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We investigate differential inclusions and equations of a retarded type with a small
real parameter ¢ > O in part of the derivatives. Analogues of the well-known in the
theory of singularly perturbed ordinary differential equations theorem of Thikhonov
are obtained. We prove lower semicontinuity of the solution set for inclusions and
continuity of the solution for equations in the most appropriate topology when £ — 0.
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1. INTRODUCTION

Suppose that the functional-differential inclusion

(H9) € Fesv, 2. m=¢ w=v, teI=p1, O

is given, where z € R", y € R™ and ¢ > 0 is a real parameter.
In the sequel, C(I, X) and L!(I, X) are the usual spaces of respectively con-
tinuous and integrable functions on I with values in X. For any z € C([-r, 1], RF)
and t € I we let 2, € C([~7,0],R*) be defined by z(s) = z(t + 5), -7 < s < 0.

* Lecture presented at the Session, dedicated to the centenary of the birth of Nikola Obreshkoff.
This work is partially supported by the National Foundation for Scientific Research at the
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Here 7 € (0,1) and F is a map from I x R**™ x C([-r,0], R*) x LY([-7,0,R™)
into R” x R™, while ¢ € C([-,0],R"), ¥ € C([-,0], R™).

There is a fundamental theorem refered as Tikhonov’s theorem [10] dealing
with the continuity of the (unique) solution of (1) when F is single valued and does
not contain (z,y;). Namely, continuous dependence of the solution with respect
to C(I,R™) x C([4,1],R™) topology (0 < § < 1) when ¢ — 0 is stated. Our
considerations differ from the situation in [10] also in the fact that we assume only
measurable on £ right hand side. Then it is natural to define the solution set Z(¢)
of (1) when € > 0 as the collection of all absolutely continuous functions (z,y)
satisfying (1) for a.e. t € I. When ¢ = 0, inclusion (1) becomes

(‘i’g)) € F(t,z(t),y(t),ze,9), To=0, yo=19, tE€ I=10,1). (2)

Here solutions are all pairs (z,y) of absolutely continuous functions z(-) and L-
functions y(-) such that (2) holds for a.e. ¢ € I. As in the ordinary differential case,
y(-) can differ from the initial condition %(-) at ¢t = 0.

It is too restrictive to assume the y-part of the.solutions of the above “degen-
erate” inclusion to be continuous in view of the following simple example:

ey(t)=-2qy(t)+ay(t—%>, ys)=1, se [-%,o), a>0.

For € = 0 one has 0 = —2y(t) + y(t — 1/2), i.e. y(t) = (1/2)y(t — 1/2). Thus
y°(t) = 1/2 for t € [0,1/2) and y°(t) = 1/4 for t € [1/2,1). For this reason the
C-topology used in [10] is not suitable and must be replaced with another one.
In Examples 2.1 and 2.2 we show that when the delay is not fixed it happens the
classical Tikhonov’s theorem not to be valid. So it must be reformulated in the
functional-differential case when it holds at all.

Here we examine first the lower semicontinuity properties of the solution map
Z(e) as € — 0% and then derive on this base the continuity dependence of the
solution for equations. For inclusions without the functional arguments (z;, y:) the
lower semicontinuity is studied initially in [11]. The results then are extended un-
der weaker type of assumptions in [3] for functional-differential inclusions with fixed
time delay. The main assumption in the last paper is a version of the one-side Lip-
schitz condition used first for multivalued maps in [2]. Since singular perturbations
are not presented in [2], this key condition is modified in [3] and here in a suitable
way. We do not consider upper semicontinuous properties since, as shown in (3],
the solution set is not upper semicontinuous in used here C(I,R") x L'(I,R™)
topology, even for linear control system. Moreover, in the case considered in [3],
redefining the solution set of (2) to obtain upper semicontinuity one will lose lower
semicontinuity. Some upper semicontinuous results under restrictive assumptions
are obtained in [3-5].

At the end of the section we shall give some notations and definitions. In-
troduce the subspaces Q; = {a € C([-7,0],R¥) : |a(0)] = max—_r<s<o|a(s)]},
ky = n, ky = m, which are used in Razumikhin type conditions [7]. The norms
in C(I,X) and L!(I, X) are denoted with || - ||c and || - ||z:, respectively. For the
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sake of simplicity we will denote by |la:|lc and ||ay||r:, respectively, the norms
0
max_r<s<o |@(t+s)| and [ |a(t+s)|ds. For aset A C R* and a vector I € R¥ we
-1 ’

let o(l, A) = sup,¢ 4{l, a) be the support function, where (-, ") is the scalar product.

If A C R*™ we denote by A the projection. of A on R”, by A the projection of A
on R™, and by ¢lA (clcoA) the closed (the closed convex) hull of A. The set-valued
map G : I x Z — Z is called: -a) lower semicontinuous (LSC) when for every (t, z)
and every u € G(t,z) there exists u; € G(t;, z;) such that u; — u when t; — {,
z; — z; b) upper semicontinuous (USC) if for every (¢,z) and every v > 0 there
exists 6 > 0 such that G(s,w) C G(t,2) + vU (here U is the unit ball in Z) when
[t — s| + |z — w| < 6; ¢) continuous when G is LSC and USC. G is called almost
continuous (resp. LSC, USC) when for every § > 0 there is a compact set I5 C I
with meas(I \ Is) < é such that G is continuous (resp. LSC, USC) on I5 x Z. For
more detailed considerations of definitions and concepts used bellow we refer to [1]

and [7].

2. LOWER SEMICONTINUITY IN C x L'-TOPOLOGY

We take an example which tells us that for continuity with respect to C[s,1]
topology on y(-) there have to be restrictive assumptions.

Example 2.1. Consider the following equation:

ey(t) = —2y(t) + maxy(t +s), y(0) =1,

where I; = [max{-1/2,~t},0] for t € [0,1]. For € > 0 one can find

1 | 1 1
€ - - < -
y(t)zz(lfexp( e)) 0<t< s,

1 2 1 1
¢ - el ~<t<1.
y(t)24<1+exp( s(t 2))), 2_t_l

For ¢ = 0 we get the “degenerate” equation

2y(t) = maxy(t +s).

Obviously, 7°(t) = 1/2,t € (0,1/2]; 3°(t) = 1/4,t € (1/2,1] with 3°(0) = 1 is a
solution of the above equation. Also it is not difficult to see that y*(t) — #°(t),
¢ — 0 for t € I and that this convergence is uniformon [6,1/2)U[1/2+6, 1]. On the
other hand, y°(t) =0 ont € I'is  other solution of the “degenerate” equation.
The last implies that there is no continuous in C[§,1] but only USC dependence in
C([6,1/2)U[1/2 + §, 1]) topology.

Example 2.2. Let us combine the above equation with the control system
from Example 2.5 of {3], i.e. consider

¢ =y — 2|, =(0)=0,
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eyy = =y +u(t), %(0)=0,
€Yz = —2y2 + u(t), ¥2(0) =0,
€Yz = —2y3(t) + l;neal.xya(t + S), y3(0) =1,

where u(t) € [—1,1] is measurable. It is shown in [3] that the solution set of
the subsystem consisting of the first three equations is not USC in C([0, 1}, R) x
L*([0,1],R?) topology at € = 0. Thus the solution set of the above inclusion is
neither LSC nor USC.

These examples tell us that when the delay depends on time ¢ it is hard to
expect that Tikhonov’s theorem is true. But still there are situations in which we
could formulate a very close result. Consider first (1) under the following assump-
tions:

Al. The map F is almost continuous and bounded on the bounded sets.
Moreover, there exist constants a, b, u > 0 such that for every (z,y) € R**™

o(z, F(t,z,y,a,8)) <a(l+ e + |y + |8lIZ), o€, B€C([-7,0,R™),
a(y, F(t, z,y,a,0)) L b(1+ |z + [|al|E) - plyl®, o« € C([-7,0],R"), B €Qy,
for a.e. £ € I. Here o(0) = z, B(0) = ».
A2. There exist positive constants A, B and u such that if we choose arbitrary
(zi, %, @i, Bi) € R**™ x C([-,0],R™) x L!([~7,0], R™), i = 1,2, then for every
(fl)gl) € F(t’zl)ylyal)ﬁl) there is (j2v92) € F(t)32|y2,a23ﬂ2) such that

(z1 — 22, f — f2) < A(lz1 — 22> + |1 — 12 + 1|81 = Ball}s); for @y —az € O,
(31 = y2,91 = 92) < B(|z1 = z2? + [len — @2l|E + (|81 = B2llZ:) — plyn — w2f?
for a.e. t € I. Here a;(0) = z; and for §; continuous B;(0) = y;, 1 = 1,2,
The next result is proved in [3].

Lemma 2.3. Under Al there ezists a constant M > 0 such that |z°(t)| +
v (t))| < M for everyt €1, (z°,y°) € Z(€) and € > 0, and a.e. on I ife = 0.

By Al it follows that there exists L > 0 such that |F(¢,z,y,a,8)| < L for
every t € I, |z + |yl < M + 1 and ||aflc + ||Bllz= < M + 1.

Theorem 2.4. Under assumptions Al and A2 the solution set Z(e) is LSC
at € = 0% with respect to C([0,1],R") x L'([0, 1], R™) topology.

Proof. Let (z°,4°) be a solution of (2) and § > 0 be given. Then there is
a Lipschitz on I function z with a Lipschitz constant Kj such that z(s) = ¥(s),
s € [-7,0], and

llz = 4%l <6, lelles < 6.

Here p(t) = Dy (F(t,z°% 4%, 20,40), F(t,2° 2,20, 2;)) and Dg(:,-) is the Hausdorff
distance between sets. Therefore :

d((2°(t),€2(t)), F(t,2°(t), 2(t), 27, 1)) < €K + p(2). (3)
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Introduce the following conditions:

(@) = u,2°t) - f)

< 2A(|2°(t) = ul+|2(t) — v]* + ||z — BlI7:) + €K + p(t) + 6, (4)
(z(t) = v,e2(t) — g)

< 2B(|z°(t) — ulP+|l2? — allz + ||z — BllF:) — plz(t) — v]* + €Ks + p(t) + 6. (5)

Consider the map I's(t, u, v, &, 3), which we define only for continuous 3, with
values as follows:

a) c{(f,9) € F(t,u,v,e,B) : g satisfies (5)} for a — z0 ¢ Q;,u = «(0) and

v = 3(0); |

b) cl{(f,g) € F(t,u,v,a,8) : ({,9) satisfies (4) and (5)} for a—2? € 21, u = a(0)

and v = 3(0); A

c) Ts(t,u,v,a,8) = F(t,u,v,a, ) when u # a(0) or v # 5(0).

Note that F' is almost continuous on I x R**™ x C(I,R**™). We claim that
I's(-) is almost LSC with nonempty and compact values. To prove that we first
note that I's(-) is compact valued by its definition, Lemma 2.3 and Al. We will
show the nonemptiness of I's(-) only in case b).

By (3) there is (f°(t), ¢°(t)) € F(t, z°(t), 2(t),2?, 2;) such that for a.e. t € I

(2°(2), €2(t)) = (F°(2), ° ()| < €K + p(2).
So, there exists (f,g) € F(t,u,v, e, B) such that for z; = z°(t), z2 = u, y1 = z(t),
y2 =v, fi = f°, fa = f, g1 = ¢° and g, = g the inequalities of A2 hold, i.e.
(2°(t) = u, fO = f) < A(I2°(t) — ul® + [2(t) = v[* + [[ze - BlI1.),
(2(t) = v,9° — g) < B(I2°(t) — ul* + ||z} — allg + ||z — BlIL+) — ml2(t) — vf*.
Therefore the inequalities (4) and (5) are fulfilled. - '
The fact that Ts(-) is almost LSC has a standard proof (see [1]), which is

omitted.
Now, from [6] we know that the inclusion

ey(t)

has a solution (z¢, 3°) in this case as well. On the other hand, |z¢(t)—z°(¢)|? < 2A(?)
and |yf(t) — z(2)|? < 2r(t), where:
h(t) = 2A(h(t) + r(t) + lIrsllLs) + p(t) + 6+ €K5,  h(0) =0,
er(t) = 2Bh(t) — pr(t) + 2B(||hdllc + lIredlz) + p(t) + 6+ eK5, r(0) = ro.
We do not indicate the dependence on € of the solution of the system for the sake
of simplicity of notations. Let k be a sufficiently large natural number. We divide

[0, 1) on k parts with equal lengths. Obviously, by the first equation above we have
that h(-) increases, i.e one can suppose without loss of generality that h(t) = ||h:||c.

( i ) €Ts(t, (1), y(), 2, %), zo=dpo=¥%, tel=[01], (6)
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Then solving the second equation on [0,1/k] and integrating by parts one obtains

r(0) < exp(=pt/e)ro + (1/2) [ exp(=p(t = 5)/e)(4Bh(s) + ()

+ 23”7‘,”L1 + 6+ 6']\"5) ds

< exp(—pt/e)ro + (1/¢) / exp(—u(t — 5)/e)(p(s) + 2B||r||11) ds

+ (1/p)(4Bh(t) + 6 + eKs).

Denoting further with C' an arbitrary positive constant dependent only on A, B
and g (in the following inequality for example C = 24 + 8AB/u), we derive that

t

h0) < [ exp(C(t=9)(o(s) +2Allrllur +(1+24/ ) E+eKs) +2A exp(—ps/e)ro) ds
0

+2/e) [ [ exp(C(t = 9) exp(=n(s = N/ (PN +liralls) drds.
0 0

Thus changing the order of integration we get h(t) < C(2¢eKs + 6+ 1/k) for t €
[0,1/k]. Consequently,

t
/l'r(s)[ds <C (261{6 + 06+ %) fort e [0, %} .
0
By induction one can show that

, 11 1
h(t)_<_C(2eI\5+6+E+—E§+~-+F),

. . 1 1 1 ]
IrllLo,y < € (26K6+5+;+z§+--~+7¢7), te [0,—].

Finally, one obtains

1
h(t) < C (261(5_ +6+ E’_—l) v rOller £C (2€K6 +5+ k-{ 1) ’

Since k is arbitrarily large, we get that there exists a solution (z*,y*) of (1) such
that

ll2* = 2°llc < C(eKs +8), |ly* = 9°llzs < C(eKs +6).

Since 6 is arbitrary and K; depends on 4 but not on ¢, the LSC in the considered
topology is established. m

Remark. A preliminary version of this theorem is reported in [9].
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Consider the following special case of (1):

(62;’((tt))) € F(t, (1), y(t), z(t — (1)), y(t — 7(1))), o
Jt(t) = ¢(t): y(t) = ')b(t)v 1S [_A’O]’

where 7(t) € [0, A] is 2 monotone non-increasing function on I. Suppose that:
B1. The map F is Caratheodory’s and bounded on the bounded sets. More-
over, there exist constants a, b, u > 0 such that for every t € I, (z(t), y(t)) € R**™

a(z(t), F(t,z(t), y(1), 2(t = 7(1)), y(t — 7(1)))) < a(1 + |z(@)* + |y(2)?
] +lz(t = () + |yt — 7(1))?),
o(y(t), F(t, z(t), y(t), z(t — 7(t)), y(t — (1)) < b(1 + [z(t)* + |=(t — r(1))|*
+ly(t = r(0))I*) ~ uly(@)*.
B2 (one-side Lipschitz condition). There exist positive constants A, B and
p such that for every (fi1,91) € F(t,z1(t), y1(2), z1(t — 7(t)), y1(t — 7(t))) there is
(f2,92) € F(t,za(t), y2(t), z2(t — 7(t)), y2(t — 7(t))) such that
(zy — 22, f1 — f2) < A(|zy — a2+ |y — pol* + oy — 2] + |51 — B21%),
(1 — y2,91 = 92) < B(le1 — 23> + |1 = @2’ + |81 — B2[*) ~ plyr — w2/
for a.e. t € I. Here a;(t) = zi(t — 7(t)), Bi(t) = vi(t — (t)), i = 1,2.
B3. If infie; 7(t) = 0, then pu > B.
Theorem 2.5. Under the assumptions B1-B3, the solution set Z(.) is lower
. semicontinuous in C(I, R*) x L*(I, R™) topology.

Proof. Define the sequence t;4; = sup{t € I|t;i_; <t — 7(t) < t;}, where
to = =\, t; = 0. There are two cases. If {; = 1 for some k, one can easily complete
the proof exploiting the same fashion as in a fixed time lag, see Theorem 3.2 from
[3]. In the opposite case there exists obviously » < 1 with v = lim ¢;. Then B3

holds. Moreover, 7(t) = 0 for ¢ > v, i.e. the inclusion (7) becomes an ordinary
differential one. Let § > 0 be given and (z°,3°) be the solution of (7) for ¢ = 0.
Then for every t < v again on the base of [3] one can find €(¢,8) such that there
exists (z¢,y°) € Z(g) whenever 0 < ¢ < €(t, §) with

2® — 2 llcpo,g + I1° — ¥l < 8/3.

Note that the norms above are evaluated on [0,¢]. Moreover, Z(¢) is LSC on {v, 1]
with respect to C([v, 1], R*) x L*([, 1],R™), see [11]. So without loss of generality
one can suppose that

l12° = 2%l + 18° = ¥ llrw < 6/3.

Using the boundedness of the solution set and thus of the right hand side of (7),
we can manage also on the interval [t,v]. Namely, if v — ¢ is small enough, then

12° = ¢ lcpe + 1v° = ¥ llLagew) < 8/3.
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Consequently, there exists (z¢,y*) € Z(¢) such that
ll2° = zfllc +Ilv" ~ *llz: < 6

for sufficiently small €. m

3. TIKHONOV TYPE THEOREM FOR FUNCTIONAL-DIFFERENTIAL
EQUATIONS

Consider now the following singularly perturbed system of functional-differen-
tial equations:

:i"(t) = f(t) z(t)ay(t),zh yl)) To = ¢,

6.y.(t) . g(tvz(t))y(t)):cl)yt)s Yo = ¢) (8)
derived from (1) when F is single valued. Here f(:) and g(-) are Caratheodory’s
functions, satisfying A1 and A2.

First we shall show that the reduced system
.’B(t) = f(ttz(t)yy(t))zh yt)a Zo =‘¢)
0= g(taz(t))y(t)xzt:yt): Yo = ¥, (9)
admits C(I,R") x L*(I,R") solution, i.e. the next lemma is true.
Lemma 3.1. Under the assumptions Al and A2 the degenerate system (9)
has a solution.
Proof. First we shall consider the case when f and g are jointly continuous,
1.e. continuous in all arguments.
By Lemma 2.3 for 0 < § < u there is a constant Mj such that for all t € J
|2(t)] + ly(t)| < Ms, when |
|2(¢) — f(t, x(2), y(t), ze, y)l <6, |g(t, z(t), y(t), 2, ye)| < 6.

Choose a sequence §; — 0% and construct the corresponding sequence of approx-
imate solutions (z*,y*) as follows. By the well-known theorem of Minty-Browder
there exists Gy € R™ such that

0 = g(t, 9(0), Bo, 6, ¥). | (10)
Let ' ‘
z'(t) = 6(0) + t£(0,6(0), o, 6, %),  ¥'(t) = P,
for t € [0,1]. Here v, is the maximal » for which (10) and
|2 (t) - f(t,2° (1), ' (), 2, ) < &, (2, 2°(2), y"(t),zi,‘y!')l <&

hold on [0,v]. Using continuity of f,g and Zorn’s lemma, it is not difficult to
show the existence of such (z*,y') on the whole I. By the Arzela-Ascoli’s theorem
{z*(-)}2, is C(I,R™) precompact and passing to subsequences if needed, there
exists a cluster point z°(-) € C(I, R™). We shall show that {y*(-)}2, is a Cauchy

76



sequence in L!(I,R™). I?enote rt) = rij(t) = |¥' () —¥ (2)], 6ij = ||lz* (") =2/ ()lc.
Then, of course, ||z} — z}||L1 < 6; and by A2 we obtain
pri(t) < B(6 +Irell30) + C(5: + 65).

For the sake of simplicity of notations here and further we denote with C an arbi-
trary constant and with é;; an expression tending to zero with i, j — co. Hence

r(t) < C(6ij +||reller), t €1 and r(t) =0, t € [-r,0].
4
Let r(t) = M on [0,7]. Thus ||r¢||z2 < [ M ds = Mt for t € [0, 7]. Therefore
0
r(t) < Cé;; + CMt, te|0,7].

t

Since ||ry||z: = [ r(t — s)ds = [ r(s)ds, we have
0

0
42
llrellzr < Cé;jt + CMQ" telo,r].
Then it follows
Ct
r(t) < Cé; (1 + —1-'-) +CM2|, te[o,r]

Proceeding in the same way, we find that

(Ct)? . (cHyn
r(t) < Cé;; (1+—IT+ o +--- +Mnanc}° oy

Thus lim r(t) = lxm rij(t) = 0 and {y'(")}{2, is a Cauchy sequence on [0, 7].

5,j =00

Therefore lim y (t) = y(t),t € [0, 7] exists. It is easy to show that (z(t),y()) is a
1— 00

solution of (9) on [0, 7]. Analogously (keeping in mind that r(t) = 0, t € [0, 7]),the
solution can be extended on [7,27] and therefore by induction on [0, 1].

Now let f(-) and g(-) be Caratheodory’s functions. By Scorza-Dragoni’s theo-
rem f(-) and g(-) are almost continuous, so we can use the same fashion. Namely,
for 6; > 0 consider A; C I with measA; < 6;, Aj41 C A;. Also let us have on
I'\ A; that f(-) and g(-) are continuous and for the approximate solutions (z*, y*)
the following relations are true: :

|2 (1) = £, ' (), ¥’ (1), 20, 90)| < &, |9(t, 2 (2), ¥ (1), 2k, wh)| < &
On A; the above distances are less or equal to L.

Denote again r(t) = |y* — 3/ |. One can show that r(t) < 6;;(t) D exp(t), where
8ij(t) < M,t € Ai, and &;;(t) < &;j,t € I\ Ai, where lim é; = 0. Therefore

i,j—00

(='(-), ¥*(-)) = (z(-),y(:)), which is a solution of (9) on [0, 1]. m
Now one can easily prove the next variant of the Tikhonov’s theorem.

(Ct), te|o,1].

- Vg

Theorem 3.2. Under conditions A1, A2 for single valued F the solution sei
Z(€) of (8) is continuous in C([0,1],R™) x L!([0, 1], R™) topology at € = 0.
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Proof. The solution set Z(O) of (9) is non-empty thanks to Lemma 3.1. By A2
it follows (see [8]) that Z(¢) is single valued. Then by the LSC of Z(¢) at ¢ = 0%
(Theorem 2.4) the proof is completed. m
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