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Let &G be an n-vertex graph and there is a vertex of G which is contained in maximum
number of p-cliques, but is not contained in (s + 1)-clique, where 2 < p < min(s, n).
Then the number of p-cliques of (7 is less than the number of p-cliques in the n-vertex
S-partite Turdn’s graph Ts{n) or G = Ts(n}.
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One of the fundamental results in graph theory is the theorem of P. Turdn,
proved in 1941, [5]. It generalizes a result of Mantel from 1906, [4], saying that if a
graph on n vertices has more than n” /4 edges, then this graph necessarily contains
a triangle.

Turan’s theorem was significantly generalized by Zykov in 1949, [6]. This gen-
eralization, unlike Turdn’s theorem, is not so popular. In this article we present.
a method to prove Zykov's theorem and its extension, used by us for solving
similar problems (see {1], [2] and [3]). Let us fix some notations. We consider
graphs G' = (V, E), where V' is the set of vertices and F C ( ‘)) is the set of edges.
If {u,v} € E, we say that the vertices u and v are adjacent. We call a p-clique
of G a set of p vertices, each two of which are adjacent. The number of p-cliques
of the graph G will be denoted by ¢,(G), and the number of p-cliques containing a
vertex v by ¢,{v).

Let Gy = (V1,E)).Gy = (Vo Eq), .. .. G¢ = (Vs, Eg) be graphs such that

Vint; =0.1+# j. We denote by Gy + G5 + - -+ + G the graph G = (V, E) with

"'=1MuWbu---uV, and FE=FUFEU---UE,UFE,
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where E’ consists of all 2-element subsets {u,v}. u € Vi, v € V. i # j.

Consider a graph with n vertices. If each two of them are adjacent. we denote
this graph by K,,, and if no two are adjacent - by K,. The graph K., +--- + K.
will be denoted by K(ni,...,ns). Obviously, K(ni,...,ng) is a complete s-partite
graph. If ny 4+ --- +ng = n and |n; — n;| <1 for all 7,7, then K(ni,....ng) is de-
noted by Ts(n) and is called s-partite n-vertex Turdn’s graph. Clearly, Ts(n) = K,
for s > n.

Turan’s theorem. ([5]) Let s and n be positive integers and G be an n-vertex
graph without (s + 1)-cliques. Then

c2(G) < ea (Ts(n))
and co(G) = o (Ts(n)) only if G = Ts(n).

Zykov’s theorem. ([6]) Let p, s and n be positive integers and G be an
n-vertex graph without (s + 1)-cliques. Then:

(a) ¢p(G) < cp (Ts(n)):
(b) if cp(G) = ¢p (Ts(n)) and 2 < p < min(n,s), then G = Ty(n).
A special case of Zykov’s theorem is the following

Lemma. Let p, s and n be positive integers and 2 < p < min(n,s). Then

for each s-tuple (ny.na....,ng) of nonnegative integers n; such that ny +na + -+
ns = n. The equality is possible only if K(ny.na, ... ,ng) = Tg(n).

Proof. Suppose that n,,ny,...,ny are such that ¢, (K(nl,ng, e ns)) is max-
imal. Let also n; = max{n,ns,...,ng} and ny = min{ny, na., ..., ns}.

For 2 < p < min(s, n) we have

c,,(lx’(m,ng,...,ns)) ::Z{n,-1 cngy |1 <0 <dp < e < <)

=ninaM + {ny + n> )N + P,

where M, N and P do not depend on n; and n, and A/ > 0. Hence

c.p(K(nl ~1,n9 + l,ng,...,-ns)) - cp(K(nl,n.g,...,ns)) = M(ny —ng — 1}.

The maximality of ¢, (K(nl,ng, e ,-ns)) implies ny —ny < 1. From this inequality
it follows K{(ny,na,...,ng) = Te(n).
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Proof of Zykov’s theorem. Let vy be a vertex of the graph & which is
contained in a maximum number of p-cliques, i. e. ¢,(v) < ¢,(vg) for each vertex v.
Denote by A the set of vertices v of G, v # vp, such that both v and v are contained
in some p-clique of the graph G, and by B the set of the remaining vertices of (.
Let {4) be the subgraph of G generated by A (the vertex set of (4) is 4 and two
vertices are adjacent in (A) if and only if they are adjacent in G).

Each p-clique of G is either entirely contained in 4 or has at least one vertex
in 3. Hence

ep(G) < ep((A) + D ep(v), (1)
veB
with equality if and only if each p-clique of G has at most one vertex in 3. Obvi-
ously, ¢p(vo) = ¢p—1({1)) for p > 2, and since ¢, (v) < ¢p(vp) for each vertex v,

cp(v) < ep1({4)) for each vertex v in B and p > 2. (2)
If £ =14 and p > 2, it follows from (1) and (2) that
Cp(G) S Cp(("”) + (77 - k)cp—l((A))- (3)

Equality holds in (3) if and only if it holds in (1) and (2). that is, when there are
no p-cliques with more than one vertex in B, and cach vertex of B is adjacent to
the vertices of each (p — 1)-clique of (4). In the special case p = s = 2. equality
occurs in (3) if and only if G = K{k,n — k).

We prove the inequality (a) by induction on s. The base s = 1 is clear, since
in this case G = K.

For the inductive step, assume that s > 2. Suppose first that p = 1. Then
c1(G) = e1(Ts(n)) =n. Let p > 2. If ep(vg) = 0, then ¢,(G) =0 and (a) is obvious.
Let ¢p(vg) > 0,1. e. A # (. Note that () does not contain s-cliques, since G' does
not contain (s + 1)-cliques. Applying the inductive hypothesis for { A}, we conclude
that if | 4] = &, then

Cp((“l)) S Cp(Ts-l(k))a (4)
cp-1({4)) < cpr(Ts-1(k)). (5)

It follows from {3) - {5} that
(’p(G\ < Cp(Ts—l (k)) + (”‘ - k)cp—1 (Ts~l('l")) (6)

Set I' = K + Ts_1(k). Clearly.
ep(T) = cp(Ts—1 (k) + (n = k)ep1 (Ts—1 (k). (7)
The lemma, applied to the graph T, yields
¢p(T) < p(Ts(n)). (8)

The inequality (a) now follows from (6} - (8).
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Passing on to (b), let G be a graph with n vertices without (s + 1)-cliques.

2 < p < min(s,n) and
C])(G) = C;)(Ts(n))- (9)

We prove the equality G = Ty(n) by induction on s. Note first that the equality (9)
implies equalities in {3} - (G) and (8). By the assumption 2 < p < min(s.n). the
minimal admissible value of s is 2.

The base of the induction is then s = 2: in this case p=2. Let & be a
graph with n vertices without 3-cliques satisfyving (9) for p = 2. Then there is
equality in (3) and, as pointed out above, G = K{k,n~ k). In view of this,
co( K (k,n —k)) = c2(Ts(n)). The lemma implies K{k,n — k) = T4(n) and so
G =Ts(n).

Assume now s > 3 and that (b) holds for graphs without s-cliques. We start
the inductive step by noting that k > p — 1. Indeed, it follows from p < min(n. s)
that ¢,(Ts(n)) > 0, and (9) implies ¢, (G} > 0. Thus cy(ve) = cpa1({4d)) > 0.
which clearly yields A =14} > p~ 1.

Now we prove that

(A) = Ty (k). (10)
The cases p > 3 and p = 2 will be treated separately. Let p > 3. Then 2 <p - 1.

Also, p—1 < min(s — 1. k). By the inductive hypothesis the equality in (5) im-
plies (10). We are left with the case p=2. If £ > 2, then p =2 < min(s — 1, £).
So. by the inductive hypothesis. the equality in (4) implies (10). If & =1. (10)
holds trivially, because (4) = T (1) = K.

Based on (10). we prove that G = I'. It follows from p -~ 1 < min(s — 1. k&) that
each vertex of Ty (k) is a vertex of a (p—1)-clique. Since there is equality in (3). we
conclude that each vertex of 4 is adjacent to each vertex of B. On the other hand.
B does not contain adjacent vertices. Otherwise, two such vertices, together with
(p—2)-clique of 4, would form a p-clique containing two vertices of B, contradicting
the fact that there is equality in (3). It follows from this argument and (10) that
G =T.

By the lemma the equality in (8) vields I' = T (n), and so G = Ts(n).

The proof of Zyvkov’s theorem is complete. Instead of ¢, (G) = 0 we have
used the weaker condition ¢4 (vg) = 0. Hence, this proof, actually. establishes the
following stronger statement:

Theorem. Let p, s and n be positive integers and 2 < p < min(s,n). Let vy
be a vertex of an n-vertex graph G such that c,(ve) = max{c,(v)|v € G} and vq is
not contained in an (s + 1)-clique. Then the inequality (a) and the statement (b)
of the theorem of Zykov hold.

In conclusion, let us note that a direct counting argument for the p-cliques
of Ts(n) gives



wheren =bks+v, 0 <v < s.
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