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This paper presents a method for direct building of minimal acyclic finite states au-
tomaton which recognizes a given finite list of words in lexicographical order. The size
of the temporary automata which are necessary for the construction is less than the
size of the resulting minimal automata plus the length of one of the longest words in
the list. This property is the main advantage of our method.
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1. INTODUCTION

The standard methods for building minimal finite states (FS) automaton are
building temporary automata which generally are huge compared to the resulting
minimal automaton. This grounds the interest in the development of more direct
methods. Building an acyclic minimal FS automaton that recognizes a given list
sorted in lexicografical order is of special interest for practical applications. A
linear algorithm for that case is presented in [1, 2]. The Revuz’ method in the first
stage builds a tree-like deterministic FS automaton. Then at the second stage this
automaton is minimized efficiently. The drawback of this method is that the tree-
like automaton is huge in respect of the resulting minimal automata. To make this
method more efficient, Roche {3] proposes to divide the list into parts for which to
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build the corresponding minimal automata. After that those automata are united.
At the end it is necessary to minimize the result.

It is claimed [1] that a method for direct building of minimal FS automaton
for a given list does not exist. We will show that in general this statement is not
valid. We shall present our new method for direct building of minimal automaton.

2. FORMAL BACKGROUND AND NOTATIONS

Definition 1. A deterministic FS automaton is a tuple A = (X, 5,s, F, ),
where:

¥ is a finite alphabet;

S is a finite set of states;

s € S is the starting state;

F C S is the set of final states;

p:S x ¥ — Sis a partial function called the transition function.

The function p is extended naturally over S x ¥* by induction:
p*(r,e) =,
y ) p(u*(r,0),a), in case p*(r,0) and p(p*(r,0),a) are defined,
oa) =
AT not defined, otherwise,

where r€ S, c € X%, a € L.

We shall work with a definition of FS automata with a partial transition
function. The only difference from the definition with a total transition func-
tion is the absence of the necessity to introduce a dead state (a state r, for which
Va € ¥ (u(r,a) = r)). Later we use !u(r,o) to denote that u(r,o) is defined and
when writing u*(r,0) = «, we mean !u(r,0) & pu(r,0) = z.

Definition 2. Let A = (X, S, s, F, u) be a deterministic FS automaton. Then
the set L(A) C X*, defined as |

L(A) ={oc X" |u"(s,0) & p*(s,0) € F'},

is called the language of the automaton A or the language recognized by A.

Two automata A and A’ are called equivalent when L(A) = L(A’). An au-
tomaton is called acyclic when Vr € S Vo € &t (u*(r,0) % r). The language of an
acyclic FS automaton is finite.

Definition 3. Let A = (X, S, s, F, u) be a deterministic FS automaton:

1. The state r € S is called reachable from ¢t € S when 3o € £* (p*(t,0) = r).

2. We define the subautomaton starting in s’ € S as Al = (X,5,s, FN Y,
plsixs), where S” = {r € §|r is reachable from s'}.

3. Two states 51,52 € S are called equivalent when L(Als,) = L(Als,)-
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Definition 4. The deterministic FS automaton A = (T, S, s, F, u) with lan-
guage L(A) is called minimal (with language L(.A)) when for every other determin-
istic FS automaton A’ = (X,5', ', F', ') with language L(A’) = L(A), it holds
that |S| < |5’

From the classical FS theory the next theorem is well-known.

Theorem.5. A deterministic FS automaton with non-empty language s min-
imal if and only if every state is reachable from the starting state, from every state
a final stale 1s reachable and there are no different egquivalent states. There exists
an unique (up to isomorphism) minimal automaton for a given language.

3. METHOD DESCRIPTION

Further we assume that a finite alphabet ¥ is given and there is a linear order
in X. This order induces a lexicographical order in £*.

Definition 6. Let A = (X, S, s, F, p) be an acyclic deterministic FS automaton
with language L(A). Then the automaton A is called minimal ezcept for the word
w € X% when the following conditions hold:

1. Every state is reachable from the starting state and from every state a final
state 1s reachable.

2. w is a prefix of the last word in the lexicographical order of L(A).

In that case we can introduce the notations

w=wiwf . . wi, wherew;‘éZfori:l,?,.t.,k, (1)
t =5 11 = p(ty,wi); 3 = p(t wi); . = p(tl, wp), (2)
T ={t§,tf,... 1} (3)

3. In the set S\ T there are no different equivalent states.

4. ¥reSVie {0,1,...,k}Va € T (u(r,a) X t; & (i > 0&r = ti_1&a = wf)).

Further, when working with minimal except for a given word automaton, we
use the notations (1)—(3). In case the notation is not ambiguous, we write ¢;, w;
instead of ¢4, w/*. Clearly, if an automaton is minimal except for two different
words, one 1s a prefix of the other.

Proposition 7. Let the automaton A = (X, 5,5, F, p) be minimal ezcept for
w. Then:
1. Vr e S\ T Va €  ('u(r,a) — u(r,a) € S\T);

2. p(s,0) =t; - 0 = wiwr. .. w;.

The proof of this proposition is derived directly from Definition 6.

35



a b ’ b a b ]
t0 F————» tl +t2————)t3——-——>t4L——->E

Fig. 1. The FS automaton minimal except for abbab

Example 1. On Fig. 1 an acyclic FS automaton over the alphabet {a,b} is
given. The language of the automaton is {aa, aaa, aaba, aabbb, abaa, ababb, abbab}.
This automaton is minimal except for abbab.

Proposition 8. An automaton which is minimal except for the empty word €
1s minimal.

Proof. Every state is reachable from the starting state and from every state a
final state is reachable. Hence, to prove that the automaton is minimal, we have to
show that there are no equivalent states. From the definition we know that there
are no equivalent states in S\ {s}.

Let assume that 7 € S and s are equivalent and r # s. Let w be one of the
longest words recognized by the automaton. There exists longest word(s), because
the language is finite. The states r and s are equivalent, hence w € L(Al;). The
state r is reachable from s. Hence there exists o € £* and p*(s,0) = r. Then the
word ow € L(A) and from ¢ # ¢ we have that |ow| > |w|. This contradicts with
the fact that w is the longest word in the language. 0O

Lemma 9. Let the automaton A = (X, S, s, F,p) be minimal except for w =
WiWs ... Wk, w # €. Let there be no state equivalent to ty in the set S\T. Then A
is also minimal ezxcept for the word w' = wywy ... wr_;.

Proof. We have to check the conditions of Definition 6. The conditions 1 and 2
are obviously satisfied. Condition 3 follows from the fact that in S\ {to,t1,..., %}
there are no states equivalent to ;. Condition 4 follows also directly from condition
4 of the definition for minimality except for w. [J N

Lemma 10. Let the automaton A = (£,S,s, F,u) be minimal ezcept for
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w=wiwy... Wk, w F €. Let the state p € S\ T be equivalent o the state .. Then
the automaton A’ = (£,5",s, F', ') defined as follows:

S'= S\ {tx},
F'= F\ {tx},
p(r, a), in case v # ty-1 Va# wy and p(r,a) is definied,
y'(r,a) =< p, in case v = tp_1, @ = Wi,

not defined, otherwise,

15 equivalent to the automaton A and is minimal ezcepl for the word W' =
mwy ... Wg_1.

Proof. The automaton A is equivalent to A’, because the new automaton
is derived from the old one by removing the state tx, and the only transition to
tr (refer to Proposition 7) is exchanged with a transition to an equivalent state.
Conditions 1-3 from the definition for minimality except for w’ are trivially satisfied.
Condition 4 is obviously satisfied for tg,%,,...,tx_2, and holds also for ¢;_,, because

Wte-1,we) ZpeS\T. O

Theorem 11. Let the automaton A = (%,S,s, F,u) be minimal except for
W' =wiwy ... wm. Let Y € L(A) be the last word in the lexicographical order of the
language of the automaton. Letw be a word which is greater in lexicographical order
than . Let w’ be the longest common prefiz of ¥ and w. In that case we can denote
W= WW2 .. WnWmatl - Wk, K > m. Then the automaton A’ = (£,5',s, F', ')
defined as follows:

tmt1stme2,- .., Lk are new states such that SN {tmy1,tmys, ... 4} =0,

S'=SU{tmsr,tme2, .- tr},

F'=FU{t},
tm+t1, in case r =t;,, @ = Wpy,
‘(r,a) = u(r,a), in case v € S, lu(r,a) and r £t Va # wpq,
pAT @)= tig1, mceaser =t;, m+1<i<k~1, a=w,

1s not defined, otherwise,

1s minimal except for w and recognizes the language L(A) U {w}.

Proof. First we shall show that L(A’) = L(A) U {w}. We have to show that
the automaton A’ includes A. Clearly, S’ D S and F’ O F. We have to check that
¢! D p. Considering the definition of g, it is clear that the only problem could be
the case p'(tm, Wm41). But p(tm,wm41) is not defined, because otherwise either
w’ could not be the Jongest common prefix of 1 and w or w could not be greater
in lexicographical order than 1 —— the last word in the lexicographical order of the
language of the automaton.
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Hence we have that L(A’) D L(A). New words could be recognized only
by passing the additional new states. From the definition of u’ we have that
they are reachable only from t,,. The only new word in the language L(A'|s, ) is
Wmt1Wm42 - - - We. From Proposition 7 we have that ¢, is reachable from s only by
the word w’. Hence the only new word in L(A’) is the word w'Wm1Wm42 .. Wk =

w.
We have to check that A’ is minimal except for w. Let us consider the conditions
of Definition 6. Conditions 1-3 are obviously satisfied. Condition 4 is satisfied for

to,t1,...,tm—1 from the definition of minimality except for w’ of the automaton A,
for the states tm,tm41,- - -,tk the condition clearly holds because of the definition
of p'. 0O

Method for direct building of minimal FS automaton for a given
list. Let a non-empty finite list of words L in lexicographical order be given. Let
w(®) denote the i-th word of the list. We start with the minimal automaton which
recognizes only the first word of the list. This automaton can be built trivially and
it is also minimal except for w(}). Using it as basis, we carry out an induction on
the words of the list. Let us assume that the automaton A™) = (X, S, s, F, p) with
language L(™ = {w®|i = 1,2,...,n} has been built and that A is minimal
except for w(®). We have to build the automaton A1) with language L(n+1) =
{w®|i=1,2,...,n+ 1} which is minimal except for w1,

Let w' be the longest common prefix of the words w(™ and WY, Using
several times Lemma 9 and Lemma 10 (corresponding to the actual case), we build
the automaton A’ = (X,5’,s, F', u') which is equivalent to A and is minimal
except for w’. Now we can use Theorem 11 and build the automaton A1) with
language L("*tD) = LM U {w**V} = {0 |i = 1,2,...,n + 1} which is minimal
except for w(®+1). .

In this way by induction we build the minimal except for the last word of the
list automaton with language the list L. At the end, using again Lemma 9 and
Lemma 10, we build the automaton equivalent to the former one which is minimal
except for the empty word. From Proposition 8 we have that it is the minimal au-
~ tomaton for the list L. The check of state equivalence needed to distinguish between

Lemma 9 and Lemma 10 is performed efficiently using the following property:

tx is equivalent to r € S\ T
— ((tx € F e« r € F)&Va € Z((-'p(ts, a) & ~p(r, a))
V (tu(ty, a) & 'u(r, @) & p(te, @) = p(r,a))).

Clearly, all the temporary automata built during the construction of the re-
sulting minimal automaton have less states than the resulting automaton plus the
size of the longest word of the list. This is the main advantage of our method.

Example 2. To illustrate our method, let us consider the following exam-
ple. On Fig. 1 the automaton recognizing the list {aa, aaa, aaba, aabbb, abaa, ababb,
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abbab} is given. This automaton is minimal except for the last word of the list —
abbab. Let the next word be baa. The longest common prefix of those two words
is €. We have first to construct the automaton equivalent to the one on Fig. 1,
which is minimal except for €, by using Lemma 9 and Lemma 10. First we have to
apply Lemma 9 twice and then to apply Lemma 10 three times. At the end, using
Theorem 11, we construct the automaton which is minimal except for baa, given
on Fig. 2. In this way we added the next word of the list to the language of the
temporary automaton.

t0 ———» tl ———» 12 ————»[ 13

Fig. 2. The FS automaton minimal except for baa

4. CONCLUSION

The presented method for direct building of minimal automata can be extended
for building minimal automata with labels on the final states and for automata
which are returning the index of the recognized word in the list (for a presentation
of those kinds of automata see, for example, [3]. In this way the method could be
‘widely applied for building of large grammatical dictionaries, for indexing of huge
lists, etc. The algorithms based on the method are distinguished with an excellent -
memory efficiency. |
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