ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Книга 1 — Математика и механика

Книга 1 — Математика и механика Том 91, 1997

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE Livre 1 — Mathématiques et Mecanique Tome 91, 1997

K-THEORY OF THE C^* -ALGEBRA OF MULTIVARIABLE WIENER-HOPF OPERATORS ASSOCIATED WITH SOME POLYHEDRAL CONES IN \mathbb{R}^n

NIKOLAJ BUYUKLIEV

We consider the C^* -algebra $WH(R^n, P)$ of the multivariable Wiener-Hopf operators associated with a polyhedral cone in R^n and the extension $0 \to \mathcal{K} \to WH(R^n, P) \to WH(R^n, P)/\mathcal{K} \to 0$.

The main theorem states that if P satisfies suitable geometric conditions (satisfied, e.g., for all simplicial cones and the cones in R^n , $n \leq 3$), then $K_*(WH(R^n,P)) = (0,0)$; $K_*(WH(R^n,P)/\mathcal{K}) = (0,Z)$, and that the index map is an isomorphism. In the cource of the proof we construct a Fredholm operator in $WH(R^n,P)$ with an index 1. The proof is inductive and uses the Mayer-Vietoris exact sequence and the standart six term exact sequence in K-theory.

Keywords: K-theory, Wiener-Hopf operators 1991/95 Math. Subject Classification: 47A53

0. INTRODUCTION

Let P be a polyhedral cone in \mathbb{R}^n . The Wiener-Hopf operators are obtained by compressing the left convolution operators on $L^2(\mathbb{R}^n)$ to the $L^2(P)$:

$$W(f)\xi(t)=\int_{P}f(t-s)\xi(s)\,ds.$$

The C^* -algebra $WH(\mathbb{R}^n, P)$, generated by W(f) when f runs through $C_c(\mathbb{R}^n)$, is the C^* -algebra of multivariable Wiener-Hopf operators. It is studied with various

techniques in [2, 4, 5].

In [4] P. Muhly and J. Renault prove that $WH(\mathbb{R}^n, P)$ contains $\mathfrak{K} = \mathfrak{K}(P)$ —the ideal of the compact operators in $B(L^2(P))$. They obtain a composition series for $WH(\mathbb{R}^n, P)$:

$$0 \subset I_0 \cong \mathcal{K} \subset I_1 \subset \ldots \subset I_n \cong WH(\mathbb{R}^n, P), \tag{0.1}$$

where $I_k/I_{k-1} \cong C_0(Z) \otimes \mathcal{K}$ and Z is an appropriate locally compact space. They state a problem to calculate the K-theory of $WH(R^n, P)$. Here are calculated $K_*(WH(R^n, P))$ and $K_*(WH(R^n, P)/\mathcal{K})$ when P satisfies suitable geometric conditions (satisfied, e.g., for all simplicial cones and the cones in R^n , $n \leq 3$).

In the present paper we consider the extension

$$0 \to \mathcal{K} \to WH(\mathbb{R}^n, P) \to WH(\mathbb{R}^n, P)/\mathcal{K} \to 0. \tag{0.2}$$

Our first observation is that if there exists an index 1 Fredholm operator and if $K_*(WH(\mathbb{R}^n, P)/\mathcal{K}) = (0, Z)$ (in order to simplify notations, the K-theory is considered to be Z_2 -graded theory: $K_*(A) = K_0(A) \oplus K_1(A)$), then we may apply the fundamental six term exact sequence of K-theory:

$$K_0(\mathcal{K}) \longrightarrow K_0(WH(\mathbb{R}^n, P)) \longrightarrow K_0(WH(\mathbb{R}^n, P)/\mathcal{K})$$
 $\uparrow \text{ ind} \qquad \qquad \downarrow \qquad (0.3)$
 $K_1(WH(\mathbb{R}^n, P)/\mathcal{K}) \longleftarrow K_1(WH(\mathbb{R}^n, P)) \longleftarrow K_1(\mathcal{K})$

Then we obtain that $K_*(WH(\mathbb{R}^n, P)) = (0, 0)$ and the index map of the extension (0.2):

ind:
$$K_1(WH(\mathbb{R}^n, P)/\mathfrak{K}) \to K_0(\mathfrak{K}),$$
 (0.4)

is an isomorphism.

Further, the quotient $WH(\mathbb{R}^n, P)/\mathcal{K}$ can be represented as a groupoid C^* -algebra. There are groupoid subalgebras, which are more simple (in a K-theory sense). The basic idea is to construct an increasing sequence of such algebras

$$\mathcal{B}_1 \subset \mathcal{B}_2 \subset \ldots \subset \mathcal{B}_N \cong WH(\mathbb{R}^n, P)/\mathcal{K}$$

and to calculate their K-theory applying the Mayer-Vietoris exact sequence in each step.

The groupoid approach gives naturally pullback diagrams of appropriate defined groupoid C^* -algebras:

$$\begin{array}{cccc} \mathcal{B}_k & \longrightarrow & \mathcal{B}_{k-1} \\ \downarrow & & \downarrow \\ \mathcal{D}_k & \longrightarrow & \mathcal{A}_k \end{array}$$

Then the corresponding exact Mayer-Vietoris sequence is

$$K_0(\mathcal{B}_k) \longrightarrow K_0(\mathcal{D}_k) \oplus K_0(\mathcal{B}_{k-1}) \longrightarrow K_0(\mathcal{A}_k)$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(\mathcal{A}_k) \longleftarrow K_1(\mathcal{D}_k) \oplus K_1(\mathcal{B}_{k-1}) \longleftarrow K_1(\mathcal{B}_k)$$

In a general situation it is not sufficient to know only the K-groups of \mathcal{A}_k and \mathcal{D}_k . Now we note that when the middle terms in the above exact sequence are trivial, then the maps corresponding to the vertical arrows are isomorphisms. If all these K-groups are trivial, then the same is true for \mathcal{B}_k . This fact motivates us to define the class of exhaustible cones — i.e. those cones, for which we can find a sequence of subalgebras as above, but having a trivial K-theory.

The organization of the paper is as follows: In Section 1 we set up the groupoid notations. In Section 2 we prove that there exists a Fredholm operator with index 1 in $WH(R^n, P)^{\dagger}$ — the algebra with the identity adjoined. As a corollary of the six term exact sequence in the K-theory we show that if $K_*(WH(R^n, P)/\mathcal{K}) = (0, Z)$, then $K_*(WH(R^n, P)) = (0, 0)$ and the index map (0.2) is an isomorphism. Section 3 is concerned with the quotient $WH(R^n, P)/\mathcal{K}$. We define geometrically the property a cone to be exhaustible and we prove the main Theorem 3.5. An example is given.

1. PRELIMINARIES

In this section we collect some facts concerning the groupoid approach to C^* -algebras and the groupoid construction made in [4] of a groupoid whose associated groupoid C^* -algebra is isomorphic to the one generated by the Wiener-Hopf operators.

In the paper P is a polyhedral cone in R^n , i.e. P is generated by its extreme rays. We assume that P contains no line and spans R^n . Let $\mathcal{F}(P)$ denote the set of all faces of P; we count P and $\{0\}$ among the faces of P. For $F \in \mathcal{F}(P)$, $\langle F \rangle$ is the linear subspace F - F generated by F and St(F) is the collection of all faces containing F.

In [4] P. Muhly and J. Renault prove that in a general context (G is a locally compact group and P is its subsemigroup) $\mathcal{B} = WH(G,P)$ is isomorphic with an explicitly constructed groupoid C^* -algebra $C^*(\mathfrak{G})$. Here we briefly recall their construction in the case $G = \mathbb{R}^n$

First step in this construction is the definition of a locally compact space Y. It may be presented as

$$Y = \{ (F, t) : F \in \mathcal{F}(P); t \in \mathbb{R}^n \ominus \langle F \rangle \}.$$

The space R^n is imbedded in Y ($t \mapsto (\{0\}, t)$) as a dense subset and the space X is defined to be the closure of P in Y. There exists a natural action of R^n on Y and the basic for the constructed groupoid \mathcal{G} , whose C^* -algebra yields $WH(R^n, P)$, is a reduction of a transformation group $Y \times R^n$ by the closed subspace X of Y. Explicitly, the elements of $\mathcal{G} = Y \times R^n | X$ are the pairs $(x, s) \in Y \times R^n$ such that $x \in X$ and $x + s \in X$. The family of measures on X:

$$\lambda^{x}(y,s) = \delta_{x}(y) \chi_{X}(y) \chi_{X}(y+s) ds$$

(here χ_X is the characteristic function of X), is called the left Haar system of measures of G.

The family $C_c(\mathfrak{G})$ of the finite functions on X becomes a normed C^* -algebra under the operations and the norm defined as follows:

$$f * g (x,t) = \int f(x,s)g(x+s,t-s)\chi_X(x)\chi_X(x+s) ds,$$

$$f^*(x,t) = \overline{f(x+s,-s)},$$

$$||f||_I = \sup \left\{ \int f d\lambda^x, \int f^* d\lambda^x : x \in X \right\}.$$

The completion of $C_c(\mathfrak{G})$ by the norm $||\cdot||_I$ is $L_I(\mathfrak{G})$ and $C^*(\mathfrak{G})$ is defined as their enveloping C^* -algebra.

Let $A \subset \mathcal{F}(P)$ and X(A) consist of those $x = (F, t) \in X$ such that the face F belongs to A. Then $\mathcal{G}(A)$ is defined to be the groupoid obtained by a reduction of \mathcal{G} by X(A) and $C^*(\mathcal{G}(A))$ to be the corresponding C^* -algebra. We denote some often used groupoids as follows: $\mathcal{G}(F) = \mathcal{G}(\{F\})$, $\mathcal{G}_0 = \mathcal{G}(\{0\})$ and $\mathcal{G}_{\infty} = \mathcal{G}(\mathcal{F}(P) \setminus \{0\})$.

1.1. Proposition ([4, § 4.7]). There exists an isomorphism between the C^* -algebra $WH(\mathbb{R}^n, P)$ and the groupoid C^* -algebra $C^*(\mathfrak{G})$. $WH(\mathbb{R}^n, P)$ contains $\mathfrak{K} = \mathfrak{K}(L^2(P))$, which is isomorphic to $C^*(\mathfrak{G}_0)$, and the quotient $WH(\mathbb{R}^n, P)/\mathfrak{K}$ is isomorphic to $C^*(\mathfrak{G}_{\infty})$.

Let F be a face of P. The set P - F is a cone containing the linear space $\langle F \rangle$ and $P_F = (P - F)/\langle F \rangle$ denotes the cone in $R^n \ominus \langle F \rangle$ determined by F. More generally, if $F_1 \in St(F)$, then $F - F_1$ contains $\langle F \rangle$ and the map

$$F_1 \mapsto (F_1 - F)/\langle F \rangle$$

is an order preserving bijection between ST(F) and $\mathcal{F}(P_F)$. The next proposition describes the groupoid C^* -algebra $C^*(\mathcal{G}(St(F))) \cong WH(\mathbb{R}^n, P - F)$.

1.2. Proposition ([4, § 3.7.1]). $WH(R^n, P-F)$ is isomorphic to $WH(R^n \ominus \langle F \rangle, P_F) \otimes C^*_{red}(\langle F \rangle)$, where the tensor product is endowed with the least C^* -cross norm.

We note that $C^*_{\text{red}}(\langle F \rangle) \cong C_0(\langle F \rangle)$ and that all the algebras considered here are postliminal ([2]) and there exists an unique C^* -cross norm. The above fact and the Bott periodicity say that $K_i(WH(R^n, P-F)) = K_{i+l \pmod{2}}(WH(R^n \ominus \langle F \rangle, P_F))$, where $l = \dim(\langle F \rangle)$.

1.3. Observation. Here we describe a construction which allows us to use often the Mayer-Vietoris exact sequence.

Let choose subsets A, B, C and D of $\mathcal{F}(P)$ such that $B = C \cup D$ and $A = C \cap D$. Let denote the corresponding groupoids by $\mathcal{G}(A)$, $\mathcal{G}(B)$, $\mathcal{G}(C)$, $\mathcal{G}(D)$ and their groupoid C^* -algebras by A, B, C, D. When one glues the groupoids $\mathfrak{G}(C)$, $\mathfrak{G}(D)$ along $\mathfrak{G}(A)$, the result is $\mathfrak{G}(B)$. Then the following diagram of C^* -algebras is commutative:

$$\begin{array}{ccc} \mathcal{B} & \xrightarrow{\psi_2} & \mathcal{C} \\ \psi_1 \downarrow & & \downarrow \varphi_2 \\ \mathcal{D} & \xrightarrow{\varphi_1} & \mathcal{A} \end{array}$$

The C^* -algebra \mathcal{B} is a pullback of $(\mathcal{C}, \mathcal{D})$ along φ_1, φ_2 (i.e. $\mathcal{B} \cong \{(c, d) : \varphi_1(d) = \varphi_2(c)\} \subseteq \mathcal{C} \oplus \mathcal{D}$ (cf. [1, § 15.3])).

By [1, § 18.12.4], when a pullback diagram of C^* -algebras is given as above, then we may write the corresponding exact Mayer-Vietoris sequence

$$K_0(\mathcal{B}) \longrightarrow K_0(\mathcal{D}) \oplus K_0(\mathcal{C}) \longrightarrow K_0(\mathcal{A})$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(\mathcal{A}) \longleftarrow K_1(\mathcal{D}) \oplus K_1(\mathcal{C}) \longleftarrow K_1(\mathcal{B})$$

2. CONSTRUCTION OF A FREDHOLM OPERATOR WITH INDEX 1

In this section an one-dimensional projector E(x,s) in $WH(\mathbb{R}^n,P)$ and an essentially unitary operator S in $WH(\mathbb{R}^n,P)^{\dagger}$ — the algebra with the identity adjoined, are given explicitly.

Let us choose points y_i , $i=1,2,\ldots,N$, on the extreme rays of P such that $|y_i|=1$. We may assume that y_i , $i=2,3,\ldots,n$, determine extreme rays of $P_1=(P-F_1)/\langle F_1\rangle$ and let P' be the cone spaned on y_i , $i=1,2,3,\ldots,n$. We define

$$E(x,s) = C \prod_{k=1}^{n} e^{-(x,y_k)} e^{-\frac{1}{2}(s,y_k)} \chi_{P'}(x) \chi_{P'}(x+s),$$

$$F(x,s) = C e^{\frac{1}{2}(s,y_1)} \chi_{(-\infty,0]}(s,y_1) \prod_{k=2}^n e^{-(x,y_k)} e^{-\frac{1}{2}(s,y_k)} \chi_{P'}(x) \chi_{P'}(x+s).$$

2.1. Lemma. (i) E is an one-dimensional projection in $WH(\mathbb{R}^n, P)$.

(ii) F is in $WH(\mathbb{R}^n, \mathbb{P})$ and satisfies the equalities

$$F^* * F = F + F^*$$
 and $F * F^* = F + F^* - E$.

Proof. Let first assume that $P = \mathbb{R}^n_+$. Then we rewrite $E^*(x,s)$ and F(x,s):

$$E(x,s) = \prod_{k=1}^{n} e^{-x_k} e^{-\frac{1}{2}s_k} \chi_{R_+^n}(x) \chi_{R_+^n}(x+s),$$

$$F(x,s) = e^{\frac{1}{2}s_1}\chi_{(-\infty,0]}(s) \prod_{k=2}^n e^{-x_k} e^{-\frac{1}{2}s_k} \chi_{R^n_+}(x) \chi_{R^n_+}(x+s) \chi_X(x) \chi_X(x+s).$$

The elements of $L_I(\mathcal{G})$ are the measurable functions on \mathcal{G} with a finite norm $\|\cdot\|_I$. We observe that $E(x,s) = \overline{E(x+s,-s)} = E^*(x,s)$. Using the Fubini theorem and the fact that

$$\int e^{-(x+s)} \chi_{[0,\infty)}(x+s) \, ds = 1, \tag{2.1}$$

where $x, s \in R$, we obtain

$$|E|_I = \sup \left\{ \int E(x,s) ds, \int E(x,s) ds : x \in X \right\} \le 1$$

and E belongs to $WH(\mathbb{R}^n, P)$. Similar estimate proves that F is in $WH(\mathbb{R}^n, P)$ and we omit it.

To prove that E is an one-dimensional projector, we have to check the equalities $E = E^*$, E = E * E and tr(E) = 1. The first one is obvious. Using again the Fubini theorem and (2.1), we get

$$E * E(x,t) = \int E(x,s)E(x+s,t-s)\chi_X(x+s) ds$$
$$= E(x,t) \int \prod_{k=1}^n e^{-(x_k+s_k)}\chi_{[0,\infty)}(x+s) ds = E(x,t).$$

By [4] E(x, x-s), where $x \in P$, may be considered as a kernel of a selfadjoint integral operator in $L^2(R_+)$. Using the well-known formula for the trace of a selfadjoint integral operator with a continuous kernel, we obtain

$$tr(E) = \int E(x,0) dx = \int \prod_{k=1}^{n} e^{-x_k} \chi_{[0,\infty)}(x) dx = 1$$

and hence E is an one-dimensional projector.

We rewrite F as follows:

$$F(x,s) = e^{\frac{1}{2}s_1} \chi_{(-\infty,0])}(s) E_{n-1},$$

$$F*(x,s) = e^{-\frac{1}{2}s_1} \chi_{[0,\infty)}(s) E_{n-1},$$

and then easy but tedious calculations prove the equalities of (ii).

Further, let Φ be the linear map determined by the matrice $(y_{i,j})$. Then the map $(x,t) \mapsto (\Phi(x), \Phi(t))$ may be extended to a topological isomorphism between $\mathcal{G}(\mathbb{R}^n, \mathbb{R}^n_+)$ and $\mathcal{G}(\mathbb{R}^n, P')$. The measures in the left-hand Haar systems differ with a constant $C = |\det(y_{i,j})|$ and the statement is true if P = P'.

Finally, in the general case for P, the supports of E(x,s) and F(x,s) are in the reduction of $\mathfrak{G}(R^n,P')$ by the $X(\{0\}) \cup X(F_1)$, which is a subgroupoid of \mathfrak{G} . Thus E(x,s) and F(x,s) are in $C^*(\mathfrak{G})$ and the above equalities are satisfied.

2.2. Theorem. (i) There exists a Fredholm operator $S \in WH(\mathbb{R}^n, P)$ such that ind S = 1.

Proof. Let S = 1 - F. Then by Lemma 2.1 we have $S^*S = 1$ and $SS^* = 1 - E$.

2.3. Corollary. If $K_*(WH(\mathbb{R}^n, P)/\mathfrak{K}) = (0, \mathbb{Z})$, then:

(i)
$$K_{\bullet}(WH(\mathbb{R}^n, P)) = (0, 0)$$
 and

(ii) the index map of the extension (2)

ind:
$$K_1(WH(\mathbb{R}^n, P)/\mathfrak{X}) \to K_0(\mathfrak{X})$$
 (2.2)

is an isomorphism.

Proof. Let us consider the fundamental six-term exact sequence of K-theory corresponding to the extension (2):

$$K_0(\mathfrak{K}) \longrightarrow K_0(WH(\mathbb{R}^n, P)) \longrightarrow K_0(WH(\mathbb{R}^n, P)/\mathfrak{K})$$
 $\uparrow \text{ ind} \qquad \qquad \downarrow$
 $K_1(WH(\mathbb{R}^n, P)/\mathfrak{K}) \longleftarrow K_1(WH(\mathbb{R}^n, P)) \longleftarrow K_1(\mathfrak{K})$

Let [S] be the generator of $K_1(WH(R^n, P)/\mathcal{K}) = Z$ and let [E] be the generator of $K_0(\mathcal{K}) = Z$. If $\operatorname{ind}([S]) = m[E]$, then the image of the morphism "ind" is $mZ \subset Z = K_0(\mathcal{K})$. But by Theorem 2.2 [E] belongs to the image of ind. Thus |m| = 1 and ind is an isomorphism. We know that the right-hand groups of (6) are equal to 0, thus $K_*(WH(R^n, P)) = (0, 0)$.

3. K-THEORY OF THE QUOTIENT ALGEBRA

3.1. Proposition. Let $n \leq 3$. Then $K_*(WH(\mathbb{R}^n, P)/\mathfrak{X}) = (0, \mathbb{Z})$.

Proof. Let n = 1 and $P = R_+$. We write the extension (2) as follows:

$$0 \to \mathcal{K} \to WH(R, R_+) \to C_0(R) \to 0.$$

The fact that $K_*(WH(\mathbb{R}^n, P)/\mathcal{K}) = K_*(C_0(\mathbb{R})) = (0, \mathbb{Z})$ is well known.

Let n = 2 and P be a polyhedral cone in R^2 (the quarter plane-case). The faces of P are $\{0\}$, P and two one-dimentional faces F_1 and F_2 .

Let us denote:

$$\mathcal{G}_1 = \mathcal{G}|X(F_1) \cup X(P)$$
 and $\mathcal{B}_1 = C^*(\mathcal{G}_1);$
 $\mathcal{G}_2 = \mathcal{G}|X(F_2) \cup X(P)$ and $\mathcal{B}_2 = C^*(\mathcal{G}_2);$
 $\mathcal{G}_{1,2} = \mathcal{G}|X(P)$ and $\mathcal{B}_{1,2} = C^*(\mathcal{G}_{1,2}).$

We recall that $\mathcal{G}_{\infty} = \mathcal{G}|X(F_1) \cup X(F_2) \cup X(P)$ and by Proposition 1.1 $WH((R^2, P)/\mathfrak{X} \cong C^*(\mathcal{G}_{\infty}).$

There exists an isomorphism of groupoids $\mathcal{G}_1 \cong R \times \mathcal{G}(R, R_+)$, where $\mathcal{G}(R, R_+)$ is the groupoid corresponding to the Wiener-Hopf algebra with $P = R_+ \subset R$. Then $\mathcal{B}_1 = C^*(\mathcal{G}_1) \cong C_0(R) \otimes WH((R, R_+))$ and therefore

$$K_*(\mathcal{B}_1) = K_*(C^*(\mathcal{G}_1)) = K_*(C_0(R)) \times K_*(WH((R, R_+)))$$

= $(0, Z) \times (0, 0) = (0, 0).$

Analogously, $K_*(\mathcal{B}_2) = K_*(C^*(\mathcal{G}_2)) = (0, 0)$.

Further,
$$\mathcal{B}_{1,2} = C^*(\mathcal{G}_{1,2}) \cong C_0(\mathbb{R}^2)$$
 and $K_*(\mathcal{B}_{1,2}) = K_*(C_0(\mathbb{R}^2)) = (Z,0)$.

There is a pullback diagram of C^* -algebras by (1.3):

$$\begin{array}{ccc} C^*(\mathfrak{G}_{\infty}) & \longrightarrow & \mathcal{B}_1 \\ \downarrow & & \downarrow \\ \mathcal{B}_2 & \longrightarrow & \mathcal{B}_0 \end{array}$$

Further, the corresponding Mayer-Vietoris exact sequence is

$$K_0(WH((R^2, P)/\mathcal{K}) \longrightarrow K_0(\mathcal{B}_1) \oplus K_0(\mathcal{B}_2) \longrightarrow K_0(C_0(R^2))$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 $K_1(C_0(R^2)) \longleftarrow K_1(\mathcal{B}_1) \oplus K_1(\mathcal{B}_2) \longleftarrow K_1(WH((R^2, P)/\mathcal{K}))$

The middle terms equal {0} and hence the vertical maps are isomorphisms:

$$K_0(WH(R^2, P)/\mathcal{K}) = K_1(C_0(R^2)) = 0,$$

 $K_1(WH(R^2, P)/\mathcal{K}) = K_0(C_0(R^2)) = Z.$

Let us recall that the set $St(F_l)$ of faces of P containing F_l is bijective to the set of faces of $P - F_l$. Therefore each subset A_l of $St(F_l)$ determines a subset $\widetilde{A_l}$ of $\mathcal{F}(P_l)$, where P_l is the lower-dimensional cone

$$(P-F_l)/(\langle F_l \rangle) \subset \mathbb{R}^n \ominus \langle F_l \rangle$$
.

The next definition is recursive and outlines the cones with which we deal.

- **3.2.** Definition. Let P be a polyhedral cone in \mathbb{R}^n , $n \geq 2$. We say that $L \subset \mathcal{F}(P)$ satisfies the condition (C) iff:
 - (i) there exists an one-dimensional face which does not belong to L;
 - (ii) L is an union of stars of some one-dimensional faces of P;
- (iii) there is an ordering F_1, \ldots, F_k of these one-dimensional faces such that for each $l=2,\ldots,k$

$$A_l = St(F_l) \cap [St(F_1) \cup \ldots \cup St(F_{l-1})]$$

determines a subset $\widetilde{A}_l \subset \mathcal{F}(P_l)$ which satisfies the condition (C).

If n = 2, we count $St(F_1)$ and $St(F_2)$ among the sets satisfying the condition (C).

- **3.3 Definition.** We say that P is exhaustible iff there exists an one-dimensional face F of P such that $L = \mathcal{F}(P) \setminus \{\{0\}, F\}$ satisfies the condition (C).
- **3.4.** Lemma. The cones in \mathbb{R}^2 and \mathbb{R}^3 and the simplicial cones in \mathbb{R}^n are exhaustible.

Proof. When n = 2, by the definitions P is exhaustible.

Let n=3 and P be a polyhedral cone in R^3 . Let us choose the custumary ordering F_1, F_2, \ldots, F_N of the one-dimensional faces of P (i.e. the extreme rays of P). Two neighbouring one-dimensional faces F_k and F_{k+1} of P (the calculations with the indices are mod N) span the two-dimensional face $F_{k,k+1}$. The rest faces of P are $\{0\}$ and P.

It is sufficient to prove that $F_1, F_2, \ldots, F_{N-1}$ satisfy the condition (C). It is evident that

$$A_l = St(F_l) \cap [St(F_1) \cup ... \cup St(F_{l-1})] = St(F_{l-1,l})$$

for $l=2,\ldots,N-1$. The associated with $St(F_{l-1,l})\subset \mathcal{F}_P$ family of faces of the cone $P_l=(P-F_l)/\langle F_l\rangle\subset R^2$ satisfies the condition (C) by the definition and this proves the case n=3.

Finally, let P be a simplicial cone in R^n . Note that each collection of extreme rays uniquely determines a face of P and for each one-dimensional faces F_k and F_l of P follows that $St(F_k) \cap St(F_l) = St(F_{k,l})$. A trivial induction on the dimension n proves that for each ordering F_1, F_2, \ldots, F_n of the one-dimensional faces of P and for each l < n the subset F_1, F_2, \ldots, F_l satisfies the condition (C).

- **3.5. Theorem.** Let P be an exhaustible polyhedral cone in \mathbb{R}^n , $n \geq 2$. Then:
- (i) $K_*(WH(\mathbb{R}^n, P)) = (0, 0);$
- (ii) $K_*(WH(\mathbb{R}^n, P)/\mathcal{K}) = (0, Z);$
- (iii) the index map of the extension (0.2)

ind:
$$K_1(WH(\mathbb{R}^n, P)/\mathcal{K}) \to K_0(\mathcal{K})$$
 (3.1)

is an isomorphism;

(iv) if
$$A \subset \mathcal{F}(P)$$
 satisfies the condition (C), then $K_*(C^*(\mathcal{G}(A))) = (0,0)$.

Proof. We shall prove the theorem by induction on the dimension n. If n = 2, Lemma 3.1 and Theorem 2.3 prove the statements (i)-(iv). Now suppose that they are true for $2, \ldots, n-1$.

Let P be an exhaustible polyhedral cone in \mathbb{R}^n . By Definition 3.3 there exists an ordering F_1, \ldots, F_N of the one-dimensional faces of P such that $B_{N-1} = St(F_1) \cup \ldots \cup St(F_{N-1}) \subset \mathcal{F}(P)$ satisfies the condition (C) given in Definition 3.2.

Now let us consider some subsets of $\mathcal{F}(P)$ and the corresponding C^* -algebras:

$$D_k = St(F_k)$$
 and $\mathcal{D}_k = C^*(\mathfrak{G}(D_k))$ for $k = 1, 2, ..., N$;

$$B_k = St(F_k) \cup \ldots \cup St(F_k)$$
 and $B_k = C^*(\mathfrak{G}(B_k))$ for $k = 1, 2, \ldots, N$;

$$A_k = D_k \cap B_k$$
 and $A_k = C^*(\mathfrak{G}(A_k))$ for $k = 2, 3, ..., N$.

We note that $\mathfrak{B}_1 = \mathfrak{D}_1$ and $\mathfrak{B}_N = WH(\mathbb{R}^n, P)/\mathfrak{X}$ by Proposition 1.1.

Our first aim is to compute the K-theory of these algebras, in particular to prove that $K_*(\mathcal{B}_k) = (0,0)$ for k = 1, 2, ..., N-1.

By Proposition 1.2 there is an isomorphism $\mathcal{D}_k \cong C_0(\langle F_k \rangle) \otimes WH(\mathbb{R}^n \ominus \langle F_k \rangle, P_k)$. Since by the condition (i) of the inductive supposition $K_*(WH(\mathbb{R}^n \ominus \langle F_k \rangle, P_k)) = (0, 0)$, then for k = 1, 2, ..., N

$$K_*(\mathcal{D}_k)=(0,0).$$

Further, $A_k \subset St(F_k)$ and by Proposition 1.2 it determines a family $\widetilde{A_k} \subset \mathcal{F}(P_k)$ of faces of $\mathcal{F}(P_k)$ and associated with it groupoid C^* -algebra $\widetilde{\mathcal{A}_k}$ such that $\mathcal{A}_k \cong C_0(\langle F_k \rangle) \otimes \widetilde{\mathcal{A}_k}$.

If 1 < k < N, then by Definition 3.2 (iii) A_k satisfies the condition (C), and therefore by the condition (iv) of the inductive supposition it follows $K_*(\widetilde{A_k}) = (0,0)$ and hence

$$K_*(A_k) = (0,0), \quad k = 2, 3, \dots, N-1.$$
 (3.2)

Now we shall show that A_N has a non-trivial K-theory. Indeed, $A_N = St(F_N) \setminus \{F_N\}$ and by Proposition 1.2

$$\mathcal{A}_N \cong C_0(\langle F_N \rangle) \otimes [WH(\mathbb{R}^n \ominus \langle F_N \rangle, P_N)/\mathcal{X}].$$

By the condition (ii) of the inductive supposition $K_{\bullet}(WH(\mathbb{R}^n) \ominus \langle F_N \rangle, P_N)/\mathcal{K}) = (0, \mathbb{Z})$ and hence

$$K_*(\mathcal{A}_N) \cong K_*(C_0(R)) \otimes K_*(WH(R^n \ominus \langle F_N \rangle, P_N)/\mathcal{K}) = (0, Z) \times (0, Z) = (Z, 0).$$

The equalities $B_k = B_{k-1} \cup D_k$, $A_k = B_{k-1} \cap D_k$ and Proposition 1.4 imply that there are pullbacks of the corresponding C^* -algebras for k = 1, 2, ..., N:

$$\begin{array}{ccc} \mathcal{B}_k & \longrightarrow & \mathcal{B}_{k-1} \\ \downarrow & & \downarrow \\ \mathcal{D}_k & \longrightarrow & \mathcal{A}_k \end{array}$$

Now we shall prove that

$$K_*(\mathcal{B}_k) = (0,0); \ k = 1, 2, \dots, N-1.$$
 (3.3)

Indeed, $\mathcal{B}_1 = \mathcal{D}_1$ and $K_*(\mathcal{B}_1) = K_*(\mathcal{D}_1) = (0,0)$. Suppose that the above holds for $1, \ldots, k-1$ and we write the Mayer-Vietoris exact sequence

$$K_0(\mathcal{B}_k) \longrightarrow K_0(\mathcal{B}_{k-1}) \oplus K_0(\mathcal{D}_k) \longrightarrow K_0(\mathcal{A}_k)$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(\mathcal{A}_k) \longleftarrow K_1(\mathcal{B}_{k-1}) \oplus K_1(\mathcal{D}_k) \longleftarrow K_1(\mathcal{B}_k)$$

The middle terms in this exact sequence are the groups $\{0\}$, hence the vertical arrows maps are isomorphisms. For $k=1,2,\ldots,N$ it follows that $K_0(\mathcal{B}_k)=K_1(\mathcal{A}_k)$ and $K_1(\mathcal{B}_k)=K_0(\mathcal{A}_k)$. Using (N-2) times the Mayer-Vietoris exact sequence, we obtain that $K_*(\mathcal{B}_k)=(0,0)$ for $k=1,2,\ldots,N-1$. Here we note that the proof of the condition (iv) is the same as the above fragment and we omit it. Further, the final Mayer-Vietoris exact sequence gives

$$K_*(\mathfrak{B}_N) = (0, Z).$$
 (3.4)

So, the condition (ii) is verified for n. The left standing for n conditions (i) and (iii) follow from Theorem 2.3.

It is attractive to conjecture that all the polyhedral cones in \mathbb{R}^n are exhaustible. However, we are unable to prove it. The next example shows that the ordering of the one-dimensional faces in Definition 3.2 (iii) is essential. We construct $L \subset \mathcal{F}(P)$ which is an union of stars of some one-dimensional faces, but which does not satisfy the condition (C), because some of the corresponding C^* -algebras have non-trivial K-groups.

3.6. Example. Let P be a cone in R^4 such that the cut Q through P determined of a hyperplane α is a cube. We denote the extreme points of Q (ordered in the custumary way) by A_1, \ldots, A_8 and the corresponding one-dimensional faces of P by F_1, \ldots, F_8 :

```
L_{1} = St(F_{1}), K_{*}(C^{*}(\mathfrak{G}(L_{1}))) = (0,0),
L_{2} = St(F_{2}) \cup L_{1}, K_{*}(C^{*}(\mathfrak{G}(L_{2}))) = (0,0),
L_{3} = St(F_{6}) \cup L_{2}, K_{*}(C^{*}(\mathfrak{G}(L_{3}))) = (0,0),
L_{4} = St(F_{7}) \cup L_{3}, K_{*}(C^{*}(\mathfrak{G}(L_{4}))) = (0,0),
L_{5} = St(F_{8}) \cup L_{4}, K_{*}(C^{*}(\mathfrak{G}(L_{5}))) = (Z,0),
L_{6} = St(F_{4}) \cup L_{5}, K_{*}(C^{*}(\mathfrak{G}(L_{6}))) = (0,Z),
L_{7} = St(F_{3}) \cup L_{6}, K_{*}(C^{*}(\mathfrak{G}(L_{7}))) = (0,0).
```

Clearly, L_7 with the above order of the one-dimensional faces is not exhaustible. It can be verified that the customary order of the extreme points of the cube determines an order of the one-dimensional faces of P such that L_7 is exhaustible.

ACKNOWLEDGEMENTS. I wish to express my indebtedness to R. Levi for the numerous and fruitful comments at the various stages of this paper.

REFERENCES

- Blacadar, B. K-theory for operator algebras. Math. Sci. Res. Inst. Publ., 5, Springer-Verlag, New-York, 1986.
- Dynin, A. Multivariable Wiener-Hopf operators. I: Integral Equation Operator Theory. 1986, 537-556.
- 3. Klee, V. Some characterizations of convex polyhedra. Acta Math., 102, 1959, 79-107.
- Muhly, P., J. Renault. C*-algebras of multivariable Wiener-Hopf operators. Trans. Amer. Math. Soc., 274, 1982, 1-44.
- 5. Park, E. Index theory and Toeplitz algebras on certain cones in \mathbb{Z}^2 . J. Operator Theory, 23, 1990, 125-146.
- Renault, J. A groupoid approach to C*-algebras. Lecture Notes in Math., 793, Springer-Verlag, New Jork, 1980.

Received March 17, 1998

Section of Functional and Real Analysis Department of Mathematics Sofia University 5 James Bourchier Blvd. BG-1164 Sofia, Bulgaria