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1. INTRODUCTION

Jet A = (B;Py,...,Ppy) be a total countable relational structure. ~ Partial
enumeration of % is an ordered pair.(f, B), where f is a partial function from the set
of all naturals N onto B, B is a total structure over N and the mapping f [ Dom(f)
I8 a strong homomorphism from B[ Dom(f) onto . An associate of a set A C B

(in the enumeration (f,B)) is a set W C N such that W 1 Dom(f) = f~1(4), i.e.
- the pullback f~(A) is exactly the set W, restricted to Dom(f). Following [2], say

that the set A is relatively intrinsically 20 (I3, arithmetical) if for every partial
enumeration (f,B) it has an associate that is ¥0 (10, arithmetical) in B. This
is a typical implicit definition of complexity of a set A over an abstract structure
and a natural question that arises here is whether the set A could be described
also explicitely. And further, if such an explicite characterization does exist, is it
pecessary to involve the whole class of partial enumerations in order to obtain it?
In other words, does there exist some smaller class of partial enumerations such
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that the fact that A has an appropriate associate in every enumeration in this class
yields the respective explicite characterization of A? |

‘Results that answer the last question can be found in [8], where £2-admissible
sets are considered (although in another context), and in [4], where a minimal class
of enumerations for the £9-admissible sets is obtained. Here we further extend the
investigations from [5), considering also relatively intrinsically [T and arithmetical
sets. '

2. PRELIMINARIES

Let us fix a relational abstract structure 9 = (B; P,...,Py), where B is at
-most denumerable and each P;,1 < i < m, is a total predlcate of k; arguments on
B. The equality relation is not supposed to be among the initial predicates of 2.

Definition 2.1. Partial enumeration (of the structure 2) is an ordered pair
(f,B), where f is a partial function from the set of all natural nymbers N onto B
and B = (N;Q1,...,Qm) is a total structure in the signature of 2 such that for
every 1 < i < m the equivalence N

=
.

Qi(z, .. ,:171;,-) (::) P’(f(xl)»_f"’f(xkiv_ I R

holds whenever zy, ..., zx, arein Dom( f )

?

The set Dom(f) is the domain of the enumeration (f,B) We shall classnfy
the enumerations of 2 with respect to the complexity of their dommns
Let D("8) be the atomic diagram of B, more pr\e:cxsely Sr

D(B) = {(i,z1,. .-, Tk, €)|Qi(21, . - . , Tk, .—..~§,1 <i<m},

where {...) is some effective coding of all finite sequencé‘ over N, which we shall
suppose fixed until the end of this work. (We shall identify the boolean const.ants
true and false with 0 and 1, respectively). | | |

| Dpﬁmtmn 2.2. The enumeration (f, %) is T0 (I} ) iff the set Dom(f) is
$0 (110 ) in the diagram D(*B) of B. '

- Definition 2.3. The enumeration (f, ‘3) is arithmetical iff the set Dohz( f)is
anthmetncal in the dlagram D(%), ie. Dom( f) is 20 or IT¢ in D(%) for some
n> 1 ' v .
. Definition 2.4. Let A be a subset of B*. The set W C N* is called an
associate of A (m the enumeratlon (f,B)) iff the eqmvalence '

(Z1,...,26) EW = (f(z1),..., flax)) ca
holds for all zy,...,zx in Dom(f).
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Obviously, if f is not total, the set A has many associates.

Definition 2.5. Say that a set A C B* is £3- (13-, arithmetically) admissible
in (f,B) if A has an associate, which is £ (I13, arithmetical) in D(B).

Remark. If we stick to the terminology from [1] and (2], kept also in [6] and
(7], we should call the above sets relatively intrinsically 0 (M2, arithmetical) in
(f,B). We, however, will use the shorter term ”admissible”, which come from the
LACOMBE’S notion of V-admissibility {3].

Next we introduce £ and I1%, n > 0, formulas in & recursive fragment of the
language L,  of 4. The definition is by simultaneous induction on n. For that
purpose to each formula we assign (at least one) index.

We assume that we have chosen some effective coding & of all atomic formulas
in the first-order language Lgy of 24, extended with the logical constants T and F
(denote it by L ) Throughout the paper, we shall suppose also that some effective

enumeratmn Wo, Wl, . of all recursively enumerable (r. e.) subsets of N is ﬁxed

Definition 2.6. (i) Every atomic formula ® in Lﬁl is a £ formula with an
index (0,0, 5(®)).

Every negated atomic formula ~® in Lgl is a I3 formula with an index
(1,0, k(®)).

Every finite conjunction &, & . . . &®; of £ or I3 formulas with indices vy, ..., vy,
respectively, is a AJ formula with an index (2 V1y...,01).

(i) If every v € W, is an index of a A, formula ®¥, whose free varmblqs are
among X3,..., Xk, then

Ve
ve Wo

is a £, ; formula with an index (0,n+1, €) (with free variables among X3, .. ; Xi).
If ® is ~¥, where ¥ is a £, ; formula with an index (0,n + 1,€), then ¥ isa
119, , formula with an index (1,n% 1,e).
If & is U1&...&Y; and every ¥; is a £, or I1%,, 0 < m < n+ 1, formula with
an index v;, 1 < j <1, then ® is a AJ , formula with an index (2,v1,...,v).

Definition 2.7. A set A C B¥ is £2 ( I12 ) definable on 2 iff there exists
some 2 (II° ) formula ® with variables among X, ..., Xk, Y1,...,Y; and elements
~t1,...,t of B such that for every (s1,...,3x) € B* : :

(81"‘,'13k) €EA =4 F Q(Xl/31a°‘°sxk/sk’K/tly""K/tl)'

Clearly, if a set A is £ (I1%) definable on 2, then A is T2 (H,,) -admissible in
every enumeration (f, B) of A.

Ann. Univ. Sofia, Fac. Math. Inf, 97, 2005, 41-62. 43



3. SATISFACTION AND FORCING RELATIONS

In order to save space, from now on we shall consider only subsets of B. All
the results can be easily generalized for subsets of B* for arbitrary k > 1.

Let (f,8) be an enumeration of 2A. We first introduce a satisfaction relation
(f,B) =n Fe(z). For our purposes, it is suitable to make a slight deviation from the
standard satisfaction relation for the £2 in D(B) sets (as it is in [8], for example).
Let U(e,z) be an universal function for the class of all unary primitive recursive
functions. Using the S7'-theorem, we obtain a recursive function h such that for
every index e

Wh(e) = {U(e,z)|z € N}.

- It is well known that a nonempty set W C N is r. e. iff W = W),() for some

index e. We shall suppose that the function h is fixed until the end of this work. It

will appear in the definitions of the basic notions of forcing and satisfaction relation.

| We begin with the definition of the satisfaction relation k=, which is by in-

duction on n. As customary, D, will denote the finite set with' canonical index
V.

%

Definition 3.1. Set v

(/i B)Eu <= 3Jidy.. 39:;“36(1<z<m&u\= (i, 21, ..., %k, ) &
o Qi(xlv axk.) = E))
(£,8) k1 Fu(a) <= 3u((v,2) € Wi & Vu € Dy(f, B) = w),
(£,8) bnia Fel@) <= o((n,z) € Whey & Vu € Dy3d3y(u = (d, 3,0
(£,B) b Falt) V u=(dh1) & (£, B) n Fala).

Put finally | N \
(f,B) En ~Fe(z) <= (f,B) n Fe(2).

‘The next fact is a direct consequence of Proposition 3.3 of [8] and our, choice
of the satisfaction relation f=,,.

- Proposition 8.1.. (i) If W C N is £ in D('B), then there ezists an indez
e such that W = {z|(f,B) |=n Fe(z)}.

(i) If W Q__ N is IS in D(%B), then W = {a:l(f,!B) E=n ~Fe(z)} for some index
e. . | »

Definition 3.2. Finite part is an (m + 2)-tuple
T=(froHr,q],---1qm),

where f- is a finite function from A into B, If.,- C N, Dom(f;)NH, = @, Dom(f,)U
H, ={0,...,l — 1} for some { € N and ¢7,1 <i < m, is a partial predicate of k;
arguments on {0,...,I — 1} such that for every zi,...,zx, in Dom(f;)

g (21 2k) &> B(fr(T), .. (k).
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The set Dom(f,) U H,, which is in fact the initial segment [0,) of N, we shall
call domain of 7 ( Dom(r) ); l is the length of 7 (in symbols |7|). If { =0, 7 is the
empty finite part. We shall use small Greek letters to denote finite parts.

Below we introduce three types of binary relations between finite parts that
model in a different way the notion ”extention of a finite part”.

Definition 3.3. Let 7 = (f, Hr,q],...,q},) and 6 = (fs,Hs,¢8,...,q%,) be
finite parts. Set

TC6 <= fCfs&H CHs&q[Cql& ...&ql,C,,
TS <= 17C8& f,=fs '
70 <= 717<06& H,=Hj

Clearly, these three relations are partial orderings. We shall sometimes write 7 2
d, 72 4,etc. ford C 7,6 <1, etc. :

Definition 3.4. The enumeration (f,8 = (N;@1,...,Qm)) eztends 7 (in
symbols T C (f,SB) )iff fr C f, H, C N\Dom(f) a.nd q{ C Q; for every
1=1,. '

Next we define the forcing relation I, again by induction on n. Notice that
in the definition of I, —... we use the strongest numerical extention > instead of
the usual D. This type of forcing is called a “starred forcing” in [8].

Definition 3.5.

Ty <= Jidz; ... 32,31 <i<m&u={i,z1,...,%x,€) &
q{(zls- .o )zkd) = 6),
Tk Fe(z) <= 3v((v,2) € Wi) & Yu € Dy(1 IF 1)),
Tlk —Fe(z) <= Vp(p 21 =>plf1 Fe(2)), :
Tlbpt1 Fe(z) <= v((v,2) € Wi() & Yu € D,3dIy(u = (d,y,0)&
iy Fo(y) Vu=d,y,1) &7 I}- -de(y))),
T lbnt1 ~Fe(z) <> Vp(p 27 = plfn Fe(z)).

Lemma 3.1. Let n > 1. For every finite part 7 :
(i) {(e,2)|7 IFn Fe(z)} is a T2 set;
(i) {(e,z)|7 IFpn ~Fe(z)} is a 112 set.

- Proof. Straightforward induction on n. The crucial point here is that we
consider numerical extentions > instead of D in the definition of the forcing relation.

0
In what follows, we shall need the following notion of restriction of a finite part
T to & (for 7 2 §).

Definition 3.6. Let 7 2 4. Set
716 = (f5, Hs U (Dom(f.) \ Dom(fs)), 43, -.,q%).
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It can be easily checked that 7|4 is also a finite part and 7|6 >
The next important property of the restrictions will be systematncally used in
the sequel.

Lemma 3.2. Let & be a finite part. For everyn > 1:
(i) Vr D 8(1 Iy Fo(z) <> 7|0 Iy Fe(x));
(ii) V7 2 8(7 by, ~F(z) <= 7|0 Iy ~Fe(x)). .

Proof. Induction on n. The validity of (i) for n = 1 follows from the obvious
equivalence
Thu <= 7|0 u.

Assume that (i) is true for some n > 1. We shall show first that (ii) is also

true for n and then, using this fact and the induction hypothesis, will establish (i)
for n + 1.

Indeed, take some 7 2 § such that 7 Ik, —F(z). We have to see that 7|0 Ik,
-F,(z). Assuming that this is not true, we will have that for some p > 7|é:
p by Fe(z). We have p 2 7|6 > §, so by induction hypothesis p|d I, F.(z) Now

consider the tuple
(an \Dom(fr) Q1r- -1 Gh)- \ |

Let us first check that p; is a finite part. Obviously, Dom(f,) and H, \ Dom({,)
are disjoint. Further, since f; = f,, we have that H, N Dom(fa) = () and hence

Dom(f,) U (H, \ Dom(f,)) = (Dom(fs) U (Dom(¥,)\ Dmn(fa)))U

(Hp \ (Dom(fr) \ Dom(f))) = Dmn(fs) UN, = Dom\fp) U Hp,
which is an initial segment. So, S_

Dom(gf*) = Dom(af) € Dom({,) U Hy = Dom{f) U Hp,. -~
Finally, if 21, ..., 2k, are in Dom(f,,) = Dom(f), then

g7 (21, .. Zk:) and g7 (21, ..., k) = Pi(fr(@1), .- -, fr(@ni)).

However, p > 7|4, hence ¢f 2 ¢], so ¢/*(z1,...,2zx,) = ¢0(z1,...,2k,) is defined
and is equal to Pi(fr(z1), ..., fr(zk)), Whl‘:h is actually F;(f,, (zl)’ os for (Zka))s
hence p; is a finite part indeed.

It can be easily checked that p; > 7 and p;|d = p|d. As we have seen above,
plé Ik Fe(z), hence p;|6 Iy, Fe(z). From here, using again the induction hypothesis
and the fact that p1]|6 2 8, we get p; I+, Fe(z), which contradxcts the fact that
T Ik ~Fe(z).

Conversely, suppose that 7|8 I, —~Fe(z) and towards contradiction assume
that 7 I, —F(z). Therefore there exists p > 7 with p I, F.(z). We have
p 2 1 2 6, so by induction hypothesis p|é I+, Fe(z). Further, p|§ > 7|6, which
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follows immediately from the fact that p > 7 O 4. However, 7|6 Ik —~F,(z) and we
could not have p|é I, F.(z), which is the desired contradiction.

Let us now check the validity of (i) for n + 1. Indeed, we have that (i) and (ii)
are true for n, so

T lhng1 Fe(x) <= Jv((v,z) € Whe) & Vu € D,3d3y(u = (d,y,0)&
T lkn Fa(y) V u=(d,y,1) & 7 Ik —~Fa(y)))
<= J({v,z) € W) & Yu € D,3d3y(u = (d,y,0)&
7|6 Ikn Fa(y)- V u=(d,y,1) & 7|6 IFn ~Fa(y)))
<> 7|0 lFpy Fe(z)O

Using Lemma 3.2, one can easily get the monotonicity of the forcing relation.
Lemma 3.3. (i) 6k, Fe(z) &7 26 = 7k, Fe(z);

Proof. Let us first see the validity of (ii). Suppose that § -, -F.(z), 7 2 6,
but 7 Ifn =Fe(z). Then for some p > 7,p Iby Fe(z). Since p 2 7 2 6, applying
Lemma 3.2, we get p|d Ik, Fe(x). This, together with the fact that pld 2 6,
contradicts the assumption 4 I, —F.(z).

Now (i) is by induction on n. Dropping the obvious case n = 1, suppose that
(i) is true for some n. We have also that (ii) is true for this n, so

6 lbny1 Fe(z) <= F({v,z) € W) & Yu € D,3d3y(u = (d,y,0)&
dib, Fy(y) V u={d,y,1) & § I+, ~Fa(y)))
= Ju((v,z) € Wy(e) & Yu € D,3d3y(u = (d,y,0)&
T lFn Fd(y) Vu= (da Y, 1) & 7lkg _‘Fd(y)))
&> Tlhpga Fe(z)D ~

Let us remind some basic notions from the forcing constructions machinery.

Definition 3.7. (i) Let X be a set of finite parts. The enumeration (f B)
meets X if 36(6 € X & & C (£,8)).

(ii) X is densein (f,B) if V6 C (f,B)3r 2 é(7 € X).

(iii) Let F be a family of sets of finite parts. The enumeration (f,B) is F-generic
if for every X € J the following condition holds:

if X is dense in (f,B), then (f,B) meets X.
Set XX, = {7|7 IFx F.(z)} and let
Fa= U XE.
e,z€N, 1<k<n

We have the followmg Truth Lemma that brings together the forcmg and sat-
isfaction relation.
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Lemma 3.4. Letn > 1. Then
(i) If (f,®) is ?n;l-genefic enumeration, then
(f,B) Fn Fe(z) <= 37 C (f,B)(7 Ik, Fe(x)).

(ii) If (f,B) is Fn—1-generic enumeration, then .

3r C (£,B)(7 Ikn =Fe(z)) = (£,B) |=n ~Fe(2).

(iii) If (f,'B) is Fn-generic enumeration, then

(f,8B) [=n ~Fe(2) = 37 C (£, B)(7 Ibn ~Fe(z))-

Proof. Induction on n. It is straightforward that for every enumeration (f,8)
(£,B) |1 Fe(z) <= 37 C (£, B)(7 b1 Fe(z)),

hence (i) is true for n = 1. Now assume that (i) holds for an arbitrary;n > 1. We
shall successively check that (ii) and (iii) also hold for this n and after that — that
(i) is true for n + 1. \

Indeed, let (f,B) be 3'n-1-generxc, 7 C (f,8) and 7 IF, —»Fe(z) Towards a
contradiction, assume that (f,B) |=n Fe(z). By induction hypothesis 35 C (f,B) :
d Ik F.(x). Now denote by 7 U d the tuple

LB

(fTUfJaH‘rUHJ’qI Uqls ’quQm)

Since 7 and § have a common extension — the enum\éra.txon ( f,\‘B), it can be easxly
seen that 7UJ is a finite part, too. We have 7U§ 2 7, 744 D 4, and by Lemma 3.3
TU & |=n ~Fe(z) and at the same time 7 U § |=, F.(z), which is impossible.

Now let (f,B) be F,-generic and suppose that (f,B) f=,, ~Fe(z). We'have to
see that there exists 7 C (f,'B) such that 7 I, —~F.(z). Indeed, assume that for
every finite part 7 C (f, B), T IFn ~Fe(z). This means that

vr C (f,B)3p 2 7(p lFn Fe(x)),

" in other words, X;‘z is dense in (f,B). However, X;‘, is in 3’,. and (f,B) is 3‘
generic, hence (f,B) meets X, i.e. there exists 7 C (f,B) such that 7 € X7,
in other words, 7 Ik, Fe(z), according to our choice of X7,. Now applying (i)
for n (notice that (f, %) is F,_1-generic, too), we obtain (f,B) =n Fe(x) — a
contradiction.

It remains to see the validity of (i) for n + 1 Agam take some J,-generic
enumeration (f,8) and suppose that (f,B) )=,,+1 F.(z). Hence there exists
(v, ) € Wie) such that '

Yue D 3d3y(u =(d,y,0)& (f,B) F=n Fa(y) V u=(d, 1) & (f,B) F=n ~Fa(y)))-
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Since (i) and (iii) are true for n, we have that for every-u = (du, yu,€u) in Dy
there is some 1, C (f,B) such that 7, I, (=)% Fy, (yu). Again 7 = U{ry|u € Dy}
is a finite part and by the monotonicity of the forcing relation, 7 15 (=) Fy, (yu)
for every u € D, hence 7 F, 41 Fe(z).

The verification of the opposite direction of (i) is very similar — this time
use the validity of (i) and (ii) for our n and the monotonicity of the satisfaction
relation. Notice that in this direction of (i) it is sufficient to have F,_1-genericity
of the enumeration (f,B) (as it is in the case of the relation 7 I, —Fe(z), point
(i1)). We, however, will not need this refinement for the positive case of the forcing
relation. O "

4. NORMAL FORMS

Suppose that 7 = (f,, Hr,q],...,¢7,) is a finite part, x € N is the first not
in Dom(t) (i.e. = = |r|) and s € B. Then by 7 * s we shall denote the tuple
(9, Hr,7y,...,7m), where g is the function with a graph Gy, U{(z, s)} and for each
1 < i < m, r; is the predicate with a graph

Go U{(@1,- .- ki )|(21,...,2Zk;) € Dom(g) & Pi(g(z1),.-.,9(zx;)) = €}.
Clearly, 7 * s is a finite part, too. |

Definition 4.1. (i) A set A C B has a I} normal form if there exist a
finite part 4 and a natural number e such that for z = || the equivalence

s€A < F(p>bxs & pln Fi(a)) (4.1)

holds for every s € B.

(i) A set A C B has a IT2 normal form if there exist a finite part § and a natural
number e such that for z = |4] the equivalence

8€A &> %3 by ~Fe(x))

holds for every s € B.

Clearly, if the set A has a ¥2 normal form, then B\ A has a II normal form
and vice versa.

Now we are in a position to prove a series of auxiliary propositions that make
a connection between the implicit notion of admissibility and the explicit notion
of normal form. Their proofs make use of generic enumerations and in essence
follow the general scheme used in such type of constructions (in particular, the
proof of Proposition 4.1 can be found in [8). We formulate and prove them here
not for the results themselves but rather for the precise constructions of the generic
enumerations in their proofs. In the next section we shall explain how to refine
these constructions, in ordelj to obtain the main results in this work.
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Proposition4.1. Letn>1. fAC B is 80 admissible in every enumeration,
then A has a £0 normal form.

Proof. Assume that A does not have a £2 normal form. We shall construct
an enumeration (f,B) (a refuting enumeration) such that A does not have a X2
associate in it. The construction of (f,®) will be carried out in steps. Using
induction on a, we shall define a sequence |

ENC---C1,C ...

of finite parts such that the set A is not admissible in any enumeration (f,B) that
extends 7, for every a. We shall make three types of steps. The first type (when
a = 0(mod3) ) will ensure that s is onto B, the second type is for F,_;-genericity
and the third type of steps will guarantee that A is not admissible in (f,B).

Let us fix an enumeration 3g, 51, ... of the elements of the basic set B. Set 79 to
be the empty finite part and suppose that we have built 73, for some a > 0. We are
going to explain how to define 7354+1. Let @ = (e, z,j) and put k = min(j +1,n~1)
(so we always have 1 < k <nforn>landk =0ifn =1). Ifk = 0, set
Taa+1 = T3a (Since in this case n = 1 and no genericity is needed), otherwise ask
the question “Jp(p > 734 : p Ik Fe(z)?”. If yes, set 13541 = p (take an hrbltrary
p 2 T34 such that p ik F,(x)), otherwise set 73541 = 734. ‘

In order to define 73,42, we will use the fact that the set A does not have a
o normal form. Hence the equivalence (4. 1) is not true for § = 13,41 and e = a.
This means that for z = |r3541] there exists s € B such thpt one of the following
two conditions is true:

i) 8 € A, but for every p > 73541 * s we have p|fy Fa(:c);

ii) s & A, but there exists p > T3a41 * 8 such thas p b, F,{z).
In the first case put 73,42 = 73041 * 8, in the second case take an arbitrary p: p 2>
T3a+1 * 8 &p Ik Fo(x) and set 73442 = p. Finally, set 73043 = 73442 * Sa.

Now define the tuple (f,B = (N;Q1,...,Qm)) as follows: ..

f = Uf‘r..:

and for every 1 < i <m and (z1,...,2x,) € N¥:

T o . r

\Z1ye0a s Thy )y if Ja ! 2 (Z1,.. 0, Zk;),

Qilar, ... zx) = { & ( 2 219, (21 )
arbitrary, otherwise.

Obviously, (f,B)2 7, for every a. Since for every s € B there exists a such
that s € Range(r,), we have that Range(f) = B. The definition of the notion
of finite part guarantees that f is a strong homomorphism from B8 onto 2, i. e.
(f,B = (N;Q1,...,Qm)) is an enumeration of A. Let us see now that (f,B) is
Fp-1-generic if n > 1. Indeed, take some Xf,, 1 < k < n, and suppose that Xf,,_.
is dense in (f,%), i. e. V7 C(£,B)3p 2 7 : p IFx Fe(z). Take a = (e,z,k — 1)
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and consider the step 3a + 1. From the density of X%, it follows that for 7 = 73,
there exists p D Ta, such that p bk Fe(x). Hence, putting p* = p|T3,, we will have,
using Lemma 3.2, that px > 73, and p* b, F.(z). This means, according to our
construction of {7,}a, that 73g41 IFx Fe(z) and 73441 C (f,B), i. e. (, %) meets
X¥,, hence (f,B) is F,1-generic.

Towards a contradiction, assume that A is £0-admissible in this (f,8). Hence
A has an associate W, which is L2 in B. Therefore according to Proposition 3.1,
W = {z|(f,B) k=n Fa(z)} for some a. We have that for every z € Dom(f)

(f,B) ben Fa(z) < f(z) € A. (4.2)

Now have a look at step 3a + 2. If the case i) holds at this step, then for some
s € A we will have that 73542 = T3a4+1 * 8 and 73g42 IFn ~Fa(z). By definition
T3a+2(Z) = 8 for £ = |13441|, hence £ € Dom(f) and f(x) = s € A. So according
to (4.2), (f,B) [=n Fa(z). On the other hand, 73442 IFn ~Fa(z), which, combined
with the F,_,-genericity of (f,B) and Lemma 3.4, gives us (f,B) |=n —F,(z) —
a contradiction.

If it is the case ii) at the step 3a + 2, then we will have 13,42 Ik Fg(z),
T3a+2(Z) = s and f(z) = s € A. On the other hand, since (f,B) is F,_;-generic,
according to Lemma 3.4, (f,'B) =, F,(z), hence by (4.2), f(z) = s € A -— again
a contradiction. 0 |

As a consequence we obtain the followmg proposition.

Proposition 4.2. Letn > 1. If A C B is I12 -admissible in every enumeration,
then A has a II® normal form. ,

Proof. Take an arbitrary enumeration (f,8) of 2. If W is an associate of A
in (f,B), then, clearly, N \ W is an associate of B \ A in (f,B). Hence B\ A is
»0-admissible in (f,B) and, according to the previous proposition, B\ A has a =2
normal form, therefore A has a IT2 normal form. (]

Proposition 4.3. Letn > 1, A C B and for every enumeration (f,B) of A the
set A is £0- or 112 -admissible in (f,B). Then A has T normal form or I8 normal
form (and hence the set A is L2 -admissible in every (f, B) or is H?,-admzsszble in

every (f,%8)).

Proof. We shall follow the proOf of Proposition 4.1. Assuming that A does
not have neither £ nor II% normal form, we will construct an enumeration (f,8),
in which A does not have an appropriate (2 or I1%) associate. We shall use four
types of steps here in order to define the sequence {7,},. The first three ones will
be just as in the proof of Proposition 4.1. At the steps 4a + 4 we do the following.
According to our assumption that A does not have a I normal form, we have that
there exists s € B such that, putting z = |74.+3/, one of the following two cases
hold:

i) 8 € A, but 14a43 * 8 lfn ~Fa(z);

ll) S ¢ A, but T4a+3 * 8 "—n ﬂFa(.‘B).
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In the first case we have that for some p 2> 74,43 * 3 : plbq Fo(z). Put in this
case T4q44 = p. In the second case put T4q4+4 = T4g43 * 8.

Now let (f,) be an enumeration that extends 7, for every a € N. As we
have established in the proof of Proposition 4.1, (f,B) is F,_1-generic and 4 is
not ¥2-admissible in it. Let us see that A is not IT%-admissible in (f,B) as well.
Assume the contrary and take a IIC set W that is an associate of A. According to
Proposition 3.1, W = {z|(f,B) =n ~Fa(z)} for some a. Consider the step 4a + 4.
If the case i) holds at this step, then 74544 Fn Fo(z) for £ = |74a+3|, Taa+a(z) =
and s € A. Since (f,B) is F,~1-generic, using Lemma 3.4 we get (f,B) =n Fa(z),
hence z ¢ W, whereas f(z) € A — a contradiction. In the case ii) we put 7444 =
Téa+3 * 8 With 74q44 Ik =F3(z) and f(z) = s € A. Now again by Lemma 3.4 we
get (f,B) =n ~Fs(z), hence z € W, whereas f(z) =s ¢ A. O .

Proposition 4.4. Let the set A C B be arithmetically admissible in every
enumeration (f,B). Then there erists n > 1 such that A has £2 or I12 normal
form. ' '

Proof. Assume the contrary. We generalize the idea used in the proof of
Proposition 4.3 in such a way that n is now a parameter of the construction. Again
we will make four types of steps. With the first type of steps (of the form 4a + 1)
we shall ensure Jy-genericity of (f,B) for every n > 1; with the second and the
third types — that A does not have neither £, nor I19 associate in (f, B) for every
n > 1. The fourth type of steps will guarantee that the mapping. f = U fr. 18
onto B.

Let 19 be the empty finite pa.rt and suppose t.hat we have oonstruct,ed Taa fOTr
some a. Let a = (e, x,n). If there exists p > 74a : p lFns1 Fe(z), put T4as1 = p,
otherwise put 74441 = 744. In order to determine 74}1,2, we repyesent @ as {e,n—1)
for some e and n > 1 and use the fact that A does not have a £2 normal form. So
putting & = |745+1|, we will have that there exists some 3 €B such that one of the
next two possibilities holds: g

i) s € A, but Vp > T4a41 * 8, plfn F,(x); ‘

ii) s € A, but 3p 2 74541 * 8, plkp Fe(z).

Set T4a+2 = Taa+1 * 8 OF Taa42. = p if it is the case i) or ii), respectively.

At the step 4a + 3 with a = (e,n — 1) for some e and n > 1 we proceed in

a similar way, taking into account this time the fact that A does not have a II2
"normal form and hence for z = |74442| there is an s € B such that:

1) 8 € A, but 14442 * 8 ¥y, ~Fe(z);

ii) s € A, but 74442 * s Ik, ~F ().

If it is the case i), then for some p > 74542 * 8 we will have p I+, F.(z), so put
T4a+3 = p in this case. In the second case put T4a+3 = 7T4g+2 * 8.

At the step 4a + 4 we put 74q+4 = 7T4a+3 * Sq- To complete the proof, proceed

just as in the proof of Proposition 4.3. [J - .
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5. THE MAIN RESULT

In this section we will introduce a step-wise refinement I}fn of the forcing re-
lation I, that will allow us to define more precise construction of the generic
enumerations (f, B), built in the proofs of the propositions in the previous section.
As a result, we will obtain a refined versions of these propositions that will bring
us to our final results.

The definition of lh. will follow the step-wise enumeration of the sets Wj () by
the function At.Uf(e,t).

Set for brevity

7o Dy <= 7lFuforeveryueD,

and forn>1

Tln D, <= Vue€ D,3d3y((u=(d,y,0)& n?,‘ Fay)) vV
(u={d,y,1) & 7 Ik ~Fa(y))))-

Let Az,i.(z); be a recursive function that returns the i-th component of the
sequence with a code z (if it exists). So we have for n 2> 1:

T by Fe(z) <= F((v,2) € Wh(e) & 7 lFn-1 Dy) <=
3tIu(U(e,t) = (v,2) & 7 lkn-y Dy)) <= 3t((U(e,t)h =z & 7 k-1 Diy(e,ty)o)-
Definition 5.1. Put |
TIkp Fe(z) <= 3tolto <t & (Ule,to)1 =2 & Tirny D(U(e.to))o)‘

The first ¢ with 7 ll~ F.(z) may be thought of as the first st,ep at which the
validity of 7 I, F(z) is established.

Here are the main properties of the relation ll-,, that we will need.
Lemma 5.1. (i) 7 lFp Fo(z) <= 3t(r Fy Fo(2));

() 7 WFn Fo(z) & ' >t = 7 lp Fo(2);

(iii) 7 II-!,',‘Fe(a;) &6 21 = Ik Fu(z);

(iv) The set {(e,z,t)|7 II-:, F.(z)} is recursive in §("—1),

Proof. (i) and (ii) are straightforward; the proof of (iii) is by a routine induction
on n. In order to establish (iv), notice that according to Lemma 3.1 and the Post's
theorem the set M = {(e,z,?)|{(U(e,t))1 =2 & 7 IFn—1 D(y(e,1))o } is recursive in -
p(n=1), hence the set {(e, z,t)|3to(to <t & (e,z,t9) € M} is recursive in §(*~1) as
well. O .

Let D(T) - the diagram of T — be the set {(i,z1,..., 2z, &)|g (Z1,...,Tk:) =
€,1 < i < m}. Clearly D(7) is a finite subset of N. .
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Definition 5.2. The code of 7 (in symbols, ||7||) is the canonical index of the
diagram D(7) of 7.

In fact, the code ||7]| of 7 does not code 7 completely since it preserves no
information about Dom(f,) and H,. We, however, will consider codes ||7|| only for
finite parts 7 such that 7 » 7p for some fixed 7o. In such case, clearly, ||7|| identifies

completely 7. If ||7]| < ||8]], we shall say that 7 is less than 4.
Let t € N. Denote by 71* the finite part

T=(fr, Hy U{|7},..., |17l +t = 1};q],....qm)

(r*0 g"r) Clearly, 7+t > 7, |7**] = |7| + t and ||7**|| = ||7||. The next simple

. observation will be of use when constructing special generic enumerations.
Lemma 5.2. Suppose that 36 2 7(6 Iky F’,(x)) Then there ezistt € N and p

such that p = v and p Fn F(z). -

L3

Proof. Let § I, Fe(x) and § > 7. Then there exists to : § ﬂ- Fe(z). Put
t = max(tp, k), where k = |§] — |1'|, and consider the finite part p = §+(t=5),
Clea.rly, p2d2rand p|=|0|+t—k=|r|4+t= |1'+‘|, hev:e p ¥ Tt We have

) ll- F.(z), hence&lt- F,(z) and, by monotonicity, pl}- F(z). o
Now put

solrin,e,2) = {min{tlt >0 & 38 3 748 I Fu(2))}, i 36 > 7(6 Ikn Fe(3)),
"\!, . \ othe{wm‘
p(ryn,e,z)> min{p|3t(t=po(r,n, €, 2)&p > T“&P "'nFe(x))}» if lpo(T, nye, z),
I E otherwise.

Here by min{p|...} we mean the least finite part p with the respective property.
Using Lemma 5.2, we easily get

36 > 7(6 Ikn Fe(z)) = 'po(T,n,e,z) & (7, n,€,2).

Let us notice also that, according to Lemma 5.1 and the fact that there exist finitely
many &: & > 7, both functions g and g are computable in ("=,

Proposition 5.1. Letn > 1. If AC B is £0-admissible in every 12 enumer-
ation, then A has a £2 normal form. .

Proof. Assume that A does not have a £2 normal form. We have to construct
a 12 enumeration (£, B) in which A is not £9-admissible. The construction of the
enumeration (f, 8) will follow the scheme, described in the proof of Proposition 4.1.
We will, however, be more careful at the positive cases of the steps k = 3a + 1 and
k = 3a + 2, i.e. when we put 7% to be an arbitrary p > 7, with the respective
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property. Now we will choose this p more precisely. In addition, we will ensure
that every 7y is total, i.e. every q;*,1 < i < m, is a total predicate over Dom(7y).
(In fact, the last requirement is not essential for our construction. We will support
it only to facilitate the proof that (f,B) is a II enumeration.)

Ifé= (fa,H,s,q‘ls,...,qfn) is a finite part, let

= (fJ’H57QI’ vee ,Qm),

where ¢; 2 ¢ and gi(z1,...,%x,) = 0 whenever (z1,...,2,) € Dom(8)* and
-w'q, (z1,...,2k,;),1 £ 1 < m. Clearly §* = § and § is total.

Now we are ready to explain how to define 73 for each step k. Indeed, assume
that 73, is defined. Following the construction, described in the proof of Propo-
sition 4.1, we present a as a = (e,z,j). So putting k(a) = mm(] +1Ln-1)=
min((a)2 + 1,n — 1), we set .

_ _ {#(Tsa, k(a), (a)o, (a)1)t, if 3p 2 732(p IFi(a) Fla)o((a)1)),
T3a4+1 = .
T3a; otherwise,

In order to explain how to proceed at step 3a+2, look again at the construction
in the proof of Proposition 4.1. At this step we have that at least one s € B with
some special property exists. (Take an arbitrary s with this property, for example
take the first one in the enumeration so, s1,... of B). Since we will need to cite
this s in the future, let us denote it by r,. .

1((T3a41 *7a) ¥, 1,0, |73042| + 1), if 3p > (73041 *Ta) T,
Ta42 = o plbn Fo(|T3a41| +1)
(T3a+1 *7a) T, otherwise.

Finally, put 73543 = (T34+2 * 8a)™.

Now set '
f=Ufn Qi=J=q¢* 1<i<m.
k k

The fact that A is not £2-admissible in (f,B) follows immediately from the
proof of Proposition 4.1. What we claim here is that (f,"8) is a I[I2 enumeration,
i.e. that Dom(f) is a II in D(B), or equivalently, that N \ Dom(f) is r. e. in
D(8)("~1), Below we wﬂl see that N \ Dom({) is in fact r. e. in 0~V @ D(SB)

“hence (f,) is a I enumeration indeed.

Remark. Let us notice that we do not achieve more than we claim for the
complexity of Dom(f), since as is well known, for the F,-generic enumerations
(f,8), D(B)»~1 is Turing equivalent to 8~V @ D('B). |

Letl € N. Denote by a; the finite part (f|{0,1), (N\Dom(f))N[0,1),q1,--.,qm),
where each g; is the predicate Q; of B, restricted to the interval [0,!). Clearly,
a; C(f,B) and a; is total. The problem here is that we have at our disposal only
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the structure 8, not the whole enumeration ( f, B), so we cannot construct a;. We,
' however, can determine the finite part

B = (0;[0,1));q1,-.,qm)
Clearly, 8 is a;|@, hence, using Lemma 3.2, we get
. Bilkn Fe(z) <= oy lky Fe(z). (5.1)

From here for every p, e,z we get

uo(au,p,e,z) = po(Br,p, e,z) & play,p,e,x) ~ u(B,p, e, x).

Set
Ho =0, Hy = H,, \ Hy,_, for k> 0.

Clearly, H are disjoint and N \ Dom(f) = {J, Hi. Hence
z € N\ Dom(f) <= 3k(z € Hy).

Let us look closely how the sets Hj are constructed. We have Hj, h 9,

}fsa = J {Imsalsoslpl =1}, i 0 (rea, K(a), (@)o, (@)%,
e if ~1ps(730, K(a), (a)o, (a)s),

. \» '
Honsg = 4 Umsontl + 1,0, lpl =1}, if p Mlrsgan ) s el + 1)
ﬂv if —'!u((ﬁtﬂ-l 1‘9)+, n,a, 'T3a+l' + 1)°

Clearly, z € N \ Dom( f)ifz € Hysy10rz € Hga.,}‘g. Consider, for example,
the set H3s4+1 (the case with' H3g4o is similar). Suppose also that Hz, .y is not
empty. We have 73, C(f,B), T3a = oy for I = |734], s0 if we knew the length of 735, ~
we could compute t = po(ay, k(a), (a)o, (a)1) = ro(Br, k(a), (a)o, (a)1), using the
oracles #*~1) and D("B). Hence (the canonical index of) Hag41 = {|734l, . . -, |73a|+
t — 1} would be computable in §(*~1) @ D(B).

The problems here are two. The first one is that we cannot decide recursively in
0(»~1) @ D(B) whether H3a; # #. The second problem is that we cannot compute
the length |7,, using the oracles 1) and D(B). So our idea is to start a recursive
in 0™~ @ D(B) procedure that for every a computes consecutive approximations
19,1L,..., leading to the “real” length |7,|. Using the approximate lengths I2, we
will define finite sets H? that will be already recursive in 3"~ @ D('8). Not all
of the sets H; are approximations of our sets H,, but as we will see, their union
Ua,s HS coincides with U,H,, i. e. with N \ Dom(f). The rest of the -proof of
the proposition consists in precise definitions of these approximations and their
properties, and is gathered in the next four lemmas.
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We define by simultaneous recursion the functions 1} and t¥ as follows:
I12,=0, I9 =k for every k € N,s € N,

=1 for every k € N,
and for every k,s in N
rls+l+1 if s #l’:’t}’ .
I+, xfz,, = ,:t}&tpo&k:za&

ty _
41— ' dp > B ‘P "'k(a) F(a)o((a)l)a
T g+, lflkl—l’+l&t'>0&k 20+ 1&

ﬁ.Hk p"- Fa(lk)a

N

U in t,he remamed cases,
(1, if i3, #0124,
0, iflf_, =&t >0&k=2a&
. t |
pa1 _ { 3p > ﬁ;tt"‘ P IFia) Fla),((a)1),
k 0, 1fl’L_l‘+‘&t’>0&k 2a+1&
3p > B.H" P ""n Fo(l3),
\tx + 1, in the remamed cases.

Our first lemma establishes some basic properties of I} and t}.
Lemma 5.3. For everyk € N and s€ N |
() i <yt
(i) If < k+s;
i) <M =28 =k+s5+ 1
(iv) F+te <k+s+1;
V) g >0=> 1+t =k+s+1

Proof. Induction on k. The case k = 0 is by a straightforward induction on s.
Assume now that for some k > 0

VsRoy SQH & <k—-14s& <RI =0t =k+s), (52)

1t 1 Sk+s& (t_ >0, +th_ 1 =k+ ).

In order to establish (i) ~ (v) for k, we shall proceed by induction on s. For §=0
the only points that are not obvious are (i) and (iii). We consider the cases in the.
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definition of I}. #lk l,thenll—ll,.l-}-1-~(k—~1)+1+1—'k.+1
according to (5 2) Hence Il >19 =k, i e (i) and (iii) hold. ¥ )_, = 1}_,,
but I} # If (i. e. it is the second or the third case of the definition of 1}), then
i}= l° +1) =10 +1=k+1, hence again (i) and (iii) are true. They are evidently
true if i} =

Now suppose that the conditions (i) — (v) hold for some s. We are going to
check them for s+1. If I < If*?, then by induction hypothesis for s, If*! = k+s+1,
i. e. (ii) is true for s + 1. We check similarly conditions (iv) and (v), using the fact
that (iv) and (v) hold for s. To see that (i) and (iii) also hold for, s+ 1, we consider
separately the cases in the definition of Ig*2. If Ig*] # 1312 then If12 = 1812 41,
which is by (5.2) exactly (k—1)+(s+2)+1 = k + 8 + 2, so we checked (i) and
(iii) for s + 1. The next two cases of the definition of l}:+2 are treated similarly to
the case s = 0. The last case of the definition is again obvious. [ -

Clearly, the functions As.l} have finitely many different values (since they de-
pend on the switches in the values of As.l8, for m < k). This fact, combined with
the previous lemma, means that for every k there exists least Sy such that

RSP =304 0 . (53

The following additional properties follow directly or by an easy mductxon from
the definition of I}, Lemma 5.3 and the choice of Sj. }

Lemma 5.4. (i) 055 <5 <
(it) Sk =0=> Ly =k; \".'

(iii) Sk >0=> 15t =12* +1; N \
(iv) Sk >0= 15, =t ' \ _
(v) BV <12 & 5 < S = Im < KIS < 12); | .

(vi) 87l <if =2Vm> k(IS +1=13);
(vil) k<m= [ <13,.

Put Ly = I3~
Our next lemma makes connection between (the lengths of) the finite parts 7;
and the function I} (in fact, it clarifies the definition of this function).

Lemma 5.5. For every a € N we have that |3,41] = Laa, |T3a+2| = Log41
and [Tsq+3| = Lag41 + 1.

Proof. We have by definition that |73+3] = |T3a+2| + 1, hence we have to check
the first two equalities. We shall proceed by induction on a. Let a = 0. We shall
see in turn that |71} = L and |rp| = L; (|7o| = 0 by definition).

Case 1. 3p 2 7o(p k(o) Fio),((0)1)). In this case 71 = u(ro, k(0), (0)o, (0)1)*
and the length |11 of 7y is T' = po (70, £(0), (0)o, (0)1). Then clearly, I§ = 0,t§ = s+1
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for s <T,and [ =13 1 +t3 ' =T, tT =0. Therefore I = T,t§ = 0 for s > T,
so Lo =T, i. e. || = Ly.

Case 2. ~3p > 1o{p IFx©) F0),((0)1)). Then by definition 7y = 7o, the length
|r1] is O, and in this case Lo = 0, too.

Let us now see that |73| = L;. If |r3| = 0, then clearly |(m; * ro)*| = 1, hence
(m1 *19)* = oy and 7 is an appropriate extention of a;.

Case 1. 3p > (11 *10)*(p Ik Fo(|lr1] + 1)). Taking into account (5.1) and
the fact that |7y| = 0, we can rewrite equivalently this condition as 3p > Si(p Fn
Fy(1)), which is closer to the definition of {f and ¢{. Clearly, |r2| = T + 1, where
T = po((m1 * r9)*,n,0,1), and since in this case 15 = 0 for every s, using the
appropriate definitions, we notice that I = 1,t] = s + 1 for every s < T and
=01+t =T+1,¢T =0. Hence l§ = T+ 1,t§ = 0 for s > T, so
L1 =T + 1, which means that || = L.

Case 2. =3p 2 (11 * o) " (p ¥y Fo(jm] + 1)), or equivalently ~3p > Bi(p IFn
Fo(1)). It can be easily checked that in this case l" 1 for every s, hence L; =1,
which is exactly the length of 75. |

Suppose now that || = Lg > 0. We have Ly = °, hence lS° ! < l and
59 =13° +1 = [n| + 1. So|(ri *ro)t| = 10 and (7 * ro)+ is in fact ﬁ,so Now
using this fact and having in mmd the respective definitions, proceeding as in the
case |11| = 0, we see that |m| =

Now suppose that for some a the lemma is true. We have to check that |73544| =
Lza+2 and |T3a+5| = L2a+3. Indeed, by induction hypothesis, |T3q43| = Log41+1=
lzjri‘ + 1. We consider separately the cases Saq.+1 = 0 (hence Logq; = 2a + 1)
and Szq41 > 0, and obtain that [324%5' = [52%' + 1 = Lya41 + 1, which is exactly
|T3a+3]. Hence % Ssats is in fact T354.3. Now the condition dp > 73a43(p IFx(a+41)
Flas1)o{(a + 1)1)), whlch is used in the definition of 73444, is equivalent to Jp >
Bisrats (p Fr(a+1) Flatno((a + 1)1)). If Szay2 = S2a+1, then such p does not
exist, hence T3g4+4 = T3a+3, Lza+2 = Lga.H + 1, therefore |m3544) = Log42. If
S2a+2 > S2a+41, then Logyg = 153 "‘"’ 12:“++2‘ 2:1*2‘ However ts’?,_“ is in fact
po(T3a+3, k(a + 1), (a + 1), (a + 1)1) (the verification is as in the case a = 0). So
Laa+2 = |73a+3] + po(730+3, k(@ + 1), (a + 1)o, (@ + 1)1), which is, according to our
construction, the length of 73,44. In order to prove the equality Log43 = |T3a+5]

we proceed in a similar way. 0
Set

s AL -1, BT < &Vm < k(S = = 137 IHRm)
Hi= 0, else.

‘Let us notice that (for k > 0) if H # @, then I~} = If_,, hence the change
of the value of I~! is due to the existence of an appropriate p > Byz-1.

Since the function Ak, .13 is recursive in (*~1) @ D(B), the function H (k,s) =
the canonical index of Hj is recursive in §(*~1) @ D(B), too. Hence the set H =

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 41-62. 59



Uk,sH? is 1. e. in 81 @ D(B). We shall see below that N \ Dom(f) coincides
with H, hence N \ Dom(f) is r. e. in §(*~1) @ D('B), which will bring us to the
end of the proof of the proposition.

Lemma 5.6. N\ Dom(f) = Ug,H{.

Proof. For the first inclusion, let us see that H3gy1 = H2 * and H3gq2 =
H,a’_‘;_‘;‘ We may suppose that Hza41 and Hagy2 are nonempty. We shall consider
separately the cas& a=0anda>0. Ifa =0, then by Lemma 5.5, |11} = Lo = 130

and since Hy # 0, l > 0. Therefore ls° 1o = 13 = 0, hence

= {0 =1} = {0, Im| — 1} = Hy.
If a > 0, again by Lemma 5.5, |13,] = L2a-l+1 = I52*= +1. Now using Lemma 5.4
we get 152°"? lfa’:‘l + 1 = |73,| and ls’“‘ = |52~1 . Hence 15271 = |13,], while
133 = |73q41)- S0 Haay1 = {I527%,... zs=~ ~1}. If m < 2a, then I%, =I5~ for
every 8 > Sm, in particular, for every s > Sg.,, hence H, S2d {IS"“' ,e ls’“ -1}

The verification of the equality H3 42 = sz_‘;*i‘ is similar.

Conversely, take some Hf # 0. Clearly s < Si (otherwise [}~ :ﬁ I and

= 0). If 5 = Sk, as we saw above, H} = H3ay1 or Hagy, ependmg on whether

k 2a or k = 2a+1. Suppose now that s < Sx. We cannot clai a.nymore that H}
coincides with some H,. We shall see, however, that H 2C Hom Sm for some m < k
hence if z € Hj, then z € N\ Dom(f) again. Indeed since Hf # @, we have
l‘“ < {f and l‘ < lS“ Hence, by Lemma 5.4, there exist nl < k and s’ such that
l‘ -1 l‘ We may suppose that m is the minimal one with this property. Using
the definition of Hk, we get that s < s —1 and s 12> s-1+k—m. From
the last equality, s’ + m > s + k hence l’ =s+m>s+k= I§. On the other
hand, s'<s—-1 i.e. 8 ~=1<s~-1,so0by Lemma 5.4, 1!,,"1 <l‘,‘"l From here,
{12, -1 -1} < <"l lk -1} Usmg the minimality of m, one can easily get
that s’ is in fact Sm, hence {I£-1,...,18 ~1}=H5~. ‘

We can apply this idea of reﬁned refutxng enumerations to the constructions
used in the proofs of Proposition 4.2, Proposition 4.3 and Proposntxon 44. Thus
we obtain that the following is true: -

Proposition 5.2. (i) Letn 2 1. fACBis I'I?,-admz’ssible in every I1°
enumeration of A, then A has a 112 normal form.

(ii) Letn > 1. If the set AC B is £9- or I -admissible in every II2 enumeration
of A, then A has X0 normalform or I1° nonnalfonn

(m) Let the set A C B be arithmetically admissible in every arithmetical enu-
meration of U. Then there exists n > 1 such that A has T2 or II% normal
- form.
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In order to formulate our final results, we use a syntactical characterizations of
the sets that have £2 (I12) normal form, obtained in [8], Lemma 6.3, namely, that
a set has a =9 (I12) normal form iff it is 2 (II2) definable on 2. This statement,
combined with the above two propositions, brings us to our final result.

Theorem 5.1. Let n > 1. Then the following is true:

(i) If A C B is £%-admissible in every 12 enumemtzon, then A is £2 deﬁnable
on 2. g

(ii) If A C B is I3 -admissible in every II] enumeration, then A is IIo definable
on .

(iii) If A C B is £2-admissible or II -admissible in every II% enumeration, then
A is T2 definable or TI® definable on A.

(1v) If A C B is arithmetically admissible in every arithmetical enumeration, then
there ezists n > 1 such that A is £2 or I12 definable on 2.

Let us notice that the class of all I enumerations in points (i) - (iii) of the
above theorem cannot be reduced anymore. Indeed, let us take a set A, which is
definable by means of existential £2 formula (cf. [8)], but is not ©¢ definable on
A (it can be easily seen that such A does exist, if the structure 2 is interesting
enough). Clearly, A has a £2 associate in every L2 enumeration. Hence A is £9
admissible in every class of enumerations, that is included in the class of all £2
enumerations, and at the same time A is not ©2 definable on 2.
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