,i+2qj}^2(\lambda)
\]

\[
= \sum_{i=1}^{2q} \lambda^{2i} \sigma_{n,i}^2(\lambda) \sum_{j=0}^{2^s - 1} \lambda^{4jq} = \frac{1 - \lambda^{2k+1}}{1 - \lambda^{4q}} \sum_{i=1}^{2q} \lambda^{2i} \sigma_{n,i}^2(\lambda).
\]
От (4.16) и (4.17) следва (4.15).

Следствие 4.1. За $|\lambda| < 1$ е изпълнено

$$\sum_{i=1}^{\infty} \lambda^{2i} \sigma_{n,i}^{2}(\lambda) = \frac{\lambda^{2(1-n)}}{1 - \lambda^2}.$$

Лема 4.2. Ако m, n са неотрицателни цели числа и $m < n$, то е в сила равенството

$$\sum_{i=1}^{2^\nu(n) + 1} \lambda^{2i} \sigma_{m,i}(\lambda) \sigma_{n,i}(\lambda) = 0.$$ \tag{4.18}

Доказателство. За $m = 0, n = 1$ (4.18) е вярно, тъй като

$$\sum_{i=1}^{2} \lambda^{2i} \sigma_{0,i}(\lambda) \sigma_{1,i}(\lambda) = \lambda^2 - \lambda^{-2} \lambda^4 = 0.$$

Да допуснем, че (4.18) е вярно за всяко n и $m < n$, такива че $\nu(n) \leq k - 1$, и да го докажем за всички n, за които $\nu(n) = k$.

Нека $m < n$ и $\nu(n) = k$, $q = 2^\nu(n)$. Ще разгледаме два случая:

1) $\nu(m) \leq k - 1$. Следователно $\sigma_{m,i}(\lambda)$ има период q и тогава

$$\sum_{i=1}^{2q} \lambda^{2i} \sigma_{m,i}(\lambda) \sigma_{n,i}(\lambda)$$

$$= \sum_{i=1}^{q} \lambda^{2i} \sigma_{m,i}(\lambda) \sigma_{\nu(n),i}(\lambda) - \lambda^{-2q} \sum_{i=q+1}^{2q} \lambda^{2i} \sigma_{m,i}(\lambda) \sigma_{\nu(n),i-q}(\lambda)$$

$$= \sum_{i=1}^{q} \lambda^{2i} \sigma_{m,i}(\lambda) \sigma_{\nu(n),i}(\lambda) - \sum_{i=1}^{q} \lambda^{2i} \sigma_{m,i+q}(\lambda) \sigma_{\nu(n),i}(\lambda) = 0,$$

тъй като $\sigma_{m,i+q}(\lambda) = \sigma_{m,i}(\lambda)$ и $\nu(\mu(n)) \leq k - 1$.

2) $\nu(m) = k$. Тогава

$$\sum_{i=1}^{2q} \lambda^{2i} \sigma_{m,i}(\lambda) \sigma_{n,i}(\lambda)$$

$$= \sum_{i=1}^{q} \lambda^{2i} \sigma_{\mu(m),i}(\lambda) \sigma_{\nu(n),i}(\lambda) + \lambda^{-4q} \sum_{i=q+1}^{2q} \lambda^{2i} \sigma_{\mu(m),i-q}(\lambda) \sigma_{\nu(n),i-q}(\lambda)$$

$$= (1 + \lambda^{-2q}) \sum_{i=1}^{q} \lambda^{2i} \sigma_{\mu(m),i}(\lambda) \sigma_{\nu(n),i}(\lambda) = 0,$$

тъй като $\nu(\mu(m)), \nu(\mu(m)) \leq k - 1$.

421
Следствие 4.2. Задано $|\lambda| < 1$ и $m \neq n$

$$\sum_{i=1}^{\infty} \lambda^{2i} \sigma_{m,i}(\lambda)\sigma_{n,i}(\lambda) = 0.$$

Лема 4.3. Ако A_n е стойността на детерминантата

$$A_n = \begin{vmatrix}
\sigma_{0,1}(\lambda) & \sigma_{0,2}(\lambda) & \sigma_{0,3}(\lambda) & \cdots & \sigma_{0,n}(\lambda) \\
\sigma_{1,1}(\lambda) & \sigma_{1,2}(\lambda) & \sigma_{1,3}(\lambda) & \cdots & \sigma_{1,n}(\lambda) \\
\sigma_{2,1}(\lambda) & \sigma_{2,2}(\lambda) & \sigma_{2,3}(\lambda) & \cdots & \sigma_{2,n}(\lambda) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\sigma_{n-1,1}(\lambda) & \sigma_{n-1,2}(\lambda) & \sigma_{n-1,3}(\lambda) & \cdots & \sigma_{n-1,n}(\lambda)
\end{vmatrix},$$

то

$$(4.19)\quad A_n = \left(-1 - \lambda^{-2\mu(n)+1}\right)^{\mu(n)} A_{2\nu(n)} A_{\mu(n)} \neq 0.$$

Доказательство. Първата част на равенството (4.19) следва непосредствено от (4.14). Ако итерираме това уравнение, като използваме представянето (4.13) за n, то

$$(4.20)\quad A_n = \prod_{s=0}^{k-1} \left(-1 - \lambda^{-2\mu(s)+1}\right)^{\mu(s)+1} A_{2\nu(s)}.$$

От друга страна, ако $n = 2^m$, $m \geq 1$, то

$$(4.21)\quad A_{2^m} = \left(-1 - \lambda^{-2^m}\right)^{2^{m-1}} A_{2^{m-1}} = \prod_{s=0}^{m-1} \left(-1 - \lambda^{-2^{m-s}}\right)^{2^{m-s-1}} \neq 0,$$

тъй като $A_{2^0} = A_1 = 1$.

От (4.20) и (4.21) следва (4.19).

Дефиниция 4.1. Нека $g_i(x), i = 1, 2, 3, \ldots$, е ортонормална система в BC_2. Дефинираме системата

$$(4.22)\quad g_n(\lambda; x) = \lambda^{-1} \sqrt{1 - \lambda^2} \sum_{i=1}^{\infty} \lambda^i \sigma_{n,i}(\lambda) g_i(x), \quad k = 0, 1, 2, \ldots$$

Системата (4.22) се нарича фрактализирана система $\{g_i(x)\}_{i=1}^{\infty}$.

Лема 4.4. Системата (4.22) е ортонормална.

Доказательство. От дефиницията и от следствие 4.1 имаме

$$\int_0^1 g_n^2(\lambda; x) \, dx = \lambda^{-2}(1 - \lambda^2) \sum_{i=1}^{\infty} \lambda^{2i} \sigma_{n,i}^2(\lambda) = 1,$$

т. е. $\|g_n(\lambda; .)\| = 1; \quad n = 0, 1, 2, \ldots$
Нека \(n \not= n \), тогава от дефиницията и от следствие 4.2 получаваме

\[
\int_0^1 g_m(\lambda; x)g_n(\lambda; x) \, dx = (\lambda^{-2} - 1) \sum_{i=1}^{\infty} \lambda^{2i} \sigma_{m, i}(\lambda) \sigma_{n, i}(\lambda) = 0.
\]

Лема 4.5. Ако функцията \(f \) е хаусдорфово непрекъсната и има представянето

\[
f(x) = \sum_{i=1}^{\infty} g_i(f)g_i(x),
\]

където

\[
g_i(f) = \int_0^1 f(x)g_i(x) \, dx,
\]

то \(f \) има също и представянето

\[
f(x) = \sum_{i=1}^{\infty} g_i(\lambda; f)g_i(\lambda; x),
\]

където

\[
g_i(\lambda; f) = \int_0^1 f(x)g_i(\lambda; x) \, dx.
\]

Доказателство. Тъй като

\[
\left| g_n(\lambda; x) - \lambda^{n-1} \sqrt{1 - \lambda^2} \sum_{i=1}^{s} \lambda^i \sigma_{n, i}(\lambda)g_i(x) \right| = O(\lambda^s),
\]

съгласно лема 4.3

\[
\left| \sum_{i=1}^{s} g_i(\lambda; f)g_i(\lambda; x) - \sum_{i=1}^{s} g_i(f)g_i(x) \right| = O(\lambda^s).
\]

Следователно

\[
\sum_{i=1}^{\infty} g_i(\lambda; f)g_i(\lambda; x) = \lim_{s \to \infty} \sum_{i=1}^{s} g_i(\lambda; f)g_i(\lambda; x) = \lim_{s \to \infty} \sum_{i=1}^{s} g_i(f)g_i(x) = f(x).
\]

Дефиниция 4.2. Ше казваме, че ортогоналната система \(g_n(x), n = 1, 2, 3, \ldots \), е фрактализуема, ако за всяко число \(\alpha \in [0, 1) \) съществува число \(\lambda \in [0, 1) \) такова, че всяка функция \(g_n(\lambda; x) \) от (4.22) да има фрактална размерност \(\kappa(g_n(\lambda; \cdot)) = 1 + \alpha \).

Лесно се вижда, че ортогоналната система \(g_n(t) = \cos(2\pi nt) \) не е фрактализуема, но нейната подсистема \(g_n^*(t) = \cos(2^n \pi t) \) е фрактализуема. При
първата стъпка от фрактализирането на системата \(\{\cos(2^n \pi t)\}_{n=1}^{\infty} \) се получава знаменитата функция на Вайерицрасс \([3]\)

\[
W_\alpha(t) = \sum_{i=1}^{\infty} \lambda^i \cos(2^i \pi t), \quad 1/2 \leq \lambda < 1,
\]

c фрактала размерност \(1 + \alpha \), където \(\alpha = 1 + \log_2 \lambda \), \([5]\).

Нашето предположение е, че ако една ортогонална система е пълна, то тя не може да бъде фрактализирана, но е възможно една пълна ортогонална система да бъде разделена на редица от фрактализируеми подсистеми.

Дефиниция 4.3. Ще разширим дефиниционата на фрактализирана система, като приемем да наричаме една ортогонална система фрактализирана, ако всичките й функции с изключение на първата могат да се разделят на редица от фрактализируеми системи.

5. **ФРАКТАЛИЗИРАНЕ НА РАЗШИРЕНАТА СИСТЕМА НА ХААР**

След като изложихме техниката за фрактализиране на произволна ортонормирана система от функции, ще преминем към фрактализирането на разширената система на Хаар. Това фрактализиране ще извършим на части, за да получим функции, които имат зададена фрактала размерност. За тази цел разделяме разширената система на Хаар на редица от подсистеми.

С номер нула в системата вземаме функцията \(b_0(x) = 1 \), която не участва във фрактализирането. Редицата ортонормални подсистеми е:

(5.23) \[b_n(x) = 2a_n(x) - 1, \quad n = 1, 2, 3, \ldots, \]

(5.24) \[
\begin{cases}
 b_n(x) & \text{за } x \in (1; 0) \subset (0, 1/2), \\
 b_n(1 - x) & \text{за } x \in (1; 1) \subset (1/2, 1), \\
 0 & \text{за } x \notin [0, 1],
\end{cases}
\]

и

(5.25) \[c_{n,k,p}(x) = 2^{k/2}c_n(2^k x - p), \quad n = 2, 3, 4, \ldots, \]

където

\[k = 0, 1, 2, \ldots, n - 2, \quad p = 0, 1, 2, \ldots, 2^k - 1. \]

Дефиниция 5.1. Разширената система на Хаар фрактализираме след разделяне на подсистемите (5.23), (5.24), (5.25) и означаваме

(5.26) \[\psi_n(\lambda; x) = \lambda^{n-1} \sqrt{1 - \lambda^2} \sum_{i=1}^{\infty} \lambda^i \sigma_{n,i}(\lambda)b_i(x), \quad n = 0, 1, 2, \ldots, \]

424
Лема 5.1. Всяка функция от (5.26), (5.27) и (5.28) има фрактальна размерност $1 + \alpha$ за $\lambda = 2^{\alpha - 1}$ и $0 \leq \alpha < 1$.

Доказательство. Ще докажем тази лема за функциите (5.26). За останалите функции доказателството е същото.

От дефиницията на $b_i(x)$ за $x = (2p + 1)2^{-k - 1}$ имаме

$$b_i(x + 0) = b_i(x - 0) \text{ за } i \leq k,$$

$$b_{k+1}(x + 0) = -b_{k+1}(x - 0) = 1,$$

$$b_i(x + 0) = -b_i(x - 0) = -1 \text{ за } i > k + 1.$$

Следователно, като означим $2^{\nu(n)} = q$, получаваме

$$|\psi_n(\lambda; x + 0) - \psi_n(\lambda; x - 0)| = \lambda^{n-1} \sqrt{1 - \lambda^2} \left| \lambda^{k+1} \sigma_{n,k+1}(\lambda) - \sum_{i=k+2}^{\infty} \lambda^i \sigma_{n,i}(\lambda) \right|$$

$$= 2\lambda^{k+n-1} \sqrt{1 - \lambda^2} \left| \sigma_{n,k+1}(\lambda) - \sum_{i=1}^{\infty} \lambda^i \sigma_{n,i+k+1}(\lambda) \right|$$

$$= 2\lambda^{k+n-1} \sqrt{1 - \lambda^2} \left| \sigma_{n,k+1}(\lambda) - (1 - \lambda^2q)^{-1} \sum_{i=1}^{2q} \lambda^i \sigma_{n,i+k+1}(\lambda) \right| = \lambda^k A_{n,s},$$

където

$$A_{n,s} = 2\lambda^{n-1} \sqrt{1 - \lambda^2} \left| \sigma_{n,s}(\lambda) - (1 - \lambda^2q)^{-1} \sum_{i=1}^{2q} \lambda^i \sigma_{n,i+s}(\lambda) \right|, \quad s \in \{1, 2, \ldots, 2q\},$$

и $s \equiv k + 1 \pmod{2q}$.

Следователно

$$\sum_{p=0}^{2^k-1} |\psi_n(\lambda; x + 0) - \psi_n(\lambda; x - 0)| = \sum_{p=0}^{2^k-1} \lambda^k A_{n,s} = 2^{\alpha k} A_{n,s}.$$

От леми 5.1, 4.5 и теорема 3.1 следва:

Теорема 5.1. Разширената система на Хаар е фрактализируема и фрактализираната разширена система на Хаар е плънна в НС, т. е. за произволно $\lambda = 2^{\alpha - 1}$, $0 \leq \alpha < 1$, всяка функция $f \in \text{НС}$ има представянето

$$f(x) = b_0(f) + \sum_{n=0}^{\infty} \psi_n(\lambda; f) \psi_n(\lambda; x) + \sum_{n=0}^{\infty} \sum_{k=0}^{2^k-1} \phi_{n,k,p}(\lambda; f) \phi_n(2^k x - p),$$

425
където

\[b_0(f) = \int_0^1 f(x) \, dx, \quad \psi_n(\lambda; f) = \int_0^1 f(x) \psi_n(\lambda; x) \, dx, \]

\[\phi_{n,k,p}(\lambda; f) = \int_0^1 f(2^{-k}(x + p)) \phi_n(\lambda; x) \, dx, \]

и представянето

\[f(x) = \sum_{k=0}^{\infty} f_k(x), \]

където

\[f_0(x) = b_0(f) + \sum_{n=0}^{\infty} \psi_n(\lambda; f) \psi_n(\lambda; x), \]

\[f_k(x) = \sum_{n=0}^{\infty} \phi_{n,k,p}(\lambda; f) \phi_n(2^k x - p) \text{ за } x \in (k; p), \quad p = 0, 1, 2, \ldots, 2^k - 1. \]

5.1. IFS и ФРАКТАЛАЗИЯ

Дефиниция 5.2. Нека \(k \) е естествено число, \(B_k = \{b_0, b_1, b_2, \ldots, b_{2^k-1}\} \) е \(2^k \)-мерен вектор и \(\lambda \in [0,1] \) е дадено число. Итерационното равенство

\[(5.30) \quad f(x) = \lambda f(2^k x - p) + b_p \text{ за } x \in (k; p), \quad p = 0, 1, 2, \ldots, 2^k - 1, \]

e еквивалентно на една IFS с \(2^k \) трансформиращи функции.

Една IFS, еквивалентна на (5.30), ще наричаме проста IFS или SIFS от ранг \(k \). Неподвижната точка на (5.30) означаваме с \(f_{B_k}(\lambda; x) \).

Лесно се доказва, че функцията \(f_{B_k}(\lambda; \cdot) \) е интегрируема по Лебег в интервала \([0,1] \) при всеки избор на вектора \(B_k \) и за всяко число \(\lambda \in [0,1] \).

Лема 5.2. Да означим с \(f_{B_k}(\lambda; \cdot) \) и \(f_{C_k}(\mu; \cdot) \) неподвижните точки на (5.30) съответно за двата вектора \(B_k, C_k \) и двете числа \(\lambda, \mu \). Ако \(\sum_{p=0}^{2^k-1} b_p = \sum_{p=0}^{2^k-1} c_p = 0 \) и векторите \(B_k, C_k \) са ортогонални, т. е. \(\sum_{p=0}^{2^k-1} b_k c_p = 0 \), то функциите \(f_{B_k}(\lambda; \cdot), f_{C_k}(\mu; \cdot) \) са ортогонални, т. е.

\[\int_0^1 f_{B_k}(\lambda; x) f_{C_k}(\mu; x) \, dx = 0. \]
Доказательство. От (5.30) имеем

\[I = \int_{0}^{1} f_{B_k}(\lambda; x) f_{C_k}(l\mu; x) \, dx \]

\[= \lambda \mu \sum_{p=0}^{2^k-1} \int_{(k;p)} f_{B_k}(\lambda; 2^k x - p) f_{C_k}(l\mu; 2^k x - p) \, dx \]

\[+ \lambda \sum_{p=0}^{2^k-1} b_p \int f_{C_k}(l\mu; 2^k x - p) \, dx + \nu \sum_{p=0}^{2^k-1} c_p \int f_{B_k}(\lambda; 2^k x - p) \, dx + \sum_{p=0}^{2^k-1} b_k c_k \]

\[= \lambda \mu 2^{-k} \sum_{p=0}^{2^k-1} \int_{0}^{1} f_{B_k}(\lambda; t) f_{C_k}(l\mu; t) \, dt + \lambda 2^{-k} \sum_{p=0}^{2^k-1} b_p \int_{0}^{1} f_{C_k}(l\mu; t) \, dt \]

\[+ \nu 2^{-k} \sum_{p=0}^{2^k-1} c_p \int f_{B_k}(\lambda; t) \, dt + \sum_{p=0}^{2^k-1} b_k c_k \]

\[= \lambda \mu \int_{0}^{1} f_{B_k}(\lambda; t) f_{C_k}(l\mu; t) \, dt + \lambda 2^{-k} \int_{0}^{1} f_{C_k}(l\mu; t) \, dt \sum_{p=0}^{2^k-1} b_p \]

\[+ \nu 2^{-k} \int_{0}^{1} f_{B_k}(\lambda; t) \, dt \sum_{p=0}^{2^k-1} c_p + \sum_{p=0}^{2^k-1} b_k c_k \]

и еще

\[I_1 = \int_{0}^{1} f_{B_k}(\lambda; x) \, dx = \lambda \sum_{p=0}^{2^k-1} \int f_{B_k}(\lambda; 2^k x - p) \, dx + \sum_{p=0}^{2^k-1} b_k \]

\[= \lambda 2^{-k} \sum_{p=0}^{2^k-1} \int_{0}^{1} f_{B_k}(\lambda; t) \, dt + \sum_{p=0}^{2^k-1} b_k = \lambda \int_{0}^{1} f_{B_k}(\lambda; t) \, dt + \sum_{p=0}^{2^k-1} b_k, \]

или

\[I_1 = \frac{1}{1 - \lambda} \sum_{p=0}^{2^k-1} b_k \]

и

\[I_2 = \int_{0}^{1} f_{C_k}(\mu; x) \, dx = \frac{1}{1 - \mu} \sum_{p=0}^{2^k-1} c_k. \]
Следовательно

\[(1 - \lambda \mu)I = \mu 2^{-k} I_1 \sum_{p=0}^{2^k-1} c_p + \lambda 2^{-k} \sum_{p=0}^{2^k-1} b_k c_k = 0 \]

и окончательно \(I = 0 \), т.е. \(1 - \lambda \mu \neq 0 \).

Лема 5.3. Всяка функция \(\psi_k(\lambda; x) \) е неподвижна точка на SIFS от ранг \(2^\nu(k)+1 \) и всяка функция \(\phi_k(\lambda; x) \) е неподвижна точка на SIFS от ранг \(2^\nu(k)+2 \).

Доказательство. От (5.26) имаме

\[
\psi_k(\lambda; x) = \lambda^{k-1} \sqrt{1 - \lambda^2} \sum_{i=1}^{\infty} \lambda^i \sigma_{k,i}(\lambda)b_i(x)
\]

\[= \lambda^{k-1} \sqrt{1 - \lambda^2} \sum_{i=1}^{2^\nu(k)+1} \lambda^i \sigma_{k,i}(\lambda)b_i(x) \]

\[+ \lambda^{k-1} \sqrt{1 - \lambda^2} \lambda^{2^\nu(k)+1} \sum_{i=1}^{\infty} \lambda^i \sigma_{k,i}(\lambda)b_{i+2^\nu(k)+1}(x). \]

За \(x \in (2^\nu(k)+1; p) \) и \(i = 1, 2, 3, \ldots, 2^\nu(k)+1 \) функциите \(b_i(x) = b_{p,i} \) са константи и освен това

\[
b_{i+2^\nu(k)+1}(x) = b_i(2^\nu(k)+1 x - p), \quad i = 1, 2, 3, \ldots \]

От (5.31) и (5.32) получаваме

\[\psi_k(\lambda; x) = \lambda^{2^\nu(k)+1} \psi_k(\lambda; 2^\nu(k)+1 x - p) + b_p \quad \text{за} \quad x \in (2^\nu(k)+1; p), \]

където

\[b_p = \lambda^{k-1} \sqrt{1 - \lambda^2} \sum_{i=1}^{2^\nu(k)+1} \lambda^i \sigma_{k,i}(\lambda)b_{p,i}. \]

По същия начин се доказва, че

\[\phi_k(\lambda; x) = \lambda^{2^\nu(k)+1} \phi_k(\lambda; 2^\nu(k)+1 x - p) + c_p \quad \text{за} \quad x \in (2^\nu(k)+2; p), \]

където

\[c_p = \lambda^{k-1} \sqrt{1 - \lambda^2} \sum_{i=1}^{2^\nu(k)+1} \lambda^i \sigma_{k,i}(\lambda)c_{p,i}. \]

6. ФРАКТАЛЕН СПЕКТЪР

Теорема 5.1 ни осигурява представяне на една фрактала функция чрез фрактални функции, които имат дадена фрактала размерност. Естествено е да използваме инструмент за апроксимиране с фрактални характеристики, близки на обекта, който се апроксимира. Един пример в
подкрепа на тази философия е неотдавнашната публикация на P. Maragos и Fang-guo Sun [6].

За да използваме фракталната размерност на функциите, които приближаваме, ще въведем понятието **фрактален спектър** на фрактална функция. Основание за това ни дава теорема 5.1.

Фракталната размерност на една функция е фракталната размерност на нейната допълнена графика. Очевидно е, че една малка част от допълнената графика може да доминира и да определя фракталната размерност на дадена функция. За да локализираме фракталната размерност, въвеждаме понятието фрактален спектър.

Дефиниция 6.1. Следвайки дефиницията 2.7, за всяка функция $f \in \mathcal{B}C$ и за всяка двойка неотрицателни естествени числа $k, p < 2^k$ дефинираме

$$V_s((k;p);f) = \sum_{l=1}^{s} \sum_{q=1}^{2^l-1} \left| f(p2^{-k} + q2^{-k-l} + 0) - f(p2^{-k} + q2^{-k-l} - 0) \right|$$

$$+ v((k+l;p2^l + q), f)$$

и наричаме числото

$$\kappa((k;p);f) = \lim_{s \to \infty} s^{-1} \log_2 2^s (V_s((k;p);f) + 1)$$

фрактална размерност на функцията f в двоичния интервал $(k;p)$.

Нека $x \in (0;0)$ и нека за всяко естествено число k точката x да се съдържа в двоичния интервал $(k;p_k)$. Тогава функцията

$$\kappa(f;x) = \lim_{k \to \infty} \kappa((k;p_k);f) \in \mathcal{B}$$

наричаме фрактален спектър на функцията f.

Фрактолните спектири на базисните фрактални функции $\psi(\lambda;\cdot)$ и $\phi(\lambda;\cdot)$ са константи,

$$\kappa(\psi(\lambda;\cdot);x) = \kappa(\phi(\lambda;\cdot);x) = 1 + \alpha,$$

където $\lambda = 2^{a-1}$ и $0 \leq \alpha < 1$.

ЛИТЕРАТУРА

Поступила 29.03.1994