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We consider the C*-algebra WH(R™, P) of the multivariable Wiener-Hopf operators
associated with a polyhedral cone in R™ and the extension 0 — K — WH(R™ P) —
WH(R",P)/X — 0.

The main theorem states that if P satisfies suitable geometric conditions (satisfied,
e.g., for all simplicial cones and the cones in R", n < 3), then K.(W H(R™,P)) = (0,0);
K.(WH(R", P)/X) = (0, Z), and that the index map is an isomorphism. In the cource
of the proof we construct a Fredholm operator in WH(R"™, P) with an index 1. The
proofis inductive and uses the Mayer-Vietoris exact sequence and the standart six term
exact sequence in K-theory.
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0. INTRODUCTION

Let P be a polyhedral cone in R*. The Wiener-Hopf operators are obtained
by compressing the left convolution operators on L?(R") to the L?(P):

W(E(t) = / £t - $)é(s) ds.
P

The C*-algebra W H(R™, P), generated by W(f) when f runs through C.(R"),
is the C*-algebra of multivariable Wiener-Hopf operators. It is studied with various
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techniques in [2, 4, 5].
In [4] P. Muhly and J. Renault prove that W H(R", P) contains X = X(P) —
the ideal of the compact operators in B(LZ(P)). They obtain a composition series

" for WH(R", P):
oclhh=2XchcC..cl,ZWH(R" P), (0.1)

where I /Ir_1 = Co(Z) ® X and Z is an appropriate locally compact space. They
state a problem to calculate the K-theory of WH (R™, P). Here are calculated
K.(WH(R", P)) and K.(WH(R", P)/X) when P satisfies suitable geometric con-
ditions (satisfied, e.g., for all simplicial cones and the cones in R"*, n < 3).

In the present paper we consider the extension

0—»XK—WH(R" P)— WH(R",P)/X — 0. ' (0.2)
Our first observation is that if there exists an index 1 Fredholm operator and
if K.(WH(R",P)/X) = (0,Z) (in order to simplify notations, the K-theory is

considered to be Zo-graded theory: K.(A) = Ko(A) ® K1(A)), then we may apply
the fundamental six term exact sequence of K-theory:

Ko(X) —  Ko(WH(R", P)) — Ko(WH(R", P)/X)
1 ind l (0.3)
K(WH(R", P)/X) — K\(WH(R",P)) — K1(%X)

" Then we obtain that K.(WH(R", P)) = (0,0) and the index map of the ex-
tension (0.2):

ind : K\ (WH(R", P)]X) — Ko(X), (0.4)

is an isomorphism.

Further, the quotient W H(R", P)/X can be represented as a groupoid C*-
algebra. There are groupoid subalgebras, which are more simple (in a K-theory
sense). The basic idea is to construct an increasing sequence of such algebras

B, CBy,C...CBy2WH(R", P)/X

and to calculate their K-theory applying the Mayer-Vietoris exact sequence in each
step. .

The groupoid approach gives naturally pullback diagrams of appropriate de-
fined groupoid C*-algebras:

By — Bir

l !
Dy — A

Then the corresponding exact Mayer-Vietoris sequence is
Ko(Br) — Ko(Dr)® Ko(Bk-1) — Ko(Ax)
1 (.
Ki(Ar) «— Ki(Di)® K (Bi-1) — Ki(By)
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In a general situation it is not sufficient to know only the K-groups of A; and
Dr. Now we note that when the middle terms in the above exact sequence are
trivial, then the maps corresponding to the vertical arrows are isomorphisms. If
all these K-groups are trivial, then the same is true for B;. This fact motivates us
to define the class of exhaustible cones — i.e. those cones, for which we can find a
sequence of subalgebras as above, but having a trivial K-theory.

The organization of the paper is as follows: In Section 1 we set up the groupoid
notations. In Section 2 we prove that there exists a Fredholm operator with index 1
in WH(R", P)! — the algebra with the identity adjoined. As a corollary of the six
term exact sequence in the K-theory we show that if K.(WH(R", P)/X) = (0, Z),
then K.(WH(R", P)) = (0,0) and the index map (0.2) is an isomorphism. Section
3 i1s concerned with the quotient WH(R"™, P)/X. We define geometrically the
property a cone to be exhaustible and we prove the main Theorem 3.5. An example
is given.

1. PRELIMINARIES

In this section we collect some facts concerning the groupoid approach to C*-
algebras and the groupoid construction made in [4] of a groupoid whose associated
groupoid C*-algebra is isomorphic to the one generated by the Wiener-Hopf oper-
ators.

In the paper P is a polyhedral cone in R", i.e. P is generated by its extreme
rays. We assume that P contains no line and spans R". Let J(P) denote the set
of all faces of P; we count P and {0} among the faces of P. For F € F(P), (F) is
the linear subspase F' — F' generated by F' and St(F) is the collection of all faces
containing F.

In [4] P. Muhly and J. Renault prove that in a general context (G is a locally
compact group and P is its subsemigroup) B = WH(G, P) is isomorphic with
an explicitly constructed groupoid C*-algebra C*(G). Here we briefly recall their
construction in the case G = R"

First step in this construction is the definition of a locally compact space Y.
It may be presented as

Y={(Ft):FeEFP),te R"6(F)}.

The space R" is imbedded in Y (¢ ~ ({0},%)) as a dense subset and the space X
is defined to be the closure of P in Y. There exists a natural action of R® on Y
and the basic for the constructed groupoid G, whose C*-algebra yields W H(R", P),
is a reduction of a transformation group Y x R"™ by the closed subspace X of Y.
Explicitly, the elements of § =Y x R"|X are the pairs (z,s) € Y x R™ such that
r € X and z + s € X. The family of measures on X:

A™(y,8) = 8z(y) xx(v) xx(y+s) ds

(here xx is the characteristic function of X), is called the left Haar system of
measures of G.
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The family C.(G) of the finite functions on X becomes a normed C*-algebra
under the operations and the norm defined as follows:

f*g(z,1) =/f(:c,s)g(a: +8,t—s)xx(z)xx(z + s)ds,

[ (z,t) = f(z +s,—5),

Il =supd [ axe, [ axe iz e x).

The completion of C¢(G) by the norm || - ||7 is L;(G) and C*(G) is defined as their
enveloping C*-algebra.

Let A C F(P) and X(A) consist of those z = (F,t) € X such that the face F
belongs to A. Then G(A) is defined to be the groupoid obtained by a reduction of §
by X(A) and C*(G(A)) to be the corresponding C*-algebra. We denote some often

used groupoids as follows: G(F') = 9({F}) Go = G({0}) and G, = G(F(P)\ {0}).

1.1. Proposition ([4, § 4.7)). There ezists an isomorphism between the
C*-algebra WH(R™, P) and the groupoid C*-algebra C*(G). WH(R", P) contains
K = K(L*(P)), which is isomorphic to C~ (So) and the quotient WH(R", P)/X 1s
isomorphic to C*(Gwo)-

Let F be a face of P. The set P — F is a cone containing the linear space
(F) and Pp = (P — F)/(F) denotes the cone in R" © (F) determined by F'. More
generally, if F; € St(F), then F — Fy contains (F) and the map

Fy— (Fy — F)/(F)

is an order preserving bijection between ST(F) and F(Pr). The next proposition
describes the groupoid C*-algebra C*(S(St(F))) *WH(R",P - F).

1.2. Proposition ([4, § 3.7.1]). WH(R", P — F) is isomorphic to WH(R" ©
(F), Pr) ® Ctg({F)), where the tensor product is endowed with the least C™-cross
norm.

We note that C%y({(F)) = Co((F')) and that all the algebras considered here are
postliminal ([2]) and there exists an unique C*-cross norm. The above fact and the
Bott periodicity say that K;(WH(R", P~ F)) = Kiti(moa2)( WH(R" ©(F), Pr)),
where [ = dim({F)).

1.3. Observation. Here we describe a construction which allows us to use
often the Mayer-Vietoris exact sequence.

Let choose subsets A, B, C and D of F(P) such that B = CUD and A = CND.
Let denote the corresponding groupoids by G(A), G(B), $(C), G(D) and their
groupoid C~-algebras by A, B, C, D.
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When one glues the groupoids §(C), §(D) along G(A), the result is S(B). Then
the following diagram of C*-algebras is commutative:

B e
dnl 1&02
D 25 o4

The C*-algebra B is a pullback of (€, D) along ¢y, ¢, (i.e. B = {(c,d) : ¢1(d) =
w2(c)} CCP D (cf. [1, § 15.3])).

By (1, § 18.12.4], when a pullback diagram of C*-algebras is given as above,
then we may write the corresponding exact Mayer-Vietoris sequence

Ko(B) — Ko(D)a I{p(e) —  Kjp(A)
T I}
Ki(A) e Ki(D)®Ki(C) — K\(B)

2. CONSTRUCTION OF A FREDHOLM OPERATOR WITH INDEX 1

In this section an one-dimensional projector E(z,s) in WH(R"™, P) and an
essentially unitary operator S in WH(R™, P)! — the algebra with the identity
adjoined, are given explicitly. '

Let us choose points y;, 1 =1,2,. .., N, on the extreme rays of P such that
lyil] = 1. We may assume that y;, ¢ = 2,3,...,n, deterimine extreme rays of
P, = (P - Fy)/{F,) and let P’ be the cone spaned on y;, i = 1,2,3,...,n. We
define

E(z,5)=C [ e ®¥)e 309y p.(2)xpi(z + 5),
k=1

F(z,8) = Ce3C¥x(_co0)(s,91) [ eC¥We= 50y pu(2)xpr (2 + 5).
k=2

2.1. Lemma. (i) £ is an one-dimensional projection in W H(R", P).
(i) F is :n WH(R"™, P) and satisfies the equalities

F*xF=F+4+F" and FxF*=F+F*"-FE.

Proof. Let first assume that P = R} . Then we rewrite E*(z,s) and F(z, s):

n
E(z,s) = H e""‘e‘%‘*xﬁl (z)xra(z + 5),
k=1

n

F(z,5) = €7 X(—o,0)(5) [ | e~ e” 5% xpn ()X Ry (2 + 8)Xx (2)xx (2 + 5).
k=2
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The elements of Ly(G) are the measurable functions on § with a finite norm
|| - |lr. We observe that E(z,s) = E(z+s,—s) = E*(z,s). Using the Fubini
theorem and the fact that

/ e ) x0,00) (T + 5) ds = 1, (2.1)

where z,s € R, we obtain

|E|r =sup{/E(:t:,s)ds, /E(z,s)ds::c €EX}<1

and E belongs to WH(R", P). Similar estimate proves that F is in WH(R", P)
and we omit it.

To prove that E'is an one-dimensional projector, we have to check the equalities
E = E*,E = ExFE and tr(E) = 1. The first one is obvious. Using again the Fubini

theorem and (2.1), we get

Ex E(z,t)= / E(z,sjE(:c +s,t — s)xx(z + s)ds

= E(z,t) f [T e +**) xp0.00)( + 5) ds = E(z,2).

By [4] E(z,z — s), where £ € P, may be considered as a kernel of a selfadjoint
integral operator in L%(R;). Using the well-known formula for the trace of a
selfadjoint integral operator with a continuous kernel, we obtain

tr(E) = /E’(x,O)dz - / H e~ "* X[0,00)(T) dz = 1
k=1

and hence F is an one-dimensional projector.
We rewrite F' as follows:

F(z,5) = €7 x(=c0,0)(5) En-1,

Fx(z,s) = €™ 51 X(0,00))(8) En—1,
and then easy but tedious calculations prove the equalities of (ii).

Further, let ® be the linear map determined by the matrice (y; ;). Then the
map (z,t) — (®(z), ®(t)) may be extended to a topological isomorphism between
G(R™, R7) and G(R", P'). The measures in the left-hand Haar systems differ with
a constant C = |det(y; ;)| and the statement is true if P = P’.

Finally, in the general case for P, the supports of E(z s) and F(z,s) are in
the reduction of G(R™, P') by the X({0}) U X(F}), which is a subgroupoid of G.
Thus E(z,s) and F(z,s) are in C*(§) and the above equalities are satisfied.

2.2. Theorem. (i) There ezists a Fredholm operatar S € WH(R", P) such
that indS = 1.

Proof. Let S = 1—F. Then by Lemma 2.1 we have S*S = 1and SS* =1-FE.
2.3. Corollary. If K.(WH(R", P)/X) = (0, Z), then:
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(i) K.(WH(R", P)) = (0,0) and
(ii) the indez map of the extension (2)

ind : K1(WH(R", P)/X) — Ko(X) | (2.2)
s an isomorphisrﬁ.

Proof. Let us consider the fundamental six-term exact sequence of K-theory
corresponding to the extension (2):

Ko(X) —  Ko(WH(R",P)) — KoWH(R",P)/X)
1 ind ' |
K((WH(R",P)/X) «— Ki(WH(R",P)) — K1(X)

Let [S] be the generator of Ki;(WH(R", P)/X) = Z and let [E] be the gen-
erator of Ko(X) = Z. If ind([S]) = m[E], then the image of the morphism “ind”
is mZ C Z = Ko(X). But by Theorem 2.2 [E] belongs to the image of ind. Thus
|m| =1 and ind is an isomorphism. We know that the right-hand groups of (6) are
equal to 0, thus K,(WH(R", P)) = (0,0).

3. K-THEORY OF THE QUOTIENT ALGEBRA

3.1. Proposition. Let n < 3. Then K, (WH(R", P)/X) = (0,2).
Proof. Let n =1 and P = R;. We write the extension (2) as follows:
0 — X — WH(R, Ry) — Co(R) — 0.

The fact that K.(WH(R", P)/X) = K.(Co(R)) = (0, Z) is well known.

Let n = 2 and P be a polyhedral cone in R? (the quarter plane-case). The
faces of P are {0}, P and two one-dimentional faces F; and Fj.

Let us denote:

91 = 9|X(F1) UX(P) and Bl = C*(Sl);
G2 =G| X(F2)UX(P) and By =C*"(9);
G1,2=GIX(P) and Bi;=C"(G12)
We recall that G, = §|X(Fi) U X(F2) U X(P) and by Proposition 1.1
WH((R2, P)/X = C*(Soo).

There exists an isomorphism of groupoids §; = R x G(R, R;), where §(R, R4)
is the groupoid corresponding to the Wiener-Hopf algebra with P = Ry C R. Then
By =C*(G1) = Co(R) ® WH((R, Ry) and therefore

K.(B1) = K.(C*(81)) = Ku(Co(R)) x K.(WH((R, R4))
‘ =(0,2) x (0,0) = (0,0).
Analogously, K.(B2) = K.(C*(92)) = (0,0).
Further, B, » = C*(G;12) = Co(Rz) and K.(Bi12) = I\,‘(CQ(Rz)) = (Z,0).
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There is a pullback diagram of C*-algebras by (1.3):
C‘(goo) — Bl
l l
B, -— By

Further, the corresponding Mayer-Vietoris exact sequence is

Ko(WH((R?, P)/X) — Ko(B1)® Ko(B2) — Ko(Co(R?))
1 |
K1(Co(R?)) —  Ki(B1)® K1(B2) «— Ki(WH((R? P)/X)

The middle terms equal {0} and hence the vertical maps are isomorphisms:
Ko(WH(R?, P)/%) = Ky(Co(RY)) = 0,
K {(WH(R?, P)/X) = Ko(Co(R?)) = Z.

Let us recall that the set St(F}) of faces of P containing F; is bijective to the

set of faces of P — F;. Therefore each subset A; of St(F;) determines a subset E
of F(P;), where P is the lower-dimensional cone

(P - F)/((F1)) C R" © (F)).

‘The next definition is recursive and outlines the cones with which we deal.

3.2. Definition. Let P be a polyhedral cone in R*, n > 2. We say that
L C F(P) satisfies the condition (C) iff:

(1) there exists an one-dimensional face which does not belong to L;

(i) L is an union of stars of some one-dimensional faces of P;

(iii) there is an ordering F1,..., F} of these one-dimensional faces such that
foreach{=2,...,k

A= SUF) N [SUF1)U...USHFi-1)]

determines a subset A; C F(P;) which satisfies the condition (C).
If n = 2, we count St(F,) and St(F,) among the sets satisfying the condition

().

3.3 Definition. We say that P is exhaustible iff there exists an one-dimen-
sional face F of P such that L = F(P)\{{0}, F'} satisfies the condition (C).

3.4. Lemma. The cones in R?> and R® and the simplicial cones in R™ are
ezhaustible.

Proof. When n = 2, by the definitions P is exhaustible.

Let n = 3 and P be a polyhedral cone in R3. Let us choose the custumary
ordering F, Fs, ..., Fy of the one-dimensional faces of P (i.e. the extreme rays of
P) . Two neighbouring one-dimensional faces Fx and Fi4q of P (the calculations
with the indices are mod N) span the two-dimensional face Fi 1. The rest faces

of P are {0} and P.
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It 1s sufficient to prove that Fy, Fy,..., Fy_; satisfy the condition (C). It is
evident that

A = St(Fl) N [St(Fl) U... USt(Fl_l)] — St(Fl_l,z)

for I = 2,...,N — 1. The associated with St(F;_;;) C Fp family of faces of the
cone P, = (P~ F})/(Fi) C R? satisfies the condition (C) by the definition and this
proves the case n = 3.

Finally, let P be a simplicial cone in R". Note that each collection of extreme
rays uniquely determines a face of P and for each one-dimensional faces Fi and F;
of P follows that St(Fi) N St(F;) = St(Fi,1). A trivial induction on the dimension
n proves that for each ordering F}, F5,..., F, of the one-dimensional faces of P
and for each I < n the subset Fy, F, ..., F; satisfies the condition (C).

3.5. Theorem. Let P be an ezhaustible polyhedral cone in R*, n > 2. Then:
(i) K.(WH(R", P)) = (0,0);

(it) K.(WH(R™, P)/X) =(0,2);

(111) the indez map of the extension (0.2)

ind : Ky (WH(R", P)/X) — Ko(X) (3.1)

s an isomorphism;

(iv) if A C F(P) satisfies the condition (C), then K.(C*(G(A))) = (0,0).

Proof. We shall prove the theorem by induction on the dimension n. If n = 2,
Lemma 3.1 and Theorem 2.3 prove the statements (i)-(iv). Now suppose that they
are true for 2,...,n— 1.

Let P be an exhaustible polyhedral cone in R". By Definition 3.3 there exists
an ordering Fy, ..., Fy of the one-dimensional faces of P such that By_, = St(F,)U
.. USt(Fn-1) C F(P) satisfies the condition (C) given in Definition 3.2.

Now let us consider some subsets of F(P) and the corresponding C*-algebras:

Dy = St(Fi) and Dy = C*(G(Dy)) for k=1,2,..., N;

By = St(Fr)U... U St(Fi) and By = C*(G(B)) for k= 1,2,...,N;

Ar = Dy N By and A = C‘(S(Ak)) fork=2,3,...,N.

We note that By = Dy and By = WH(R", P)/X by Proposition 1.1.

Our first aim is to compute the K-theory of these algebras, in particular to
prove that K.(Bx) = (0,0) for k=1,2,...,N - 1.

By Proposition 1.2 there is an isomorphism Dy = Co((F:)) ® WH(R" ©
(Fi), Pt). Since by the condition (i) of the inductive supposition K.(WH(R" ©
(Fy), Px)) = (0,0), then for k = 1,2,...,N

I{xu(:Dk) = (0, 0).
Further, Ay C St(Fi) and by Proposition 1.2 it determines a family :4: C

F(Py) of faces of F(Pi) and associated with it groupoid C‘-algebra'ﬁ: such that
Ap = Co((Fk)) Q Apk.
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If 1 <k < N, then by Definition 3.2 (iii) A; satisfies the condition (C) and

therefore by the condition (iv) of the inductive supposmon it follows K, (.Ak) —
(0,0) and hence
K.(Ax) =(0,0), k=23,...,N-1. (3.2)

Now we shall show that Ax has a non-trivial K-theory. Indeed, Ay = St(Fn)\
{Fn} and by Proposition 1.2

AN =2 Co((FN)) @ [WH(R" © (Fn), Pn)/X].

By the condition (ii) of the inductive supposition K.(WH(R")© (Fn), PN)/JC)
(0, Z) and hence

K.(An) 2 K.(Co(R)) ® K.(WH(R" © (Fn), Py)/X) = (0,2) x (0, Z) = (2,0).

The equalities Bx = Br_; U Dg, A = Bi_; N Dy and Proposition 1.4 imply
that there are pullbacks of the corresponding C*-algebras for k =1,2,..., N

By — Bi-1

| l
Dy — Ax
Now we shall prove that
K.(Bi) =(0,0); k=1,2,...,N - 1. | (3.3)
Indeed, B; = D; and K.(B,) = K.(D1) = (0,0). Suppose that the above holds
for 1,...,k — 1 and we write the Mayer-Vietoris exact sequence
Ko(Br) — Ko(Br-1)® Ko(Dr) — Ko(Ax)
T ' |

Ki(Ar) «— Ki(Bi-1)® Ki(Dr) «—— Ki(Bi)

The middle terms in this exact sequence are the groups {0}, hence the vertical
arrows maps are isomorphisms. For £ = 1,2,..., N it follows that Ko(Bi) =
Ki(Ax) and K;(Br) = Ko(Ag). Using (N — 2) times the Mayer-Vietoris exact
sequence, we obtain that K.(By) = (0,0) for k = 1,2,..., N — 1. Here we note
that the proof of the condition (iv) is the same as the above fragment and we omit
it. Further, the final Mayer-Vietoris exact sequence gives

K.(Bn) = (0, 2). (3.4)

So, the condition (ii) is verified for n. The left standing for n conditions (i)
and (iii) follow from Theorem 2.3.

It is attractive to conjecture that all the polyhedral cones in R" are exhaustible.
However, we are unable to prove it. The next example shows that the ordering of
the one-dimensional faces in Definition 3.2 (iii) is essential. We construct L C F(P)
which is an union of stars of some one-dimensional faces, but which does not satisfy
the condition (C), because some of the correspondmg C*-algebras have non-trivial

K-groups.
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3.6. Example. Let P be a cone in R* such that the cut Q through P
determined of a hyperplane a is a cube. We denote the extreme points of @ (ordered

in the custumary way) by A, ..., Ag and the corresponding one-dimensional faces
of P by Fl,...,Fst

Ly = St(F1), K.(C*(S5(L1))) = (0,0),
Ly = St(F3) U Ly, K.(C*(S(L2))) = (0,0),
L3 = St(Fs) U L2, K.(C*(S(Ls))) = (0,0),
Ls = St(F7) U L3, K.(C*(9(L4))) = (0,0),
Ls = St(Fs) U L, K.(C*(3(Ls))) = (Z,0),
Lg = St(F4) U Ls, K.(C*(S(Lg))) = (0, 2),
L; = St(Fs) U Lg, K.(C"‘(S(L-;))) = (0,0)
Clearly, L7 with the above order of the one-dimensional faces is not exhaust-
ible. It can be verified that the customary order of the extreme points of the cube
determines an order of the one-dimensional faces of P such that L is exhaustible.
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