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0.0 Preface

This thesis is in the field of General Topology. In its title, however, some algebraical

notions are used. I will try to explain why this happens.

I will first say some words about the proximity structures.

In [86], Som Naimpally wrote: “The idea of nearness is one of those rare items

in Mathematics – a concept which is simultaneously intuitive and rigorous. It is so

intuitive that to quote Lagrange it is possible to “make it clear to the first person one

meets on the street” ... Its simplicity and depth provide a powerful tool in research in

Topology and Functional Analysis.” I completely agree with this opinion.

F. Riesz was the first mathematician who formulated (in 1908) a set of axioms to

describe the notion of nearness (or, proximity) of pair of sets (in fact, he used the term

linkage (or, chaining) (in German, Verkettung)) (see [98]). The paper [98] is a continu-

ation of the paper [97] (published in Hungarian in 1906) which, in turn, was provoked

by the M. Fréchet paper [57]. In [57], M. Fréchet proposed the fundamental notion of

a metric space (the importance of which for the whole mathematics is unnecessary to

explain), and the more general notion of an L-space (where “L” comes from “Limit”)

(which lies in the ground of the modern theory of sequential convergence spaces (see

[58])). With the introducing of these notions, M. Fréchet made the first attempts for

describing in an abstract form that structure of Euclidean spaces and their subspaces

which makes possible the defining of continuous functions between them. (Recall that

in that time the notion of a topological space was still not defined, as well as the no-

tion of a net, the Cantor Naive Theory of Sets had not still completed thirty years

and the same was valid for the fundamental notions of neighborhood of a point, open

and closed set, accumulation point, as well as closure and interior of a set, which were

introduced by G. Cantor in the realm of subsets of Euclidean spaces.) In [97], Riesz

showed, with the help of an important example, that Fréchet’s “countable” approach

does not suffice. Since, as I have already mentioned, the notion of a net was still not

created, Riesz proposed the concept of accumulation points of subsets to be defined

satisfying several axioms instead of the axiomatically described by Fréchet concept of

limits of sequences. The relation of linkage, introduced in [98], was an instrument for

determining in a natural way the accumulation points of subsets. The axioms of the

relation of linkage, proposed by Riesz, are the following (we will write “A#B” for “A

is linked to B”, where A and B are subsets of some set X):

1) (A#B, A ⊆ C and B ⊆ D) implies (C#D),
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2) (A ∪B)#C implies that A#C or B#C,

3) ∀x ∈ X, (A#{x}, B#{x}) implies that A#B,

4) ∀x, y ∈ X, (x ̸= y) implies ({x}(−#){y}) (where (−#) is the negation of #).

It is not explicitly written in [98] that the relation # is symmetric (i.e., (A#B) →
(B#A)) but it seems that it is taken for granted. If one considers a point x ∈ X as an

accumulation point of a subset A of X iff x#A, then the axioms 1)-4) correspond to

those for accumulation points given in [97]. The basic example of a set with a relation

of linkage comes from metric spaces: A is linked to B iff the distance between A and

B is equal to zero. The paper [98] is interesting not only with the introducing of the

relation of linkage but also with the Riesz idea of adding to the original set X some

ideal points which are systems of subsets of X now known as clusters. This is very

close to what was done by P. S. Alexandroff, H. Freudenthal, P. Samuel, S. Leader,

W. Thron (and others) many years later. A notion of a cluster, analogous to that of

Riesz, plays a central role in the present thesis as well. (For excellent expositions of the

ideas of Riesz mentioned above, see [12, 76, 111].) So, as it is written in [12], “F. Riesz

anticipated what was studied in detail much later”. He didn’t succeed in the creating

of an expedient notion like that of the present notion of a topological space but he

showed that Fréchet’s notion of an L-space is not enough general and introduced in

mathematics the first example of a proximity-type relation. Moreover, as it is now well

known, his approach could lead to the creating of a notion equivalent to the modern

notion of a topological space. I’m now going to show how this could be done because,

doing this, I will have the possibility to demonstrate that the axioms of the modern

proximity structures arise in a very natural way.

Let us first reason in the realm of Euclidean spaces. Let’s say that a point x

of an Euclidean space X is near to a subset A of X (and write xδA) if x is a limit

of a sequence of points of A. Then, having in mind the properties of the convergent

sequences, it is natural to introduce the following axioms:

(PS1) (xδA) → (A ̸= ∅),

(PS2) ({x} ∩ A ̸= ∅) → (xδA),

(PS3) (xδ(A ∪B)) ↔ [(xδA) or (xδB)],

(PS4) [xδA and (∀a ∈ A)(aδB)] → (xδB).

(The last axiom is a translation of the following theorem valid in Euclidean spaces:

if x = limi→∞ ai and ai = limj→∞ bij then there exist sequences of positive integers
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i1, i2, . . . and j1, j2, . . . such that x = limk→∞ bikjk .) Now, if we set, for every A ⊆ X,

cl(A) = {x ∈ X | xδA},

then the above axioms can be rewritten in the following form (where we will write

clX(A) instead of cl(A)):

(PS1′) clX(∅) = ∅,

(PS2′) A ⊆ clX(A),

(PS3′) clX(A ∪B) = clX(A) ∪ clX(B),

(PS4′) clX(clX(A)) = clX(A).

So, we obtained a function clX : P (X) −→ P (X), where P (X) is the power set of

X, which has the properties (PS1′)-(PS4′) (i.e., a Kuratowski closure operator). Note

that the definition of Heine of a continuous function f : X −→ Y can be expressed in

the following form: f is continuous iff

∀A ⊆ X, f(clX(A)) ⊆ clY (f(A)).(1)

(Indeed, the definition of Heine says that f : X −→ Y is continuous iff for every

convergent sequence (xn) of points of X, x = limn→∞ xn implies f(x) = limn→∞ f(xn),

i.e., for every A ⊆ X, the points of clX(A) are mapped by f in clY (f(A)).)

Let’s now forget that X is an Euclidean space. Let X be an arbitrary abstract

set and clX : P (X) −→ P (X) be a function satisfying the axioms (PS1′)-(PS4′). Then

the pair (X, clX) is exactly the Kuratowski notion of a topological space. Also, it is

natural to introduce the following definition: a function f : (X, clX) −→ (Y, clY ) is

said to be continuous iff it satisfies condition (1).

Note that if, in the above definition of the relation δ, the sequences were replaced

by nets, then cl(A) would coincide with clX(A) (which is just the closure of A in the

topological space (X, clX)) (otherwise, cl(A) is, in general, only a subset of clX(A)).

Hence, when δ is defined by means of nets, the given above definition of a continuous

function f : (X, clX) −→ (Y, clY ) can be rewritten as follows: f is continuous iff for

every x ∈ X and each A ⊆ X,

(xδA) → (f(x)δ′f(A))

(where δ′ places the role of δ in Y ). This form of the definition of a continuous function

reflects in a best way our intuitive idea of what had to be a continuous function.
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So, we have shown that the idea of introducing the relation “nearness between

points and subsets of a set” leads to the definition of a topological space. In fact,

this relation can be also regarded as a topological structure. Indeed, let (X, τ) be

a topological space and cl be the generated by it closure operator. Then cl satisfies

axioms (PS1′)-(PS4′). Define, for each x ∈ X and each A ⊆ X, xδclA iff x ∈ cl(A).

Then it is easy to see that δcl satisfies axioms (PS1)-(PS4). Conversely, let δ be a

relation between points and subsets of a set X satisfying axioms (PS1)-(PS4). Define,

for each A ⊆ X,

clδ(A) = {x ∈ X | xδA}.

Then it is obvious that clδ satisfies axioms (PS1′)-(PS4′). Moreover, using the above

notation, we have that δ = δclδ and cl = clδcl . Thus, we can define topological spaces

as pairs (X, δ) consisting of an abstract set X and a relation δ between the points

and subsets of X which satisfies axioms (PS1)-(PS4). Hence, we have shown that the

topological structure on a set X is in fact a kind of a “nearness structure” on X. This

nearness structure is, however, not symmetrical (in the sense that it defines a relation

between points and sets and not between sets and sets). If we symmetrize it (i.e., if

we replace x and {x} with C in the axioms (PS1)-(PS4) and add the symmetry axiom

“AδB ↔ BδA”), then we will come to the notion of a Lodato proximity (see [79, 80]).

The ideas of F. Riesz were for a long time almost forgotten. It was V. A. Efremovič

who defined proximity spaces in his lecture “Geometry of infinite proximity” at a math-

ematical conference in Moscow in 1936. The motivation of Efremovič was geometrical:

he noted that, e.g., the Euclidean plane and the Lobačevsky plane are homeomorphic

but no bijective map preserves “infinitesimality” of subsets. He published his results

more than 10 years later (see [49, 50, 51, 52]). In these papers he introduced the axioms

of what we now call Efremovič proximity spaces (or EF-proximity spaces) and obtained

some significant results: 1) the topologies induced by EF-proximities are completely

regular topologies, 2) any two far sets in a proximity space X are functionally sepa-

rated by a proximally continuous function, and 3) a mapping between metric spaces

is uniformly continuous iff it is proximally continuous. Many other beautiful results

about proximities were also obtained by N. S. Ramm and A. S. Švarc jointly with

V. A. Efremovič or separately. It can be said, however, that the theory of proximity

spaces became an important part of the General Topology after the works of Ju. M.

Smirnov on proximity spaces (see [103, 104, 105]) and especially after his famous Com-

pactification Theorem which revealed completely the connection between proximities
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and compact extensions (see [103]). After these basic results of the Moscow proximity

school, the theory of proximity spaces was developed very rapidly. A good introduc-

tion in this theory is the book [87] of S. Naimpally and B. Warrack. We will mention

only that E. Čech [118] defined a more general notion of a proximity than that of

EF-proximity and that the Smirnov Compactification Theorem was generalized by S.

Leader [78], who introduced the notion of a local proximity (which plays an important

role in this thesis) and proved his Local Compactification Theorem.

The proximity spaces are pairs of a set and a proximity relation on the power set

of this set. Clearly, the power set of any set can be regarded as a Boolean algebra with

respect to the natural set-theoretical operations – this is the power set algebra. By the

Lindenbaum-Tarski Theorem, a Boolean algebra is isomorphic to a power set algebra

iff it is complete and atomic. Hence, there exist many Boolean algebras which are not

isomorphic to any power set algebra. Thus, it seems very natural to study the pairs

of a Boolean algebra and a proximity-type relation on it, and to regard these objects

as some generalizations or variations of proximity spaces. Could such investigations

lead to some interesting results about topological spaces? The answer to this question

was given by M. Stone [108] by means of his Duality Theorem which is regarded as

one of the most significant theorems in mathematics (see, e.g., the excellent book [75]

of P. Johnstone where the influence of Stone’s Duality Theorem on almost all areas

of the modern mathematics is revealed). The Stone Duality Theorem was created

before the birth of EF-proximity spaces and it doesn’t need the notion of a proximity

because the proximity-type relation used in Stone’s Duality Theorem is hidden; it is the

following one: two elements a and b of a Boolean algebra are near iff a ∧ b ̸= 0. This

nearness relation satisfies almost all of the Efremovič axioms of EF-proximity. The

Stone Duality Theorem shows that all information about a zero-dimensional compact

Hausdorff space X is contained in the Boolean algebra of its clopen (= closed and open)

subsets, i.e., having the Boolean algebra CO(X) of all clopen subsets of X, one can

reconstruct, up to homeomorphism, the space X; also, having a Boolean algebra B, one

can construct a unique, up to homeomorphism, zero-dimensional compact Hausdorff

space X such that the Boolean algebras CO(X) and B are isomorphic. In this way,

the theory of zero-dimensional compact Hausdorff spaces transforms into the theory of

Boolean algebras, and conversely. That’s why, the fact that many important theorems

in the theory of Boolean algebras are created by topologists, and conversely, is not a

surprise. Such things happen always when there is a duality between two categories:
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the existence of such a duality is a powerful instrument for the investigation of the

both categories. The Stone Duality Theorem was extended to the category HC of

compact Hausdorff spaces and continuous maps by H. de Vries [24]. The objects of the

dual category DHC constructed by de Vries are pairs consisting of a Boolean algebra

and a proximity-type relation on it; the axioms which this relation satisfies almost

coincide with the axioms of EF-proximities. The de Vries Duality Theorem shows that

the theory of compact Hausdorff spaces and all continuous maps between them is in

fact the theory of the Boolean algebras endowed with a special kind of proximity-type

relations. By the de Vries Duality, the dual object of a compact Hausdorff space X is

the Boolean algebra RC(X) of its regular closed subsets together with the relation ρX

on RC(X) defined by

FρXG ⇐⇒ F ∩G ̸= ∅.

The whole information about the space X (up to homeomorphism) is contained in

the pair (RC(X), ρX). This permits to study compact Hausdorff spaces by means of

algebraical methods, and conversely. So, the investigation of proximity-type relations

on Boolean algebras transforms through the technique of duality or equivalence (or

isomorphism) functors into an investigation of different categories of topological spaces.

Let us also recall that in the case of the Stone Duality we were able to restore the points

of a zero-dimensional compact Hausdorff space knowing only the Boolean algebra of

its clopen sets, and, analogously, in the case of de Vries’ Duality we were able to

restore the points of a compact Hausdorff space X knowing only the Boolean algebra

of its regular closed sets and the relation ρX . The philosophical significance of these

facts can be understand with the help of the ideas of A. N. Whitehead [123] and T.

de Laguna [23]. Briefly speaking, their theory (known as region-based theory of space

(or theory of events, or geometry of solids) (see [120, 121, 122, 123, 23])) is based on

a certain criticism of the Euclidean approach to the geometry, where the points (as

well as the straight lines and planes) are taken as the basic primitive notions. A. N.

Whitehead and T. de Laguna noticed that points, lines and planes are quite abstract

entities which have not a separate existence in reality and proposed to put the theory

of space on the base of some more realistic spatial entities. This new approach to the

theory of space (and time) was influenced by the Einstein Theory of Relativity. In

[120], A. N. Whitehead (who co-authored, with B. Russell, the famous book “Principia

Mathematica”) wrote:

“...It follows from the relativity theory that a point should be definable in terms of the
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relations between material things. So far as I am aware, this outcome of the theory has

escaped the notice of mathematicians, who have invariably assumed the point as the

ultimate starting ground of their reasoning. Many years ago I explained some types

of ways in which we might achieve such a definition, and more recently have added

some others. Similar explanations apply to time. Before the theories of space and

time have been carried to a satisfactory conclusion on the relational basis, a long and

careful scrutiny of the definitions of points of space and instants of time will have to

be undertaken, and many ways of effecting these definitions will have to be tried and

compared. This is an unwritten chapter of mathematics...”

In Whitehead [123], the notion of a region is taken as a primitive notion: it is an

abstract analog of a spatial body; also some natural relations between regions are

regarded. In [121], Whitehead considered some mereological relations like “part-of”,

“overlap” and some others, while in [123] he adopted from de Laguna [23] the relation of

“contact” (“connectedness” in Whitehead’s original terminology) as the only primitive

relation between regions except the relation “part-of”.

Let us note that neither Whitehead nor de Laguna presented their ideas in a

detailed mathematical form.

The ideas of de Laguna and Whitehead lead naturally to the following general

programme (or general region-based theory of space):

• for every topological space X belonging to some class C of topological spaces,

define in topological terms:

(a) a family R(X) of subsets of X that will serve as models of Whitehead’s

“regions” (and call the elements of the family R(X) regions of X);

(b) a relation ρX on R(X) that will serve as a model of Whitehead’s relation of

“contact” (and call the relation ρX a contact relation on R(X));

• choose some (algebraic) structure which is inherent to the families R(X) and

contact relations ρX , forX ∈ C, fix some kind of morphisms between the obtained

(algebraic) objects and build in this way a category A;

• find a subcategory T of the category Top of topological spaces and continuous

maps, with objects belonging to the class C, which is equivalent (or isomorphic) or

dually equivalent to the category A trough a (contravariant) functor that assigns

to each object X of T the chosen (algebraic) structure of the family of all regions

of X.
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If all of this is done then, in particular, the chosen (algebraic) structure of the

regions of any object X of T is sufficient for recovering completely (of course, up to

homeomorphism) the whole space X. Hence, in this way, a “region-based theory” of

the objects and morphisms of the category T will be obtained.

Of course, during the realization of this programme, one can find the category A

starting with the category T, if the latter is the desired one.

The Stone Duality [108] between the category of all Boolean algebras and their

homomorphisms and the category of all compact zero-dimensional Hausdorff spaces

and all continuous maps between them, which we mentioned above, is in fact the first

realization of this programme, although M. Stone came to his theory guided by ideas

which are completely different from those of Whitehead and de Laguna. Clearly, in

Stone’s Duality, the clopen subsets of compact zero-dimensional Hausdorff spaces serve

as models of the regions and the algebraic structure on the regions is that of a Boolean

algebra; the contact relation ρX here is hidden, as we have already mentioned, because

it can be defined by the Boolean operations. Another celebrated example is the localic

duality (see, e.g., [75, Corollary II.1.7]) between the category of all spatial frames and

all functions between them which preserve finite meets and arbitrary joins and the

category of all sober spaces and all continuous maps between them: in it the open

subsets of sober spaces serve as models of the regions, the algebraic structure on the

regions is that of a spatial frame, and, as above, the contact relation ρX between the

regions is hidden because it can be recovered by the lattice operations. The de Vries

duality [24] for the category HC of all compact Hausdorff spaces and all continuous

maps between them, which was also mentioned above, is the first realization of the

ideas of the general region-based theory of space in their full generality and strength

(and again, as it seems, de Vries was unaware of the papers [23] and [123]): the models

of the regions in de Vries’ theory are the regular closed sets, the algebraic structure

on the regions is that of a Boolean algebra, and, in contrast to the case of the Stone

duality and localic duality, the contact relation between the regions, which is in the

basis of de Vries’ duality theorem, cannot be derived from the Boolean structure on the

regions. Note that in [24], instead of the Boolean algebra RC(X) of regular closed sets,

the Boolean algebra RO(X) of regular open sets was regarded (RO(X) and RC(X) are

isomorphic Boolean algebras); also, instead of the relation ρX on the set RC(X) (see

the description of ρX above), de Vries used in [24] the so-called “compingent relation”

between regular open sets whose counterpart for RC(X) is the relation ≪X , defined
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by

F ≪X G ⇐⇒ F ⊆ int(G),

for F,G ∈ RC(X) (this relation is similar to the topogenous order in the sense of Á.

Császár [22]); the relations ρX and ≪X are inter-definable. Two more realizations of

this general programme were accomplished by V. V. Fedorchuk [54] (it seems that he

was also not aware of the ideas of Whitehead and de Laguna). He obtained a Duality

Theorem and an Equivalence Theorem concerning the category of compact Hausdorff

spaces and quasi-open maps. The regions and the chosen algebraic structure on the

regions are the same as in the case of de Vries’ Duality, but the morphism are different.

In this thesis, I present my contributions to the general region-based theory of

space and to the region-based theory of space, and their applications in General Topol-

ogy. These contributions are some duality, equivalence or isomorphism theorems con-

cerning two kinds of categories: categories whose objects are topological spaces, and

categories having as objects pairs of a Boolean algebra and a proximity-type relation on

it. The thesis is based mainly on my papers [27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 117].

My joint papers with D. Vakarelov [41, 42, 43] also fit very well to the topic of the the-

sis but they are not included in it because, otherwise, some more 100 pages should be

added. Only some definitions from [41] are used here. However, the papers [41, 42, 43]

have to be regarded as an irreversible part of my contributions to the topic of the

thesis. The same is valid for the paper [44] because a generalization of a theorem of

Iv. Prodanov [95], presented in it, is used in [39].

In the thesis, I present my generalizations of the famous Stone Duality Theo-

rem, of the Duality Theorems of de Vries and Fedorchuk, as well as of the Equivalence

Theorem of Fedorchuk. Some isomorphism theorems for Scott and Tarski consequence

systems (which are pairs of a set X and a proximity-type relation on the power set

P (X), and arise naturally in Logic and Theoretical Computer Science) are proved as

well. Some applications of the results mentioned above are presented. These applica-

tions are in the field of General Topology. In particular, a mathematical realization of

the original philosophical ideas of A. N. Whitehead for Euclidean spaces is obtained.

The structure of the thesis is the following. In the preliminary Chapter 0, I in-

troduce some notation and list some of the definitions, which are necessary for the

exposition; they are from the following fields: general topology, category theory and

the theories of proximity spaces and Boolean algebras. Of course, the given list of

definitions is far from completeness and in the text I either refer to some textbooks or
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recall explicitly some of the necessary definitions. I list, as well, very few facts from

the areas mentioned above, mainly in order to introduce some notation which I use

throughout the text. In Chapter 1, based on the paper [117], I present the basic notion

of a contact algebra (introduced in [41]) and some of its specializations, the notion of

an MVD-algebra, and a new proof of the Roeper Representation Theorem [99] which is

of great importance for this thesis. This new proof is based on the lattice-theoretical

generalizations (presented in [117]) of some well-known theorems from the theory of

proximity spaces. The new proof of Roeper’s Representation Theorem, given here, is

at the root of the proofs of my generalizations of de Vries’ ([24]) and Fedorchuk’s ([54])

Duality Theorems and Fedorchuk’s Equivalence Theorem ([54]). These generalizations

are presented in Chapter 2, which is based on the papers [27, 28, 29, 31]. I extend the

de Vries Duality to the category of locally compact Hausdorff spaces and continuous

maps, and Fedorchuk’s Duality (as well as Fedorchuk’s Equivalence) to the category

of locally compact Hausdorff spaces and continuous skeletal maps; I also prove many

other duality theorems about some cofull subcategories of the categories mentioned

above. In Chapter 3, whose exposition follows that of the paper [33], using the ideas

developed in Chapter 2, I extend the Stone Duality to the category of zero-dimensional

locally compact Hausdorff spaces and continuous maps and obtain, as well, some du-

ality theorems for certain cofull subcategories of this category. The next Chapter 4

of the thesis contains many applications in the field of general topology of the results

obtained in the previous chapters. In its first section, based on the paper [40], I in-

troduce, using some ideas connected with the MVD-algebras, a class of non-symmetric

proximities and construct by means of them all Hausdorff locally compact extensions

of a Tychonoff space. In this way I obtain a new generalization of the famous Smirnov

Compactification Theorem [103]. The second section of Chapter 4 is based on the

results of the paper [32]. In it, using the duality theorems proved in Chapter 2, I char-

acterize the functions between Tychonoff spaces which have continuous extensions of

special kind (namely, I regard the following kinds of map extensions: open, quasi-open,

perfect, skeletal, injective, surjective) over arbitrary, but fixed, Hausdorff local com-

pactifications of these spaces; in particular, I generalize many results of Smirnov [103],

Leader [78], Poljakov [89], Ponomarev [90] and Tăımanov [6]. In section 3 of Chapter

4, based on the paper [30], I regard an analogous problem to that discussed in section

2, but now I’m interested only in map extensions over Hausdorff zero-dimensional local

compactifications. In the proofs, presented in this section, I use the duality theorems
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from Chapter 3. I obtain, in particular, a generalization of Dwinger’s Compactification

Theorem [48] and of many results of Banaschewski [8] and Bezhanishvili [13]. In the

last fourth section of Chapter 4, based on the paper [34], I obtain a Whiteheadian-

type description of Euclidean spaces, spheres, tori and Tychonoff cubes, presenting in

this way a mathematical realization of the original philosophical ideas of Whitehead

[123, 121, 122] for Euclidean spaces. In the last Chapter 5, based on the paper [39],

an isomorphism theory for Scott consequence systems (introduced by D. Vakarelov

in [113] in an analogy to a similar notion given by D. Scott in [100]) and for Tarski

consequence systems (see [59, 113]) is developed. In this way, it is shown that there

exist a very strong connection between the theory of Scott and Tarski consequence

systems (which lies in the field of logic) and the theory of some topological objects,

namely, some class of hyperspaces. I introduce the category SSyst of Scott conse-

quence systems and some natural morphisms between them and show, in particular,

that the category of distributive lattices and lattice homomorphisms is isomorphic to

a reflective full subcategory of the category SSyst.

Let me add that in the beginning of each chapter and of some of the sections, a

detailed description of the problems, regarded in the corresponding chapter or section,

is given; also, the history of these problems, their motivation, the main results obtained

previously in connection with them, as well as the aims of my investigations and a brief

description of the main obtained results are presented.

Sections and displayed formulae are numbered consecutively within each chap-

ter, with the chapter number included. When it is necessary, the sections are divided

in subsections which are numbered in the same manner as sections. All theorems,

propositions, lemmas, definitions, examples, remarks etc. shared only one numbering

sequence, i.e., they are not numbered independently. Thus, when I cite a text-unit, it

is not necessary to mention its kind, i.e., to explain whether it is a theorem, definition,

etc. For example, by 4.3.2.1 (or by Proposition 4.3.2.1) I mean the first text-unit in

Subsection 2 of Section 3 of Chapter 4 (which in this thesis happens to be a propo-

sition). So, the text-units have four coordinates. The displayed formulas, however,

have only two coordinates: the first of them is the number of the chapter in which the

corresponding formula appears and the second is its serial number in the numbering

sequence of the displayed formulas in the respective chapter. For example, by (2.11)

I mean the eleventh displayed formula in Chapter 2. Of course, not each of the dis-

played formulae is supplied with a number. The above explanation concerns only those
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of them which are numbered.

Let me explain how I form the names of the categories in this thesis. The letter

“C” stays for “compact spaces”, “L” stays for “locally”, “H” – for “Hausdorff”, “P”

– for “perfect maps”, “Q” – for “quasi-open maps”, “O” – for “open maps”, “S”

– for “skeletal maps”. For example, “HLC” means “the category of locally compact

Hausdorff spaces and continuous maps”, and “POHLC” means “the cofull subcategory

of the category HLC determined by the open perfect maps” (i.e., POHLC is the

category of locally compact Hausdorff spaces and open perfect maps). When I define

a dual (resp., equivalent) category of a subcategory K of the category Top of all

topological spaces and continuous maps, I denote it by DK (resp., by EK).

Finally, I want to express my gratitude to Professor D. Vakarelov who introduced

me to the ideas of Whitehead and de Laguna and called my attention to the paper [99]

of P. Roeper, which is of great importance for this thesis. I’m very thankful to him for

the wonderful collaboration as well.
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Chapter 0

Foreword

0.1 Notation

0.1.1 Concrete objects

0.1.1.1. We denote by:

• N+ the positive natural numbers,

• R the real line (with its natural topology),

• Sn (where n ∈ N+) the n-dimensional sphere (with its natural topology),

• D the set of all dyadic numbers of the interval (0, 1),

• Q the topological space of all rational numbers with their natural topology,

• I the subspace [0, 1] (= {x ∈ R | 0 ≤ x ≤ 1}) of R,

• 2 the two-point set {0, 1} endowed with the discrete topology and the Boolean

algebra {0, 1} with 0 ̸= 1.

0.1.2 General notation

0.1.2.1. If X is a set then we will denote by

P (X)

the power set of X, by

|X|
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the cardinality of X, and by

Fin(X)

the set of all non-empty finite subsets of X.

0.1.2.2. Let X and Y be sets. If f : X −→ Y is a function, M ⊆ X and Z ⊆ Y then:

• f |M is the restriction of f having M as a domain and Y as a codomain, i.e.,

f |M :M −→ Y,

• f�M is the restriction of f having M as a domain and f(M) as a codomain, i.e.,

f�M :M −→ f(M),

• fZ is the restriction of f with domain f−1(Z) and codomain Z, i.e.,

fZ : f−1(Z) −→ Z,

• if X ⊆ Y then we will denote by

iX,Y : X −→ Y

(or, simply, by iX) the function defined by iX(x) = x, for every x ∈ X,

• we will set

f#(M) = {y ∈ Y | f−1(y) ⊆M},

• if A ⊆ P (X) (resp., B ⊆ P (Y )) then we will write

f(A) (resp., f−1(B))

for the set {f(A) | A ∈ A} (resp., {f−1(B) | B ∈ B}).

0.1.2.3. If (A,≤) is a poset and a ∈ A, we set

↓A (a) = {b ∈ A | b ≤ a}

(we will write even “ ↓ (a)” instead of “ ↓A (a)” when there is no ambiguity); if B ⊆ A

then we set

↓ (B) =
∪

{↓ (b) | b ∈ B}.
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0.1.2.4. If C denotes a category, we write X ∈ |C| if X is an object of C, and

f ∈ C(X,Y ) if f is a morphism of C with domain X and codomain Y .

0.1.2.5. If (X, τ) is a topological space andM is a subset ofX, we denote by cl(X,τ)(M)

(or simply by cl(M) or clX(M)) the closure ofM in (X, τ) and by int(X,τ)(M) (or briefly

by int(M) or intX(M)) the interior of M in (X, τ).

The set of all clopen (= closed and open) subsets of a topological space X will

be denoted by

CO(X)

and the set of all compact open subsets of X by

KO(X).

0.1.2.6. We denote by:

• Set the category of sets and functions,

• Top the category of topological spaces and continuous maps,

• HC the category of compact Hausdorff spaces and continuous maps,

• HLC the category of locally compact Hausdorff spaces and continuous maps,

• PHLC the category of locally compact Hausdorff spaces and perfect maps,

• QHC the category of compact Hausdorff spaces and quasi-open maps,

• SHLC the category of locally compact Hausdorff spaces and continuous skeletal

maps,

• PSHLC the category of locally compact Hausdorff spaces and skeletal perfect

maps,

• OHLC the category of locally compact Hausdorff spaces and open maps,

• OHC the category of compact Hausdorff spaces and open maps,

• POHLC the category of locally compact Hausdorff spaces and open perfect

maps,

• Stone the category of all compact Hausdorff zero-dimensional spaces (= Stone

spaces) and their continuous maps,
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• BoolSp the category of zero-dimensional locally compact Hausdorff spaces (=

Boolean spaces) and continuous maps,

• PBoolSp the category of zero-dimensional locally compact Hausdorff spaces and

perfect maps,

• SBoolSp the category of zero-dimensional locally compact Hausdorff spaces and

continuous skeletal maps,

• OBoolSp the category of zero-dimensional locally compact Hausdorff spaces and

open maps,

• QPBoolSp the category of zero-dimensional locally compact Hausdorff spaces

and quasi-open perfect maps,

• POBoolSp the category of zero-dimensional locally compact Hausdorff spaces

and open perfect maps,

• QStone the category of compact zero-dimensional Hausdorff spaces and quasi-

open maps,

• OStone the category of compact zero-dimensional Hausdorff spaces and open

maps,

• BoolAlg the category of Boolean algebras and Boolean homomorphisms,

• CBool the category of Boolean algebras and complete Boolean homomorphisms,

• OBool the category of Boolean algebras and Boolean homomorphisms φ having

lower adjoint ψ (i.e., the pair (ψ, φ) forms a Galois connection),

• DLat the category of distributive lattices and lattice homomorphisms,

• Frm the category of all frames and frame homomorphisms.

0.2 Category theory

0.2.1 Some definitions

We will now remind some of the basic definitions in category theory.
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Definition 0.2.1.1. A category is a quadruple A = (O, hom, id, ◦) consisting of:

(1) a class O, whose members are called A-objects,

(2) for each pair (A,B) of A-objects, a set hom(A,B), whose members are called A-

morphisms from A to B (or, simply, morphisms) (the statement “f ∈ hom(A,B)” is

usually expressed by “f : A −→ B”),

(3) for each A-object A, a morphism idA ∈ hom(A,A), called the A-identity on A,

(4) a composition law associating with each f ∈ hom(A,B) and each g ∈ hom(B,C)

an A-morphism g ◦ f ∈ hom(A,C), called the composite of f and g, subject to the

following conditions:

(a) composition is associative,

(b) A-identities act as identities with respect to the composition,

(c) the sets hom(A,B) are pairwise disjoint.

For simplicity, when A = (O, hom, id, ◦) is a category, we write

|A|

instead of O, and

A(A,B)

instead of hom(A,B).

Definition 0.2.1.2. Let A be a category and A,B ∈ |A|. A morphism f ∈ A(A,B)

is called an isomorphism provided that there exists a morphism g ∈ A(B,A) with

g ◦ f = idA and f ◦ g = idB.

Definition 0.2.1.3. A category A is said to be a subcategory of a category B provided

that the following conditions are satisfied:

(i) |A| ⊆ |B|,

(ii) for each A,B ∈ |A|, A(A,B) ⊆ B(A,B),

(iii) for each A ∈ |A|, the B-identity on A is the A-identity on A,

(iv) the composition law in A is the restriction of the composition law in B to the

morphisms of A;

A is called a full subcategory of B if, in addition to the above, for each A,B ∈ |A|,
A(A,B) = B(A,B).

We say that a subcategory A of a category B is a cofull subcategory if |A| = |B|.
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Definition 0.2.1.4. The opposite category Cop of a category C has the same objects

as C, and a morphism f : C −→ D in Cop is a morphism f : D −→ C in C. That

is Cop is just C with all of the morphisms formally turned around. It is convenient

to have a notation to distinguish an object (resp. morphism, composition) in C from

the same one in Cop. Thus, let us write (in this definition only) f̄ : D̄ −→ C̄ in Cop

for f : C −→ D in C and analogously for the composition in Cop. With this notation

we can define the composition and identities in Cop in terms of the corresponding

operations in C, namely,

idC̄ = idC , and

f̄ ◦̄ḡ = g ◦ f.

Definition 0.2.1.5. If A and B are categories, then a covariant functor (resp., con-

travariant functor) F from A to B is a function that assigns to each A ∈ |A| a

B-object F (A), and to each f ∈ A(A,B) an F (f) ∈ B(F (A), F (B)) (resp., F (f) ∈
B(F (B), F (A))), in such a way that

(1) F preserves identity morphisms, and

(2) F (f ◦ g) = F (f) ◦ F (g) (resp., F (f ◦ g) = F (g) ◦ F (f)) whenever f ◦ g is defined.

The covariant and contravariant functors F from A to B will be denoted by

F : A −→ B.

In the sequel, by a “functor”, we will mean a “covariant functor”.

Note that any contravariant functor from A to B is a covariant functor from

A to Bop (or from Aop to B) so that we can even avoid the use of the notion of a

contravariant functor. However, in many cases it is very convenient to have such a

notion.

For any category A, there is the identity functor IdA : A −→ A defined by

IdA(A) = A for every A ∈ |A|, and IdA(f) = f for every f ∈ A(A,B).

If F : A −→ B and G : B −→ C are two functors then the composite functor

G ◦ F : A −→ C is defined by (G ◦ F )(f) = G(F (f)) and (G ◦ F )(A) = G(F (A)), for

any A-morphism f and any A-object A.

Definition 0.2.1.6. Let F : A −→ B be a functor or a contravariant functor; then:

• F is called faithful (resp., full) provided that all the hom-set restrictions are

injective (resp., surjective),
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• F is called isomorphism-dense if for any B ∈ |B| there exists A ∈ |A| such that

F (A) is isomorphic to B.

A functor (resp., a contravariant functor) F is called an equivalence (resp., dual-

ity) if it is full, faithful, and isomorphism-dense.

Two categories A and B are equivalent (resp., dually equivalent) if there exists

an equivalence (resp., duality) functor from A to B.

A functor F : A −→ B is called an isomorphism provided that there exists a

functor G : B −→ A such that G ◦ F = IdA and F ◦ G = IdB. If there exists an

isomorphism F : A −→ B, then the categoryA is said to be isomorphic to the category

B.

Definition 0.2.1.7. Let A and B be categories and F,G : A −→ B be functors. A

natural transformation τ from F to G (denoted by τ : F −→ G) is a function that

assigns to each A-object A a B-morphism τA : F (A) −→ G(A) in such a way that the

following naturality condition holds:

G(f) ◦ τA = τA′ ◦ F (f),

for each A-morphism f : A −→ A′. A natural transformation τ : F −→ G whose

components τA are isomorphisms is called a natural isomorphism from F to G; in this

case we write

F ∼= G.

Definition 0.2.1.8. A contravariant adjunction

(T, S, η, ε) : A −→ B

between two categories A and B consists of two contravariant functors

T : A −→ B

and

S : B −→ A

and two natural transformations

η : IdB −→ T ◦ S

and

ε : IdA −→ S ◦ T
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(called, respectively, unit and co-unit) such that

T (εA) ◦ ηTA = idTA

and

S(ηB) ◦ εSB = idSB,

for all A ∈ |A| and B ∈ |B|.
It is well known that a contravariant adjunction (T, S, η, ε) is a duality iff η and

ε are natural isomorphisms.

Definition 0.2.1.9. Let A be a subcategory of B, and let B be a B-object.

(1) An A-reflection (or A-reflection arrow) for B is a B-morphism r : B −→ A from

B to an A-object A with the following universal property:

for any B-morphism f : B −→ A′ from B into some A-object A′, there exists a

unique A-morphism f ′ : A −→ A′ such that f = f ′ ◦ r.
By an “abuse of language”, an A-object A is called an A-reflection for B ∈ |B|

provided that there exists an A-reflection r : B −→ A for B with codomain A.

(2) A is called a reflective subcategory of B provided that each B-object has an A-

reflection.

Definition 0.2.1.10. A category C is called a construct (or a concrete category over

Set) if there exists a faithful functor U : C −→ Set. U is called a forgetful functor (or

underlying functor). For each C-object A, U(A) is called the underlying set of A and

for each C-morphism f , U(f) is called the underlying map of the morphism f .

Definition 0.2.1.11. An object H is called a coseparator (or a cogenerator) in a

category C provided that, for each pair of distinct C-morphisms f : A −→ B and

g : A −→ B, there is a C-morphism k : B −→ H such that k ◦ f ̸= k ◦ g.

Definition 0.2.1.12. For any category A and any A-object A, there is the covariant

hom-functor

A(A,−) : A −→ Set,

defined by

A(A,−)(B) = A(A,B),

for any A-object B, and, for each f ∈ A(B,C),

A(A,−)(f) : A(A,−)(B) −→ A(A,−)(C)
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is determined by the formula

A(A,−)(f)(g) = f ◦ g,

for any g ∈ A(A,B). Usually, one writes A(A,B) instead of A(A,−)(B), and A(A, f)

instead of A(A,−)(f). Also, instead of A(A,−), the notation homA(A,−) is often

used.

Analogously, one defines the contravariant hom-functor

A(−, A) : A −→ Set

by

A(−, A)(B) = A(B,A)

for any A-object B, and, for each f ∈ A(B,C),

A(−, A)(f) : A(−, A)(C) −→ A(−, A)(B)

is determined by the formula

A(−, A)(f)(g) = g ◦ f,

for any g ∈ A(C,A). Usually, one writes A(B,A) instead of A(−, A)(B), and A(f, A)

instead of A(−, A)(f).
A functor F : A −→ Set is called representable (by an A-object A) provided that

F is naturally isomorphic to the hom-functor A(A,−) : A −→ Set.

A contravariant functor F : A −→ Set is called representable (by an A-object A)

provided that F is naturally isomorphic to the contravariant hom-functor A(−, A) :

A −→ Set.

Definition 0.2.1.13 ([37, 38]). Let U : A −→ Set and V : B −→ Set be faithful

(covariant) functors (in [37, 38] they are even arbitrary functors, but here we will

regard only the situation with faithful functors (as it is done in [93])). A contravariant

adjunction (T, S, η, ε) : A −→ B is called strictly (Ã, B̃)-represented, with Ã ∈ |A| and
B̃ ∈ |B|, if

V ◦ T = A(−, Ã) and U ◦ S = B(−, B̃);

(T, S, η, ε) is strictly represented if it is strictly (Ã, B̃)-represented for suitable Ã, B̃.

For such adjunctions, the units and co-units are essentially evaluation maps; more

precisely, for A ∈ |A|, x ∈ UA, and B ∈ B, y ∈ V B, consider

φA,x : A(A, Ã) −→ UÃ, s 7→ (Us)(x),
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ψB,y : B(B, B̃) −→ V B̃, t 7→ (V t)(y),

τ = τT,S : UÃ −→ V B̃, x̃ 7→ (V [(UεÃ)(x̃)])(1Ã),

σ = σT,S : V B̃ −→ UÃ, ỹ 7→ (U [(V ηB̃)(ỹ)])(1B̃);

then τ and σ are bijective, with σ = τ−1, and

V [(UεA)(x)] = τ ◦ φA,x, U [(V ηB)(y)] = σ ◦ ψB,y.

We call a strictly (Ã, B̃)-represented adjunction (T, S, η, ε) natural if, for every A ∈ |A|
and B ∈ |B|,

((UεA)(x) : TA −→ B̃)x∈UA is a V -initial family, and

((V ηB)(y) : SB −→ Ã)y∈V B is a U -initial family.

(Recall that ifW : C −→ D is a functor, then a family (fi : A −→ Ai)i∈I of morphisms

in C (such families are called C-sources) is said to be W -initial if, for any C-source

(gi : B −→ Ai)i∈I and any D-morphism h : WB −→WA with Wfi ◦ h = Wgi (i ∈ I),

there exists a unique C-morphism t : B −→ A with Wt = h and fi ◦ t = gi (i ∈ I).)

For the notions and notation not defined here see [1, 75].

0.2.2 Some theorems

Theorem 0.2.2.1. A (contravariant) functor F : A −→ B is an equivalence (resp., a

duality) iff there exists a (contravariant) functor G : B −→ A such that IdA ∼= G ◦ F
and F ◦G ∼= IdB.

Proposition 0.2.2.2. An object C of a category A is a coseparator in A if and only

if the contravariant functor A(−, C) : A −→ Set is faithful.

0.3 Boolean algebras

0.3.1 Some definitions

Definition 0.3.1.1. A binary relation “ ≤” in a set X is called a partial order (or,

simply, an order) if it is reflexive, transitive and antisymmetric; if “ ≤” is an order in

X then the pair (X,≤) is called a partially ordered set (or, simply, an ordered set, and

even a poset). In a poset (X,≤), for any a, b ∈ X, the symbol a ∨ b denotes sup{a, b},
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i.e., the smallest element c ∈ X – if one exists - such that a ≤ c and b ≤ c; it is called

the join of a and b; further, a ∧ b stands for inf{a, b}, which is defined dually, and is

called the meet of a and b. The definitions of the join and meet of a subset of a poset

are analogous. The meet and join of a subset E of a poset, if they exist, are denoted

by
∧
E and

∨
E respectively.

Definition 0.3.1.2. A pseudolattice is a poset having all finite non-empty meets and

joins; the pseudolattices with a bottom element (= zero = the least element) (denoted

by 0) will be called 0-pseudolattices; the pseudolattices with a bottom element and top

element (= unit = the greatest element) (denoted by 1) will be called lattices. We do

not require the elements 0 and 1 to be distinct. The lattice homomorphisms are the

functions between lattices which preserve the distinguished elements 0 and 1 and the

operations join and meet.

A lattice in which every subset has a meet (i.e., an infimum) and a join (i.e., a

supremum) is said to be complete.

Let L be a 0-pseudolattice and a ∈ L. An element ¬a of L is called a pseudo-

complement of a provided that ¬a is the largest element of L whose meet with a is 0;

that is (∀x ∈ L)(a ∧ x = 0 iff x ≤ ¬a).
A pseudolattice is called distributive if a∧ (b∨ c) = (a∧ b)∨ (a∧ c) for all a, b, c.
In any lattice, an element x satisfying x ∧ a = 0 and x ∨ a = 1 is called a

complement of a. In a distributive lattice complements are unique when they exist.

A Boolean algebra is a distributive lattice in which every element has a comple-

ment. The complement of an element a will be denoted by a∗.

The Boolean algebra homomorphisms are just the lattice homomorphisms.

Definition 0.3.1.3. If (A,≤) is a poset and B ⊆ A then B is said to be a dense subset

of A if for any a ∈ A \ {0} there exists b ∈ B \ {0} such that b ≤ a; when (B,≤1) is a

poset and f : A −→ B is a map, then we will say that f is a dense map if f(A) is a

dense subset of B.

Definition 0.3.1.4. A subset F of a lattice B is called a filter in B if it satisfies the

following conditions:

(F1) 1 ∈ F ,

(F2) a, b ∈ F implies that a ∧ b ∈ F , and

(F3) a ≤ b and a ∈ F imply that b ∈ F .
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A filter F is a proper filter if 0 ̸∈ F .

In the sequel, by a “filter”, we will always understand a “proper filter”.

An ultrafilter in B is a maximal (with respect to the inclusion) filter in B. The

set of all ultrafilters in B will be denoted by

Ult(B).

Definition 0.3.1.5. A subset I of a 0-pseudolattice A is an ideal of A if the following

three conditions are satisfied:

(I1) 0 ∈ I,

(I2) if x ∈ I, y ∈ A and y ≤ x, then y ∈ I,

(I3) if x ∈ I and y ∈ I, then x ∨ y ∈ I.

An ideal I of a lattice A is called a proper ideal if 1 ̸∈ I.

In the sequel, by an “ideal”, we will always understand a “proper ideal”.

An ideal I is a complete ideal if
∨
M ∈ I for each subset M of I such that

∨
M

exists. For every filter F of a Boolean algebra A,

F ∗ = {x∗ | x ∈ F}

is an ideal of A, the ideal dual to F . For every ideal I of A,

I∗ = {x∗ | x ∈ I}

is a filter in A, the filter dual to I.

Definition 0.3.1.6. A homomorphism φ between two Boolean algebras is called com-

plete if it preserves all joins (and, consequently, all meets) that happen to exist; this

means that if {ai} is a family of elements in the domain of φ with join a, then the

family {φ(ai)} has a join and that join is equal to φ(a).

For the notions and notation not defined here see [48, 75, 77, 102].

0.3.2 Some theorems

Proposition 0.3.2.1. A filter u in a Boolean algebra B is an ultrafilter iff ∀b ∈ B,

either b ∈ u or b∗ ∈ u. Also, a filter u in a Boolean algebra B is an ultrafilter iff it

satisfies the following axiom:

(G) If x ∨ y ∈ u then x ∈ u or y ∈ u.
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The following well-known variant of the famous “Grill Lemma”, which can be

proved exactly as Lemma 5.7 of [87], is valid for Boolean algebras:

Theorem 0.3.2.2. Let (B, 0, 1,∨,∧, ∗) be a Boolean algebra and Γ be a subset of B

such that 0 ̸∈ Γ and a ∨ b ∈ Γ iff a ∈ Γ or b ∈ Γ. If a0 ∈ Γ then there exists an

ultrafilter u in B such that a0 ∈ u and u ⊆ Γ.

We will need the following well-known fact (see, e.g., [102]):

Proposition 0.3.2.3. Let A and B be complete Boolean algebras and φ : A −→ B be

a Boolean monomorphism (i.e., φ is a Boolean homomorphism and an injection). If

φ(A) is dense in B then φ(A) = B.

Definition and Proposition 0.3.2.4. Let us recall the notion of lower adjoint for

posets. Let φ : A −→ B be an order-preserving map between posets. If

φΛ : B −→ A

is an order-preserving map satisfying the following condition

(Λ) for all a ∈ A and all b ∈ B, b ≤ φ(a) iff φΛ(b) ≤ a

(i.e., the pair (φΛ, φ) forms a Galois connection between posets B and A) then we will

say that φΛ is a lower adjoint of φ. It is easy to see that condition (Λ) is equivalent

to the following two conditions:

(Λ1) ∀b ∈ B, φ(φΛ(b)) ≥ b;

(Λ2) ∀a ∈ A, φΛ(φ(a)) ≤ a.

It is well known that φ ◦ φΛ ◦ φ = φ, φΛ ◦ φ ◦ φΛ = φΛ, and

φΛ preserves all joins which exist in B.(1)

Further, φ is an injection iff

φΛ(φ(a)) = a,∀a ∈ A;(2)

φ is a surjection iff

φ(φΛ(b)) = b,∀b ∈ B.(3)

Note that if φ(0) = 0 then:

(a) φΛ(0) = 0 (use (Λ2)), and

(b) φΛ(b) ̸= 0, for every b ∈ B \ {0} (use (Λ1)).
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Note that if φ : A −→ B is an (order-preserving) map between posets, A has all

meets and φ preserves them then, by the Adjoint Functor Theorem (see, e.g., [75]), φ

has a lower (or left) adjoint φΛ and, for all b ∈ B,

φΛ(b) =
∧

{a ∈ A | φ(a) ≥ b}.(4)

Finally, if ψ : A −→ B is an (order-preserving) map between posets, A has all

joins and ψ preserves them, then, by the Adjoint Functor Theorem, ψ has a right

adjoint

ψP : B −→ A,

i.e., setting φ = ψP , we have that ψ = φΛ; ψP preserves all meets which exist in B.

Recall that if φ′ : B −→ C is a map between posets, B has all meets and φ′

preserves them, then (φ′ ◦ φ)Λ = φΛ ◦ φ′
Λ.

Definition and Proposition 0.3.2.5. Let us fix the notation for the Stone Duality.

The Stone contravariant functors which define the Stone duality will be denoted by

Sa : BoolAlg −→ Stone

and

St : Stone −→ BoolAlg.

For every A ∈ |BoolAlg|,
Sa(A) is the set Ult(A)

of all ultrafilters in A endowed with a topology having as an open base the family

{λSA(a) | a ∈ A}, where
λSA(a) = {u ∈ Ult(A) | a ∈ u}

for every a ∈ A.

For every X ∈ |Stone|,
St(X) = CO(X).

If f ∈ Stone(X,Y ) then

φ = St(f) ∈ BoolAlg(St(Y ), St(X))

is defined by the formula

φ(F ) = f−1(F ),

for every F ∈ CO(Y ).
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If φ ∈ BoolAlg(B1, B2) then

f = Sa(φ) ∈ Stone(Sa(B2), S
a(B1))

is defined by the formula

f(u) = φ−1(u),

for every u ∈ Ult(B2).

For every Boolean algebra A, the map

λSA : A −→ St(Sa(A)), a 7→ λSA(a),

is a Boolean isomorphism.

Definition and Proposition 0.3.2.6. For every subset E of a Boolean algebra A,

the set

{x ∈ A | x ≤ e1 ∨ . . . ∨ en, where n ∈ N+ and e1, . . . , en ∈ E}

is an ideal of A, called the ideal generated by E; it is the least ideal of A including E.

Let I be an ideal of A and F its dual filter. I is trivial if I = {0}, i.e., if F is the

trivial filter. I is principal if I is the ideal {x ∈ A | x ≤ a} generated by some a ∈ A,

i.e., if F is the principal filter generated by a∗. I is prime if it is proper and x ∧ y ∈ I

implies that x ∈ I or y ∈ I; i.e., if F is a prime filter.

Definition and Proposition 0.3.2.7. Recall that a frame is a complete lattice L

satisfying the infinite distributive law

a ∧
∨

S =
∨

{a ∧ s | s ∈ S},

for every a ∈ L and every S ⊆ L. A lattice homomorphism between two frames is

called a frame homomorphism if it preserves arbitrary joins.

If A is a distributive 0-pseudolattice, we denote by

Idl(A)

the frame of all ideals of A, where the meet of an arbitrary family of ideals is the

intersection of the family, and the join is the ideal generated by the union of the

family.

If J ∈ Idl(A) then we will write ¬AJ (or simply ¬J) for the pseudocomplement

of J in Idl(A), i.e.,

¬J =
∨

{I ∈ Idl(A) | I ∧ J = {0}}.
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Note that

¬J = {a ∈ A | (∀b ∈ J)(a ∧ b = 0)}

(see Stone [107]).

Recall that an ideal J of A is called simple (Stone [107]) if

J ∨ ¬J = A.

The set of all simple ideals of A will be denoted by

Si(A).

As it is proved in [107], the set Si(A) is a Boolean algebra with respect to the

lattice operations in Idl(A).

Recall also that the regular elements of the frame Idl(A) (i.e., those J ∈ Idl(A)

for which ¬¬J = J) are called normal ideals (Stone [107]).

0.4 General topology

0.4.1 Some definitions and notation

We don’t assume that completely regular topological spaces and normal topological

spaces are T1-spaces. When they are supposed to be T1-spaces, we use the terms, re-

spectively, Tychonoff spaces and T4-spaces.

Definition 0.4.1.1. An extension of a space X is a pair (Y, e), where Y is a space and

e : X −→ Y is a dense embedding of X into Y .

Two extensions (Yi, ei), i = 1, 2, of X are called isomorphic (or equivalent) if

there exists a homeomorphism φ : Y1 −→ Y2 such that φ◦e1 = e2. Clearly, the relation

of isomorphism is an equivalence in the class of all extensions of X; the equivalence

class of an extension (Y, e) of X will be denoted by

[(Y, e)].

We write

(Y1, e1) ≤ (Y2, e2) (respectively, (Y1, e1) ≤sur (Y2, e2))

and say that the extension (Y2, e2) is projectively larger than the extension (Y1, e1) if

there exists a continuous mapping (resp., a continuous surjection) φ : Y2 −→ Y1 such
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that φ ◦ e2 = e1. These relations are preorders (i.e., they are reflexive and transitive).

We write

(Y1, e1) ≤in (Y2, e2)

and say that the extension (Y2, e2) is injectively larger than the extension (Y1, e1) if

there exists a continuous mapping φ : Y1 −→ Y2 such that φ ◦ e1 = e2 and φ is a

homeomorphism from Y1 to the subspace φ(Y1) of Y2. This relation is also a preorder.

The equivalence relations associated with these three preorders (i.e., (Y1, e1) projec-

tively (injectively) larger than (Y2, e2) and conversely) coincide with the relation of

isomorphism (defined above) on the class of all Hausdorff extensions of X (see [9]).

Setting for every two Hausdorff extensions (Yi, ei), i = 1, 2, of a Hausdorff space

X,

[(Y1, e1)] ≤ [(Y2, e2)] iff (Y1, e1) ≤ (Y2, e2),

we obtain a well-defined relation on the set of all, up to equivalence, Hausdorff exten-

sions of X; it is already an order. The same can be done for the preorders ≤sur and

≤in.

Notation 0.4.1.2. The Alexandroff (one-point) compactification of a locally compact

Hausdorff non-compact space X will be denoted by

αX;

the added point will be usually denoted by ∞X , so that we can think that

αX = X ∪ {∞X}.

The Stone-Čech compactification of a Tychonoff space X will be denoted by βX.

The ordered set of all, up to equivalence, Hausdorff locally compact (resp., com-

pact) extensions of a space (X, τ) will be denoted by

(LC(X, τ),≤) (resp., (C(X, τ),≤)),

where “ ≤” is the projective order defined in 0.4.1.1. We will also write briefly

(LC(X),≤) and (C(X),≤).

Let X be a space and (Y, f) be an extension of X. If A ⊆ X then we set

ExY (A) = Y \ clY (f(X \ A)).

We will often write Ex(A) instead of ExY (A) when this does not lead to ambiguity.
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Definitions 0.4.1.3. Recall that:

• a continuous map is closed if the image of each closed set is closed;

• a continuous map is open if the image of each open set is open;

• a map is perfect if it is compact (i.e., point inverses are compact sets) and closed;

• a continuous map f : X −→ Y is called quasi-open ([82]) if for every non-empty

open subset U of X, int(f(U)) ̸= ∅ holds;

• a function f : X −→ Y is called skeletal ([83]) if

int(f−1(cl(V ))) ⊆ cl(f−1(V ))(5)

for every open subset V of Y .

• A continuous map f : X −→ Y is irreducible if f(X) = Y and if, for each proper

closed subset A of X, f(A) ̸= Y .

Definition 0.4.1.4. Recall that two subsets A,B of a topological space X are com-

pletely separated if there is a continuous real-valued function f : X −→ [0, 1] such that

f(A) = 0 and f(B) = 1.

Definition 0.4.1.5. Recall that a subset F of a topological space (X, τ) is called

regular closed if F = cl(int(F )). Clearly, F is regular closed iff it is the closure of an

open set. The collection of all regular closed subsets of (X, τ) will be denoted by

RC(X, τ)

(we will often write simply RC(X)).

A subset U of topological space (X, τ) such that U = int(cl(U)) is said to be

regular open. The set of all regular open subsets of (X, τ) will be denoted by

RO(X, τ)

(or briefly, by RO(X)).

Notation 0.4.1.6. Let (X, τ) be a topological space. We will denote by

CR(X, τ)

the family of all compact regular closed subsets of (X, τ). We will often write CR(X)

instead of CR(X, τ).

For all undefined here notions and notation see [53].
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0.4.2 Some theorems

Proposition 0.4.2.1. (a) For any topological space (X, τ), the collection RC(X, τ)

becomes a complete Boolean algebra (RC(X, τ), 0, 1,∧,∨, ∗) under the following opera-

tions:

1 = X, 0 = ∅, F ∗ = cl(X \ F ), F ∨G = F ∪G,F ∧G = cl(int(F ∩G)).

The infinite operations are given by the formulas:∨
γ∈Γ

Fγ = cl(
∪
γ∈Γ

Fγ) (= cl(
∪
γ∈Γ

int(Fγ)) = cl(int(
∪
γ∈Γ

Fγ))),

and ∧
{Fγ | γ ∈ Γ} = cl(int(

∩
{Fγ | γ ∈ Γ})).

(b) For any topological space (X, τ), the collection RO(X, τ) becomes a complete Bool-

ean algebra (RO(X, τ), 0, 1,∧,∨, ∗) under the following operations:

U ∨ V = int(cl(U ∪ V )), U ∧ V = U ∩ V, U∗ = int(X \ U), 0 = ∅, 1 = X.

The infinite operations are given by the formulas:∧
i∈I

Ui = int(cl(
∩
i∈I

Ui)) (= int(
∩
i∈I

Ui))

and ∨
i∈I

Ui = int(cl(
∪
i∈I

Ui)).

The following statement is well-known (see, e.g., [21], p.271).

Lemma 0.4.2.2. Let X be a dense subspace of a topological space Y . Then the func-

tions

r : RC(Y ) −→ RC(X), F 7→ F ∩X,

and

e : RC(X) −→ RC(Y ), G 7→ clY (G),

are Boolean isomorphisms between Boolean algebras RC(X) and RC(Y ), and e ◦ r =

idRC(Y ), r ◦ e = idRC(X). (We will sometimes write rX,Y (resp., eX,Y ) instead of r

(resp., e).)

We will often use (even without citing it explicitly) the following well-known

assertion (see, e.g., [53, Theorem 3.3.2]):
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Proposition 0.4.2.3. For every compact subspace K of a locally compact space X

and every open set V ⊆ X that contains K there exists an open set U ⊆ X such that

K ⊆ U ⊆ cl(U) ⊆ V and cl(U) is compact.

The next proposition is well known (see, e.g., [5]):

Proposition 0.4.2.4. Let f : X −→ Y be a perfect map between two locally compact

Hausdorff non-compact spaces. Then the map f has a continuous extension

α(f) : αX −→ αY ;

moreover, α(f)(∞X) = ∞Y .

0.5 Proximity spaces

0.5.1 Some definitions and notation

Definitions 0.5.1.1. Let X be a non-empty set. A symmetric binary relation δ on

the power set P (X) of X is called a basic proximity on X or simply proximity on X,

if it satisfies the following conditions:

(P1) ∅(−δ)A for every A ⊆ X (“− δ” means “not δ”);

(P2) AδA for every A ̸= ∅;

(P3) Aδ(B ∪ C) iff AδB or AδC;

The pair (X, δ) is called a basic proximity space or simply proximity space. When x is

a point of X, we write xδA in place of {x}δA. A basic proximity is called separated if

it satisfies the axiom

(SP) ∀x, y ∈ X, xδy implies x = y.

In such a case the pair (X, δ) is called a separated basic proximity space.

A function f : (X1, δ1) −→ (X2, δ2) between two basic proximity spaces (Xi, δi),

i = 1, 2, is called proximally continuous (or, a proximity mapping) if Aδ1B implies

f(A)δ2f(B) (A,B ⊆ X1).

If δi, i = 1, 2, are two basic proximities on a set X then we write

δ1 ≥ δ2

if the identity function id : (X, δ1) −→ (X, δ2) is proximally continuous (i.e., if, for

A,B ⊆ X, Aδ1B implies Aδ2B). This relation is an order in the set of all basic

proximities on a set X.
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If M is a subset of X then the restriction δM of δ to M is defined as follows: for

A,B ⊆M , AδMB iff AδB. It is easy to see that (M, δM) is a basic proximity space.

We write

A≪δ B

(or simply A≪ B) if A(−δ)(X \B). When x is a point of X, we write x≪ A in place

of {x} ≪ A.

A separated basic proximity δ on X which satisfies the condition

(EF) If A≪ B, then there exists a C ⊆ X such that A≪ C ≪ B

is called an Efremovič proximity (or an EF-proximity); the pair (X, δ) is called an

Efremovič proximity space if δ is an Efremovič proximity.

Definitions 0.5.1.2. Let (X, δ) be a basic proximity. Then the operator clδ on P (X)

defined by

clδ(A) = {x ∈ X : xδA}.

is a Čech closure operator (see [118]). Hence

τδ = {X \ A : A = clδ(A)}

is a topology on X.

A basic proximity δ on a set X which satisfies the condition

(LO) clδ(A) δ clδ(B) implies AδB

is called a Lodato proximity; a pair (X, δ) is called a Lodato proximity space if δ is a

Lodato proximity.

It is well known that if (X, δ) is a basic proximity then the closure operator clτδ

generated by τδ could not coincide with clδ. If, however, δ is a Lodato proximity, then

clδ coincides with clτδ .

If δ satisfies the axiom (EF) then (X, τδ) is a completely regular space; if, more-

over, δ is separated (i.e., δ is an Efremovič proximity) then (X, τδ) is a Tychonoff space

([103],[87]).

Every Efremovič proximity is a Lodato proximity.

Definition 0.5.1.3. If (X, τ) is a topological space, we say that (X, τ) admits a prox-

imity, if there is a basic proximity δ on X such that τ = τδ; in this case we also say

that δ is a proximity on the space (X, τ).

We will denote by EP(X) the set of all EF-proximities on a Tychonoff space X.
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Examples 0.5.1.4. Here are a few examples of proximity spaces:

1. Let X be a set having at least two points. For A,B ⊆ X, set

AδB ⇐⇒ A ̸= ∅ and B ̸= ∅.

This is the trivial basic proximity in X. It is not separated but it satisfies the

axiom (EF).

2. Let (X, τ) be a T4-space and define

AδB ⇐⇒ cl(A) ∩ cl(B) ̸= ∅.

Then δ is an Efremovič proximity on the spaceX. We call it a standard proximity.

3. Let (X, τ) be a locally compact Hausdorff space, and, for A,B ⊆ X, define

A(−δ)B ⇐⇒ (cl(A) ∩ cl(B) = ∅ and either cl(A) or cl(B) is compact).

Then δ is an Efremovič proximity on the space X.

4. Let (X, d) be a metric space and, for A,B ⊆ X, define

AδB ⇐⇒ d(A,B) = 0,

where

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

Then δ is an Efremovič proximity on the space (X, τd).

5. Let (X, τ) be a completely regular space. We can define a basic proximity δ on

X, satisfying the axiom (EF), by

A(−δ)B ⇐⇒ A and B are completely separated.

Definition 0.5.1.5. Let X be a set. A stack in X is a family S of subsets of X

satisfying the condition

B ⊇ A ∈ S ⇒ B ∈ S.

A grill ([18]) G in X is a stack in X satisfying ∅ ̸∈ G and

(A ∪B) ∈ G ⇒ (A ∈ G or B ∈ G).
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Definition 0.5.1.6. Let (X, δ) be a basic proximity space. A grill G in X is called a

clan in (X, δ) ([112]) iff

A,B ∈ G ⇒ AδB.

A clan σ in (X, δ) is called a cluster ([78]) if it satisfies the following condition:

if A ⊆ X and AδB for every B ∈ σ, then A ∈ σ.

For each x ∈ X, the collection

σδx = {A ⊆ X : Aδx}

is a cluster. Such a cluster is called a point-cluster.

If σ is a cluster in (X, δ) and {x} ∈ σ for some x ∈ X, then σ = σδx.

If (X, δ) is separated, then no cluster on (X, δ) can contain more than one point.

Definition 0.5.1.7. Recall that a proximity space (X, δ) is said to be compact iff the

topological space (X, τδ) is compact.

Definition 0.5.1.8. ([71]) A non-empty collection B of subsets of a set X is called a

boundedness in X iff

(i) A ∈ B and B ⊆ A implies B ∈ B, and

(ii) A,B ∈ B implies A ∪B ∈ B.

The elements of B are called bounded sets.

Definitions 0.5.1.9. ([78]) A local proximity space (X, β,B) consists of a set X, a

basic proximity β on X, and a boundedness B in X subject to the following axioms:

(LP1) If A ∈ B, C ⊆ X and A≪β C then there exists B ∈ B such that A≪β B ≪β C;

(LP2) If AβC, then there is a B ∈ B such that B ⊆ C and AβB.

Note that (LP2) implies that every singleton set, and hence every finite subset of X,

is bounded.

Two local proximity spaces (X1, β1,B1) and (X2, β2,B2) are said to be isomorphic

if there exists a bijection between X1 and X2 which preserves in both directions the

bounded sets and proximity relations.

A local proximity space (X, δ,B) is said to be separated if δ is the identity relation

on singletons.
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Recall that if (X, β,B) is a separated local proximity space then β is a Lodato

proximity and induces a Tychonoff topology τ(X,β,B) on X by defining

cl(M) = {x ∈ X | xβM}

for every M ⊆ X ([78]).

If (X, τ) is a topological space then we say that (X, β,B) is a local proximity

space on (X, τ) if τ(X,β,B) = τ .

A function f : X1 −→ X2 between two local proximity spaces (X1, β1,B1) and

(X2, β2,B2) is said to be an equicontinuous mapping (see [78]) (or a bounded p-map) if

the following two conditions are fulfilled:

(EQ1) Aβ1B implies f(A)β2f(B), for A,B ⊆ X, and

(EQ2) B ∈ B1 implies f(B) ∈ B2.

Notation 0.5.1.10. The set of all separated local proximity spaces on a Tychonoff

space (X, τ) will be denoted by

LP(X, τ).

An order in LP(X, τ) is defined by

(X, β1,B1) ≼ (X, β2,B2) ⇐⇒ (β2 ⊆ β1 and B2 ⊆ B1)

(see [78]).

The ordered set of all separated local proximity spaces on a Tychonoff space

(X, τ) will be denoted by (LP(X, τ),≼).

Definition and Proposition 0.5.1.11. Let (X, β,B) be a separated local proximity

space. Define a binary relation αβ on P (X) by

AαβB ⇐⇒ [(AβB) or A,B ̸∈ B],

for A,B ⊆ X. Then, by [78, Theorem I] (or by [87, Theorem 9.17]), αβ is an EF-

proximity on (X, τβ). It is called the Alexandroff extension of β.

If X ̸∈ B, the family

σαβ
= {A ⊆ X : A ̸∈ B}

is a cluster in (X,αβ) (see [78] or [87]).
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Definition 0.5.1.12. Let X be a set. A binary relation β defined on the power set of

X is called a Pervin proximity if β satisfies axioms (P1), (P2) and (P3) of 0.5.1.1 and

the following conditions:

(PP1) A(−β)∅ for every A ⊆ X,

(PP2) A(−β)B implies there exists an E ⊆ X such that A(−β)E and (X \E)(−β)B,

(PP3) (A ∪B)βC iff AβC or BβC.

For all undefined here notions and notation see [53] and [87].

0.5.2 Some theorems

Fact 0.5.2.1. (see, e.g., [87]) If (X, τ) is a compact Hausdorff space, then it admits a

unique Efremovič proximity δ, namely the standard one.

Fact 0.5.2.2. (see, e.g., [87]) Let (X, δ) be a Lodato proximity space and A,B ⊆ X.

Then A≪δ B implies cl(A) ≪δ B and A≪δ int(B).

Theorem 0.5.2.3. (The Smirnov Compactification Theorem ([103])) Let (X, τ) be a

Tychonoff space. Then the ordered sets (C(X, τ),≤) and (EP(X),≤) are isomorphic.

The isomorphism between them is defined as follows. To every Efremovič proximity

space (X, δ) on (X, τ) corresponds a Hausdorff compactification

(Sm(X, δ), sδ)

of (X, τ), where Sm(X, δ) consists of all clusters in (X, δ), i.e.,

Sm(X, δ) = Clust(X, δ),

its topology is generated by the closed base

{{σ ∈ Clust(X, δ) | A ∈ σ} | A ⊆ X}

and, for every x ∈ X,

sδ(x) = σδx

(here σδx is the point-cluster from 0.5.1.6) (see, e.g., [87]).

(Sm(X, δ), sδ) is called the Smirnov compactification of (X, δ).

Conversely, for every Hausdorff compactification (Y, f) of (X, τ), the correspond-

ing Efremovič proximity δ(Y,f) on the space (X, τ) is defined by the formula

Aδ(Y,f)B ⇐⇒ cl(Y,f)(f(A)) ∩ cl(Y,f)(f(B)) ̸= ∅,
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for every A,B ∈ P (X). Then the map

Sm : (EP(X),≤) −→ C(X, τ), δ 7→ [(Sm(X, δ), sδ)]

is the required isomorphism and S−1
m ([(Y, f)]) = δ(Y,f).

We will need the following well-known result (see, e.g., [87], Theorem 7.10):

Theorem 0.5.2.4. (Ju. M. Smirnov [103]) Let (X, δ) and (Y, δ′) be two Efremovič

proximity spaces and f be a mapping between them. Then there exists a continuous

mapping

Smf : Sm(X, δ) −→ Sm(Y, δ
′)

such that

Smf ◦ sδ = sδ′ ◦ f

iff f is a proximity mapping. It is defined by the formula

Smf(σ) = {C ⊆ Y : (∀A ∈ σ)(Cδ′f(A))},

for every σ ∈ Sm(X, δ).

The next theorem of Leader ([78]) and its proof are of great importance for our

investigations.

Theorem 0.5.2.5. ([78]) Let (X, τ) be a Tychonoff space. Then there exists an iso-

morphism

γ(X,τ) : (LC(X, τ),≤) −→ (LP(X, τ),≼).

Namely, if (Y, l) is a locally compact Hausdorff extension of X then

γ(X,τ)([(Y, l)]) = (X, β(Y,l),B(Y,l)),

where

B(Y,l) = {F ⊆ X : clY (l(F )) is compact}

and, for A,B ⊆ X,

Aβ(Y,l)B ⇐⇒ clY (l(A)) ∩ clY (l(B)) ̸= ∅.

The description of the map (γ(X,τ))
−1 is the following: let (X, β,B) be a separated local

proximity space on (X, τ), αβ be the Alexandroff extension of β (see 0.5.1.11) and let

L(X, β,B) = Sm(X,αβ) \ {σαβ
}, when αβ ̸= β,
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and

L(X, β,B) = Sm(X,αβ), when αβ = β

(see 0.5.2.3 and 0.5.1.11); then

(γ(X,τ))
−1(X, β,B) = [(L(X, β,B), lβ)],

where

lβ(x) = sαβ
(x),

for every x ∈ X (see 0.5.2.3). Thus (γ(X,τ))
−1(X, β,B) ∈ C(X, τ) iff B = P (X).

Let (Xi, βi,Bi), i = 1, 2, be two separated local proximity spaces and

f : X1 −→ X2

be a function. Then there exists a continuous map

L(f) : L(X1, β1,B1) −→ L(X2, β2,B2)

such that

lβ2 ◦ f = L(f) ◦ lβ1

iff f is a bounded p-map between (X1, β1,B1) and (X2, β2,B2).
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Chapter 1

MVD-algebras and a new proof of
Roeper’s Representation Theorem

1.1 Introduction

As we have already mentioned, the region-based theory of space is a kind of point-free

geometry and can be considered as an alternative to the well known Euclidean point-

based theory of space; its main idea goes back to Whitehead [123] (see also [121, 122,

120]) and de Laguna [23], although neither Whitehead nor de Laguna presented their

ideas in a detailed mathematical form. This was done by some other mathematicians

and mathematically oriented philosophers who presented various versions of region-

based theory of space at different levels of abstraction. Here we can mention the

fundamental work of Tarski [110], who rebuilt Euclidean geometry as an extension of

mereology with the primitive notion of a ball. Remarkable is also Grzegorczyk’s paper

[67]. Models of Grzegorczyk’s theory are complete Boolean algebras of regular closed

sets of certain topological spaces equipped with the relation of separation which in fact

is the complement of Whitehead’s contact relation. On the same line of abstraction is

also the point-free topology [75]. Survey papers describing various aspects and historical

remarks on region-based theory of space are [64, 11, 116, 94].

Let us mention that Whitehead’s ideas about region-based theory of space flour-

ished and in a sense were reinvented and applied in some areas of computer science:

Qualitative Spatial Reasoning (QSR), knowledge representation, geographical infor-

mation systems, formal ontologies in information systems, image processing, natural

language semantics etc. The reason is that the language of region-based theory of space

allows the researchers to obtain a more simple description of some qualitative spatial

features and properties of space bodies. Survey papers concerning various applications
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are [19, 20] (see also the special issues of “Fundamenta Informaticae” [47] and “Journal

of Applied Non-classical Logics” [7]). One of the most popular among the community

of QSR-researchers is the system of Region Connection Calculus (RCC) introduced by

Randell, Cui and Cohn [96]. RCC attracted quite intensive research in the field of

region-based theory of space, both on its applied and mathematical aspects. For in-

stance it was unknown for some time which topological models correspond adequately

to RCC; this fact stimulated the investigations of a topological representation theory

of RCC and RCC-like systems (see [46, 41]). Another impact of region-based theory

of space is that it stimulated the appearance of a new area in logic, namely “Spatial

Logics” [2], called sometimes “Logics of Space”.

The first first-order axiomatization for region-based theory of space with a de-

tailed investigation of its connection with the point-based theory of compact Haus-

dorff spaces was given by de Vries in [24]. He introduced the notion of a compingent

Boolean algebra which is a pair of a Boolean algebra B and a binary relation ≪ called

the compingent relation on B. Further on, Fedorchuk [54] introduced the notion of

a Boolean δ-algebra and showed that it is equivalent to the notion of a compingent

Boolean algebra. The Fedorchuk’s Boolean δ-algebras appear here under the name

of normal contact algebras. Both authors - de Vries and Fedorchuk - stressed on the

narrow connection of their theories with the theory of proximity spaces of Efremovič

[50].

Another, more general than that of de Vries and Fedorchuk, first-order axioma-

tization for region-based theory of space was given by Roeper [99]. His theory corre-

sponds to the point-based theory of locally compact Hausdorff spaces and his approach

is in fact a successful and skilful combination of the methods of de Vries [24], Fedorchuk

[54] and Leader [78], although Roeper doesn’t mention this and, probably, was not

aware of these results; he, however, gives prominence to the fact that the leading ideas

in his paper are those from Whiteheadian region-based theory of space. Roeper [99]

introduced the notion of region-based topology – it is a Boolean algebra with a contact

relation (satisfying some additional axioms) and an additional one-place predicate of

limitedness. His main representation theorem implies that there exists a bijective corre-

spondence between the class of all (up to isomorphism) region-based topologies and the

class of all (up to homeomorphism) locally compact Hausdorff spaces, which is a funda-

mental fact for our investigations in this thesis. The axioms of “region-based topology”

almost coincide with the axioms of local proximity spaces introduced by Leader [78].
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This similarity prompts us to introduce a new name for region-based topologies and

to call them local contact algebras. The similarity between local proximity spaces and

local contact algebras makes it possible to obtain (and to present in this chapter) a

shorter proof of the main Representation Theorem of Roeper [99] (as well as of its

special case - the de Vries Representation Theorem [24]) by application of the methods

of (local) proximity spaces. The proofs of some of the steps and some of the construc-

tions in our new exposition of Roeper’s Representation Theorem can be considered as

lattice-theoretic versions of certain previously known proofs and constructions in the

theory of proximity spaces and local proximity spaces. The new proof of the Roeper

Representation Theorem given here is similar to that from [117] but uses also some

new ideas and is shorter than both previous proofs from [99] and [117]. The methods

and facts established in this new proof are used many times later in the thesis. That’s

why the presentation of this new proof is indispensable for our exposition of the results

of the thesis.

Another work devoted to region-based theory of space is Mormann’s paper [85].

His system, called enriched Boolean algebra, is similar to normal contact algebras, but

instead of the contact relation, it contains another relation between (open) regions,

called interior parthood and denoted by “ ≪”. One of the main aims of Mormann’s

paper is to show that Whiteheadian theory of space can be built up on the base of

the single relation of interior parthood, considered as a “purely mereological relation”

([85, p. 37]). In a discussion with Roeper (p. 52) he claims that the relations of

contact and limitedness are “non-mereological”. We use here without discussion Mor-

mann’s terminology, although it seems that all such relations should be considered as

“mereotopological”. Note however that Mormann’s notion of interior parthood is dif-

ferent from the corresponding notion in local contact algebras. Mormann’s definition

in the intended semantics — open regions in locally compact Hausdorff spaces, is the

following:

x≪ y iff cl(x) ⊆ y and cl(x) is compact, where x, y are open regions.

The difference with the corresponding definition in Roeper’s paper [99] is in the

requirement of compactness of cl(x) which introduces some asymmetry between x and

y. If we define the contact relation by the standard formula “xCy” iff “not x ≪ y∗”

then the above asymmetry implies that the contact relation is not a symmetric one as

it should be. Despite this difference, the main representation theorem for Mormann’s
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system takes the same form as Roeper’s. Unfortunately, the representation theorem

presented in Mormann’s paper [85] is not true (see Example 1.3.2.2 here). However it

becomes true if one adds an extra axiom to those which an enriched Boolean algebra has

to satisfy. The obtained new notion is called an MVD-algebra (Mormann-Vakarelov-

Dimov-algebra). We prove that MVD-algebras are equivalent to local contact algebras.

Hence the representation theorem for local contact algebras is valid also for MVD-

algebras. The representation result for MVD-algebras shows as well that one of the

main aims of the Mormann’s paper – to formalize the Whitehedian theory of space on

the base of a single mereological relation, is now realized. In this way, it is demonstrated

that the modified Mormann’s notion of interior parthood incorporates in itself both of

contact relation and boundedness, which is a quite unexpected fact.

This chapter is organized as follows. In the next Section 2 we give our new proof of

the Roeper Representation Theorem. In the first subsection of Section 2, we recall the

notions of contact algebra (introduced in [41]) and normal contact algebra (introduced

in [24] (see also [54])), and give some basic examples. In particular, we prove here

that the Boolean algebra of regular closed subsets of each Efremovič proximity space

is a normal contact algebra with respect to the proximity relation. In the second

subsection of Section 2, we give a new proof of de Vries’ Representation Theorem for

normal contact algebras. This proof is different from those given in [24, 117], uses

the Stone Duality Theorem for Boolean algebras and some ideas from Leader’s proof

of the Smirnov Compactification Theorem (see, e.g., [87]). In the third subsection

of Section 2, we introduce the notion of local contact algebra, which, though slightly

different in formulation, is equivalent to Roeper’s notion of “region-based topology”

[99]. The changes have been made in order to fit well with Leader’s definition of

local proximity space [78]. It is proved here that the regular closed subsets of a local

proximity space determine a local contact algebra. After that we present our new proof

of Roeper’s Representation Theorem for local contact algebras, which is deduced from

the corresponding theorem for normal contact algebras. The main idea of the proof is

a lattice-theoretic parallel with Leader’s theorem for local proximity spaces [87, 78].

In Section 3 we introduce the notion of an MVD-algebra, which is similar to the

Mormann’s notion of enriched Boolean algebra [85]. The formal equivalence of the

notions of MVD-algebras and local contact algebras is proved and a representation

theorem for MVD-algebras is obtained.

The exposition of this chapter follows that of the paper [117] with the exception
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of some parts of the proof of Roeper’s Representation Theorem.

1.2 A new proof of the Roeper Representation The-

orem

1.2.1 Contact algebras

Definition 1.2.1.1. An algebraic system (B, 0, 1,∨,∧, ∗, C) is called a contact Boolean

algebra or, briefly, contact algebra (abbreviated as CA or C-algebra) ([41]) if the system

(B, 0, 1,∨,∧, ∗) is a Boolean algebra (where the operation “complement” is denoted by

“ ∗ ”) and C is a binary relation on B, satisfying the following axioms:

(C1) If a ̸= 0 then aCa;

(C2) If aCb then a ̸= 0 and b ̸= 0;

(C3) aCb implies bCa;

(C4) aC(b ∨ c) iff aCb or aCc.

We shall simply write (B,C) for a contact algebra. The relation C is called a contact

relation. When B is a complete Boolean algebra, we will say that (B,C) is a complete

contact Boolean algebra or, briefly, complete contact algebra (abbreviated as CCA or

CC-algebra). If D ⊆ B and E ⊆ B, we will write “DCE” for “(∀d ∈ D)(∀e ∈
E)(dCe)”.

We will say that two C-algebras (B1, C1) and (B2, C2) are CA-isomorphic iff there

exists a Boolean isomorphism φ : B1 −→ B2 such that, for each a, b ∈ B1, aC1b iff

φ(a)C2φ(b). Note that in this thesis, by a “Boolean isomorphism” we understand an

isomorphism in the category BoolAlg of Boolean algebras and Boolean homomor-

phisms.

A contact algebra (B,C) is called a normal contact Boolean algebra or, briefly,

normal contact algebra (abbreviated as NCA or NC-algebra) ([24, 54]) if it satisfies the

following axioms (we will write “− C” for “not C”):

(C5) If a(−C)b then a(−C)c and b(−C)c∗ for some c ∈ B;

(C6) If a ̸= 1 then there exists b ̸= 0 such that b(−C)a.

A normal CA is called a complete normal contact Boolean algebra or, briefly, complete

normal contact algebra (abbreviated as CNCA or CNC-algebra) if it is a CCA. The

notion of normal contact algebra was introduced by Fedorchuk [54] under the name

Boolean δ-algebra as an equivalent expression of the notion of compingent Boolean

algebra of de Vries (see its definition below). We call such algebras “normal contact
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algebras” because they form a subclass of the class of contact algebras and naturally

arise in normal Hausdorff spaces.

For any CA (B,C), we define a binary relation “ ≪C” on B (called non-tangential

inclusion) by “ a ≪C b ↔ a(−C)b∗ ”. Sometimes we will write simply “ ≪” instead

of “ ≪C”. This relation is also known in the literature under the following names:

“well-inside relation”, “well below”, “interior parthood”, “non-tangential proper part”

or “deep inclusion”.

The relations C and ≪ are inter-definable. For example, normal contact algebras

could be equivalently defined (and exactly in this way they were introduced (under

the name of compingent Boolean algebras) by de Vries in [24]) as a pair of a Boolean

algebra B = (B, 0, 1,∨,∧, ∗) and a binary relation ≪ on B subject to the following

axioms:

(≪1) a≪ b implies a ≤ b;

(≪2) 0 ≪ 0;

(≪3) a ≤ b≪ c ≤ t implies a≪ t;

(≪4) a≪ c and b≪ c implies a ∨ b≪ c;

(≪5) If a≪ c then a≪ b≪ c for some b ∈ B;

(≪6) If a ̸= 0 then there exists b ̸= 0 such that b≪ a;

(≪7) a≪ b implies b∗ ≪ a∗.

The proof of the equivalence of the two definitions of normal contact algebras

is straightforward and analogous to the corresponding statement for proximity spaces

(see Theorems 3.9 and 3.11 in [87]). One has just to show that xCy iff x ̸≪ y∗.

Obviously, contact algebras could be equivalently defined as a pair of a Boolean

algebra B and a binary relation ≪ on B subject to the axioms (≪1)-(≪4) and (≪7).

It is easy to see that axiom (C5) (resp., (C6)) can be stated equivalently in the

form of (≪5) (resp., (≪6)).

Remark 1.2.1.2. Note that if 0 ̸= 1 then the axiom (C2) follows from the axioms

(C3), (C4) and (C6). Indeed, note first that in the presence of the axiom (C4) the

axiom (C2) is equivalent to the following axiom

(C2′) 0(−C)1.
So, let 0 ̸= 1. We will show that 0(−C)1. Using (C6), we get that there exists b ̸= 0

such that b(−C)0. Since b∗ ̸= 1, (C6) implies that there exists c ̸= 0 such that c(−C)b∗.
Hence, by the axiom (C4), 0(−C)b∗. Thus, using axioms (C3) and (C4), we get that

0(−C)(b ∨ b∗), i.e., 0(−C)1.
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Analogously we get that if 0 ̸= 1 then the axiom (≪2) follows from the axioms

(≪3), (≪4), (≪6) and (≪7).

The following obvious assertion collects some easy properties of the contact rela-

tion:

Lemma 1.2.1.3. Suppose that (B,C) is a contact algebra. Then:

(a) If xCy, x ≤ x′ and y ≤ y′ then x′Cy′,

(b) If x ∧ y ̸= 0 then xCy,

Fact 1.2.1.4. Let (B,C) be a contact algebra satisfying the axiom (C6). Then the

following is true:

(C6′) If x ̸≤ y then zCx and z(−C)y for some z ∈ B.

Proof. Since x ̸≤ y, we have that a = x ∧ y∗ ̸= 0. Thus, by (≪6), there exists z ̸= 0

such that z ≪ a. Then zCx and z(−C)y.

Remark 1.2.1.5. Obviously, contact algebras satisfying the axiom (C6′) satisfy the

axiom (C6) as well (indeed, x ̸= 1 means that 1 ̸≤ x; hence there exists an y ∈ B such

that yC1 and y(−C)x; by (C2), yC1 implies y ̸= 0). So, in the definition of a normal

contact algebra, one can substitute (C6) with (C6′). The axiom (C6) was introduced

in [24] (see also [106]).

Lemma 1.2.1.6. Suppose that (B,C) is a contact algebra satisfying, in addition, the

axiom (C6). Then x ≤ y iff (∀z)(zCx implies zCy).

Proof. It is obvious.

Remark 1.2.1.7. Axiom (C6) is an extensionality axiom, since one obtains immedi-

ately from Lemma 1.2.1.6 that

x = y ⇐⇒ (∀z ∈ B)[zCx⇐⇒ zCy].

Example 1.2.1.8. Let B be a Boolean algebra. Then there exist a largest and a

smallest contact relations on B; the largest one, ρl, is defined by

aρlb ⇐⇒ (a ̸= 0 and b ̸= 0),

and the smallest one, ρs, by

aρsb ⇐⇒ a ∧ b ̸= 0.
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Note that, for a, b ∈ B,

a≪ρs b ⇐⇒ a ≤ b;

hence a≪ρs a, for any a ∈ B. Thus (B, ρs) is a normal contact algebra.

Example 1.2.1.9. Let (X, τ) be a topological space. We will define a contact relation

ρ(X,τ) on the complete Boolean algebra RC(X) of all regular closed subsets of (X, τ)

setting, for each F,G ∈ RC(X),

Fρ(X,τ)G iff F ∩G ̸= ∅;

it is called a standard contact relation. So, (RC(X, τ), ρ(X,τ)) is a CCA (it is called a

standard contact algebra). We will often write simply ρX instead of ρ(X,τ). Note that,

for F,G ∈ RC(X),

F ≪ρX G iff F ⊆ intX(G).

Thus, if (X, τ) is a normal Hausdorff space then the standard contact algebra

(RC(X, τ), ρ(X,τ)) is a complete NCA.

Also, we define a contact relation DX on the complete Boolean algebra RO(X)

of all regular open subsets of (X, τ) as follows:

UDXV iff cl(U) ∩ cl(V ) ̸= ∅.

Then (RO(X), DX) is a CCA.

Note that (RO(X), DX) and (RC(X), ρX) are isomorphic C-algebras. The iso-

morphism ν : (RO(X), DX) −→ (RC(X), ρX) between them is defined by the formula

ν(U) = cl(U),

for every U ∈ RO(X).

We are now going to give a natural example of a normal contact algebra using

proximity spaces.

We will need the following observation:

Lemma 1.2.1.10. Let (X, δ) be an Efremovič proximity space and A,B ⊆ X. If

A≪δ B then there exists a regular closed set C such that A≪δ C ≪δ B.
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Proof. By (EF) (see 0.5.1.1), there exists a D ⊆ X such that A≪ D ≪ B. Applying

0.5.2.2, we obtain

A≪δ int(D) ⊆ cl(int(D)) ⊆ cl(D) ≪δ B,

and thus, A≪δ cl(int(D)) ≪δ B.

Example 1.2.1.11. Let (X, δ) be an Efremovič proximity space. Then (RC(X), δ) is

a normal contact algebra.

Proof. The verification of axioms (C1) – (C4) is straightforward; (C5) follows from

Lemma 1.2.1.10. For proving (≪6) (which is equivalent to (C6)), let A ∈ RC(X) and

A ̸= ∅. Then there exists a point x ∈ int(A). Obviously, x ≪δ intτδ(A). Applying

Lemma 1.2.1.10, we obtain that there exists B ∈ RC(X) such that x≪δ B ≪δ A. So,

B ̸= ∅ and B ≪δ A.

1.2.2 A new proof of de Vries’ Representation Theorem for
normal contact algebras

In this subsection we shall prove that each normal contact algebra can be isomor-

phically embedded as a dense subalgebra of a standard contact algebra of a compact

Hausdorff space. Our strategy follows the proof of the Stone representation theorem

for Boolean algebras. The points in a Stone space Sa(B) are the maximal filters of

B. In normal contact algebras, the points of the representation space will be some

analogues of maximal filters, called clusters. We take the notion of a cluster from the

theory of proximity spaces, and our definition is just the lattice-theoretic translation

of the corresponding definition of a cluster (see Definition 0.5.1.6 here). Many state-

ments about clusters in normal contact algebras have proofs which are identical (up to

the aforementioned lattice-theoretical translation) to the proofs of the corresponding

statements for clusters in proximity spaces. When such identical proofs exist we will

refer to the corresponding statements and their proofs.

Throughout this subsection we suppose that (B,C) is a normal contact algebra.

1.2.2.1. A non-empty subset Γ of B is called a clan in (B,C) if the following conditions

are satisfied:

(K1) If x, y ∈ Γ then xCy;

(K2) If x < y and x ∈ Γ then y ∈ Γ;

(G) If x ∨ y ∈ Γ then x ∈ Γ or y ∈ Γ.
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A clan Γ in (B,C) is called a cluster in (B,C) if it satisfies the following condition:

(CLU) If xCy for every y ∈ Γ, then x ∈ Γ.

The set of all clusters in (B,C) is denoted by Clust(B,C) or simply by Clust(B).

Note that a non-empty subset Γ of B is a cluster iff it satisfies the axioms (K1),

(G) and (CLU). It is not hard to see that (the proofs are similar to those given in

[112]):

(a) each clan is contained in a maximal clan;

(b) each maximal clan is a cluster.

The following properties of the clusters will be helpful later:

Lemma 1.2.2.2. Let Γ ∈ Clust(B), and a, b ∈ B. Then:

(a) if aCb, then there is some ∆ ∈ Clust(B) such that a ∈ ∆ and b ∈ ∆;

(b) a∗ ∈ Γ iff (∀b ∈ B) (c ∈ Γ and b ∨ a = 1 imply cCb).

Proof. (a) The proof is analogous to the one of [87, Theorem 5.14].

(b) If a∗, c ∈ Γ and a∨ b = 1, then a∗ ≤ b. It follows from (K2) that b ∈ Γ, and hence,

cCb (by (K1)). Conversely, suppose that (∀b ∈ B) (c ∈ Γ and b ∨ a = 1 imply cCb).

Setting b = a∗, we obtain that cCa∗ for all c ∈ Γ, and thus, a∗ ∈ Γ (by (CLU)).

The next theorem can be proved exactly as Theorem 5.8 of [87]:

Theorem 1.2.2.3. A subset σ of a normal contact algebra (B,C) is a cluster iff there

exists an ultrafilter u in B such that

σ = {a ∈ B : aCb for every b ∈ u}.(1.1)

Moreover, given σ and a0 ∈ σ, there exists an ultrafilter u in B satisfying (1.1) which

contains a0.

Corollary 1.2.2.4. Let (B,C) be a normal contact algebra and u be an ultrafilter (or a

basis of an ultrafilter) in B. Then there exists a unique cluster σu in (B,C) containing

u, and

σu = {a ∈ B | aCb for every b ∈ u}.(1.2)

Finally, the following simple result can be proved exactly as Lemma 5.6 of [87]:

Fact 1.2.2.5. Let (B,C) be a normal contact algebra, Γ1 and Γ2 be two clusters in

(B,C). If Γ1 ⊆ Γ2, then Γ1 = Γ2.
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Notation 1.2.2.6. Let (X, τ) be a topological space and x ∈ X. Then we set:

σXx = {F ∈ RC(X) | x ∈ F} and νXx = {F ∈ RC(X) | x ∈ int(F )}.(1.3)

We will often write σx and νx instead of, respectively, σXx and νXx .

The next assertion is obvious:

Fact 1.2.2.7. For any topological space (X, τ) and every point x ∈ X, νx is a filter in

the Boolean algebra RC(X) and σx is a clan in (RC(X), ρX). If X is regular then σx

is a cluster in the CA (RC(X), ρX) (and it is called a point-cluster).

We are now ready to present our proof of de Vries’ Representation Theorem for

normal contact algebras.

Theorem 1.2.2.8. (The de Vries Representation Theorem for NCAs ([24]))

(a) Each normal contact algebra (B,C) can be densely embedded (as a contact algebra)

into a standard contact algebra (RC(X), ρX), where X is a compact Hausdorff space.

When B is complete this embedding becomes a CA-isomorphism;

(b) There exists a bijective correspondence between the class of all (up to isomorphism)

complete normal contact algebras and the class of all (up to homeomorphism) compact

Hausdorff spaces.

Proof. (a) Let (B,C) be a CNCA. Put X = Clust(B,C). Define a function

λ(B,C) : B −→ P (X)

by

λ(B,C)(a) = {σ ∈ X | a ∈ σ}(1.4)

in analogy to the Stone representation theorem for Boolean algebras. When there is

no ambiguity, we will write simply λB instead of λ(B,C). Let us show that λB satisfies

the following conditions:

(H1) λB(0) = ∅, λB(a) = X ⇐⇒ a = 1;

(H2) λB(a ∨ b) = λB(a) ∪ λB(b).

Obviously, λB(0) = ∅ and λB(1) = X. Let λB(a) = X. Then a ∈ σ for every

σ ∈ X. Suppose that a ̸= 1. Then 1 ̸≤ a and hence, by (C6′) (see 1.2.1.4), there exists

an element b of B such that bC1 and b(−C)a. By 1.2.2.2(a), there exists σ ∈ X such
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that b ∈ σ. Since a ∈ σ, we obtain that aCb and this is a contradiction. Therefore,

a = 1. Hence, λB satisfies condition (H1).

The fact that λB satisfies condition (H2) follows immediately from (G) and (K2)

(see 1.2.2.1).

Let T be the topology on X having as a closed base the family

{λB(a) | a ∈ B}

((H1) and (H2) show that this family can be taken as a closed base of a topology).

Then

the family {X \ λB(a) | a ∈ B} is an open base of (X,T).(1.5)

We put

Φa(B,C) = (X,T).(1.6)

Let a ∈ B. Then, using (H1) and (H2), we obtain that cl(X \ λB(a)) =
∩
{λB(b) | b ∈

B,X \ λB(a) ⊆ λB(b)} =
∩
{λB(b) | b ∈ B, λB(a) ∪ λB(b) = X} =

∩
{λB(b) | b ∈

B, a ∨ b = 1} =
∩
{λB(b) | b ∈ B, a∗ ≤ b} = λB(a

∗); hence

λB(a
∗) = cl(X \ λB(a)).(1.7)

Then

X \ λB(a) = X \ cl(X \ λB(a∗)) = int(λB(a
∗)).(1.8)

Therefore,

the family {int(λB(a)) | a ∈ B} is an open base of (X,T).(1.9)

Let us show that (X,T) is a Hausdorff space. Indeed, let σ1, σ2 ∈ X and σ1 ̸= σ2.

Then, by 1.2.2.5, σ1 ̸⊆ σ2. Take a1 ∈ (σ1 \ σ2). Then there exists an a2 ∈ σ2 such

that a1(−C)a2. Hence a1 ≪ a∗2. There exist b1, b2 ∈ B such that a1 ≪ b1 ≪ b2 ≪ a∗2.

Therefore, a1(−C)b∗1 and a2(−C)b2. Put U1 = int(λB(b1)) and U2 = int(λB(b
∗
2). Then

σ1 ∈ U1, σ2 ∈ U2 and U1 ∩ U2 = ∅. So,

(X,T) is a Hausdorff space.

Further, for every a ∈ B,

λB(a) ∈ RC(X,T).(1.10)
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Indeed, λB(a) = cl(X \λB(a∗)) = cl(X \ cl(X \λB(a))) = cl(int(λB(a))). We will show

that

λB : (B,C) −→ (RC(X), ρX)

is a dense CA-embedding. (see 1.2.1.9 for the notation ρX).

From (1.7) and the definition of the operation “∗” in RC(X), we obtain that

λB(a
∗) = (λB(a))

∗. This, together with (H1) and (H2), shows that λB is a Boolean

homomorphism.

To show that λB is injective, suppose that a ̸= b, and let w.l.o.g. a ̸≤ b. By

(C6′), there is some c ∈ B such that aCc and b(−C)c. Let σ ∈ X be such that

a, c ∈ σ (see Lemma 1.2.2.2). It follows now from b(−C)c and (K1) that b ̸∈ σ. Hence

σ ∈ λB(a) \ λB(b), i.e., λB(a) ̸= λB(b). Therefore, λB is an injection.

We will now prove that λB(B) is dense in RC(X). So, let F ∈ RC(X) and

F ̸= ∅. Since F is regular closed, we obtain that int(F ) ̸= ∅. Let σ ∈ int(F ). Then,

by (1.9), there exists an a ∈ B such that σ ∈ int(λB(a)) ⊆ int(F ). Hence λB(a) ̸= ∅.
Since λB(a) is regular closed and F is closed, we obtain that λB(a) ⊆ F . Therefore,

λB(B) is dense in RC(X).

Finally, Lemma 1.2.2.2 implies that for every a, b ∈ B, aCb iff λB(a)∩λB(b) ̸= ∅;
hence aCb iff λB(a)ρXλB(b). So,

λB : (B,C) −→ (RC(X), ρX) is a dense CA-embedding.(1.11)

Using Proposition 0.3.2.3, we obtain that

λB : (B,C) −→ (RC(X), ρX) is a CA-isomorphism for any CNCA (B,C).(1.12)

We will show that (X,T) is a compact space. Let Sa(B) be the Stone space of the

Boolean algebra B. Define a function f : Sa(B) −→ X by f(u) = σu, for every u ∈
Sa(B) (see 1.2.2.4 for the notation σu). We will show that f is a continuous surjection.

This will imply that (X,T) is a compact space, since Sa(B) is such one. So, let

u ∈ Sa(B) and X \ λB(a) be a basic neighborhood of f(u) = σu. Then a ̸∈ σu. Hence,

by 1.2.2.4, there exists b ∈ u such that a(−C)b. Let λSB(b) = {v ∈ Sa(B) | b ∈ v}. Then
λSB(b) is a neighborhood of u in Sa(B). Let v ∈ λSB(b). Then b ∈ v and since a(−C)b,
we obtain that a ̸∈ f(v). Hence f(v) ̸∈ λB(a). Therefore, f(λ

S
B(b)) ⊆ X \λB(a). So, f

is a continuous map. As it follows immediately from 1.2.2.3, f is a surjection. Hence,

(X,T) is a compact Hausdorff space.(1.13)
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(b) For every compact Hausdorff space (Y, τ), we put

Φt(Y, τ) = (RC(Y, τ), ρY )(1.14)

(see 1.2.1.9 for the notation). Then Φt(Y, τ) is a CNCA.

Let (X, τ) be a compact Hausdorff space and

t(X,τ) : (X, τ) −→ Φa(Φt(X, τ))

be defined by

t(X,τ)(x) = {F ∈ RC(X, τ) | x ∈ F} (= σx),∀x ∈ X.(1.15)

We will write simply tX instead of t(X,τ).

We have that

Φa(Φt(X, τ)) = Clust(RC(X, τ), ρ(X,τ))

(in the sequel, we will write simply X instead of (X, τ)).

By 1.2.2.7, the map tX is defined correctly. Let x, y ∈ X and x ̸= y. Then,

obviously, σx ̸= σy. Hence tX is an injection. Let σ be a cluster in (RC(X), ρX).

Then, by 1.2.2.3, there exists an ultrafilter U in RC(X) such that

σ = {F ∈ RC(X) | F ∩G ̸= ∅,∀G ∈ U}.(1.16)

Since F ∧ G ⊆ F ∩ G, for every F,G ∈ RC(X), U is a family of closed subsets of

the compact Hausdorff space (X, τ) having the finite intersection property. Hence

P =
∩
{G | G ∈ U} ̸= ∅. Moreover, the set P has only one point. Indeed, suppose

that x, y ∈ P and x ̸= y. Then there exist F,G ∈ RC(X) such that x ∈ F , y ∈ G and

F ∩G = ∅. Using (1.16), we obtain that F,G ∈ σ and hence FρXG, i.e., F ∩G ̸= ∅ —

a contradiction. Thus P has only one point, which will be denoted by xσ. Now (1.16)

implies that σxσ ⊆ σ. Hence, by 1.2.2.5,

σ = σxσ , i.e., σ = tX(xσ).(1.17)

So, tX is a bijection. We have also proved that every cluster in (RC(X), ρX) is a point-

cluster. Having this in mind, we obtain that, for every F ∈ RC(X), tX(F ) = {σx | x ∈
F} = {σx | F ∈ σx} = {σ ∈ Clust(RC(X)) | F ∈ σ} = λRC(X)(F ). Since RC(X)

and {λRC(X)(F ) | F ∈ RC(X)} are closed bases of X and Φa(Φt(X)) respectively, we

conclude that

tX is a homeomorphism.(1.18)
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This fact, (1.12) and the propositions 1.2.2.9, 1.2.2.10 (which are proved below)

imply our assertion.

Proposition 1.2.2.9. Let (A,C) and (B,C ′) be NCAs and

φ : (A,C) −→ (B,C ′)

be an NCA-isomorphism. Then the map

fφ : Φa(A,C) −→ Φa(B,C ′), σ 7→ {φ(a) | a ∈ σ} (= φ(σ)),

is a homeomorphism.

Proof. Obviously, the map fφ is well-defined and is a bijection. We need only to

show that it is continuous (because it is a map between compact Hausdorff spaces).

Set X = Φa(A,C) and Y = Φa(B,C ′). Let σ0 ∈ X, σ′
0 = fφ(σ0), b ∈ B \ σ′

0 and

V = Y \λB(b). Then σ′
0 ∈ V . Let a = φ−1(b) and set U = X \λA(a). Then σ0 ∈ U . It

rests to show that fφ(U) ⊆ V . Let σ ∈ U . Then a ̸∈ σ. Hence b = φ(a) ̸∈ φ(σ). Thus

b ̸∈ fφ(σ), i.e., fφ(σ) ∈ V .

Proposition 1.2.2.10. Let X and Y be compact Hausdorff spaces and

f : X −→ Y

be a homeomorphism. Then the map

φf : Φ
t(X) −→ Φt(Y ), F 7→ f(F ),

is an NCA-isomorphism.

Proof. It is obvious.

1.2.3 Local contact algebras and the proof of Roeper’s Rep-
resentation Theorem

The following notion is a lattice-theoretical counterpart of Leader’s notion of local

proximity ([78]):

Definition 1.2.3.1. ([99]) An algebraic system B l = (B, 0, 1,∨,∧, ∗, ρ,B) is called

a local contact Boolean algebra or, briefly, local contact algebra (abbreviated as LCA
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or LC-algebra) if (B, 0, 1,∨,∧, ∗) is a Boolean algebra, ρ is a binary relation on B

such that (B, ρ) is a CA, and B is an ideal (possibly non proper) of B, satisfying the

following axioms:

(BC1) If a ∈ B, c ∈ B and a ≪ρ c then a ≪ρ b ≪ρ c for some b ∈ B (see 1.2.1.1 for

“ ≪ρ”);

(BC2) If aρb then there exists an element c of B such that aρ(c ∧ b);
(BC3) If a ̸= 0 then there exists b ∈ B \ {0} such that b≪ρ a.

We shall simply write (B, ρ,B) for a local contact algebra. We will say that

the elements of B are bounded and the elements of B \ B are unbounded. When B

is a complete Boolean algebra, the LCA (B, ρ,B) is called a complete local contact

Boolean algebra or, briefly, complete local contact algebra (abbreviated as CLCA or

CLC-algebra).

We will say that two local contact algebras (B, ρ,B) and (B1, ρ1,B1) are LCA-

isomorphic if there exists a Boolean isomorphism φ : B −→ B1 such that, for a, b ∈ B,

aρb iff φ(a)ρ1φ(b), and φ(a) ∈ B1 iff a ∈ B. A map φ : (B, ρ,B) −→ (B1, ρ1,B1)

is called an LCA-embedding if φ : B −→ B1 is an injective Boolean homomorphism

(i.e., Boolean monomorphism) and, moreover, for any a, b ∈ B, aρb iff φ(a)ρ1φ(b), and

φ(a) ∈ B1 iff a ∈ B.

Remark 1.2.3.2. Note that if (B, ρ,B) is a local contact algebra and 1 ∈ B then

(B, ρ) is a normal contact algebra. Conversely, any normal contact algebra (B,C) can

be regarded as a local contact algebra of the form (B,C,B).

Example 1.2.3.3. Let (X, β,B) be a separated local proximity space. Then the triple

(RC(X), β,B ∩RC(X)) is a local contact algebra.

Proof. It is clear that only the axioms (BC1)-(BC3) need to be checked. The first one

follows immediately from the axiom (LP1) (see 0.5.1.9) and the analogue of Lemma

1.2.1.10. Let us show that (BC3) is fulfilled. Take a non-empty regular closed set F .

Then there exists a point x ∈ int(F ). Since {x} ∈ B and x ≪ F , the axiom (LP1)

implies that there is a G ∈ B such that x ≪ G ≪ F . As in Lemma 1.2.1.10, we can

find a G1 ∈ RC(X) with x ≪ G1 ≪ G. Then G1 ∈ B, G1 ̸= ∅ and G1 ≪ F , as

required.

It remains to be shown that the axiom (BC2) is fulfilled. Let A,B ∈ RC(X)

and BβA. By the Leader Theorem 0.5.2.5, there exists a unique locally compact

extension Y of X such that X ⊆ Y and γX(Y ) = (X, β,B). Then we have that
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clY (A)∩ clY (B) ̸= ∅. Let y ∈ clY (A)∩ clY (B). Since Y is locally compact, there exists

an open in Y set U with compact closure such that y ∈ U . We have that y ∈ clY (A) =

clY (intX(A)) (because A ∈ RC(X)). Hence, setting D = clX(U ∩ intX(A)), we obtain

that D ∈ RC(X), clY (D) ⊆ clY (U) and hence clY (D) is compact in Y , i.e., D ∈ B.

Further, using [53, 1.3.D(a)], we have y ∈ U ∩ clY (A) = U ∩ clY (intX(A)) ⊆ clY (U ∩
clY (intX(A))) = clY (U ∩ intX(A)) = clY (D), i.e., clY (D) ∩ clY (B) ̸= ∅. Therefore,

DβB, D ∈ B ∩RC(X) and D ⊆ A. This completes the proof.

The following lemmas are lattice-theoretical counterparts of some theorems from

Leader’s paper [78].

Definition 1.2.3.4. Let (B, ρ,B) be a local contact algebra. Define a binary relation

Cρ on B by

aCρb iff (aρb or a, b ∈ B \ B).(1.19)

It is called the Alexandroff extension of ρ. Sometimes we will write C(ρ,B) or even

C(B,ρ,B) instead of Cρ.

Lemma 1.2.3.5. Let (B, ρ,B) be a local contact algebra. Then (B,Cρ), where Cρ is

the Alexandroff extension of ρ, is a normal contact algebra.

Proof. We set, for brevity, C = Cρ. The axioms (C1) − (C3) (see Definition 1.2.1.1)

follow directly from the properties of ρ and B and the definition of C. Let us check

that the axiom (C4) is fulfilled.

Let xC(y ∨ z). Suppose first that xρ(y ∨ z). Then xρy or xρz and hence xCy or

xCz. If x ̸∈ B and (y∨ z) ̸∈ B then y ̸∈ B or z ̸∈ B; hence xCy or xCz. Conversely, let

xCy or xCz. If xρy or xρz then xρ(y ∨ z) and hence xC(y ∨ z). It remains to regard

the case when x ̸∈ B, y ̸∈ B and z ̸∈ B. Then (y ∨ z) ̸∈ B and hence xC(y ∨ z). So,

the axiom (C4) is fulfilled.

We shall now prove that the axiom (≪ 5) (see 1.2.1.1) (which is equivalent to the

axiom (C5)) is fulfilled. Recall that we write x ≪C y (resp., x ≪ρ y) when x(−C)y∗

(resp., x(−ρ)y∗). Note that

x(−C)y ⇐⇒ (x(−ρ)y and (x ∈ B or y ∈ B)).

Hence,

if x ∈ B (or y∗ ∈ B) and x≪ρ y, then x≪C y.
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Let x≪C z. Then x(−C)z∗ and hence x(−ρ)z∗ and (x ∈ B or z∗ ∈ B). Therefore
x≪ρ z and z∗ ≪ρ x

∗. If x ∈ B then, by (BC1) (see Definition 1.2.3.1), there exists an

y ∈ B such that x ≪ρ y ≪ρ z. Thus x ≪C y ≪C z. If z∗ ∈ B then, by (BC1), there

exists an element t of B such that z∗ ≪ρ t ≪ρ x
∗. This implies that z∗ ≪C t ≪C x∗.

So, z∗(−C)t∗ and t(−C)x, i.e., x≪C t
∗ ≪C z. Therefore, the axiom (C5) is fulfilled.

Let’s, finally, verify that the axiom (C6) is fulfilled. Let x ̸= 1. Then x∗ ̸= 0. By

(BC3), there exists an y ∈ B \ {0} such that y ≪ρ x
∗. This implies that y ≪C x

∗, i.e.,

y(−C)x and y ̸= 0. So, (B,C) is a normal contact algebra.

Definition 1.2.3.6. Let (B, ρ,B) be a local contact algebra. We will say that σ is

a cluster in (B, ρ,B) if σ is a cluster in the NCA (B,Cρ) (see Definition 1.2.3.4 and

Lemma 1.2.3.5). A cluster σ in (B, ρ,B) (resp., an ultrafilter u in B) is called bounded

if σ ∩ B ̸= ∅ (resp., u ∩ B ̸= ∅). The set of all bounded clusters in (B, ρ,B) will be

denoted by BClust(B, ρ,B).

Lemma 1.2.3.7. Let (B, ρ,B) be a local contact algebra and let 1 ̸∈ B. Then

σ(B,ρ,B)
∞ = {b ∈ B | b ̸∈ B}

is a cluster in (B, ρ,B). (Sometimes we will simply write σ∞ or σB∞ instead of σ
(B,ρ,B)
∞ .)

Proof. By Lemma 1.2.3.5, we have that (B,Cρ) is a normal contact algebra. We shall

simply write “C” instead of “Cρ”, and “σ” instead of “σ∞”.

Let x, y ∈ σ. Then x ̸∈ B and y ̸∈ B. Hence, by the definition of C (see Definition

1.2.3.4), we obtain that xCy. So the axiom (K1) (see 1.2.2.1) is fulfilled.

The axiom (G) follows directly from (I3) (see 0.3.1.5) (recall that B is an ideal).

For showing that the axiom (CLU) is also fulfilled, let xCy for every y ∈ σ.

We will prove that x ̸∈ B, i.e., that x ∈ σ. So, suppose that x ∈ B. Then x ̸= 1.

Hence x ≪ρ 1. By (BC1), there exists an element z of B such that x ≪ρ z ≪ρ 1.

Then x(−ρ)z∗. Since 1 ̸∈ B, we obtain that z∗ ̸∈ B. Thus z∗ ∈ σ. This implies,

by our assumption, that xCz∗. Therefore, by the definition of the relation “C” (see

Definition 1.2.3.4), we conclude that x ̸∈ B (because we have that x(−ρ)z∗), which is

a contradiction.

So, σ is a cluster in (B,C).

Proposition 1.2.3.8. ([99, 117]) Let (X, τ) be a locally compact Hausdorff space.

Then:
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(a) the triple (RC(X, τ), ρ(X,τ), CR(X, τ)) (see Example 1.2.1.9 for ρ(X,τ)) is a complete

local contact algebra; it is called a standard local contact algebra;

(b) for every x ∈ X, σx is a bounded cluster in the standard local contact algebra

(RC(X, τ), ρ(X,τ), CR(X, τ)).

Proof. (a) By Theorem 0.5.2.5, γX((X, idX)) = (X, β(X,idX),B(X,idX)), where B(X,idX) =

{A ⊆ X | clX(A) is compact} and, for A,B ⊆ X, Aβ(X,idX)B iff clX(A) ∩ clX(B) ̸= ∅,
is a separated local proximity space. We can now use Example 1.2.3.3 for finishing the

proof.

(b) This is obvious.

Proposition 1.2.3.9. Let L be a locally compact Hausdorff space and X be a dense

subspace of L. Then the local contact algebra (RC(L), ρL, CR(L)) is isomorphic to

the local contact algebra (RC(X), β(L,iX,L),B(L,iX,L)∩RC(X)) (see Theorem 0.5.2.5 for

the notation). In particular, if L is a compact Hausdorff space then (RC(L), ρL) and

(RC(X), β(L,iX,L)) are isomorphic normal contact algebras.

Proof. We will write iX instead of iX,L.

First of all we have, by 1.2.3.8, that (RC(L), ρL, CR(L)) is a local contact algebra.

Since L is a locally compact Hausdorff extension of X, the Leader Theorem 0.5.2.5

tells us that γX((L, iX)) = (X, β(L,iX),B(L,iX)) is a separated local proximity space. We

obtain now, using Example 1.2.3.3, that (RC(X), β(L,iX),B(L,iX) ∩ RC(X)) is a local

contact algebra. By Lemma 0.4.2.2, the function e : RC(X) −→ RC(L), defined by

e(F ) = clL(F ), is a Boolean isomorphism. Now, the definition of the family B(L,iX)

(see Theorem 0.5.2.5) gives us that e(F ) ∈ CR(L) iff F ∈ B(L,iX) ∩ RC(X). On the

other hand, from the definition of β(L,iX) (see Theorem 0.5.2.5) we obtain immediately

that, for F,G ∈ RC(X), Fβ(L,iX)G iff e(F )ρLf(G). So, e is an isomorphism between

the local contact algebras (RC(X), β(L,iX),B(L,iX) ∩RC(X)) and (RC(L), ρL, CR(L)).

When L is compact, we obviously have that CR(L) = RC(L) and X ∈ B(L,iX) ∩
RC(X), so that the last statement of our proposition follows from its first statement

and Remark 1.2.3.2.

Theorem 1.2.3.10. (The Roeper Representation Theorem for LCAs ([99]))

(a) Each LCA (B, ζ,B) can be densely embedded into a standard local contact algebra

(RC(L), ρL, CR(L)), where L is a locally compact Hausdorff space. When B is complete

this embedding becomes a complete isomorphism.
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(b) There exists a bijective correspondence between the class of all (up to isomorphism)

complete local contact algebras and the class of all (up to homeomorphism) locally

compact Hausdorff spaces.

Proof. (a) Let (X, τ) be a locally compact Hausdorff space. We put

Ψt(X, τ) = (RC(X, τ), ρ(X,τ), CR(X, τ))(1.20)

(see 1.2.3.8 for the notation). By 1.2.3.8, Ψt(X, τ) is a CLCA.

Let (B, ρ,B) be a local contact algebra. Let C = Cρ be the Alexandroff extension

of ρ (see 1.2.3.4). Then, by 1.2.3.5, (B,C) is a normal contact algebra. Put (X,T) =

Φa(B,C) (see Theorem 1.2.2.8 for Φa).

If 1 ∈ B then B = B, ρ = C and (B, ρ,B) = (B, ρ,B) = (B, ρ) is a normal

contact algebra (see Remark 1.2.3.2). So, we put

Ψa(B, ρ,B) = (X,T) = Φa(B,C), when 1 ∈ B,(1.21)

and our assertion follows from Theorem 1.2.2.8(a).

Let now 1 ̸∈ B. Then, by Lemma 1.2.3.7, the set σ∞ = {x ∈ B | x ̸∈ B} is a

cluster in (B,C) and, hence, σ∞ ∈ X. Let

L = X \ {σ∞}.(1.22)

Then, using 1.2.2.5, we get that

L is the set of all bounded clusters of (B, ρ,B)(1.23)

(sometimes we will write L(B,ρ,B) or LB instead of L). Let the topology τ(= τB =

τ(B,ρ,B)) on L be the subspace topology, i.e., τ = T|L. Then (L, τ) is a locally compact

Hausdorff space. So, we put

Ψa(B, ρ,B) = (L, τ), when 1 ̸∈ B.(1.24)

Put

λl(B,ρ,B)(a) = λ(B,Cρ)(a) ∩ L,(1.25)

for each a ∈ B. We will simply write λlB (or even λl or λ(B,ρ,B)) instead of λl(B,ρ,B) when

this does not lead to ambiguity.

We will now show that:

(I) L is a dense subset of X;

60



(II) λlB is a dense Boolean monomorphism of the Boolean algebra B into the Boolean

algebra RC(L, τ) (and, hence, when B is complete, then λlB is a Boolean isomorphism

onto the Boolean algebra RC(L, τ));

(III) b ∈ B iff λl(b) ∈ CR(L);

(IV) aρb iff λl(a) ∩ λl(b) ̸= ∅.

In other words, λl will be an LCA-embedding of the local contact algebra (B, ρ,B)
into the standard local contact algebra (RC(L), ρL, CR(L)); when B is complete, this

embedding will be an isomorphism onto the standard CLCA (RC(L), ρL, CR(L)).

To prove (I), recall that {X \ λB(a) | a ∈ B} is an open base of (X,T). As it

follows from the definition of σ∞, for any a ∈ B, σ∞ ∈ X \ λB(a) iff a ∈ B. So, let

a ∈ B. Since 1 ̸∈ B, we have that 1 ̸≤ a. Then, by (C6′), there is an element c of B such

that cC1 and c(−C)a. Thus c ̸= 0 and, using (BC3), we can find an element b of B\{0}
such that b ≪ρ c. Then b(−C)a. Therefore, bC1, b ∈ B and b(−C)a. Now, Lemma

1.2.2.2 implies that there is a cluster σ in (B,C) such that b ∈ σ; hence σ ̸= σ∞, i.e.,

σ ∈ L. Since b(−C)a, we obtain that a ̸∈ σ. Therefore, σ ∈ L ∩ (X \ λB(a)). This

shows that L is a dense subset of X.

Let’s prove (II). We have, by (I) above and by 0.4.2.2, that the function r :

RC(X,T) −→ RC(L, τ), defined by r(A) = A ∩ L for every A ∈ RC(X), is a Boolean

isomorphism. Since λlB = r ◦ λB, we obtain, using Theorem 1.2.2.8, that λlB is a dense

Boolean monomorphism of the Boolean algebra B into the Boolean algebra RC(L, τ)

(and, hence, when B is complete, then λlB is a Boolean isomorphism)

To establish (III), recall that, for a ∈ B, σ∞ ∈ λB(a) ↔ a ∈ σ∞ ↔ a ̸∈ B and

hence λB(a) ⊆ L ↔ a ∈ B; further, for any a ̸∈ B, we have that σ∞ ∈ λB(a) =

clX(λ
l(a)) (see 0.4.2.2); hence λl(a) is compact iff λB(a) ⊆ L iff a ∈ B.
Finally, we will show that (IV) takes place. Let a, b ∈ B and aρb. Then, by

(BC2), there exist a1, b1 ∈ B such that a1 ≤ a, b1 ≤ b and a1ρb1. Then a1Cb1 and

hence λB(a1)∩ λB(b1) ̸= ∅. Since, by (III) above, λB(a1) = λl(a1) ⊆ λB(a)∩L = λl(a)

and λB(b1) = λl(b1) ⊆ λB(b) ∩ L = λl(b), we obtain that λl(a) ∩ λl(b) ̸= ∅.
Let’s prove the implication in the converse direction. Take a, c ∈ B for which

λl(a) ∩ λl(c) ̸= ∅. Then there exists a cluster σ ∈ λB(a) ∩ λB(c) ∩ L. Since σ ̸= σ∞,

there exists an element b0 of B belonging to σ. Then b0 ̸= 1 and hence b0 ≪ρ 1.

By (BC1), there exists an element b of B such that b0 ≪ρ b ≪ρ 1. Hence b ∈ σ

and b0(−ρ)b∗. By the definition of C, we obtain that b0(−C)b∗, i.e., b∗ ̸∈ σ. So,

σ ∈ intX(λB(b)), where b ∈ B. We will now show that σ ∈ λB(a) ∧ λB(b) = λB(a ∧ b)
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and σ ∈ λB(c) ∧ λB(b) = λB(c ∧ b). This will imply that a ∧ b ∈ σ and c ∧ b ∈ σ

and hence (a ∧ b)C(c ∧ b); since a ∧ b, c ∧ b ∈ B, we will obtain that (a ∧ b)ρ(c ∧ b)

and, therefore, aρc. So, let’s show that σ ∈ λB(a)∧ λB(b) = clX(intX(λB(a)∩ λB(b))).
Supposing that this is not the case, we can find an open neighborhood U of σ such

that U ∩ intX(λB(a) ∩ λB(b)) = ∅. Put V = U ∩ intX(λB(b)). Then V is also an

open neighborhood of σ and V ∩ intX(λB(a)) = ∅. This is a contradiction because σ ∈
λB(a) = clX(intX(λB(a))). So, we have proved that σ ∈ λB(a) ∧ λB(b). Analogously,

we obtain that σ ∈ λB(c) ∧ λB(b). This finishes the proof of (IV).

Hence,

X = αL,(1.26)

i.e., X is the Alexandroff (i.e., one-point) compactification of L and

λlB : (B, ρ,B) −→ (RC(L), ρL, CR(L)) is a dense LCA-embedding;(1.27)

thus,

if (B, ρ,B) is a CLCA then λlB is an LCA-isomorphism.(1.28)

For unifying both cases (i.e., when 1 ∈ B, and when 1 ̸∈ B), we will introduce

some new notation. For every LCA (B, ρ,B) and every a ∈ B, set

λg(B,ρ,B)(a) = λ(B,Cρ)(a) ∩Ψa(B, ρ,B).(1.29)

We will write simply λgB instead of λg(B,ρ,B) when this does not lead to ambiguity. Thus,

when 1 ∈ B, we have that λgB = λB, and if 1 ̸∈ B then λgB = λlB. Hence,

λgB : (B, ρ,B) −→ (Ψt ◦Ψa)(B, ρ,B) is a dense LCA-embedding,(1.30)

and

when (B, ρ,B) is a CLCA then λgB is an LCA-isomorphism.(1.31)

(b) Let (L, τ) be a locally compact Hausdorff space and (L, τ) be non compact. Put

B = RC(L, τ), B = CR(L, τ) and ρ = ρL. Then (B, ρ,B) = Ψt(L, τ) and 1 ̸∈ B (here

1 = L). We will show that the map

t(L,τ) : (L, τ) −→ Ψa(Ψt(L, τ)),(1.32)

defined by t(L,τ)(x) = {F ∈ RC(L, τ) | x ∈ F}(= σBx ), for all x ∈ L, is a homeomor-

phism (we will often write simply tL instead of t(L,τ)). Put (X,T) = Φa(B,Cρ). Then
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X = Clust(B,Cρ) and if L′ = X \ {σB∞} and τ ′ = T|L′ then (L′, τ ′) = Ψa(B, ρ,B) (see
(1.24)). It is easy to see that, for every x ∈ L, σBx = {F ∈ RC(L) | x ∈ F} is a

bounded cluster in (B,Cρ). Hence tL is defined correctly.

Let αL = L ∪ {∞} be the one-point compactification of L. Then, by 0.4.2.2,

RC(L) and RC(αL) are isomorphic complete Boolean algebras and the isomorphism

e between them is defined by the formula e(F ) = clαL(F ), for every F ∈ RC(L) (note

that e−1(G) = r(G) = G ∩ L, for every G ∈ RC(αL)). It is easy to see (using the

notation of 0.5.2.5) that βαL,iL,αL
= CρL on RC(L). Hence, by (the proof of) 1.2.3.9, the

function e is an NCA-isomorphism between (RC(L), CρL) and (RC(αL), ραL). Since

Φa(Φt(αL)) = Φa(RC(αL), ραL), we get, by 1.2.2.9 that the function

fr : Φ
a(Φt(αL)) −→ Φa(RC(L), CρL),(1.33)

defined by fr(σ) = {r(G) | G ∈ σ} = {G ∩ L | G ∈ σ} for every σ ∈ Φa(Φt(αL)),

is a homeomorphism. By (1.18), the function tαL : αL −→ Φa(Φt(αL)), defined by

tαL(x) = {G ∈ RC(αL) | x ∈ G}(= σx), for all x ∈ αL, is a homeomorphism.

Hence f = fr ◦ tαL : αL −→ Φa(RC(L), CρL) is a homeomorphism. Recall that

αL = L ∪ {∞}, where ∞ ̸∈ L. Obviously f(∞)) = fr({G ∈ RC(αL) | ∞ ∈ G} = σB∞.

Thus the restriction f ′ of f to L is a homeomorphism between L and L′. From the

definitions of f ′ and tL we get that these maps coincide. So, we have proved that tL is

a homeomorphism.

In the case when (L, τ) is compact, we define tL,τ : (L, τ) −→ Ψa(Ψt(L, τ)) as

in (1.15) (using the definitions of Ψa, Φa, Ψt and Φt) and thus, by (1.18), tL is a

homeomorphism.

This fact, (1.31) and the propositions 1.2.3.11, 1.2.3.12 (which are proved below)

imply our assertion.

Proposition 1.2.3.11. Let (A, ρ,B) and (A′, ρ′,B′) be LCAs and

φ : (A, ρ,B) −→ (A′, ρ′,B′)

be an LCA-isomorphism. Then the map

fφ : Ψa(A, ρ,B) −→ Ψa(A′, ρ′,B′), σ 7→ {φ(a) | a ∈ σ},

is a homeomorphism.
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Proof. Clearly, the map

φC : (A,Cρ) −→ (A′, Cρ′), a 7→ φ(a)

is an NCA-isomorphism. Then, by 1.2.2.9, the map

fφC
: Φa(A,Cρ) −→ Φa(A′, Cρ′)

is a homeomorphism. Since φ is an LCA-isomorphism, we have that φ(B) = B′. Thus

φ(A \ B) = A′ \ B′, i.e.,

fφC
(σA∞) = σA

′

∞ .

Now, the definitions of fφ and Ψa imply that the map fφ is a homeomorphism.

Proposition 1.2.3.12. Let X and Y be locally compact Hausdorff spaces and

f : X −→ Y

be a homeomorphism. Then the map

φf : Ψ
t(X) −→ Ψt(Y ), F 7→ f(F ),

is an LCA-isomorphism.

Proof. This is obvious.

Remarks 1.2.3.13. Let (B, ρ,B) be an LCA, L = LB = Ψa(B, ρ,B), X = Φa(B,Cρ),

λgB : (B, ρ,B) −→ Ψt(L) be defined by (1.29), and λB : (B,Cρ) −→ Φt(X) be defined by

(1.4). Then, using the notation of Theorems 1.2.3.10 and 1.2.2.8, we get the following:

(a) For every b ∈ B,

intLB
(λgB(b)) = LB ∩ intX(λB(b)).(1.34)

Further, using (1.8) and (1.34), we obtain readily that for every b ∈ B,

L \ λgB(b) = intL(λ
g
B(b

∗)).(1.35)

(b) The next assertion specifies (1.9):

{intΨa(B,ρ,B)(λ
g
B(a)) | a ∈ B} is an open base of Ψa(B, ρ,B).(1.36)

(c) Note that (1.11) and (IV) (see the proof of Theorem 1.2.3.10) imply that

aρb iff there exists σ ∈ Ψa(B, ρ,B) such that a, b ∈ σ.(1.37)
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(d) For every F ∈ RC(L),

F =
∨

{λgB(b) | b ∈ B, λgB(b) ≪ρL F}(1.38)

holds. Indeed, it is obvious that the right part of (1.38), which we will denote by G, is

contained in the left part. Suppose that F ̸= G. Then, since F is a regular closed set,

U = intL(F ) \ G ̸= ∅. Clearly, U is open in L and thus, by (1.36), there exists b ∈ B
such that b ̸= 0 and λgB(b) ⊆ U . Then λgB(b) ≪ρL F (because of 1.2.1.9 and the fact

that U ⊆ intL(F )), and hence λgB(b) ⊆ G, a contradiction. Therefore, F = G.

Now, using Theorem 1.2.3.10(a), we get, in particular, that for every a ∈ B,

a =
∨

{b ∈ B | b≪ρ a}.(1.39)

1.3 MVD-algebras

1.3.1 Mormann’s Enriched Boolean algebras

As we have already mentioned above, normal contact algebras could be equivalently

defined as a pair of a Boolean algebra B = (B, 0, 1,∨,∧, ∗) and a binary relation ≪
subject to the following axioms:

(≪1) x≪ y implies x ≤ y;

(≪2) 0 ≪ 0;

(≪3) x ≤ y ≪ z ≤ t implies x≪ t;

(≪4) x≪ z and y ≪ z implies x ∨ y ≪ z;

(≪5) If x≪ z then x≪ y ≪ z for some y ∈ B;

(≪6) If x ̸= 0 then there exists y ̸= 0 such that y ≪ x;

(≪7) x≪ y implies y∗ ≪ x∗.

In [85], T. Mormann introduces the notion of an enriched Boolean algebra as a

pair of a Boolean algebra B and a binary relation ≪ (called by him interior parthood)

for which (≪1)-(≪6) hold and the axiom

(≪ 4∗) x≪ y and x≪ z imply x≪ y ∧ z
is fulfilled.

To be precise, he writes “(∀x ∈ B)(0 ≪ x)” instead of (≪2) and replaces (≪5)

and (≪6) with the following axiom

(≪5-6) x≪ z and x ̸= z together imply x≪ y ≪ z for some y ̸= x,

but, obviously, our expression of the axioms of enriched Boolean algebras is equivalent

to that given by Mormann (indeed, let x≪ z and x ̸= z; then, by (≪1), z∧x∗ ̸= 0 and,
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by (≪6), there exists a t ̸= 0 such that t≪ (z ∧ x∗); hence, by (≪3) and (≪1), t≪ z

and t ≤ x∗; by (≪5), there exists u ∈ B with x≪ u≪ z; setting y = u∨ t, we obtain,
using (≪3) and (≪4), that x ≪ y ≪ z; obviously x ̸= y; so, (≪5-6) follows from

axioms (≪1)-(≪6); conversely, the axioms (≪5-6) and (≪2) imply, in an obvious way,

the axioms (≪5) and (≪6). Thus, the difference between our normal contact algebras

and Mormann’s enriched Boolean algebras is that our axiom (≪7) is replaced by the

weaker axiom (≪ 4∗) (because, having (≪7), one can derive (≪ 4∗) from (≪ 4)).

Note that the following extensionality axiom is fulfilled in the enriched Boolean

algebras:

(x = y) ⇐⇒ [∀z : (z ≪ x) ⇐⇒ (z ≪ y)].

Indeed, it is enough to show that (x ≤ y) ⇐⇒ [∀z : (z ≪ x) ⇒ (z ≪ y)]. In the

direction (=⇒), this follows from (≪3). For proving the direction (⇐=), suppose that

x ̸≤ y. Then z′ = x∧ y∗ ̸= 0. Hence, by (≪6), there exists an element z ̸= 0 such that

z ≪ z′. Then, by (≪3), z ≪ x and z ≪ y∗. But z ≪ x implies that z ≪ y. Thus we

obtain, by (≪ 4∗), that z ≪ (y ∧ y∗), i.e., by (≪1), z = 0, which is a contradiction.

1.3.2 MVD-algebras

In [85] Mormann affirms that for any enriched complete Boolean algebra (B,≪) there

exists a locally compact Hausdorff space L such that (B,≪) is isomorphic to the en-

riched complete Boolean algebra (RO(L),≪L), where RO(L) is the complete Boolean

algebra of regular open subsets of L and, for any U, V ∈ RO(L), U ≪L V iff cl(U) is

compact and cl(U) ⊆ V ; conversely, for any locally compact Hausdorff space L, the pair

(RO(L),≪L) is an enriched complete Boolean algebra. Since the map ν : RO(L) −→
RC(L), defined by ν(U) = cl(U), is an isomorphism between the complete Boolean

algebras RO(L) and RC(L), and, for U, V ∈ RO(L), U ≪L V iff ν(U) ⊆ int(ν(V )) and

ν(U) is compact, we can say that (B,≪) is isomorphic to the enriched Boolean algebra

(RC(L),≪L), where, for all F,G ∈ RC(L), F ≪L G iff F is compact and F ⊆ int(G)

(we hope that the use of the same notation (≪L) with different meanings will cause

no confusion). Trying to prove Mormann’s representation theorem, we arrived to the

following notion:

Definition 1.3.2.1. A pair M = (B,≪) is called an MVD-algebra if it is an enriched

Boolean algebra and satisfies the following axiom

(MVD) If x≪ 1 then y∗ ≪ x∗ implies x≪ y.
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When B is a complete Boolean algebra, we will say thatM is a complete MVD-algebra.

It follows immediately from the corresponding definitions that normal contact

algebras coincide with those MVD-algebras which satisfy the additional axiom

(≪ 2′) 1 ≪ 1.

We will show below that the notion of MVD-algebra is equivalent to the notion

of local contact algebra and hence we will obtain a representation theorem for MVD-

algebras (see Theorem 1.3.2.5 below) using Theorem 1.2.3.10. This representation

theorem sounds exactly as Mormann’s representation theorem [85], gives the same

semantics, so that it should imply that complete MVD-algebras and enriched complete

Boolean algebras are equivalent notions. This is, however, not the case, as the next

simple example shows; hence, Mormann’s representation theorem [85] is not true.

Example 1.3.2.2. There exists an enriched complete Boolean algebra which is not an

MVD-algebra.

Proof. Let X be a non-empty and non-discrete T1-space. We define a relation “ ≪ ”

on the complete Boolean algebra (P (X),⊆) by

A≪ B ⇐⇒ cl(A) ⊆ B.

Then it is easy to verify that (P (X),≪) is an enriched complete Boolean algebra. We

shall show that (P (X),≪) is not an MVD-algebra, i.e., it does not satisfy the axiom

(MVD) (from Definition 1.3.2.1). Indeed, let x be a non-isolated point of X. Put

B = A = X \ {x}. Then, obviously, A ≪ X and X \ B ≪ X \ A (since X \ B = {x}
is a closed subset of X) but A ̸≪ B, because A is not closed in X.

Theorem 1.3.2.3. The notions of local contact algebra and MVD-algebra are equiva-

lent.

Proof. Denote by LCA the class of all local contact algebras and by MA the class of

all MVD-algebras. We shall define two functions

f : LCA −→ MA and g : MA −→ LCA

and we will show that f ◦ g = idMA and g ◦ f = idLCA.

Let (B, ζ,B) be a local contact algebra. We have that x ≪ζ y iff x(−ζ)y∗. Put

x ≪M y iff x ∈ B and x ≪ζ y. We will prove that (B,≪M) is an MVD-algebra and

we will set f((B, ζ,B)) = (B,≪M).
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For proving (≪1), let x ≪M y; then x(−ζ)y∗ and hence x ∧ y∗ = 0; this implies

that x ≤ y.

Since 0 ∈ B and 0 ≪ζ 0, we obtain that 0 ≪M 0, i.e., the axiom (≪2) is fulfilled.

Let’s verify the axiom (≪3). Let x ≤ y ≪M z ≤ t. Then y ∈ B, y(−ζ)z∗ and

x∨y = y. This implies, by (I2) and (C4) (see 0.3.1.5 and 1.2.1.1 for (I2) and (C4), and

recall that, by the definition of a local contact algebra, B is an ideal of B and (B, ζ) is

a CA), that x ∈ B and x(−ζ)z∗. Since z ≤ t, we have that z∗ ∨ t∗ = z∗ and hence, by

(C4), x(−ζ)t∗. So, x ∈ B and x≪ζ t. Therefore, x≪M t.

For checking (≪4), let x ≪M z and y ≪M z. Then x, y ∈ B, x(−ζ)z∗ and

y(−ζ)z∗. Hence, by (I3) and (C4), x∨y ∈ B and (x∨y)(−ζ)z∗. Therefore, x∨y ≪M z.

Let’s prove that (≪5) is fulfilled. Let x ≪M z. Then x ∈ B and x ≪ζ z. By

(BC1), there exists an y ∈ B such that x≪ζ y ≪ζ z. This means that x≪M y ≪M z.

For verifying (≪6), let x ̸= 0. Then, by (BC3), there exists an y ∈ B \ {0} such

that y ≪ζ x. Therefore y ≪M x and y ̸= 0.

Let’s show that (≪ 4∗) is fulfilled. Let x ≪M y and x ≪M z. Then x ∈ B,
x(−ζ)y∗ and x(−ζ)z∗. By (C4), we obtain that x(−ζ)(y∗ ∨ z∗), i.e., x(−ζ)(y ∧ z)∗.

Hence x≪M y ∧ z.
For proving that (MVD) is fulfilled, let x≪M 1 and y∗ ≪M x∗. Then x ∈ B and

x(−ζ)y∗. Thus x≪M y.

So, (W,≪M) is an MVD-algebra.

Let now (B,≪) be an MVD-algebra. Put

g((B,≪)) = (B, ζM ,BM),

where

BM = {x ∈ B : x≪ 1}

and, for x, y ∈ B,

xζMy iff there exists z ∈ BM such that (z ∧ x) ̸≪ (z ∧ y)∗.

We shall prove that (B, ζM ,BM) is a local contact algebra, i.e., that the definition of

the function g is correct. In the proof of this claim, we will put, for short, B = BM and

ζ = ζM .

First of all, let’s note that, for x, y ∈ B,

xζy iff there exists z ∈ B such that (z ∧ x) ̸≪ (z ∧ y)∗ and (z ∧ y) ̸≪ (z ∧ x)∗.
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Indeed, if xζy then there exists z ∈ B such that (z∧x) ̸≪ (z∧y)∗. Since z∧x ∈ B,
(MVD) implies that (z ∧ y) ̸≪ (z ∧ x)∗. The converse is clear.

From (≪2) and (≪3) we obtain that 0 ∈ B, i.e., the axiom (I1) is fulfilled. (≪3)

implies that (I2) is fulfilled and, by (≪4), (I3) is also fulfilled.

For verifying (C1), let x ̸= 0. Then (≪6) implies that there exists an element z

of B \ {0} such that z ≪ x. Hence, by (≪3) and (≪1), z ∈ B, z ∧ x = z and z ̸≪ z∗.

This means that xζx.

Obviously, (≪2) and (≪3) imply that 0 ≪ x for any x ∈ B. Using this fact, we

will now establish the validity of (C2). Indeed, let xζy. Then there exists an element

z of B such that (z ∧ x) ̸≪ (z ∧ y)∗ and (z ∧ y) ̸≪ (z ∧ x)∗. So, supposing that x = 0

or y = 0, we would obtain that 0 ̸≪ (z ∧ y)∗ or 0 ̸≪ (z ∧ x)∗, which is a contradiction.

Hence, x, y ̸= 0.

It is clear that (C3) follows directly from the observation which we have made

after the definition of the relation ζ. Let’s show that (C4) takes place.

Let xζ(y∨z). Then there exists an element t of B such that (t∧x) ̸≪ (t∧(y∨z))∗.
Using (≪ 4∗), we obtain that

(t ∧ x) ̸≪ (t ∧ y)∗ or (t ∧ x) ̸≪ (t ∧ z)∗

If (t∧x) ̸≪ (t∧ y)∗ then xζy. If (t∧x) ̸≪ (t∧ z)∗ then xζz. So, xζ(y ∨ z) implies that

xζy or xζz.

Let now xζy or xζz. Suppose, for example, that xζy. Then there exists u ∈ B
such that (u ∧ x) ̸≪ (u ∧ y)∗. Using (≪3), we obtain immediately that (u ∧ x) ̸≪
(u∧ y)∗∧ (u∧ z)∗, i.e., (u∧x) ̸≪ (u∧ (y∨ z))∗. Hence we obtain that xζ(y∨ z). When

xζz, the proof is analogous. Therefore, we have shown that the axiom (C4) is fulfilled.

Let’s verify that the axiom (BC1) is fulfilled. Let x ∈ B, z ∈ B and x≪ζ z (i.e.,

x(−ζ)z∗). Since x ≪ 1, there exists (by (≪5)) an u ∈ B such that x ≪ u ≪ 1. Then

u ∈ B. By the definition of the relation ζ, we have

x(−ζ)z∗ iff (for every t ∈ B)(t ∧ x≪ (t ∧ z∗)∗).

Putting t = u, we obtain (since, by (≪1), x ≤ u) that x≪ (u∧ z∗)∗, i.e., x≪ (u∗∨ z).
Since x ≪ u, (≪ 4∗) implies that x ≪ (u ∧ z). Using again (≪5), we find an y ∈ B

such that x≪ y ≪ u ∧ z. Then y ∈ B and x≪ y ≪ z. Noting that

(a≪ b) → (a≪ζ b)
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(indeed, for every t ∈ B, one has t ∧ a ≤ a ≪ b ≤ t∗ ∨ b = (t ∧ b∗)∗ and hence t ∧ a ≪
(t ∧ b∗)∗, which implies that a(−ζ)b∗, i.e., a≪ζ b), we conclude that x≪ζ y ≪ζ z.

We shall now verify the axiom (BC2). Let xζy. Then, by the definition of the

relation ζ, there exists an element z of B such that (z ∧ x) ̸≪ (z ∧ y)∗. This implies

directly that xζ(z ∧ y) (take just the same z).

Finally, (BC3) follows immediately from (≪6) and the fact, proved above, that

y ≪ x implies y ≪ζ x. Therefore, (B, ζ,B) is indeed a local contact algebra.

Let us now show that g ◦ f = idLCA. Take a local contact algebra (W, ζ,B).
Then f((W, ζ,B)) = (W,≪M). Let g((W,≪M)) = (W, ζM ,BM) (see the corresponding

definitions above). We will show that BM = B and ζM = ζ. By our definitions, we

have that x≪M y iff x ∈ B and x≪ζ y (where, as usual, x≪ζ y means that x(−ζ)y∗);
further, we have BM = {x ∈ W : x ≪M 1} and xζMy iff there exists an element z of

BM such that (z ∧ x) ̸≪M (z ∧ y)∗.

If x ∈ BM then x ≪M 1 and hence, by the definition of ≪M , x ∈ B. Thus

BM ⊆ B. Conversely, if x ∈ B then x ≪ζ 1 (because x(−ζ)0) and hence, by the

definition of ≪M , x≪M 1, i.e., x ∈ BM . Therefore, B ⊆ BM . So, BM = B.

Let xζy. By (BC2) and (C3), there exist u, v ∈ B such that u ≤ x, v ≤ y and

uζv. Then, by (I3), z = u ∨ v ∈ B. Since z ∧ x ≥ u and z ∧ y ≥ v, we obtain, by

(C4), that (z ∧ x)ζ(z ∧ y). Thus (z ∧ x) ̸≪ζ (z ∧ y)∗ and (z ∧ y) ̸≪ζ (z ∧ x)∗. Since

z∧x, z∧y ∈ B (by (I2)), we obtain, by the definition of ≪M , that (z∧x) ̸≪M (z∧y)∗.
Now, using the fact that B = BM (as we have proved above) and the definition of the

relation ζM , we get that xζMy.

Let now xζMy. Then there exists an element z of BM such that (z∧x) ̸≪M (z∧y)∗.
Since z ∧ x, z ∧ y ∈ BM and BM = B, we obtain, by the definition of the relation ≪M ,

that (z ∧ x) ̸≪ζ (z ∧ y)∗, i.e., (z ∧ x)ζ(z ∧ y) and hence xζy. We have proved that

ζ = ζM . So, g ◦ f = idLCA.

Finally, we will show that f ◦ g = idMA.

Let (W,≪) be an MVD-algebra, g((W,≪)) = (W, ζ,B) and f((W, ζ,B)) =

(W,≪M) (see the corresponding definitions above). We have to prove that ≪=≪M .

We have, by our definitions, that B = {x ∈ W : x≪ 1}, xζy iff there exists an element

z of B such that (z ∧ x) ̸≪ (z ∧ y)∗; further, we have x ≪M y ⇐⇒ x ∈ B and x ≪ζ y

(where, as usual, x ≪ζ y means that x(−ζ)y∗). Obviously, x(−ζ)y ⇐⇒ (for every

z ∈ B) [(z ∧ x) ≪ (z ∧ y)∗]. Thus we obtain that x≪ζ y ⇐⇒ x(−ζ)y∗ ⇐⇒ (for every
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z ∈ B) [(z ∧ x) ≪ (z ∧ y∗)∗] ⇐⇒ (for every z ∈ B) [(z ∧ x) ≪ (z∗ ∨ y)]. So,

x≪ζ y ↔ (∀z ∈ B)[(z ∧ x) ≪ (z∗ ∨ y).(1.40)

Let now x ≪ y. Then x ≪ 1 and hence x ∈ B. For every z ∈ B, we have

z ∧ x ≤ x ≪ y ≤ y ∨ z∗, so that, by (≪3), z ∧ x ≪ z∗ ∨ y. Hence, (1.40) implies that

x≪ζ y. Since x ∈ B, we conclude that x≪M y.

Conversely, let x ≪M y. Then, by the definition of the relation ≪M , x ∈ B and

x≪ζ y. We have to prove that x≪ y.

If x = 1 then, obviously, y = 1. Since x ∈ B, we obtain, by the definition of B,
that x≪ 1, i.e., 1 ≪ 1. Thus x≪ y.

Let x ̸= 1. Since x ≪ 1, (≪5-6) (which is equivalent to (≪5) and (≪6), as we

have proved above) implies that there exists a z ̸= x such that x ≪ z ≪ 1. Then

z ∈ B and x ≤ z, so that z ∧ x = x. Now, (1.40) implies (since z ∈ B and x ≪ζ y)

that x≪ (z∗ ∨ y). Since x≪ z, (≪ 4∗) implies that x≪ (z∗ ∨ y) ∧ z, i.e., x≪ y ∧ z.
Applying (≪3), we obtain, finally, that x≪ y. So, ≪=≪M . Therefore f ◦ g = idMA.

We have proved that f and g are bijections.

Proposition 1.3.2.4. Let L be a locally compact Hausdorff space. Then

(RC(L),≪L),

where, for all F,G ∈ RC(L), F ≪L G iff F is compact and F ⊆ int(G), is an MVD-

algebra. All such MVD-algebras will be called standard MVD-algebras.

Proof. It is straightforward to verify that the axioms of MVD-algebras hold. Axiom

(≪5) is the most tricky. It follows from Proposition 0.4.2.3.

Theorem 1.3.2.5. (a) Each MVD-algebra (W,≪) can be embedded into a standard

MVD-algebra (RC(L),≪L), where L is a locally compact Hausdorff space. When W

is complete this embedding becomes a complete isomorphism.

(b) There exists a bijective correspondence between the class of all (up to isomorphism)

complete MVD-algebras and the class of all (up to homeomorphism) locally compact

Hausdorff spaces.

Proof. We have, by Theorem 1.3.2.3, that the function g : MA −→ LCA, where

g((W,≪)) = (W, ζ,B), is a bijection. Moreover, in the proof of Theorem 1.3.2.3, we

have shown that x ≪ y iff x ∈ B and x ≪ζ y, where x ≪ζ y iff x(−ζ)y∗. Now all

follows from Theorem 1.2.3.10.
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Chapter 2

Some generalizations of de Vries’
and Fedorchuk’s Duality Theorems

2.1 Introduction

The structure of this chapter is the following. In the second section, we formulate and

prove a theorem which is a generalization of de Vries’ Duality Theorem [24]; with it

we extend the de Vries Duality from the category of compact Hausdorff spaces and

continuous maps to the category of locally compact Hausdorff spaces and continuous

maps. In the third section, using the results obtained in the second section, we describe

the products and sums (= coproducts) of complete local contact algebras and develop

a completion theory for local contact algebras. In the fourth section, we extend the

de Vries Duality [24] to the category of locally compact Hausdorff spaces and perfect

maps. In the fifth section, we generalize the Fedorchuk Duality and Equivalence The-

orems [54]. In this section many other duality theorems are obtained. Some of them

are new even in the compact case, e.g., the duality theorem for the category of com-

pact Hausdorff spaces and open maps. In the last sixth section, we characterize the

embeddings, the injective and the surjective maps by means of their dual morphisms,

and construct the dual objects of the open and regular closed subsets of a space X by

means of the dual object of X.

Let us note that each section begins with a introduction in which a more detailed

description of the content of the corresponding section is given.

The exposition of this chapter is based on the papers [27, 28, 29, 31, 34].
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2.2 An extension of de Vries’ Duality to the cate-

gory HLC of locally compact Hausdorff spaces

and continuous maps

2.2.1 Introduction

It is natural to try to extend de Vries’ Duality Theorem to the category HLC of locally

compact Hausdorff spaces and continuous maps. An important step in this direction

was done by P. Roeper [99] and in Chapter 1 we made a new exposition of his results.

Here, using Roeper’s Theorem, we obtain a duality between the category HLC and the

category DHLC of complete LC-algebras and appropriate morphisms between them;

it is an extension of de Vries’ duality mentioned above; the dual object of a locally

compact Hausdorff space X is the LCA (RC(X), ρX , CR(X)) which will be called the

Roeper triple of the spaceX. Let us note that the famous Gelfand duality [60, 61, 62, 63]

also gives an algebraical description of (locally) compact Hausdorff spaces but it is not

in the spirit of the ideas of Whitehead and de Laguna.

The exposition of this section is based on the paper [29].

2.2.2 The formulation of the Duality Theorem for the cate-
gory HLC and some preparatory results for its proof

Definition 2.2.2.1. Let (A, ρ,B) be an LCA. An ideal I of A is called a δ-ideal if

I ⊆ B and for any a ∈ I there exists b ∈ I such that a ≪ρ b. If I1 and I2 are two

δ-ideals of (A, ρ,B) then we put I1 ≤ I2 iff I1 ⊆ I2. We will denote by (I(A, ρ,B),≤)

the poset of all δ-ideals of (A, ρ,B).

The next assertion is obvious.

Fact 2.2.2.2. Let (A, ρ,B) be an LCA. Then, for every a ∈ A, the set

Ia = {b ∈ B | b≪ρ a}

is a δ-ideal. Such δ-ideals will be called principal δ-ideals.

Fact 2.2.2.3. Let (A, ρ,B) be an LCA. Then the poset (I(A, ρ,B),≤) of all δ-ideals of

(A, ρ,B) (see 2.2.2.1) is a frame.

Proof. It is well known that the set Idl(A) of all ideals of a distributive lattice forms

a frame under the inclusion ordering (see 0.3.2.7). It is easy to see that the join in
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(Idl(A),⊆) of a family of δ-ideals is a δ-ideal and hence it is the join of this family in

(I(A, ρ,B),≤). The meet in (Idl(A),⊆) of a finite family of δ-ideals is also a δ-ideal

and hence it is the meet of this family in (I(A, ρ,B),≤). Therefore, (I(A, ρ,B),≤) is

a frame.

Theorem 2.2.2.4. Let (A, ρ,B) be an LCA, X = Ψa(A, ρ,B) and O(X) be the frame

of all open subsets of X. Then there exists a frame isomorphism

ι : (I(A, ρ,B),≤) −→ (O(X),⊆),

where (I(A, ρ,B),≤) is the frame of all δ-ideals of (A, ρ,B). The isomorphism ι sends

the set PI(A, ρ,B) of all principal δ-ideals of (A, ρ,B) onto the set of those regular open

subsets of X whose complements are in λgA(A). In particular, if (A, ρ,B) is a CLCA,

then ι(PI(A, ρ,B)) = RO(X).

Proof. Let I be a δ-ideal. Put

ι(I) =
∪

{λgA(a) | a ∈ I}.

Then ι(I) is an open subset of X. Indeed, for every a ∈ I there exists b ∈ I such that

a ≪ b. Then λgA(a) ⊆ intX(λ
g
A(b)) ⊆ λgA(b) ⊆ ι(I). Hence ι(I) is an open subset of X.

Therefore ι is a function from I(A, ρ,B) to O(X). Let U ∈ O(X). Set

BU = {b ∈ B | λgA(b) ⊆ U}.

Then, using (1.36), regularity of X and (III), it is easy to see that BU is a δ-ideal of

(A, ρ,B) and ι(BU) = U . Hence, ι is a surjection. We will show that ι is an injection as

well. Indeed, let I1, I2 ∈ I(A, ρ,B) and ι(I1) = ι(I2). Set ι(I1) = W and put BW = {b ∈
B | λgA(b) ⊆ W}. Then, obviously, I1 ⊆ BW . Further, if b ∈ BW then λgA(b) ⊆ W and

λgA(b) is compact. Since I1 is a δ-ideal, Ω = {int(λgA(a)) | a ∈ I1} is an open cover of W

and, hence, of λgA(b). Thus there exists a finite subfamily {int(λgA(a1)), . . . , int(λ
g
A(ak))}

of Ω such that λgA(b) ⊆
∪
{λgA(ai) | i = 1, . . . , k} = λgA(

∨
{ai | i = 1, . . . , k}). This

implies that b ≤
∨
{ai | i = 1, . . . , k} and hence b ∈ I1. So, we have proved that

I1 = BW . Analogously we can show that I2 = BW . Thus I1 = I2. Therefore, ι is

a bijection. It is obvious that if I1, I2 ∈ I(A, ρ,B) and I1 ≤ I2 then ι(I1) ⊆ ι(I2).

Conversely, if ι(I1) ⊆ ι(I2) then I1 ≤ I2. Indeed, if ι(Ii) = Wi, i = 1, 2, then, as we

have already seen, Ii = BWi
, i = 1, 2; since W1 ⊆ W2 implies that BW1 ⊆ BW2 , we get

that I1 ≤ I2. So, ι : (I(A, ρ,B),≤) −→ (O(X),⊆) is an isomorphism of posets. This

implies that ι is also a frame isomorphism.

75



Let U be a regular open subset of X, F = X \U and let a ∈ A be such that F =

λgA(a). Put BU = {b ∈ B | λgA(b) ⊆ U}. Then, as we have already seen, BU is a δ-ideal

and ι(BU) = U . Since F ∈ RC(X), we have that U = X \ F = int(F ∗) = int(λgA(a
∗)).

Thus BU = {b ∈ B | b≪ρ a
∗}. Hence BU is a principal δ-ideal.

Conversely, if I is a principal δ-ideal then U = ι(I) is a regular open set in X such

that X\U ∈ λgA(A). Indeed, let a ∈ A, I = {b ∈ B | b≪ρ a} and U = ι(I). It is enough

to prove that X \ U = λgA(a
∗). If b ∈ I then b(−ρ)a∗ and hence λgA(b) ∩ λ

g
A(a

∗) = ∅.
Thus U ⊆ X \ λgA(a∗). If σ ∈ X \ λgA(a∗) then, by (1.36), there exists b ∈ B such that

σ ∈ λgA(b) ⊆ X \ λgA(a∗). Since, by (1.8) and (1.35), X \ λgA(a∗) = intX(λ
g
A(a)), we get

that b≪ρ a. Therefore b ∈ I and hence σ ∈ U . This means that X \ λgA(a∗) ⊆ U .

Definition 2.2.2.5. (De Vries [24]) Let DHC be the category whose objects are all

complete NC-algebras and whose morphisms are all functions φ : (A,C) −→ (B,C ′)

between the objects of DHC satisfying the conditions:

(DVAL1) φ(0) = 0;

(DVAL2) φ(a ∧ b) = φ(a) ∧ φ(b), for all a, b ∈ A;

(DVAL3) If a, b ∈ A and a≪C b, then (φ(a∗))∗ ≪C′ φ(b);

(DVAL4) φ(a) =
∨
{φ(b) | b≪C a}, for every a ∈ A,

and let the composition “⋄” of two morphisms φ1 : (A1, C1) −→ (A2, C2) and φ2 :

(A2, C2) −→ (A3, C3) of DHC be defined by the formula

φ2 ⋄ φ1 = (φ2 ◦ φ1)̌ ,(2.1)

where, for every function ψ : (A,C) −→ (B,C ′) between two objects of DHC, ψˇ :

(A,C) −→ (B,C ′) is defined as follows:

ψ (̌a) =
∨

{ψ(b) | b≪C a},(2.2)

for every a ∈ A.

De Vries [24] proved the following duality theorem:

Theorem 2.2.2.6. ([24]) The categories HC and DHC are dually equivalent.

Sketch of the proof. First we define a contravariant functor

Φt : HC −→ DHC
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by (1.14) on the objects of HC (i.e.,

Φt(X, τ) = (RC(X, τ), ρX),

for every X ∈ |HC|), and by

Φt(f)(G) = cl(f−1(int(G))),

for every f ∈ HC(X,Y ) and every G ∈ RC(Y ). Further, we define another contravari-

ant functor

Φa : DHC −→ HC

by (1.6) on the objects of DHC, and

Φa(φ)(σ′) = {a ∈ A | if b ∈ A and b≪C a
∗ then (φ(b))∗ ∈ σ′},

for every φ ∈ DHC((A,C), (B,C ′)) and for every σ′ ∈ Clust(B,C ′). Then we show

that

λ : IdDHC −→ Φt ◦ Φa,

where

λ(A,C) = λ(A,C)

(see (1.4) and (1.12) for λ(A,C)) for every (A,C) ∈ |DHC|, is a natural isomorphism.

Also,

t : IdHC −→ Φa ◦ Φt,

where

t(X) = tX

(see (1.15) for tX) for every X ∈ |HC|, is a natural isomorphism. Thus, the categories

HC and DHC are dually equivalent.

In [24], de Vries uses the regular open sets instead of regular closed sets, as we

do, so that we present here the translations of his definitions for the case of regular

closed sets.

We are now going to generalize de Vries’ Duality Theorem.

Definition 2.2.2.7. Let DHLC be the category whose objects are all complete LC-

algebras and whose morphisms are all functions φ : (A, ρ,B) −→ (B, η,B′) between

the objects of DHLC satisfying the following conditions:
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(DLC1) φ(0) = 0;

(DLC2) φ(a ∧ b) = φ(a) ∧ φ(b), for all a, b ∈ A;

(DLC3) If a ∈ B, b ∈ A and a≪ρ b, then (φ(a∗))∗ ≪η φ(b);

(DLC4) For every b ∈ B′ there exists a ∈ B such that b ≤ φ(a);

(DLC5) φ(a) =
∨
{φ(b) | b ∈ B, b≪ρ a}, for every a ∈ A;

let the composition “⋄” of two morphisms φ1 : (A1, ρ1,B1) −→ (A2, ρ2,B2) and φ2 :

(A2, ρ2,B2) −→ (A3, ρ3,B3) of DHLC be defined by the formula

φ2 ⋄ φ1 = (φ2 ◦ φ1)̌ ,(2.3)

where, for every function ψ : (A, ρ,B) −→ (B, η,B′) between two objects of DHLC,

ψˇ : (A, ρ,B) −→ (B, η,B′) is defined as follows:

ψ (̌a) =
∨

{ψ(b) | b ∈ B, b≪ρ a},(2.4)

for every a ∈ A.

By D1HC we denote the full subcategory of DHLC having as objects all CNC-

algebras (i.e., those CLC-algebras (A, ρ,B) for which B = A).

(We used here the same notation as in 2.2.2.5 for the composition between the

morphisms of the category DHLC and for the functions of the type ψˇ because the

NC-algebras can be regarded as those LC-algebras (A, ρ,B) for which A = B, and hence

the right sides of the formulas (2.4) and (2.2) coincide in the case of NC-algebras.)

The fact that DHLC is indeed a category will be proved in the next subsection.

Remark 2.2.2.8. It is easy to show that condition (DLC3) in 2.2.2.7 can be replaced

by the following one:

(DLC3′) If a, b ∈ B and a≪ρ b, then (φ(a∗))∗ ≪η φ(b).

Indeed, it is clear that condition (DLC3) implies condition (DLC3′). Conversely,

if a ∈ B, b ∈ A and a≪ρ b, then, by (BC1), there exists c ∈ B such that a≪ρ c≪ρ b.

Now, using (DLC3′), we get that (φ(a∗))∗ ≪η φ(c). Since, by condition (DLC2), φ is a

monotone function, we get that (φ(a∗))∗ ≪η φ(b). So, conditions (DLC2) and (DLC3′)

imply condition (DLC3).

As we will see later, condition (DLC3) can be even replaced with the following

stronger condition:

(DLC3S) If a, b ∈ A and a≪ρ b, then (φ(a∗))∗ ≪η φ(b).
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We will now prove a simple lemma, where some immediate consequences of the

axioms (DLC1)-(DLC5) are listed:

Lemma 2.2.2.9. Let (A, ρ,B) and (B, η,B′) be CLC-algebras and φ : A −→ B be a

function between them. Then:

(a) If φ satisfies condition (DLC2) then φ is an order preserving function;

(b) If φ satisfies conditions (DLC1) and (DLC2) then φ(a∗) ≤ (φ(a))∗, for every a ∈ A;

hence, if φ satisfies conditions (DLC1)-(DLC3), then for every a ∈ B and every b ∈ A

such that a≪ρ b, φ(a) ≪η φ(b);

(c) If φ satisfies conditions (DLC2) and (DLC4) (or (DLC1) and (DLC3)) then we

have that φ(1A) = 1B;

(d) If φ satisfies condition (DLC2) then φˇ satisfies conditions (DLC2) and (DLC5)

(see (2.4) for φ )̌;

(e) If φ satisfies condition (DLC5) then φ = φ ;̌

(f) If φ satisfies condition (DLC2) then (φ )̌̌ = φ ;̌

(g) If φ is a monotone function then, for every a ∈ A, φ (̌a) ≤ φ(a).

Proof. The properties (a), (b), (e) and (g) are clearly fulfilled, and (f) follows from (d)

and (e).

(c) Using consecutively (a) and (DLC4), we get that φ(1A) ≥
∨
{φ(b) | b ∈ B} ≥∨

{b′ | b′ ∈ B′} = 1B (the last equality follows from (1.39)). Thus, φ(1A) = 1B.

The assertion in brackets can be obtained easily applying (DLC3) and (DLC1) to the

inequality 0A ≪ρ 0A.

(d) By (a) and (g), for every a ∈ A, φ (̌a) ≤ φ(a). Let a ∈ A. If c ∈ B and

c ≪ρ a then there exists dc ∈ B such that c ≪ρ dc ≪ρ a; hence φ(c) ≤ φ (̌dc). Now,

φ (̌a) =
∨
{φ(c) | c ∈ B, c≪ρ a} ≤

∨
{φ (̌dc) | c ∈ B, c≪ρ a} ≤

∨
{φ (̌e) | e ∈ B, e≪ρ

a} ≤
∨
{φ(e) | e ∈ B, e ≪ρ a} = φ (̌a). Thus, φ (̌a) =

∨
{φ (̌e) | e ∈ B, e ≪ρ a}. So,

φˇ satisfies (DLC5). Further, let a, b ∈ A. Then φ (̌a)∧φ (̌b) =
∨
{φ(d)∧φ(e) | d, e ∈

B, d ≪ρ a, e ≪ρ b} =
∨
{φ(d ∧ e) | d, e ∈ B, d ≪ρ a, e ≪ρ b} =

∨
{φ(c) | c ∈ B, c ≪ρ

a ∧ b} = φ (̌a ∧ b). So, (DLC2) is fulfilled.

Obviously, the assertions (a), (b) and (c) of the above lemma remain true also in

the case when (A, ρ,B) and (B, η,B′) are LC-algebras.

As we shall prove in the next subsection, condition (DLC3) in 2.2.2.7 can be also

replaced by any of the following two constrains:
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(LC3) If, for i = 1, 2, ai ∈ B, bi ∈ A and ai ≪ρ bi, then φ(a1 ∨ a2) ≪η φ(b1) ∨ φ(b2).

(LC3S) If, for i = 1, 2, ai, bi ∈ A and ai ≪ρ bi, then φ(a1 ∨ a2) ≪η φ(b1) ∨ φ(b2).

Now, we will only show that the following proposition holds:

Proposition 2.2.2.10. Conditions (DLC1)-(DLC3) imply condition (LC3).

Proof. Let, for i = 1, 2, ai ∈ B, bi ∈ A and ai ≪ρ bi. Then, by (DLC3), (φ(a∗i ))
∗ ≪η

φ(bi), where i = 1, 2. Hence (φ(bi))
∗ ≪η φ(a

∗
i ), for i = 1, 2. Thus, using consecutively

(DLC2) and 2.2.2.9(b), we get that (φ(b1))
∗∧ (φ(b2))

∗ ≪η φ(a
∗
1)∧φ(a∗2) = φ(a∗1∧a∗2) =

φ((a1 ∨ a2)∗) ≤ (φ(a1 ∨ a2))∗. Therefore, φ(a1 ∨ a2) ≪η φ(b1) ∨ φ(b2).

Remark 2.2.2.11. Obviously, condition (LC3) implies the second assertion of Lemma

2.2.2.9(b).

Theorem 2.2.2.12. (The Duality Theorem for the category HLC) The categories

HLC and DHLC are dually equivalent.

The proof of this theorem will be presented in the next subsection. Now we

will only give a brief description of the main steps of the proof. We first define two

contravariant functors

Λt : HLC −→ DHLC and Λa : DHLC −→ HLC.(2.5)

Their definitions on the objects of the corresponding categories are the following:

Λt(X) = Ψt(X)(2.6)

for every X ∈ |HLC|, and

Λa(A, ρ,B) = Ψa(A, ρ,B),(2.7)

for every (A, ρ,B) ∈ |DHLC| (see (1.20), (1.21) and (1.24) for Ψt and Ψa). Further,

the definitions of the contravariant functors Λt and Λa on the morphisms are as follows:

Λt(f)(G) = cl(f−1(int(G))),(2.8)

for every f ∈ HLC(X,Y ) and every G ∈ RC(Y ), and

Λa(φ)(σ′) ∩ B = {a ∈ B | if b ∈ A and a≪ρ b then φ(b) ∈ σ′}(2.9)
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for every φ ∈ DHLC((A, ρ,B), (B, η,B′)) and for every σ′ ∈ Λa(B, η,B′). Finally, we

show that

λg : IdDHLC −→ Λt ◦ Λa, where λg(A, ρ,B) = λgA

for every (A, ρ,B) ∈ |DHLC| (see (1.29) for λgA), and

tl : IdHLC −→ Λa ◦ Λt, where tl(X) = tX

for every X ∈ |HLC| (see (1.32) and (1.15) for tX), are natural isomorphisms, com-

pleting in this way the proof of the theorem.

We are now going to show that our Theorem 2.2.2.12 implies the de Vries Dual-

ity Theorem. It is clear that the categories D1HC and DHC (see 2.2.2.7 and 2.2.2.5

for the notation) are isomorphic (it can be even said that they are identical). Hence,

using Theorems 1.2.3.10 and 2.2.2.12, we get that the categories DHC and HC are

dually equivalent. Moreover, the definitions of the corresponding duality functors co-

incide. Indeed, it is obvious that the definitions of the contravariant functor Φt and

the restriction of the contravariant functor Λt to the subcategory HC of the cate-

gory HLC coincide. Further, we need to show that the contravariant functor Φa and

the restriction of the contravariant functor Λa to the subcategory D1HC of the cat-

egory DHLC coincide. Let φ ∈ D1HC((A, ρ,A), (B, η,B))(= DHC((A, ρ), (B, η)))

and σ′ ∈ Ψa(B, η,B). Then set σΦ = Φa(φ)(σ′) = {a ∈ A | (∀b ∈ A)[(b ≪ a∗) →
((φ(b))∗ ∈ σ′)]}. Obviously, σΦ = {a ∈ A | (∀b ∈ A)[(a ≪ b) → ((φ(b∗))∗ ∈ σ′)]}. Set

σΛ = Λa(φ)(σ′) = {a ∈ A | (∀b ∈ A)[(a ≪ b) → (φ(b) ∈ σ′)]}. Then σΛ ⊆ σΦ. Indeed,

by 2.2.2.9(b), φ(b∗) ≤ (φ(b))∗; hence φ(b) ≤ (φ(b∗))∗; therefore, if a ∈ σΛ then a ∈ σΦ.

Now, 1.2.2.5 implies that σΛ = σΦ. Thus, the de Vries Duality Theorem is a corollary

of Theorem 2.2.2.12.

Finally, we will need the following definitions and assertions:

Definition 2.2.2.13. In analogy to the corresponding definitions in the theory of

proximity spaces (see, e.g., [87]), we say that:

(a) a subset ξ of an NCA (B,C) is called an end if the following conditions are satisfied:

(E1) for any b, c ∈ ξ there exists a ∈ ξ such that a ̸= 0, a≪ b and a≪ c;

(E2) if a, b ∈ B and a≪ b then either a∗ ∈ ξ or b ∈ ξ;

(b) a subset v of an NCA (B,C) is called a round filter if it is a filter and for every

b ∈ v there exists a ∈ v such that a≪ b.

The next two theorems (and their proofs) are analogous to the Theorems 6.7 and

6.11 in [87] (and their proofs), respectively:
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Theorem 2.2.2.14. Let (B,C) be a normal contact algebra and ξ be an end in (B,C).

Then ξ is a maximal round filter in (B,C).

Theorem 2.2.2.15. Let (B,C) be a normal contact algebra and σ ⊆ B. Then σ ∈
Clust(B,C) iff d(σ) = {b ∈ B | b∗ ̸∈ σ} is an end in (B,C).

Corollary 2.2.2.16. Let (B,C) be a normal contact algebra, σ ∈ Clust(B,C), a ∈ B

and a ̸∈ σ. Then there exists b ∈ B such that b ̸∈ σ and a≪ b.

Proof. Put ξ = d(σ)(= {c ∈ B | c∗ ̸∈ σ}). Then, by 2.2.2.15 and 2.2.2.14, ξ is a round

filter in (B,C). Since a ̸∈ σ, we obtain that a∗ ∈ ξ. Hence, there exists b∗ ∈ ξ such

that b∗ ≪ a∗. Then b ̸∈ σ and a≪ b.

2.2.3 The proof of the Duality Theorem for the category HLC

The proof of our Theorem 2.2.2.12 will be divided in several lemmas, propositions,

facts and remarks. The plan is as follows: we begin with some preparatory assertions;

after that we show that DHLC is indeed a category; the crucial step in the proof of

this fact is to show that any function between CLC-algebras, which satisfies conditions

(DLC1)-(DLC5), satisfies condition (DLC3S) as well; this statement is obtained as a

corollary of some other assertions which are also used later on in the last portion of

the proof where the construction of the desired duality between the categories DHLC

and HLC is presented.

We start with some simple, but important, assertions about (bounded) clusters

in LC-algebras.

Proposition 2.2.3.1. Let (B, ρ,B) be an LCA and σ be a cluster in it (i.e., in (B,Cρ)

(see 1.2.3.6)). Then the following holds: if σ ∩B ̸= ∅ then there exists b ∈ B such that

b∗ ̸∈ σ.

Proof. Let b0 ∈ σ ∩ B. Since b0 ≪ρ 1, (BC1) implies that there exists b ∈ B such that

b0 ≪ρ b. Then b0(−ρ)b∗ and since b0 ∈ B, we obtain that b0(−Cρ)b∗. Thus b∗ ̸∈ σ.

Proposition 2.2.3.2. Let (A, ρ,B) be an LCA. If u is an ultrafilter in A and σu∩B ̸= ∅,
then u ∩ B ̸= ∅.

Proof. By 2.2.3.1, there exists a ∈ B such that a∗ ̸∈ σu. Then a ∈ u ∩ B.
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Proposition 2.2.3.3. Let (A, ρ,B) be an LCA and σ be a bounded cluster in it. Then:

(a) If a ∈ σ then there exists c ∈ B ∩ σ such that c ≤ a;

(b) (∀a ∈ A)[(a ̸∈ σ) ↔ ((∃b ∈ B ∩ σ)(b≪ρ a
∗))];

(c) σ = {a ∈ A | aρ(σ ∩ B)}.

Proof. (a) Let a ∈ σ. By 1.2.2.3, there exists an ultrafilter u in A such that a ∈ u and

σ = σu. Then u ⊆ σ. Since σ ∩B ̸= ∅, 2.2.3.2 implies that there exists a1 ∈ u∩B. Set
c = a ∧ a1. Then c ∈ u ∩ B ⊆ σ ∩ B and c ≤ a.

(b) Let a ̸∈ σ. Then, by 2.2.2.16, there exists c ∈ A such that c ̸∈ σ and a ≪Cρ c.

Then c∗ ≪ρ a
∗ and c∗ ∈ σ. Hence, by (a), there exists b ∈ B ∩ σ such that b ≪ρ a

∗.

Conversely, if there exists b ∈ B ∩ σ such that b ≪ρ a
∗, then b ≪Cρ a

∗. Therefore,

a ̸∈ σ.

(c) This is just another form of (b).

Corollary 2.2.3.4. Let (A, ρ,B) be an LCA and σ1, σ2 be two clusters in (A, ρ,B)
such that B ∩ σ1 = B ∩ σ2. Then σ1 = σ2.

Proof. By 1.2.3.7, σ∞ = A \ B is a cluster in (A,Cρ). Hence, if B ∩ σ1 = B ∩ σ2 = ∅,
then σi ⊆ σ∞, for i = 1, 2. Now, 1.2.2.5 implies that σ1 = σ∞ = σ2.

Let B ∩ σ1 ̸= ∅. Then our assertion follows from 2.2.3.3(c).

Recall that if A is a lattice then an element p ∈ A \ {1} is called a prime element

of A if for each a, b ∈ A, a ∧ b ≤ p implies that a ≤ p or b ≤ p. We will now

show that if (A, ρ,B) is a CLCA then the prime elements of I(A, ρ,B) are in a bijective

correspondence with the bounded clusters in (A, ρ,B). The existence of such a bijection

follows immediately from Roeper’s Theorem 1.2.3.10, our Theorem 2.2.2.4 and localic

duality (see, e.g., [75]). We will present here an explicit formula for this bijection which

will be very useful later on.

Proposition 2.2.3.5. Let σ be a bounded cluster in an LCA (A, ρ,B). Then I = B\σ
is a prime element of the frame I(A, ρ,B) (see 2.2.2.1 for the notation).

Proof. We have that I ̸= B because σ∩B ̸= ∅. Since σ is an upper set, we get that I is

a lower set. Let a, b ∈ I. Suppose that a∨ b ∈ σ. Then a ∈ σ or b ∈ σ, a contradiction.

Hence, a ∨ b ∈ I. So, I is an ideal. Let a ∈ I. Then a ̸∈ σ. By 2.2.2.16, there exists

c ∈ A such that c ̸∈ σ and a ≪Cρ c. Thus a ≪ρ c. By (BC1), there exists b ∈ B
such that a ≪ρ b ≪ρ c. Then b ̸∈ σ, i.e., b ∈ I and a ≪ρ b. So, I is a δ-ideal. Let
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J1, J2 ∈ I(A, ρ,B) and J1 ∩ J2 ⊆ I. Suppose that, for i = 1, 2, there exists ai ∈ Ji \ I.
Since, for i = 1, 2, Ji is a δ-ideal, there exists bi ∈ Ji such that ai ≪ρ bi, and hence

ai ≪Cρ bi; thus b
∗
i ̸∈ σ. Then b∗1∨ b∗2 ̸∈ σ. Therefore, b1∧ b2 ∈ σ∩ I. Since σ∩ I = ∅, we

get a contradiction. All this shows that I is a prime element of the frame I(A, ρ,B).

Proposition 2.2.3.6. Let (A, ρ,B) be an LCA and I be a prime element of the frame

I(A, ρ,B). Then the set V = {a ∈ B | (∃b ∈ B \ I)(b≪ρ a)} is a filter in B.

Proof. Set S = B\I. Then S is a non-void upper set in B. Thus, V ⊆ S. If a ∈ S then,

by (BC1), there exists b ∈ B such that a ≪ρ b. Then b ∈ V , i.e., V ̸= ∅. Obviously,

0 ̸∈ V and V is an upper set in B. Let a, b ∈ V and suppose that a∧ b ̸∈ V . Then, for

every c ∈ S, c ̸≪ρ a ∧ b. Hence Ia ∩ Ib ⊆ I (see 2.2.2.2 for the notation). Thus, Ia ⊆ I

or Ib ⊆ I. Let, e.g., Ia ⊆ I. Since a ∈ V , there exists c ∈ S such that c ≪ρ a. Then

c ∈ Ia ∩S ⊆ I ∩S = ∅, a contradiction. Therefore, a∧ b ∈ V . So, V is a filter in B.

Proposition 2.2.3.7. Let (A, ρ,B) be an LCA and I be a prime element of the frame

I(A, ρ,B). Then there exists a unique cluster σ in (A, ρ,B) such that σ ∩ B = B \ I;
moreover, σ = {a ∈ A | aρ(B \ I)}. (In this case we will say that σ is generated by I.)

Proof. By 2.2.3.6, the set V defined there is a filter in B. Hence, V ̸= ∅ and V

is a filter-base in A. Let F be the filter in A generated by the filter-base V . Then

F ∩ B = V and hence F ∩ I = ∅. Now, the famous Stone Separation Theorem (see,

e.g., [75]) implies that there exists an ultrafilter u in A such that F ⊆ u and u∩ I = ∅.
Set σ = σu (see 1.2.2.4 for σu). Then σ is a cluster in (A, ρ,B) (i.e., σ is a cluster in the

NCA (A,Cρ)) and σ = {a ∈ A | aCρb for every b ∈ u}. Since F ⊆ u ⊆ σ, we have that

V ⊆ σ ∩ B. Let us show that σ ∩ I = ∅. Indeed, suppose that a ∈ σ ∩ I. Since I is a

δ-ideal, there exists b ∈ I such that a≪ρ b. Then, obviously, b ∈ σ ∩ I. We have that

a(−ρ)b∗ and a ∈ B. Hence a(−Cρ)b∗. Since u ⊆ σ and a ∈ σ, we get that b∗ ̸∈ u. Thus

b ∈ u, i.e., b ∈ u ∩ I, a contradiction. So, σ ∩ I = ∅, i.e., σ ∩ B ⊆ B \ I. Set S = B \ I.
We will now prove that σ ∩ B = S. Indeed, suppose that there exists a ∈ S \ σ. Then
there exists b ∈ u such that a(−ρ)b. Hence a ≪ρ b

∗. Now, (BC1) implies that there

exists c ∈ B such that a ≪ρ c ≪ρ b
∗. Then c ∈ V and c ≤ b∗. Thus c ∧ b = 0, which

means that c ̸∈ u. Since V ⊆ u and c ∈ V , we get a contradiction. So, σ ∩ B = S.

Finally, 2.2.3.4 implies the uniqueness of σ and the formula σ = {a ∈ A | aρ(B \ I)}
follows from 2.2.3.3(c).
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Corollary 2.2.3.8. Let (A, ρ,B) be an LCA. Then there exists a bijective correspon-

dence between the bounded clusters in (A, ρ,B) and the prime elements of the frame

I(A, ρ,B) (see 2.2.2.1 for the notation).

Proof. It follows from 2.2.3.5 and 2.2.3.7.

Remark 2.2.3.9. If (A, ρ,B) is an LCA, then it is easy to see that every prime ideal J

of B (i.e., J is an ideal, J ̸= B and (∀a, b ∈ B)[(a∧b ∈ J) → (a ∈ J or b ∈ J)]) which is

a δ-ideal (shortly, prime δ-ideal) is a prime element of the frame I(A, ρ,B). However, in
contrast to the case of ideals of a lattice (where the prime elements of the frame of all

ideals of this lattice are precisely the prime ideals of the lattice), the prime elements of

the frame I(A, ρ,B) need not be prime δ-ideals of B. Indeed, let I be a prime element of

I(A, ρ,B) and a prime ideal of B; then B\I is a filter in B; thus the cluster σ generated

by I (see 2.2.3.7) has the property that σ ∩ B is a filter. Let X = Ψa(A, ρ,B) and

suppose that A is complete. Then λgA(B) = CR(X) and σ ∈ X. Let F,G ∈ CR(X)

and σ ∈ F ∩ G. There exist a, b ∈ B such that F = λgA(a) and G = λgA(b). Thus

a, b ∈ σ∩B. Therefore a∧ b ∈ σ. Then σ ∈ λgA(a∧ b) = λgA(a)∧λ
g
A(b) = F ∧G. Hence,

int(F ∩G) ̸= ∅. So, if F,G ∈ CR(X) and σ ∈ F ∩G then int(F ∩G) ̸= ∅. The points

of the real line R with its natural topology have not this property. (Indeed, if x ∈ R
and F = [x, x+1], G = [x−1, x], then F,G ∈ CR(R), x ∈ F ∩G but intR(F ∩G) = ∅.)
Thus the CLCA (RC(R), ρR, CR(R)) is such that no one prime element of the frame

I(RC(R), ρR, CR(R)) is a prime ideal of CR(R).

Notation 2.2.3.10. Let (A, ρ,B) and (B, η,B′) be LC-algebras, φ : A −→ B be a

function and σ′ be a cluster in (B, η,B′). Then we set:

• Sσ′ = {a ∈ B | (∀b ∈ A)[(a≪ρ b) → (φ(b) ∈ σ′)]};

• Vσ′ = {a ∈ B | (∃b ∈ Sσ′)(b≪ρ a)};

• Jσ′ = B \ Sσ′ .

Fact 2.2.3.11. Let (A, ρ,B) and (B, η,B′) be LC-algebras and φ : A −→ B be a

function satisfying conditions (DLC1)-(DLC3). Then, for every cluster σ′ in (B, η,B′),

Sσ′ = {a ∈ B | (∀b ∈ A)[(a≪ρ b) → ((φ(b∗))∗ ∈ σ′)]}.

Proof. Let a ∈ Sσ′ , b ∈ A and a ≪ρ b. Then φ(b) ∈ σ′. Since, by 2.2.2.9(b),

φ(b) ≤ (φ(b∗))∗, we get that (φ(b∗))∗ ∈ σ′. Thus a ∈ R = {a ∈ B | (∀b ∈ A)[(a ≪ρ
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b) → ((φ(b∗))∗ ∈ σ′)]}. Conversely, let a ∈ R, b ∈ A and a ≪ρ b. Then, by (BC1),

there exists c ∈ B such that a ≪ρ c ≪ρ b. Since a ∈ R and a ≪ρ c, we get that

(φ(c∗))∗ ∈ σ′. Further, by (DLC3), (φ(c∗))∗ ≪η φ(b). Hence, φ(b) ∈ σ′. Therefore,

a ∈ Sσ′ . So, Sσ′ = R.

Lemma 2.2.3.12. Let (A, ρ,B) and (B, η,B′) be LC-algebras, φ : A −→ B be a func-

tion satisfying conditions (DLC1)-(DLC3) (or conditions (DLC1), (DLC2), (LC3)),

and σ′ be a cluster in (B, η,B′). Then Jσ′ is a δ-ideal of (A, ρ,B). If σ′ is a bounded

cluster in (B, η,B′) and φ satisfies, in addition, condition (DLC4), then Jσ′ is a prime

element of the frame I(A, ρ,B) (see 2.2.2.1 for the notation).

Proof. Obviously, Jσ′ = {a ∈ B | (∃b ∈ A)[(a ≪ρ b) ∧ (φ(b) ̸∈ σ′)]}. Since 0 ≪ρ 0,

(DLC1) implies that 0 ∈ Jσ′ . It is clear that Jσ′ is a lower set. Let a1, a2 ∈ Jσ′ .

Then, for i = 1, 2, there exists bi ∈ A such that ai ≪ρ bi and φ(bi) ̸∈ σ′. Since, for

i = 1, 2, ai ∈ B, there exists ci ∈ B such that ai ≪ρ ci ≪ρ bi (by condition (BC1)

in 1.2.3.1); then φ(ci) ̸∈ σ′. Set c = c1 ∨ c2. Now, by 2.2.2.10 (resp., by (LC3)),

φ(c) = φ(c1 ∨ c2) ≪η φ(b1) ∨ φ(b2). Since φ(b1) ∨ φ(b2) ̸∈ σ′, we get that φ(c) ̸∈ σ′.

Therefore, a1 ∨ a2 ∈ Jσ′ . All this shows that Jσ′ is an ideal of A. Let a ∈ Jσ′ . Then

there exists b ∈ A such that a ≪ρ b and φ(b) ̸∈ σ′. Using again condition (BC1), we

get that there exists c ∈ B such that a ≪ρ c ≪ρ b. Then c ∈ Jσ′ and a ≪ρ c. So, Jσ′

is a δ-ideal of (A, ρ,B).
Let now σ′∩B′ ̸= ∅ and φ satisfies, in addition, condition (DLC4). Then Jσ′ ̸= B.

Indeed, there exists b ∈ σ′∩B′. Then, by (DLC4), there exists a ∈ B such that b ≤ φ(a);

hence φ(a) ∈ σ′. This implies that a ∈ Sσ′ . Thus Jσ′ ̸= B. Let J1 ∩ J2 ⊆ Jσ′ . Suppose

that there exists ai ∈ Ji \Jσ′ , i = 1, 2. Since J1, J2 are δ-ideals, there exists bi ∈ Ji such

that ai ≪ρ bi, i = 1, 2. There exists ci ∈ B such that ai ≪ρ ci ≪ρ bi, i = 1, 2. Since

ai ∈ Sσ′ , we have that φ(ci) ∈ σ′, i = 1, 2. By 2.2.2.9(b) (respectively, 2.2.2.11), we

get that φ(ci) ≪η φ(bi), i = 1, 2. Now, 2.2.3.3(a) implies that there exists di ∈ B′ ∩ σ′

such that di ≪η φ(bi), i = 1, 2. Then di ≪Cη φ(bi), i = 1, 2. Thus (φ(bi))
∗ ̸∈ σ′,

i = 1, 2. This implies that φ(b1) ∧ φ(b2) ∈ σ′, i.e., by (DLC2), φ(b1 ∧ b2) ∈ σ′. We

have, however, that b1 ∧ b2 ∈ Jσ′ . Hence, there exists d ∈ A such that b1 ∧ b2 ≪ρ d

and φ(d) ̸∈ σ′. Since φ(b1 ∧ b2) ≤ φ(d) and φ(b1 ∧ b2) ∈ σ′, we get that φ(d) ∈ σ′,

a contradiction. Therefore, J1 ⊆ Jσ′ or J2 ⊆ Jσ′ . All this shows that Jσ′ is a prime

element of the frame I(A, ρ,B).
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Lemma 2.2.3.13. Let (A, ρ,B) and (B, η,B′) be LC-algebras, φ : A −→ B be a func-

tion satisfying conditions (DLC1)-(DLC4) (or conditions (DLC1), (DLC2), (LC3),

(DLC4)), and σ′ be a bounded cluster in (B, η,B′). Then Vσ′ is a filter in (B,≤).

Proof. It follows immediately from 2.2.3.12 and 2.2.3.6.

Lemma 2.2.3.14. Let (A, ρ,B) and (B, η,B′) be LC-algebras, φ : A −→ B be a func-

tion satisfying conditions (DLC1)-(DLC4) (or conditions (DLC1), (DLC2), (LC3),

(DLC4)), and σ′ be a bounded cluster in (B, η,B′). Then there exists a unique cluster

σ in (A, ρ,B) such that σ ∩ B = Sσ′; moreover, σ = {a ∈ A | aρSσ′}.

Proof. It follows from 2.2.3.12 and 2.2.3.7.

Notation 2.2.3.15. Let (A, ρ,B) and (B, η,B′) be LC-algebras and φ : A −→ B be a

function. We set, for every a ∈ A,

Dφ(a) =
∪

{Iφ(b) | b ∈ B, b≪ρ a}

(see 2.2.2.2 for Ic).

Proposition 2.2.3.16. Let (A, ρ,B) and (B, η,B′) be LC-algebras and φ : A −→ B be

a monotone function. Then, for every a ∈ A, Dφ(a) is a δ-ideal of (B, η,B′).

Proof. Let a ∈ A. We will prove that Dφ(a) =
∨
{Iφ(b) | b ∈ B, b ≪ρ a}, where the

join is taken in the frame I(B, η,B′) (see 2.2.2.3). Then, by 2.2.2.3, Dφ(a) will be a

δ-ideal.

Set I =
∨
{Iφ(b) | b ∈ B, b ≪ρ a}. The ideal I is generated by Dφ(a). Hence,

Dφ(a) ⊆ I. Conversely, let c ∈ I. Then there exists n ∈ N+ and, for each i = 1, . . . , n,

there exist bi ∈ B and ci ∈ B′ such that bi ≪ρ a, ci ≪η φ(bi) and c =
∨
{ci | i =

1, . . . , n}. Set b =
∨
{bi | i = 1, . . . , n}. Then b ∈ B, b ≪ρ a and c ≪η

∨
{φ(bi) | i =

1, . . . , n} ≤ φ(b). Hence c ≪η φ(b), and since c ∈ B′, we get that c ∈ Iφ(b), where

b≪ρ a. Thus c ∈ Dφ(a).

Lemma 2.2.3.17. Let (A, ρ,B) and (B, η,B′) be LC-algebras, φ : A −→ B be a func-

tion satisfying conditions (DLC1)-(DLC4) (or conditions (DLC1), (DLC2), (LC3),

(DLC4)), X = Ψa(A, ρ,B) and Y = Ψa(B, η,B′) (see Theorem 1.2.3.10 for Ψa). For

every σ′ ∈ Y , set fφ(σ
′) = σ, where σ is the unique bounded cluster in (A, ρ,B) such

that σ∩B = Sσ′ (see 2.2.3.14 for σ). Then fφ : Y −→ X is a continuous function and

∀a ∈ B, f−1
φ (int(λgA(a)) = ιB(Dφ(a))(2.10)
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(see 2.2.2.4 for ι).

Proof. We will first show that the formula (2.10) holds. So, let a ∈ B. Since Dφ(a) =∪
{Iφ(b) | b ∈ B, b≪ρ a}, we get that

ιB(Dφ(a)) =
∪

{λgB(c) | (c ∈ B′) ∧ (∃b ∈ B)[(b≪ρ a) ∧ (c≪η φ(b))]}.

Let σ′ ∈ f−1
φ (int(λgA(a)). Then fφ(σ

′) = σ ∈ int(λgA(a)). Hence a∗ ̸∈ σ. Now,

by 2.2.2.16, there exists a1 ∈ A such that a∗ ≪Cρ a∗1 and a∗1 ̸∈ σ. We get that

a1 ≪Cρ a and a1 ∈ σ ∩ B = Sσ′ . Since a1 ≪ρ a, there exist a2, b ∈ B such that

a1 ≪ρ a2 ≪ρ b ≪ρ a. Then, by the definition of the set Sσ′ , φ(a2) ∈ σ′. By 2.2.2.9(b)

(resp., by 2.2.2.11), φ(a2) ≪η φ(b). Now, 2.2.3.3(a) implies that there exists c ∈ B′∩σ′

such that c ≪η φ(b). Thus σ′ ∈ λgB(c), where c ∈ B′, c ≪η φ(b) and b ≪ρ a. This

means that σ′ ∈ ιB(Dφ(a)). Hence, f
−1
φ (int(λgA(a)) ⊆ ιB(Dφ(a)).

Conversely, let σ′ ∈ ιB(Dφ(a)) and σ = fφ(σ
′). Then there exist b ∈ B and

c ∈ B′ such that b ≪ρ a, c ≪η φ(b) and σ
′ ∈ λgB(c). Thus c ∈ σ′ and hence φ(b) ∈ σ′.

This implies that b ∈ Sσ′ = B ∩ σ. Since b ∈ B and b ≪ρ a, we get that b ≪Cρ a,

i.e., b(−Cρ)a∗. Thus a∗ ̸∈ σ. This means that fφ(σ
′) = σ ∈ int(λgA(a)). Therefore,

σ′ ∈ f−1
φ (int(λgA(a)). We have proved that f−1

φ (int(λgA(a)) ⊇ ιB(Dφ(a)).

So, the formula (2.10) is established. Now, by (1.36), {intλgA(a) | a ∈ B} is a base

of X, and, for every a ∈ A, Dφ(a) is a δ-ideal (see 2.2.3.16). Hence, 2.2.2.4 implies

that, for every a ∈ A, ιB(Dφ(a)) is an open subset of Y . Thus, by formula (2.10), fφ

is a continuous function.

Lemma 2.2.3.18. Let f ∈ HLC(X,Y ). Define a function φf : Ψt(Y ) −→ Ψt(X) by

the formula:

∀G ∈ RC(Y ), φf (G) = clX(f
−1(intY (G)))(2.11)

(see Theorem 1.2.3.10 for Ψt). Then the function φf satisfies conditions (DLC1)-

(DLC5) from 2.2.2.7 and, moreover, it satisfies conditions (DLC3S) and (LC3S).

Proof. Obviously, condition (DLC1) is fulfilled. For proving condition (DLC2), recall

that (see [24]) if U and V are two open subsets of a topological space Z then

int(cl(U ∩ V )) = int(cl(U) ∩ cl(V )).(2.12)

Let F,G ∈ RC(Y ). Using the fact that int(F ∩ G) is a regular open set, we get that

int(F ∩G) = int(cl(int(F ∩G))). Thus

φf (F ∧G) = cl(f−1(int(cl(int(F ∩G))))) = cl(f−1(int(F ∩G))).

88



Now, setting U = f−1(int(F )) and V = f−1(int(G)), we obtain, using (2.12), that

φf (F ) ∧ φf (G) = cl(U) ∧ cl(V ) = cl(int(cl(U) ∩ cl(V ))) =

= cl(int(cl(U ∩ V ))) = cl(U ∩ V ) = cl(f−1(int(F ∩G))).

Therefore, φf (F ∧G) = φf (F ) ∧ φf (G). So, (DLC2) is fulfilled.
We will now show that not only condition (DLC3) is true, but even condition

(DLC3S) holds. Indeed, let F,G ∈ RC(Y ) and F ≪ρY G. Then F ⊆ int(G)

and (φf (F
∗))∗ = (cl(f−1(int(F ∗))))∗ = (cl(f−1(Y \ F )))∗ = (cl(X \ f−1(F )))∗ =

cl(int(f−1(F ))) ⊆ f−1(F ) ⊆ f−1(int(G)) ⊆ int(cl(f−1(int(G)))) = int(φf (G)). Hence

(φf (F
∗))∗ ≪ρX φf (G), i.e., condition (DLC3S) is fulfilled.

For verifying (DLC4), let H ∈ CR(X). Then f(H) is compact. Since Y is

locally compact, there exists F ∈ CR(Y ) such that f(H) ⊆ int(F ). Now we obtain

thatH ⊆ f−1(int(F )) ⊆ int(cl(f−1(int(F )))) = int(φf (F )), i.e., H ≪ρX φf (F ). Hence,

condition (DLC4) holds.

Let F ∈ RC(Y ). For establishing condition (DLC5), we have to show that

φf (F ) =
∨
{φf (G) | G ∈ CR(Y ), G ⊆ int(F )}. Since Y is locally compact and regular,

we have that int(F ) =
∪
{int(G) | G ∈ CR(Y ), G ⊆ int(F )}. Recall that φf (F ) =

cl(f−1(int(F ))). Further, it is obvious that if G ⊆ int(F ) then cl(f−1(int(G))) ⊆
f−1(G) ⊆ f−1(int(F )). Now, it is easy to see that the desired equality is fulfilled. So,

condition (DLC5) is verified.

Finally, we will show that condition (LC3S) is fulfilled as well. Let, for i = 1, 2,

Fi, Gi ∈ RC(Y ) and Fi ⊆ int(Gi). We have to show that φf (F1 ∪ F2) ⊆ int(φf (G1) ∪
φf (G2)). Indeed, φf (F1 ∪ F2) = cl(f−1(int(F1 ∪ F2))) ⊆ f−1(F1 ∪ F2) ⊆ f−1(int(G1) ∪
int(G2)) ⊆ int(cl(f−1(int(G1) ∪ int(G2)))) = int(φf (G1) ∪ φf (G2)). So, condition

(LC3S) is verified.

Lemma 2.2.3.19. Let (A, ρ,B) and (B, η,B′) be CLC-algebras, φ : A −→ B be a func-

tion satisfying conditions (DLC1)-(DLC5) (or conditions (DLC1), (DLC2), (LC3),

(DLC4), (DLC5)), X = Ψa(A, ρ,B) and Y = Ψa(B, η,B′) (see Theorem 1.2.3.10 for

Ψa). Let f = fφ (see 2.2.3.17 for fφ) and φ′ = φf (see 2.2.3.18 for φf). Then

λgB ◦ φ = φ′ ◦ λgA (see Theorem 1.2.3.10 for λgA and λgB).

Proof. Note that, by 2.2.3.17, f : Y −→ X is a continuous function. Hence, 2.2.3.18

implies that the function φ′ satisfies conditions (DLC1)-(DLC5).
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Let us now consider the case when a ∈ B. We have to show that λgB(φ(a)) =

φ′(λgA(a)). By the definitions of φ′ and f , and the formula (2.10), we obtain that

φ′(λgA(a)) = cl(f−1
φ (int(λgA(a)))) = cl(ιB(Dφ(a))) = cl(

∪
{λgB(b) | b ∈ Dφ(a)} =∨

{λgB(b) | b ∈ Dφ(a)} = λgB(
∨
{b | b ∈ Dφ(a)}) (since, by Theorem 1.2.3.10, λgB is

an LCA-isomorphism). Hence, we have to prove that φ(a) =
∨
{b | b ∈ Dφ(a)}) =∨

Dφ(a). By condition (DLC5), we have that φ(a) =
∨
{φ(c) | c ∈ B, c ≪ρ a}. Since,

for every c ∈ A, φ(c) =
∨
{b ∈ B′ | b ≪η φ(c)}, we get that φ(a) =

∨
{b ∈ B′ | (∃c ∈

B)[(c ≪ρ a) ∧ (b ≪η φ(c))]}. By definition, Dφ(a) =
∪
{Iφ(c) | c ∈ B, c ≪ρ a}. Thus

(b ∈ Dφ(a)) ↔ [(b ∈ B′) ∧ ((∃c ∈ B)((c ≪ρ a) ∧ (b ≪η φ(c))))]. This shows that

φ(a) =
∨
Dφ(a). So, we have proved that λgB(φ(a)) = φ′(λgA(a)) for every a ∈ B.

Let now a ∈ A. Then, by condition (DLC5), φ(a) =
∨
{φ(b) | b ∈ B, b ≪ρ a}.

Hence, using the fact that λgB is an LCA-isomorphism and the formula proved in

the preceding paragraph, we get that λgB(φ(a)) =
∨
{λgB(φ(b)) | b ∈ B, b ≪ρ a} =∨

{φ′(λgA(b)) | b ∈ B, b≪ρ a}. Further, since the function φ′ satisfies condition (DLC5),

we have that for every G ∈ RC(X), φ′(G) =
∨
{φ′(F ) | F ∈ CR(X), F ≪ρX G}. Now

using the fact that λgA is an LCA-isomorphism between local contact algebras (A, ρ,B)
and (RC(X), ρX , CR(X)), we get that φ′(λgA(a)) =

∨
{φ′(λgA(b)) | b ∈ B, b ≪ρ a} =

λgB(φ(a)). So, the desired equality is established.

Lemma 2.2.3.20. Let (A, ρ,B) and (B, η,B′) be CLC-algebras and φ : A −→ B

be a function satisfying conditions (DLC1)-(DLC5) (or conditions (DLC1), (DLC2),

(LC3), (DLC4), (DLC5)). Then φ satisfies conditions (DLC3S) and (LC3S) as well.

Proof. Let f = fφ (see 2.2.3.17 for fφ) and φ′ = φf (see 2.2.3.18 for φf ). Then, by

2.2.3.19, λgB ◦ φ = φ′ ◦ λgA. Since the function φ′ satisfies conditions (DLC3S) and

(LC3S) (by 2.2.3.18) and the functions λgA and λgB are LCA-isomorphisms, we get that

the function φ satisfies conditions (DLC3S) and (LC3S) as well.

The above lemma implies the following fact mentioned in the previous subsection:

Corollary 2.2.3.21. Condition (DLC3) in 2.2.2.7 can be replaced by any of the con-

ditions (DLC3S), (LC3) and (LC3S) (i.e., we obtain equivalent systems of axioms by

these replacements).

Lemma 2.2.3.22. Let (A, ρ,B) and (B, η,B′) be CLC-algebras and ψ : A −→ B satisfy

conditions (DLC2), (DLC4). Then, for every a ∈ A, ψ (̌a) =
∨
{ψ(b) | b ∈ A, b ≪Cρ

a}. (See (2.4) for ψ .̌)
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Proof. Set, for every a ∈ A, ψ (̃a) =
∨
{ψ(b) | b ∈ A, b ≪Cρ a}. Obviously, if b ∈ B

and b≪ρ a then b≪Cρ a. Thus, ψ (̌a) ≤ ψ (̃a).

Let now b ∈ A and b ≪Cρ a. Then b ≪ρ a. We have, by (1.39), that ψ(b) =∨
{c ′ ∈ B′ | c ′ ≪η ψ(b)}. Let c ′ ∈ B′ and c ′ ≪η ψ(b). Then, by (DLC4), there exists

c ∈ B such that c ′ ≤ ψ(c). Now, (DLC2) implies that c ′ ≤ ψ(b ∧ c). Set d = b ∧ c.

Then d ∈ B, d ≤ b≪ρ a (and, hence, d≪ρ a), c
′ ≤ ψ(d) ≤ ψ (̌a). Thus, ψ(b) ≤ ψ (̌a).

We conclude that ψ (̃a) ≤ ψ (̌a). So, ψ (̌a) = ψ (̃a).

Lemma 2.2.3.23. Let φ : (A, ρ,B) −→ (B, η,B′) be a function between CLC-algebras

and let φ satisfy conditions (DLC1)-(DLC4). Then the function φˇ (see (2.4)) satisfies

conditions (DLC1)-(DLC5).

Proof. Obviously, for every a ∈ A, φ (̌a) ≤ φ(a). Hence, φ (̌0) = 0, i.e., (DLC1) is

fulfilled. For (DLC2) and (DLC5) see 2.2.2.9(d).

Let a ∈ B, b ∈ A and a ≪ρ b. Then, by (BC1), there exist c, d ∈ B such that

a ≪ρ c ≪ρ d ≪ρ b. Thus a ≪Cρ c and hence c∗ ≪Cρ a
∗. Now, using 2.2.3.22, we

obtain that φ(c∗) ≤ φ (̌a∗). Since φ(d) ≤ φ (̌b), we get that (φ (̌a∗))∗ ≤ (φ(c∗))∗ ≪η

φ(d) ≤ φ (̌b). Therefore, (φ (̌a∗))∗ ≪η φ (̌b). So, (DLC3) is fulfilled.

For verifying (DLC4), let b ∈ B. Then there exists a ∈ B such that b ≤ φ(a). By

(BC1), there exists a1 ∈ B with a ≪ρ a1. Then b ≤ φ(a) ≤ φ (̌a1). Thus, φˇ satisfies

condition (DLC4).

Lemma 2.2.3.24. Let φi : (Ai, ρi,Bi) −→ (Ai+1, ρi+1,Bi+1), where i = 1, 2, be two

functions between CLC-algebras. Then:

(a) (φ2ˇ◦ φ1)̌ = (φ2 ◦ φ1)̌ ;

(b) If φ1 and φ2 are monotone functions, then (φ2 ◦ φ1 )̌̌ = (φ2 ◦ φ1)̌ ;

(c) If φ1 and φ2 satisfy conditions (DLC1)-(DLC5) then the function φ2 ◦ φ1 satisfies

conditions (DLC1)-(DLC4) and even condition (DLC3S).

Proof. We will write, for i = 1, 2, “ ≪i” instead of “ ≪ρi”. We also set φ = φ2 ◦ φ1.

(a) Let a ∈ A1. Then (φ2ˇ◦φ1)̌ (a) =
∨
{φ2 (̌φ1(b)) | b ∈ B1, b≪1 a} =

∨
{
∨
{φ(c) | c ∈

B1, c≪1 b} | b ∈ B1, b≪1 a} =
∨
{φ(c) | c ∈ B1, c≪1 a} = φ (̌a).

(b) Let a ∈ A1. Then L = (φ2 ◦ φ1 )̌̌ (a) =
∨
{φ2(φ1 (̌b)) | b ∈ B1, b ≪1 a} =∨

{φ2(
∨
{φ1(c) | c ∈ B1, c ≪1 b}) | b ∈ B1, b ≪1 a} and R = φ (̌a) =

∨
{φ(c) | c ∈

B1, c ≪1 a}. Let c ∈ B1 and c ≪1 a. Then, by (BC1), there exists b ∈ B1 such that

c ≪1 b ≪1 a. This shows that R ≤ L. Conversely, let b ∈ B1 and b ≪1 a. Then,
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for every c ∈ B1 such that c ≪1 b, we have that φ1(c) ≤ φ1(b). Hence
∨
{φ1(c) | c ∈

B1, c ≪1 b} ≤ φ1(b). Then φ2(
∨
{φ1(c) | c ∈ B1, c ≪1 b}) ≤ φ(b) and b ≪1 a. This

implies that L ≤ R. So, L = R. Hence, (φ2 ◦ φ1 )̌̌ = (φ2 ◦ φ1)̌ .

(c) Obviously, the function φ satisfies conditions (DLC1), (DLC2) and (DLC4). For

proving that φ satisfies condition (DLC3S), let a, b ∈ A1 and a ≪1 b. Since the func-

tions φ1 and φ2 satisfy condition (DLC3S) (by 2.2.3.20), we obtain that (φ1(a
∗))∗ ≪2

φ1(b) and (φ2(φ1(a
∗)))∗ ≪3 φ2(φ1(b)), i.e., (φ(a

∗))∗ ≪3 φ(b). Hence, the function φ

satisfies condition (DLC3S).

Proposition 2.2.3.25. DHLC is a category.

Proof. It is clear that for every CLCA (A, ρ,B), the usual identity function idA :

A −→ A satisfies conditions (DLC1)-(DLC5); moreover, using 2.2.2.9(e), we get that

if (B, η,B′) and (B1, η1,B′
1) are CLC-algebras, and φ : (A, ρ,B) −→ (B, η,B′) and ψ :

(B1, η1,B′
1) −→ (A, ρ,B) are functions satisfying condition (DLC5), then idA ⋄ ψ = ψ

and φ ⋄ idA = φ. So, idA is the DHLC-identity on (A, ρ,B).
Let φi : (Ai, ρi,Bi) −→ (Ai+1, ρi+1,Bi+1), where i = 1, 2, be two functions be-

tween CLC-algebras, and let φ1 and φ2 satisfy conditions (DLC1)-(DLC5). We will

show that the function φ2 ⋄ φ1 satisfies conditions (DLC1)-(DLC5).

Set φ = φ2 ◦φ1. Then, by 2.2.3.24(c), the function φ satisfies conditions (DLC1)-

(DLC4). Now, 2.2.3.23 implies that the function φˇ satisfies conditions (DLC1)-

(DLC5). Since φ2 ⋄ φ1 = φ ,̌ we get that the function φ2 ⋄ φ1 satisfies conditions

(DLC1)-(DLC5).

Finally, we will show that the composition in DHLC is associative. Let, for

i = 1, 2, 3, φi : (Ai, ρi,Bi) −→ (Ai+1, ρi+1,Bi+1) be a function between CLC-algebras

satisfying conditions (DLC1)-(DLC5). We will show that (φ3 ⋄φ2)⋄φ1 = φ3 ⋄ (φ2 ⋄φ1).

Using 2.2.3.24, we get that (φ3 ⋄ φ2) ⋄ φ1 = ((φ3 ◦ φ2)̌ ◦ φ1)̌ = ((φ3 ◦ φ2) ◦ φ1)̌ and

φ3 ⋄ (φ2 ⋄ φ1) = (φ3 ◦ (φ2 ◦ φ1)̌ )̌ = (φ3 ◦ (φ2 ◦ φ1))̌ . Thus, the associativity of the

composition in DHLC is proved.

All this shows that DHLC is a category.

Lemma 2.2.3.26. Let φ : (A, ρ,B) −→ (B, η,B′) be a function between CLC-algebras

satisfying conditions (DLC1)-(DLC4). Then fφ = fφˇ (see 2.2.3.17 for fφ and (2.4)

for φ )̌.

Proof. Let X = Ψa(A, ρ,B) and Y = Ψa(B, η,B′). By 2.2.3.23, the function φˇ satisfies

conditions (DLC1)-(DLC4). Hence, we can apply 2.2.3.17 in order to construct two
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(continuous) functions fφ, fφˇ : Y −→ X. Let σ′ ∈ Y . Set σ = fφ(σ
′) and σ1 = fφˇ(σ

′).

By 2.2.3.4, for proving that σ = σ1, it is enough to show that σ ∩ B = σ1 ∩ B, where
σ ∩ B = {a ∈ B | (∀b ∈ A)[(a ≪ρ b) → (φ(b) ∈ σ′)]} and σ1 ∩ B = {a ∈ B | (∀b ∈
A)[(a≪ρ b) → (φ (̌b) ∈ σ′)]} (see 2.2.3.17).

Let a ∈ σ1 ∩ B, b ∈ A and a ≪ρ b. Then φ (̌b) ∈ σ′. Since φ (̌b) ≤ φ(b) (by

2.2.2.9(g)), we get that φ(b) ∈ σ′. So, σ ∩B ⊇ σ1 ∩B. Conversely, let a ∈ σ ∩B, b ∈ A

and a≪ρ b. By (BC1), there exists c ∈ B such that a≪ρ c≪ρ b. Then φ(c) ∈ σ′ and

φ(c) ≤ φ (̌b). Hence, φ (̌b) ∈ σ′. So, σ ∩ B ⊆ σ1 ∩ B. Therefore, σ = σ1. This shows

that fφ = fφˇ.

Proposition 2.2.3.27. For every (A, ρ,B) ∈ |DHLC|, set

Λa(A, ρ,B) = Ψa(A, ρ,B)

(see Theorem 1.2.3.10 for Ψa), and for every φ ∈ DHLC((A, ρ,B), (B, η,B′)), define

Λa(φ) : Λa(B, η,B′) −→ Λa(A, ρ,B)

by the formula Λa(φ) = fφ, where fφ is the function defined in 2.2.3.17. Then Λa :

DHLC −→ HLC is a contravariant functor.

Proof. By Theorem 1.2.3.10, if (A, ρ,B) ∈ |DHLC| then Λa(A, ρ,B) ∈ |HLC|, and,
by 2.2.3.17, if φ is a DHLC-morphism between (A, ρ,B) and (B, η,B′), then Λa(φ) is a

HLC-morphism between Λa(B, η,B′) and Λa(A, ρ,B). Further, let (A, ρ,B) ∈ |DHLC|
and set X = Λa(A, ρ,B), f = Λa(idA). We have to show that f = idX . Indeed, let

σ′ ∈ X. Set σ = f(σ′). We will prove that σ′ ∩B = σ ∩B; then 2.2.3.4 will imply that

σ = σ′. We have, by the definition of σ, that σ ∩ B = {a ∈ B | (∀b ∈ A)[(a ≪ρ b) →
(b ∈ σ′)]}. Obviously, σ′ ∩ B ⊆ σ ∩ B. Conversely, let a ∈ B ∩ σ. Suppose that a ̸∈ σ′.

Then, by 2.2.2.16, there exists b ∈ A such that a ≪Cρ b and b ̸∈ σ′. Since a ≪ρ b, we

have that b ∈ σ′, a contradiction. Hence, σ′ ∩ B ⊇ σ ∩ B. So, f = idX .

Let φi ∈ DHLC((Ai, ρi,Bi), (Ai+1, ρi+1,Bi+1)), where i = 1, 2. Set, for i = 1, 2, 3,

Xi = Λa(Ai, ρi,Bi), and, for i = 1, 2, fi = Λa(φi). We will write, for i = 1, 2, 3, “ ≪i”

instead of “ ≪ρi”. Let φ = φ2◦φ1 and f = f1◦f2. We have to show that Λa(φ2⋄φ1) = f .

By 2.2.3.24(c), the function φ satisfies conditions (DLC1)-(DLC4). Thus, by 2.2.3.17,

the function g = fφ : X3 −→ X1 is well-defined. We will show that g = f . Let σ3 ∈ X3

and σ = g(σ3). Then σ ∩ B1 = {a ∈ B1 | (∀b ∈ A1)[(a ≪1 b) → (φ(b) ∈ σ3)]}. Let

σ2 = f2(σ3) and σ1 = f1(σ2). For proving that σ = σ1, it is enough to show (by
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2.2.3.4) that σ ∩ B1 = σ1 ∩ B1. We have that σ2 ∩ B2 = {a ∈ B2 | (∀b ∈ A2)[(a ≪2

b) → (φ2(b) ∈ σ3)]} = {a ∈ B2 | (∀b ∈ A2)[(a ≪2 b) → ((φ2(b
∗))∗ ∈ σ3)} and

σ1 ∩ B1 = {a ∈ B1 | (∀b ∈ A1)[(a≪1 b) → (φ1(b) ∈ σ2)]} = {a ∈ B1 | (∀b ∈ A1)[(a≪1

b) → ((φ1(b
∗))∗ ∈ σ2)]} (see 2.2.3.17 and 2.2.3.11). Let a ∈ σ1 ∩ B1, b ∈ A1 and

a ≪1 b. Then, by (BC1), there exists c ∈ B1 such that a ≪1 c ≪1 b. Then φ1(c) ∈ σ2

and, by 2.2.2.9(b), φ1(c) ≪2 φ1(b). Hence, by 2.2.3.3(a), there exists d2 ∈ B2 ∩ σ2

such that d2 ≪2 φ1(b). Then φ(b) ∈ σ3. So, a ∈ σ ∩ B1. Thus, σ1 ∩ B1 ⊆ σ ∩ B1.

Conversely, let a ∈ σ ∩ B1. Suppose that a ̸∈ σ1 ∩ B1. Then there exists b ∈ A1

such that a ≪1 b and (φ1(b
∗))∗ ̸∈ σ2. There exists c ∈ B1 such that a ≪1 c ≪1 b.

Since φ1(b
∗) ∈ σ2 and, by (DLC3S), φ1(b

∗) ≪2 φ1(c
∗), 2.2.3.3(a) implies that there

exists d1 ∈ σ2 ∩ B2 such that d1 ≪2 φ1(c
∗). Thus φ(c∗) ∈ σ3. Further, there exists

d ∈ B1 such that a ≪1 d ≪1 c. Then φ(d) ∈ σ3 and, by (DLC3S) (see 2.2.3.24(c)),

φ(d) ≪3 φ(c). Using again 2.2.3.3(a), we get that there exists e ∈ σ3 ∩ B3 such that

e≪3 φ(c). Thus e≪Cρ3
φ(c), i.e., e(−Cρ3)(φ(c))∗. Then, by 2.2.2.9(b), e(−Cρ3)φ(c∗).

Therefore φ(c∗) ̸∈ σ3, a contradiction. It shows that a ∈ σ1 ∩B1. So, σ1 ∩B1 ⊇ σ ∩B1.

We have proved that σ = σ1. So, g = f . Since φ2 ⋄ φ1 = φ ,̌ 2.2.3.26 implies that

Λa(φ2 ⋄ φ1) = g. Therefore, Λa(φ2 ⋄ φ1) = f .

Proposition 2.2.3.28. For every X ∈ |HLC|, set Λt(X) = Ψt(X) (see Theorem

1.2.3.10 for Ψt), and for every f ∈ HLC(X,Y ), define Λt(f) : Λt(Y ) −→ Λt(X)

by the formula Λt(f) = φf , where φf is the function defined in 2.2.3.18. Then Λt :

HLC −→ DHLC is a contravariant functor.

Proof. By Theorem 1.2.3.10, if X ∈ |HLC| then Λt(X) ∈ |DHLC|, and, by 2.2.3.18,

if f ∈ HLC(X,Y ) then Λt(f) ∈ DHLC(Λt(Y ),Λt(X)). Further, it is obvious that Λt

preserves identity morphisms.

Let f ∈ HLC(X,Y ) and g ∈ HLC(Y, Z). We will prove that Λt(g ◦ f) = Λt(f) ⋄
Λt(g). Set h = g◦f . We have that φh = Λt(h), φf = Λt(f) and φg = Λt(g) (see 2.2.3.18

for φf etc.). Let F ∈ RC(Z). Then φh(F ) = cl(h−1(int(F ))) = cl(f−1(g−1(int(F ))))

and (φf ◦ φg )̌ (F ) =
∨
{φf (φg(G)) | G ∈ CR(Z), G ≪ρZ F}. If G ∈ CR(Z) (or even

G ∈ RC(Z)) and G ⊆ int(F ), then

φf (φg(G)) ⊆ f−1(cl(g−1(int(G)))) ⊆ f−1(g−1(G)) ⊆ f−1(g−1(int(F ))).

Thus (φf ◦ φg )̌ (F ) ⊆ φh(F ). Further, since int(F ) =
∪
{int(G) | G ∈ CR(Z), G ⊆

int(F )}, we get that g−1(int(F )) ⊆
∪
{int(φg(G)) | G ∈ CR(Z), G ⊆ int(F )}. Hence

φh(F ) ⊆ cl(
∪

{f−1(int(φg(G))) | G ∈ CR(Z), G ⊆ int(F )}) ⊆
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⊆ cl(
∪

{φf (φg(G)) | G ∈ CR(Z), G ⊆ int(F )}) = (φf ◦ φg )̌ (F ).

Therefore, φh = φf ⋄ φg. So, Λt : HLC −→ DHLC is a contravariant functor.

Proposition 2.2.3.29. The identity functor IdDHLC and the functor Λt ◦Λa are nat-

urally isomorphic.

Proof. Recall that for every (A, ρ,B) ∈ |DHLC|, the function

λgA : (A, ρ,B) −→ (Λt ◦ Λa)(A, ρ,B)

is an LCA-isomorphism (see (1.31)). We will show that λg : IdDHLC −→ Λt◦Λa, where
for every (A, ρ,B) ∈ |DHLC|, λg(A, ρ,B) = λgA, is a natural isomorphism. (Note that,

clearly, every LCA-isomorphism is a DHLC-isomorphism.)

Let φ ∈ DHLC((A, ρ,B), (B, η,B′)). We have to show that λgB⋄φ = (Λt◦Λa)(φ)⋄
λgA, i.e., that (λ

g
B ◦ φ)̌ = ((Λt ◦ Λa)(φ) ◦ λgA)̌ . Since, by 2.2.3.19 and the definitions of

the contravariant functors Λt and Λa, we have that

λgB ◦ φ = (Λt ◦ Λa)(φ) ◦ λgA,(2.13)

our assertion follows immediately. So, λg is a natural isomorphism.

Proposition 2.2.3.30. The identity functor IdHLC and the functor Λa ◦ Λt are nat-

urally isomorphic.

Proof. Recall that, for every X ∈ |HLC|, the map tX : X −→ (Λa ◦ Λt)(X), where

tX(x) = σx for every x ∈ X, is a homeomorphism (see (1.32) and (1.15) for tX , and

(1.3) for σx). We will show that tl : IdHLC −→ Λa ◦ Λt, where for every X ∈ |HLC|,
tl(X) = tX , is a natural isomorphism.

Let f ∈ HLC(X,Y ) and f ′ = (Λa◦Λt)(f). We have to prove that tY ◦f = f ′◦tX ,
i.e., that for every x ∈ X, σf(x) = f ′(σx). By 2.2.3.4, it is enough to show that

σf(x) ∩ CR(Y ) = f ′(σx) ∩ CR(Y ).

We have, by the definition of Λt, that Λt(f) = φf , where, for every G ∈ RC(Y ),

φf (G) = cl(f−1(int(G))). Hence f ′(σx)∩CR(Y ) = {F ∈ CR(Y ) | (∀G ∈ RC(Y ))[(F ⊆
int(G)) → (φf (G) ∈ σx)]} = {F ∈ CR(Y ) | (∀G ∈ RC(Y ))[(F ⊆ int(G)) → (x ∈
cl(f−1(int(G))))]}. Let F ∈ σf(x) ∩ CR(Y ). Then f(x) ∈ F . If G ∈ RC(Y ) and

F ⊆ int(G), then f(x) ∈ int(G). Thus x ∈ f−1(int(G)) ⊆ cl(f−1(int(G))). Therefore

F ∈ f ′(σx)∩CR(Y ). So, σf(x)∩CR(Y ) ⊆ f ′(σx)∩CR(Y ). Conversely, let F ∈ f ′(σx)∩
CR(Y ). Suppose that f(x) ̸∈ F . Then, by 0.4.2.3, there exists G ∈ CR(Y ) such that
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F ⊆ int(G) ⊆ G ⊆ Y \ {f(x)}. Thus x ̸∈ f−1(G). Since cl(f−1(int(G))) ⊆ f−1(G), we

get that x ̸∈ cl(f−1(int(G))), a contradiction. Hence f(x) ∈ F , i.e., F ∈ σf(x). Thus

σf(x) ∩ CR(Y ) ⊇ f ′(σx) ∩ CR(Y ). Therefore, for every x ∈ X, σf(x) = f ′(σx). This

means that tY ◦ f = f ′ ◦ tX . So, tl is a natural isomorphism.

It is clear now that Theorem 2.2.2.12 follows from 2.2.3.25, 2.2.3.27, 2.2.3.28,

2.2.3.29 and 2.2.3.30. So, the proof of Theorem 2.2.2.12 is complete.

2.2.4 A Duality Theorem for the category of connected locally
compact Hausdorff spaces and continuous maps

We will now derive from our Theorem 2.2.2.12 a corollary concerning the subcategory

of the category HLC whose objects are connected spaces.

Definition 2.2.4.1. A CA (B,C) is said to be connected if it satisfies the following

axiom:

(CON) If a ̸= 0, 1 then aCa∗.

An LCA (B, ρ,B) is called connected if the CA (B, ρ) is connected.

Remark 2.2.4.2. The axiom (CON) is equivalent to the following one:

(CON ′) If a, b ̸= 0 and a ∨ b = 1 then aCb.

The following obvious fact was noted in [14].

Fact 2.2.4.3. ([14]) Let (X, τ) be a topological space. Then the standard contact algebra

(RC(X, τ), ρ(X,τ)) is connected iff the space (X, τ) is connected.

Notation 2.2.4.4. If K is a category whose objects form a subclass of the class of

all topological spaces (resp., contact algebras) then we will denote by KCon the full

subcategory of K whose objects are all “connected” K-objects, where “connected” is

understood in the usual sense when the objects of K are topological spaces and in the

sense of 2.2.4.1 when the objects of K are contact algebras.

So, we denote by:

• HLCCon the full subcategory of the category HLC whose objects are all con-

nected locally compact Hausdorff spaces,

• DHLCCon the full subcategory of the category DHLC whose objects are all

connected CLC-algebras.
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Theorem 2.2.4.5. The categories HLCCon and DHLCCon are dually equivalent.

Proof. It follows immediately from Theorem 2.2.2.12 and Fact 2.2.4.3.

2.3 Products, sums and completions of LCAs

2.3.1 Introduction

In this section we will apply our Theorem 2.2.2.12 for obtaining an explicit description

of the products and sums of complete local contact algebras. Also, using again Theorem

2.2.2.12, we will develop a completion theory for local contact algebras.

The structure of the section is the following. In the second subsection, an explicit

description of the products of arbitrary families of complete local contact algebras (=

CLC-algebras) in the category DHLC dual to the category HLC is given. Note that

the Duality Theorem 2.2.2.12 implies that the category DHLC has products because

its dual category HLC has sums (i.e., coproducts). However, one needs to do some

extra work in order to obtain a direct description of these products.

In the third subsection, we obtain some direct descriptions of the DHLC-sums

of finite families of complete LC-algebras and the DHC-sums of arbitrary families of

complete NC-algebras (where DHC is the de Vries category dual to the category HC)

using the de Vries Duality Theorem [24] (see Theorem 2.2.2.6 here) and our Theorem

2.2.2.12.

In the fourth subsection, a completion theory for LC-algebras is developed. We

give a definition of a completion of an LCA, and we show that any LCA has a unique

completion. The fact that any LCA can be embedded into a complete LCA was

established in [41] but we worked there with another definition of a completion and

there were no uniqueness of that completion.

The exposition of this section is based on the papers [31] and [34].

2.3.2 A description of DHLC-products of complete local con-
tact algebras

In this subsection we will describe the DHLC-products of arbitrary families of CLC-

algebras. Note that the products in the category DHLC surely exist because its dual

category HLC of all locally compact Hausdorff spaces and continuous maps has sums.
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Definition 2.3.2.1. Let Γ be a set and {(Aγ, ργ,Bγ) | γ ∈ Γ} be a family of LC-

algebras. Let

A =
∏

{Aγ | γ ∈ Γ}

be the product of the Boolean algebras {Aγ | γ ∈ Γ} in the category BoolAlg of

Boolean algebras and Boolean homomorphisms (i.e., A is the Cartesian product of the

family {Aγ | γ ∈ Γ}, construed as a Boolean algebra with respect to the coordinate-wise

operations). Let

B = {(bγ)γ∈Γ ∈
∏

{Bγ | γ ∈ Γ} | |{γ ∈ Γ | bγ ̸= 0}| < ℵ0},

where
∏
{Bγ | γ ∈ Γ} is the Cartesian product of the family {Bγ | γ ∈ Γ} (in other

words, B is the σ-product of the family {Bγ | γ ∈ Γ} with base point 0 = (0γ)γ∈Γ). For

any two points a = (aγ)γ∈Γ ∈ A and b = (bγ)γ∈Γ ∈ A, set

aρb iff there exists γ ∈ Γ such that aγργbγ.

Then the triple (A, ρ,B) is called a product of the family {(Aγ, ργ,Bγ) | γ ∈ Γ} of

LC-algebras. We will write

(A, ρ,B) =
∏

{(Aγ, ργ,Bγ) | γ ∈ Γ}.

Fact 2.3.2.2. The product (A, ρ,B) of a family {(Aγ, ργ,Bγ) | γ ∈ Γ} of LC-algebras

(resp., of CLCAs) is an LCA (resp., a CLCA).

Proof. The proof is straightforward.

Recall that (see, e.g., [1]) if C is a category, a source

P = {pγ : P −→ Aγ | γ ∈ Γ}

of C-morphisms (i.e., a C-source) is called a product provided that for every C-source

S = {fγ : A −→ Aγ | γ ∈ Γ} with the same codomain as P there exists a unique

C-morphism f : A −→ P with

fγ = pγ ◦ f, ∀γ ∈ Γ

(i.e., briefly, S = P ◦ f); a product with codomain {Aγ | γ ∈ Γ} is called a product (or,

C-product) of the family {Aγ | γ ∈ Γ} of C-objects. For any family {Aγ | γ ∈ Γ} of

C-objects, products of {Aγ | γ ∈ Γ} are essentially unique; i.e., if P = {pγ : P −→
Aγ | γ ∈ Γ} is a product of {Aγ | γ ∈ Γ}, then the following hold:
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(1) for each product Q = {qγ : Q −→ Aγ | γ ∈ Γ} there exists an isomorphism

h : Q −→ P in C with Q = P ◦ h,
(2) for each C-isomorphism g : A −→ P the source P ◦ g is a product of {Aγ | γ ∈ Γ}.

The notion of a coproduct (or C-coproduct, or, even, C-sum or sum) of a family

{Aγ | γ ∈ Γ} of C-objects is defined analogously.

Proposition 2.3.2.3. Let Γ be a set and {(Aγ, ργ,Bγ) | γ ∈ Γ} be a family of CLC-

algebras. Then the source {πγ : (A, ρ,B) −→ (Aγ, ργ,Bγ) | γ ∈ Γ}, where

(A, ρ,B) =
∏

{(Aγ, ργ,Bγ) | γ ∈ Γ}

(see Definition 2.3.2.1) and, for every a = (aγ)γ∈Γ ∈ A and every γ ∈ Γ,

πγ(a) = aγ,

is a product of the family {(Aγ, ργ,Bγ) | γ ∈ Γ} in the category DHLC.

Proof. By Fact 2.3.2.2, (A, ρ,B) is a CLCA. It is easy to see that, for every γ ∈ Γ, πγ

is a DHLC-morphism.

Let Xγ = Λa(Aγ, ργ,Bγ) for every γ ∈ Γ, and let

X =
⊕

{Xγ | γ ∈ Γ}

be the topological sum of the family {Xγ | γ ∈ Γ}. Then the sink of inclusions

{iγ : Xγ −→ X | γ ∈ Γ}

is a coproduct in the category HLC (briefly, HLC-coproduct) of the family {Xγ | γ ∈
Γ}. Since Λt is a duality (by Theorem 2.2.2.12), the source

P = {Λt(iγ) : Λt(X) −→ Λt(Xγ) | γ ∈ Γ}

is a DHLC-product of the family {Λt(Xγ) | γ ∈ Γ}. Then, clearly, the source

Q = {(λgAγ
)−1 ⋄ Λt(iγ) : Λt(X) −→ (Aγ, ρg,Bγ) | γ ∈ Γ}

is a DHLC-product of the family {(Aγ, ργ,Bγ) | γ ∈ Γ}. Set, for each γ ∈ Γ,

αγ = (λgAγ
)−1 ⋄ Λt(iγ).

We will show that there exists aDHLC-isomorphism α : Λt(X) −→ (A, ρ,B) such that,

for any γ ∈ Γ, πγ⋄α = αγ. Obviously, this will imply that the source {πγ : (A, ρ,B) −→
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(Aγ, ργ,Bγ) | γ ∈ Γ} is a DHLC-product of the family {(Aγ, ργ,Bγ) | γ ∈ Γ}. Set, for
every F ∈ RC(X) and any γ ∈ Γ, Fγ = F ∩Xγ. Then Fγ ∈ RC(Xγ) for every γ ∈ Γ.

Define the map

α : RC(X) −→ A

by α(F ) = ((λgAγ
)−1(Fγ))γ∈Γ, for every F ∈ RC(X). Since Λt(X) = RC(X) and

Λt(Xγ) = RC(Xγ), it is easy to see that the map α is a DHLC-isomorphism between

Λt(X) and (A, ρ,B). Further, for any γ ∈ Γ and any F ∈ RC(X), Λt(iγ)(F ) =

clXγ (i
−1
γ (intX(F ))) (see Theorem 2.2.2.12). We get that Λt(iγ)(F ) = Fγ which implies

easily that πγ ◦ α = αγ, for every γ ∈ Γ. Thus, by (DLC5), πγ ⋄ α = αγ, for every

γ ∈ Γ.

2.3.3 A description of DHLC-sums of CLCAs and DHC-sums
of CNCAs

In this subsection we will describe the DHLC-sums of finite families of complete local

contact algebras and the DHC-sums of arbitrarily many complete normal contact

algebras using the notion of a sum of a family of Boolean algebras (see [65]) which is

known also as a free product (see [77]). (We will denote the sum of a family {Aγ | γ ∈ Γ}
of Boolean algebras by ⊕

γ∈Γ

Aγ

(as in [77]).) Note that the sums (resp., finite sums) in the category DHC (resp.,

DHLC) surely exist because the dual category HC (resp., HLC) of all compact (resp.,

locally compact) Hausdorff spaces and continuous maps has products (resp., finite

products).

Let us recall the definition of the notion of a sum of a family (Ai)i∈I of Boolean

algebras (see, e.g. [77]): a pair

(A, (ei)i∈I)

is a sum of (Ai)i∈I if A is a Boolean algebra, each ei is a homomorphism from Ai into

A and, for every family (fi)i∈I of homomorphisms from Ai into any Boolean algebra B,

there is a unique homomorphism f : A −→ B such that f ◦ei = fi for i ∈ I. (Hence, the

sum of a family of Boolean algebras is, in fact, the BoolAlg-coproduct of this family.)

It is well known that every family of Boolean algebras has, up to isomorphism, a unique

sum. Recall, as well, that a family (Bi)i∈I of subalgebras of a Boolean algebra A is
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independent if, for arbitrary n ∈ N+, pairwise distinct i(1), . . . , i(n) ∈ I and non-zero

elements bi(k) of Bi(k), for k = 1, . . . , n,

bi(1) ∧ . . . ∧ bi(n) > 0

holds in A. The following characterization of the sums is well-known (see, e.g., [77,

Proposition 11.4]):

Proposition 2.3.3.1. Let A be a Boolean algebra and, for i ∈ I,

ei : Ai −→ A

a homomorphism; assume that no Ai is trivial. The pair

(A, (ei)i∈I)

is a sum of (Ai)i∈I iff each of (a) through (c) holds:

(a) each ei : Ai −→ A is an injection,

(b) (ei(Ai))i∈I is an independent family of subalgebras of A,

(c) A is generated by
∪
i∈I ei(Ai).

Moreover, if (A, (ei)i∈I) is a sum of (Ai)i∈I then

(d) ei(Ai) ∩ ej(Aj) = {0, 1}, for i ̸= j.

We start with a proposition which should be known, although I was not able

to find it in the literature. Recall that a topological space X is called semiregular if

RO(X) is a base of X. By a completion of a Boolean algebra A, we will understand

the MacNeille completion of A (i.e., the minimal completion of A) (recall that a pair

(φ,A′) is a minimal completion of A if A′ is a complete Boolean algebra, φ : A −→ A′

is a monomorphism and φ(A) is a dense subalgebra of A′).

Proposition 2.3.3.2. Let {Xγ | γ ∈ Γ} be a family of semiregular topological spaces

and X =
∏
{Xγ | γ ∈ Γ}. Then the Boolean algebra RC(X) is isomorphic to the

completion of
⊕

γ∈ΓRC(Xγ).

Proof. Let, for every γ ∈ Γ,

πγ : X −→ Xγ

be the projection. Using the fact that πγ is an open map (and, thus, the formulae

cl(π−1
γ (M)) = π−1

γ (cl(M)) and int(π−1
γ (M)) = π−1

γ (int(M)) hold for every M ⊆ Xγ)

(see, e.g., [53]), it is easy to show, that the map

φγ : RC(Xγ) −→ RC(X), F 7→ π−1
γ (F ),
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is a complete monomorphism for every γ ∈ Γ. Set

Aγ = φγ(RC(Xγ)),

for every γ ∈ Γ, and let A be the subalgebra of RC(X) generated by
∪
{Aγ | γ ∈ Γ}.

It is easy to check that, for every finite non-empty subset Γ0 of Γ, we have that if

aγ ∈ Aγ \ {0} for every γ ∈ Γ0, then
∧
{aγ | γ ∈ Γ0} ̸= 0 (i.e., the family {Aγ | γ ∈ Γ}

is an independent family). Thus, by 2.3.3.1, we get that

A =
⊕
γ∈Γ

RC(Xγ).

Since RO(Xγ) is a base of Xγ, for every γ ∈ Γ, we obtain that A is a dense subalgebra

of RC(X). Thus, RC(X) is the completion of A.

The proof of this proposition shows that the following is even true:

Corollary 2.3.3.3. Let {Xγ | γ ∈ Γ} be a family of semiregular topological spaces and

X =
∏
{Xγ | γ ∈ Γ}. Let, for every γ ∈ Γ, Bγ be a subalgebra of RC(Xγ) such that

{int(F ) | F ∈ Bγ} is a base of Xγ. Then the Boolean algebra RC(X) is isomorphic to

the completion of
⊕

γ∈ΓBγ.

Definition 2.3.3.4. Let n ∈ N+ and let, for every i = 1, . . . , n, (Ai, ρi,Bi) be a CLCA.

Let

(A, (φi)
n
i=1) =

n⊕
i=1

Ai,

where, for every i ∈ {1, . . . , n},
φi : Ai −→ A

is the canonical complete monomorphism, and let Ã be the completion of A. We can

suppose, without loss of generality, that A ⊆ Ã. Set

E = {
n∧
i=1

φi(ai) | ai ∈ Bi}

and let B̃ be the ideal of Ã generated by E (thus,

B̃ = {x ∈ Ã | x ≤ e1 ∨ . . . ∨ en for some n ∈ N+ and some e1, . . . , en ∈ E}).

For every two elements a =
∧n
i=1 φi(ai) and b =

∧n
i=1 φi(bi) of E, set

aρ̃b⇔ (aiρibi,∀i ∈ {1, . . . , n}).

102



Further, for every two elements c and d of B̃, set

c(−ρ̃)d⇔ (∃k, l ∈ N+ and ∃c1, . . . , ck, d1, . . . , dl ∈ E such that

c ≤
k∨
i=1

ci, d ≤
l∨

j=1

dj and ci(−ρ̃)dj, ∀i = 1, . . . , k and ∀j = 1, . . . , l).

Finally, for every two elements a and b of Ã, set

aρ̃b⇔ (∃c, d ∈ B̃ such that c ≤ a, d ≤ b and cρ̃d).

Then the triple (Ã, ρ̃, B̃) will be denoted by
⊕n

i=1(Ai, ρi,Bi).

Theorem 2.3.3.5. Let n ∈ N+ and {(Ai, ρi,Bi) | i = 1, . . . , n} be a family of CLCAs.

Then
⊕n

i=1(Ai, ρi,Bi) is a DHLC-sum of the family {(Ai, ρi,Bi) | i = 1, . . . , n}.

Proof. As the Duality Theorem 2.2.2.12 shows, for every i ∈ {1, . . . , n} there exists

a Xi ∈ |HLC| such that the CLCAs (RC(Xi), ρXi
, CR(Xi)) and (Ai, ρi,Bi) are LCA-

isomorphic. Let

X =
n∏
i=1

Xi.

Then we have, in the notation of Definition 2.3.3.4, that the Boolean algebras RC(X)

and Ã are isomorphic (see Proposition 2.3.3.2). Also, again in the notation of Definition

2.3.3.4, (A, (φi)
n
i=1) is isomorphic to (

⊕n
i=1RC(Xi), (ψi)

n
i=1), where

ψi : RC(Xi) −→ RC(X), F 7→ π−1
i (F ),

and

πi : X −→ Xi

is the projection, for every i ∈ {1, . . . , n} (this follows from Proposition 2.3.3.1). Thus,

the set E from Definition 2.3.3.4 corresponds to the following set:

E ′ = {
n∧
i=1

ψi(Fi) | Fi ∈ CR(Xi)}.

Let F ∈ E ′. Then there exist Fi ∈ CR(Xi), for i = 1, . . . , n, such that F =
∧n
i=1 ψi(Fi).

Set

Ui = intXi
(Fi), for i = 1, . . . , n.

Then

F =
∧n
i=1 π

−1
i (Fi) = clX(

∩n
i=1 intX(π

−1
i (Fi))) = clX(

∩n
i=1 π

−1
i (Ui)) = cl(

∏n
i=1 Ui) =
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∏n
i=1 Fi (note that we used [53, 1.4.C,2.3.3] here). Hence, for every F,G ∈ E ′, where

F =
∏n

i=1 Fi and G =
∏n

i=1Gi, we have that

FρXG⇔ F ∩G ̸= ∅ ⇔ (Fi ∩Gi ̸= ∅,∀i = 1, . . . , n) ⇔ (FiρXi
Gi,∀i = 1, . . . , n).

Further, since {
∏n

i=1 Ui | Ui ∈ RO(Xi),∀i = 1, . . . , n} is a base of X and X is regular,

we obtain that CR(X) coincides with the ideal of RC(X) generated by E ′. The

fact that every two disjoint compact subsets of X can be separated by open sets

implies that if F,G ∈ CR(X) then F (−ρX)G (i.e., F ∩G = ∅) iff there exists finitely

many elements F1, . . . , Fk, G1, . . . , Gl ∈ E ′ such that F ⊆
∪k
i=1 Fi, G ⊆

∪l
i=1Gi and

Fi ∩ Gj = ∅ (i.e., Fi(−ρX)Gj) for all i = 1, . . . , k and all j = 1, . . . , l. Finally,

since (RC(X), ρX , CR(X)) is an LCA (see 1.2.3.8), we have (by (BC2)) that for any

F ′, G′ ∈ RC(X), F ′ρXG
′ ⇔ ∃F,G ∈ CR(X) such that F ⊆ F ′, G ⊆ G′ and FρXG.

All this shows that the triple (Ã, ρ̃, B̃) from 2.3.3.4 is an LCA which is LCA-isomorphic

to (RC(X), ρX , CR(X)). Now, using Theorem 2.2.2.12 and the facts that Ψt(X) =

(RC(X), ρX , CR(X)), Ψt(Xi) = (RC(Xi), ρXi
, CR(Xi)) for all i = 1, . . . , n, and X is

a HLC-product of the family {Xi | i = 1, . . . , n}, we get that (RC(X), ρX , CR(X)) is

a DHLC-sum of the family {(RC(Xi), ρXi
, CR(Xi)) | i = 1, . . . , n}. Thus (Ã, ρ̃, B̃) is

a DHLC-sum of the family {(Ai, ρi,Bi) | i = 1, . . . , n}.

Definition 2.3.3.6. Let J be a set and let, for every j ∈ J , (Aj, ρj) be a CNCA. Let

(A, (φj)j∈J) =
⊕
j∈J

Aj,

where, for every j ∈ J ,

φj : Aj −→ A

is the canonical complete monomorphism, and let Ã be the completion of A. We can

suppose, without loss of generality, that A ⊆ Ã. Set

E = {
∧
i∈I

φi(ai) | I ⊆ J, |I| < ℵ0, ai ∈ Ai,∀i ∈ I}.

For every two elements a =
∧
i∈I1 φi(ai) and b =

∧
i∈I2 φi(bi) of E, set

aρ̃b⇔ (aiρibi,∀i ∈ I1 ∩ I2).

Further, for every two elements c and d of Ã, set

c(−ρ̃)d⇔ (∃k, l ∈ N+ and ∃c1, . . . , ck, d1, . . . , dl ∈ E such that
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c ≤
k∨
i=1

ci, d ≤
l∨

j=1

dj and ci(−ρ̃)dj, ∀i = 1, . . . , k and ∀j = 1, . . . , l).

Then the pair (Ã, ρ̃) will be denoted by
⊕

j∈J(Aj, ρj).

Theorem 2.3.3.7. Let {(Aj, ρj) | j ∈ J} be a family of CNCAs. Then
⊕

j∈J(Aj, ρj)

is a DHC-sum of the family {(Aj, ρj) | j ∈ J}.

Proof. The proof is similar to that one of Theorem 2.3.3.5. In it de Vries’ Duality

Theorem 2.2.2.6 instead of Theorem 2.2.2.12 has to be used.

2.3.4 A completion theory for LC-algebras

In this section we will use the technique developed in the first section of this chapter for

the proof of Theorem 2.2.2.12 in order to obtain a completion theory for LC-algebras,

where both the existence and the uniqueness of the LCA-completion are proved.

Definition 2.3.4.1. Let (A, ρ,B) be an LCA and B be a subset of B. Then B is called

a dV-dense subset of (A, ρ,B) if for each a, c ∈ B such that a ≪ρ c there exists b ∈ B

with a ≤ b ≤ c.

Fact 2.3.4.2. If (A, ρ,B) is an LCA and B is a subset of B then B is a dV-dense subset

of (A, ρ,B) iff for each a, c ∈ B such that a≪ρ c there exists b ∈ B with a≪ρ b≪ρ c.

Proof. (⇒) Let a, c ∈ B and a ≪ρ c. Then, by (BC1), there exists d, e ∈ B with

a ≪ρ d ≪ρ e ≪ρ c. Now, there exists b ∈ B such that d ≤ b ≤ e. Therefore

a≪ρ b≪ρ c.

(⇐) This is clear.

Definition 2.3.4.3. Let (A, ρ,B) be an LCA. A pair (φ, (A′, ρ′,B′)) is called an LCA-

completion of the LCA (A, ρ,B) if (A′, ρ′,B′) is a CLCA, φ is an LCA-embedding of

(A, ρ,B) into (A′, ρ′,B′), and φ(B) is a dV-dense subset of (A′, ρ′,B′).

Two LCA-completions (φ, (A′, ρ′,B′)) and (ψ, (A′′, ρ′′,B′′)) of a local contact al-

gebra (A, ρ,B) are said to be equivalent if there exists an LCA-isomorphism

η : (A′, ρ′,B′) −→ (A′′, ρ′′,B′′)

such that ψ = η ◦ φ.
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Note that condition (BC3) implies that every dV-dense subset of an LCA (A, ρ,B)
is a dense subset of A. Hence, if (φ, (A′, ρ′,B′)) is an LCA-completion of the LCA

(A, ρ,B) then (φ,A′) is a minimal completion of the Boolean algebra A.

Let us start with a simple lemma.

Lemma 2.3.4.4. Let (φ, (B, η,B′)) be an LCA-completion of an LCA (A, ρ,B) and let

us suppose, for simplicity, that A ⊆ B and φ(a) = a for every a ∈ A. Then:

(a) B′ =↓B (B) and B′ ∩ A = B;

(b) If J is a δ-ideal of (B, η,B′) then J ∩A is a δ-ideal of (A, ρ,B) and ↓B (J ∩A) = J ;

(c) If J is a δ-ideal of (A, ρ,B) then ↓B (J) is a δ-ideal of (B, η,B′) and also A∩ ↓B
(J) = J ;

(d) If J is a prime element of I(B, η,B′) then J ∩ A is a prime element of the frame

I(A, ρ,B);
(e) If J is a prime element of I(A, ρ,B) then ↓B (J) is a prime element of (B, η,B′).

Proof. (a) Let b ∈ B′. Then, by condition (BC1), there exists c ∈ B′ such that b≪η c

(because b ≪η 1). Since B is a dV-dense subset of (B, η,B′), there exists a ∈ B such

that b ≤ a ≤ c. Hence B′ ⊆↓B (B). Since B ⊆ B′ and B′ is an ideal of B, we get that

↓B (B) ⊆ B′. Hence, B′ =↓B (B).
Obviously, B ⊆ B′ ∩A. If a ∈ B′ ∩A then, as above, there exists b ∈ B such that

a ≤ b. Thus a ∈ B. Hence B′ ∩ A = B.

(b) We have that J ∩ A ⊆ B′ ∩ A = B. Let a ∈ J ∩ A. Then there exists b ∈ J such

that a ≪η b. Since B is a dV-dense subset of (B, η,B′), we get that there exists c ∈ B
such that a ≪η c ≪η b (see Fact 2.3.4.2). Then c ∈ J ∩ A and a ≪ρ c. So, J ∩ A

is a δ-ideal of (A, ρ,B). The last argument shows as well that J ⊆↓B (J ∩ A). Since,

clearly, ↓B (J ∩ A) ⊆ J , we get that ↓B (J ∩ A) = J .

(c) Let J be a δ-ideal of (A, ρ,B). Set J ′ =↓B (J). Clearly, J ′ is an ideal of B. Let

a ∈ J ′. Then there exists b, c ∈ J such that a ≤ b≪ρ c. Thus a≪η c and c ∈ J ′. Hence

J ′ is a δ-ideal of (B, η,B′). Obviously, J ⊆ A∩ ↓B (J). Conversely, let a ∈ A∩ ↓B (J).

Then there exists b ∈ J such that a ≤ b. Thus a ∈ J . So, A∩ ↓B (J) = J .

(d) Let J be a prime element of I(B, η,B′). Then, by (b), J ∩ A ∈ I(A, ρ,B). Let

J1, J2 ∈ I(A, ρ,B) and J1 ∩ J2 ⊆ J ∩ A. Then ↓B (J1)∩ ↓B (J2) = ↓B (J1 ∩ J2) ⊆↓B
(J∩A). Since, by (c), ↓B (Ji) ∈ I(B, η,B′), for i = 1, 2, and, by (b), ↓B (J∩A) = J , we

get that ↓B (J1) ⊆ J or ↓B (J2) ⊆ J . Then A∩ ↓B (J1) ⊆ A∩J or A∩ ↓B (J2) ⊆ A∩J .
Thus, by (c), J1 ⊆ J ∩A or J2 ⊆ J ∩A. Hence, J ∩A is a prime element of I(A, ρ,B).
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(e) Let J be a prime element of I(A, ρ,B). Let J1, J2 ∈ I(B, η,B′) and J1∩J2 ⊆↓B (J).

Then, by (c), A∩ J1 ∩ J2 ⊆ A∩ ↓B (J) = J . Hence, by (b), A∩ J1 ⊆ J or A∩ J2 ⊆ J .

Thus, by (b), J1 ⊆↓B (J) or J2 ⊆↓B (J). Therefore, ↓B (J) is a prime element of

I(B, η,B′).

Theorem 2.3.4.5. Every local contact algebra (A, ρ,B) has a unique (up to equiva-

lence) LCA-completion.

Proof. Let (A, ρ,B) be an LCA. Then, by Roeper’s Theorem 1.2.3.10, there exists a

locally compact Hausdorff space X and a dense LCA-embedding

λgA : (A, ρ,B) −→ (RC(X), ρX , CR(X))

such that {int(λgA(a)) | a ∈ B} is a base of X. Since B is closed under finite joins, we

get easily (using the compactness of the elements of CR(X)) that λgA(B) is a dV-dense

subset of the CLCA (RC(X), ρX , CR(X)). Hence the pair

(λgA, (RC(X), ρX , CR(X)))

is an LCA-completion of the LCA (A, ρ,B).
We will now prove the uniqueness (up to equivalence) of the LCA-completion.

Let (φ, (B, η,B′)) be an LCA-completion of the LCA (A, ρ,B). Then, as we have

already mentioned, (φ,B) is a minimal completion of A, i.e., the Boolean algebra B is

determined uniquely (up to isomorphism) by the Boolean algebra A. We can suppose

without loss of generality that A ⊆ B and φ(a) = a, for every a ∈ A. Thus A is a

Boolean subalgebra of B.

As we have already shown (see Lemma 2.3.4.4(a)), B′ =↓B (B), i.e., the set B′ is

uniquely determined by the set B.
We have that η|A = ρ. We will show that the relation η on B is uniquely deter-

mined by the relation ρ on A. There are two cases.

Case 1. Let a1 ∈ B′ and b1 ∈ B. We will prove that a1 ≪η b1 iff there exist a, b ∈ B
such that a1 ≤ a≪ρ b ≤ b1. By (BC1), it is enough to prove this for b1 ∈ B′.

So, let a1, b1 ∈ B′ and a1 ≪η b1. Then, using dV-density of B in (B, η,B′) and

Fact 2.3.4.2, we get that there exist a, b ∈ B such that a1 ≤ a≪η b ≤ b1. Then a≪ρ b.

The converse assertion is clear because, for every a, b ∈ A, a≪ρ b iff a≪η b.

Case 2. Let a1 ∈ B \ B′ and b1 ∈ B. We will prove that a1 ≪η b1 iff (for every prime

element J of I(A, ρ,B)) [(there exists a ∈↓B (B)\ ↓B (J) such that a≪η a
∗
1) or (there
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exists b ∈↓B (B)\ ↓B (J) such that b ≪η b1)]. Note that the inequalities a ≪η a
∗
1

and b ≪η b1 from the above formula are already expressed in Case 1 in a form which

depends only of (A, ρ,B) (because a, b ∈ B′). Hence, Case 1 and Case 2 will imply that

the relation η on B is uniquely determined by the relation ρ on A.

So, let a1 ∈ B \ B′ and b1 ∈ B. Then using Proposition 2.2.3.5, Proposition

2.2.3.7 and Lemma 2.3.4.4, we get that a1 ≪η b1 iff a1(−η)b∗1 iff [(for every σ ∈
Λa(B, η,B′))({a1, b∗1} ̸⊆ σ)] iff (for every prime element J ′ of I(B, η,B′))[(there exists

a ∈ B′ \ J ′ such that a(−η)a1) or (there exists b ∈ B′ \ J ′ such that b(−η)b∗1)] iff
(for every prime element J of I(A, ρ,B)) [(there exists a ∈↓B (B)\ ↓B (J) such that

a≪η a
∗
1) or (there exists b ∈ ↓B (B)\ ↓B (J) such that b≪η b1)].

Let now (φ1, (A1, ρ1,B1)) and (φ2, (A2, ρ2,B2)) be two LCA-completions of an

LCA (A, ρ,B). Then, since (φi, Ai), for i = 1, 2, are minimal completions of A, there

exists a Boolean isomorphism φ : A1 −→ A2 such that φ ◦ φ1 = φ2. The preceding

considerations imply that Bi =↓Ai
(φi(B)), for i = 1, 2. From this we easily get that

φ(B1) = B2. Further, for ai ∈ Bi, bi ∈ Ai, i = 1, 2, we have that ai ≪ρi bi iff there

exists a′i, b
′
i ∈ B such that a′i ≪ρ b

′
i, ai ≤ φi(a

′
i) and φi(b

′
i) ≤ bi, for i = 1, 2. Finally,

for ai ∈ Ai \ Bi, bi ∈ Ai, i = 1, 2, we have that ai ≪ρi bi iff (for every prime element J

of I(A, ρ,B)) [(there exists a′i ∈ Bi\ ↓Ai
(φi(J)) such that a′i ≪ρi a

∗
i ) or (there exists

b′i ∈ Bi\ ↓Ai
(φi(J)) such that b′i ≪ρi bi)]. Having in mind these formulas, it is easy to

conclude that φ is an LCA-isomorphism. Hence the LCA-completions (φ1, (A1, ρ1,B1))

and (φ2, (A2, ρ2,B2)) of (A, ρ,B) are equivalent.

Corollary 2.3.4.6. Let (A, ρ,B) be a local contact algebra and (B, η,B′) be a CLCA.

Then Λa(A, ρ,B) is homeomorphic to Λa(B, η,B′) if and only if there exists an LCA-

embedding φ : (A, ρ,B) −→ (B, η,B′) such that φ(B) is a dV-dense subset of (B, η,B′).

Proof. (⇒) In the proof of Theorem 2.3.4.5, we have seen that the set λgA(B) is dV-

dense in Λt(Λa(A, ρ,B)). Since Λt(Λa(A, ρ,B)) is LCA-isomorphic to Λt(Λa(B, η,B′))

and (B, η,B′) ∼= Λt(Λa(B, η,B′)), we get that there exists an LCA-embedding φ :

(A, ρ,B) −→ (B, η,B′) such that φ(B) is a dV-dense subset of (B, η,B′).

(⇐) By the proof of Theorem 2.3.4.5, (λgA,Λ
t(Λa(A, ρ,B))) is an LCA-completion of

(A, ρ,B). Since the hypothesis of our assertion imply that the pair (φ, (B, η,B′)) is also

an LCA-completion of (A, ρ,B), we get, by Theorem 2.3.4.5, that the CLC-algebras

Λt(Λa(A, ρ,B)) and (B, η,B′) are LCA-isomorphic. Then

Λa(B, η,B′) ∼= Λa(Λt(Λa(A, ρ,B))) ∼= Λa(A, ρ,B).
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Corollary 2.3.4.7. Let (A, ρ,B) and (A′, ρ′,B′) be local contact algebras. Then the

space Λa(A, ρ,B) is homeomorphic to the space Λa(A′, ρ′,B′) iff there exists a CLCA

(B, η,B′′) and LCA-embeddings φ : (A, ρ,B) −→ (B, η,B′′) and φ′ : (A′, ρ′,B′) −→
(B, η,B′′) such that the sets φ(B) and φ′(B′) are dV-dense in (B, η,B′′).

Proof. (⇒) Set (B, η,B′′) = Λt(Λa(A, ρ,B)). Then, by the hypothesis of our assertion,

there exists an LCA-isomorphism ψ : Λt(Λa(A′, ρ′,B′)) −→ (B, η,B′′). Now, it is clear

that the maps λgA and ψ ◦ λgA′ are the required LCA-embeddings.

(⇐) By Corollary 2.3.4.6, we have that

Λa(A, ρ,B) ∼= Λa(B, η,B′′) ∼= Λa(A′, ρ′,B′).

2.4 An extension of de Vries’ Duality to the cate-

gory of locally compact Hausdorff spaces and

perfect maps

2.4.1 Introduction

In this section, a category DPHLC dually equivalent to the category PHLC of all

locally compact Hausdorff spaces and all perfect maps between them will be defined.

In this way, we will obtain one more generalization of the Duality Theorem of H. de

Vries [24].

The structure of the section is the following. In the second subsection, we prove

our Duality Theorem for the category PHLC using Theorem 2.2.2.12. In the third

subsection, we present a proof of this duality theorem based on the de Vries Duality

Theorem only (i.e., in this new proof we will not use Theorem 2.2.2.12). This new proof

is used further for obtaining some new assertions. In the last forth subsection, we derive

some corollaries from the Duality Theorem proved in the previous two subsections and

from some theorems of de Vries’ connected with his Duality Theorem; we discuss the

axioms of the category DPHLC (and of the category DHLC) and its categorical

properties as well.

The results of this section are based on the papers [27] and [31].
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2.4.2 The Duality Theorem for the category PHLC as a corol-
lary of Theorem 2.2.2.12

Definition 2.4.2.1. Let D1PHLC be the cofull subcategory of the category DHLC

whose morphisms are all DHLC-morphisms φ : (A, ρ,B) −→ (B, η,B′) satisfying the

following condition:

(PAL5) If a ∈ B then φ(a) ∈ B′.

It is obvious that the identity morphisms in the categoryDHLC satisfy condition

(PAL5) and the composition of two DHLC-morphisms satisfying condition (PAL5)

satisfies condition (PAL5) as well (use Lemma 2.2.2.9(g)). So, D1PHLC is indeed a

subcategory of the category DHLC.

We will now show, using our Theorem 2.2.2.12, that the categories D1PHLC

and PHLC are dually equivalent.

Theorem 2.4.2.2. The categories PHLC and D1PHLC are dually equivalent.

Proof. We will show that the restriction Λap of the duality functor Λa : DHLC −→
HLC, constructed in Theorem 2.2.2.12, to the subcategory D1PHLC of the category

DHLC is the desired duality functor between the categories D1PHLC and PHLC.

Let f ∈ PHLC(X,Y ). Then, by Theorem 2.2.2.12, φf = Λt(f) is a DHLC-

morphism between the LCAs (RC(Y ), ρY , CR(Y )) and (RC(X), ρX , CR(X)). We will

show that φf is a D1PHLC-morphism, i.e., that φf satisfies, in addition, condition

(PAL5). So, let G ∈ CR(Y ). Then φf (G) = clX(f
−1(int(G))) (see Theorem 2.2.2.12),

and hence φf (G) ⊆ f−1(G). Since f is a perfect map, f−1(G) is a compact subset of

X. Thus φf (G) ∈ CR(X). Therefore, condition (PAL5) is fulfilled.

Let now φ ∈ D1PHLC((A, ρ,B), (B, η,B′)) and fφ = Λa(φ) (see Theorem

2.2.2.12). Let X = Λa(A, ρ,B) and Y = Λa(B, η,B′). Then, by Theorem 2.2.2.12,

fφ : Y −→ X is a continuous map. We will show that fφ is a perfect map. Let us

first prove that for every a ∈ B, f−1
φ (λgA(a)) is a compact subset of Y . Indeed, let

a ∈ B. Then, by condition (BC1), there exists b ∈ B such that a ≪ρ b. We will show

that f−1
φ (λgA(a)) ⊆ λgB(φ(b)). So, let σ′ ∈ f−1

φ (λgA(a)). Then fφ(σ
′) ∈ λgA(a). Hence

a ∈ B∩fφ(σ′). This implies, by Theorem 2.2.2.12, that φ(b) ∈ σ′. Thus σ′ ∈ λgB(φ(b)).

Since, by (PAL5), φ(b) ∈ B′, we have that λgB(φ(b)) is compact. Hence f−1
φ (λgA(a))

is compact. So, for every a ∈ B, f−1
φ (λgA(a)) is a compact subset of Y . Now, using

the fact that the family {int(λgA(a)) | a ∈ B} is an open base of X, we conclude that

f−1
φ (K) is compact for every compact subset K of X. Then the local compactness of X
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implies that fφ is a perfect map (see [53, Theorem 3.7.18]). Therefore, we have proved

that fφ ∈ PHLC(Y,X).

The rest follows from Theorem 2.2.2.12.

Definition 2.4.2.3. Let DPHLC be the category whose objects are all complete LC-

algebras and whose morphisms are all functions φ : (A, ρ,B) −→ (B, η,B′) between the

objects of DPHLC satisfying the axioms (DLC1)-(DLC4), (PAL5) and the following

condition:

(PAL6) φ(a) =
∨
{φ(b) | b≪Cρ a}, for every a ∈ A;

let the composition “∗” of two morphisms φ1 : (A1, ρ1,B1) −→ (A2, ρ2,B2) and φ2 :

(A2, ρ2,B2) −→ (A3, ρ3,B3) of DPHLC be defined by the formula

φ2 ∗ φ1 = (φ2 ◦ φ1)̃ ,(2.14)

where, for every function ψ : (A, ρ,B) −→ (B, η,B′) between two objects of DPHLC,

ψ˜ : (A, ρ,B) −→ (B, η,B′)

is defined as follows:

ψ (̃a) =
∨

{ψ(b) | b≪Cρ a},(2.15)

for every a ∈ A.

By DVHC we denote the full subcategory of DPHLC having as objects all

CNC-algebras (i.e., those complete LC-algebras (A, ρ,B) for which B = A).

Remark 2.4.2.4. Note that the categories DHC and DVHC are isomorphic (it can

be even said that they are identical) because the axiom (PAL5) is trivially fulfilled in

the category DHC (indeed, all elements of its objects are bounded), the axiom (DLC4)

follows immediately from the obvious fact that φ(1) = 1 for every DHC-morphism φ

(see Lemma 2.2.2.9(c)), and the compositions are the same.

The fact that DPHLC is indeed a category will be proved now. We will show

that DPHLC is, in fact, the category D1PHLC and, thus, DPHLC is a category.

Using Lemma 2.2.3.22, we obtain immediately the following assertion:

Fact 2.4.2.5. The system of axioms (DLC2), (DLC4), (PAL6) is equivalent to the

system of axioms (DLC2), (DLC4), (DLC5).
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Also, the following fact holds:

Fact 2.4.2.6. The compositions in DPHLC and D1PHLC coincide.

Proof. Let φ1, φ2 be DPHLC-morphisms. We have to show that φ2 ∗ φ1 = φ2 ⋄ φ1.

Set ψ = φ2 ◦φ1. Then one obtains immediately that ψ satisfies conditions (DLC2) and

(DLC4). Now we can apply Lemma 2.2.3.22.

All this proves the following assertion:

Proposition 2.4.2.7. The categories D1PHLC and DPHLC coincide.

Thus we get the following result:

Theorem 2.4.2.8. The categories PHLC and DPHLC are dually equivalent.

Proof. It follows from Theorem 2.4.2.2 and Proposition 2.4.2.7.

So, we obtained Theorem 2.4.2.8 as a corollary of Theorem 2.2.2.12.

Theorem 2.4.2.8 implies that the category HC of all compact Hausdorff spaces

and continuous maps and the category DVHC are dually equivalent (just take the

restriction of the duality functor Λt to the subcategory HC). Now, using Remark

2.4.2.4, we get that the categories HC and DHC are dually equivalent. Obviously, de

Vries’ duality functor Φt coincides with the restriction of the duality functor Λt to the

subcategory HC. Therefore, Theorem 2.4.2.8 is a generalization of de Vries’ Duality

Theorem.

2.4.3 A direct proof of the Duality Theorem for the category
PHLC

In this subsection, we will present a new proof of Theorem 2.4.2.8 based on the de Vries

Duality Theorem only. We will later use this new proof for obtaining another results.

Proposition 2.4.3.1. Let X be a locally compact Hausdorff space. Then the NCAs

(RC(X), CρX ) and (RC(αX), ραX) are CA-isomorphic (see 1.2.3.4 and 1.2.3.8 for the

notation) and the maps eX,αX , rX,αX are CA-isomorphisms between them (see 0.4.2.2

for the notation).

Proof. Obviously, we can suppose that X ⊆ αX. By 0.4.2.2, we have only to show

that ACρXB iff clαX(A)ραXclαX(B), for every A,B ∈ RC(X). This follows easily from

the respective definitions. Hence, the map eX,αX : (RC(X), CρX ) −→ (RC(αX, ραX)

is a CA-isomorphism. Thus the map rX,αX is also a CA-isomorphism.
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Lemma 2.4.3.2. Let φ : (A, ρ,B) −→ (B, η,B′) be a function between two CLCAs.

Let φ satisfy conditions (DLC3) and (PAL5). Then, for every a, b ∈ A, a ≪Cρ b

implies that (φ(a∗))∗ ≪Cη φ(b). Hence, if, in addition, φ satisfies conditions (DLC1)

and (DLC2), then φ(a) ≪Cη φ(b).

Proof. Let a, b ∈ A and a≪Cρ b. Then a≪ρ b and at least one of the elements a and

b∗ is bounded.

Let a ∈ B. Then (DLC3) implies that (φ(a∗))∗ ≪η φ(b). By (BC1), there exists

c ∈ B such that a ≪ρ c. Hence, using again (DLC3), we get that (φ(a∗))∗ ≪η φ(c).

Since φ(c) ∈ B′ (according to (PAL5)), we obtain that (φ(a∗))∗ ∈ B′. Therefore,

(φ(a∗))∗ ≪Cη φ(b).

Let now b∗ ∈ B. Since b∗ ≪Cρ a
∗, we get, by the previous case, that (φ(b))∗ ≪Cη

φ(a∗). Thus (φ(a∗))∗ ≪Cη φ(b).

If, in addition, φ satisfies conditions (DLC1) and (DLC2), then Lemma 2.2.2.9(b)

and the just obtained result imply the last assertion of our lemma.

2.4.3.3 (A new proof of Theorem 2.4.2.8.). In the proof of Roeper’s Theorem 1.2.3.10,

two correspondences Ψt : |PHLC| −→ |DPHLC| and Ψa : |DPHLC| −→ |PHLC|
between the objects of the categories PHLC and DPHLC were defined (see (1.20)

for Ψt and (1.21), (1.24) for Ψa). We will extend them to the morphisms of these

categories, constructing in this way two contravariant functors (having, for simplicity,

the same names)

Ψa : DPHLC −→ PHLC and Ψt : PHLC −→ DPHLC.

I. The definition of Ψt.

Let f : (X, τ) −→ (Y, τ ′) ∈ PHLC(X,Y ). We set

Ψt(f) : Ψt(Y, τ ′) −→ Ψt(X, τ), Ψt(f)(F ) = clX(f
−1(intY (F ))).(2.16)

Put, for the sake of brevity, φf = Ψt(f). We have to show that φf is a DPHLC-

morphism. Obviously, (DLC1) is fulfilled. Exactly as in the proof of Lemma 2.2.3.18,

we can verify that φf satisfies conditions (DLC2)-(DLC4). The fact that φf satisfies

condition (PAL5) can be established as in the proof of Theorem 2.4.2.2.

By 0.4.2.4, f has a continuous extension α(f) : αX −→ αY . Set φαf = Φt(α(f))

(see Theorem 2.2.2.6 for Φt). Then, by Theorem 2.2.2.6, φαf is a DHC-morphism.

We will prove that

rX,αX ◦ φαf = φf ◦ rY,αY(2.17)
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(see 0.4.2.2 and 2.4.3.1 for the notation), i.e., that, for every G ∈ RC(Y ), the following

equality holds:

X ∩ φαf (clαY (G)) = φf (G),(2.18)

or, in other words, that

X ∩ clαX((α(f))
−1(intαY (clαY (G)))) = clX(f

−1(intY (G))).

Since the last equality follows easily from the obvious inclusions intY (G) ∪ {∞Y } ⊇
intαY (clαY (G)) ⊇ intY (G), (2.17) is proved. Therefore,

φf = rX,αX ◦ φαf ◦ eY,αY .

Now, we will verify (PAL6). Let F ∈ RC(Y ); then clαY (F ) ∈ RC(αY ) and

hence, by (DVAL4),

φαf (clαY (F )) =
∨

{φαf (clαY (G)) | G ∈ RC(Y ), clαY (G) ≪ραY
clαY (F )}.

Since rX,αX is an isomorphism, we obtain that

rX,αX(φαf (clαY (F ))) =

=
∨

{rX,αX(φαf (clαY (G))) | G ∈ RC(Y ), clαY (G) ≪ραY
clαY (F )}.

Thus, (2.17) and 2.4.3.1 imply that

φf (F ) =
∨

{φf (G) | G ∈ RC(Y ), G≪CρY
F}.

So, (PAL6) is fulfilled.

Therefore, φf is a DPHLC-morphism.

Let f ∈ PHLC(X,Y ) and g ∈ PHLC(Y, Z). We will prove that

Ψt(g ◦ f) = Ψt(f) ∗Ψt(g).

Put h = g ◦ f , φh = Ψt(h), φf = Ψt(f) and φg = Ψt(g). Set also eX = eX,αX and

rZ = rZ,αZ . Let α(f) : αX −→ αY , α(g) : αY −→ αZ and α(h) : αX −→ αZ be

the continuous extensions of f , g and h, respectively (see 0.4.2.4). Then, obviously,

α(h) = α(g) ◦ α(f). Set φαf = Φt(α(f)), φαg = Φt(α(g)) and φαh = Φt(α(h)). Then,

by Theorem 2.2.2.6,

φαh = (φαf ◦ φαg )̌ .
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Now, using (2.17) and 0.4.2.2, we get that

eX ◦ φh ◦ rZ = φαh = (eX ◦ φf ◦ φg ◦ rZ )̌ .

Thus, for every F ∈ RC(αZ), we have that

φh(rZ(F )) =
∨

{(φf ◦ φg)(rZ(G)) | G≪ραZ
F}.

Now, 0.4.2.2 and 2.4.3.1 imply that φh = (φf ◦ φg )̃ , i.e., φh = φf ∗ φg.
So, Ψt : PHLC −→ DPHLC is a contravariant functor.

II. The definition of Ψa.

Let φ ∈ DPHLC((A, ρ,B), (B, η,B′)). We define the map

Ψa(φ) : Ψa(B, η,B′) −→ Ψa(A, ρ,B)

by the formula

Ψa(φ)(σ′) = {a ∈ A | if b≪Cρ a
∗ then (φ(b))∗ ∈ σ′},(2.19)

for every bounded cluster σ′ in (B,Cη). Set, for the sake of brevity,

Ψa(φ) = fφ, X = Ψa(A, ρ,B) and Y = Ψa(B, η,B′).

We will show that

fφ : Y −→ X

is well-defined and is a perfect map.

Let φC : (A,Cρ) −→ (B,Cη) be defined by φC(a) = φ(a), for every a ∈ A. Then

φC is a DHC-morphism. Indeed, (DVAL3) follows from Lemma 2.4.3.2 and the fact

that φ satisfies the axiom (PAL5); the other three axioms are obviously fulfilled. Set

fα = Φa(φC). Then fα : αY −→ αX (see Theorem 2.2.2.6 and the proof of Theorem

1.2.3.10). The definitions of fφ and fα coincide on the bounded clusters of (B,Cη) (see

(2.19) and Theorem 2.2.2.6); hence, the right side of the formula (2.19) defines a cluster

in (A,Cρ) and fα is an extension of fφ. Thus, if we show that f−1
α (∞X) = {∞Y }, the

map fφ will be well-defined and will be a perfect map. Let us prove that fα(Y ) ⊆ X,

i.e., that if σ′ is a bounded cluster in (B,Cη) then σ = fα(σ
′) = fφ(σ

′) is a bounded

cluster in (A,Cρ). So, let σ′ be a bounded cluster in (B,Cη) and σ = fα(σ
′). Then

2.2.3.1 implies that there exists b ∈ B′ such that b∗ ̸∈ σ′. By (DLC4), there exists

a ∈ B such that b ≤ φ(a). Thus (φ(a))∗ ≤ b∗ and hence (φ(a))∗ ̸∈ σ′. By (BC1), there
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exists a1 ∈ B such that a ≪ρ a1. Then a ≪Cρ a1 and, by the definition of σ, a∗1 ̸∈ σ.

Therefore a1 ∈ B∩σ, i.e., σ is a bounded cluster in (A,Cρ). Hence fφ(Y ) = fα(Y ) ⊆ X.

Further, we have (by 1.2.3.7) that ∞X = A \ B and ∞Y = B \ B′. Let us show that

fα(∞Y ) = ∞X . Set σ
′ = ∞Y and σ = fα(σ

′). Let a ∈ σ. Suppose that a ∈ B. Then,
by (BC1), there exist a1, a2 ∈ B such that a ≪ρ a1 ≪ρ a2. Thus a ≪Cρ a1 ≪Cρ a2.

Hence a∗1 ≪Cρ a
∗. Since a ∈ σ, the definition of σ implies that (φ(a∗1))

∗ ∈ σ′. Further,

we have that a1 ≪ρ a2; thus, by (DLC3), we obtain that (φ(a∗1))
∗ ≤ φ(a2). Therefore,

φ(a2) ∈ σ′. Since φ(a2) ∈ B′ (by (PAL5)), we obtain a contradiction. Thus σ ⊆ A \B.
Now, 1.2.3.7 and 1.2.2.5 imply that σ = A\B, i.e., fα(∞Y ) = ∞X . Hence f

−1
α (X) = Y .

This shows that fφ is a perfect map (because fα is such) (see [53, Proposition 3.7.4]).

So, we have proved that fφ ∈ PHLC(Y,X).

Let φi ∈ DPHLC((Ai, ρi,Bi), (Ai+1, ρi+1,Bi+1)) and fi = Ψa(φi) for i = 1, 2,

φ = φ2 ∗ φ1, fφ = Ψa(φ) and Xi = Ψa(Ai, ρi,Bi) for i = 1, 2, 3. We will prove that

fφ = f1◦f2. Let φiC : (Ai, Cρi) −→ (Ai+1, Cρi+1
) be defined by φiC(a) = φi(a) for every

a ∈ Ai, where i = 1, 2. Then, as we know, φiC is a DHC-morphism, for i = 1, 2. Set

fiα = Φa(φiC) for i = 1, 2, ψ = φ2C ⋄ φ1C , fψ = Φa(ψ). Let φC : (A1, Cρ1) −→ (A3, Cρ3)

be defined by φC(a) = φ(a) for every a ∈ A1. From the respective definitions we obtain

that, for every a ∈ A1, ψ(a) = (φ2C ◦ φ1C )̌ (a) = (φ2 ◦ φ1)̃ (a) = φ(a). Thus, ψ = φC .

Hence fψ = Φa(φC). We know that Φa(Ai, Cρi) = αXi, for i = 1, 2, 3, and fiα is a

continuous extension of fi, for i = 1, 2. The equality “ψ = φC” implies that fψ is a

continuous extension of fφ. From Theorem 2.2.2.6 we get that fψ = f1α ◦ f2α. Since

f−1
1α (X1) = X2 and f−1

2α (X2) = X3, we conclude that fφ = f1 ◦ f2.
We have proved that Ψa : DPHLC −→ PHLC is a contravariant functor.

III. Ψa ◦Ψt is naturally isomorphic to the identity functor IdPHLC.

Recall that, for every X ∈ |PHLC|, the map tX : X −→ (Ψa ◦ Ψt)(X), where

tX(x) = σx for every x ∈ X, is a homeomorphism (see (1.32) and (1.18)). We will

show that tlp : IdPHLC −→ Ψa ◦ Ψt, where for every X ∈ |PHLC|, tlp(X) = tX , is a

natural isomorphism.

Let f ∈ PHLC(X,Y ) and f ′ = (Ψa ◦ Ψt)(f), X ′ = (Ψa ◦ Ψt)(X), Y ′ = (Ψa ◦
Ψt)(Y ). We have to prove that tY ◦ f = f ′ ◦ tX . Let α(f) : αX −→ αY and α(f ′) :

αX ′ −→ αY ′ be the continuous extensions of f and f ′, respectively (see 0.4.2.4). Then,

by Theorem 2.2.2.6, we have that tαY ◦ α(f) = α(f ′) ◦ tαX . Obviously, tαX(∞X) =

{clαX(F ) | F ∈ RC(X),∞X ∈ clαX(F )} = {clαX(F ) | F ∈ RC(X) \ CR(X)} =

σ
(RC(αX),ραX)
∞ = ∞X′ , and, analogously, tαY (∞Y ) = ∞Y ′ . Using 0.4.2.2 and taking the
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restrictions on X, we obtain that tY ◦ f = f ′ ◦ tX , i.e., IdPHLC
∼= Ψa ◦Ψt.

IV. Ψt ◦Ψa is naturally isomorphic to the identity functor IdDPHLC.

Recall that for every (A, ρ,B) ∈ |DPHLC|, the function

λgA : (A, ρ,B) −→ (Ψt ◦Ψa)(A, ρ,B)

is an LCA-isomorphism (see (1.31)). We will show that λgp : IdDPHLC −→ Ψt ◦ Ψa,

where for every (A, ρ,B) ∈ |DPHLC|, λgp(A, ρ,B) = λgA, is a natural isomorphism.

Let φ ∈ DPHLC((A, ρ,B), (B, η,B′)) and φ′ = (Ψt ◦ Ψa)(φ), X = Ψa(A, ρ,B),
Y = Ψa(B, η,B′). We have to prove that λgB ∗ φ = φ′ ∗ λgA. According to (2.14) and

(2.15), it is enough to show that λgB ◦φ = φ′ ◦λgA. Clearly, it is enough to establish this

equality on the Set-level, i.e., for the corresponding underlying maps. For simplicity,

the morphisms and their underlying maps will have, in this proof only, one and the

same names; for example, λgA will stay for the DPHLC-morphism between (A, ρ,B)
and (Ψt ◦ Ψa)(A, ρ,B), and, also, for the underlying Set-map from A to (Ψt ◦ Ψa)(A)

induced by it. Set f = Ψa(φ). Hence φ′ = Ψt(f). Let φC : (A,Cρ) −→ (B,Cη) be

defined by φC(a) = φ(a) for every a ∈ A, and let (φ′)C be defined analogously. Then

φC and (φ′)C are DHC-morphisms. Set fα = Φa(φC) and (φC)
′ = Φt(fα). We know

that fα : αY −→ αX is a continuous extension of f . By the proof of Theorem 2.2.2.6,

we have that

λB ◦ φC = (φC)
′ ◦ λA

(see (1.4) for λA and λB). Note that λA : (A,Cρ) −→ (RC(αX), ραX) and λB :

(B,Cη) −→ (RC(αY ), ραY ). We have that (φ′)C : (RC(X), CρX ) −→ (RC(Y ), CρY ) is

defined by (φ′)C(F ) = φ′(F ), for every F ∈ RC(X). Then, by (2.17),

(φ′)C ◦ rX,αX = rY,αY ◦ (φC)′.

By (1.29), we have, on the Set-level, that

rX,αX ◦ λA = λgA and rY,αY ◦ λB = λgB.

The last four equalities imply that, on the Set-level, λgB ◦ φ = rY,αY ◦ λB ◦ φC =

rY,αY ◦ (φC)′ ◦ λA = (φ′)C ◦ rX,αX ◦ λA = φ′ ◦ λgA. Therefore λgB ◦ φ = φ′ ◦ λgA. Thus

IdDPHLC
∼= Ψt ◦Ψa.
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2.4.4 Some corollaries of the Duality Theorem for the cate-
gory PHLC

Theorem 2.4.4.1. Let φ be a DPHLC-morphism. Then φ is an injection iff Ψa(φ)

is a surjection.

Proof. Let φ ∈ DPHLC((A, ρ,B), (B, η,B)) and let φC : (A,Cρ) −→ (B,Cη) be

defined by the formula φC(a) = φ(a), for every a ∈ A. Then, as we have seen in

2.4.3.3, φC is a DHC-morphism. Setting f = Ψa(φ), we obtain that α(f) = Φa(φC)

(see again 2.4.3.3). Obviously, α(f) is a surjection iff f is a surjection. By a theorem

of de Vries ([24, Theorem 1.7.1]), Φa(φC) is a surjection iff φC is an injection. Hence,

f is a surjection iff φ is an injection.

It is clear that if we want to build DPHLC as a category dually equivalent to the

category PHLC then the axiom (PAL5) is indispensable for describing the morphisms

of the category DPHLC. With the next simple example we show that the axiom

(DLC4) cannot be dropped in Definitions 2.4.2.3 and 2.2.2.7.

Example 2.4.4.2. Let (A, ρ,B) be a CLCA and B ̸= A. Then (A, ρs, A) is also a

CLCA (by 1.2.1.8). Obviously, the map i : (A, ρ,B) −→ (A, ρs, A), where i(a) = a,

for every a ∈ A, satisfies the axioms (DLC1)-(DLC3), (DLC5), (PAL5), (PAL6) but it

does not satisfy the axiom (DLC4). If we suppose that our duality theorems 2.4.2.8 and

2.2.2.12 are true without the presence of the axiom (DLC4) in the Definitions 2.4.2.3

and 2.2.2.7, then we will obtain, by Theorem 2.4.4.1, that there exists a continuous

map from a compact Hausdorff space onto a locally compact non-compact Hausdorff

space, a contradiction.

Fact 2.4.4.3. For every LCA (A, ρ,B), the triple (A, ρs,B) is also an LCA (see 1.2.1.8

for ρs); if (A, ρ,B) is a CLCA then the map i : (A, ρ,B) −→ (A, ρs,B), where i(a) = a,

for every a ∈ A, is a DPHLC-morphism.

Proof. We will first check that (A, ρs,B) is an LCA. Since a ≪ρs a, for every a ∈ A,

the axiom (BC1) of 1.2.3.1 is clearly fulfilled. Obviously, for every a, b ∈ A, a ≪ρ b

implies a ≪ρs b. This implies that the axiom (BC3) is also satisfied. For checking

(BC2), let a, b ∈ A and aρsb. Then a ∧ b ̸= 0. Since b =
∨
{c | c ∈ B, c≪ρ b}, we have

that b =
∨
{c | c ∈ B, c ∧ b∗ = 0}. Hence a ∧ b =

∨
{a ∧ c | c ∈ B, c ∧ b∗ = 0}. Thus,

there exists c ∈ B such that c ∧ b∗ = 0 and a ∧ c ̸= 0. Therefore, there exists c ∈ B
such that aρs(c ∧ b). So, (A, ρs,B) is an LCA. The rest is clear.
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Recall that a topological space X is said to be extremally disconnected if for every

open set U ⊆ X, the closure clX(U) is open in X. Clearly, a topological space X is

extremally disconnected iff RC(X) consists only of clopen sets.

Proposition 2.4.4.4. Let (A, ρ,B) be a CLCA and X = Ψa(A, ρ,B). Then X is an

extremally disconnected locally compact Hausdorff space iff ρ = ρs (see 1.2.1.8 for ρs).

Proof. Recall that, by (1.31), λgA : (A, ρ,B) −→ (RC(X), ρX , CR(X)) is an LCA-

isomorphism.

LetX be extremally disconnected. Then, by (1.31), for every a, b ∈ A, λgA(a∧b) =
λgA(a)∧λ

g
A(b) = cl(int(λgA(a)∩λ

g
A(b))) = λgA(a)∩λ

g
A(b). Hence, using once more (1.31),

we get that a ∧ b ̸= 0 iff aρb. Thus ρ = ρs (see 1.2.1.8).

Conversely, let ρ = ρs. Then, for every a ∈ A, a ≪ρ a. Since for every a, b ∈ A,

a≪ρ b iff λ
g
A(a) ⊆ intX(λ

g
A(b)), we get that for every a ∈ A, λgA(a) ⊆ intX(λ

g
A(a)), i.e.,

λgA(a) is a clopen set. Therefore, X is extremally disconnected.

Note that from 2.4.4.4, 2.4.4.3 and Theorem 2.4.4.1, we obtain immediately an

easy proof of the following well-known fact: every locally compact Hausdorff space X

is a perfect image of an extremally disconnected locally compact Hausdorff space Y .

Theorem 2.4.4.5. Let X and Y be two locally compact Hausdorff spaces, Ψt(X) =

(A, ρ,B) and Ψt(Y ) = (B, η,B′). Then a map f : X −→ Y is a closed embedding iff

the map φ = Ψt(f) satisfies the following two conditions:

(1) ∀a, b ∈ A with a≪Cρ b there exists c ∈ B such that a≪Cρ φ(c) ≪Cρ b;

(2) ∀a, b ∈ B, φ(a) ≪Cρ φ(b) iff there exist a1, b1 ∈ B such that a1 ≪Cη b1 and

φ(a1) = φ(a), φ(b1) = φ(b).

Proof. Obviously, f : X −→ Y is a closed embedding iff the map α(f) : αX −→ αY

is an embedding (note that every closed embedding is a perfect map and see 0.4.2.4

for α(f)). De Vries proved (see [24, Theorem 1.7.3]) that α(f) is an embedding iff the

following two conditions are satisfied: (a) for every F,G ∈ RC(αX) with F ≪ραX
G,

there exists H ∈ Φt(α(f))(RC(αY )) such that F ≪ραX
H ≪ραX

G, and (b) for every

F,G ∈ RC(αY ), Φt(α(f))(F ) ≪ραX
Φt(α(f))(G) iff there exist F1, G1 ∈ RC(αY )

such that F1 ≪ραY
G1 and Φt(α(f))(F1) = Φt(α(f))(F ), Φt(α(f))(G1) = Φt(α(f))(G).

Now, using 2.4.3.1 and (2.17), it is easy to obtain that f is a closed embedding iff φ

satisfies conditions (1) and (2).

119



Notation 2.4.4.6. Let us denote by PHLCCon the full subcategory of the category

PHLC whose objects are all connected locally compact Hausdorff spaces.

LetDPHLCCon be the full subcategory of the categoryDPHLC whose objects

are all connected CLCAs.

Theorem 2.4.4.7. The categories PHLCCon and DPHLCCon are dually equiva-

lent.

Proof. It follows immediately from Theorem 2.4.2.8 and Fact 2.2.4.3.

Remark 2.4.4.8. Let’s note that the category PHLC has no coseparators (= cogener-

ators) (see 0.2.1.11 for this notion). Indeed, suppose that Z is a coseparator in PHLC.

Let D(τ) be an infinite discrete space of cardinality τ and f, g : D(τ) −→ D(τ) be

two distinct functions with finite preimages. Then f, g ∈ PHLC(D(τ), D(τ)) and thus

there exists an h ∈ PHLC(D(τ), Z) such that h ◦ f ̸= h ◦ g. Since h is a perfect map,

the preimages of all points of Z are finite. Therefore, |Z| ≥ |h(D(τ))| = τ . Since all

discrete spaces are objects of the category PHLC, we obtain that |Z| ≥ τ for any

cardinal τ , a contadiction. So, the category PHLC has no coseparators. Thus, if

V : DPHLC −→ Set is a faithful functor then the contravariant functor V ◦ Ψt is

not representable (see 0.2.1.12 for this notion). (Indeed, suppose that the contravariant

functor V ◦Ψt is representable; then V ◦Ψt will be naturally isomorphic to a contravari-

ant hom-functor PHLC(−, X) for some PHLC-object X and thus, by 0.2.2.2, X will

be a coseparator of the category PHLC (because V ◦ Ψt is a faithful contravariant

functor), a contradiction.) Note that this implies that the (covariant) functor V is not

representable as well. (Indeed, suppose that V is representable by an DPHLC-object

A; then, using the fact that the pair (Ψa,Ψt) is a duality, we will obtain that the con-

travariant functor V ◦Ψt is representable by the PHLC-object Ψa(A), a contradiction.)

Therefore, the pair (Ψa,Ψt) is not a natural duality (in the sense of 0.2.1.13).

Let us also mention that if U : PHLC −→ Set is the obvious underlying func-

tor, then the functor U is representable by the one-point space P and hence the

contravariant functor U ◦ Ψa is representable by the NCA Ψt(P ) = (2, ρs,2) (=

(2, ρs)), where 2 is the Boolean algebra {0, 1} with 0 ̸= 1. Analogously, if U ′ :

HLC −→ Set is the obvious underlying functor, then the contravariant functor

U ′ ◦ Λa is representable by the NCA Λt(P ) = Ψt(P ) = (2, ρs). Hence, for any

CLCA (A, ρ,B), the set U(Ψa(A, ρ,B)) (= U ′(Λa(A, ρ,B))) is Set-isomorphic to the

set DPHLC((A, ρ,B), (2, ρs,2)) (= DHLC((A, ρ,B), (2, ρs,2)) (see Lemma 2.2.3.22

120



and note that the elements of DHLC((A, ρ,B), (2, ρs,2)) trivially satisfy the axiom

(PAL5))). Another proof of this fact can be obtained with the help of Proposition

2.4.4.9 below.

Proposition 2.4.4.9. The bounded clusters of a CLCA (A, ρ,B) are precisely those

subsets of A which are of the form

σφ = {a ∈ A | φ(a∗) = 0},

where φ ∈ DPHLC((A, ρ,B), (2, ρs,2)) (= DHLC((A, ρ,B), (2, ρs,2))).

Proof. In this proof, we will write “ ≪” instead of “ ≪ρs”. We will show that the map

υ : DHLC((A, ρ,B), (2, ρs,2)) −→ BClust(A, ρ,B), φ 7→ σφ

is a bijection. First of all, we will prove that the map υ is well defined.

Let φ ∈ DHLC((A, ρ,B), (2, ρs,2)) (= DPHLC((A, ρ,B), (2, ρs,2))). We will

show that σφ is a bounded cluster in the CLCA (A, ρ,B). Clearly, σφ ̸= ∅ because, by

(DLC1), φ(0) = 0 and thus 1 ∈ σφ. We have to prove that σφ ∩B ̸= ∅ and the axioms

(K1), (K2), (G), (CLU) are fulfilled.

(K2): Let a < b and a ∈ σφ. Then b∗ < a∗ and, by (DLC2), φ(b∗) ≤ φ(a∗) = 0.

Hence, φ(b∗) = 0, i.e., b ∈ σφ.

(K1): Let a, b ∈ σφ. Suppose that a(−Cρ)b. Then a(−ρ)b (i.e., a ≪ρ b
∗ and

b≪ρ a
∗) and {a, b} ∩ B ̸= ∅. Let a ∈ B. Then, using (DLC3), we get that (φ(a∗))∗ ≪

φ(b∗), i.e., 1 ≪ 0, a contradiction. If b ∈ B, we get a contradiction arguing analogously.

Hence, aCρb.

(G): Let a ∨ b ∈ σφ. Then, using (DLC2), we get that 0 = φ((a ∨ b)∗) =

φ(a∗ ∧ b∗) = φ(a∗) ∧ φ(b∗). Hence, φ(a∗) = 0 or φ(b∗) = 0. Thus, a ∈ σφ or b ∈ σφ.

(Boundedness): By (DLC4), there exists a ∈ B such that φ(a) = 1. Then we get

that 0 = φ(a ∧ a∗) = φ(a) ∧ φ(a∗) = φ(a∗). Therefore, a ∈ σφ ∩ B.
(CLU): Let aCρb, for every b ∈ σφ. Suppose that a ̸∈ σφ. Then φ(a∗) = 1. Now,

using (DLC5), we get that there exists b ∈ B such that b ≪ρ a
∗ and φ(b) = 1. Then

b ≪Cρ a
∗, i.e., a(−Cρ)b. Hence b ̸∈ σφ. Thus φ(b∗) = 1. Then we get, as above, that

φ(b) = 0, a contradiction. Therefore, a ∈ σφ.

So, σφ ∈ BClust(A, ρ,B) and thus, the map υ is well defined. Setting B∗ =

{b∗ | b ∈ B}, for every subset B of A, we can rewrite the definition of υ(φ) (= σφ)

as follows: υ(φ) = (φ−1(0))∗. This shows that υ is an injection. We are now going to

prove that υ is a surjection.
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Let σ ∈ BClust(A, ρ,B). Let φ : A −→ 2 be defined by

φ(a) = 0 ⇐⇒ a∗ ∈ σ.

Then, clearly, σ = {a ∈ A | φ(a∗) = 0}, i.e., σ = σφ (= υ(φ)). We will show that

φ ∈ DHLC((A, ρ,B), (2, ρs,2)), i.e., we will prove that φ satisfies the axioms (DLC1)-

(DLC5).

(DLC1): Since 0∗ = 1 ∈ σ, we get that φ(0) = 0.

(DLC2): Let φ(a ∧ b) = 0. Then (a ∧ b)∗ ∈ σ, i.e., a∗ ∨ b∗ ∈ σ. Hence, by (G),

a∗ ∈ σ or b∗ ∈ σ. Therefore, φ(a) = 0 or φ(b) = 0. Thus φ(a) ∧ φ(b) = 0 = φ(a ∧ b).
Let φ(a∧ b) = 1. Then (a∧ b)∗ ̸∈ σ, i.e., a∗ ∨ b∗ ̸∈ σ. Hence, by (K2), a∗ ̸∈ σ and

b∗ ̸∈ σ. Therefore, φ(a) = 1 = φ(b). Thus φ(a) ∧ φ(b) = 1 = φ(a ∧ b).
(DLC3): Let a ∈ B, b ∈ A and a ≪ρ b. Let φ(a∗) = 0. Then a ∈ σ. Since

a(−Cρ)b∗, we get that b∗ ̸∈ σ. Hence φ(b) = 1. Thus (φ(a∗))∗ ≪ φ(b). If φ(a∗) = 1

then, clearly, (φ(a∗))∗ ≪ φ(b). Therefore, φ satisfies the axiom (DLC3).

(DLC4): We have to show that for every b ∈ 2 there exists a ∈ B such that

b ≤ φ(a). If b = 0 then we set a = 0 (since, as we have already seen, φ(0) = 0). Let

b = 1. By Proposition 2.2.3.1, there exists a ∈ B such that a∗ ̸∈ σ. Then φ(a) = 1.

Therefore, φ satisfies the axiom (DLC4).

(DLC5): Let a ∈ A. If φ(a) = 0 then, using the monotony of φ and the facts

that 0 ∈ B, 0 ≪ρ a and φ(0) = 0, we get that φ(a) =
∨
{φ(b) | b ∈ B, b ≪ρ a}. If

φ(a) = 1 then a∗ ̸∈ σ. Thus, by (CLU), there exists c ∈ σ such that a∗(−Cρ)c. Hence
c ≪Cρ a. Then there exists b ∈ A such that c ≪Cρ b ≪Cρ a. Since c(−Cρ)b∗, we get

that b∗ ̸∈ σ. Therefore φ(b) = 1. This implies that φ(a) =
∨
{φ(b) | b ≪Cρ a}. Now,

Lemma 2.2.3.22 shows that φ(a) =
∨
{φ(b) | b ∈ B, b ≪ρ a}. Hence, φ satisfies the

axiom (DLC4).

So, φ ∈ DHLC((A, ρ,B), (2, ρs,2)) (= DPHLC((A, ρ,B), (2, ρs,2))) and σ =

υ(φ). All this shows that υ is a bijection.

2.5 Some generalizations of the Fedorchuk Duality

and Equivalence Theorems

2.5.1 Introduction

As we have already seen, the composition of the morphisms of the categoryDHC differs

from their set-theoretic composition. In 1973, Fedorchuk [54] noted that the complete
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DHC-morphisms (= DHC-morphisms which are complete Boolean homomorphisms)

have a very simple description and, moreover, the DHC-composition of two such mor-

phisms coincides with their set-theoretic composition. He considered the category

DQHC of complete compingent Boolean algebras and complete DHC-morphisms. It

is a subcategory of the category DHC, and he proved that the restriction of de Vries’

duality functor to it produces a duality between the category DQHC and the category

QHC of compact Hausdorff spaces and quasi-open maps (a class of maps introduced by

Mardešic and Papic in [82]). Moreover, he defined a category EQHC (whose objects

are again the complete compingent Boolean algebras but the morphisms are completely

different from the DQHC-morphisms) and proved that it is equivalent to the category

QHC. In Chapter 1, we have mentioned that Fedorchuk [54] introduced the notion

of a Boolean δ-algebra (which is again a Boolean algebra with an additional relation)

as an equivalent expression of the notion of compingent Boolean algebra of de Vries.

This new notion reflects even better the ideas of de Laguna and Whitehead because

the additional relation considered by Fedorchuk corresponds exactly to their concept

of “connection” (= “contact” in our terminology). The axioms defining this relation

are very similar to the axioms of Efremovič proximities [50], while the axioms defining

de Vries’ relation are very similar to the axioms of Efremovič relation “deep inclusion”

([50]). As we have already mentioned, Fedorchuk’s Boolean δ-algebras will be called

here (as in [41]) “normal contact algebras” (briefly, NCAs). So, the regions used by

Fedorchuk are again the regular open sets, the chosen algebraic structure is the same

as that of de Vries but the morphisms between them differ from those used by de Vries.

In Chapter 1, we have mentioned that in 1997, Roeper [99] defined the notion

of region-based topology and proved the following theorem (expressed in our terms):

there is a bijective correspondence between all (up to homeomorphism) locally compact

Hausdorff spaces and all (up to isomorphism) complete LCAs. In the same paper

he introduced some morphisms between region-based topologies; this morphisms are

similar to those of Fedorchuk’s category EQHC. In this way, a category ESHLC was

defined by Roeper in [99]; he defined also a category SHLC and a covariant functor F

from ESHLC to SHLC, and showed that F is a full and isomorphism-dense functor,

i.e., only the proof that F is faithful is missing for obtaining that F is an equivalence

(see Remark 2.5.7.7 below for more details). (Note that in [99], Roeper didn’t mention

the term “category”, and also the notation ESHLC and the notation SHLC were not

used in [99] – they are introduced here.)
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Our aims in the present section are the following:

(a) to extend the Fedorchuk Duality Theorem and his Equivalence Theorem to the

category SHLC whose objects are all locally compact Hausdorff spaces, and to

show that the morphisms of the category SHLC defined by Roeper are in fact

the skeletal (in the sense of Mioduszewski and Rudolf [83]) continuous maps;

(b) to describe the images, under the obtained in (a) duality (resp., equivalence)

functor, of some cofull subcategories of the category SHLC and to get in this

way duality and equivalence theorems for these subcategories; this is done for the

cofull subcategories defined by the following classes of maps: open maps, open

perfect maps, quasi-open perfect maps;

(c) to find the “connected versions” of the obtained duality and equivalence theorems

(i.e., their variants concerning only the connected spaces).

As far as we know, the duality and equivalence theorems for the category of

all locally compact Hausdorff spaces and all open maps between them which will be

obtained here (i.e., the cofull subcategory of the category SHLC defined by the open

maps (see (b) above)) are new even in the case of compact Hausdorff spaces. Note,

as well, that the Fedorchuk Duality and Equivalence Theorems can be also derived

from the obtained here respective theorems for the cofull subcategory of the category

SHLC defined by the quasi-open perfect maps (see again (b)).

The structure of this section is the following. In the second subsection, we present

some preliminary results about skeletal and quasi-open maps and Boolean homomor-

phisms; a part of these results is well-known but we include them for completeness of

our exposition. In the third subsection, we prove the main results of this section with

which we extend the Fedorchuk Duality Theorem [54] to the categories of locally com-

pact Hausdorff spaces and skeletal maps, respectively, quasi-open perfect maps. We

obtain also a duality theorem for the category of locally compact Hausdorff spaces and

open maps. This theorem is new even in the compact case, i.e., we obtain a de Vries’

type duality theorem for the category of compact Hausdorff spaces and open maps. A

duality theorem for the category of locally compact Hausdorff spaces and open perfect

maps is proved as well. The fourth subsection contains the connected versions of the

duality theorems obtained in the third subsection, i.e., we find the dual categories of

the full subcategories of the categories of locally compact Hausdorff spaces regarded
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in the previous subsection determined by the requirement that the objects are con-

nected spaces. In the last (fifth) subsection of this section, we extend the Fedorchuk

Equivalence Theorem [54] to the categories of locally compact Hausdorff spaces and

skeletal maps, respectively, quasi-open perfect maps. We prove as well some equiva-

lence theorems for the categories of locally compact Hausdorff spaces and open maps,

respectively, open perfect maps. Finally, we compare one of our equivalence theorems

with a result obtained by Roeper in [99].

The results of this section are based on the paper [28].

2.5.2 Some preliminary results

Fact 2.5.2.1. If A and B are Boolean algebras, φ : A −→ B is a Boolean homomor-

phism, A has all meets and φ preserves them, then:

(a) ∀a ∈ A and ∀b ∈ B, φ(a) ∧ b = 0 iff a ∧ φΛ(b) = 0 (see 0.3.2.4 for the notation);

(b) ∀a ∈ A and ∀b ∈ B, φΛ(φ(a) ∧ b) = a ∧ φΛ(b).

Proof. (a) Let a ∈ A, b ∈ B and φ(a) ∧ b = 0. Put c = a ∧ φΛ(b). Since, by (Λ1) (see

0.3.2.4), φ(c)∧ b = φ(a)∧φ(φΛ(b))∧ b = φ(a)∧ b = 0, we get that b ≤ φ(c∗) and hence

φΛ(b) ≤ c∗ (see (Λ) in 0.3.2.4); therefore c ≤ c∗, i.e., c = 0. Therefore, a ∧ φΛ(b) = 0.

Conversely, let a ∧ φΛ(b) = 0. Then φ(a) ∧ φ(φΛ(b)) = 0 and thus, by (Λ1),

φ(a) ∧ b = 0.

(b) Obviously, φΛ(φ(a)∧ b) ≤ φΛ(φ(a))∧φΛ(b) ≤ a∧φΛ(b) (by (Λ2) and the fact that

φΛ is a monotone map (see 0.3.2.4)). Hence, we need only to show that φΛ(φ(a)∧ b) ≥
a ∧ φΛ(b). By (4) (see 0.3.2.4), we have to prove that a ∧ φΛ(b) ≤

∧
{c ∈ B | φ(c) ≥

φ(a) ∧ b}. Let c ∈ B and φ(c) ≥ φ(a) ∧ b. We will show that a ∧ φΛ(b) ≤ c. Using

(a) and (Λ1) (see 0.3.2.4), we obtain that: a ∧ φΛ(b) ≤ c ↔ c∗ ∧ a ∧ φΛ(b) = 0 ↔
φ(c∗ ∧ a) ∧ b = 0 ↔ (φ(c))∗ ∧ φ(a) ∧ b = 0 ↔ φ(a) ∧ b ≤ φ(c). Thus a ∧ φΛ(b) ≤ c.

Hence (b) is proved.

Remark 2.5.2.2. Note that every closed irreducible map f : X −→ Y is quasi-open

(because, for every non-empty open subset U of X, f#(U) is a non-empty open subset

of Y ([91])) (see 0.1.2.2 and 0.4.1.3).

Recall that a continuous map f : X −→ Y is skeletal (see 0.4.1.3) iff f−1(Fr(V ))

is nowhere dense in X, for every open subset V of Y (see [83]).

It is easy to see that a function f : X −→ Y is skeletal iff int(f−1(Fr(V ))) = ∅,
for every open subset V of Y .
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The next assertion is known but, for completeness, we will present here its proof:

Lemma 2.5.2.3. A function f : X −→ Y is skeletal iff int(cl(f(U))) ̸= ∅, for every

non-empty open subset U of X.

Proof. (⇒) Let U be a non-empty open subset of X. Suppose that int(cl(f(U))) = ∅.
Set V = Y \ cl(f(U)). Then Y = cl(V ) and Fr(V ) = Y \ V = cl(f(U)). Hence U ⊆
f−1(Fr(V )) and thus int(f−1(Fr(V ))) ̸= ∅, a contradiction. Therefore, int(cl(f(U))) ̸=
∅.

(⇐) Let V be an open subset of Y . Suppose that U = int(f−1(Fr(V ))) is a non-

empty set. Then ∅ ̸= int(cl(f(U))) ⊆ Fr(V ) = cl(V ) \ V , which is impossible. Hence

int(f−1(Fr(V ))) = ∅. So, f is a skeletal map.

Definition 2.5.2.4. A topological space (X, τ) is said to be π-regular if for each non-

empty U ∈ τ there exists a non-empty V ∈ τ such that cl(V ) ⊆ U .

Note that the semiregular π-regular spaces are exactly the weakly regular spaces

of Düntsch and Winter ([46]).

Corollary 2.5.2.5. (a) Every quasi-open map is skeletal.

(b) Let X be a π-regular space and f : X −→ Y be a closed map. Then f is quasi-open

iff f is skeletal.

Proof. (a) It follows from 2.5.2.3.

(b) Let f be skeletal and closed. Take an open non-empty subset U of X. Then there

exists an open non-empty subset V of X such that cl(V ) ⊆ U . Using 2.5.2.3, we obtain

that int(f(U)) ⊇ int(f(cl(V ))) = int(cl(f(V ))) ̸= ∅. Therefore, f is a quasi-open map.

For completeness, we will supply with a proof the next assertion:

Lemma 2.5.2.6. ([73, 72, 16]) Let f : X −→ Y be a continuous map. Then the

following conditions are equivalent:

(a) f is a skeletal map;

(b) For every F ∈ RC(X), cl(f(F )) ∈ RC(Y ).

Proof. (a)⇒(b) Let f be a skeletal map, F ∈ RC(X) and F ̸= ∅. Set U = int(F ).

Then U ̸= ∅. Hence, by 2.5.2.3, V = int(cl(f(U))) ̸= ∅. We will show that

cl(f(F )) = cl(V ).(2.20)

126



Note that, by the continuity of f , cl(f(F )) = cl(f(U)). Now suppose that f(U) ̸⊆
cl(V ). Then there exists y ∈ f(U) \ cl(V ). Hence there exists an open neighborhood

O1 of y in Y such that O1∩V = ∅. Thus cl(O1)∩V = ∅. There exists x ∈ U such that

y = f(x). Since f is continuous, there exists an open neighborhood O of x in X such

that x ∈ O ⊆ U and f(O) ⊆ O1. Then cl(f(O)) ⊆ cl(O1) and thus cl(f(O)) ∩ V = ∅.
Since, by 2.5.2.3, ∅ ̸= int(cl(f(O))) ⊆ cl(f(O)) ∩ int(cl(f(U))) = cl(f(O)) ∩ V = ∅,
we obtain a contradiction. Therefore f(U) ⊆ cl(V ) and hence cl(f(U)) ⊆ cl(V ). Since

the converse inclusion is obvious, (2.20) is established. Thus, cl(f(F )) ∈ RC(Y ).

(b)⇒(a) Let U be a non-empty open subset of X. Then F = cl(U) ∈ RC(X). Hence

cl(f(F )) ∈ RC(Y ). Since F ̸= ∅, we obtain that int(cl(f(F ))) ̸= ∅. Now, using the

continuity of f , we get that int(cl(f(U))) ̸= ∅. Therefore, by 2.5.2.3, f is a skeletal

map.

The next lemma generalizes the well-known result of Ponomarev [91] that the

regular closed sets are preserved by the closed irreducible maps.

Lemma 2.5.2.7. Let f : X −→ Y be a closed map and X be a π-regular space. Then

the following conditions are equivalent:

(a) f is a quasi-open map;

(b) For every F ∈ RC(X), f(F ) ∈ RC(Y ).

Proof. (a)⇒(b) It follows from 2.5.2.5(a) and 2.5.2.6.

(b)⇒(a) It follows from 2.5.2.5(b) and 2.5.2.6. Note that the π-regularity of X is used

only in the proof of this implication.

Corollary 2.5.2.8. If f : X −→ Y is a quasi-open closed map then f(X) ∈ RC(Y ).

Remarks 2.5.2.9. In [69], Henriksen and Jerison considered functions f : X −→ Y

between topological spaces for which

cl(int(f−1(F ))) = cl(f−1(int(F ))) for every F ∈ RC(Y ).(2.21)

Clearly, every continuous skeletal map f : X −→ Y satisfies (2.21) ([83]). Hence, by

2.5.2.5(a), every quasi-open map f : X −→ Y satisfies (2.21) ([92]).

Recall that a function f : X −→ Y (not necessarily continuous) which satisfies

condition (5) (see 0.4.1.3) for every V ∈ RO(X) is called a HJ-map in [83]. Obviously,

every continuous HJ-map f : X −→ Y satisfies (2.21). As it is noted in [83], the
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composition of two continuous HJ-maps needs not be an HJ-map, while the composition

of two continuous skeletal maps is a skeletal map. It is clear that the composition of

two quasi-open maps is a quasi-open map.

We will now formulate the Fedorchuk Duality Theorem [54].

2.5.2.10. Let DQHC be the category whose objects are all complete normal contact

algebras (i.e., CNC-algebras) and whose morphisms φ : (A,C) −→ (B,C ′) are all

complete Boolean homomorphisms φ : A −→ B satisfying the following condition:

(F1) For all a, b ∈ A, φ(a)C ′φ(b) implies aCb.

Theorem 2.5.2.11. (Fedorchuk [54]) The categories QHC and DQHC are dually

equivalent.

2.5.3 Two generalizations of the Fedorchuk Duality Theorem

Definition 2.5.3.1. Let DSHLC be the category whose objects are all complete local

contact algebras and whose morphisms φ : (A, ρ,B) −→ (B, η,B′) are all complete

Boolean homomorphisms φ : A −→ B satisfying the following conditions:

(L1) ∀a, b ∈ A, φ(a)ηφ(b) implies aρb;

(L2) b ∈ B′ implies φΛ(b) ∈ B (see 0.3.2.4 for φΛ).

It is easy to see that in this way we have indeed defined a category.

Let us note that (L1) is equivalent to the following condition:

(EL1) ∀a, b ∈ B, aηb implies φΛ(a)ρφΛ(b).

Proposition 2.5.3.2. The condition (L2) in the definition of the category DSHLC

can be replaced by the axiom (DLC4).

Proof. Let b ∈ B′. Then, by (L2), φΛ(b) ∈ B. Set a = φΛ(b). Since φΛ is a left adjoint

to φ, we get that b ≤ φ(a). So, condition (DLC4) is checked.

Conversely, if b ∈ B′ then, by (DLC4), there exists a ∈ B such that b ≤ φ(a);

thus φΛ(b) ≤ a; therefore φΛ(b) ∈ B, i.e., condition (L2) is fulfilled.

We are now going to prove the following theorem.

Theorem 2.5.3.3. The categories SHLC and DSHLC are dually equivalent.

Since, by 2.5.2.5(b), a closed map between two regular spaces is skeletal iff it is

quasi-open, we get that Theorem 2.5.3.3 is a generalization of the Fedorchuk Duality

Theorem.
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The proof of Theorem 2.5.3.3 will be given below in the form of some steps and

propositions.

Step 1. We first define two contravariant functors

Ψt
1 : SHLC −→ DSHLC and Ψa

1 : DSHLC −→ SHLC.

Their definitions on the objects of the corresponding categories are the following:

Ψt
1(X) = Ψt(X)

for every X ∈ |SHLC|, and

Ψa
1(A, ρ,B) = Ψa(A, ρ,B),

for every (A, ρ,B) ∈ |DSHLC| (see (1.20) for Ψt and (1.21), (1.24) for Ψa). The

definitions of the contravariant functors Ψt
1 and Ψa

1 on the corresponding morphisms

are as follows:

Ψt
1(f)(G) = cl(f−1(int(G)))

for every f ∈ SHLC(X,Y ) and every G ∈ RC(Y ), and, further, for every φ ∈
DSHLC((A, ρ,B), (B, η,B′)) and for every bounded ultrafilter u in B (i.e., u∩B′ ̸= ∅),
we set

Ψa
1(φ)(σu) = σφ−1(u)(2.22)

where σφ−1(u) is a cluster in (A,Cρ) (see 1.2.2.4 for the notation of the type σv, and

note that by Theorem 1.2.2.3, any bounded cluster σ in (B, η,B′) can be written in

the form σu for some bounded ultrafilter u in B).

We are going to show that Ψt
1 and Ψa

1 are indeed contravariant functors between

the corresponding categories. In this Step 1 we will only prove two preparatory propo-

sitions. We start with the following one.

Proposition 2.5.3.4. The categories SHLC and DSHLC are cofull subcategories

of, respectively, HLC and DHLC. The restriction of the contravariant functor Λa

(respectively, Λt) to the subcategory DSHLC (resp., SHLC) coincides with Ψa
1 (resp.,

Ψt
1).

Proof. Obviously, the category SHLC is a cofull subcategory of the category HLC

and the restriction of the contravariant functor Λt to the subcategory SHLC coincides

with Ψt
1.
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Let φ ∈ DSHLC((A, ρ,B), (B, η,B′)). Then it is clear that φ satisfies conditions

(DLC1) and (DLC2). Let a, b ∈ A and a ≪ρ b. Then a(−ρ)b∗. Hence, by (L1),

φ(a)(−η)φ(b∗). Since φ is a Boolean homomorphism, we have that φ(b∗) = (φ(b))∗

and (φ(a∗))∗ = φ(a). Thus, (φ(a∗))∗ ≪η φ(b). Therefore, condition (DLC3) is satisfied.

Further, by Proposition 2.5.3.2, condition (DLC4) is fulfilled. Finally, let a ∈ A. Then

a =
∨
{b ∈ B | b ≪ρ a}. Since φ is a complete Boolean homomorphism, we conclude

that φ(a) =
∨
{φ(b) | b ∈ B, b ≪ρ a}. Thus, condition (DLC5) is satisfied. So,

every DSHLC-morphism is a DHLC-morphism. Since the composition φ2 ◦ φ1 of

two complete Boolean homomorphisms is a complete Boolean homomorphism, Lemma

2.2.2.9(e) implies that (φ2 ◦ φ1)̌ = φ2 ◦ φ1. Hence, φ2 ⋄ φ1 = φ2 ◦ φ1. Therefore, the

category DSHLC is a cofull subcategory of the category DHLC.

Let φ ∈ DSHLC((A, ρ,B), (B, η,B′)) and u be a bounded ultrafilter in B. We

have to show that Ψa
1(φ)(σu) is a bounded cluster (see (2.22)). Set

f = Ψa
1(φ), X = Ψa

1(A, ρ,B) and Y = Ψa
1(B, η,B′).

Then X is the set of all bounded clusters of (A, ρ,B) and Y is the set of all bounded

clusters of (B, η,B′) (see 1.2.3.6, (1.21) and (1.23)). We set C = Cρ and C
′ = Cη.

Let us start with the following observation:

if u ∈ Ult(B) then φ−1(u) ∈ Ult(A) and φΛ(u) is a filter-base of φ−1(u).(2.23)

So, let u ∈ Ult(B). Then, obviously, φ−1(u) ∈ Ult(A). Let us show that φΛ(u) ⊆
φ−1(u). Let b ∈ u. Then, by (Λ1) (see 0.3.2.4), φ(φΛ(b)) ≥ b. Hence φ(φΛ(b) ∈ u,

i.e., φΛ(b) ∈ φ−1(u). Therefore, φΛ(u) ⊆ φ−1(u). Further, suppose that there exists

a ∈ φ−1(u) such that φΛ(b) ̸≤ a for all b ∈ u. Then φΛ(b) ∧ a∗ ̸= 0 for every b ∈ u.

Hence, by 2.5.2.1(a), b ∧ φ(a∗) ̸= 0 for every b ∈ u. Since u ∈ Ult(B), we obtain that

φ(a∗) ∈ u. Thus both φ(a) and (φ(a))∗ are elements of u, a contradiction. Therefore,

φΛ(u) is a basis of the ultrafilter φ−1(u).

Obviously, (2.23) implies that

∀u ∈ Ult(B), σφ−1(u) = σφΛ(u),(2.24)

where σφ−1(u) and σφΛ(u) are clusters in (A,C) (see 1.2.2.4 for the notation).

Let u, v ∈ Ult(B), σu = σv and σ = σu(= σv) be bounded. We will prove that

σφ−1(u) = σφ−1(v). Indeed, by 2.2.3.2, there exists c ∈ u ∩ B′. Let a ∈ u and b ∈ v.

Then a∧ c ∈ u∩B′ and (a∧ c)C ′b. Thus (a∧ c)ηb. Hence, by (EL1), φΛ(a∧ c)ρφΛ(b).

Therefore, φΛ(a∧ c)CφΛ(b). Thus φΛ(a)CφΛ(b). Since this is true for every a ∈ u and
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every b ∈ v, we obtain, using (2.23) and (1.2), that φΛ(u) ⊆ σφΛ(v). Then, by 1.2.2.4

and (2.23), σφΛ(u) = σφΛ(v). Using (2.24), we get that σφ−1(u) = σφ−1(v). Therefore,

Ψa
1(φ) is well defined, i.e., it doesn’t depend on the choice of the generating ultrafilter

(see the formula (2.22)).

Now, using (2.24), we obtain that

if σ ∈ Y and b ∈ σ then φΛ(b) ∈ f(σ).(2.25)

Indeed, by 1.2.2.3, there exists u ∈ Ult(B) such that b ∈ u and σ = σu. Thus, by

(2.24), f(σ) = σφΛ(u). Therefore φΛ(b) ∈ f(σ). So, (2.25) is proved.

Let us show that for every σ ∈ Clust(B,C ′),

σ ∩ B′ ̸= ∅ implies that f(σ) ∩ B ̸= ∅.(2.26)

Indeed, let σ ∈ Clust(B,C ′) and b ∈ σ ∩ B′. Then, by (2.25), φΛ(b) ∈ f(σ). Since, by

(L2), φΛ(b) ∈ B, we obtain that f(σ) ∩ B ̸= ∅.
So, if σ ∈ Y then Ψa

1(φ)(σ) is a bounded cluster, i.e., f(Y ) ⊆ X.

We have that Ψa
1(φ)(σu) = σφ−1(u) and Λa(φ)(σu) ∩ B = {a ∈ B | if b ∈

A and a≪ρ b then φ(b) ∈ σu}. According to Corollary 2.2.3.4, Ψa
1(φ)(σu) = Λa(φ)(σu)

iff B ∩Ψa
1(φ)(σu) = B ∩ Λa(φ)(σu). Thus, we have to show that

B ∩ σφ−1(u) = {a ∈ B | if b ∈ A and a≪ρ b then φ(b) ∈ σu}.(2.27)

So, let a ∈ B ∩ σφ−1(u). Suppose that there exists b ∈ A such that a ≪ρ b and

φ(b) ̸∈ σu. Then φ(b) ̸∈ u. Hence (φ(b))∗ ∈ u, i.e., φ(b∗) ∈ u. Thus b∗ ∈ φ−1(u). Since

a(−ρ)b∗, we get a contradiction.

Conversely, let a ∈ B and for all b ∈ A such that a≪ρ b, we have that φ(b) ∈ σu.

We have to prove that a ∈ σφ−1(u), i.e., that aρb for all b ∈ φ−1(u). Suppose that

there exists b0 ∈ φ−1(u) such that a(−ρ)b0. Then φ(b0) ∈ u and a ≪ρ b
∗
0. By (BC1),

there exists a1 ∈ B such that a ≪ρ a1 ≪ρ b
∗
0. Hence a1(−ρ)b0 and b0 ≤ a∗1. Then

φ(b0) ≤ φ(a∗1) and thus φ(a∗1) ∈ u. Since φ(a∗1) = (φ(a1))
∗, we get that φ(a1) ̸∈ u. We

have that φ(a1) ∈ σu (because a ≪ρ a1). Let c0 ∈ u ∩ B′. Then c0 ∧ φ(b0) ∈ u ∩ B′.

Thus φ(a1)η(c0 ∧ φ(b0)). Therefore φ(a1)ηφ(b0). Then, by (L1), we obtain that a1ρb0,

a contradiction. So, the equality (2.27) is established. This completes the proof.

Proposition 2.5.3.5. The cofull subcategory D1SHLC of the category DHLC deter-

mined by the DHLC-morphisms which are complete Boolean homomorphisms coincides

with the category DSHLC.
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Proof. It is easy to see that each D1SHLC-morphism φ satisfies condition (L1). In-

deed, let a, b ∈ A and φ(a)ηφ(b). Suppose that a(−ρ)b. Then a ≪ρ b
∗. Thus, by

(DLC3S), we get that (φ(a∗))∗ ≪η φ(b
∗), i.e., φ(a)(−η)φ(b), a contradiction. There-

fore, aρb. So, φ satisfies condition (L1). Further, by Proposition 2.5.3.2, φ satisfies

condition (L2) as well. The rest follows from Proposition 2.5.3.4.

Step 2. We will show that Ψt
1 is a contravariant functor between the categories SHLC

and DSHLC. Let f ∈ SHLC(X,Y ). Put

φ = Ψt
1(f).

Then, by Theorem 2.2.2.12, φ is a DHLC-morphism. We will first show that φ is

a complete Boolean homomorphism. Let Γ be a set and {Fγ | γ ∈ Γ} ⊆ RC(Y ).

Put F = cl(
∪
{Fγ | γ ∈ Γ}). (Note that F = cl(

∪
{int(Fγ) | γ ∈ Γ}).) Then F ∈

RC(Y ) and
∨
{Fγ | γ ∈ Γ} = F . Since φ is an order-preserving map, we get that

φ(F ) ≥
∨
{φ(Fγ) | γ ∈ Γ}. We will now prove the converse inequality. We have that

φ(F ) = cl(f−1(int(F ))). Let x ∈ f−1(int(F )). Then f(x) ∈ int(F ). Hence, there

exist open neighborhoods O and O′ of f(x) in Y such that cl(O′) ⊆ O ⊆ F . Since f

is continuous, there exists an open neighborhood U of x in X such that f(U) ⊆ O′.

Suppose that there exists an open neighborhood V of x in X such that, for every

γ ∈ Γ, V ∩ cl(int(f−1(Fγ))) = ∅. Obviously, we can suppose that V ⊆ U . Since f is

continuous and skeletal, we get, using 2.5.2.9 and (2.21), that V ∩ f−1(int(Fγ)) = ∅,
for every γ ∈ Γ. Thus, f(V ) ∩

∪
{int(Fγ) | γ ∈ Γ} = ∅. Put W =

∪
{int(Fγ) | γ ∈ Γ}.

Then cl(f(V )) ∩W = ∅ and cl(f(V )) ⊆ cl(f(U) ⊆ cl(O′) ⊆ O ⊆ F = cl(W ). Thus

cl(f(V )) ⊆ cl(W )\W = Fr(W ). Since f is skeletal, 2.5.2.3 implies that int(cl(f(V ))) ̸=
∅ and this leads to a contradiction. Therefore, x ∈ cl(

∪
{cl(int(f−1(Fγ))) | γ ∈ Γ}). We

have proved that φ(F ) ≤
∨
{φ(Fγ) | γ ∈ Γ}. So, φ(

∨
{Fγ | γ ∈ Γ}) =

∨
{φ(Fγ) | γ ∈

Γ}.
Let F ∈ RC(Y ). Then (φ(F ))∗ = (cl(f−1(int(F ))))∗ = (cl(f−1(Y \ F ∗)))∗ =

(cl(X \ f−1(F ∗)))∗ = cl(X \ cl(X \ f−1(F ∗))) = cl(int(f−1(F ∗))). So, using again

2.5.2.9 and (2.21), we get that φ(F ∗) = (φ(F ))∗. Since, obviously, φ preserves the zero

and the unit elements, φ is a complete Boolean homomorphism. Now, Proposition

2.5.3.5 implies that Ψt
1(f) is a DSHLC-morphism.

Hence we get, using Proposition 2.5.3.4, that

Ψt
1 : SHLC −→ DSHLC

is a contravariant functor.
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Step 3. We will show that Ψa
1 is a contravariant functor between the categories

DSHLC and SHLC. Let φ ∈ DSHLC((A, ρ,B), (B, η,B′)), f = Ψa
1(φ), X =

Ψa
1(A, ρ,B) and Y = Ψa

1(B, η,B′). Then, using Proposition 2.5.3.4, we get that

f = Λa(φ). Thus, by Theorem 2.2.2.12,

f : Y −→ X is a continuous function.(2.28)

We will now show that f is a skeletal map, i.e., that intX(f(cl(U))) ̸= ∅ for every

non-empty open subset U of Y (see 2.5.2.3). Note that, by (1.36) and (1.31), it is

enough to prove that intX(f(λ
g
B(b)) ̸= ∅, for every b ∈ B′ \ {0}.

We will first show that for every b ∈ B′,

f(λgB(b)) = λgA(φΛ(b))(2.29)

(note that b ∈ B′ implies that λB(b) ⊆ Y and φΛ(b) ∈ B (by (L2)); thus we have also

that λA(φΛ(b)) ⊆ X; hence (2.29) can be written as f(λB(b)) = λA(φΛ(b))). Since

φ(0) = 0, we have, by 0.3.2.4, that φΛ(0) = 0 and φΛ(b) ̸= 0 for any b ̸= 0. Hence,

(2.29) is true for b = 0.

Let b ∈ B′ \ {0} and σ ∈ f(λB(b)). Then there exists σ′ ∈ λB(b) such that

f(σ′) = σ. Hence b ∈ σ′ and thus, by (2.25), φΛ(b) ∈ f(σ′) = σ. Therefore we get

that σ ∈ λA(φΛ(b)). So, f(λB(b)) ⊆ λA(φΛ(b)). Conversely, let b ∈ B′ \ {0} and

σ ∈ λA(φΛ(b)), i.e., φΛ(b) ∈ σ. Then, by 1.2.2.3, there exists u ∈ Ult(A) such that

φΛ(b) ∈ u ⊆ σ, and hence, by 1.2.2.4, σ = σu. Let us show that φ(u)∪{b} has the finite

intersection property. Since φ(u) is closed under finite meets, it is enough to prove that

b∧ φ(a) ̸= 0,∀a ∈ u. Indeed, suppose that there exists a0 ∈ u such that b∧ φ(a0) = 0.

Then, by 2.5.2.1(a), we will have that φΛ(b) ∧ a0 = 0. This is, however, impossible,

since φΛ(b) ∈ u. So, there exists an ultrafilter v in B such that v ⊇ φ(u) ∪ {b}. Set

σ′ = σv. Then σ′ is a cluster in (B,C ′) (see 1.2.2.3) and since v ⊆ σ′, we have that

b ∈ σ′. Hence σ′ ∈ λB(b). Further, f(σ′) = σ. Indeed, since φ(u) ⊆ v, we have that

u ⊆ φ−1(v); thus u = φ−1(v) and hence σ = σu = σφ−1(v) = f(σv) = f(σ′). Therefore

σ = f(σ′) ∈ f(λB(b)). So, (2.29) is proved.

Now, suppose that there exists b ∈ B′ \ {0} such that intX(f(λ
g
B(b))) = ∅.

Then X \ f(λgB(b)) is dense in X. Using (2.29), we obtain that X \ λgA(φΛ(b)) is

dense in X. Thus, by (1.35), int(λgA((φΛ(b))
∗)) is dense in X. Hence λgA((φΛ(b))

∗) =

cl(int(λgA((φΛ(b))
∗))) = X. Therefore, by (1.31), (φΛ(b))

∗ = 1. Then φΛ(b) = 0 and

hence b = 0 (by 0.3.2.4), a contradiction. Hence,

f : Y −→ X is a skeletal map.(2.30)
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So, we have proved that Ψa
1(φ) ∈ SHLC(Ψa

1(B, η,B′),Ψa
1(A, ρ,B)).

Thus, using Proposition 2.5.3.4, we get that

Ψa
1 : DSHLC −→ SHLC

is a contravariant functor.

Now, Theorem 2.5.3.3 follows from Proposition 2.5.3.4 and Theorem 2.2.2.12.

We will now obtain one more generalization of the Fedorchuk Duality Theorem

2.5.2.11.

Recall that we have denoted by PSHLC the category of all locally compact

Hausdorff spaces and all skeletal perfect maps between them (see 0.1.2.6). Note that,

by 2.5.2.5(b), the morphisms of the category PSHLC are precisely the quasi-open

perfect maps (because the perfect maps are closed maps and the regular spaces are

π-regular).

Definition 2.5.3.6. Let DPSHLC be the category whose objects are all complete

local contact algebras (see 1.2.3.1) and whose morphisms are all DSHLC-morphisms

φ : (A, ρ,B) −→ (B, η,B′) satisfying the following condition:

(L3) a ∈ B implies φ(a) ∈ B′.

It is easy to see that in this way we have indeed defined a category. Obviously,

PSHLC (resp., DPSHLC) is a subcategory of the category SHLC (resp., DSHLC).

Theorem 2.5.3.7. The categories PSHLC and DPSHLC are dually equivalent.

Proof. We will show that the restrictions

Ψa
p : DPSHLC −→ PSHLC and Ψt

p : PSHLC −→ DPSHLC

of the contravariant functors Ψa
1 and Ψt

1 defined in the proof of Theorem 2.5.3.3 are

the desired duality functors.

Let f ∈ PSHLC((X, τ), (Y, τ ′)). Since f is a perfect map, we obtain that φ =

Ψt
p(f) satisfies condition (L3) (using [53, Theorem 3.7.2]). Hence, φ is well defined.

Therefore the contravariant functor Ψt
p : PSHLC −→ DPSHLC is well defined.

Let φ ∈ DPSHLC((A, ρ,B), (B, η,B′)) and set f = Ψa
p(φ), i.e.,

f : Ψa
p(B, η,B′) −→ Ψa

p(A, ρ,B).

Then, by Theorem 2.5.3.3, f is a continuous skeletal map. We have to show that f is a

perfect map. Put C = Cρ and C
′ = Cη (see 1.2.3.4 for the notation). Then, by 1.2.3.4,
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(A,C) and (B,C ′) are CNCA’s. Denote by φc the map φ considered as a function

from (A,C) into (B,C ′). We will show that φc satisfies condition (F1) (see 2.5.2.10).

For verifying condition (F1), let a, b ∈ A and let φc(a)C
′φc(b). Then either

φc(a)ηφc(b) or φc(a), φc(b) ̸∈ B′. If φc(a)ηφc(b) then, by (L1), aρb; hence aCb. If

φc(a), φc(b) ̸∈ B′ then, by (L3), a, b ̸∈ B. Hence aCb. So, (F1) is verified. Therefore,

φc : (A,Cρ) −→ (B,Cη) satisfies condition (F1).(2.31)

Set X = Ψa(A,C,A) and Y = Ψa(B,C ′, B) (see (1.21)). Then X and Y are

compact Hausdorff spaces. Let fc = Ψa
1(φc), i.e.,

fc : Y −→ X is defined by fc(σu) = σφ−1
c (u), for every u ∈ Ult(B).(2.32)

We will consider three cases now.

(a) Let 1A ̸∈ B and 1B ̸∈ B′. Then Ψa
p(B, η,B′) = LB = Y \ {σB∞} and Ψa

p(A, ρ,B)) =
LA = X \ {σA∞} (see 1.2.3.7 and (1.23)).

We will show that f−1
c (σA∞) = {σB∞} (see 1.2.3.7 for the notation). We first prove

that fc(σ
B
∞) = σA∞. Let u ∈ Ult(B) be such that u ⊂ σB∞ and σB∞ = σu (see 1.2.2.3).

Then fc(σ
B
∞) = σφ−1

c (u). We will show that φ−1
c (u) ⊂ σA∞. Indeed, let a ∈ φ−1

c (u). Then

φc(a) ∈ u ⊂ B \B′. Hence φc(a) ̸∈ B′. Thus, by (L3), a ̸∈ B. So, φ−1
c (u) ⊂ A\B = σA∞

(see 1.2.3.7). Then, by 1.2.3.7 and 1.2.2.4, σA∞ = σφ−1
c (u). Therefore, fc(σ

B
∞) = σA∞.

Since LA and LB consist of bounded clusters (see (1.23)), (2.26) implies that fc(LB) ⊆
LA. Therefore,

f−1
c (σA∞) = {σB∞}.(2.33)

This shows that f−1
c (LA) = LB. Since fc is a perfect map, we obtain (by [53, Proposi-

tion 3.7.4]) that

(fc)LA
: LB −→ LA is a perfect map.(2.34)

Obviously, f is the restriction of fc to LB. Hence f = (fc)LA
, i.e., f is a perfect map.

(b) Let 1A ̸∈ B and 1B ∈ B′. Then C ′ = η, Ψa
p(A, ρ,B) = X \ {σA∞} = LA and

Ψa
p(B, η,B′) = Y . Thus (2.26) implies that fc(Y ) ⊂ LA. Therefore, the restriction

f : Y −→ LA of fc is a perfect map.

(c) Let 1A ∈ B. Then, by (L3), 1B ∈ B′. Hence C = ρ, C ′ = η, Ψa
p(B, η,B′) = Y ,

Ψa
p(A, ρ,B) = X. Thus f = fc. Hence, f : Y −→ X is a skeletal perfect map.
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We have considered all possible cases. Therefore, Ψa
p is well defined on the objects

and morphisms of the category DPSHLC.

Note that, using (1.31), we obtain that λgB is a DPSHLC-isomorphism. The rest

follows from Theorem 2.5.3.3.

2.5.4 Duality Theorems for the categories OHLC, POHLC
and OHC

Definition 2.5.4.1. Let DOHLC be the category whose objects are all complete local

contact algebras and whose morphisms are all DSHLC-morphisms φ : (A, ρ,B) −→
(B, η,B′) satisfying the following condition:

(LO) ∀a ∈ A and ∀b ∈ B′, φΛ(b)ρa implies bηφ(a).

It is easy to see that in this way we have indeed defined a category. Obviously,

DOHLC (resp., OHLC) is a (non-full) subcategory of the category DSHLC (resp.,

SHLC).

Theorem 2.5.4.2. The categories OHLC and DOHLC are dually equivalent.

Proof. We will show that the restrictions

Ψa
o : DOHLC −→ OHLC and Ψt

o : OHLC −→ DOHLC

of the contravariant functors Ψa
1 and Ψt

1 defined in the proof of Theorem 2.5.3.3 are

the desired duality functors.

Let f ∈ OHLC((X, τ), (Y, τ ′)). Set

φ = Ψt
o(f).

Then, since f is an open map, [53, 1.4.C] implies that for every F ∈ RC(Y ),

f−1(F ) = f−1(cl(int(F ))) = cl(f−1(int(F ))) = φ(F ).

Hence,

Ψt
o(f) : Ψ

t
o(Y, τ

′) −→ Ψt
o(X, τ) is defined by Ψt

o(f)(F ) = f−1(F ),(2.35)

for all F ∈ Ψt
o(Y, τ

′). Further, by the proof of Theorem 2.5.3.3, φ is an DSHLC-

morphism. We will show that φ satisfies condition (LO). For doing this, we will first
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show that φΛ : RC(X) −→ RC(Y ) is defined by the formula φΛ(F ) = cl(f(F )), for

every F ∈ RC(X). Indeed, using 2.5.2.6, we can define a map

ψ : Ψt(X, τ) −→ Ψt(Y, τ ′) by ψ(G) = cl(f(G)), for every G ∈ Ψt(X, τ).(2.36)

Obviously, ψ is an order-preserving map. Since f is a continuous map, we have that

for every F ∈ RC(Y ), ψ(φ(F )) = cl(f(cl(f−1(int(F ))))) = cl(f(f−1(int(F )))) ⊆
cl(int(F )) = F , and, similarly, for every G ∈ RC(X), φ(ψ(G)) = φ(cl(f(G))) =

cl(int(f−1(cl(f(G))))) ⊇ cl(int(G)) = G. Hence ψ is a left adjoint to φ (see 0.3.2.4),

i.e.,

ψ = φΛ.(2.37)

Let now F ∈ RC(Y ), G ∈ CR(X) and FρY φΛ(G); then F ∩ f(G) ̸= ∅ and hence

f−1(F ) ∩G ̸= ∅; therefore, φ(F )ρXG. So, the axiom (LO) is fulfilled. Hence, Ψt
o(f) is

an DOHLC-morphism. Therefore, the contravariant functor Ψt
o is well defined.

Let φ ∈ DOHLC((A, ρ,B), (B, η,B′)). Put C = Cρ and C
′ = Cη (see 1.2.3.4 for

the notation). Then, by 1.2.3.4, (A,C) and (B,C ′) are CNCA’s.

Set X = Ψa
o(A, ρ,B), Y = Ψa

o(B, η,B′) and f = Ψa
o(φ). Then, by the proof of

Theorem 2.5.3.3, f : Y −→ X is a continuous skeletal map. We are now going to

show that f is an open map. By (1.36), it is enough to prove that, for every b ∈ B′,

f(intY (λB(b))) is an open subset of X (note that λB(b) = λgB(b) because b ∈ B′).

Let us first note that if σ is a cluster in (B,C ′) then

b∗1, b
∗
2 ̸∈ σ implies that b1 ∧ b2 ∈ σ and (b1 ∧ b2)∗ ̸∈ σ.(2.38)

Indeed, if b∗1, b
∗
2 ̸∈ σ then, by (G), b∗1 ∨ b∗2 ̸∈ σ, i.e., (b1 ∧ b2)∗ ̸∈ σ; hence b1 ∧ b2 ∈ σ.

Note also that, using (1.31) and 1.2.1.9, one can easily show that for all a, b ∈ A,

a≪ρ b implies that λgA(a) ⊆ intX(λ
g
A(b)).(2.39)

Let now b ∈ B′. Let σ ∈ f(intY (λB(b))). Then there exists σ′ ∈ intY (λB(b)) such

that σ = f(σ′). By (1.35), b∗ ̸∈ σ′. Then 2.2.2.16 implies that there exists c1 ∈ B such

that b∗ ≪C′ c∗1 and c∗1 ̸∈ σ′. Since σ′ is a bounded cluster in (B,C ′), (2.2.3.1) implies

that there exists c2 ∈ B′ such that c∗2 ̸∈ σ′. Put b1 = c1∧c2. Then b1 ∈ B′∩σ′ (by (2.38)),

b∗1 ̸∈ σ′ (by (2.38)) and b∗ ≪C′ b∗1 (by (≪3) (see 1.2.1.1)). Thus b1 ≪C′ b. Therefore, by

(1.35) and (2.39), σ′ ∈ intY (λB(b1)) ⊆ λB(b1) ⊆ intY (λB(b)). By 1.2.2.3, there exists

u ∈ Ult(B) such that b1 ∈ u ⊆ σ′ and σ′ = σu. Put a = φΛ(b1). Then, by (2.25),

a ∈ f(σ′) = σ. Suppose that a∗ ∈ σ. We will show that this implies that φ(a∗) ∈ σ′.
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Indeed, suppose that φ(a∗) ̸∈ σ′. Then there exists c3 ∈ u such that φ(a∗)(−C ′)c3. Set

b2 = c2 ∧ c3. Then b2 ∈ u∩B′ and φ(a∗)(−C ′)b2. Since C
′ = Cη, we obtain, by 1.2.3.4,

that φ(a∗)(−η)b2. Using condition (LO), we get that a∗(−ρ)φΛ(b2). Since φΛ(b2) ∈ B
(by (L2)), we obtain that a∗(−C)φΛ(b2) (see again 1.2.3.4). By (Λ1), φ(φΛ(b2)) ≥ b2;

thus φ(φΛ(b2)) ∈ u. Hence φΛ(b2) ∈ φ−1(u). Since σ = f(σ′) = σφ−1(u) and a
∗ ∈ σ, we

have that a∗Cc, for every c ∈ φ−1(u). Therefore a∗CφΛ(b2), a contradiction. Hence,

φ(a∗) ∈ σ′, i.e., (φ(φΛ(b1)))
∗ ∈ σ′. Since, by (Λ1), b∗1 ≥ (φ(φΛ(b1)))

∗, we obtain that

b∗1 ∈ σ′, a contradiction. Thus, a∗ ̸∈ σ. Then, using (1.35), (2.39) and (2.29), we obtain

that σ ∈ intX(λA(a)) ⊆ λA(a) = λA(φΛ(b1)) = f(λB(b1)) ⊆ f(intY (λB(b))). Therefore,

f(intY (λB(b))) is an open set in X. Thus, f is an open map. Hence Ψa
o is well defined.

Further, it is easy to see that λgB is an DOHLC-isomorphism (use (1.31)). The

rest follows from Theorem 2.5.3.3.

Definition 2.5.4.3. LetDOHC be the category whose objects are all complete normal

contact algebras and whose morphisms are all DQHC-morphisms φ : (A,C) −→
(B,C ′) satisfying the following condition:

(CO) For all a ∈ A and all b ∈ B, aCφΛ(b) implies φ(a)C ′b (see 0.3.2.4 for φΛ).

It is easy to see that in this way we have indeed defined a category. The cate-

gory DOHC (resp., OHC) is a (non-full) subcategory of the category DQHC (resp.,

QHC).

Theorem 2.5.4.4. The categories OHC and DOHC are dually equivalent.

Proof. By 1.2.3.2, the class of normal contact algebras coincides with the class of local

contact algebras of the form (B, ρ,B) (i.e., those for which B = B). Hence, for normal

contact algebras, conditions (LO) and (CO) are identical. Now, using 1.2.2.8(b) (see

also its proof), we get that the restriction of the contravariant functor Ψa
o, defined in

the proof of Theorem 2.5.4.2, to the subcategory DOHC of the category DOHLC is

the desired duality functor.

Definition 2.5.4.5. Let DPOHLC be the category whose objects are all complete

local contact algebras (see 1.2.3.1) and whose morphisms are all DPSHLC-morphisms

satisfying condition (LO).

It is easy to see that in this way we have indeed defined a category. Clearly,

DPOHLC (respectively, POHLC) is a subcategory of the category DPSHLC (re-

spectively, PSHLC).
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Theorem 2.5.4.6. The categories POHLC and DPOHLC are dually equivalent.

Proof. It follows from Theorems 2.5.3.7 and 2.5.4.2.

Note that since the morphisms of the category POHLC are closed maps, the

proof of Theorem 2.5.4.2 (see there the text immediately after (2.35)) shows that in

the definition of the category DPOHLC (see 2.5.4.5) we can replace condition (LO)

with the following one:

(LO’) ∀a ∈ A and ∀b ∈ B, aρφΛ(b) implies φ(a)ηb.

2.5.5 Duality Theorems for categories of connected spaces

Notation 2.5.5.1. Following the notation rules given in 2.2.4.4, we denote by:

• PSHLCCon the full subcategory of the category PSHLC having as objects all

connected locally compact Hausdorff spaces;

• DPSHLCCon the full subcategory of the category DPSHLC having as objects all

connected CLCA’s.

Analogously, we introduce the notation POHLCCon, DOHCCon, OHCCon,

DPOHLCCon, SHCCon and DSHCCon for the “connected versions” of the cor-

responding categories.

Theorem 2.5.5.2. The categories PSHLCCon and DPSHLCCon are dually equiv-

alent; in particular, the categories SHCCon and DSHCCon are dually equivalent.

Proof. It follows immediately from 2.2.4.3, Theorem 2.5.3.7 and Theorem 2.5.2.11.

Theorem 2.5.5.3. The categories POHLCCon and DPOHLCCon are dually equ-

ivalent; in particular, the categories OHCCon and DOHCCon are dually equivalent.

Proof. It follows immediately from 2.2.4.3, Theorem 2.5.4.4 and Theorem 2.5.4.6.

Analogously we can formulate and prove the connected versions of the theorems

2.5.3.3 and 2.5.4.2.

2.5.6 Two generalizations of the Fedorchuk Equivalence The-
orem

Definition 2.5.6.1. ([54]) Let EQHC be the category whose objects are all complete

normal contact algebras and whose morphisms ψ : (A,C) −→ (B,C ′) are all functions

ψ : A −→ B satisfying the following conditions:
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(EF1) for every a ∈ A, ψ(a) = 0 iff a = 0;

(EF2) ψ preserves all joins;

(EF3) if a ∈ A, b ∈ B and b ≤ ψ(a) then there exists c ∈ A such that c ≤ a and

ψ(c) = b;

(EF4) for every a, b ∈ A, aCb implies that ψ(a)C ′ψ(b).

In [54], V. V. Fedorchuk proved the following theorem:

Theorem 2.5.6.2. ([54]) The categories QHC and EQHC are equivalent.

We will now present a generalization of this theorem.

Definition 2.5.6.3. Let ESHLC be the category whose objects are all complete local

contact algebras and whose morphisms ψ : (A, ρ,B) −→ (B, η,B′) are all functions ψ :

A −→ B satisfying conditions (EF1)-(EF3) (see Definition 2.5.6.1) and the following

two constraints:

(EL4) for every a, b ∈ A, aρb implies that ψ(a)ηψ(b);

(EL5) if a ∈ B then ψ(a) ∈ B′.

It is easy to see that in this way we have indeed defined a category.

The proof of the following theorem is similar to that of Theorem 2.5.6.2.

Theorem 2.5.6.4. The categories SHLC and ESHLC are equivalent.

Proof. Since the categories SHLC and DSHLC are dually equivalent (by Theorem

2.5.3.3), it is enough to show that the categories ESHLC and DSHLC are dually

equivalent.

Let us define a contravariant functor

Dp : ESHLC −→ DSHLC.

Let Dp be the identity on the objects of the category ESHLC and let, for every

ψ ∈ ESHLC((A, ρ,B), (B, η,B′)),

Dp(ψ) = ψP ,

where ψP is the right adjoint of ψ (see 0.3.2.4 and (EF2)). Setting φ = ψP , we have

to show that

φ ∈ DSHLC((B, η,B′), (A, ρ,B)).
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As it is proved in [54], φ is a complete Boolean homomorphism. For completeness

of our exposition, we will present here the Fedorchuk’s proof. Note first that ψ = φΛ.

By 0.3.2.4, φ preserves all meets in B. Since, by (EF1), ψ(0) = 0, we have that

φ(0) = φ(ψ(0)); if φ(0) > 0 then, by (EF1) and 0.3.2.4, 0 = ψ(0) = ψ(φ(ψ(0))) > 0,

a contradiction. Hence φ(0) = 0. Further, since ψ(1) ≤ 1 ⇐⇒ 1 ≤ φ(1), we get

that φ(1) = 1. Finally, φ(b∗) = (φ(b))∗, for every b ∈ B. Indeed, let b ∈ B. Set

a = φ(b) ∧ φ(b∗). Then, by 0.3.2.4, ψ(a) ≤ ψ(φ(b)) ∧ ψ(φ(b∗)) ≤ b ∧ b∗ = 0. Hence

ψ(a) = 0. Therefore, by (EF1), a = 0, i.e., φ(b) ∧ φ(b∗) = 0. Set now c = φ(b) ∨ φ(b∗)
and suppose that c < 1. Then c∗ ̸= 0. Since 0 = c∗ ∧ c = (c∗ ∧ φ(b)) ∨ (c∗ ∧ φ(b∗)),

we have that c∗ ∧ φ(b) = 0 = c∗ ∧ φ(b∗). By (EF1), ψ(c∗) ̸= 0. Obviously, ψ(c∗) =

(ψ(c∗)∧b)∨ (ψ(c∗)∧b∗). Therefore, at least one of the elements ψ(c∗)∧b and ψ(c∗)∧b∗

is different from 0. Let ψ(c∗)∧b ̸= 0. By (EF3), the inequality ψ(c∗)∧b ≤ ψ(c∗) implies

that there exists d ∈ A such that d ≤ c∗ and ψ(d) = ψ(c∗)∧ b. Since ψ(d) ̸= 0, we get,

by (EF1), that d ̸= 0. Further, ψ(d) ≤ b implies that d ≤ φ(b). Then d ≤ c∗∧φ(b) = 0,

i.e., d = 0, a contradiction. Analogously, we obtain a contradiction if ψ(c∗) ∧ b∗ ̸= 0.

So, c = 1, i.e., φ(b) ∨ φ(b∗) = 1. Hence, we have proved that φ(b∗) = (φ(b))∗. All this

shows that φ is a complete Boolean homomorphism.

Since conditions (L1) and (EL1) (see 2.5.3.1) are equivalent and ψ = φΛ, (EL4)

implies that φ satisfies condition (L1). Obviously, (EL5) implies that φ satisfies con-

dition (L2) (see 2.5.3.1). So, φ is a DSHLC-morphism. Now, from Dp(id) = id and

the formula (ψ2 ◦ ψ1)P = (ψ1)P ◦ (ψ2)P , we obtain that Dp is a contravariant functor.

Let us define a contravariant functor

Dl : DSHLC −→ ESHLC.

Let Dl be the identity on the objects of the category DSHLC and let, for every

φ ∈ DSHLC((A, ρ,B), (B, η,B′)),

Dl(φ) = φΛ,

where φΛ is the left adjoint of φ (see 0.3.2.4). Setting ψ = φΛ, we have to show that

ψ ∈ ESHLC((B, η,B′), (A, ρ,B)).

Since 0 ≤ φ(0) implies that ψ(0) ≤ 0, we get that ψ(0) = 0. If ψ(b) = 0 then

ψ(b) ≤ 0 and hence b ≤ φ(0) = 0, i.e., b = 0. Therefore, ψ satisfies condition (EF1).

Further, conditions (EF2), (EL4) and (EL5) are clearly satisfied by ψ. Finally, let
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a ≤ ψ(b). Set c = b ∧ φ(a). Then c ≤ b and, by 2.5.2.1(b), ψ(c) = a ∧ ψ(b) = a.

Therefore, ψ satisfies condition (EF3). So, ψ is an ESHLC-morphism. Now, it is

clear that Dl is a contravariant functor. Since the compositions of Dp and Dl are the

identity functors, we get that Dp is a duality. Put now

Ea
F = Ψa ◦Dp and Et

F = Dl ◦Ψt.

Then

Ea
F : ESHLC −→ SHLC and Et

F : SHLC −→ ESHLC

are the required equivalences.

We are now going to obtain one more generalization of the Fedorchuk Equivalence

Theorem 2.5.6.2.

Definition 2.5.6.5. Let EPSHLC be the category whose objects are all complete

local contact algebras (see 1.2.3.1) and whose morphisms are all ESHLC-morphisms

ψ : (A, ρ,B) −→ (B, η,B′) satisfying the following condition:

(EL6) if b ∈ B′ then ψP (b) ∈ B (where ψP is the right adjoint of ψ (see 0.3.2.4)).

It is easy to see that in this way we have indeed defined a category.

Theorem 2.5.6.6. The categories PSHLC and EPSHLC are equivalent.

Proof. Using Theorem 2.5.3.7, it is enough to show that the categories DPSHLC and

EPSHLC are dually equivalent. We will show that the restriction of the contravariant

functor Dp (defined in the proof of Theorem 2.5.6.4) to the category EPSHLC is the

required duality functor.

Let ψ ∈ EPSHLC((A, ρ,B), (B, η,B′)). Then, by (EL6), ψP satisfies condition

(L3). Hence, by the proof of Theorem 2.5.6.4, Dp(ψ) is a DPSHLC-morphism. Fur-

ther, let us consider the restriction of the contravariant functor Dl (defined in the

proof of Theorem 2.5.6.4) to the category DPSHLC. If φ is a DPSHLC-morphism

then, by (L3), φΛ satisfies condition (EL6). Hence Dl(φ) is an EPSHLC-morphism.

Therefore, Dp is a duality.

2.5.7 Equivalence Theorems for the categories OHLC, OHC,
POHLC

Definition 2.5.7.1. Let EOHLC be the category whose objects are all complete local

contact algebras and whose morphisms are all ESHLC-morphisms ψ : (A, ρ,B) −→
(B, η,B′) satisfying the following condition:
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(EL7) if b ∈ B, a ∈ B and ψ(a)ηb then aρψP (b) (where ψP is the right adjoint of ψ

(see 0.3.2.4)).

It is easy to see that in this way we have indeed defined a category.

Theorem 2.5.7.2. The categories OHLC and EOHLC are equivalent.

Proof. It is clear that if ψ satisfies condition (EL7) then ψP satisfies condition (LO)

(see 2.5.4.1) and if φ satisfies condition (LO) then φΛ satisfies (EL7). Now, using

Theorem 2.5.4.2, we argue as in the proof of Theorem 2.5.6.6.

Definition 2.5.7.3. Let EOC be the category whose objects are all complete normal

contact algebras and whose morphisms are all EQHC-morphisms ψ : (A,C) −→
(B,C ′) satisfying the following condition:

(EC7) if a ∈ A, b ∈ B and ψ(a)C ′ b then aC ψP (b) (where ψP is the right adjoint of ψ

(see 0.3.2.4)).

It is easy to see that in this way we have indeed defined a category.

Theorem 2.5.7.4. The categories OHC and EOC are equivalent.

Proof. It follows directly from Theorem 2.5.7.2.

Definition 2.5.7.5. Let EPOHLC be the category whose objects are all complete

local contact algebras and whose morphisms are all EPSHLC-morphisms satisfying

condition (EL7).

It is easy to see that in this way we have indeed defined a category.

Theorem 2.5.7.6. The categories POHLC and EPOHLC are equivalent.

Proof. It follows from the proofs of 2.5.6.6 and 2.5.7.2.

Remark 2.5.7.7. A great part of our Theorem 2.5.6.4 is formulated (in another form)

and proved in Roeper’s paper [99]. Let us state precisely what is done there (using

our notation). Roeper defines the notion of mereological mapping : such is any function

ψ : B −→ A, where A and B are complete Boolean algebras, which satisfies the

following conditions: (i) ψ(b) = 0 iff b = 0; (ii) a ≤ b implies ψ(a) ≤ ψ(b); (iii) if

0 ̸= a ≤ ψ(b), where b ∈ B and a ∈ A, then there exists b′ ∈ B such that 0 ̸= b′ ≤ b

and ψ(b′) ≤ a. It is shown that any mereological mapping preserves all joins in B.

Further, a mapping ψ of a CLCA (B, η,B′) to another CLCA (A, ρ,B) is called: (a)
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continuous if aηb implies ψ(a)ρψ(b), and (b) bounded if ψ(b) ∈ B when b ∈ B′. It

is shown that every continuous and bounded mereological mapping ψ : (B, η,B′) −→
(A, ρ,B) generates a function fψ : Ψa(B, η,B′) −→ Ψa(A, ρ,B), defined by the formula

fψ(σu) = σψ(u), for every u ∈ Ult(B); the function fψ is continuous (in topological

sense) and is such that cl(fψ(F )) is regular closed when F is regular closed. It is

proved that if f : Ψa(B, η,B′) −→ Ψa(A, ρ,B) is a continuous function such that

cl(f(F )) is regular closed when F is regular closed then there exists a continuous and

bounded mereological function ψ : (B, η,B′) −→ (A, ρ,B) such that f = fψ. Finally,

a mereological function ψ : (B, η,B′) −→ (A, ρ,B) is called topological if ψ(1B) = 1A,

ψ(a)ρψ(b) iff aηb, and ψ(b) ∈ B iff b ∈ B′; it is shown that if ψ is topological then fψ

is a homeomorphism and if f : Ψa(B, η,B′) −→ Ψa(A, ρ,B) is a homeomorphism then

there exists a topological function ψ : (B, η,B′) −→ (A, ρ,B) such that f = fψ.

It is easy to see that a function ψ : B −→ A is mereological iff it satisfies

conditions (EF1)-(EF3) (see Definition 2.5.6.1); ψ is continuous (respectively, bounded)

iff it satisfies condition (EL4) (respectively, (EL5)). Further, Lemma 2.5.2.6 shows that

a continuous map f : X −→ Y satisfies Roeper’s condition “cl(f(F )) ∈ RC(Y ) when

F ∈ RC(X)” iff f is a skeletal map. Therefore, our covariant functor Ea
F : ESHLC −→

SHLC (see the proof of Theorem 2.5.6.4) was defined in [99] in another but equivalent

form and it was shown there that Ea
F is full and isomorphism-dense; however, in [99]

it was not shown that Ea
F is faithful.

2.6 The dual objects and the dual morphisms of

some special subspaces and some special maps

2.6.1 Introduction

As it was shown by M. Stone [108], the dual objects of the closed subsets of a zero-

dimensional compact Hausdorff space (briefly, Stone space) X are the quotients of the

dual object of X. Also, M. Stone [108] proved that if f : X −→ Y is a continuous map

between two Stone spaces, then f is an injection (resp., surjection) iff its dual morphism

is a surjection (resp., injection). Some similar results were obtained by de Vries [24]

as well. Our investigations here are in this direction. In the second subsection of this

section, we characterize the injective and surjective morphisms of the categories HLC,

PHLC, SHLC and some of their subcategories discussed in the previous two sections

of this chapter by means of some corresponding properties of their dual morphisms
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determined by the duality described in Theorem 2.2.2.12. In this way we generalize

the corresponding results of de Vries [24] about the category HC. We characterize as

well the homeomorphic embeddings, dense embeddings, LCA-embeddings, and closed

embeddings by means of the corresponding properties of their dual maps. Our Theorem

2.6.2.12, in which we characterize LCA-embeddings, generalizes a theorem of Fedorchuk

[54, Theorem 6].

In the third subsection, the dual object Λt(M) of an open (respectively, regular

open, clopen, compact open, regular closed, etc.) subset M of a locally compact

Hausdorff space X is directly described by means of the dual object Λt(X) of X. Some

of these results (e.g., for regular closed sets) seem to be new even in the compact case.

The results of this section are based on the paper [31].

2.6.2 Characterizations of the embeddings, surjective and in-
jective maps by means of their dual maps

In this subsection we will characterize the injective and surjective morphisms of the cat-

egoryHLC and its subcategories PHLC, SHLC andOHLC, by means of correspond-

ing properties of their dual morphisms determined by the duality described in Theorem

2.2.2.12. In this way we will generalize some results of de Vries [24]. We will character-

ize as well the homeomorphic embeddings, dense embeddings, LCA-embeddings, etc.

by means of their dual morphisms. Our result about LCA-embeddings (see Theorem

2.6.2.12) generalizes a theorem of Fedorchuk [54, Theorem 6].

Recall that if X ∈ |HLC| then Λt(X) = (RC(X), ρX , CR(X)).

We start with a simple observation.

Proposition 2.6.2.1. Let f ∈ HLC(X,Y ), (A, ρ,B) = Λt(X), (B, η,B′) = Λt(Y ) and

φ = Λt(f). Then the following conditions are equivalent:

(a) φ is an injection,

(b) φ|B′ is an injection,

(c) clY (f(X)) = Y .

Proof. We have that φ : RC(Y ) −→ RC(X) and φ(G) = cl(f−1(int(G))), for every

G ∈ RC(Y ) (see Theorem 2.2.2.12).

Obviously, if φ is an injection then φ|B′ is an injection.

Let φ|B′ be an injection, G ∈ CR(Y ) and G ̸= ∅. Then φ(G) ̸= ∅, i.e., we obtain

that f−1(int(G)) ̸= ∅. This means that f(X) ∩ int(G) ̸= ∅. Thus cl(f(X)) = Y .
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Finally, let cl(f(X)) = Y , G,H ∈ RC(Y ), G ̸= H and φ(G) = φ(H). Then, by

the continuity of f ,

clY (f(clX(f
−1(intY (G))))) = clY (f((f

−1(intY (G)))) = clY (f(X) ∩ intY (G)) = G

and, analogously, clY (f(clX(f
−1(intY (H))))) = H. Hence G = H, a contradiction. So,

φ is an injection.

Theorem 2.6.2.2. Let f ∈ HLC(X,Y ), (A, ρ,B) = Λt(X), (B, η,B′) = Λt(Y ) and

φ = Λt(f). Then f is an injection iff φ : (B, η,B′) −→ (A, ρ,B) satisfies the following

condition:

(InHLC) For any a, b ∈ B, a(−ρ)b implies that there exist c, d ∈ B′ such that c ≪η d,

a ≤ φ(c) and φ(d)(−ρ)b.

Proof. Let f be an injection. We will show that φ satisfies condition (InHLC). Let

F,G ∈ CR(X) and F ∩ G = ∅. Since f is an injection, we get that f(F ) ∩ f(G) =

∅. Using the fact that f(F ) and f(G) are compact sets, we get that there exist

F ′, G′ ∈ CR(Y ) such that f(F ) ⊆ int(F ′) ⊆ F ′ ⊆ int(G′) ⊆ G′ ⊆ Y \ f(G). Then,

clearly, F ⊆ f−1(int(F ′)) ⊆ φ(F ′) and G ∩ φ(G′) = ∅ (because φ(G′) ⊆ f−1(G′) and

f−1(G′) ∩G = ∅). Therefore, φ satisfies condition (InHLC).

Let now φ satisfies condition (InHLC). We will prove that f is an injection. Let

x, y ∈ X and x ̸= y. Then there exist disjoint Fx, Fy ∈ CR(X) such that x ∈ Fx

and y ∈ Fy. Now, by condition (InHLC), there exist Gx, Gy ∈ CR(Y ) such that

Gx ⊆ int(Gy), Fx ⊆ cl(f−1(int(Gx))) and cl(f−1(int(Gy))) ∩ Fy = ∅. Since Fx ⊆
f−1(Gx), we get that f(x) ∈ Gx. Further, we have that Fy ∩ f−1(int(Gy)) = ∅. Thus

f(Fy)∩ int(Gy) = ∅. Then f(Fy)∩Gx = ∅, and therefore, f(x) ̸= f(y). Hence, f is an

injection.

Theorem 2.6.2.3. Let f ∈ HLC(X,Y ), (A, ρ,B) = Λt(X), (B, η,B′) = Λt(Y ) and

φ = Λt(f). Then f is a surjection iff φ : (B, η,B′) −→ (A, ρ,B) satisfies the following

condition:

(SuHLC) For any bounded ultrafilter v in (B, η,B′) there exists a bounded ultrafilter u

in (A, ρ,B) such that ∀b ∈ B′, (bηv) ↔ ((∀b′ ∈ B′)[(b≪η b
′) → (φ(b′)ρu)]).

Proof. Let f be a surjection and v be a bounded ultrafilter in (B, η,B′). Recall

that that (B, η,B′) = (RC(Y ), ρY , CR(Y )). Obviously,
∩
v is an one-point set. Let

146



{y} =
∩
v. Since f is a surjection, there exists x ∈ X such that f(x) = y. Recall our

notation (see 1.2.2.6)

σx = {F ∈ RC(X) | x ∈ F} and νx = {F ∈ RC(X) | x ∈ int(F )}.

There exists an ultrafilter u in (A, ρ,B) such that u ⊇ νx. Then it is easy to see that u ⊆
σx. Hence

∩
u = {x}. Let now G,H ∈ CR(Y ). Clearly, if y ∈ G then GρY v (i.e., Gηv).

Conversely, let GρY v. If y ̸∈ G then, using [53, Corollary 3.1.5], we get that there exists

G′ ∈ v such that G∩G′ = ∅, a contradiction. Hence, GρY v iff y ∈ G. In an analogous

way we obtain that cl(f−1(int(H)))ρXu iff x ∈ cl(f−1(int(H))). So, we have to show

that y ∈ G iff for all H ∈ CR(Y ), (G ⊆ int(H)) → (x ∈ cl(f−1(int(H)))). Let y ∈ G

and G ⊆ int(H) for some H ∈ CR(Y ). Then cl(f−1(int(H))) ⊇ f−1(G) ⊇ f−1(y) and

thus x ∈ cl(f−1(int(H))). Conversely, let x ∈ cl(f−1(int(H))) for every H ∈ CR(Y )

such that G ⊆ int(H). Suppose that y ̸∈ G. Then there exists H ∈ CR(Y ) such that

G ⊆ int(H) ⊆ H ⊆ Y \ {y}. Then cl(f−1(int(H))) ⊆ f−1(H) ⊆ X \ f−1(y). Thus

x ̸∈ cl(f−1(int(H))), a contradiction. So, φ satisfies condition (SuHLC).

Let now φ satisfies condition (SuHLC). We will show that f ′ = Λa(φ) is a sur-

jection. This will imply that f is a surjection. Let σ′ ∈ Y ′ = Λa(B, η,B′). Then there

exists a bounded ultrafilter v in (B, η,B′) such that σ′ = σv (see Theorem 1.2.2.3). By

condition (SuHLC), there exists a bounded ultrafilter u in (A, ρ,B) such that ∀b ∈ B′,

(bηv) ↔ ((∀b′ ∈ B′)[(b ≪η b
′) → (φ(b′)ρu)]). Then it is easy to see that f ′(σu) = σv

(see Theorem 2.2.2.12 for the definition of the map f ′). Hence, f ′ is a surjection.

The next theorem coincides, in fact, with our Theorem 2.4.4.1 which was proved

with the help of a theorem of de Vries [24]. We will now give a direct proof of it using

only our Proposition 2.6.2.1.

Theorem 2.6.2.4. Let f ∈ PHLC(X,Y ) and φ = Λt(f). Then f is a surjection iff

φ is an injection.

Proof. If f is a surjection then Proposition 2.6.2.1 implies that φ is an injection. Let

now φ be an injection. Then, by Proposition 2.6.2.1, cl(f(X)) = Y . Since f is a closed

map, we get that f is a surjection.

Obviously, Theorem 2.6.2.2 implies the following result:

Theorem 2.6.2.5. Let f ∈ PHLC(X,Y ), (A, ρ,B) = Λt(X), (B, η,B′) = Λt(Y ) and

φ = Λt(f). Then f is an injection iff φ satisfies condition (InHLC) (see Theorem

2.6.2.2).
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Note that a characterization of the injective PHLC-morphisms was given in our

Theorem 2.4.4.5 which was derived from a theorem of de Vries [24]. It seems that the

new condition looks better. Note also that Theorem 2.6.2.5 is new even in the compact

case.

Theorem 2.6.2.6. Let f ∈ SHLC(X,Y ), (A, ρ,B) = Λt(X), (B, η,B′) = Λt(Y ) and

φ = Λt(f). Then f is a surjection if and only if φ : (B, η,B′) −→ (A, ρ,B) satisfies

the following condition:

(SuSkeLC) For every bounded ultrafilter v in (B, η,B′) there exists a bounded ultrafilter

u in (A, ρ,B) such that φ−1(u)ηv.

Proof. Let f : X −→ Y be a surjective continuous skeletal map between two locally

compact Hausdorff spaces and φ = Ψt
1(f) (note that, by Proposition 2.5.3.4, Ψt

1(f) =

Λt(f)). Then φ : RC(Y ) −→ RC(X) and φΛ(F ) = cl(f(F )), for every F ∈ RC(X)

(see (2.36) and (2.37)). Let v be a bounded ultrafilter in RC(Y ). Then there exists

G0 ∈ CR(Y ) ∩ v. Hence there exists y ∈
∩
{G | G ∈ v}. Since f is a surjection, there

exists x ∈ X such that f(x) = y. Let u be an ultrafilter in RC(X) which contains νx

(see 1.2.2.6 for νx). Then, obviously, u is a bounded ultrafilter in (RC(X), ρX , CR(X)).

It is easy to see that u ⊆ σx (see 1.2.2.6 for σx). Hence y ∈ φΛ(F ), for every F ∈ u.

This means that φΛ(u)ρY v. Since φΛ(u) is a filter-base of φ−1(u) (see (2.23)), we get

that φ−1(u)ρY v. Therefore, φ satisfies condition (SuSkeLC).

Let φ satisfies condition (SuSkeLC). Set f ′ = Ψa
1(φ). Let X ′ = Λa(A, ρ,B),

Y ′ = Λa(B, η,B′) and σ ∈ Y ′. Then σ is a bounded cluster in (B, η,B′). Hence there

exists a bounded ultrafilter v in (B, η,B′) such that σ = σv. By (SuSkeLC), there exists

a bounded ultrafilter u in (A, ρ,B) such that φ−1(u)ηv. Thus φ−1(u)Cηv. Therefore,

by (2.22), f ′(σu) = σφ−1(u) = σv = σ. So, f ′ is a surjection. Then, by Theorem 2.5.3.3,

f is also a surjection.

Obviously, in condition (SuSkeLC), “φ−1(u)ηv” can be replaced by “φΛ(u)ηv”.

Note that it is easy to see that condition (SuSkeLC) implies condition (SuHLC)

when φ is a DSHLC-morphism. This provides with a new proof the sufficiency part

of Theorem 2.6.2.6.

Theorem 2.6.2.7. Let f ∈ SHLC(X,Y ), (A, ρ,B) = Λt(X), (B, η,B′) = Λt(Y ) and

φ = Λt(f). Then f is an injection if and only if φ : (B, η,B′) −→ (A, ρ,B) satisfies

the following condition:

(InSkeLC) ∀a, b ∈ B, φΛ(a)ηφΛ(b) implies aρb (here φΛ is the left adjoint of φ).
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Proof. Let f : X −→ Y be an injective continuous skeletal map. The function

φΛ : RC(X) −→ RC(Y ) is defined by φΛ(F ) = cl(f(F )), for every F ∈ RC(X) (see

(2.36) and (2.37)). Hence, for F ∈ CR(X), φΛ(F ) = f(F ). Since f is an injection, it

becomes obvious that φ satisfies condition (InSkeLC).

Let φ satisfies condition (InSkeLC). We will show that f is an injection. Let

x, y ∈ X and x ̸= y. Then there exist disjoint Fx, Fy ∈ CR(X) such that x ∈ Fx and

y ∈ Fy. If f(x) = f(y) then f(Fx) ∩ f(Fy) ̸= ∅, i.e., φΛ(Fx)ηφΛ(Fy), and, hence, by

(InSkeLC), Fx ∩ Fy ̸= ∅, a contradiction. Thus, f(x) ̸= f(y).

Again, it is easy to see that condition (InSkeLC) implies condition (InHLC) when

φ is a DSHLC-morphism.

Theorem 2.6.2.8. Let f ∈ OHLC(X,Y ), (A, ρ,B) = Λt(X), (B, η,B′) = Λt(Y ) and

φ = Λt(f). Then f is an injection if and only if φ is a surjection.

Proof. Let φ be a surjection. Let a, b ∈ B and φΛ(a)ηφΛ(b). Then, by condition (LO)

(see Definition 2.5.4.1), φ(φΛ(a))ρb. Since surjectivity of φ implies that φ(φΛ(a)) = a,

we get that aρb. Therefore, φ satisfies condition (InSkeLC). Hence, by Theorem 2.6.2.7,

f is an injection.

Let f : X −→ Y be an injective open map. Then φ(G) = f−1(G), for every

G ∈ RC(Y ) (see (2.35)). For every F ∈ RC(X) we have, by Corollary 2.5.2.5(a) and

Lemma 2.5.2.6, that cl(f(F )) ∈ RC(Y ). Set G = cl(f(F )). Then, by [53, 1.4.C],

f−1(G) = cl(f−1(f(F ))) (because f is an open map), and the injectivity of f implies

that f−1(G) = F . Hence φ(G) = F . Therefore, φ is a surjection.

If f ∈ OHLC(X,Y ) then, obviously, f ∈ SHLC(X,Y ) and thus for determining

when f is a surjection, we can use Theorem 2.6.2.6; therefore, f is a surjection iff it

satisfies condition (SuSkeLC).

Now we will be occupied with the homeomorphic embeddings. We will call them

embeddings for short.

Theorem 2.6.2.9. Let f ∈ HLC(X,Y ), (A, ρ,B) = Λt(X), (B, η,B′) = Λt(Y ) and

φ = Λt(f). Then f is a dense embedding iff φ is a Boolean isomorphism satisfying the

following condition:

(LO′′) ∀b ∈ B and ∀a ∈ B, φ−1(a)ηb implies aρφ(b).

Proof. Let f be a dense embedding of X in Y . Then f(X) is a locally compact dense

subspace of Y and hence it is open in Y . Thus f is an open injection. Therefore,
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by Theorem 2.5.4.2 and Proposition 2.5.3.4, φ is a complete homomorphism satisfying

condition (LO) (see Definition 2.5.4.1). Put Z = f(X) and let i : Z −→ Y be the

embedding of Z in Y . Then ψ = Λt(i) : RC(Y ) −→ RC(Z) is defined by the formula

ψ(F ) = clZ(Z∩intY (F )) = F∩Z, for every F ∈ RC(Y ). Hence, by Lemma 0.4.2.2, ψ is

a Boolean isomorphism. Since f = i ◦ f�X , we obtain that φ is a Boolean isomorphism

as well. Then φΛ = φ−1 and thus condition (LO) coincides with condition (LO′′)

(because the only one difference between these two conditions is that φ−1 in (LO′′) is

replaced with φΛ in (LO)). So, φ is a Boolean isomorphism satisfying condition (LO′′).

Conversely, let φ be a Boolean isomorphism satisfying condition (LO′′). Then φ

is a complete homomorphism satisfying condition (LO). Obviously, condition (DLC3S)

implies condition (L1). By Proposition 2.5.3.2, condition (DLC4) implies condition

(L2). Hence, φ is a DOHLC-morphism (see Definition 2.5.4.1). Thus, by Theorem

2.5.4.2, f is an open map. Since, by Theorem 2.6.2.8, f is an injection, we get that f

is an embedding. Finally, by Proposition 2.6.2.1, f(X) is dense in Y .

Remark 2.6.2.10. Note that, in the notation of Theorem 2.6.2.9, f is a closed em-

bedding iff φ satisfies conditions (PAL5) (see Definition 2.4.2.1) and (InHLC) (see

Theorem 2.6.2.2); this follows from Theorems 2.4.2.2 and 2.6.2.2.

Proposition 2.6.2.11. Let f ∈ HLC(X,Y ), (A, ρ,B) = Λt(X), (B, η,B′) = Λt(Y )

and φ = Λt(f). Then f is an embedding iff there exists a complete LCA (A1, ρ1,B1) and

DHLC-morphisms φ1 : (A1, ρ1,B1) −→ (A, ρ,B) and φ2 : (B, η,B′) −→ (A1, ρ1,B1)

such that φ = φ1 ◦φ2, φ1 is a Boolean isomorphism satisfying condition (LO′′) and φ2

satisfies conditions (PAL5) and (InHLC).

Proof. Obviously, f is an embedding iff f = i◦ f1 where f1 is a dense embedding and i

is a closed embedding. (Indeed, when f is an embedding then let f1 : X −→ clY (f(X))

be the restriction of f and i : clY (f(X)) −→ Y be the inclusion map; the converse is

also clear.) Setting φ1 = Λt(f1) and φ2 = Λt(i), we get, by Theorem 2.2.2.12, that

φ = φ1 ◦ φ2. Now our assertion follows from Theorem 2.6.2.9 and Remark 2.6.2.10.

Now we are going to characterize those DSHLC-morphisms which are LCA-

embeddings. This will imply a generalization of a theorem of Fedorchuk [54, Theorem

6].

Recall that a continuous mapping f : X −→ Y is said to be semi-open ([119]) if

for every point y ∈ f(X) there exists a point x ∈ f−1(y) such that, for every M ⊆ X,

x ∈ intX(M) implies that y ∈ intf(X)(f(M)).
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Theorem 2.6.2.12. Let f ∈ SHLC(Y,X). Then φ = Λt(f) is an LCA-embedding iff

f is a semi-open perfect surjection.

Proof. Note that, by Theorem 2.5.3.3 and Proposition 2.5.3.4, φ is a complete Boolean

homomorphism. Recall also that when the map f is closed then it is quasi-open (see

Corollary 2.5.2.5(b)).

Let (A, ρ,B) = Λt(X) and (B, η,B′) = Λt(Y ). Then φ : (A, ρ,B) −→ (B, η,B′).

Set C = Cρ and C ′ = Cη (see Definition 1.2.3.4 for the notation). Then, by Lemma

1.2.3.5, (A,C) and (B,C ′) are CNCA’s. By (1.26) and (1.22), Λa(A,C) = αX =

X ∪ {σA∞} and Λa(B,C ′) = αY = Y ∪ {σB∞}.
Let φ be an LCA-embedding, i.e., φ : A −→ B is a Boolean embedding such

that, for any a, b ∈ A, aρb iff φ(a)ηφ(b), and a ∈ B iff φ(a) ∈ B′; hence φ satisfies

condition (PAL5) (see Definition 2.4.2.1). Then, by Theorems 2.6.2.4 and 2.4.2.2, f is

a perfect surjection. It remains to show that f is semi-open. Denote by φc the map

φ regarded as a function from (A,C) to (B,C ′). Obviously, φc satisfies condition (F1)

(see 2.5.2.10). We will show that φc is an NCA-embedding. Indeed, for any a, b ∈ A,

we have that aCb iff aρb or a, b ̸∈ B; since φ is an LCA-embedding, we obtain that aCb

iff φc(a)C
′φc(b). So, φc is an NCA-embedding and a DQHC-morphism (see Theorem

2.5.2.11). Then, by Theorem 6 of Fedorchuk’s paper [54], fc = Λa(φc) : αY −→ αX is

a semi-open map. If 1A ̸∈ B and 1B ̸∈ B′ then f−1
c (σA∞) = {σB∞} (see (2.33)) and since

f = (fc)|Y , we obtain that f is semi-open. Further, if 1A ∈ B and 1B ∈ B′ then the

fact that f is semi-open is obvious. Since only these two cases are possible in the given

situation, we have proved that f is a perfect quasi-open semi-open surjection.

Conversely, let f be a perfect semi-open surjection. Then, by Theorem 2.6.2.4,

φ is an injection. Hence φΛ ◦ φ = idA. Thus, if φ(a) ∈ B′ then, by (L2) (see Theorem

2.5.3.3 and Definition 2.5.3.1), a = φΛ(φ(a)) ∈ B. Since f is perfect, Theorem 2.4.2.2

implies that φ satisfies condition (PAL5). Using it, we obtain that a ∈ B iff φ(a) ∈ B′.

Since (L1) takes place (see Theorem 2.5.3.3 and Definition 2.5.3.1), it remains only to

prove that aρb implies φ(a)ηφ(b), for all a, b ∈ A. Let F,G ∈ RC(X), F ∩G ̸= ∅ and

x ∈ F ∩ G. Set U = int(F ) and V = int(G). Then x ∈ cl(U) ∩ cl(V ). Since f is a

semi-open surjection, there exists y ∈ f−1(x) such that, for everyM ⊆ Y , y ∈ intY (M)

implies that x ∈ intX(f(M)). We will show that y ∈ cl(f−1(U)) ∩ cl(f−1(V )). Indeed,

suppose that y ̸∈ cl(f−1(U)). Then there exists an open neighborhoodOy of y such that

Oy∩f−1(U) = ∅. Thus f(Oy)∩U = ∅. Since x ∈ cl(U) and x ∈ int(f(Oy)), we obtain

a contradiction. Hence y ∈ cl(f−1(U)). Analogously we show that y ∈ cl(f−1(V )).
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Therefore, y ∈ cl(f−1(U)) ∩ cl(f−1(V )) = φ(F ) ∩ φ(G). So, we get that aρb implies

φ(a)ηφ(b). Therefore, φ is an LCA-embedding.

2.6.3 The construction of the dual objects of the open and
regular closed sets

In Theorem 2.2.2.4, we proved that the frame of all open subsets of a locally compact

Hausdorff space X is isomorphic to the frame of δ-ideals of Λt(X). Here we deter-

mine the types of δ-ideals which correspond to clopen, regular open and compact open

subsets of X ∈ |HLC|. This is by analogy with the results of M. Stone from [108].

Moreover, we describe explicitly the dual objects of the open subsets of a locally com-

pact Hausdorff space X using only the dual object of X and the corresponding δ-ideal.

We also show how the dual object Λt(F ) of a regular closed subset F of a locally

compact Hausdorff space X can be constructed by means of the dual object Λt(X) of

X.

By analogy with the Stone’s terminology from [107, 108], a δ-ideal J of an LCA

(A, ρ,B) will be called a simple δ-ideal if it has a complement in the frame I(A, ρ,B),
i.e., if J ∨¬J = B (here ¬J is the pseudocomplement of J in the frame I(A, ρ,B)) (see
Definition 2.2.2.1 for the notation); further, the regular elements of the frame I(A, ρ,B)
(i.e., those J ∈ I(A, ρ,B) for which ¬¬J = J) will be called normal δ-ideals.

Corollary 2.6.3.1. Let (A, ρ,B) be a CLCA, (X,O) = Λa(A, ρ,B), J be a δ-ideal of

(A, ρ,B) and U = ι(J) (see Theorem 2.2.2.4 for ι). Then:

(a) U is a clopen set iff J is a simple δ-ideal of (A, ρ,B);

(b) U is a regular open set ⇐⇒ J is a normal δ-ideal of (A, ρ,B) ⇐⇒ J is a

principal δ-ideal of (A, ρ,B);

(c) U is a compact open set iff J is a principal ideal of B.

Proof. Since the map ι is a frame isomorphism (see Theorem 2.2.2.4), it preserves and

reflects the regular elements and the elements which have a complement. Note also

that the pseudocomplement ¬U of U in the frame (O,⊆) is the set int(X \ U).
(a) Clearly, U is a clopen set iff it has a complement in the frame (O,⊆) iff J is a

simple δ-ideal.

(b) Obviously, U is a regular open set iff it is a regular element of the frame (O,⊆).

Thus our assertion follows from the second statement in Theorem 2.2.2.4.
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(c) We have that U is a compact open set ⇐⇒ U = λgA(a) for some a ∈ B such that

a ≪ρ a ⇐⇒ U = λgA(a) for some a ∈ B such that the set {b ∈ B | b ≤ a} is a δ-ideal

of (A, ρ,B) ⇐⇒ J = {b ∈ B | b ≤ a} for some a ∈ B.

We have seen that the open sets correspond to the δ-ideals. Now we are going to

describe explicitly the dual objects of the open subsets of a locally compact Hausdorff

space X using only the dual object of X and the corresponding δ-ideal.

Recall that if A is a Boolean algebra and a ∈ A then the set ↓ (a) endowed with

the same meets and joins as in A and with complements b′ defined by the formula

b′ = b∗ ∧ a,

for every b ≤ a, is a Boolean algebra; it is denoted by

A|a.

If J =↓ (a∗) then A|a is isomorphic to the factor algebra A/J ; the isomorphism h :

A|a −→ A/J is the following: h(b) = [b], for every b ≤ a (see, e.g., [102]).

Theorem 2.6.3.2. Let X be a locally compact Hausdorff space and U be an open subset

of X. Let aU = clX(U), I = {F ∈ CR(X) | F ⊆ U} and B = RC(X)|aU . For every

a, b ∈ B, set aηb iff there exist c, d ∈ I such that cρXd (i.e., c ∩ d ̸= ∅), c ≤ a and

d ≤ b. Then (B, η, I) is LCA-isomorphic to Λt(U).

Proof. Set, for short, (A, ρ,B) = Λt(X) (i.e., (A, ρ,B) = (RC(X), ρX , CR(X))) and let

the map φ : A −→ B be defined by the formula φ(a) = a∧ aU , for every a ∈ A. Then,

obviously, B is a complete Boolean algebra and φ is a surjective complete Boolean

homomorphism.

It is easy to see that I is a δ-ideal of (A, ρ,B) and aU =
∨
A I.

If I = {0} then U = ∅, aU = 0, B = {0}; hence, in this case the assertion of the

theorem is true. Thus, let us assume that I ̸= {0}.
We will first check that (B, η, I) is a CLCA, i.e., that conditions (C1)-(C4) and

(BC1)-(BC3) (see Definitions 1.2.1.1 and 1.2.3.1) are fulfilled. Note that, for every

a, b ∈ B, aηb implies that aρb; thus, if a≪ρ b then a(−ρ)b∗ and hence a(−ρ)(b∗ ∧ aU),
which implies that a≪η b.

Let b ∈ B \ {0}. Then b =
∨
{c ∧ b | c ∈ I}. Thus there exists c ∈ I such that

c ∧ b ̸= 0. We get that d = c ∧ b ∈ I, d ≤ b and dρd. Therefore bηb. So, the axiom

(C1) is fulfilled. Using the same notation, we get that there exists a ∈ B \ {0} such
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that a ≪ρ d. Then a ∈ I \ {0} and a ≪η b. Therefore, the axiom (BC3) is checked

as well. Clearly, the axioms (C2), (C3) and (BC2) are satisfied. Let a, b1, b2 ∈ B and

aη(b1 ∨ b2). Then there exist c, d ∈ I such that c ≤ a, d ≤ b1 ∨ b2 and cρd. Since

d = (d ∧ b1) ∨ (d ∧ b2), we get that either cρ(d ∧ b1) or cρ(d ∧ b2). Clearly, this implies

that either aηb1 or aηb2. The converse implication is obvious. So, we obtain that the

axiom (C4) is also fulfilled.

Let a ∈ I, b ∈ B and a ≪η b. Then a(−η)(b∗ ∧ aU). Thus, for every c ∈ I such

that c ≤ b∗, we have that a(−ρ)c. Since a ∈ I and I is a δ-ideal of (A, ρ,B), we get

that there exists c ∈ I such that a ≪ρ c ≪ρ aU . Then c ∧ b∗ ≤ b∗ and c ∧ b∗ ∈ I.

Thus a(−ρ)(c ∧ b∗), i.e a≪ρ (c
∗ ∨ b). Combining this fact with the inequality a≪ρ c,

we get that a ≪ρ (c ∧ (c∗ ∨ b)), i.e., a ≪ρ (b ∧ c). Then there exists d ∈ B such that

a ≪ρ d ≪ρ (c ∧ b). Since c ∧ b ∈ I, we get that d ∈ I. Therefore, a ≪ρ d ≪ρ b. This

implies that a≪η d≪η b. Thus, the axiom (BC1) is checked.

So, we have proved that (B, η,B′) is a CLCA.

We will show that φ is a DOHLC-morphism, i.e., that φ satisfies axioms (L1),

(L2) and (LO) (see Theorems 2.5.3.3 and 2.5.4.2). Note first that, for every a ∈ B,

φΛ(a) = a.(2.40)

This observation shows that φ satisfies conditions (L2) and (EL1) (note that condition

(EL1) is equivalent to the condition (L1)). Let us prove that the axiom (LO) is fulfilled

as well. Let a ∈ A, b ∈ I and φΛ(b)ρa. Then aρb. We have to show that bηφ(a), i.e.,

that bη(a ∧ aU). Suppose that b(−η)(a ∧ aU). Then, for every c ∈ I such that c ≤ a,

we have that b(−ρ)c. Since I is a δ-ideal of (A, ρ,B), there exists d ∈ I such that

b ≪ρ d ≪ρ aU . Then d ∧ a ∈ I and d ≤ a. Hence b(−ρ)(d ∧ a), i.e., b ≪ρ (d∗ ∨ a∗).
Since b ≪ρ d, we get that b ≪ρ (d ∧ (d∗ ∨ a∗)). Thus b ≪ρ a∗, i.e., b(−ρ)a, a

contradiction. Therefore, condition (LO) is checked. So, φ is a DOHLC-morphism.

Thus, if we set f = Λa(φ), then Theorem 2.5.4.2 and Proposition 2.5.3.4 imply that f

is an open mapping.

Set X ′ = Λa(A, ρ,B), U ′ = Λa(B, η, I) and V = ι(I) (i.e., by Theorem 2.2.2.4,

V =
∪
{λgA(b) | b ∈ I}). Then V is open in X ′ (see Theorem 2.2.2.4) and cl(V ) =

λgA(aU). The fact that I is a δ-ideal of (A, ρ,B) implies that {int(λgA(b)) | b ∈ I}
is an open cover of V . Since φ is a surjection, we obtain, by Theorem 2.6.2.8, that

f : U ′ −→ X ′ is an open injection and hence f is a homeomorphism between U ′ and

f(U ′). Let us show that f(U ′) = V . Recall that the function f is defined by the

formula f(σu) = σφ−1(u)(= σφΛ(u)), where u is a bounded ultrafilter in (B, η, I) (see
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Theorem 2.5.3.3 and Proposition 2.5.3.4). Now, if σu ∈ U ′ then there exists a ∈ I ∩ u.
Since φ(a) = a ∧ aU = a, we get that a ∈ φ−1(u). Thus f(σu) ∈ λgA(a) ⊆ V . Hence,

f(U ′) ⊆ V . Conversely, if σ′ ∈ V then there exists a ∈ σ′ ∩ I. Thus, there exists an

ultrafilter v in A such that a ∈ v and σ′ = σv. Obviously, v ∩ I is a filter-base of v

(because a ∈ v ∩ I and I is an ideal). It is clear that u = v ∩ B is a bounded filter

in (B, η, I). Moreover, u is an ultrafilter in B. Indeed, let c ∈ B =↓A (aU). If c ∈ v

then c ∈ u. If c∗ ∈ v then a ∧ c∗ ∈ v ∩ B and thus c′ = c∗ ∧ aU ∈ u. Hence, u is

a bounded ultrafilter in (B, η, I). Since φΛ(u) = u and u is a filter-base of v, we get

that f(σu) = σφΛ(u) = σv = σ′. Therefore, f(U ′) = V . Hence, U ′ is homeomorphic to

V . We will now show that U is homeomorphic to V . Since the map tX : X −→ X ′,

x 7→ σx, is a homeomorphism (see the proof of Theorem 1.2.3.10), it is enough to

show that tX(U) = V . Recall that V =
∪
{λgA(a) | a ∈ I} = {σ ∈ X ′ | σ ∩ I ̸= ∅}.

Let now x ∈ U . Then there exists F ∈ I such that x ∈ F . Then F ∈ σx and thus

σx ∈ V , i.e., tX(x) ∈ V . Hence tX(U) ⊆ V . Conversely, let σ ∈ V . Then there

exists F ∈ σ ∩ I. Since V ⊆ X ′ and tX is a surjection, there exists x ∈ X such that

σ = tX(x) = σx. This implies that x ∈ F and thus x ∈ U . So, V ⊆ tX(U). Hence, U is

homeomorphic to V . Therefore, U is homeomorphic to U ′. Now, by Theorem 2.2.2.12,

Λt(U) is LCA-isomorphic to (B, η, I).

We will now show how one can construct the dual object Λt(F ) of a regular closed

subset F of a locally compact Hausdorff space X using only F and the dual object

Λt(X) of X.

Theorem 2.6.3.3. Let X be a locally compact Hausdorff space and F ∈ RC(X). Set

B = RC(X)|F , B′ = {G ∧ F | G ∈ CR(X)} and let, for every a, b ∈ B, aηb iff aρXb

(i.e., a ∩ b ̸= ∅). Then (B, η,B′) is LCA-isomorphic to Λt(F ).

Proof. Set, for short, (A, ρ,B) = Λt(X) (i.e., (A, ρ,B) = (RC(X), ρX , CR(X))) and

let φ : A −→ B be defined by the formula φ(G) = G∧F , for every G ∈ A. Then B is a

complete Boolean algebra, φ is a complete Boolean homomorphism and φΛ(a) = a, for

every a ∈ B. We will show that ψ = (φΛ)�B : B −→ φΛ(B) is a Boolean isomorphism

between B and RC(F ). Since F ∈ RC(X), we have, as it is well known, that RC(F ) ⊆
RC(X) and RC(F ) = {G ∧ F | G ∈ RC(X)}; moreover, RC(F ) = RC(X)|F . Hence
ψ : B −→ RC(F ) is a Boolean isomorphism. Further, for any a, b ∈ B, we have that

aηb ⇐⇒ φΛ(a)ρφΛ(b) ⇐⇒ ψ(a)ρFψ(b). Finally, for any a ∈ B, we have that

a ∈ B′ ⇐⇒ φΛ(a) ∈ B ⇐⇒ φΛ(a) is compact ⇐⇒ ψ(a) ∈ CR(F ). Therefore,

(B, η,B′) is a CLCA because (RC(F ), ρF , CR(F )) is such, and they are isomorphic.
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Let X ′ = Λa(A, ρ,B), G = Λa(B, η,B′), f = Λa(φ) and F ′ = λgA(F ). We will

show that f : G −→ X ′ is a homeomorphic embedding and f(G) = F ′. Note that

φ satisfies conditions (L1), (L2), (PAL5) and condition (InSkeLC), and hence, by

Theorems 2.5.3.3, 2.6.2.7 and 2.4.2.8, f is a quasi-open perfect injection, i.e., f is a

homeomorphic embedding. From (2.29) we get that, for every b ∈ B′, f(λgB(b)) =

λgA(φΛ(b)) = λgA(b) ⊆ F ′. Since G =
∪
{λgB(b) | b ∈ B′}, we obtain that f(G) ⊆ F ′.

Let σ ∈ intX′(F ′). Then there exists b ∈ B such that σ ∈ intX′(λgA(b)) ⊆ λgA(b) ⊆
intX′(F ′). Hence b ∈ B′. Using again (2.29), we get that σ ∈ f(λgB(b)), i.e., σ ∈ f(G).

Thus intX′(F ′) ⊆ f(G). Since f(G) is closed in X ′, we conclude that f(G) ⊇ F ′.

Therefore, f(G) = F ′. So, G is homeomorphic to F ′. We will show that F and F ′

are homeomorphic. Since the map tX : X −→ X ′, x 7→ σx, is a homeomorphism

(see the proof of Theorem 1.2.3.10), it is enough to show that tX(F ) = F ′, i.e., that

tX(F ) = λgA(F ). Let x ∈ F . Then F ∈ σx and thus σx ∈ λgA(F ). So, tX(F ) ⊆ λgA(F ).

Conversely, let σ ∈ λgA(F ). Then there exists x ∈ X such that σ = σx. Hence F ∈ σx

and thus x ∈ F . Therefore, λgA(F ) ⊆ tX(F ). So, F and F ′ are homeomorphic. This

implies that F and G are homeomorphic. Then, by Theorem 2.2.2.12, Λt(F ) is LCA-

isomorphic to (B, η,B′).

We will finish with mentioning some assertions about isolated points and a char-

acterization of extremally disconnected locally compact Hausdorff spaces. All these

statements have easy proofs which will be omitted.

Proposition 2.6.3.4. Let (A, ρ,B) be an LCA, X = Λa(A, ρ,B) and a ∈ A. Then a

is an atom of A iff λgA(a) is an isolated point of the space X. Also, for every isolated

point x of X there exists an a ∈ B such that a is an atom of B (equivalently, of A)

and {x} = λgA(a).

Proposition 2.6.3.5. Let (A, ρ,B) be an LCA and X = Λa(A, ρ,B). Then X is a

discrete space iff B coincides with the set of all finite sums of the atoms of A.

Proposition 2.6.3.6. Let (A, ρ,B) be an LCA and X = Λa(A, ρ,B). Then the set of

all isolated points of X is dense in X iff A is an atomic Boolean algebra iff B is an

atomic 0-pseudolattice.

Proposition 2.6.3.7. Let (A, ρ,B) be a CLCA and X = Λa(A, ρ,B). Then X is an

extremally disconnected space iff a≪ρ a, for every a ∈ A.
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Chapter 3

Some generalizations of the Stone
Duality Theorem

3.1 Introduction

In this chapter we develop further the ideas from the previous chapters (see Remark

3.2.1.2 below) and obtain some extensions of the famous Stone Duality Theorem [108].

Recall that in 1937, M. Stone [108] proved that there exists a bijective correspondence

Sl between the class of all (up to homeomorphism) zero-dimensional locally compact

Hausdorff spaces (briefly, Boolean spaces) and the class of all (up to isomorphism)

generalized Boolean algebras (briefly, GBAs) (or, equivalently, Boolean rings with or

without unit). In the class of compact Boolean spaces (briefly, Stone spaces) this

bijection can be extended to a duality St : Stone −→ BoolAlg between the category

Stone of Stone spaces and continuous maps and the category BoolAlg of Boolean

algebras and Boolean homomorphisms; this is the classical Stone Duality Theorem. In

1964, H. P. Doctor [45] showed that the Stone bijection Sl can be even extended to

a duality between the category PBoolSp of all Boolean spaces and all perfect maps

between them and the category GenBoolAlg of all GBAs and suitable morphisms

between them. It is natural to ask whether there exists such an extension over the

category BoolSp of all Boolean spaces and all continuous functions between them.

Let us mention that it is even not easy to obtain a duality for the category PBoolSp.

Indeed, to every Boolean spaceX, M. Stone juxtaposed the generalized Boolean algebra

KO(X) of all compact open subsets of X and reconstructed from it the space X

(up to homeomorphism). If f : X −→ Y is a continuous map between two Stone

spaces then its dual map φ = St(f) : CO(Y ) −→ CO(X) is defined by the formula

φ(G) = f−1(G), for every G ∈ CO(Y ). If, however, f : X −→ Y is a continuous
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map between two Boolean spaces and at least the space X is not compact then the

preimages f−1(G) of the elements G of KO(Y ) are not obliged to be elements of the

set KO(X). These preimages will belong to KO(X) iff the map f is perfect; then

it is natural to expect that the category of GBAs and pseudolattice homomorphisms

preserving zero elements (or, equivalently, the category BoolRng of Boolean rings and

ring homomorphisms) will be the dual category of the category PBoolSp of Boolean

spaces and perfect maps. However it is not the case. For example, if X and Y are

two non-empty non-compact Boolean spaces and the 0-pseudolattice homomorphism

φ0 : KO(Y ) −→ KO(X) is defined by φ0(G) = 0(= ∅) for every G ∈ KO(Y ),

then there is no function f : X −→ Y such that φ0(G) = f−1(G), for every G ∈
KO(Y ). Hence, even in the case of perfect maps, the mentioned homomorphisms

are too much. In fact, as it is proved by D. Hofmann [70], the category BoolRng

is dually equivalent to the category pStone of pointed Stone spaces and continuous

maps preserving the fixed points. Thus, if one looks for a dual category to the category

PBoolSp, having GBAs as objects, then this category has to have as morphisms some

subclass of the class of pseudolattice homomorphisms preserving zero elements. Such

a category was described by H. P. Doctor [45] and here it is named GenBoolAlg (see

Theorem 3.2.2.17 below where two duality functors Θt
g : PBoolSp −→ GenBoolAlg

and Θa
g : GenBoolAlg −→ PBoolSp are defined). If we want to find a dual category

to the category BoolSp then it is clear that in this case the preimages of the compact

open sets are clopen sets but they are not obliged to be compact sets. In [108], M.

Stone proved that clopen subsets of a Boolean space X correspond to simple ideals

of the GBA KO(X) (i.e., those ideals of KO(X) which have a complement in the

frame Idl(KO(X)) of all ideals of KO(X)). Therefore one has to use the simple ideals

of GBAs. As it is proved by M. Stone, the set of all simple ideals of a GBA forms

a Boolean algebra. Here we describe the objects of the desired dual category to the

category BoolSp as pairs (B, I), where B is a Boolean algebra and I is a dense (proper

or non proper) ideal of it, satisfying a condition of completeness type; this condition

is the following: for every simple ideal J of I, the join
∨
B J exists; it is fulfilled

for every pair (B,B), where B is a Boolean algebra because, as it is shown by M.

Stone, an ideal of a Boolean algebra is simple iff it is principal. In this way we build

a category named ZLBA and we prove that it is dually equivalent to the category

BoolSp (see Theorem 3.2.2.7 where two duality functors Θt
d : BoolSp −→ ZLBA

and Θa
d : ZLBA −→ BoolSp are defined). The idea of the creation of the category
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ZLBA comes from the ideas and results presented here in Chapter 2 (see Remark

3.2.1.2 below). However, the proof that the categories BoolSp and ZLBA are dually

equivalent will be carried out independently from the results presented in Chapter 2

because this is the more economical way (see [25] for a proof based on the results of

Chapter 2). In fact, we first construct a category LBA containing as a subcategory

the category ZLBA and find a contravariant adjunction between the categories LBA

and BoolSp; it leads to the mentioned above duality between the categories BoolSp

and ZLBA. The restriction of this duality on the category PBoolSp leads us to the

definition of two categories PZLBA and PLBA dual to the category PBoolSp. It

is then easy to see that the category PLBA is equivalent to the Doctor’s category

GenBoolAlg. In this way we obtain a new proof of Doctor’s Duality Theorem [45].

Finally, we define two subcategories DZHLC and DPZHLC of the category DHLC,

which was constructed here in Chapter 2 as a dual category to the category HLC of

locally compact Hausdorff spaces and continuous maps; these subcategories are dual,

respectively, to the categories BoolSp and PBoolSp. We obtain also many other

results. The main of them are listed below, where we describe the structure of the

chapter.

In the second section we present, after some preliminary observations, the results

which we discussed above.

In the third section, we prove some Stone-type duality theorems for some sub-

categories of the category BoolSp. These theorems are new even in the compact

case (see Theorems 3.3.1.2, 3.3.1.4(b),(c), 3.3.1.6, 3.3.2.1(b), 3.3.2.3(b), 3.3.2.6). They

concern the cofull subcategories SBoolSp, QPBoolSp, OBoolSp and POBoolSp

of the category BoolSp determined, respectively, by the skeletal maps, by the quasi-

open perfect maps, by the open maps, and by the open perfect maps. Since the

categories QPBoolSp and POBoolSp are cofull subcategories simultaneously of the

categories BoolSp and PBoolSp, we find their images by the both functors Θt
d and

Θt
g (see Corollary 3.3.1.4(b), Theorem 3.3.1.6 and Corollary 3.3.2.6). For the com-

pact case, these theorems give the following results: (a) The category QStone of

compact zero-dimensional Hausdorff spaces and quasi-open maps is dually equivalent

to the category CBool of Boolean algebras and complete Boolean homomorphisms

(see Corollary 3.3.1.4(c)), and (b) The category OStone of compact zero-dimensional

Hausdorff spaces and open maps is dually equivalent to the category OBool of Boolean

algebras and Boolean homomorphisms φ having lower adjoint ψ (i.e., the pair (ψ, φ)
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forms a Galois connection) (see Corollary 3.3.2.4(b)). Let us notice also the following

result (see Theorem 3.3.1.6): the category QPBoolSp is dually equivalent to the co-

full subcategory QGBA of the category GenBoolAlg whose morphisms, in addition,

preserve all meets that happen to exist. Note also that Theorem 3.3.1.2 and Corollary

3.3.1.4(b),(c) are zero-dimensional analogues of the Fedorchuk Duality Theorem [54]

and its generalization presented in Chapter 2. From the mentioned above Corollary

3.3.1.4(c) and Fedorchuk’s Duality Theorem [54], we obtain, as an immediate applica-

tion, the following assertion which is a special case of a much more general theorem of

Monk [84]: a Boolean homomorphism can be extended to a complete homomorphism

between the corresponding minimal completions iff it is a complete homomorphism.

In the fourth section we characterize the dual maps of the injective and surjec-

tive morphisms of the category BoolSp and its subcategories PBoolSp, OBoolSp.

Such investigations were done by M. Stone in [108] for surjective continuous maps and

for closed embeddings. Analogous results are obtained here for the homeomorphic

embeddings and dense embeddings.

In the last fifth section, the connections between the dual object of a space

X ∈ |BoolSp| and the dual objects of the closed, regular closed and open subsets

of X are found. It seems that the obtained result for regular closed subsets is new even

in the compact case.

3.2 An extension of the Stone Duality to the cate-

gory BoolSp of Boolean spaces and continuous

maps

In this section we obtain some generalizations of the Stone Duality Theorem [108]. In

it we introduce the notions of local Boolean algebra and prime local Boolean algebra.

Using them, a category LBA is constructed and a contravariant adjunction between

it and the category BoolSp of Boolean spaces (= zero-dimensional locally compact

Hausdorff spaces) and continuous maps is obtained. The fixed objects of this adjunction

give us a duality between the category BoolSp and the subcategory ZLBA of the

category LBA. As it was already mentioned, H. P. Doctor [45] introduced a category

GenBoolAlg and proved that it is dual to the category PBoolSp of Boolean spaces

and perfect maps. Here two new categories PZLBA and PLBA dual to the category

PBoolSp are described and a new proof of the Doctor Duality Theorem is given. The
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restrictions of the obtained duality functors to the category Stone coincide with the

Stone duality functor St : Stone −→ BoolAlg. We describe as well two subcategories

DZHLC andDPZHLC of the categoryDHLC, constructed here in Chapter 2, which

are dual, respectively, to the categories BoolSp and PBoolSp.

3.2.1 Local Boolean algebras and the category LBA

Definition 3.2.1.1. A pair (A, I), where A is a Boolean algebra and I is an ideal of

A (possibly non proper) which is dense in A (shortly, dense ideal), is called a local

Boolean algebra (abbreviated as LBA). An LBA (A, I) is called a prime local Boolean

algebra (abbreviated as PLBA) if I = A or I is a prime ideal of A. Two LBAs (A, I)

and (B, J) are said to be LBA-isomorphic (or, simply, isomorphic) if there exists a

Boolean isomorphism φ : A −→ B such that φ(I) = J .

Let LBA be the category whose objects are all LBAs and whose morphisms are

all functions φ : (A, I) −→ (B, J) between the objects of LBA such that φ : A −→ B

is a Boolean homomorphism satisfying the following condition:

(LBA) For every b ∈ J there exists a ∈ I such that b ≤ φ(a);

let the composition between the morphisms of LBA be the usual composition between

functions, and the LBA-identities be the identity functions.

Remark 3.2.1.2. Note that a pair (B, I) is an LBA iff (B, ρs, I) is an LCA (see

Example 1.2.1.8 for the notation ρs). Indeed, since a≪ρs b iff a ≤ b, for every a, b ∈ B

(see 1.2.1.8), we obtain immediately that:

1) if (B, I) is an LBA, then (B, ρs, I) satisfies condition (BC1) automatically, and

conditions (BC2) and (BC3) follow directly from the fact that I is dense in B (see

1.2.3.1 for (BC1)-(BC3)), and

2) if (B, ρs, I) is an LCA then, by (BC3), I is dense in B.

Remark 3.2.1.3. Note that by Stone’s result about the existence of a bijective corre-

spondence between the ideals and open sets, any LBA (A, I) determines a pair (X,L)

(we will write (X,L) = p(A, I)), where X = Sa(A) (and hence X is a Stone space) and

L =
∪
{λSA(a) | a ∈ I} (and thus L is an open subset of X). Moreover, since I is dense

in A, it is easy to see that L is dense in X (see, e.g., Lemma 3.2.1.9 below). Therefore,

X is a 0-dimensional compactification of L. Clearly, by the results of M. Stone, X

is the one-point compactification of L iff I is a prime ideal iff (A, I) is a PLBA and

I ̸= A.
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Remark 3.2.1.4. Note that two LBAs (A, I) and (B, J) are LBA-isomorphic iff they

are LBA-isomorphic. Indeed, let φ : (A, I) −→ (B, J) be an LBA-isomorphism. Then,

obviously, φ : A −→ B is a Boolean isomorphism. We have to show that φ(I) = J .

Let ψ ∈ LBA((B, J), (A, I)) be such that φ ◦ ψ = idB and ψ ◦ φ = idA. Let a ∈ I.

Then, by condition (LBA), there exists b ∈ J such that a ≤ ψ(b). Thus φ(a) ≤ b; this

implies that φ(a) ∈ J . So, φ(I) ⊆ J . Analogously, we get that ψ(J) ⊆ I. Let b ∈ J .

Then a = ψ(b) ∈ I and φ(a) = b. Hence, φ(I) = J . Therefore, (A, I) and (B, J) are

LBA-isomorphic. The converse implication is obvious.

Remark 3.2.1.5. Note that a prime (= maximal) ideal I of a Boolean algebra A is a

dense subset of A iff I is a non-principal ideal of A. For proving this, observe first that

if I is a prime ideal, a ∈ A \ {1} and I ≤ a then a ∈ I. (Indeed, if a ̸∈ I then a∗ ∈ I

and hence a∗ ≤ a, i.e., a = 1.) Let now I be dense in A. Suppose that I =↓ (a) for

some a ∈ A \ {1}. Then a∗ ̸= 0. There exists b ∈ I \ {0} such that b ≤ a∗. Since b ≤ a,

we get that b = 0, a contradiction. Hence, I is a non-principal ideal. Conversely, let I

be a non-principal ideal and b ∈ A\{0}. Suppose that b∧a = 0, for every a ∈ I. Then

I ≤ b∗. Hence I =↓ (b∗), a contradiction. Thus, there exists a ∈ I such that a∧ b ̸= 0.

Then a ∧ b ∈ I \ {0} and a ∧ b ≤ b. Therefore, I is a dense subset of A.

Recall that a distributive 0-pseudolattice A is called a generalized Boolean algebra

(briefly, GBA) if it satisfies the following condition:

(GBA) for every a ∈ A and every b, c ∈ A such that b ≤ a ≤ c there exists x ∈ A with

a ∧ x = b and a ∨ x = c (i.e., x is the relative complement of a in the interval [b, c]).

Fact 3.2.1.6. (a) A distributive 0-pseudolattice A is a generalized Boolean algebra iff

every principal ideal of A is simple.

(b) If A is a generalized Boolean algebra then the correspondence

eA : A −→ Si(A), a 7→↓ (a),

is a dense 0-pseudolattice embedding of A in the Boolean algebra Si(A) and the pair

(Si(A), eA(A)) is an LBA.

(c)(M. Stone [107]) An ideal of a Boolean algebra is simple iff it is principal.

Proof. (a) (⇒) Let A be a generalized Boolean algebra and a ∈ A. We have to prove

that ↓ (a) ∨ ¬(↓ (a)) = A. Let b ∈ A. Then c = a ∧ b ∈ [0, b]. Hence there exists

d ∈ A such that d ∧ c = 0 and d ∨ c = b. Thus d ≤ b, i.e., d ∧ b = d. Therefore,
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d∧ a = d∧ b∧ a = d∧ c = 0. We obtain that d ∈ ¬(↓ (a)), c ∈↓ (a) and c∨ d = b. So,

↓ (a) ∨ ¬(↓ (a)) = A.

(⇐) Let a, b, c ∈ A and a ∈ [b, c]. Since ↓ (a) ∨ ¬(↓ (a)) = A, we get that there exists

y ∈ ¬(↓ (a)) such that c = a ∨ y. Set x = y ∨ b. Then x ∧ a = (y ∨ b) ∧ a = b ∧ a = b

and x ∨ a = y ∨ b ∨ a = y ∨ a = c. So, A is a generalized Boolean algebra.

(b) By (a), for every a ∈ A, ↓ (a) ∈ Si(A). Further, it is easy to see that eA is a

0-pseudolattice embedding and I = eA(A) is dense in Si(A). Let us show that I is an

ideal of Si(A). Since I is closed under finite joins, it is enough to prove that I is a

lower set. Let J ∈ Si(A), a ∈ A and J ⊆↓ (a). We need to show that J is a principal

ideal of A. Since J ∈ Si(A), there exist b ∈ J and c ∈ ¬J such that a = b∨ c. We will

prove that J =↓ (b). Note first that if b′ ∈ J and a = b′ ∨ c then b = b′. Indeed, we

have that b′ = a ∧ b′ = (b ∨ c) ∧ b′ = b ∧ b′ and b = a ∧ b = (b′ ∨ c) ∧ b = b ∧ b′; thus
b = b′. Let now d ∈ J . Then d ≤ a and hence a = a ∨ d = (b ∨ d) ∨ c. Since b ∨ d ∈ J ,

we get that b ∨ d = b, i.e., d ≤ b. So, J =↓ (b), and hence J ∈ I. Thus (Si(A), eA(A))

is an LBA.

(c) Let B be a Boolean algebra and J ∈ Si(B). Then there exist a ∈ J and b ∈ ¬J
such that 1 = a ∨ b. Now we obtain, as in the proof of (b), that J =↓ (a). So, every

simple ideal of B is principal. Thus, using (a), we complete the proof.

Notation 3.2.1.7. Let I be a proper ideal of a Boolean algebra A. We set

BA(I) = I ∪ {a∗ | a ∈ I}.

When there is no ambiguity, we will often write B(I) instead of BA(I).

It is clear that BA(I) is a Boolean subalgebra of A and I is a prime ideal of BA(I)

(see, e.g., [48]).

Fact 3.2.1.8. Let (A, I) be an LBA. Then:

(a) I is a generalized Boolean algebra;

(b) If (B, J) is a PLBA and there exists a poset-isomorphism ψ : J −→ I then ψ can

be uniquely extended to a Boolean embedding φ : B −→ A (and φ(B) = BA(I)); in par-

ticular, if (A, I) is also a PLBA then φ is a Boolean isomorphism and an isomorphism

between LBAs (A, I) and (B, J);

(c) There exists a bijective correspondence between the class of all (up to isomorphism)

generalized Boolean algebras and the class of all (up to isomorphism) PLBAs.
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Proof. (a) Obviously, for every a ∈ I, ¬I(↓ (a)) = I∩ ↓A (a∗); then, clearly,

↓ (a) ∨ ¬I(↓ (a)) = I.

Now apply 3.2.1.6(a).

(b) By [102, Theorem 12.5], ψ can be uniquely extended to a Boolean isomorphism

ψ′ : B −→ BA(I). Now, define φ : B −→ A by φ(b) = ψ′(b), for every b ∈ B.

(c) For every PLBA (A, I), set f(A, I) = I. Then, by (a), I is a generalized Boolean

algebra. Conversely, if I is a generalized Boolean algebra then there exists a dense em-

bedding e : I −→ Si(I) (see Fact 3.2.1.6(b)). Thus, setting g(I) = (BSi(I)(e(I)), e(I)),

we get that g(I) is a PLBA. Now, using (b), we obtain that for every PLBA (A, I),

g(f(A, I)) is isomorphic to (A, I). Finally, it is clear that for every generalized Boolean

algebra I, f(g(I)) is isomorphic to I.

We will need a simple lemma.

Lemma 3.2.1.9. Let A be a Boolean algebra, M ⊆ A, X = Sa(A) and

LM = {u ∈ X | u ∩M ̸= ∅}

(sometimes we will write LAM instead of LM). Then:

(a) LM =
∪
{λSA(a) | a ∈M};

(b) LM is an open subset of X and hence the subspace LM of X is a zero-dimensional

locally compact Hausdorff space; LM ̸= ∅ iff M ̸⊆ {0};

(c) λSA(M) ⊆ KO(LM) (where λSA(M) = {λSA(a) | a ∈M});

(d) If M is dense in A then LM is dense in X;

(e) If M is a lower set and LM is dense in X then M is dense in A;

(f) If LM is dense in X then the map

λ(A,M) : A −→ CO(LM), a 7→ LM ∩ λSA(a),(3.1)

is a Boolean monomorphism;

(g) If M is an ideal of A then λSA(M) = KO(LM) and hence λSA(M) is a base of LM ;

(h) If (A,M) is an LBA then λ(A,M) : A −→ CO(LM) is a dense Boolean embedding;

(i) IfM1,M2 ⊆ A then LM1 = LM2 iff the ideals of A generated byM1 andM2 coincide.
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Proof. Assertions (a)-(c) and (i) are obvious, and (h) follows from (b), (d), (f), (g).

(d) It is enough to prove that λSA(a)∩LM ̸= ∅, for every a ∈ A\{0}. So, let a ∈ A\{0}.
Then there exists b ∈ M \ {0} such that b ≤ a. There exists u ∈ X such that b ∈ u.

Then a ∈ u. Thus u ∈ λSA(a) ∩ LM .

(e) Let M be a lower set and LM be dense in X. Let a ∈ A \ {0}. Then, by (b),

λSA(a) ∩ LM is an open non-empty subset of X. Hence, there exists b ∈ A \ {0} such

that λSA(b) ⊆ LM ∩ λSA(a). Let u ∈ λSA(b). Then there exists c ∈ u ∩M . Since M is a

lower set, we get that b∧ c ∈ u∩M . Thus b∧ c ̸= 0, b∧ c ∈M and b∧ c ≤ a (because,

by the Stone Duality Theorem, b ≤ a). Therefore, M is dense in A.

(f) Since, by the Stone Duality Theorem, the map

λSA : A −→ CO(X), a 7→ λSA(a),

is a Boolean isomorphism, it is clear that the map λ(A,M) is a Boolean homomorphism.

Further, since LM is dense in X, we have that if a ∈ A \ {0} then λ(A,M)(a) ̸= ∅.
Therefore, λ(A,M) is a Boolean monomorphism.

(g) Let M be an ideal of A and U ∈ KO(LM). For every u ∈ U there exists bu ∈
M ∩ u, and hence u ∈ λSA(bu) ⊆ LM . Thus U ⊆

∪
{λSA(bu) | u ∈ U}. Since U is

compact, there exist {ui ∈ U | i = 1, . . . , n}, where n is some natural number, such

that U ⊆
∪
{λSA(bui) | i = 1, . . . , n}. Let b0 =

∨
{bui | i = 1, . . . , n}. Then b0 ∈ M and

λSA(b0) =
∪
{λSA(bui) | i = 1, . . . , n} ⊇ U . Now, for every u ∈ U there exists au ∈ A

such that u ∈ λSA(au) ⊆ U and thus λSA(au) ⊆ λSA(b0). Therefore, for every u ∈ U ,

au ≤ b0, and hence, au ∈ M . Using again the compactness of U , we get that there

exists a0 ∈ M such that U = λSA(a0). So, λ
S
A(M) ⊇ KO(LM). This fact together with

(c) imply that λSA(M) = KO(LM).

Notation 3.2.1.10. Let X be a topological space. For every x ∈ X, we set

uCO(X)
x = {F ∈ CO(X) | x ∈ F}.

When there is no ambiguity, we will write “uCx ” instead of “u
CO(X)
x ”.

Theorem 3.2.1.11. There exists a contravariant adjunction (see 0.2.1.8 for this no-

tion)

(Θa,Θt, λC , tC) : LBA −→ BoolSp,

where BoolSp is the category of locally compact zero-dimensional Hausdorff spaces

and continuous maps.
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Proof. We will first define two contravariant functors

Θa : LBA −→ BoolSp and Θt : BoolSp −→ LBA.

Let X ∈ |BoolSp|. Define

Θt(X) = (CO(X), KO(X)).(3.2)

Obviously, Θt(X) is an LBA.

Let f ∈ BoolSp(X,Y ). Define Θt(f) : Θt(Y ) −→ Θt(X) by the formula

Θt(f)(G) = f−1(G), ∀G ∈ CO(Y ).(3.3)

Set

φf = Θt(f).

Clearly, φf is a Boolean homomorphism between CO(Y ) and CO(X). If F ∈ KO(X)

then f(F ) is a compact subset of Y . Since KO(Y ) is an open base of the space Y and

KO(Y ) is closed under finite unions, we get that there exists G ∈ KO(Y ) such that

f(F ) ⊆ G. Then F ⊆ f−1(G) = φf (G). So, φf satisfies condition (LBA). Therefore

φf is an LBA-morphism, i.e., Θt(f) is well-defined.

Now we get easily that Θt is a contravariant functor.

For every LBA (A, I), set

Θa(A, I) = LAI(3.4)

(see Lemma 3.2.1.9 for the notation LAI ). Then Lemma 3.2.1.9 implies that L =

Θa(A, I) is a zero-dimensional locally compact Hausdorff space and λ(A,I)(I) is an

open base of L (see (3.1) for the notation λ(A,I)). So, Θ
a(A, I) ∈ |BoolSp|.

Let φ ∈ LBA((A, I), (B, J)). We define the map

Θa(φ) : Θa(B, J) −→ Θa(A, I)

by the formula

Θa(φ)(u′) = φ−1(u′), ∀u′ ∈ Θa(B, J).(3.5)

Set

fφ = Θa(φ), L = Θa(A, I) and M = Θa(B, J).

By Lemma 3.2.1.9, if (A′, I ′) is a LBA then the set Θa(A′, I ′) consists of all

bounded ultrafilters in (A′, I ′) (i.e., those ultrafilters u in A′ for which u∩I ′ ̸= ∅). Since

166



any LBA-morphism is a Boolean homomorphism, we get that the inverse image of an

ultrafilter is an ultrafilter.

So, let u′ ∈M . Then u′ is a bounded ultrafilter in (B, J). Set u = fφ(u
′). Then,

as we have seen, u is an ultrafilter in A. We have to show that u is bounded in (A, I).

Indeed, since u′ is bounded, there exists b ∈ u′ ∩ J . By condition (LBA), there exists

a ∈ I such that φ(a) ≥ b. Then φ(a) ∈ u′, and hence, a ∈ u. Thus a ∈ u ∩ I.

Therefore, fφ :M −→ L.

We will show that fφ is a continuous function. Let u′ ∈ M and u = fφ(u
′).

Let a ∈ A and u ∈ λ(A,I)(a)(= int(λ(A,I)(a))). Then a ∈ u. Hence φ(a) ∈ u′, i.e.,

u′ ∈ λB,J(φ(a)). We will prove that

fφ(λ(B,J)(φ(a))) ⊆ λ(A,I)(a).(3.6)

Indeed, let v′ ∈ λ(B,J)(φ(a)). Then φ(a) ∈ v′. Thus a ∈ fφ(v
′), i.e., fφ(v

′) ∈ λ(B,J)(a).

So, (3.6) is proved. Since {λ(A,I)(a) | a ∈ A} is an open base of L, we get that fφ is a

continuous function. So,

Θa(φ) ∈ BoolSp(Θa(B, J),Θa(A, I)).

Now it becomes obvious that Θa is a contravariant functor.

Let X ∈ |BoolSp|. Then it is easy to see that for every x ∈ X, uCx (see 3.2.1.10

for this notation) is an ultrafilter in CO(X) and hence, using the fact that uCx contains

always elements of KO(X), we get that uCx ∈ Θa(CO(X), KO(X)). We will show that

the map

tCX : X −→ Θa(Θt(X)), x 7→ uCx ,(3.7)

is a homeomorphism. Set L = Θa(Θt(X)) and A = CO(X), I = KO(X). We will

prove that tCX is a continuous map. Let x ∈ X, F ∈ I and uCx ∈ λ(A,I)(F ). Then

F ∈ uCx and hence, x ∈ F . It is enough to show that tCX(F ) ⊆ λ(A,I)(F ). Let y ∈ F .

Then F ∈ uCy = tCX(y). Hence t
C
X(y) ∈ λ(A,I)(F ). So, t

C
X(F ) ⊆ λ(A,I)(F ). Since λ(A,I)(I)

is an open base of L, we get that tCX is a continuous map. Let us show that tCX is a

bijection. Let u ∈ L. Then u is a bounded ultrafilter in (A, I). Hence, there exists

F ∈ u ∩ I. Since F is compact, we get that
∩
u ̸= ∅. Suppose that x, y ∈

∩
u and

x ̸= y. Then there exist Fx, Fy ∈ I such that x ∈ Fx, y ∈ Fy and Fx ∩ Fy = ∅.
Since, clearly, Fx, Fy ∈ u, we get a contradiction. So,

∩
u = {x} for some x ∈ X. It

is clear now that u = uCx , i.e., u = tCX(x) and u ̸= tCX(y), for y ∈ X \ {x}. So, tCX

is a bijection. For showing that (tCX)
−1 is a continuous function, let uCx ∈ L. Then
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(tCX)
−1(uCx ) = x. Let F ∈ I and x ∈ F . Then F ∈ uCx and thus uCx ∈ λ(A,I)(F ). We will

prove that (tCX)
−1(λ(A,I)(F )) ⊆ F . Since I is a base of X, this will imply that (tCX)

−1

is a continuous function. So, let y ∈ (tCX)
−1(λ(A,I)(F )). Then tCX(y) ∈ λ(A,I)(F ), i.e.,

F ∈ uCy . Then y ∈ F . Therefore, tCX is a homeomorphism.

We will show that

tC : IdBoolSp −→ Θa ◦Θt,

defined by tC(X) = tCX , ∀X ∈ |BoolSp|, is a natural isomorphism.

Let f ∈ BoolSp(X,Y ) and f̂ = Θa(Θt(f)). We have to show that f̂ ◦tCX = tCY ◦f .
Let x ∈ X. Then f̂(tCX(x)) = f̂(u

CO(X)
x ) and (tCY ◦ f)(x) = u

CO(Y )
f(x) . Set y = f(x),

ux = u
CO(X)
x and uy = u

CO(Y )
f(x) . We will prove that

f̂(ux) = uy.

Let φ = Θt(f). Then f̂ = Θa(φ)(= fφ). Hence,

f̂(ux) = φ−1(ux) = {G ∈ CO(Y ) | φ(G) ∈ ux} = {G ∈ CO(Y ) | x ∈ φ(G)} =

{G ∈ CO(Y ) | x ∈ f−1(G)} = {G ∈ CO(Y ) | f(x) ∈ G} = uy.

So, tC is a natural isomorphism.

Let (A, I) be an LBA and L = Θa(A, I). Then, by Lemma 3.2.1.9(h),

λ(A,I) : A −→ CO(L)

is a dense Boolean embedding. Also, by Lemma 3.2.1.9(g), λ(A,I)(I) = KO(L). We

denote by λC(A,I) the map

λC(A,I) : (A, I) −→ (CO(L), KO(L)),

where λC(A,I)(a) = λ(A,I)(a), for every a ∈ A; we will write sometimes “λCA” instead of

“λC(A,I)”. Note that

λC(A,I) : (A, I) −→ Θt(Θa(A, I)).

We will prove that

λC : IdLBA −→ Θt ◦Θa, where λC(A, I) = λC(A,I), ∀(A, I) ∈ |LBA|,

is a natural transformation.

Let φ ∈ LBA((A, I), (B, J)) and φ̂ = Θt(Θa(φ)). We have to prove that λCB ◦φ =

φ̂ ◦ λCA. Set f = Θa(φ) and M = Θa(B, J). Then φ̂ = Θt(f)(= φf ). Let a ∈ A. Then

φ̂(λCA(a)) = f−1(λCA(a)) = {u ∈ M | f(u) ∈ λCA(a)} = {u ∈ M | a ∈ f(u)} =
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{u ∈ M | a ∈ φ−1(u)} = {u ∈ M | φ(a) ∈ u} = λCB(φ(a)). So, λC is a natural

transformation.

Let us show that

Θt(tCX) ◦ λCΘt(X) = idΘt(X),

for every X ∈ |BoolSp|. Indeed, let X ∈ |BoolSp| and Y = Θa(Θt(X)). Then

Θt(tCX) : Θ
t(Y ) −→ Θt(X), G 7→ (tCX)

−1(G), for every G ∈ Θt(Y ) = (CO(Y ), KO(Y )).

Let F ∈ CO(X). Then (Θt(tCX) ◦ λCΘt(X))(F ) = (tCX)
−1(λCΘt(X)(F )) = H. We have to

show that F = H. Since tCX(H) = λCΘt(X)(F ), we get that {uCx | x ∈ H} = {u ∈ Y | F ∈
u}. Thus x ∈ H ⇐⇒ F ∈ uCx ⇐⇒ x ∈ F . Therefore, F = H.

Finally, we will prove that

Θa(λC(A,I)) ◦ tCΘa(A,I) = idΘa(A,I)

for every (A, I) ∈ |LBA|. So, let (A, I) ∈ |LBA| and X = Θa(A, I). We have that

f = Θa(λC(A,I)) : Θ
a(CO(X), KO(X)) −→ X

is defined by u 7→ (λC(A,I))
−1(u), for every bounded ultrafilter u in (CO(X), KO(X)).

Let x ∈ X. Then f(tCX(x)) = f(uCx ) = (λC(A,I))
−1(uCx ) = y. We have to show that

x = y. Indeed, for every a ∈ A, we get that a ∈ y ⇐⇒ a ∈ (λC(A,I))
−1(uCx ) ⇐⇒

λC(A,I)(a) ∈ uCx ⇐⇒ x ∈ λC(A,I)(a) ⇐⇒ a ∈ x. Therefore, x = y.

We have proved that (Θa,Θt, λC , tC) is a contravariant adjunction between the

categories LBA and BoolSp. Moreover, we have even shown that tC is a natural

isomorphism. Hence Θt is a full and faithful contravariant functor and, thus, it reflects

isomorphisms.

3.2.2 The generalizations of the Stone Duality Theorem

Definition 3.2.2.1. An LBA (A, I) is called a ZLB-algebra (briefly, ZLBA) if, for

every J ∈ Si(I), the join
∨
A J (=

∨
A{a | a ∈ J}) exists.

Let ZLBA be the full subcategory of the category LBA having as objects all

ZLBAs.

Example 3.2.2.2. Let B be a Boolean algebra. Then the pair (B,B) is a ZLBA. This

follows from Fact 3.2.1.6(c).

Remark 3.2.2.3. Note that if A and B are Boolean algebras then any Boolean homo-

morphism φ : A −→ B is a ZLBA-morphism between the ZLBAs (A,A) and (B,B).
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Hence, the full subcategory B of the category ZLBA whose objects are all ZLBAs of

the form (A,A) is isomorphic (it can be even said that it coincides) with the category

BoolAlg of Boolean algebras and Boolean homomorphisms.

We will need the following result of M. Stone [108]:

Proposition 3.2.2.4. (M. Stone [108, Theorem 5(3)]) Let X ∈ |BoolSp|. Then the

map

Σ : Si(KO(X)) −→ CO(X), J 7→
∨

RC(X)

J,

is a Boolean isomorphism.

Proof. For completeness of our exposition, we will verify this fact. Let J ∈ Si(KO(X)).

Set U =
∪
{F | F ∈ J} and V =

∪
{G | G ∈ ¬J}. Obviously, U and V are disjoint

open subsets of X. We will show that U ∪ V = X. Indeed, let x ∈ X. Then there

exists H ∈ KO(X) such that x ∈ H. Since J ∨ ¬J = KO(X), we get that there

exist F ∈ J and G ∈ ¬J such that H = F ∪ G. Thus x ∈ F or x ∈ G, and

hence, x ∈ U or x ∈ V . So, U is a clopen subset of X. Thus U ∈ CO(X) and

U =
∨
RC(X) J =

∨
CO(X) J . Conversely, it is easy to see that if U ∈ CO(X) then

J = {F ∈ KO(X) | F ⊆ U} ∈ Si(KO(X)). This implies easily that Σ is a Boolean

isomorphism.

Proposition 3.2.2.5. Let (A, I) be an LBA and L = Θa(A, I). Then (A, I) is a ZLBA

iff λ(A,I)(A) = CO(L) (see (3.1) for the notation λ(A,I)).

Proof. Let (A, I) be a ZLBA. We will prove that λ(A,I)(A) = CO(L). Let U ∈ CO(L)

and J ′ = {F ∈ KO(L) | F ⊆ U}. Then J ′ is a simple ideal of KO(L) and
∨
RC(L) J

′ =

U . Since the restriction φ : I −→ KO(L) of λ(A,I) is a 0-pseudolattice isomorphism,

we get that J = φ−1(J ′) is a simple ideal of I. Set bJ =
∨
A J and C = λ(A,I)(A) (note

that the join
∨
A J exists because (A, I) is a ZLBA). Now, the restriction ψ : A −→

C of λ(A,I) is a Boolean isomorphism, and hence λ(A,I)(bJ) = ψ(bJ) = ψ(
∨
A J) =∨

C ψ(J) =
∨
C J

′. The fact that C is a dense Boolean subalgebra of the Boolean

algebra CO(L), and hence of RC(L), implies that C is a regular subalgebra of RC(L).

Thus
∨
C J

′ =
∨
RC(L) J

′ = U . Therefore, λ(A,I)(bJ) = U . So, we have proved that

λ(A,I)(A) = CO(L).

Let now (A, I) be an LBA and λ(A,I)(A) = CO(L). Set, for short, ψ = λ(A,I).

Then the map ψ : A −→ CO(L) is a Boolean isomorphism. Let J ∈ Si(I). Since
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the restriction of ψ to I is a 0-pseudolattice isomorphism between I and KO(L), we

get that ψ(J) ∈ Si(KO(L)). Then, by the proof of 3.2.2.4, U =
∪
{F | F ∈ ψ(J)}(=∪

{ψ(a) | a ∈ J}) is a clopen subset of L. Therefore, the join
∨
CO(L){ψ(a) | a ∈ J}

exists. Since ψ−1 : CO(L) −→ A is a Boolean isomorphism, we obtain that ψ−1(U) =

ψ−1(
∨
CO(L){ψ(a) | a ∈ J}) =

∨
A{ψ−1(ψ(a)) | a ∈ J} =

∨
A{a | a ∈ J}. Hence, the

join
∨
A J exists. Thus, (A, I) is a ZLBA.

Remark 3.2.2.6. Note that, by Lemma 3.2.1.9(h), if (A, I) is an LBA then λ(A,I)(A) is

isomorphic to A and is a Boolean subalgebra of CO(L), where L = Θa(A, I) (see (3.4)

for the notation Θa). If (A, I) is an LBA and (X,L) = p(A, I) (see Remark 3.2.1.3

for this notation) then, by Lemma 3.2.1.9(a), L = Θa(A, I)); thus, by Proposition

3.2.2.5, (A, I) is a ZLBA iff A is mapped isomorphically by λ(A,I) to CO(L); since the

Banaschewski compactification β0L of L (see [8] and [48, Theorem 13.1]) is constructed

as Sa(CO(L)) (i.e., it is the Stonification of L), we get that (A, I) is a ZLBA iff

p(A, I) = (β0L,L), where L is defined as in Remark 3.2.1.3 (i.e., L =
∪
{λSA(a) | a ∈ I}).

Theorem 3.2.2.7. The categories BoolSp and ZLBA are dually equivalent.

Proof. In Theorem 3.2.1.11, we constructed a contravariant adjunction

(Θa,Θt, λC , tC)

between the categories LBA and BoolSp, where tC was even a natural isomorphism.

Let us check that the functor Θt is in fact a functor from the category BoolSp to the

category ZLBA. Indeed, let X ∈ |BoolSp|. Then Θt(X) = (CO(X), KO(X)). As

it follows from 3.2.2.4, for every J ∈ Si(KO(X)),
∨
CO(X) J exists. Hence, Θt(X) ∈

|ZLBA|. So, the restriction

Θt
d : BoolSp −→ ZLBA(3.8)

of the contravariant functor Θt : BoolSp −→ LBA is well-defined. Further, by

Proposition 3.2.2.5, the natural transformation λC becomes a natural isomorphism

exactly on the subcategory ZLBA of the category LBA. We will denote by

Θa
d : ZLBA −→ BoolSp(3.9)

the restriction of the contravariant functor Θa to the category ZLBA. All this shows

that there is a duality between the categories BoolSp and ZLBA.

171



Corollary 3.2.2.8. (The Stone Duality Theorem [108]) The categories BoolAlg and

Stone are dually equivalent.

Proof. Obviously, the restriction of the contravariant functor Θa
d to the subcategory

B of the category ZLBA (see 3.2.2.3 for the notation B) produces a duality between

the categories B and Stone.

Corollary 3.2.2.9. For every ZLBA (A, I), the map

Σ(A,I) : Si(I) −→ A, J 7→
∨
A

{a | a ∈ J}

is a Boolean isomorphism.

Proof. Let L = Θa
d(A, I) (see (3.9) for the notation Θa

d). Then, as it was shown in the

proof of Theorem 3.2.2.7, the map

λCA : (A, I) −→ (CO(L), KO(L)),

where λCA(a) = λ(A,I)(a) for every a ∈ A, is a ZLBA-isomorphism. By 3.2.2.4, the map

Σ = Σ(CO(L),KO(L)) : Si(KO(L)) −→ CO(L), J 7→
∨

CO(L)

J,

is a Boolean isomorphism. Define a map λ′A : Si(I) −→ Si(KO(L)) by the formula

λ′A(J) = λCA(J), for every J ∈ Si(I). Then, obviously, λ′A is a Boolean isomorphism

and Σ(A,I) = (λCA)
−1 ◦ Σ ◦ λ′A. Thus Σ(A,I) is a Boolean isomorphism.

Definition 3.2.2.10. Let PZLBA be the cofull subcategory of the category ZLBA

whose morphisms φ : (A, I) −→ (B, J) satisfy the following additional condition:

(PLBA) φ(I) ⊆ J .

Theorem 3.2.2.11. The category PBoolSp of all locally compact Hausdorff zero-

dimensional spaces and all perfect maps between them is dually equivalent to the cate-

gory PZLBA.

Proof. Let f ∈ PBoolSp(X,Y ). Then, as we have seen in the proof of Theorem 3.2.2.7,

Θt
d(f) : Θ

t
d(Y ) −→ Θt

d(X) is defined by the formula Θt
d(f)(G) = f−1(G),∀G ∈ CO(Y ).

Set φf = Θt
d(f). Since f is a perfect map, we have that for any K ∈ KO(Y ),

φf (K) = f−1(K) ∈ KO(X). Hence, φf satisfies condition (PLBA). Thus, φf is a

172



PZLBA-morphism. So, the restriction Θt
p of the duality functor Θt

d to the subcate-

gory PBoolSp of the category BoolSp is a contravariant functor from PBoolSp to

PZLBA, i.e.,

Θt
p : PBoolSp −→ PZLBA.(3.10)

Let φ ∈ PZLBA((A, I), (B, J)). The map Θa
d(φ) : Θ

a
d(B, J) −→ Θa

d(A, I) was

defined in Theorem 3.2.2.7 by the formula Θa
d(φ)(u

′) = φ−1(u′), ∀u′ ∈ Θa
d(B, J). Set

fφ = Θa
d(φ), L = Θa

d(A, I) and M = Θa
d(B, J).

Let a ∈ I. We will show that f−1
φ (λ(A,I)(a)) is compact. We have, by (PLBA),

that φ(a) ∈ J . Let us prove that

λ(B,J)(φ(a)) = f−1
φ (λ(A,I)(a)).(3.11)

Let u′ ∈ f−1
φ (λ(A,I)(a)). Then u = fφ(u

′) ∈ λ(A,I)(a), i.e., a ∈ u. Thus φ(a) ∈ u′,

and hence u′ ∈ λ(B,J)(φ(a)). Therefore, λ(B,J)(φ(a)) ⊇ f−1
φ (λ(A,I)(a)). Now, (3.6)

implies that λ(B,J)(φ(a)) = f−1
φ (λ(A,I)(a)). Since λ(B,J)(φ(a)) is compact, we get that

f−1
φ (λ(A,I)(a)) is compact. Let now K be a compact subset of L. Since λ(A,I)(I) is

an open base of L and λ(A,I)(I) is closed under finite unions, we get that there exists

a ∈ I such that K ⊆ λ(A,I)(a). Then f−1
φ (K) ⊆ f−1

φ (λ(A,I)(a)), and hence, as a closed

subset of a compact set, f−1
φ (K) is compact. This implies that fφ is a perfect map (see,

e.g.,[53]). Therefore, the restriction Θa
p of the duality functor Θa

d to the subcategory

PZLBA of the category ZLBA is a contravariant functor from PZLBA to PBoolSp,

i.e.,

Θa
p : PZLBA −→ PBoolSp.(3.12)

The rest follows from Theorem 3.2.2.7.

The above theorem can be stated in a better form. We will do this now.

Definition 3.2.2.12. Let PLBA be the subcategory of the category LBA whose

objects are all PLBAs and whose morphisms are all LBA-morphisms φ : (A, I) −→
(B, J) between the objects of PLBA satisfying condition (PLBA).

Remark 3.2.2.13. It is obvious that PLBA is indeed a category. Note also that any

Boolean homomorphism φ : A −→ B is a PLBA-morphism between the PLBAs (A,A)

and (B,B). Hence, the full subcategory B of the category PLBA whose objects are all

PLBAs of the form (A,A) is isomorphic (it can be even said that it coincides) with the
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category BoolAlg of Boolean algebras and Boolean homomorphisms. (Obviously, the

category B introduced here coincides also with the category B from Remark 3.2.2.3,

and that’s why we don’t introduce a new notation for it.)

Theorem 3.2.2.14. The categories PBoolSp and PLBA are dually equivalent.

Proof. In virtue of Theorem 3.2.2.11, it is enough to show that the categories PLBA

and PZLBA are equivalent.

Let (B, I) be a ZLBA. Set A = BB(I) (see 3.2.1.7 for the notation). Then,

obviously, (A, I) is a PLBA. Set

Ez(B, I) = (A, I).

If φ ∈ PZLBA((B1, I1), (B2, I2)) then let Ez(φ) be the restriction of φ to

Ez(B1, I1). Then, clearly, Ez(φ) ∈ PLBA(Ez(B1, I1), E
z(B2, I2)). It is evident that

Ez is a (covariant) functor from PZLBA to PLBA, i.e.,

Ez : PZLBA −→ PLBA.

Let (A, I) be a PLBA. Then, by 3.2.1.8(a), I is a generalized Boolean algebra.

Hence, according to 3.2.1.6(b), the map eI : I −→ Si(I), where eI(a) =↓ (a), is a dense

embedding of I in the Boolean algebra Si(I) and the pair (Si(I), eI(I)) is an LBA. Set

I ′ = eI(I) and

Ep(A, I) = (Si(I), I ′).

Then, for every J ∈ Si(I),
∨
Si(I) eI(J) =

∨
Si(I){↓ (a) | a ∈ J} = J . This implies that

(Si(I), I ′) ∈ |PZLBA|.
Let φ ∈ PLBA((A1, I1), (A2, I2)). Let the map

φ′ = Ep(φ)

be defined by the formula

φ′(J1) =
∪

{↓ (φ(a)) | a ∈ J1},

for every J1 ∈ Si(I1). We will show that φ′ is a PZLBA-morphism between Ep(A1, I1)

and Ep(A2, I2). Obviously, φ′({0}) = {0} and, thanks to conditions (LBA) and

(PLBA), φ′(I1) = I2. Let J1 ∈ Si(I1). Set J2 = φ′(J1). Then condition (PLBA)

and the fact that φ is a homomorphism imply that J2 is an ideal of I2. Let us show

that J2∨¬J2 = I2. Indeed, let a2 ∈ I2. Then condition (LBA) implies that there exists
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a1 ∈ I1 such that a2 ≤ φ(a1). Since J1∨¬J1 = I1, there exist a
′
1 ∈ J1 and a

′′
1 ∈ ¬J1 such

that a1 = a′1 ∨ a′′1. Then a2 = (φ(a′1)∧ a2)∨ (φ(a′′1)∧ a2). Obviously, (φ(a′1)∧ a2) ∈ J2.

We will prove that (φ(a′′1) ∧ a2) ∈ ¬J2. It is enough to show that φ(a′′1) ∈ ¬J2. Let

b2 ∈ J2. Then, by the definition of J2, there exists b1 ∈ J1 such that b2 ≤ φ(b1). Since

b1∧a′′1 = 0, we get that φ(b1)∧φ(a′′1) = 0. Thus φ(a′′1)∧b2 = 0. Therefore, φ(a′′1) ∈ ¬J2.
So, J2 ∈ Si(I2). Note that this implies that φ′(J1) =

∨
Si(I2)

{↓ (φ(a)) | a ∈ J1}. The

above arguments show also that φ′(¬J1) ⊆ ¬φ′(J1), for every J1 ∈ Si(I1). In fact,

there is an equality here, i.e., φ′(¬J1) = ¬φ′(J1). Indeed, let b2 ∈ ¬φ′(J1). Then

b2 ∧ a2 = 0, for every a2 ∈ φ′(J1). By condition (LBA), there exists a1 ∈ I1 such that

b2 ≤ φ(a1). We have again that there exist a′1 ∈ J1 and a
′′
1 ∈ ¬J1 such that a1 = a′1∨a′′1.

Then b2 = (φ(a′1) ∧ b2) ∨ (φ(a′′1) ∧ b2) = φ(a′′1) ∧ b2. Thus, b2 ≤ φ(a′′1). This shows that

b2 ∈ φ′(¬J1). Further, if J, J ′ ∈ Si(I1) then φ′(J) ∧ φ′(J ′) = φ′(J) ∩ φ′(J ′) =
∪
{↓

(a)∧ ↓ (b) | a ∈ J, b ∈ J ′} =
∪
{↓ (a) | a ∈ J ∩ J ′} = φ′(J ∩ J ′) = φ′(J ∧ J ′).

Therefore, φ′ : Si(I1) −→ Si(I2) is a Boolean homomorphism. Since, for every

a ∈ I1, φ
′(↓ (a)) =↓ (φ(a)), we have that eI2 ◦ φ|I1 = φ′ ◦ eI1 . This shows that

φ′ ∈ PZLBA(Ep(A1, I1), E
p(A2, I2)). Now one can easily see that Ep is a (covariant)

functor between the categories PLBA and PZLBA, i.e.,

Ep : PLBA −→ PZLBA.

Finally, we have to verify that the compositions Ep◦Ez and Ez ◦Ep are naturally

isomorphic to the corresponding identity functors.

Let us start with the composition Ez ◦ Ep.

Let (A, I) be a PLBA. Then, as we have seen above, the map eI : I −→ Si(I),

where eI(a) =↓ (a), is a dense embedding of I in the Boolean algebra Si(I) and the pair

(Si(I), eI(I)) is an LBA. Now 3.2.1.8(b) implies that the map (eI)�I : I −→ eI(I) can be

extended to a Boolean isomorphism e(A,I) : A −→ BSi(I)(eI(I)). (Note that A = I ∪ I∗

and BSi(I)(eI(I)) = eI(I) ∪ (eI(I))
∗, so that the map e(A,I) is defined by the following

formula: for every a ∈ I, e(A,I)(a
∗) = (eI(a))

∗.) Set I ′ = eI(I) and A′ = e(A,I)(A).

Then the map e(A,I) : (A, I) −→ (A′, I ′) is a PLBA-isomorphism. Note that (A′, I ′) =

(Ez ◦Ep)(A, I). Hence, e(A,I) : (A, I) −→ (Ez ◦Ep)(A, I) is a PLBA-isomorphism. We

will show that e : IdPLBA −→ Ez ◦ Ep, defined by e(A, I) = e(A,I) for every (A, I) ∈
|PLBA|, is the required natural isomorphism. Indeed, if φ ∈ PLBA((A, I), (B, J))

and φ′ = (Ez ◦ Ep)(φ) then we have to prove that e(B,J) ◦ φ = φ′ ◦ e(A,I). Clearly, for

doing this it is enough to show that eJ ◦ (φ|I) = (φ′)|eI(I) ◦ eI . Since this is obvious, we
obtain that the functors IdPLBA and Ez ◦ Ep are naturally isomorphic.
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Let us proceed with the composition Ep ◦ Ez. Let (B, I) be a ZLBA. Then, by

Corollary 3.2.2.9, the map Σ(B,I) : Si(I) −→ B, where Σ(B,I)(J) =
∨
B{a | a ∈ J} for

every J ∈ Si(I), is a Boolean isomorphism. We will show that s : IdPZLBA −→ Ep◦Ez,

defined by s(B, I) = (Σ(B,I))
−1 for every (B, I) ∈ |PZLBA|, is the required natural

isomorphism. Indeed, if φ ∈ PZLBA((A, I), (B, J)) and φ′ = (Ep ◦ Ez)(φ) then we

have to prove that Σ(B,J) ◦ φ′ = φ ◦ Σ(A,I). Let I1 ∈ Si(I). Then (φ ◦ Σ(A,I))(I1) =

φ(
∨
A I1) and (Σ(B,J) ◦ φ′)(I1) = Σ(B,J)(φ

′(I1)) = Σ(B,J)(
∨
Si(J){↓ (φ(a)) | a ∈ I1}) =∨

B{Σ(B,J)(↓ (φ(a))) | a ∈ I1} =
∨
B φ(I1). So, we have to prove that φ(

∨
A I1) =∨

B φ(I1). Set b = φ(
∨
A I1) and c =

∨
B φ(I1). Since a ≤

∨
A I1, for every a ∈ I1,

we have that φ(a) ≤ b for every a ∈ I1. Hence c ≤ b. We will now prove that b ≤ c.

Since J is dense in B, we get that b =
∨
B{d ∈ J | d ≤ b}. By condition (LBA), for

every d ∈ J there exists ed ∈ I such that d ≤ φ(ed). So, let d ∈ J and d ≤ b. Since

I1 ∨ ¬I1 = I, there exist e1d ∈ I1 and e2d ∈ ¬I1 such that ed = e1d ∨ e2d. Now we obtain

that d ≤ φ(ed) ∧ b = φ(ed ∧
∨
A I1) = φ(

∨
A{ed ∧ a | a ∈ I1}) = φ(

∨
A{e1d ∧ a | a ∈

I1}) = φ(e1d ∧
∨
A I1) ≤ φ(e1d) ≤ c. Thus b =

∨
B{d ∈ J | d ≤ b} ≤ c. So, the functors

IdPZLBA and Ep ◦ Ez are naturally isomorphic.

Corollary 3.2.2.15. There exists a bijective correspondence between the classes of all

(up to PLBA-isomorphism) PLBAs, all (up to ZLBA-isomorphism) ZLBAs and all

(up to homeomorphism) locally compact zero-dimensional Hausdorff spaces.

We can even express Theorem 3.2.2.14 in a more simple form; in this way we will

obtain a new proof of the Doctor Duality Theorem [45].

Definition 3.2.2.16. ([45]) Let GenBoolAlg be the category whose objects are all

generalized Boolean algebras and whose morphisms are all 0-pseudolattice homomor-

phisms φ : I −→ J between its objects satisfying condition (LBA) (i.e., ∀b ∈ J ∃a ∈ I

such that b ≤ φ(a)).

Theorem 3.2.2.17. ([45]) The categories PBoolSp and GenBoolAlg are dually

equivalent.

Proof. By virtue of Theorem 3.2.2.14, it is enough to show that the categories PLBA

and GenBoolAlg are equivalent.

Define a functor

El : PLBA −→ GenBoolAlg
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by setting

El(A, I) = I,

for every (A, I) ∈ |PLBA|, and for every φ ∈ PLBA((A, I), (B, J)), put

El(φ) = φ|I : I −→ J.

Using Fact 3.2.1.8(a) and condition (PLBA), we get that El is a well-defined functor.

Define a functor

Eg : GenBoolAlg −→ PLBA

by setting

Eg(I) = (BSi(I)(eI(I)), eI(I))

for every I ∈ |GenBoolAlg| (see 3.2.1.6(b) and 3.2.1.7 for the notation), and for every

φ ∈ GenBoolAlg(I, J) define

Eg(φ) : BSi(I)(eI(I)) −→ BSi(J)(eJ(J))

to be the obvious extension of the map φe : eI(I) −→ eJ(J) defined by

φe(↓ (a)) =↓ (φ(a)).

Then, using Facts 3.2.1.6(a) and 3.2.1.8(b), it is easy to see that Eg is a well-defined

functor.

Finally, it is almost obvious that the compositions Eg◦El and El◦Eg are naturally

isomorphic to the corresponding identity functors. So, the functors

Θt
g = El ◦ Ez ◦Θt

p : PBoolSp −→ GenBoolAlg

and

Θa
g = Θa

p ◦ Ep ◦ Eg : GenBoolAlg −→ PBoolSp

(see Theorems 3.2.2.14 and 3.2.2.11 for these notation) are the desired duality functors.

Note that

Θt
g(X) = KO(X),

for every X ∈ |PBoolSp|, and if f ∈ PBoolSp(X,Y ) then

φ = Θt
g(f) : KO(Y ) −→ KO(X)

is defined by the formula

φ(G) = f−1(G),
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for every G ∈ KO(Y ).

The definition of the functor Θt
g is very simple but that of Θa

g is more complicated.

We will recall the definition of the contravariant functor

Θa
s : GenBoolAlg −→ PBoolSp

of H. P. Doctor [45] where the original Stone construction (see [108]) of the dual space

of a GBA is used. Then the pair (Θt
g,Θ

a
s) will be a duality between the categories

GenBoolAlg andPBoolSp. This will imply that Θa
g and Θa

s are naturally isomorphic;

hence, we will obtain that the spaces Θa
g(I) and Θa

s(I) are homeomorphic for any GBA

I (the last assertion can be proved directly as well).

Let I be a GBA. Set Θa
s(I) to be the set X of all prime ideals of I endowed with

a topology O having as an open base the set {γI(b) | b ∈ I} where, for every b ∈ I,

γI(b) = {i ∈ X | b ̸∈ i} (see M. Stone [108]). Then, as it is proved in [108], (X,O) is a

Boolean space and

γI : I −→ KO(X,O), b 7→ γI(b),

is a 0-pseudolattice isomorphism and hence, a GenBoolAlg-isomorphism. If φ ∈
GenBoolAlg(I, J) then set X = Θa

s(I), Y = Θa
s(J) and define a map f = fφ : Y −→

X by the formula f(j) = φ−1(j), for every j ∈ Y . Since φ is aGenBoolAlg-morphism,

we get that this definition is correct and, for every b ∈ I,

f−1
φ (γI(b)) = γJ(φ(b)).(3.13)

This implies easily that f is a perfect map. It becomes now clear that Θa
s is a con-

travariant functor, and also, it is not difficult to show that the pair (Θt
g,Θ

a
s) is a duality

between the categories GenBoolAlg and PBoolSp (see [45]).

Corollary 3.2.2.18. (M. Stone [108]) There exists a bijective correspondence between

the class of all (up to 0-pseudolattice isomorphism) generalized Boolean algebras and

all (up to homeomorphism) locally compact zero-dimensional Hausdorff spaces.

Note that in [107], M. Stone proved that there exists a bijective correspondence

between generalized Boolean algebras and Boolean rings (with or without unit).

Obviously, the categories BoolSp and PBoolSp are subcategories of the cate-

gory HLC. In the next theorem we will find the subcategories of the category DHLC

which are dual to the categories BoolSp and PBoolSp.
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Definition 3.2.2.19. Let DZHLC (resp., DPZHLC) be the full subcategory of the

categoryDHLC (resp.,D1PHLC) (see Definition 2.4.2.1) having as objects all CLCAs

(A, ρ,B) such that if a, b ∈ B and a ≪ρ b then there exists c ∈ B with c ≪ρ c and

a ≤ c ≤ b.

Theorem 3.2.2.20. The following categories are dually equivalent:

(a) BoolSp and DZHLC;

(b) PBoolSp and DPZHLC.

Proof. We will show that the contravariant functors

Λtz = (Λt)|BoolSp and Λaz = (Λa)|DZHLC

are the required duality functors (see (2.5) for Λt and Λa) for the first pair of categories.

Indeed, if X ∈ |BoolSp| then

Λt(X) = (RC(X), ρX , CR(X))

and, obviously, (RC(X), ρX , CR(X)) ∈ |DZHLC|.
Conversely, if (A, ρ,B) ∈ |DZHLC| then X = Λa(A, ρ,B) is a locally compact

Hausdorff space. For proving that X is a zero-dimensional space, let x ∈ X and

U be an open neighborhood of x. Then there exist open sets V,W in X such that

x ∈ V ⊆ cl(V ) ⊆ W ⊆ cl(W ) ⊆ U and cl(V ), cl(W ) are compacts. Then there exist

a, b ∈ B such that λgA(a) = cl(V ) and λgA(b) = cl(W ) (see (1.29) for the notation λgA)

. Obviously, a ≪ρ b. Thus, there exists c ∈ B such that c ≪ρ c and a ≤ c ≤ b. Then

F = λgA(c) is a clopen subset of X and x ∈ F ⊆ U . So, X is zero-dimensional. Now,

all follows from Theorem 2.2.2.12.

The restrictions of the obtained above duality functors to the categories of the

second pair give, according to Theorem 2.4.2.2, the desired second duality.

3.3 Duality Theorems for some cofull subcategories

of the category BoolSp

3.3.1 A Duality Theorem for the category of Boolean spaces
and skeletal maps

Recall that a homomorphism φ between two Boolean algebras is called complete if it

preserves all joins (and, consequently, all meets) that happen to exist; this means that
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if {ai} is a family of elements in the domain of φ with join a, then the family {φ(ai)}
has a join and that join is equal to φ(a).

Recall that we denoted by SBoolSp the category of zero-dimensional locally

compact Hausdorff spaces and continuous skeletal maps (see 0.4.1.3 for the definition

of a skeletal map).

Definition 3.3.1.1. Let SZLBA be the cofull subcategory of the category ZLBA

whose morphisms are, in addition, complete homomorphisms.

Theorem 3.3.1.2. The categories SBoolSp and SZLBA are dually equivalent.

Proof. Having in mind Theorem 3.2.2.7, it is enough to prove that if f is a morphism

of the category SBoolSp then Θt
d(f) is complete, and if φ is a SZLBA-morphism

then Θa
d(φ) is a skeletal map.

So, let f ∈ SBoolSp(X,Y ) and φ = Θt
d(f). Then

φ : (CO(Y ), KO(Y )) −→ (CO(X), KO(X))

and φ(G) = f−1(G), for all G ∈ CO(Y ). Let {Gγ | γ ∈ Γ} ⊆ CO(Y ) and let this

family have a join G in CO(Y ). Set W =
∪
{Gγ | γ ∈ Γ}. Since Y is zero-dimensional,

we get easily that G = cl(W ). Thus φ(G) ⊇ cl(
∪
{φ(Gγ) | γ ∈ Γ}) = F . Let

x ∈ f−1(G)(= φ(G)). Then f(x) ∈ G and there exists a neighborhood U of x such that

f(U) ⊆ G. Suppose that x ̸∈ F . Then there exists a neighborhood V of x such that

V ⊆ U and V ∩f−1(Gγ) = ∅ for all γ ∈ Γ. Thus f(V )∩W = ∅. Then cl(f(V ))∩W = ∅.
Since cl(f(V )) ⊆ cl(f(U)) ⊆ G = cl(W ), we get that cl(f(V )) ⊆ cl(W )\W (= Fr(W )).

This leads to a contradiction because f is skeletal and thus int(cl(f(V ))) ̸= ∅ (see

2.5.2.3). So, φ(G) = f−1(G) = F . Since φ(G) is clopen, we get that φ(G) is the join

of the family {φ(Gγ) | γ ∈ Γ} in CO(X). Therefore, φ is complete.

Let now φ ∈ SZLBA((A, I), (B, J)) and f = Θa
d(φ). Set X = Θa

d(A, I) and

Y = Θa
d(B, J). Then f : Y −→ X. Since KO(Y ) is an open base of Y , for proving

that f is skeletal it is enough to show that for every G ∈ KO(Y ) \ {∅}, int(f(G)) ̸= ∅.
So, let G ∈ KO(Y ) \ {∅}. Then there exists b ∈ J \ {0} such that G = λ(B,J)(b).

Suppose that
∧
{c ∈ A | b ≤ φ(c)} = 0. Then, using the completeness of φ, we get

that 0 = φ(0) =
∧
{φ(c) | c ∈ A, b ≤ φ(c)} ≥ b. Since b ̸= 0, we get a contradiction.

Hence there exists a ∈ A \ {0} such that a ≤ c for all c ∈ A for which b ≤ φ(c). We

will prove that λ(A,I)(a) ⊆ f(λ(B,J)(b))(= f(G)). This will imply that int(f(G)) ̸= ∅.
Let u ∈ λ(A,I)(a). Then a ∈ u. Suppose that there exists c ∈ u such that b ∧ φ(c) = 0.
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Then b ≤ φ(c∗). Thus a ≤ c∗, i.e., a ∧ c = 0. Since a, c ∈ u, we get a contradiction.

Therefore, the set {b} ∪ φ(u) is a filter-base. Hence there exists an ultrafilter v in B

such that {b}∪φ(u) ⊆ v. Then b ∈ v and u ⊆ φ−1(v). Thus u = φ−1(v), i.e., f(v) = u.

So, u ∈ f(λ(B,J)(b)).

Remarks 3.3.1.3. Note that in the definition of the category SZLBA the requirement

that the morphisms φ : (A, I) −→ (B, J) are complete can be replaced by the following

condition:

(SkeZLBA) For every b ∈ J \ {0} there exists a ∈ I \ {0} such that (∀c ∈ A)[(b ≤
φ(c)) → (a ≤ c)].

Indeed, the proof of the above theorem shows the sufficiency of this condition and its

necessity can be established as follows. Let f ∈ SBoolSp(X,Y ) and φ = Θt(f). Then

φ : (CO(Y ), KO(Y )) −→ (CO(X), KO(X)) and φ(G) = f−1(G), for all G ∈ CO(Y ).

Let F ∈ KO(X) \ {∅}. Then int(f(F )) ̸= ∅. Hence there exists G ∈ KO(Y ) \ {∅}
such that G ⊆ int(f(F )). Let H ∈ CO(Y ) and F ⊆ f−1(H). Then G ⊆ int(f(F )) ⊆
f(F ) ⊆ H. So, condition (SkeZLBA) is satisfied.

Moreover, condition (SkeZLBA) can be replaced by the following one:

(CEP) For every b ∈ B \ {0} there exists a ∈ A \ {0} such that (∀c ∈ A)[(b ≤ φ(c)) →
(a ≤ c)].

Indeed, if b ∈ B \{0} then, by the density of J in B, there exists b1 ∈ I \{0} such that

b1 ≤ b. Now, applying (SkeZLBA) for b1, we get an a ∈ I \ {0} which satisfies also the

requirements of (CEP) about b. Conversely, if b ∈ J \ {0} then, by (CEP), there exists

a ∈ A \ {0} such that (∀c ∈ A)[(b ≤ φ(c)) → (a ≤ c)]; but, by condition (LBA) (see

3.2.1.1), there exists a1 ∈ I such that b ≤ φ(a1); thus a ≤ a1; since I is an ideal, we

get that a ∈ I; so, condition (SkeZLBA) is satisfied.

The assertion (c) of the next corollary is a zero-dimensional analogue of the

Fedorchuk Duality Theorem [54] (see Theorem 2.5.2.11 here).

Corollary 3.3.1.4. (a) Let f be a PBoolSp-morphism. Then f is a quasi-open map

iff Θt(f) is complete. In particular, if f is a Stone-morphism then f is a quasi-open

map iff St(f) is complete.

(b) The cofull subcategory QPBoolSp of the category PBoolSp whose morphisms are,

in addition, quasi-open maps, is dually equivalent to the cofull subcategory QPZLBA

of the category PZLBA whose morphisms are, in addition, complete homomorphisms;
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(c) The category QStone of compact zero-dimensional Hausdorff spaces and quasi-

open maps is dually equivalent to the category CBool of Boolean algebras and complete

Boolean homomorphisms.

Proof. The assertion (a) follows from the proof of Theorem 3.3.1.2 and Corollary

2.5.2.5. The assertions (b) and (c) follow from (a) and Theorem 3.3.1.2.

The last corollary together with Fedorchuk’s Duality Theorem [54] imply the

following assertion in which the equivalence (a) ⇐⇒ (b) is a special case of a much

more general theorem due to Monk [84].

Corollary 3.3.1.5. Let φ ∈ BoolAlg(A,B) and A′, B′ be minimal completions of A

and B respectively. We can suppose that A ⊆ A′ and B ⊆ B′. Then the following

conditions are equivalent:

(a) φ can be extended to a complete homomorphism ψ : A′ −→ B′;

(b) φ is a complete homomorphism;

(c) φ satisfies condition (CEP) (see 3.3.1.3 above).

Proof. (a)⇒(b) This is obvious.

(b)⇒(c) This was already established in the proof of Theorem 3.3.1.2 (see also 3.3.1.3).

(c)⇒(a) Obviously, φ ∈ ZLBA((A,A), (B,B)). Then, by 3.3.1.3 and Theorem 3.3.1.2,

condition (CEP) implies that f = Θa
d(φ)(= Sa(φ)) is a skeletal map. Since f is

closed, we get that f is a quasi-open map between Y = Θa
d(B,B)(= Sa(B)) and

X = Θa
d(A,A)(= Sa(A)). Now, by Fedorchuk’s Duality Theorem [54], the map ψ :

RC(X) −→ RC(Y ), F 7→ cl(f−1(int(F ))), is a complete homomorphism. Obviously,

for every F ∈ CO(X), ψ(F ) = f−1(F ) = φ′(F ) (here φ′ = Θt
d(Θ

a
d(φ))). Then the

existence of a natural isomorphism between the composition Θt
d ◦Θa

d and the identity

functor (see Theorem 3.2.2.7), and the fact that RC(X) and RC(Y ) are minimal

completions of, respectively, A and B, imply our assertion.

Now, using Theorem 3.2.2.17, we will present in a simpler form the result estab-

lished in Corollary 3.3.1.4(b).

Theorem 3.3.1.6. The category QPBoolSp is dually equivalent to the cofull subcat-

egory QGBA of the category GenBoolAlg whose morphisms, in addition, preserve

all meets that happen to exist.

Proof. Having in mind Theorem 3.2.2.17 and Corollary 3.3.1.4(b), it is enough to show

that the functor El◦Ez (see 3.2.2.17 and 3.2.2.14) maps QPZLBA to QGBA and the
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functor Ep ◦Eg (see again 3.2.2.17 and 3.2.2.14) maps QGBA to QPZLBA because

with this we will obtain that the categories QPZLBA and QGBA are equivalent.

Obviously, if φ′ : (A, I) −→ (B, J) is a QPZLBA-morphism then φ = (El ◦Ez)(φ′) =

(φ′)|I : I −→ J preserves all meets in I that happen to exist (indeed, since I is an ideal

of A, every meet in I of elements of I is also a meet in A). Conversely, let φ : I −→ J

be a QGBA-morphism. We will show that φ satisfies the following condition:

(QGBPL) For every b ∈ J \{0} there exists a ∈ I \{0} such that (∀c ∈ I)[(b ≤ φ(c)) →
(a ≤ c)].

Indeed, let b ∈ J \ {0}. Suppose that
∧
I{c ∈ I | b ≤ φ(c)} = 0. Then, using the

completeness of φ, we get that 0 = φ(0) =
∧
{φ(c) | c ∈ I, b ≤ φ(c)} ≥ b. Since b ̸= 0,

we get a contradiction. Hence there exists a ∈ I \ {0} such that a ≤ c for all c ∈ I for

which b ≤ φ(c).

Let φ′ = (Ep ◦ Eg)(φ). We will show that the map φ′ satisfies condition (Ske-

ZLBA). We have that φ′ : (SI(I), eI(I)) −→ (Si(J), eJ(J)). Let J1 ∈ eJ(J)\{0}. Then
there exists b ∈ J \{0} such that J1 =↓ (b). By (QGBPL), there exists a ∈ I \{0} such

that (∀c ∈ I)[(b ≤ φ(c)) → (a ≤ c)]. Let I1 ∈ Si(I) and J1 ⊆ φ′(I1). Then, by the def-

inition of the map φ′ (see Theorem 3.2.2.17), we have that ↓ (b) ⊆
∪
{↓ (φ(c)) | c ∈ I1}.

Thus there exists c ∈ I1 such that b ≤ φ(c). Since c ∈ I, we get that a ≤ c. Therefore,

↓ (a) ⊆ I1. So, the map φ′ satisfies condition (SkeZLBA). Now 3.3.1.3 implies that φ′

is a complete homomorphism. Thus φ′ is a QPZLBA-morphism.

Remark 3.3.1.7. The proof of Theorem 3.3.1.6 shows that in the definition of the

category QGBA the requirement that its morphisms φ : I −→ J preserve all meets

that happen to exist can be replaced by the condition (QGBPL) introduced above.

3.3.2 A Duality Theorem for the category of Boolean spaces
and open maps

Theorem 3.3.2.1. (a) Let f ∈ BoolSp(X,Y ), φ = Θt(f), (A, I) = Θt(X) and Θt(Y )

= (B, J). Then the map f is open iff there exists a map ψ : I −→ J which satisfies

the following conditions:

(OZL1) For every b ∈ J and every a ∈ I, (a ∧ φ(b) = 0) → (ψ(a) ∧ b = 0), and

(OZL2) For every a ∈ I, φ(ψ(a)) ≥ a

(such a map ψ will be called a lower pre-adjoint of φ).
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(b) The cofull subcategory OBoolSp of the category BoolSp whose morphisms are

the open maps is dually equivalent to the cofull subcategory OZLBA of the category

ZLBA whose morphisms have, in addition, lower pre-adjoints.

Proof. (a) Let f ∈ BoolSp(X,Y ) be an open map. For every F ∈ KO(X)(= I) set

ψ(F ) = f(F ). Then, clearly, ψ(F ) ∈ KO(Y )(= J) and φ(ψ(F )) = f−1(f(F )) ⊇ F .

Hence, condition (OZL2) is satisfied. Let F ∈ KO(X), G ∈ KO(Y ) and F ∧φ(G) = 0.

Then F ∩ f−1(G) = ∅. Thus f(F ) ∩ G = ∅, i.e., ψ(F ) ∧ G = 0. Therefore, condition

(OZL1) is satisfied as well.

Let now φ has a lower pre-adjoint. We will show that f ′ = Θa(φ) is an open

map. This will imply that f is open. Let X ′ = Θa(Θt(X)) and Y ′ = Θa(Θt(Y )). Since

λ(A,I)(I) is an open base of X ′, it is enough to show that f ′(λ(A,I)(a)) is an open set,

for every a ∈ I. So, let a ∈ I. We will prove that f ′(λ(A,I)(a)) = λ(B,J)(ψ(a)). Let

u ∈ λ(A,I)(a). Then a ∈ u. Let v = f ′(u), i.e., v = φ−1(u). By (OZL2), φ(ψ(a)) ≥ a

and hence φ(ψ(a)) ∈ u. Thus ψ(a) ∈ φ−1(u) = v, i.e., f ′(u) ∈ λ(B,J)(ψ(a)). Therefore

f ′(λ(A,I)(a)) ⊆ λ(B,J)(ψ(a)). Conversely, let v ∈ λ(B,J)(ψ(a)). Then ψ(a) ∈ v. Suppose

that there exists b ∈ v such that a ∧ φ(b) = 0. Since v is a bounded ultrafilter, there

exists b0 ∈ v ∩ J . Then b1 = b ∧ b0 ∈ J ∩ v and a ∧ φ(b1) = 0. Now, condition (OZL1)

implies that ψ(a)∧b1 = 0, which is a contradiction. Hence, the set {a}∪φ(v) is a filter-
base. Thus there exists an ultrafilter u ⊇ {a} ∪ φ(v). Then a ∈ u ∩ I and v ⊆ φ−1(u).

Therefore, v = φ−1(u) = f(u). This shows that f ′(λ(A,I)(a)) ⊇ λ(B,J)(ψ(a)). Hence, f
′

is an open map.

(b) It follows from (a) and Theorem 3.2.2.7.

Remarks 3.3.2.2. Note that condition (OZL2) implies condition (LBA). Indeed, in

the notation of Theorem 3.3.2.1, if a ∈ I then b = ψ(a) ∈ J and φ(b) ≥ a. Further,

condition (OZL1) implies that (again in the notation of Theorem 3.3.2.1) ψ(0) = 0.

Indeed, 0 ∧ φ(ψ(0)) = 0 implies that ψ(0) ∧ ψ(0) = 0, i.e., that ψ(0) = 0.

Theorem 3.3.2.3. (a) Let f ∈ PBoolSp(X,Y ), (A, I) = Θt(X), (B, J) = Θt(Y ) and

φ = Θt(f). Then the map f is open iff φ : B −→ A has a lower adjoint ψ : A −→ B.

(b) The cofull subcategory POBoolSp of the category PBoolSp whose morphisms

are open perfect maps is dually equivalent to the cofull subcategory POZLBA of the

category PZLBA whose morphisms have, in addition, lower adjoints.

Proof. (a) Let f ∈ PBoolSp(X,Y ) and f is open. Then set ψ(F ) = f(F ), for

every F ∈ CO(X)(= A). Then, since f is open and closed map, ψ : A −→ B(=
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CO(Y )). Obviously, φ(ψ(F )) = f−1(f(F )) ⊇ F for every F ∈ CO(X) and ψ(φ(G)) =

f(f−1(G)) ⊆ G for every G ∈ CO(Y ). Hence ψ is a lower adjoint of φ. Conversely,

let φ has a lower adjoint ψ. Then ψ(I) ⊆ J . Indeed, let a ∈ I. Then, by condition

(LBA), there exists b ∈ J such that a ≤ φ(b). Then ψ(a) ≤ ψ(φ(b)) ≤ b ∈ J . Thus,

ψ(a) ∈ J . Further, condition (OZL2) is clearly fulfilled as well as condition (OZL1)

(see Fact 2.5.2.1). So, (ψ)|I is a lower pre-adjoint of φ. Then, by Theorem 3.3.2.1(a),

f : X −→ Y is an open map.

(b) It follows from (a) and Theorem 3.2.2.11.

Corollary 3.3.2.4. (a) Let f ∈ Stone(X,Y ), φ = St(f), A = St(X) and B = St(Y ).

Then the map f is open iff φ : B −→ A has a lower adjoint ψ : A −→ B.

(b) The category OStone of compact zero-dimensional Hausdorff spaces and open maps

is dually equivalent to the category OBool of Boolean algebras and Boolean homomor-

phisms having lower adjoints.

Proof. It follows immediately from Theorem 3.3.2.3.

Definition 3.3.2.5. Let φ ∈ GenBoolAlg(J, I). If ψ : I −→ J is a map which

satisfies conditions (OZL1) and (OZL2) (see 3.3.2.1) then ψ is called a lower preadjoint

of φ.

Let OGBA be the cofull subcategory of the category GenBoolAlg whose mor-

phisms have, in addition, lower preadjoints.

(Note that we distinguish between “preadjoint” and “pre-adjoint” (see Theorem

3.3.2.1).

Corollary 3.3.2.6. The categories POBoolSp and OGBA are dually equivalent.

Proof. It follows from Theorems 3.2.2.17, 3.3.2.1 and 3.3.2.3. Indeed, it is enough to

show that the categories OGBA and POZLBA are equivalent. From the proof of

Theorem 3.3.2.3, it follows that if φ′ is an POZLBA-morphism then φ = El(Ez(φ′))

has a lower preadjoint. Conversely, if φ is an OGBA-morphism then φ′ = Ep(Eg(φ))

can be regarded as an extension of φ. This implies immediately that φ′ has a lower

pre-adjoint. Now, Theorem 3.3.2.1 implies that f = Θa(φ′) is an open map. Thus, by

Theorem 3.3.2.3, φ′ has a lower adjoint.
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3.4 Characterizations of the dual morphisms of the

embeddings, surjections and injections

In this section we will investigate the following problem: characterize the dual mor-

phisms of the injective and surjective morphisms of the category BoolSp and its sub-

categories PBoolSp, OBoolSp. Such a problem was regarded by M. Stone in [108]

for surjective continuous maps and for closed embeddings (i.e., for injective morphisms

of the category PBoolSp). An analogous problem will be investigated for the homeo-

morphic embeddings and dense embeddings.

3.4.1 Characterizations of the dual morphisms of the injective
maps

We start with a simple observation.

Proposition 3.4.1.1. Let f ∈ BoolSp(X,Y ), (A, I) = Θt(X), (B, J) = Θt(Y ) and

φ = Θt(f). Then φ is an injection ⇐⇒ φ|J is an injection ⇐⇒ clY (f(X)) = Y .

Proof. We have that (A, I) = (CO(X), KO(X)), (B, J) = (CO(Y ), KO(Y )) and

φ : CO(Y ) −→ CO(X).

Obviously, if φ is an injection then φ|J is an injection.

Let φ|J be an injection, G ∈ KO(Y ) and G ̸= ∅. Then φ(G) ̸= ∅, i.e., f−1(G) ̸= ∅.
This means that f(X) ∩G ̸= ∅. Thus cl(f(X)) = Y .

Finally, let cl(f(X)) = Y , G ∈ CO(Y ) and G ̸= ∅. Then G∩ f(X) ̸= ∅ and thus

φ(G) = f−1(G) ̸= ∅. So, φ is an injection.

Proposition 3.4.1.2. Let f ∈ BoolSp(X,Y ), φ = Θt(f), (A, I) = Θt(X), (B, J) =

Θt(Y ) and φ(B) ⊇ I (or φ(J) ⊇ I). Then f is an injection.

Proof. Suppose that there exist x, y ∈ X such that x ̸= y and f(x) = f(y). Then

there exists U ∈ KO(X) such that x ∈ U ⊆ X \ {y}. There exists V ∈ CO(Y ) (or,

respectively, V ∈ KO(Y )) with φ(V ) = U , i.e., f−1(V ) = U . Then f(U) = f(X) ∩ V
and f−1(f(U)) = f−1(V ) = U . Since f(y) = f(x) ∈ f(U), we get that y ∈ U , a

contradiction. Thus, f is an injection.

Theorem 3.4.1.3. Let f ∈ BoolSp(X,Y ), φ = Θt(f), (A, I) = Θt(X) and (B, J) =

Θt(Y ). Then f is an injection iff φ : (B, J) −→ (A, I) satisfies the following condition:
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(InZLC) For any a, b ∈ I such that a ∧ b = 0 there exists a′, b′ ∈ J with a′ ∧ b′ = 0,

φ(a′) ≥ a and φ(b′) ≥ b.

Proof. Let f : X −→ Y be an injection. We have that (A, I) = (CO(X), KO(X)),

(B, J) = (CO(Y ), KO(Y )) and φ : CO(Y ) −→ CO(X), G 7→ f−1(G). Let F1, F2 ∈
KO(X) and F1 ∩ F2 = ∅. Since f is a continuous injection, we get that f(F1) and

f(F2) are disjoint compact subsets of Y . Using the fact that KO(Y ) is a base of Y ,

we get that there exist disjoint G1, G2 ∈ KO(Y ) such that f(Fi) ⊆ Gi, i = 1, 2. Then

Fi ⊆ f−1(Gi), i.e., Fi ⊆ φ(Gi), i = 1, 2. Hence, φ satisfies condition (InZLC).

Let now φ satisfies condition (InZLC). We will prove that f is an injection. Let

x, y ∈ X and x ̸= y. Then there exist disjoint Fx, Fy ∈ KO(X) such that x ∈ Fx

and y ∈ Fy. Now, by condition (InZLC), there exist Gx, Gy ∈ KO(Y ) such that

Gx ∩Gy = ∅, f−1(Gx) ⊇ Fx and f−1(Gy) ⊇ Fy. Then f(x) ∈ Gx and f(y) ∈ Gy. Thus

f(x) ̸= f(y).

Corollary 3.4.1.4. The cofull subcategory InjBoolSp of the category BoolSp whose

morphisms are, in addition, injective maps, is dually equivalent to the cofull subcategory

DInjBoolSp of the category ZLBA whose morphism satisfy, in addition, condition

(InZLC).

Proof. It follows from Theorems 3.4.1.3 and 3.2.2.7.

In the sequel, we will not formulate corollaries like that because they follow directly

from the respective characterization of injectivity or surjectivity and the corresponding

duality theorems.

Remark 3.4.1.5. Let us show how Theorem 3.4.1.3 implies Proposition 3.4.1.2. Let

φ(B) ⊇ I. Then φ(J) ⊇ I. Indeed, let a ∈ I; then, by condition (LBA), there exists

b1 ∈ J such that φ(b1) ≥ a; since there exists b2 ∈ B with φ(b2) = a, we get that

φ(b1∧ b2) = a and b1∧ b2 ∈ J . Hence, φ(J) ⊇ I. Let now a, b ∈ I and a∧ b = 0. There

exist a1, b1 ∈ J such that φ(a1) = a and φ(b1) = b. Then φ(a1 ∧ b∗1) = a ∧ b∗ = a,

a1 ∧ b∗1 ∈ J and (a1 ∧ b∗1) ∧ b1 = 0. Therefore, φ satisfies condition (InZLC).

3.4.2 Characterizations of the dual morphisms of the surjec-
tive maps

In the next theorem we will assume that the ideals and prime ideals could be non-

proper.

187



Theorem 3.4.2.1. Let f ∈ BoolSp(X,Y ), φ = Θt(f), (A, I) = Θt(X) and (B, J) =

Θt(Y ). Then the following conditions are equivalent:

(a) f is a surjection;

(b) φ : B −→ A is an injection and for every bounded ultrafilter v in (B, J) there exists

a ∈ I such that a ∧ φ(v) ̸= 0 (i.e., a ∧ φ(b) ̸= 0 for any b ∈ v);

(c) φ : B −→ A is an injection and for every prime ideal J1 of J , we have that∨
{Iφ(b) | b ∈ J1} = I implies J1 = J (where Iφ(b) = {a ∈ I | a ≤ φ(b)});

(d) φ : B −→ A is an injection and for every ideal J1 of J , [(
∨
{Iφ(b) | b ∈ J1} = I) →

(J1 = J)].

Proof. (a)⇒(b) Let f(X) = Y . Then, by Proposition 3.4.1.1, φ is an injection.

Further, by (3.7), the bounded ultrafilters in (B, J) = (CO(Y ), KO(Y )) are of the

form uCy (see 3.2.1.10 for this notation) and analogously for (A, I). So, let y ∈ Y . Then

there exists x ∈ X such that f(x) = y. This implies that φ(uCy ) ⊆ uCx . There exists

F ∈ KO(X) ∩ uCx . Then F ∩ f−1(G) ̸= ∅, for every G ∈ uCy , i.e., F ∧ φ(uCy ) ̸= 0.

(b)⇒(c) Let J1 be a prime ideal of J . Let
∨
{Iφ(b) | b ∈ J1} = I. Suppose that

J1 ̸= J . Then v1 = {b ∈ B | b ∧ (J \ J1) ̸= 0} is a bounded ultrafilter in (B, J) and

v1 ∩ J = J \ J1. This follows from the more general Proposition 2.2.3.7 but we will

supply it with a new direct proof. So, it is clear that J \ J1 is a filter in J , and hence

J \ J1 ⊆ v1; also, J \ J1 ̸= ∅ and v1 is an upper set. We will show that v1 ∩ J = J \ J1.
Since J \ J1 ⊆ v1, it is enough to prove that v1 ∩ J1 = ∅. Let d ∈ J1. There exists

e ∈ J \ J1. If d∗ ∧ e ∈ J1 then e = (e ∧ d) ∨ (e ∧ d∗) ∈ J1, a contradiction. Hence

c = d∗ ∧ e ∈ J \ J1 and d ∧ c = 0. Therefore, d ̸∈ v1. So, v1 ∩ J1 = ∅ and thus

v1 ∩ J = J \ J1. Further, if b1 ∈ v1 and b2 ∈ J \ J1 then b1 ∧ b2 ∈ J \ J1. Indeed, if

b = b1 ∧ b2 ∈ J1 then b ̸∈ v1 and hence there exists c ∈ J \ J1 such that b ∧ c = 0, i.e.,

b1 ∧ (b2 ∧ c) = 0; since c ∧ b2 ∈ J \ J1, we get a contradiction. Let now b1, b2 ∈ v1. We

will show that b1 ∧ b2 ∈ v1 and this will imply that v1 is a filter in B. Let c ∈ J \ J1.
Then b1 ∧ c, b2 ∧ c ∈ J \ J1 and thus (b1 ∧ c)∧ (b2 ∧ c) ∈ J \ J1; hence (b1 ∧ b2)∧ c ̸= 0.

Therefore, b1 ∧ b2 ∈ v1. Finally, for showing that the filter v1 is an ultrafilter, suppose

that there exists b ∈ B such that b ̸∈ v1 and b
∗ ̸∈ v1. Then there exist c, d ∈ J \J1 such

that b∧ c = 0 and b∗∧d = 0. Since c∧d ∈ J \J1, we have that c∧d ̸= 0. On the other

hand, d ≤ b and hence c ∧ d ≤ c ∧ b = 0, i.e., c ∧ d = 0, a contradiction. Therefore, v1

is a bounded ultrafilter in (B, J) and v1 ∩ J = J \ J1. By (b), there exists a ∈ I such

that a ∧ φ(v1) ̸= 0. Since a ∈ I and
∨
{Iφ(b) | b ∈ J1} = I, there exist b1, . . . , bk ∈ J1
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and a1, . . . , ak ∈ I (where k ∈ N+) such that a =
∨
{ai | i = 1, . . . , k} and ai ≤ φ(bi),

i = 1, . . . , k. Set b =
∨
{bi | i = 1, . . . , k}. Then a ≤ φ(b) and b ∈ J1. Since φ is an

injection, we have that φ(v1 ∩ J) = φ(J \ J1) = φ(J) \ φ(J1). Thus φ(b) ̸∈ φ(v1 ∩ J)
(because b ∈ J1). Since a ≤ φ(b), we get that φ(b) ∧ φ(v1) ̸= 0. The injectivity of φ

implies that b ∧ v1 ̸= 0. Thus b ∈ v1 ∩ J1, a contradiction. Hence, J1 = J .

(c)⇒(a) Suppose that f(X) ̸= Y . Then there exists y ∈ Y \ f(X). Set U = Y \ {y}.
Thus f(X) ⊆ U . Set J1 = {G ∈ KO(Y ) | G ⊆ U}. Then J1 is a prime ideal of

J(= KO(Y )). (Indeed, if G1, G2 ∈ KO(Y ) and y ̸∈ G1 ∩ G2 then either y ̸∈ G1

or y ̸∈ G2; hence, G1 ∈ J1 or G2 ∈ J1.) Obviously, J1 ̸= J . We will prove that∨
{Iφ(b) | b ∈ J1} = I, which, by (c), will lead to a contradiction. So, let F ∈ KO(X).

Then f(F ) ⊆ U . Since f(F ) is compact, there exists G ∈ KO(Y ) such that f(F ) ⊆
G ⊆ U . Then G ∈ J1 and F ⊆ f−1(G) = φ(G). Thus F ∈ Iφ(G). Therefore,∨
{Iφ(b) | b ∈ J1} = I. So, f(X) = Y .

(a)⇒(d) Let f(X) = Y . Then, by Proposition 3.4.1.1, φ is an injection. Let J1 be

an ideal of J such that
∨
{Iφ(b) | b ∈ J1} = I. Suppose that J1 ̸= J . Set U =∪

{G | G ∈ J1}. Then U ̸= Y . (Indeed, if U = Y then every H ∈ KO(Y )(= J)

will be covered by a finite number of elements of J1; since J1 is an ideal, we will

get that H ∈ J1.) Since f is a surjection, we get that V = f−1(U) ̸= X. Set

IV = {F ∈ I | F ⊆ V }. Then, obviously, IV is a proper ideal of I. Let G ∈ J1 and

F ∈ Iφ(G). Then F ⊆ φ(G) = f−1(G) ⊆ f−1(U) = V . Thus
∨
{Iφ(b) | b ∈ J1} ⊆ IV .

Since IV ̸= I, we get a contradiction. Therefore, J1 = J .

(d)⇒(c) It is obvious.

Remark 3.4.2.2. In [108, Theorem 7] M. Stone proved a result which is equivalent to

our assertion that (a)⇔(d) in the previous theorem. More precisely, M. Stone proved

the following (in our notation): the map f is a surjection iff the map ψ = φ|J : J −→ A

is a 0-pseudolattice monomorphism and for every ideal J1 of J , [(
∨
{Iφ(b) | b ∈ J1} =

I) ↔ (J1 = J)]. The Stone’s condition “(J1 = J) → (
∨
{Iφ(b) | b ∈ J1} = I)”, i.e.,

“
∨
{Iφ(b) | b ∈ J} = I”, is equivalent (as it is easy to see) to our condition (LBA)

(see 3.2.1.1) which is automatically satisfied by the morphisms of the category ZLBA

and thus it appears in our Theorem 3.4.2.1 in another form. Further, when φ is an

injection then, obviously, ψ = φ|J is an injection; in the converse direction we have

the following: the map ψ can be extended to a homomorphism φ : B −→ A (by the

result proved below) and then φ is obliged to be an injection (indeed, if b ∈ B \ {0}
and φ(b) = 0 then the density of J in B implies that there exists c ∈ J \ {0} such that
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c ≤ b; then ψ(c) = φ(c) = 0, a contradiction). So, our condition (d) is equivalent to

the cited above Stone condition from [108, Theorem 7].

Proposition 3.4.2.3. Let (A, I) be a ZLBA, (B, J) be an LBA and ψ : J −→ A be

a 0-pseudolattice homomorphism satisfying condition (LBA) (i.e., ∀a ∈ I ∃b ∈ J such

that a ≤ ψ(b)). Then ψ can be extended to a homomorphic map φ : B −→ A.

Proof. For every a ∈ A and every b ∈ B, set Ia = {c ∈ I | c ≤ a} and Jb = {c ∈
J | c ≤ b}. It is easy to see that Ia and Jb are simple ideals of I and J respectively.

Note also that ¬Ia = Ia∗ and analogously for Jb.

Let b ∈ B. Since J is dense in B, we have that b =
∨
Jb. We will show that

I(b) =
∨
{Iψ(c) | c ∈ Jb} is a simple ideal of I. It is easy to see that I(b) =

∪
{Iψ(c) | c ∈

Jb}. Let now a ∈ I. Then, by condition (LBA), there exists c ∈ J such that a ≤ ψ(c).

We have that c = (c ∧ b) ∨ (c ∧ b∗), c1 = c ∧ b ∈ Jb, c2 = c ∧ b∗ ∈ ¬Jb and c = c1 ∨ c2.
Thus a ≤ ψ(c) = ψ(c1) ∨ ψ(c2). We obtain that a = a1 ∨ a2, where a1 = a ∧ ψ(c1)

and a2 = a ∧ ψ(c2). Obviously, a1 ∈ I(b). We will show that a2 ∈ ¬I(b). Indeed, let

a′ ∈ I(b); then there exists d ∈ Jb such that a′ ≤ ψ(d). Since c2 ∈ ¬Jb, we get that

d ∧ c2 = 0. Thus ψ(d) ∧ ψ(c2) = 0. Hence a′ ∧ a2 ≤ ψ(d) ∧ a ∧ ψ(c2) = 0. Therefore,

for every a′ ∈ I(b) we have that a2 ∧ a′ = 0. This means that a2 ∈ ¬I(b). Therefore,

I(b)∨¬I(b) = I, i.e., I(b) is a simple ideal. Since (A, I) is a ZLBA, we get that
∨
I(b)

exists in A. We set now φ(b) =
∨
I(b). Obviously, φ(0) = 0. Further, φ(1) =

∨
I(1).

We have that I(1) =
∪
{Iψ(c) | c ∈ J}. Applying condition (LBA), we get that I(1) = I.

Now, using the density of I in A, we obtain that φ(1) = 1. Finally, the fact that φ

preserves finite meets and finite joins can be easily proved. Hence φ : B −→ A is a

Boolean homomorphism and the definition of φ together with the density of I in A

imply that φ extends ψ. .

Remark 3.4.2.4. Note that 3.4.2.2 and 3.4.2.3 imply that in Theorem 3.4.2.1 we can

obtain new conditions equivalent to the condition (a) by replacing in (b), (c) and (d)

the phrase “φ is an injection” by the phrase “φ|J is an injection”.

3.4.3 Characterizations of the dual morphisms of some special
maps

Theorem 3.4.3.1. Let f ∈ OBoolSp(X,Y ), φ = Θt(f), (A, I) = Θt(X), (B, J) =

Θt(Y ). Then f is an injection ⇐⇒ φ(J) ⊇ I ⇐⇒ φ(B) ⊇ I.
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Proof. Note that, by Remark 3.4.1.5, conditions “φ(J) ⊇ I” and “φ(B) ⊇ I” are

equivalent.

Let f be an injection and F ∈ KO(X). Then f(F ) ∈ KO(Y ) and f−1(f(F )) =

F . Hence, φ(J) ⊇ I. Conversely, let φ(J) ⊇ I. Then, by 3.4.1.2, we get that f is an

injection.

Theorem 3.4.3.2. Let f ∈ PBoolSp(X,Y ), φ = Θt(f), (A, I) = Θt(X) and (B, J) =

Θt(Y ). Then f is a surjection ⇐⇒ φ is an injection ⇐⇒ φ|J is an injection.

Proof. By Proposition 3.4.1.1, if f is a surjection then φ is an injection. Hence φ|J is

an injection.

Let now φ|J be an injection. Then, by Proposition 3.4.1.1, cl(f(X)) = Y . Since

f is a closed map, we get that f is a surjection.

Theorem 3.4.3.3. Let f ∈ PBoolSp(X,Y ), φ = Θt(f), (A, I) = Θt(X) and (B, J) =

Θt(Y ). Then f is an injection iff φ(J) = I.

Proof. Let f be an injection. Then f�X : X −→ f(X) is a homeomorphism. Let

F ′ ∈ KO(X). Then F = f(F ′) is compact. Since F is open in f(X), there exists an

open set U in Y such that U ∩ f(X) = F . Then there exists G ∈ KO(Y ) such that

F ⊆ G ⊆ U . Then, clearly, f−1(G) = f−1(F ) = F ′. Hence φ(G) = F ′. Therefore,

φ(J) ⊇ I. Since f is perfect, we have that φ(J) ⊆ I. Thus φ(J) = I. Conversely, let

φ(J) = I. Then Proposition 3.4.1.2 implies that f is an injection.

Obviously, the last two theorems imply the well-known Stone’s results that a

Stone-morphism f is an injection (resp., a surjection) iff φ = St(f) is a surjection

(resp., an injection).

Now we will be occupied with the homeomorphic embeddings. We will call them

shortly embeddings.

Theorem 3.4.3.4. Let f ∈ BoolSp(X,Y ), φ = Θt(f), (A, I) = Θt(X) and (B, J) =

Θt(Y ). Then f is a dense embedding iff φ is an injection and φ(J) ⊇ I.

Proof. Let f be a dense embedding. Then f(X) is open in Y and thus f is an open

injection. Now, Theorem 3.4.3.1 implies that φ(J) ⊇ I. Since cl(f(X)) = Y , we get,

by 3.4.1.1, that φ is an injection.

Conversely, let φ be an injection and φ(J) ⊇ I. Then, by 3.4.1.1, cl(f(X)) = Y .

We will show that φ has a lower pre-adjoint. Indeed, for every a ∈ I there exists a
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unique ba ∈ J such that φ(ba) = a. Let ψ : I −→ J be defined by ψ(a) = ba for every

a ∈ I. Then, obviously, φ(ψ(a)) = a, for every a ∈ I. Thus condition (OZL2) (see

3.3.2.1) is satisfied. Further, let a ∈ I, b ∈ J and a ∧ φ(b) = 0. Since a = φ(ψ(a)), we

get that φ(ψ(a) ∧ b) = 0. This implies, by the injectivity of φ, that ψ(a) ∧ b = 0. So,

condition (OZL1) (see 3.3.2.1) is also satisfied. Therefore, ψ is a lower pre-adjoint of

φ. Hence, by Theorem 3.3.2.1, f is an open map. Now, using the condition φ(J) ⊇ I,

we get, by Theorem 3.4.3.1, that f is an injection. Hence, f is a dense embedding.

Theorem 3.4.3.5. (M. Stone [108]) Let f ∈ BoolSp(X,Y ), φ = Θt(f), (A, I) =

Θt(X) and (B, J) = Θt(Y ). Then f is a closed embedding iff φ(J) = I.

Proof. Let f be a closed embedding. Then f is a perfect injection. Hence, by Theorem

3.4.3.3, φ(J) = I.

Conversely, let φ(J) = I. Then, by Theorem 3.2.2.11, f is a perfect map. Using

Proposition 3.4.1.2, we get that f is an injection. Hence, f is a closed embedding.

Proposition 3.4.3.6. Let f ∈ BoolSp(X,Y ), φ = Θt(f), (A, I) = Θt(X) and Θt(Y )

= (B, J). Then f is an embedding iff there exists a ZLBA (A1, I1) and two ZLBA-

morphisms φ1 : (A1, I1) −→ (A, I) and φ2 : (B, J) −→ (A1, I1) such that φ = φ1 ◦ φ2,

φ1 is an injection, φ1(I1) ⊇ I and φ2(J) = I1.

Proof. Obviously, f is an embedding iff f = i◦ f1 where f1 is a dense embedding and i

is a closed embedding. (Indeed, when f is an embedding then let f1 : X −→ clY (f(X))

be the restriction of f and i : clY (f(X)) −→ Y be the inclusion map; the converse

is also clear.) Setting φ1 = Θt
d(f1) and φ2 = Θt

d(i), we get, by Theorem 3.2.2.7, that

φ = φ1 ◦ φ2. Now our assertion follows from Theorems 3.4.3.4 and 3.4.3.5.

3.5 The construction of the dual objects of the clo-

sed, regular closed and open subsets

3.5.1 The dual objects of the open subsets

The next theorem is the well-known result of M. Stone [108] (written in our terms and

notation) that the open sets correspond to the ideals.

Theorem 3.5.1.1. (Stone [108]) Let I be a GBA and (X,O) = Θa
s(I). Then there

exists a frame isomorphism

ιs : (Idl(I),≤) −→ (O,⊆), J 7→
∪

{γI(a) | a ∈ J}.
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If U ∈ O then

J = ι−1
s (U)) = {b ∈ I | γI(b) ⊆ U},

J is isomorphic to the ideal

JU = {F ∈ KO(X) | F ⊆ U}

of KO(X) (= Θt
g(X)) and JU = KO(U), i.e., JU = Θt

g(U).

Corollary 3.5.1.2. Let (A, I) be a ZLBA and (X,O) = Θa(A, I)(= Θa
g(I)). Then

there exists a frame isomorphism

ι : (Idl(I),≤) −→ (O,⊆), J 7→
∪

{λ(A,I)(a) | a ∈ J}.

If U ∈ O then

J = ι−1(U) = {b ∈ I | λ(A,I)(b) ⊆ U},

J is isomorphic to the ideal

JU = {F ∈ KO(X) | F ⊆ U}

of KO(X) (= Θt
g(X)) and JU = KO(U), i.e., JU = Θt

g(U).

Corollary 3.5.1.3. (M. Stone [108, Theorem 5]) Let I be a GBA, (X,O) = Θa
s(I), J

be an ideal of I and U = ιs(J). Then:

(a) U is a clopen set ⇐⇒ J is a simple ideal of I;

(b) U is a regular open set iff J is a normal ideal of I;

(c) U is a compact open set iff J is a principal ideal of I.

If (A, I) is an LBA and a ∈ A then the ideal

Ia = {b ∈ I | b ≤ a}

of I will be called an A-principal ideal of I.

Corollary 3.5.1.4. Let (A, I) be a ZLBA, (X,O) = Θa(A, I) (= Θa
g(I)), J be an ideal

of I and U = ι(J). Then:

(a) U is a clopen set ⇐⇒ J is a simple ideal of I ⇐⇒ J is an A-principal ideal;

(b) U is a regular open set iff J is a normal ideal of I;

(c) U is a compact open set iff J is a principal ideal of I.
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Proof. We need only to prove the second assertion in (a). By Proposition 3.2.2.5, we

have that λ(A,I)(A) = CO(X). Let U be a clopen set. There exists a ∈ A such that U =

λ(A,I)(a). Then J = ι−1(U) = {b ∈ I | λ(A,I)(b) ⊆ U} = {b ∈ I | λ(A,I)(b) ⊆ λ(A,I)(a)} =

{b ∈ I | b ≤ a}, i.e., J is an A-principal ideal. Conversely, let J be an A-principal ideal.

Then there exists a ∈ A such that J = {b ∈ I | b ≤ a}. Since I is dense in A, we get that
a =

∨
J . Using again Proposition 3.2.2.5, we get that λ(A,I)(a) =

∨
CO(X){λ(A,I)(b) | b ∈

J} =
∨
RC(X){λ(A,I)(b) | b ∈ J} = clX(

∪
{λ(A,I)(b) | b ∈ J}) = clX(U). If there exists

x ∈ λ(A,I)(a) \ U then there exists b ∈ I such that x ∈ λ(A,I)(b) ⊆ λ(A,I)(a) (since

λ(A,I)(a) is open). Thus b ≤ a, i.e., b ∈ J , a contradiction. Therefore, U = λ(A,I)(a),

i.e., U is a clopen set.

The above results show that if X ∈ |BoolSp| and U is an open subset of X then

ι−1(U) (or, equivalently, ι−1
s (U)) is GenBoolAlg-isomorphic to Θt

g(U). Then the dual

object Θt
d(U) of U can be obtained with the help of the following fact which was proved

in Subsection 3.2.2: if Y ∈ |BoolSp| and I = Θt
g(Y ) then Θt

d(Y ) = (Si(I), eI(I)).

3.5.2 The dual objects of the closed and regular closed subsets

Now, for every X ∈ |BoolSp|, we will find the connections between the dual objects

Θt
g(F ) of the closed or regular closed subsets F of X and the dual object Θt

g(X) of

X. The obtained result for regular closed subsets of X seems to be new even in the

compact case.

Theorem 3.5.2.1. Let I, J ∈ |GenBoolAlg|, X = Θa
g(I) and F = Θa

g(J). Then:

(a)(M. Stone [108, Theorem 4(4)]) F is homeomorphic to a closed subset of X iff there

exists a 0-pseudolattice epimorphism φ : I −→ J (i.e., iff J is a quotient of I);

(b) F is homeomorphic to a regular closed subset of X if and only if there exists a

0-pseudolattice epimorphism φ : I −→ J which preserves all meets that happen to exist

in I.

Proof. (a) Let F be homeomorphic to a closed subset of X, i.e there exists a closed

embedding f : F −→ X. Then, by Theorem 3.4.3.5, φ′ = Θt
g(f) : Θ

t
g(X) −→ Θt

g(F )

is a surjective 0-pseudolattice homomorphism. Thus, by the duality, there exists a

surjective 0-pseudolattice homomorphism φ : I −→ J .

Conversely, if φ : I −→ J is a surjective 0-pseudolattice homomorphism then, by

Theorem 3.4.3.5, F is homeomorphic to a closed subset of X.
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(b) Having in mind the assertion (a) above and Theorem 3.3.1.6, it is enough to show

that if f : F −→ X is a closed injection then f(F ) ∈ RC(X) iff f is a quasi-open map.

This can be easily shown (using Corollary 2.5.2.8), so that the proof of assertion (b) is

complete.

We will finish with mentioning some assertions about isolated points. All these

statements have easy proofs which will be omitted.

Proposition 3.5.2.2. Let (A, I) be a ZLBA, X = Θa(A, I) and a ∈ A. Then a is

an atom of A iff λ(A,I)(a) is an isolated point of the space X. Also, for every isolated

point x of X there exists an a ∈ I such that a is an atom of I (equivalently, of A) and

{x} = λ(A,I)(a).

Proposition 3.5.2.3. Let (A, I) be a ZLBA and X = Θa(A, I)(= Θa
g(I)). Then X is

a discrete space ⇐⇒ the elements of I are either atoms of I or finite sums of atoms

of I.

Proposition 3.5.2.4. (M. Stone [108]) Let (A, I) be a ZLBA and X = Θa(A, I)(=

Θa
g(I)). Then X is an extremally disconnected space iff A is a complete Boolean algebra.

Proposition 3.5.2.5. Let (A, I) be a ZLBA and X = Θa(A, I)(= Θa
g(I)). Then the

set of all isolated points of X is dense in X iff A is an atomic Boolean algebra iff I is

an atomic 0-pseudolattice.
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Chapter 4

Some applications in General
Topology

4.1 Construction of all locally compact Hausdorff

extensions of completely regular T2-spaces by

means of non-symmetric proximities

4.1.1 Introduction

In this section all extensions are assumed to be Hausdorff topological spaces.

In 1952, Ju. M. Smirnov [103] showed with his celebrated Compactification The-

orem that the ordered set of all (up to equivalence) compact Hausdorff extensions of

a Tychonoff space (X, τ) is isomorphic to the ordered set of all EF-proximities on

(X, τ). In 1967, S. Leader [78] described the ordered set of all (up to equivalence)

locally compact Hausdorff extensions of a Tychonoff space by means of separated lo-

cal proximities in which both the boundedness and the basic proximity are primitive

terms. In this way he generalized Smirnov Compactification Theorem on the base of

a notion which is, so to say, two-sorted. Further on, the locally compact Hausdorff

extensions were described also by V. Zaharov (see [124] and [125]) (through some spe-

cial vector lattices of functions) and by G. Dimov and D. Doitchinov [35] (by using

the notion of supertopological space). The natural question whether these extensions

have a purely proximity-type description was posed in [26], where also an affirmative

answer was obtained on the base of the notion of LC-proximity. However, this answer

is not completely satisfactory, because the LC-proximity is a pair α = (δ,Σ) of an

R-proximity δ and a family Σ of δ-round filters satisfying some conditions. Hence,

although everything is expressed only in proximity-type terms, two components are
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involved in the definition of α. In the present section, we give a completely satisfactory

(as we hope) answer to the above question. This is done by introducing the notion

of lc-proximity, which is some kind of non-symmetric proximity similar to the Pervin

proximity. The symmetric lc-proximities coincide with EF-proximities and correspond

to the compact extensions. In this way, the Smirnov Compactification Theorem obtains

a purely proximity-type generalization. The idea for defining lc-proximities comes from

our definition of an MVD-algebra (see Definition 1.3.2.1) which, in turn, is based on

some ideas from the Mormann’s paper [85]. The notions of lc-map and perfect lc-map

are introduced as well. The first is equivalent to the Leader notion of equicontinuous

map (see 0.5.1.9) and, through the second, a characterization of the surjective maps

between Tychonoff spaces having a perfect lifting over arbitrary, but fixed, Hausdorff

local compactifications of their domain and range spaces is obtained.

The exposition of this section is based on the paper [40].

4.1.2 lc-proximities and lc-maps

When (X, β,B) is a separated local proximity space, Theorem 0.5.2.5 shows that the

family B consists of those subsets of the topological space (X, τβ) whose closures in

the corresponding locally compact Hausdorff extension Y = L(X, β,B) are compact;

hence the elements of the family B can be described as the traces on X of those

subsets of Y which are far from the point at infinity of Y (in the Alexandroff one-point

compactification of Y ). In the next definition, which is the main one in the present

section, we formalize this observation using the empty set as the point at infinity2 —

the formula (4.3) in the proof of our Theorem 4.1.2.8 will make this clear.

Notation 4.1.2.1. The category of separated local proximity spaces and bounded

p-maps (see 0.5.1.9 for the corresponding definitions) will be denoted by LP.

Definition 4.1.2.2. Let X be a set. A binary relation δ on P (X) is called an lc-

proximity on X if it satisfies the following conditions:

(LCP1) ∅(−δ)X (“− δ” means “not δ”);

(LCP2) {x}(−δ)∅, for every x ∈ X;

(LCP3) Aδ(B ∪ C) iff AδB or AδC;

(LCP4) (A ∪B)δC iff AδC or BδC;

(LCP5) If A(−δ)B, then there exists a C ⊆ X such that A(−δ)C and (X \ C)(−δ)B;

2A similar idea was used in the well-known paper [55] of J. Fell in the construction of a new
hyper-topology, now known as Fell topology.
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(LCP6) If A(−δ)∅ and AδB then BδA;

(LCP7) {x}δ{y} iff x = y.

The pair (X, δ), where X is a set and δ is an lc-proximity on X, is called an

lc-proximity space.

Proposition 4.1.2.3. Let X be a set and δ be a binary relation on P (X). Let us write

A ≪δ B (or simply A ≪ B) when A(−δ)(X \ B). Then δ is an lc-proximity on X if

and only if it satisfies the following conditions:

(LCO1) F ≪ G implies F ⊆ G;

(LCO2) ∅ ≪ ∅;
(LCO3) F1 ⊆ F ≪ G ⊆ G1 implies F1 ≪ G1;

(LCO4) F ≪ H and G≪ H implies (F ∪G) ≪ H;

(LCO5) F ≪ G and F ≪ H imply F ≪ (G ∩H);

(LCO6) If F ≪ H then F ≪ G≪ H for some G ⊆ X;

(LCO7) {x} ≪ X, for every x ∈ X;

(LCO8) If x ̸= y then {x} ≪ (X \ {y});
(LCO9) If F ≪ X and (X \G) ≪ (X \ F ) then F ≪ G.

Proof. The proof is straightforward.

The following fact follows immediately from (LCP3) and (LCP1).

Fact 4.1.2.4. Let δ be an lc-proximity on the set X. Then ∅(−δ)A, for every A ⊆ X.

It is easy to prove the following assertion:

Proposition 4.1.2.5. Let X be a set and δ be an lc-proximity on X. Then the following

conditions are equivalent:

(a) δ is an EF-proximity;

(b) δ is symmetric (i.e., for any A,B ⊆ X, AδB iff BδA);

(c) A(−δ)∅, for every A ⊆ X;

(d) X(−δ)∅.

Fact 4.1.2.6. Every lc-proximity δ on a set X generates a topology τδ on X whose

closure operator coincides with clδ (where clδ is defined as in 0.5.1.2).

Notation 4.1.2.7. For every Tychonoff space (X, τ), we set

LCP(X, τ) = {(X, δ) : (X, δ) is an lc-proximity space and τδ = τ}.
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Theorem 4.1.2.8. Let (X, τ) be a Tychonoff space. Then there exists a bijection

between the sets LP(X, τ) (see 0.5.1.10 for this notation) and LCP(X, τ).

Proof. Let

Φ : LP(X, τ) −→ LCP(X, τ)

be defined by Φ(X, β,B) = (X, δ), for every (X, β,B) ∈ LP(X, τ), where, for A,B ⊆
X,

AδB iff AβB or A ̸∈ B.(4.1)

Hence,

A(−δ)B iff A(−β)B and A ∈ B.(4.2)

It is easy to show that Φ is well defined.

Define now

Ψ : LCP(X, τ) −→ LP(X, τ)

by Ψ(X, δ) = (X, β,B), for every (X, δ) ∈ LCP(X, τ), where

B = {B ⊆ X : B(−δ)∅}(4.3)

and, for A,B ⊆ X,

AβB iff there exists a C ∈ B such that (C ∩ A)δ(C ∩B).(4.4)

Hence,

A(−β)B iff for every C ∈ B we have that (C ∩ A)(−δ)(C ∩B).(4.5)

Observe that

A(−δ)B implies that A(−β)B.(4.6)

Let’s show that Ψ is is well defined.

We first prove that τβ = τδ (and hence τβ = τ). Let A ⊆ X. We have to show

that clβ(A) = clδ(A). Let xβA. Then (4.6) implies that xδA. Hence, clβ(A) ⊆ clδ(A).

Conversely, let xδA. Suppose that x(−β)A. Then, for every C ∈ B such that x ∈ C,

we will have that x(−δ)(C ∩A). By (LCP2), x(−δ)∅. Now, (LCP5) implies that there

exists an H ⊆ X such that x(−δ)H and (X \ H)(−δ)∅. Put B = X \ H. Then

B ∈ B, x(−δ)(X \ B) and hence x ∈ B (by (LCP7) and (LCP3)). Therefore, by

(4.5), x(−δ)(A ∩B) (since x(−β)A and x ∈ B ∈ B). Further, from x(−δ)(X \B), we
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obtain, using (LCP3), that x(−δ)(A\B). Applying (LCP3) once more, we get x(−δ)A
(because x(−δ)(A ∩ B)), which is a contradiction. Hence xβA. So, clβ(A) ⊇ clδ(A).

Therefore, clβ(A) = clδ(A).

Further on, it is easy to prove that B is a boundedness in X and β is a separated

basic proximity on X. Let’s now show that the axiom (LP1) from 0.5.1.9 is fulfilled.

Let A ∈ B, B ⊆ X and A ≪β B (i.e., A(−β)(X \ B)). We have that A(−δ)∅.
Hence, by (LCP5), there exists an A′ ⊆ X such that A(−δ)A′ and (X \A′)(−δ)∅. Put
B′ = X \A′. Then B′ ∈ B and A(−δ)(X \B′). From the last expression and (LCP7),

(LCP3), (LCP4), we get that A ⊆ B′, i.e., A ∩ B′ = A. Since A(−β)(X \ B) and

B′ ∈ B, we obtain, by (4.5), that (A ∩ B′)(−δ)(B′ ∩ (X \ B)). Hence A(−δ)(B′ \ B).

Then from A(−δ)(X \B′) and (LCP3), we get that A(−δ)((B′ \B)) ∪ (X \B′)), i.e.,

A(−δ)(X \ (B ∩ B′)). Therefore, applying (LCP5), we can find an H ⊆ X such that

A(−δ)H and (X \ H)(−δ)(X \ (B ∩ B′)). Hence X \ H ∈ B and (X \ H)(−δ)((X \
B) ∪ (X \ B′)). Using (LCP3), we get that (X \ H)(−δ)(X \ B). Then, by (4.6),

(X \H)(−β)(X \B) and A(−β)H. Put C = X \H. Then C ∈ B, A(−β)(X \C) and
C(−β)(X \ B), i.e., A ≪β C ≪β B and C ∈ B. So, the axiom (LP1) from 0.5.1.9 is

fulfilled.

It is easy to see that the axiom (LP2) from 0.5.1.9 is also fulfilled. Hence,

(X, β,B) ∈ LP(X, τ).

Therefore, Ψ is is well defined.

We will show now that

Ψ ◦ Φ = idLP(X,τ).(4.7)

Let (X, β,B) ∈ LP(X, τ). Then Φ(X, β,B) = (X, δ), where δ is defined by the

formula (4.1). Further, Ψ(X, δ) = (X, β′,B′), where B′ and β′ are defined as in (4.3)

and (4.4) (adding only primes to B and β in the formulas). It is easy to see that

B = B′. So, it rests to prove that β′ = β. Let A,B ⊆ X and AβB. Then, by (LP2)

from 0.5.1.9, there exist A1, B1 ∈ B such that A1 ⊆ A, B1 ⊆ B and A1βB1. Put

C = A1 ∪ B1. Then C ∈ B and (A ∩ C)β(B ∩ C). Hence, by (4.1), (A ∩ C)δ(B ∩ C).
Since B = B′, we obtain that C ∈ B′. Therefore, by (4.4), Aβ′B. Conversely, let

Aβ′B. Then there exists a C ∈ B′ such that (A∩C)δ(B∩C). Since B′ = B, we obtain

that A ∩ C ∈ B. Hence, by (4.1), AβB. Therefore, β = β′. So, we have proved that

Ψ ◦ Φ = idLP(X,τ).
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Finally, we will show that

Φ ◦Ψ = idLCP(X,τ).(4.8)

Let (X, δ) ∈ LCP(X, τ). Then Ψ(X, δ) = (X, β,B), where B and β are defined

by the formulas (4.3) and (4.4). Further, Φ(X, β,B) = (X, δ′), where δ′ is defined as

in (4.1) (adding only primes to δ in the formula). We have to prove that δ′ = δ. Let

A,B ⊆ X and AδB. Suppose that A(−δ′)B. Then, by (4.2), A(−β)B and A ∈ B.

Hence, by (4.3), A(−δ)∅. Then (LCP5) implies that there exists an H ⊆ X such that

A(−δ)H and (X \H)(−δ)∅. Put C = X \H. Then C(−δ)∅ and A(−δ)(X \C). Hence
A ⊆ C and C ∈ B. Since A(−β)B, we obtain, by the formula (4.5), that A(−δ)(B∩C).
Together with the fact that A(−δ)(X \C), we get, using (LCP3), that A(−δ)B, which

is a contradiction. Therefore, AδB implies that Aδ′B. Conversely, let Aδ′B. Then, by

(4.1), AβB or A ̸∈ B (i.e., by (4.3), Aδ∅). If Aδ∅ then (LCP3) implies that AδB, what

was our aim. If AβB then, by (4.4), there exists a C ∈ B such that (A ∩ C)δ(B ∩ C).
Hense, using (LCP3) and (LCP4), we get that AδB. So, Aδ′B implies AδB. We have

proved that δ = δ′. So, Φ ◦Ψ = idLCP(X,τ).

Definition 4.1.2.9. Let (X, δ) and (Y, δ′) be two lc-proximity spaces. A function

f : X −→ Y will be called an lc-map if the following two conditions are fulfilled:

(lcm1) if A ⊆ X and A(−δ)∅ then f(A)(−δ′)∅;

(lcm2) for every A,B ⊆ X, if A(−δ)∅ and AδB then f(A)δ′f(B).

4.1.2.10. It is easy to see that the identity map on an lc-proximity space is always

an lc-map and the composition of two lc-maps is an lc-map. Hence a category of all

lc-proximity spaces and all lc-maps can be defined. It will be denoted by LCP.

The following assertion is obvious:

Fact 4.1.2.11. If f is an lc-map between lc-proximity spaces (X, δ) and (Y, δ′) then f

is a continuous map between (X, τδ) and (Y, τδ′).

Theorem 4.1.2.12. The categories LP and LCP are isomorphic (see 4.1.2.1 and

4.1.2.10 for the notation).

Proof. Let

F : LP −→ LCP
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be defined as follows: on the objects of the category LP it coincides with the map Φ,

introduced in the proof of Theorem 4.1.2.8, and

F (f) = f : F (X, β,B) −→ F (Y, β′,B′)

on the morphisms f ∈ LP((X, β,B), (Y, β′,B′)) (i.e., f and F (f) coincide as maps

between the sets X and Y ). It is easy to show that F is is well defined and that F is

a functor.

Let

G : LCP −→ LP

be defined as follows: on the objects of the category LCP it coincides with the

map Ψ, introduced in the proof of Theorem 4.1.2.8, and on the morphisms f ∈
LCP((X, δ), (Y, δ′)),

G(f) = f : G(X, δ) −→ G(Y, δ′)

(i.e., f and G(f) coincide as maps between the sets X and Y ). It is easy to show that

G is is well defined and that G is a functor.

Finally, from the definitions of F and G, we obtain, using (4.7) and (4.8), that

F ◦ G = IdLCP and G ◦ F = IdLP. Therefore, F is an isomorphism between the

categoies LP and LCP.

Definition 4.1.2.13. Let δ and δ1 be two lc-proximities on the set X. We will write

δ ≤ δ1 iff the identity map id : (X, δ1) −→ (X, δ) is an lc-map.

It is easy to see that this relation is an order on the set of all lc-proximities on X.

Combining Theorem 4.1.2.12 with Leader’s Theorem 0.5.2.5, we obtain our main

result:

Theorem 4.1.2.14. Let (X, τ) be a Tychonoff space. Then there exists an isomor-

phism Γ(X,τ) between the ordered sets (LC(X, τ),≤) and (LCP(X, τ),≤) (see 0.4.1.2

and 4.1.2.7 for the notation), i.e.,

Γ(X,τ) : (LC(X, τ),≤) −→ (LCP(X, τ),≤).

Namely, if (Y, π) is a locally compact Hausdorff extension of X then

Γ(X,τ)([(Y, π)]) = (X, δπ)
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where, for A,B ⊆ X,

AδπB ⇐⇒ [clY (π(A)) ∩ clY (π(B)) ̸= ∅ or clY (π(A)) is not a compact subset of Y ].

Put

Λ(X,τ) = Γ−1
(X,τ).

Then, for any lc-proximity δ on (X, τ), Λ(X,τ)(δ) is an equivalence class of Hausdorff

local compactifications of X; denoting by (λ(X, δ), πδ) an element of this class, we get

that

Λ(X,τ)(δ) = [(λ(X, δ), πδ)].

If (X, δ) and (X ′, δ′) are two lc-proximity spaces and f : X −→ X ′ is a function, then

we have: f : (X, δ) −→ (X ′, δ′) is an lc-map iff there exists a (unique) continuous map

Λ(f) : λ(X, δ) −→ λ(X ′, δ′)

such that πδ′ ◦ f = Λ(f) ◦ πδ.

Proof. Put Γ(X,τ) = Φ ◦ γ(X,τ) (see Theorem 0.5.2.5 and the proof of Theorem 4.1.2.8

for the notation). Now all follows from Theorem 0.5.2.5 and Theorem 4.1.2.12.

Note that we can set λ(X, δ) = L(Ψ(X, δ)) and πδ = lβ, where Ψ(X, δ) =

(X, β,B) (see Theorem 0.5.2.5 and the proof of Theorem 4.1.2.8 for the notation).

4.1.3 Perfect lc-maps

In Theorem 4.1.2.12 we have seen that lc-maps correspond precisely to bounded p-

maps. However, the condition (lcm2) in their definition (see 4.1.2.9) looks somehow

strange. We will investigate now those maps whose definition is “more natural”.

Definition 4.1.3.1. Let (X, δ) and (Y, δ′) be two lc-proximity spaces. A function

f : X −→ Y will be called a perfect lc-map if the following two conditions are fulfilled:

(lcm1) if A ⊆ X and A(−δ)∅ then f(A)(−δ′)∅;

(plcm2) for every A,B ⊆ X, AδB implies f(A)δ′f(B).

Proposition 4.1.3.2. Let (X, δ) and (Y, δ′) be two lc-proximity spaces and f : X −→
Y be a function between the sets X and Y . Then the following conditions are equivalent:

(1) f is a perfect lc-map;
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(2) f is an lc-map such that if C ⊆ Y and C(−δ′)∅ then f−1(C)(−δ)∅;
(3) f satisfies the condition (lcm1) from Definition 4.1.3.1 and the following one:

(plcm2’) for every C,D ⊆ Y , C(−δ′)D implies f−1(C)(−δ)f−1(D).

Proof. (1) ⇒ (2). Let f : (X, δ) −→ (Y, δ′) be a perfect lc-map. Then, obviously,

it is an lc-map. Let C ⊆ Y and C(−δ′)∅. We will prove that f−1(C)(−δ)∅. Indeed,

suppose that f−1(C)δ∅. Then, by (plcm2), f(f−1(C))δ′∅. Since C ⊇ f(f−1(C)), we

obtain that Cδ′∅, which is a contradiction. Hence, f−1(C)(−δ)∅.
(2) ⇒ (3). Let f : (X, δ) −→ (Y, δ′) be an lc-map such that if C ⊆ Y and

C(−δ′)∅ then f−1(C)(−δ)∅. Let C,D ⊆ Y and C(−δ′)D. We shall prove that

f−1(C)(−δ)f−1(D). Indeed, suppose that f−1(C)δf−1(D). By (LCP3), C(−δ′)D
implies that C(−δ′)∅. Hence f−1(C)(−δ)∅. From this we get, according to our as-

sumption, that f(f−1(C))δ′f(f−1(D)) (because f is an lc-map). Now, from the ob-

vious inclusions f(f−1(C)) ⊆ C and f(f−1(D)) ⊆ D, we get that Cδ′D, which is a

contradiction. Hence f−1(C)(−δ)f−1(D).

(3) ⇒ (1). Let f : (X, δ) −→ (Y, δ′) satisfies the conditions (lcm1) and (plcm2’).

We shall show that f satisfies also the condition (plcm2). Indeed, let A,B ⊆ X and

AδB. Suppose that f(A)(−δ′)f(B). Then, by (plcm2’), we obtain that

f−1(f(A))(−δ)f−1(f(B)).

Since A ⊆ f−1(f(A)) and B ⊆ f−1(f(B)), we get that A(−δ)B, which is a contradic-

tion. Hence f(A)δ′f(B). Therefore, f is a perfect lc-map.

Lemma 4.1.3.3. Let (X, δ) and (Y, δ′) be two lc-proximity spaces, f : (X, δ) −→ (Y, δ′)

be an lc-map and Λ(f) : λ(X, δ) −→ λ(Y, δ′) be the unique continuous map such that

πδ′ ◦ f = Λ(f) ◦ πδ (see Theorem 4.1.2.14 for the notation and the existence of Λ(f)).

If Λ(f) is a perfect map then f is a perfect lc-map.

Proof. Since f is an lc-map, we need only to show (by Proposition 4.1.3.2(2)) that

if C ⊆ Y and C(−δ′)∅ then f−1(C)(−δ)∅. So, let C ⊆ Y and C(−δ′)∅. Then, by

Theorem 4.1.2.14, clλ(Y,δ′)(πδ′(C)) is a compact subset of λ(Y, δ′). Since Λ(f) is a

perfect map, we get that (Λ(f))−1(clλ(Y,δ′)(πδ′(C))) is a compact subset of λ(X, δ).

From the continuity of Λ(f) and the equality πδ′ ◦ f = Λ(f) ◦ πδ, we obtain that

(Λ(f))−1(clλ(Y,δ)(πδ′(C))) ⊇ clλ(X,δ)((Λ(f))
−1(πδ′(C))) ⊇ clλ(X,δ)(πδ(f

−1(C))).

Hence, clλ(X,δ)(πδ(f
−1(C))) is a compact subset of λ(X, δ). This means, by Theorem

4.1.2.14, that f−1(C)(−δ)∅. Therefore, f is a perfect lc-map.

205



Theorem 4.1.3.4. Let (X, δ) and (Y, δ′) be two lc-proximity spaces and f : (X, δ) −→
(Y, δ′) be a surjective lc-map. Then the map Λ(f) : λ(X, δ) −→ λ(Y, δ′) (see Theorem

4.1.2.14 for the notation and for the existence of Λ(f)) is a perfect map if and only if

f is a perfect lc-map.

Proof. (⇒) If Λ(f) is a perfect map then, by Lemma 4.1.3.3, f is a perfect lc-map.

(⇐) Let f be a perfect lc-map. We shall prove that Λ(f) : λ(X, δ) −→ λ(Y, δ′) is a

perfect map.

If X(−δ)∅ then Y (−δ′)∅ (since f(X) = Y and f is an lc-map) and both δ and

δ′ are EF-proximities (see 4.1.2.5). Then Λ(f) is a continuous map between compact

Hausdorff spaces and hence it is a perfect map.

Let now Xδ∅. Then Y δ′∅, because f is a perfect lc-map. Let Ψ(X, δ) = (X, β,B)

and Ψ(Y, δ′) = (Y, β′,B′) (see the proof of Theorem 4.1.2.8 for the notation). Then

(X, β,B) and (Y, β′,B′) are separated local proximity spaces on (X, τδ) and (Y, τδ′),

respectively. Let α and α′ be the Alexandroff extensions of β and β′, respectively

(see 0.5.1.11). We will show that f : (X,α) −→ (Y, α′) is a proximity mapping. Let

A,B ⊆ X and AαB. Then AβB or A,B ̸∈ B. Suppose that AβB. Since f is an lc-map,

we get from (the proof of) Theorem 4.1.2.12, that f is a bounded p-map and hence we

obtain that f(A)β′f(B). This means that f(A)α′f(B). So, let us regard the case when

A,B ̸∈ B. Then, by (4.3) (see the proof of Theorem 4.1.2.8), Aδ∅ and Bδ∅. Since f is

a perfect lc-map, we get (from (plcm2) of 4.1.3.1) that f(A)δ′∅ and f(B)δ′∅. Hence,

by (4.3), f(A), f(B) ̸∈ B′. This implies that f(A)α′f(B). Therefore f is a surjective

proximity mapping between the Efremovič proximity spaces (X,α) and (Y, α′). Then,

by 0.5.2.4, there exists a continuous surjective mapping Smf : Sm(X,α) −→ Sm(Y, α
′)

such that Smf ◦ sα = sα′ ◦ f . It is defined by the formula Smf(σ) = {C ⊆ Y : Cα′f(A)

for every A ∈ σ}, for every σ ∈ Sm(X,α) (i.e., for every cluster σ in (X,α)). We will

show that (Smf)
−1(σα′) = {σα} (see 0.5.1.11 for the notation). Indeed, let A ∈ σα.

Then A ̸∈ B, i.e., Aδ∅. Hence f(A)δ′∅. This means that f(A) ̸∈ B′. Let now C ∈ σα′ ,

i.e., C ̸∈ B′. Then Cα′f(A), for every A ∈ σα. Therefore, σα′ ⊆ Smf(σα). Since σα′

and Smf(σα) are both clusters in (Y, α′), we obtain that σα′ = Smf(σα). Further, we

will show that σα is the unique cluster in (X,α) whose image by Smf is σα′ . Indeed,

let σ ∈ Sm(X,α) \ {σα}. Then σ is a bounded cluster, i.e., there exists an A0 ∈ B

such that A0 ∈ σ. We have to prove that Smf(σ) is a bounded cluster in (Y, α′). For

doing this it is enough to show that f(A0) ∈ Smf(σ). Let A ∈ σ. Then A0 ∈ B

and A0αA. Hence A0βA. Since f is a bounded p-map, we obtain that f(A0)β
′f(A).
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Therefore, f(A0)α
′f(A) for every A ∈ σ. This means that f(A0) ∈ Smf(σ). Hence,

Smf(σ) ̸= σα′ . So, we have proved that (Smf)
−1(σα′) = {σα}. This implies that

(Smf)
−1(Sm(Y, α

′) \ {σα′}) = Sm(X,α) \ {σα}. Now, according to Theorem 0.5.2.5,

we obtain that (Smf)
−1(L(Y, β′,B′)) = L(X, β,B). Since Smf is a perfect map, we

get that its restriction to L(X, β,B) is also a perfect map. This restriction, however,

coincides with Λ(f) (note that L(X, β,B) = λ(X, δ) and πδ = lβ (see the proof of

Theorem 4.1.2.14)). Hence, we have proved that Λ(f) is a perfect map.

4.2 Open and other kinds of map extensions over

local compactifications

4.2.1 Introduction

In 1959, V. I. Ponomarev [90] proved that if f : X −→ Y is a perfect open surjection

between two normal Hausdorff spaces X and Y then its extension βf : βX −→ βY

over Stone-Čech compactifications of these spaces is an open map; also, he obtained

a more general variant of this theorem, which concerns multi-valued mappings. V.

I. Ponomarev posed the following problem: characterize those continuous maps f :

X −→ Y between two Tychonoff spaces for which the map βf is open. In 1960, A. D.

Tăımanov [6] improved Ponomarev’s theorem cited above by replacing “perfect” with

“closed” (and A. V. Arhangel’skĭı [6] generalized Tăımanov’s result for multi-valued

mappings). Later on, V. Z. Poljakov [89] described the maps between two Tychonoff

spaces X and Y which have an open extension over arbitrary, but fixed, Hausdorff

compactifications (cX, cX) and (cY, cY ) of X and Y respectively. His work is based

on the famous Smirnov Compactification Theorem (see 0.5.2.3 here); with the help of

this theorem, Ju. M. Smirnov [103] described the maps between two Tychonoff spaces

which can be extended continuously over arbitrary, but fixed, compactifications of these

spaces (see Theorem 0.5.2.4 here). Let us also recall that S. Leader [78] generalized

Smirnov Compactification Theorem and characterized the maps having a continuous

lifting over arbitrary, but fixed, Hausdorff local compactifications (= locally compact

extensions) of their domain and range spaces (see Theorem 0.5.2.5 here).

In this section we generalize Poljakov’s and Leader’s theorems and obtain some

other results of this type. We regard the following kinds of map extensions over

Hausdorff local compactifications: open, quasi-open, perfect, skeletal, injective, surjec-

tive. We characterize the functions between Tychonoff spaces which have extensions of
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the kinds listed above over arbitrary, but fixed, local compactifications (see Theorem

4.2.3.7). The characterizations of all these maps are obtained here with the help of

a strengthening of the Leader Local Compactification Theorem 0.5.2.5 (see Theorems

4.2.2.2 and 4.2.3.1 below). We give a de Vries-type formulation of the Leader The-

orem (i.e., we describe axiomatically the restrictions of Leader’s local proximities on

the Boolean algebra RC(X) of all regular closed subsets of a Tychonoff space X) and

prove this new assertion independently of the Leader Theorem using only our gener-

alization (see Theorem 2.2.2.12) of de Vries Duality Theorem [24]. This permits us to

use our general results obtained in Chapter 2. Finally, based on our variant of Leader’s

Theorem, we characterize in the language of local contact algebras only (i.e., without

mentioning the points of the space) the poset (LC(X),≤) of all, up to equivalence,

Hausdorff local compactifications of X, where X is a locally compact Hausdorff space

(see Theorem 4.2.2.12); the algebras which correspond to the Alexandroff (one-point)

compactification and to the Stone-Čech compactification of a locally compact Haus-

dorff space are described explicitly (see Theorem 4.2.2.13). Let us also mention that

in the previous section we characterized, using the language of non-symmetric prox-

imities, the surjective continuous maps which have a perfect extension over arbitrary,

but fixed, Hausdorff local compactifications.

The exposition of this section is based on the paper [32].

4.2.2 A de Vries-type revision of the Leader Local Compact-
ification Theorem

In this subsection we will obtain a strengthening of the Leader Local Compactifica-

tion Theorem 0.5.2.5; it is similar to de Vries’ ([24]) strengthening of the Smirnov

Compactification Theorem 0.5.2.3.

Definition 4.2.2.1. Let (X, τ) be a Tychonoff space. An LCA (RC(X, τ), ρ,B) is said
to be admissible for (X, τ) if it satisfies the following conditions:

(A1) if F,G ∈ RC(X) and F ∩G ̸= ∅ then FρG;

(A2) if F ∈ RC(X) and x ∈ intX(F ) then there exists G ∈ B such that x ∈ intX(G)

and G≪ρ F .

The set of all LCAs (RC(X, τ), ρ,B) which are admissible for (X, τ) will be

denoted by

Lad(X, τ)
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(or simply by Lad(X)). If (RC(X), ρi,Bi) ∈ Lad(X), where i = 1, 2, then we set

(RC(X), ρ1,B1) ≼ad (RC(X), ρ2,B2) ⇐⇒ ρ2 ⊆ ρ1 and B2 ⊆ B1.

Obviously, (Lad(X, τ),≼ad) is a poset.

Theorem 4.2.2.2. Let (X, τ) be a Tychonoff space. Then the posets (LC(X, τ),≤)

and (Lad(X, τ),≼ad) are isomorphic.

Proof. Let (Y, f) be a locally compact Hausdorff extensions of X. Set

B(Y,f) = f−1(CR(Y )) and let Fη(Y,f)G ⇐⇒ clY (f(F )) ∩ clY (f(G)) ̸= ∅,(4.9)

for every F,G ∈ RC(X). Note that, by 0.4.2.2,

B(Y,f) = {F ∈ RC(X) | clY (f(F )) is compact}.

Hence B(Y,f) ⊆ RC(X). We will show that (RC(X), η(Y,f),B(Y,f)) ∈ Lad(X). We have,

by 0.4.2.2, that the map

r(Y,f) : (RC(Y ), ρY , CR(Y )) −→ (RC(X), η(Y,f),B(Y,f)), G 7→ f−1(G),(4.10)

is a Boolean isomorphism and, for every F,G ∈ RC(Y ), the following is fulfilled:

FρYG ⇐⇒ r(Y,f)(F )η(Y,f)r(Y,f)(G),

and

F ∈ CR(Y ) ⇐⇒ r(Y,f)(F ) ∈ B(Y,f).

Hence (RC(X), η(Y,f),B(Y,f)) is an LCA and r(Y,f) is an LCA-isomorphism. Clearly,

condition (A1) is fulfilled. Let now F ∈ RC(X). Set U = intX(F ) and let x ∈ U .

There exists an open subset V of Y such that V ∩ f(X) = f(U). Since Y is a locally

compact Hausdorff space, there exists an H ∈ CR(Y ) with f(x) ∈ intY (H) ⊆ H ⊆ V .

Let G = f−1(H). Then G ∈ B(Y,f) and, obviously, x ∈ intX(G) and G ≪η(Y,f)
F . So,

condition (A2) is also checked. Hence (RC(X), η(Y,f),B(Y,f)) ∈ Lad(X). It is clear that

if (Y1, f1) is a locally compact Hausdorff extensions of X equivalent to the extension

(Y, f), then (RC(X), η(Y,f),B(Y,f)) = (RC(X), η(Y1,f1),B(Y1,f1)). Therefore, a map

αX : LC(X) −→ Lad(X), [(Y, f)] 7→ (RC(X), η(Y,f),B(Y,f)),(4.11)

is well-defined (see 0.4.1.1 and 0.4.1.2 for the notation).
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Set, for short, A = RC(X). Let (A, ρ,B) ∈ Lad(X) and Y = Λa(A, ρ,B). Then,

by Roeper’s Theorem 1.2.3.10, Y is a locally compact Hausdorff space. Let us show

that for every x ∈ X, we have that σx ∈ Y (where σx = {F ∈ A | x ∈ F}). By Fact

1.2.2.7, νx is a filter in the Boolean algebra A. Hence there exists an ultrafilter u in A

such that νx ⊆ u. It is easy to see that u ⊆ σx. Let σ = {F ∈ A | FCρu} (i.e., σ = σu).

Since, by (A2), νx ∩ B ̸= ∅, we get that σ ∈ Y . We will show that σx = σ. Indeed, let

F ∈ σx and G ∈ u. Then x ∈ F ∩ G. Thus, by (A1), FρG. This implies that FCρu,

i.e., that F ∈ σ. So, σx ⊆ σ. Now, suppose that there exists F ∈ σ such that x ̸∈ F .

Then x ∈ X \F = intX(F
∗). Thus, by (A2), there exists G ∈ B such that x ∈ intX(G)

and G ≪ρ F
∗. Therefore G ∈ νx and G(−ρ)F . Since G ∈ B, we get that F (−Cρ)G,

a contradiction. So, we have proved that σx = σ and, thus, σx ∈ Y for every x ∈ X.

Define

f(ρ,B) : X −→ Y, x 7→ σx.(4.12)

Set, for short, f = f(ρ,B). Then clY (f(X)) = Y . Indeed, for every F ∈ B \ {∅} and

for every x ∈ intX(F ), we have that σx ∈ f(X) ∩ intY (λ
g
A(F )). Hence clY (f(X)) = Y .

We will now show that f is a homeomorphic embedding. It is clear that f is an

injection. Further, let x ∈ X, F ∈ B and σx ∈ intY (λ
g
A(F )). Since intY (λ

g
A(F )) =

Y \ λgA(F ∗), we get that σx ̸∈ λgA(F
∗). Thus F ∗ ̸∈ σx. This implies that x ̸∈ F ∗, i.e.,

x ∈ X \ F ∗ = intX(F ). Moreover, f(intX(F )) ⊆ intY (λ
g
A(F )). Indeed, if y ∈ intX(F )

then y ̸∈ F ∗; thus F ∗ ̸∈ σy, i.e., σy ̸∈ λgA(F
∗); this implies that σy ∈ intY (λ

g
A(F )). All

this shows that f is a continuous function. Set g = (f�X)
−1, where f�X : X −→ f(X)

is the restriction of f . We will prove that g is a continuous function. Let x ∈ X,

F ∈ A and x ∈ intX(F ). We have that x = g(σx) and σx ∈ f(X) ∩ intY (λ
g
A(F )). Let

σy ∈ intY (λ
g
A(F )). Then σy ∈ Y \ λgA(F ∗), i.e., y ̸∈ F ∗; thus y ∈ X \ F ∗ = intX(F ).

Therefore, g(f(X) ∩ intY (λ
g
A(F ))) ⊆ intX(F ). So, g is a continuous function. All this

shows that (Y, f) is a locally compact Hausdorff extension of X. We now set:

βX : Lad(X) −→ LC(X), (RC(X), ρ,B) 7→ [(Λa(RC(X), ρ,B), f(ρ,B))].(4.13)

We will show that

αX ◦ βX = idLad(X) and βX ◦ αX = idLC(X).(4.14)

Let [(Y, f)] ∈ LC(X). Then βX(αX([(Y, f)])) = βX(RC(X), η(Y,f),B(Y,f)) =

[(Λa(RC(X), η(Y,f),B(Y,f)), f(η(Y,f),B(Y,f)))]. Set, for short, η = η(Y,f), B = B(Y,f), g =

f(η(Y,f),B(Y,f)), Z = Λa(RC(X), η(Y,f),B(Y,f)) and r(Y,f) = rf . We have to show that
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[(Y, f)] = [(Z, g)]. Since rf is an LCA-isomorphism, we get that h = Λa(rf ) : Z −→
Λa(Λt(Y )) is a homeomorphism. Set Y ′ = Λa(Λt(Y )). By Roeper’s Theorem 1.2.3.10,

the map tY : Y −→ Y ′, y 7→ σy is a homeomorphism. Let h′ = (tY )
−1 ◦ h. Then

h′ : Z −→ Y is a homeomorphism. We will prove that h′ ◦ g = f and this will

imply that [(Y, f)] = [(Z, g)]. Let x ∈ X and u be an ultrafilter containing the

filter νx. Then, as we have shown above, σx = σu. Hence, by Theorem 2.2.2.12,

h(σx) = h(σu) = σef (u), where ef = (rf )
−1. Thus h′(g(x)) = h′(σx) = (tY )

−1(h(σx)) =

(tY )
−1(σef (u)). Note that, by 0.4.2.2, ef (F ) = clY (f(F )), for every F ∈ RC(X). Since

ef : RC(X) −→ RC(Y ) is a Boolean isomorphism, we get that ef (u) is an ultrafilter

in RC(Y ) containing νYf(x). Thus σef (u) = σYf(x). Hence (tY )
−1(σef (u)) = f(x). So,

h′ ◦ g = f . Therefore, βX ◦ αX = idLC(X).

Let (RC(X), ρ,B) ∈ Lad(X) and Y = Λa(RC(X), ρ,B). Recall that we have

set A = RC(X). We have that βX(A, ρ,B) = [(Y, f(ρ,B))]. Set f = f(ρ,B). Then

αX(βX(A, ρ,B)) = (A, η(Y,f),B(Y,f)). By Roeper’s Theorem 1.2.3.10, we have that

λgA : (A, ρ,B) −→ (RC(Y ), ρY , CR(Y )) is an LCA-isomorphism. We will show that

f−1(λgA(F )) = F , for every F ∈ RC(X). Indeed, if x ∈ F then F ∈ σx, and thus

σx ∈ λgA(F ); hence f(F ) ⊆ λgA(F ), i.e., F ⊆ f−1(λgA(F )). If x ∈ f−1(λgA(F )) then

f(x) ∈ λgA(F ), i.e., σx ∈ λgA(F ); therefore F ∈ σx, which means that x ∈ F . So,

f−1(λgA(F )) = F , for every F ∈ RC(X). Since CR(Y ) = {λgA(F ) | F ∈ B}, we get

that f−1(CR(Y )) = B. Thus B(Y,f) = B. Further, by 0.4.2.2, clY (f(F )) = λgA(F ), for

every F ∈ RC(X). Since, for every F,G ∈ RC(X), FρG ⇐⇒ λgA(F ) ∩ λ
g
A(G) ̸= ∅,

we get that ρ = η(Y,f). Therefore, αX ◦ βX = idLad(X).

We will now prove that αX and βX are monotone functions.

Let [(Yi, fi)] ∈ LC(X), where 1 = 1, 2, and [(Y1, f1)] ≤ [(Y2, f2)]. Then there

exists a continuous map g : Y2 −→ Y1 such that g ◦ f2 = f1. Let αX([(Yi, fi)]) =

(RC(X), η(Yi,fi),B(Yi,fi)), where i = 1, 2. Set ηi = η(Yi,fi) and Bi = B(Yi,fi), i = 1, 2.

We have to show that η2 ⊆ η1 and B2 ⊆ B1. Let F ∈ B2. Then clY2(f2(F ))

is compact. Hence g(clY2(f2(F ))) is compact. We have that f1(F ) = g(f2(F )) ⊆
g(clY2(f2(F ))) ⊆ clY1(g(f2(F ))) = clY1(f1(F )). Thus clY1(f1(F )) = g(clY2(f2(F ))), i.e.,

clY1(f1(F )) is compact. Therefore F ∈ B1. So, we have proved that B2 ⊆ B1. Let

F,G ∈ RC(X) and Fη2G. Then there exists y ∈ clY2(f2(F )) ∩ clY2(f2(G)). Since

g(clY2(f2(F ))) ⊆ clY1(f1(F )) and, analogously, g(clY2(f2(G))) ⊆ clY1(f1(G)), we get

that g(y) ∈ clY1(f1(F )) ∩ clY1(f1(G)). Thus Fη1G. Therefore, η2 ⊆ η1. All this shows

that αX([(Y1, f1)]) ≼ad αX([(Y2, f2)]). Hence, αX is a monotone function.
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Let now (RC(X), ρi,Bi) ∈ Lad(X), where i = 1, 2, and (RC(X), ρ1,B1) ≼ad

(RC(X), ρ2,B2). Set, for short, Yi = Λa(RC(X), ρi,Bi) and fi = f(ρi,Bi), i = 1, 2.

Then βX(RC(X), ρi,Bi) = [(Yi, fi)], i = 1, 2. We will show that [(Y1, f1)] ≤ [(Y2, f2)].

We have that fi : X −→ Yi is defined by fi(x) = σx, for every x ∈ X and i = 1, 2.

We also have that B2 ⊆ B1 and ρ2 ⊆ ρ1. Let us regard the following function φ :

(RC(X), ρ1,B1) −→ (RC(X), ρ2,B2), F 7→ F. We will prove that φ is a DHLC-

morphism. Clearly, φ satisfies conditions (DLC1) and (DLC2). The fact that ρ2 ⊆ ρ1

implies immediately that φ satisfies also condition (DLC3). Further, condition (DLC4)

follows from the inclusion B2 ⊆ B1. Let F ∈ RC(X). Then F =
∨
{G ∈ B1 | G≪ρ1 F}

and thus φ(F ) =
∨
{φ(G) | G ∈ B1, G ≪ρ1 F}. This shows that φ satisfies condition

(DLC5). So, φ is a DHLC-morphism. Then, by Theorem 2.2.2.12, g = Λa(φ) : Y2 −→
Y1 is a continuous map. We will prove that g ◦ f2 = f1, i.e., that for every x ∈ X,

g(σx) = σx. So, let x ∈ X. We have, by (2.9), that g(σx) ∩ B1 = {F ∈ B1 | (∀G ∈
RC(X))[(F ≪ρ1 G) → (x ∈ G)]}. We will show that g(σx) ∩ B1 = σx ∩ B1. This

will imply, by 2.2.3.4, that g(σx) = σx. Let F ∈ σx ∩ B1. Then x ∈ F and thus

F ∈ g(σx)∩B1. Conversely, suppose that there exists H ∈ g(σx)∩B1 such that x ̸∈ H.

Then x ∈ X \ H = intX(H
∗). By (A2), there exists G ∈ B1 with x ∈ intX(G) and

G≪ρ1 H
∗. We get that H ≪ρ1 G

∗ and x ̸∈ G∗, a contradiction. Therefore, g(σx) = σx.

Thus [(Y1, f1)] ≤ [(Y2, f2)]. So, βX is also a monotone function. Since βX = (αX)
−1,

we get that αX is an isomorphism.

Definition 4.2.2.3. Let (X, τ) be a Tychonoff space. An NCA (RC(X, τ), C) is said

to be admissible for (X, τ) if the LCA (RC(X, τ), C,RC(X, τ)) ∈ Lad(X, τ). The set

of all NCAs which are admissible for (X, τ) will be denoted by Kad(X, τ) (or simply by

Kad(X)). Note that Kad(X) is, in fact, a subset of Lad(X). The restriction on Kad(X)

of the order ≼ad, defined on Lad(X), will be denoted again by ≼ad.

Corollary 4.2.2.4. (de Vries [24]) For every Tychonoff space X, there exists an iso-

morphism between the posets (C(X),≤) and (Kad(X),≼ad) (see 0.4.1.2 for the nota-

tion).

Proof. It follows immediately from Theorem 4.2.2.2.

The first part of the Leader Local Compactification Theorem 0.5.2.5 follows from

our Theorem 4.2.2.2 and the next three lemmas.
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Lemma 4.2.2.5. Let (X, βi,Bi), i = 1, 2, be two separated local proximity spaces on a

Tychonoff space (X, τ), B1 ∩RC(X) = B2 ∩RC(X) and (β1)|RC(X) = (β2)|RC(X) (i.e.,

for every F,G ∈ RC(X), Fβ1G ⇐⇒ Fβ2G). Then β1 = β2 and B1 = B2.

Proof. Set B = B1 ∩ RC(X) and B = {M ⊆ X | ∃F ∈ B such that M ⊆ F}.
Then B ⊆ Bi, for i = 1, 2. Let M ∈ B1. Then there exist N,K ∈ B1 such that

M ≪β1 N ≪β1 K; hence M ⊆ int(N) ⊆ cl(N) ⊆ K. Thus, M ⊆ F = cl(int(N)) and

F ∈ B. Therefore, M ∈ B. Hence B1 = B. Analogously, B2 = B. Thus B1 = B2.

Set ρ = (β1)|RC(X) and let, ∀M,N ⊆ X,M(−β)N ⇐⇒ ∀B ∈ B ∃F,G ∈ RC(X)

such thatM∩B ⊆ intX(F ), N∩B ⊆ intX(G) and F (−ρ)G. We will show that βi = β,

for i = 1, 2.

Let M,N ⊆ X, M(−β1)N and B ∈ B. Set M ′ = M ∩ B and N ′ = N ∩ B.

Then M ′(−β1)N ′ and M ′ ∈ B1. Thus, there exist F, F1 ∈ B such that M ′ ≪β1 F ≪β1

F1 ≪β1 X \ N ′. Put G = F ∗
1 (i.e., G = cl(X \ F1)). Then M ′ ⊆ int(F ), N ′ ⊆ int(G)

and F (−ρ)G. Hence, M(−β)N . So, we get that β ⊆ β1. Conversely, let M(−β)N .

Suppose that Mβ1N . Then there exists B1 ∈ B such that (M ∩ B1)β1N ; also, there

exists B2 ∈ B with (M ∩B1)β1(N ∩B2). Setting B = B1 ∪B2, we get that B ∈ B and

(M ∩ B)β1(N ∩ B). Thus MβN , a contradiction. Therefore, M(−β1)N . So, β1 = β.

Analogously, we get that β2 = β. Hence β1 = β2.

Lemma 4.2.2.6. Let (X, β,B) be a separated local proximity space. Set τ = τ(X,β,B).

Let ρ = β|RC(X,τ) and B = B ∩RC(X, τ). Then (RC(X, τ), ρ,B) ∈ Lad(X, τ).

Proof. The fact that (RC(X, τ), ρ,B) is an LCA was proved in Example 1.2.3.3. The

rest can be easily checked.

Lemma 4.2.2.7. Let (X, τ) be a Tychonoff space and (RC(X), ρ,B) ∈ Lad(X). Set

B = {M ⊆ X | ∃B ∈ B such that M ⊆ B},

and, for every M,N ⊆ X, put

M(−β)N ⇐⇒

∀B ∈ B ∃F,G ∈ RC(X) such that M ∩B ⊆ intX(F ), N ∩B ⊆ intX(G) and F (−ρ)G.

Let Y = βX(RC(X), ρ,B) (see (4.13) for βX) and f = f(ρ,B) (see (4.12) for f(ρ,B)).

Then B = {M ⊆ X | clY (f(M)) is compact} and ∀M,N ⊆ X, M(−β)N ⇐⇒
clY (f(M)) ∩ clY (f(N)) = ∅.
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The triple (X, β,B) is a separated local proximity space on (X, τ), β|RC(X) = ρ

and B = RC(X)∩B; moreover, (X, β,B) is the unique separated local proximity space

on (X, τ) having these properties.

Proof. Since Y is locally compact and B = {F ∈ RC(X) | clY (f(F )) is compact}
(see the proof of Theorem 4.2.2.2), we get easily that B = {M ⊆ X | clY (f(M))

is compact}. Using this equality and the fact that ∀F,G ⊆ RC(X), F (−ρ)G ⇐⇒
clY (f(F )) ∩ clY (f(G)) = ∅ (see again the proof of Theorem 4.2.2.2), it is not difficult

to show that ∀M,N ⊆ X, M(−β)N ⇐⇒ clY (f(M))∩ clY (f(N)) = ∅. Now it is easy

to check that (X, β,B) is a separated local proximity space on (X, τ), B = RC(X)∩B

and β|RC(X) = ρ. The uniqueness of (X, β,B) follows from Lemma 4.2.2.5.

Lemma 4.2.2.7 shows that the separated local proximity space (X, β,B) con-

structed in it coincides with γX([(Y, f)]) (see Theorem 0.5.2.5 for γX).

Definition 4.2.2.8. Let X be a locally compact Hausdorff space. We will denote by

La(X)

the set of all LCAs of the form (RC(X), ρ,B) which satisfy the following conditions:

(LA1) ρX ⊆ ρ;

(LA2) CR(X) ⊆ B;

(LA3) for every F ∈ RC(X) and every G ∈ CR(X), FρG implies F ∩G ̸= ∅.

If (A, ρi,Bi) ∈ La(X), where i = 1, 2, we set

(A, ρ1,B1) ≼l (A, ρ2,B2) ⇐⇒ (ρ2 ⊆ ρ1 and B2 ⊆ B1).

Theorem 4.2.2.9. Let (X, τ) be a locally compact Hausdorff space. Then there exists

an isomorphism

µ : (LC(X),≤) −→ (La(X),≼l)

between the posets (LC(X),≤) and (La(X),≼l).

Proof. Obviously, if we prove that an LCA (RC(X), ρ,B) belongs to La(X) iff it is

admissible for X, then our theorem will follow from Theorem 4.2.2.2.

Let (RC(X), ρ,B) be admissible for X. Let H ∈ CR(X). Then, by (A2), for

every x ∈ H there exists Gx ∈ B such that x ∈ intX(Gx) (indeed, set F = X in (A2)).

Since H is compact, we get that H is a subset of a union of finitely many elements of

B. Thus H ∈ B. So, condition (LA2) is fulfilled. Let now F ∈ RC(X), G ∈ CR(X)
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and FρG. Suppose that F ∩ G = ∅. Then G ⊆ X \ F = intX(F
∗). Thus, by (A2),

for every x ∈ G there exists Gx ∈ B such that x ∈ intX(Gx) and Gx ≪ρ F
∗. Then

the compactness of G implies that there exist n ∈ N+ and x1, . . . , xn ∈ G such that

G ⊆ G1 =
∪n
i=1Gxi . Clearly, by (≪4) (see 1.2.1.1), G1 ≪ρ F

∗. Therefore, G ≪ρ F
∗,

i.e., G(−ρ)F , a contradiction. Hence F ∩G ̸= ∅. So, condition (LA3) is checked. Since

conditions (A1) and (LA1) coincide, we get that (RC(X), ρ,B) ∈ La(X).

Conversely, let (RC(X), ρ,B) ∈ La(X). Let F ∈ RC(X) and x ∈ intX(F ). Since

X is locally compact, there exists G ∈ CR(X) such that x ∈ intX(G) ⊆ G ⊆ intX(F ).

Then G ∩ F ∗ = ∅. Thus, by (LA3), G(−ρ)F ∗. Hence G ≪ρ F . Clearly, by (LA2), we

have that G ∈ B. Therefore, condition (A2) is verified. This shows that (RC(X), ρ,B)
is admissible for X.

Remark 4.2.2.10. The proof of Theorem 4.2.2.9 shows that if X is a Tychonoff space,

then any admissible for X LCA (RC(X), ρ,B) satisfies conditions (LA1)-(LA3).

Notation 4.2.2.11. If (A, ρ,B) is a CLCA then we will write ρ ⊆B C provided that

C is a normal contact relation on A satisfying the following conditions:

(RC1) ρ ⊆ C, and

(RC2) for every a ∈ A and every b ∈ B, aCb implies aρb.

If ρ ⊆B C1 and ρ ⊆B C2 then we will write

C1 ≼c C2 ⇐⇒ C2 ⊆ C1.

Let (X, τ) be a locally compact Hausdorff space. We will denote by

Ka(X)

the set of all normal contact relations C on RC(X) such that ρX ⊆CR(X) C (i.e., C

satisfies conditions (LA1) and (LA3) with ρ replaced by C).

Corollary 4.2.2.12. Let (X, τ) be a locally compact Hausdorff space. Then there exists

an isomorphism

µc : (C(X),≤) −→ (Ka(X),≼c).

Proof. Let C ∈ Ka(X). Then (RC(X), C,RC(X)) ∈ La(X) because condition (LA2)

is obviously fulfilled. Thus, all follows from Theorem 4.2.2.9.
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Proposition 4.2.2.13. Let (X, τ) be a locally compact non-compact Hausdorff space.

Then C(RC(X),ρX ,CR(X)) (briefly, CρX ) (see 1.2.3.4 for this notation) is the smallest el-

ement of the poset (Ka(X),≼c); hence, if (αX,α) is the Alexandroff (one-point) com-

pactification of X then µc([(αX,α)]) = CρX (see Corollary 4.2.2.12 for µc). Further,

the poset (Ka(X),≼c) has a greatest element CβρX ; it is defined as follows: for every

F,G ∈ RC(X), F (−CβρX )G iff there exists a set {Hd ∈ RC(X) | d ∈ D} such that:

(1) F ≪ρX Hd ≪ρX G∗ (i.e., F ⊆ intX(Hd) ⊆ Hd ⊆ X \G), for all d ∈ D, and
(2) for any two elements d1, d2 of D, d1 < d2 implies that Hd1 ≪ρX Hd2 (i.e., Hd1 ⊆
intX(Hd2)).

Hence, if (βX, β) is the Stone-Čech compactification of X then µc([(βX, β)]) = CβρX .

Proof. It is straightforward.

Remark 4.2.2.14. The definition of the relation CβρX in Proposition 4.2.2.13 is given

in the language of contact relations. It is clear that if we use the fact that all happens

in a topological space X then we can define the relation CβρX by setting for every

F,G ∈ RC(X), F (−CβρX )G iff F and G are completely separated.

Proposition 4.2.2.15. Let X be a locally compact non-compact Hausdorff space. Let

{Cm | m ∈ M} be a subset of Ka(X) (see 4.2.2.12 for Ka(X)). For every F,G ∈
RC(X), put F (−C)G iff there exists a set {Hd ∈ RC(X) | d ∈ D} such that:

(1) F ≪Cm Hd ≪Cm G∗, for all d ∈ D and for each m ∈M , and

(2) for any two elements d1, d2 of D, d1 < d2 implies that Hd1 ≪Cm Hd2, for every

m ∈M .

Then C is the supremum in (Ka(X),≼c) of the set {Cm | m ∈M}.

Proof. The proof is straightforward.

4.2.3 Map extensions over local compactifications

Theorem 4.2.3.1. Let, for i = 1, 2, (Xi, τi) be a Tychonoff space, (RC(Xi), ηi,Bi) ∈
Lad(Xi, τi),

Yi = Λa(RC(Xi), ηi,Bi) and fi = f(ηi,Bi) (see (4.12)). Let f : X1 −→ X2 be a con-

tinuous function. Then there exists a continuous function g : Y1 −→ Y2 such that

g ◦ f1 = f2 ◦ f iff f satisfies the following conditions:

(REQ1) For every F,G ∈ RC(X2), clX1(intX1(f
−1(F )))η1clX1(intX1(f

−1(G))) implies

that Fη2G;
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(REQ2) For every F ∈ B1 there exists G ∈ B2 such that f(F ) ⊆ G.

First Proof. Note that, by (4.13) and (4.14), we have that, for i = 1, 2, (Yi, fi) is a Haus-

dorff local compactification of Xi, [(Yi, fi)] = βXi
(RC(Xi), ηi,Bi) and αXi

([(Yi, fi)]) =

(RC(Xi), ηi,Bi). Set, for i = 1, 2,

Bi = {M ⊆ Xi | ∃B ∈ Bi such that M ⊆ B}.

For every M,N ⊆ Xi and i = 1, 2, set

M(−η′i)N ⇐⇒

[∀B ∈ Bi ∃F,G ∈ RC(Xi) such that M ∩B ⊆ intXi
(F ), N ∩B ⊆ intXi

(G), F (−ηi)G].

Then, by 4.2.2.7, for i = 1, 2, (Xi, η
′
i,Bi) is the unique separated local proximity space

such that Bi ∩ RC(Xi) = Bi and (η′i)|RC(Xi) = ηi. Thus, by the proofs of Theorems

4.2.2.2 and 0.5.2.5, [(Yi, fi)] = γ−1
(Xi,τi)

(Xi, η
′
i,Bi), where i = 1, 2. So, if we show that

f : (X1, η
′
1,B1) −→ (X2, η

′
2,B2) is equicontinuous iff it satisfies conditions (REQ1) and

(REQ2), our assertion will follow from Leader’s Theorem 0.5.2.5.

It is easy to see that f satisfies condition (EQ2) iff it satisfies condition (REQ2).

Let f be an equicontinuous function, F1, F2 ∈ RC(X2) and

clX1(intX1(f
−1(F1)))η1clX1(intX1(f

−1(F2))).

Then clX1(intX1(f
−1(F1)))η

′
1clX1(intX1(f

−1(F2))) and thus

f(clX1(intX1(f
−1(F1))))η

′
2f(clX1(intX1(f

−1(F2)))).

Since, for i = 1, 2, f(clX1(intX1(f
−1(Fi))) ⊆ clX2f((intX1(f

−1(Fi)))) ⊆ Fi, we get

that F1η
′
2F2 and, therefore, F1η2F2. Hence, f satisfies condition (REQ1). So, every

equicontinuous function satisfies conditions (REQ1) and (REQ2). Conversely, let f

satisfies conditions (REQ1) and (REQ2), M,N ⊆ X1 and Mη′1N . Then there exists

B ∈ B1 such that for every H1, H2 ∈ RC(X1) with M ∩ B ⊆ intX1(H1) and N ∩ B ⊆
intX1(H2), H1η1H2 holds. Suppose that f(M)(−η′2)f(N). Then, for every C ∈ B2

there exist F,G ∈ RC(X2) such that f(M) ∩ C ⊆ intX2(F ), f(N) ∩ C ⊆ intX2(G)

and F (−η2)G. Since condition (REQ2) implies condition (EQ2), we have that f(B) ∈
B2. Thus there exist F,G ∈ RC(X2) such that f(M) ∩ f(B) ⊆ intX2(F ), f(N) ∩
f(B) ⊆ intX2(G) and F (−η2)G. Then M ∩ B ⊆ intX1(clX1(intX1(f

−1(F )))) and N ∩
B ⊆ intX1(clX1(intX1(f

−1(G)))). Hence, by (REQ1), Fη2G holds, a contradiction.

Therefore, f(M)η′2f(N). Thus, f is an equicontinuous function.
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Second Proof. In the first proof we used the Leader Local Compactification Theorem

0.5.2.5. We will now give another proof which does not use Leader’s theorem. Hence,

by the First Proof, it will imply the second part of the Leader Theorem 0.5.2.5. The

more important thing is that the method of this new proof will be used later on for

the proof of our Theorem 4.2.3.7 (which is the main result of this section).

(⇒) Let there exists a continuous function g : Y1 −→ Y2 such that g ◦ f1 = f2 ◦ f .
Then, using the notation of (4.10), we have, by the proof of Theorem 4.2.2.2, that the

maps ri = r(Yi,fi) are LCA-isomorphisms, i = 1, 2. Set, for i = 1, 2, ei = (ri)
−1 and

ρi = ρYi . Then, by 0.4.2.2, for every F ∈ RC(Xi) and i = 1, 2, ei(F ) = clYi(fi(F )).

Let φg = Λt(g) (see Theorem 2.2.2.12), i.e.,

φg : (RC(Y2), ρ2, CR(Y2)) −→ (RC(Y1), ρ1, CR(Y1)), G 7→ clY1(g
−1(intY2(G))).(4.15)

Set also

φf = r1 ◦ φg ◦ e2 : (RC(X2), η2,B2) −→ (RC(X1), η1,B1).(4.16)

We will prove that

φf (G) = clX1(f
−1(intX2(G))), for every G ∈ RC(X2).(4.17)

Indeed, let G ∈ RC(X2). Then

φf (G) = (f1)
−1(clY1(g

−1(intY2(clY2(f2(G)))))) = clX1((f1)
−1(g−1(intY2(clY2(f2(G)))))).

It is easy to see that

(f2)
−1(intY2(clY2(f2(G)))) = intX2(G).

Thus (f1)
−1(g−1(intY2(clY2(f2(G))))) = {x ∈ X1 | (g ◦ f1)(x) ∈ intY2(clY2(f2(G)))} =

{x ∈ X1 | f2(f(x)) ∈ intY2(cl(f2(G)))} = {x ∈ X1 | f(x) ∈ (f2)
−1(intY2(cl(f2(G))))} =

{x ∈ X1 | f(x) ∈ intX2(G)} = f−1(intX2(G)). Now it becomes clear that (4.17) holds.

Since, by Theorem 2.2.2.12, φg is aDHLC-morphism, we get that φf is aDHLC-

morphism. Let F ∈ B1. Then, by (DLC4), there exists G ∈ B2 such that F ⊆
φf (G); thus f(F ) ⊆ f(clX1(f

−1(intX2(G))) ⊆ clX2(f(f
−1(intX2(G)))) ⊆ G. Hence,

condition (REQ2) is checked. Further, let F,G ∈ RC(X2) and F ≪η2 G. Then, by

condition (DLC3S), (φf (F
∗))∗ ≪η1 φf (G). Now, using the fact that (φf (H

∗))∗ =

clX1(intX1(f
−1(H))), for every H ∈ RC(X2), it is easy to see that condition (REQ1)

is also fulfilled.
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(⇐) Let f be a continuous function satisfying conditions (REQ1) and (REQ2). Set φf :

(RC(X2), η2,B2) −→ (RC(X1), η1,B1), G 7→ clX1(f
−1(intX2(G))). Using conditions

(A1) and (A2) and the given data for f , it is easy to check that φf is a DHLC-

morphism. Putting g = Λa(φf ), we get, by Theorem 2.2.2.12, that g is a continuous

function and g : Y1 −→ Y2. We will show that g ◦ f1 = f2 ◦ f . Let x ∈ X1. Then

g(f1(x)) = g(σx) and f2(f(x)) = σf(x). By Theorem 2.2.2.12, we have that g(σx) ∩
B2 = {G ∈ B2 | ∀F ∈ RC(X2), (G ≪η2 F ) → (x ∈ φf (F ))}. We will prove that

{G ∈ B2 | ∀F ∈ RC(X2), (G ≪η2 F ) → (x ∈ φf (F ))} = {G ∈ B2 | f(x) ∈ G}.
This will imply, by 2.2.3.4, the desired equality. So, let G ∈ B2 and f(x) ∈ G. Let

F ∈ RC(X2) and G ≪η2 F . Since the LCA (RC(X2), η2,B2) is admissible for X2, it

satisfies conditions (A1) and (A2) of Definition 4.2.2.1. Now, using condition (A1),

we get that G ≪ρX2
F , i.e., that G ⊆ intX2(F ). Thus we obtain that x ∈ f−1(G) ⊆

f−1(intX2(F ) ⊆ φf (F ). Conversely, let G ∈ B2 ∩ g(σx). Suppose that f(x) ̸∈ G.

Then f(x) ∈ X2 \ G = intX2(G
∗). By condition (A2), there exists F ∈ B2 such

that f(x) ∈ intX2(F ) and F ≪η2 G
∗. Then G ≪η2 F

∗. Hence x ∈ φf (F
∗). Since

f(x) ∈ intX2(F ) = X2 \ F ∗, we get a contradiction. Therefore, f(x) ∈ G. Thus

g ◦ f1 = f2 ◦ f .

Theorem 4.2.3.1 implies immediately the following corollary:

Corollary 4.2.3.2. Let, for i = 1, 2, Xi be a Tychonoff space, Yi be a Hausdorff

local compactification of Xi and let’s assume, for simplicity of notation, that Xi ⊆ Yi.

Let f : X1 −→ X2 be a continuous function. Then f has a continuous extension

g : Y1 −→ Y2 iff f satisfies the following conditions:

(REQ1’) For every F,G ∈ RC(X2), clY1(intX1(f
−1(F ))) ∩ clY1(intX1(f

−1(G))) ̸= ∅
implies that clY2(F ) ∩ clY2(G) ̸= ∅;

(REQ2’) For every F ∈ RC(X1) such that clY1(F ) is compact, we have that clY2(f(F ))

is compact.

We will need a result of A. Blaszczyk [15] (for completeness, we will present here

a proof of it). Let us start with a lemma.

Lemma 4.2.3.3. A continuous map f : X −→ Y , where X and Y are topologi-

cal spaces, is skeletal iff for every open subset V of Y such that clY (V ) is open,

clX(f
−1(V )) = f−1(clY (V )) holds.

Proof. (⇒) Let f be a skeletal continuous map and V be an open subset of Y such that

clY (V ) is open. Let x ∈ f−1(clY (V )). Then f(x) ∈ clY (V ). Since f is continuous, there
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exists an open neighborhood U of x in X such that f(U) ⊆ clY (V ). Suppose that x ̸∈
clX(f

−1(V )). Then there exists an open neighborhood W of x in X such that W ⊆ U

andW∩f−1(V ) = ∅. We obtain that clY (f(W ))∩V = ∅ and clY (f(W )) ⊆ clY (f(U)) ⊆
clY (V ). Since, by Lemma 2.5.2.3, intY (clY (f(W ))) ̸= ∅, we get a contradiction. Thus

f−1(clY (V )) ⊆ clX(f
−1(V )). The converse inclusion follows from the continuity of f.

Hence f−1(clY (V )) = clX(f
−1(V )).

(⇐) Suppose that there exists an open subset U ofX such that intY (clY (f(U))) = ∅ and
U ̸= ∅. Then, clearly, V = Y clY (f(U)) is an open dense subset of Y . Hence clY (V )

is open in Y . Thus clX(f
−1(V )) = f−1(clY (V )) = f−1(Y ) = X holds. Therefore

X = clX(f
−1(V )) = clX(f

−1(Y clY (f(U)))) = clX(X f−1(clY (f(U)))). Since U ⊆
f−1(clY (f(U))), we get that X U ⊇ clX(X f−1(clY (f(U)))) = X, a contradiction.

Hence, f is a skeletal map.

Clearly, the proof of Lemma 4.2.3.3 shows that the following assertion is also

true:

Lemma 4.2.3.4. ([15]) A continuous map f : X −→ Y , where X and Y are topological

spaces, is skeletal iff for every open dense subset V of Y , clX(f
−1(V )) = X holds.

Lemma 4.2.3.5. Let, for i = 1, 2, (Xi, τi) be a topological space, (Yi, fi) be some

extension of (Xi, τi), and f : X1 −→ X2, g : Y1 −→ Y2 be two continuous functions

such that g ◦ f1 = f2 ◦ f . Then g is skeletal iff f is skeletal.

Proof. (⇒) Let g be skeletal and V be an open dense subset of X2. Set U = ExY2(V ),

i.e., U = Y2 \ clY2(f2(X2 \ V )). Then U is an open dense subset of Y2 and f−1
2 (U) =

V . Hence, by Lemma 4.2.3.4, g−1(U) is a dense open subset of Y1. We will prove

that f−1
1 (g−1(U)) ⊆ f−1(V ). Indeed, let x ∈ f−1

1 (g−1(U)). Then g(f1(x)) ∈ U , i.e.,

f2(f(x)) ∈ U . Thus f(x) ∈ f−1
2 (U) = V . So, f−1

1 (g−1(U)) ⊆ f−1(V ). This shows that

f−1(V ) is dense in X1. Therefore, by Lemma 4.2.3.4, f is a skeletal map.

(⇐) Let f be a skeletal map and U be a dense open subset of Y2. Set V = f−1
2 (U).

Then V is an open dense subset of X2. Thus, by Lemma 4.2.3.4, f−1(V ) is a dense

subset of X1. We will prove that f−1(V ) ⊆ f−1
1 (g−1(U)). Indeed, let x ∈ f−1(V ).

Then f(x) ∈ V = f−1
2 (U). Thus f2(f(x)) ∈ U , i.e., g(f1(x)) ∈ U . So, f−1(V ) ⊆

f−1
1 (g−1(U)). This implies that g−1(U) is dense in Y1. Now, Lemma 4.2.3.4 shows that

g is a skeletal map.
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4.2.3.6. It is natural to write

“f : (X1, RC(X1), η1,B1) −→ (X2, RC(X2), η2,B2)”

when X1 and X2 are Tychonoff spaces, (RC(Xi), ηi,Bi) ∈ Lad(Xi), for i = 1, 2, and f :

X1 −→ X2 is a continuous function. Then, in an analogy with Leader’s equicontinuous

functions (see the Leader Theorem 0.5.2.5), the functions

f : (X1, RC(X1), η1,B1) −→ (X2, RC(X2), η2,B2)

which satisfy conditions (REQ1) and (REQ2) will be called R-equicontinuous functions.

We are now ready to prove the main result of this section:

Theorem 4.2.3.7. Let f : (X1, RC(X1), η1,B1) −→ (X2, RC(X2), η2,B2) be an R-

equicontinuous function, Yi = Λa(RC(Xi), ηi,Bi) and fi = f(ηi,Bi) (see (4.12)) for

i = 1, 2, and g : Y1 −→ Y2 be a continuous function such that g ◦ f1 = f2 ◦ f (its

existence and uniqueness are guaranteed by Theorem 4.2.3.1). Then:

(a) g is skeletal iff f is skeletal;

(b) g is an open map iff f is a skeletal map and satisfies the following condition:

(O) ∀F ∈ B1 and ∀G ∈ RC(X1), (F ≪η1 G) → (clX2(f(F )) ≪η2 clX2(f(G)));

(b′) g is an open map iff f satisfies the following condition:

(O1) ∀F ∈ B1 and ∀G ∈ RC(X1), (F ≪η1 G) → (f(F ) ≪η′2
clX2(f(G))), where η

′
2 is

the local proximity on (X2, τ2) generated by (Y2, f2) (see Theorem 0.5.2.5);

(b′′) g is an open map iff f satisfies the following condition:

(O2) ∀A ⊆ X1 such that there exists F ∈ B1 with A ⊆ F , and ∀B ⊆ X1, (A ≪η′1

B) → (f(A) ≪η′2
clX2(f(B))), where, for i = 1, 2, η′i is the local proximity on (Xi, τi)

generated by (Yi, fi) (see Theorem 0.5.2.5);

(c) g is a perfect map iff f satisfies the following condition:

(P) For every G ∈ B2, clX1(f
−1(intX2(G))) ∈ B1 holds;

(d) clY2(g(Y1)) = Y2 iff clX2(f(X1)) = X2;

(e) g is an injection iff f satisfies the following condition:

(I) For every F1, F2 ∈ B1 such that F1(−η1)F2 there exist G1, G2 ∈ B2 with G1 ≪η2 G2,

F1 ⊆ clX1(f
−1(intX2(G1))) and clX1(f

−1(intX2(G2)))(−η1)F2;

(f) g is an open injection iff f satisfies condition (O1) (or, equivalently, f is skeletal

and satisfies condition (O)) and the following one:
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(OI) ∀F ∈ RC(X1) ∃G ∈ RC(X2) such that F = clX1(f
−1(intX2(G)));

(g) g is a perfect surjection iff f satisfies condition (P) and clX2(f(X1)) = X2.

Proof. Note that, by (4.13) and (4.14), we have that, for i = 1, 2, (Yi, fi) is a Haus-

dorff local compactification of Xi, [(Yi, fi)] = βXi
(RC(Xi), ηi,Bi) and αXi

([(Yi, fi)]) =

(RC(Xi), ηi,Bi).
Set φg = Λt(g) (see Theorem 2.2.2.12). Then

φg : RC(Y2) −→ RC(Y1), G 7→ clY1(g
−1(intY2(G))).

Set also

φf : RC(X2) −→ RC(X1), F 7→ clX1(f
−1(intX2(F ))).

Then, (4.15), (4.16) and (4.17) imply that

φf = r1 ◦ φg ◦ e2,(4.18)

where, for i = 1, 2,

ri : (RC(Yi), ρYi , CR(Yi)) −→ (RC(Xi), ηi,Bi), G 7→ f−1
i (G),

and

ei = r−1
i .

Note that, according to the proof of Theorem 4.2.2.2, the maps ri, ei, where i = 1, 2,

are LCA-isomorphisms.

(a) It follows from Lemma 4.2.3.5.

(b) Since every open map is skeletal, we get, using (a), that if g is an open map then f

is skeletal. So, we can suppose that f is skeletal. Then, as it follows from the proof of

Theorem 2.5.3.3, φf is a complete Boolean homomorphism. Thus, by (2.37), the map

φf has a left adjoint

φf : RC(X1) −→ RC(X2), F 7→ clX2(f(F )).

Hence, (4.16) and 2.5.4.2 imply that g is an open map iff the map f (is skeletal and)

satisfies the following condition:

(O′) ∀F ∈ B1 and ∀G ∈ RC(X2), (φ
f (F )η2G) → (Fη1φf (G)).

It is easy to see that condition (O′) is equivalent to the following one:

(O′′) ∀F ∈ B1 and ∀G ∈ RC(X2), (F ≪η1 φf (G)) → (φf (F ) ≪η2 G).
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We will prove that condition (O′′) is equivalent to condition (O). Indeed, let condition

(O′′) is satisfied, F ∈ B1, G ∈ RC(X1) and F ≪η1 G. Set H = φf (G). Then

H ∈ RC(X2) and φf (H) = φf (φ
f (G)) ⊇ G. Therefore F ≪η1 φf (H). Now, by (O′′),

φf (F ) ≪η2 H holds, i.e., φf (F ) ≪η2 φ
f (G). So, condition (O) is satisfied. Conversely,

let f satisfies condition (O), F ∈ B1, G ∈ RC(X2) and F ≪η1 φf (G). Then, by

(O), φf (F ) ≪η2 φ
f (φf (G)). Since φf (φf (G)) ⊆ G, we get that φf (F ) ≪η2 G. Thus,

condition (O′′) is fulfilled. This completes the proof of (b).

(b′) Having in mind Lemma 2.5.2.6 and the fact that η′2 is a Lodato proximity, we

need only to show that if f satisfies condition (O1) then f is a skeletal map. So, let

f satisfies condition (O1), V be an open dense subset of X2 and G = clX1(f
−1(V )).

Then G ∈ RC(X1). Suppose that G ̸= X1. Then there exists x ∈ X1 \ G. Clearly,

f1(x) ̸∈ clY1(f1(G)). Since Y1 is locally compact and Hausdorff, we get that there

exists F ∈ B1 such that x ∈ F and F (−η1)G. Thus F ≪η1 G∗. Therefore, by

(O1), f(F ) ≪η′2
clX2(f(G

∗)). Set U = X1 \ G. Since f is continuous, we have that

H = clX2(f(G
∗)) = clX2(f(U)) ⊆ clX2(f(X1 \ f−1(V ))) ⊆ clX2(f(X1) \ V ) ⊆ X2 \ V .

Thus H∗ = clX2(X2 \H) ⊇ clX2(V ) = X2. Since η
′
2 is a Lodato proximity, we get that

f(F )(−η′2)X2, a contradiction. Therefore, f−1(V ) is dense in X1. Then Lemma 4.2.3.4

implies that f is a skeletal map.

(b′′) Obviously, condition (O2) implies condition (O1). We will show that condition

(O1) implies condition (O2). Set

B′
1 = {A ⊆ X1 | ∃F ∈ B1 such that A ⊆ F}.

Let f satisfies condition (O1), A ∈ B′
1, B ⊆ X1 and A ≪η′1

B. Then A(−η′1)(X1 \ B).

Thus clY1(f1(A)) ∩ clY1(f1(X1 \ B)) = ∅. Since A ∈ B′
1, we have that clY1(f1(A)) is

a compact subset of Y1. Using the fact that Y1 is a locally compact Hausdorff space,

we get that there exist F ∈ B1 and U ∈ RO(X1) such that A ⊆ F , X1 \ B ⊆ U

and F (−η′1)U . Set G = X1 \ U . Then G ∈ RC(X1) and F ≪η1 G. Thus, by (O1),

f(F ) ≪η′2
clX2(f(G)). Since G ⊆ B, we get that f(A) ≪η′2

clX2(f(B)). So, f satisfies

condition (O2).

(c) By [53, Theorem 3.7.18], g is a perfect map iff φg satisfies the following condition:

for every G ∈ CR(Y2), φg(G) ∈ CR(Y1) holds. Having in mind the proof of Theorem

4.2.2.2 and (4.18), we get that g is a perfect map iff f satisfies condition (P).

(d) This is obvious.

(e) Using again (4.18), our assertion follows from Theorem 2.6.2.2.
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(f) It follows from (b), (4.18), and Theorem 2.6.2.8.

(g) It follows from (c) and (d).

Now, Corollary 2.5.2.5(b) and Theorem 4.2.3.7 imply the following two corollaries:

Corollary 4.2.3.8. Let (X1, δ1) and (X2, δ2) be two Efremovič proximity spaces. Let

(cXi, ci) = Sm(δi) (see 0.5.2.3 for this notation) be the Hausdorff compactification

of (Xi, τδi) corresponding, by the Smirnov Compactification Theorem 0.5.2.3, to the

Efremovič proximity δi, where i = 1, 2. Further, let f : (X1, δ1) −→ (X2, δ2) be a

proximally continuous function, and g = Smf : cX1 −→ cX2 be the continuous function

such that g ◦ c1 = c2 ◦ f (see 0.5.2.4 for its existence). Then:

(a) g is quasi-open iff f is skeletal;

(b)(V. Z. Poljakov [89]) g is an open map iff f satisfies the following condition:

(OC) For every A,B ⊆ X1 such that A≪δ1 B, f(A) ≪δ2 clX2(f(B)) holds.

Proof. (a) It follows from Corollary 2.5.2.5(b) and Theorem 4.2.3.7(a).

(b) Obviously, in our hypothesis, condition (OC) implies condition (O2) and conversely.

Thus our assertion follows from Theorem 4.2.3.7(b′′).

Corollary 4.2.3.9. Let X1, X2 be two Tychonoff spaces, f : X1 −→ X2 be a con-

tinuous function and βf : βX1 −→ βX2 be the extension of f to the Stone-Čech

compactifications of X1 and X2. Then:

(a) βf is quasi-open iff f is skeletal;

(b) βf is an open map iff f satisfies the following condition:

(OB) For every A,B ⊆ X1 which are completely separated in X1, f(A) and X2 \
clX2(f(X1 \B)) are completely separated in X2;

(c)(V. Z. Poljakov [89]) If X1 and X2 are normal spaces then βf is open iff for every

A,B ⊆ X1 such that clX1(A) ⊆ intX1(B), clX2(f(A)) ⊆ intX2(clX2(f(B))) holds;

(d)(A. D. Tăımanov [6]) If X1 and X2 are normal spaces and f is an open and closed

map then βf is open.

Proof. (a) It follows from Corollary 4.2.3.8(a).

(b) Let δβ be the proximity on a Tychonoff space X that corresponds, by Theorem

0.5.2.3, to βX. Then, as it is well known, for every A,B ⊆ X, A(−δβ)B iff A and B

are completely separated. Having this in mind, we can easily see that our assertion

follows from Corollary 4.2.3.8(b).
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(c) As it is well known, the famous Urysohn Lemma implies that two subsets of a

normal space X are completely separated iff their closures are disjoint. Thus, using the

notation from the proof of (b), for every A,B ⊆ X, A≪δβ B iff clX(A)∩clX(X\B) = ∅
iff clX(A) ⊆ intX(B). Now it becomes clear that our assertion follows from Corollary

4.2.3.8(b).

(d) Let A,B ⊆ X1 and clX1(A) ⊆ intX1(B). Then, using [53, 1.4.C], we get that

clX2(f(A)) = f(clX1(A)) ⊆ f(intX1(B)) ⊆ intX2(f(B)) ⊆ intX2(clX2(f(B))). Thus,

our assertion follows from (c).

Remark 4.2.3.10. In [89], after establishing the general result 4.2.3.8(b), V. Z. Pol-

jakov writes (in the notations of Corollary 4.2.3.9) that βf is open iff for every two com-

pletely separated subsets A and B of X1, the sets f(A) and {y ∈ X2 | f−1(y) ⊆ B} are

completely separated in X2. Since {y ∈ X2 | f−1(y) ⊆ B} = f#(B) = X2 \ f(X1 \B),

we get that Poljakov’s condition implies condition (OB) and thus it is sufficient for the

openness of βf . It is, however, not necessary. Indeed, let f : Q −→ βQ be the inclusion

map (supposing, for simplicity, that Q ⊆ βQ). Then βf : βQ −→ βQ is the identity

map and hence it is an open map. Let A,B ⊆ Q and A, B be completely separated in

Q. Then, by Poljakov’s condition, the sets f(A) and f#(B) are completely separated

in βQ, i.e.,

clβQ(f(A)) ∩ clβQ(f
#(B)) = ∅.

Since f#(B) = f(B) ∪ (βQ \Q), we get that clβQ(f
#(B)) = βQ. Thus

clβQ(f(A)) ∩ clβQ(f
#(B)) ̸= ∅,

a contradiction. Hence, the map f does not satisfy Poljakov’s condition.

Finally, it is easy to see that Theorem 4.2.3.7 implies the following result:

Corollary 4.2.3.11. Let, for i = 1, 2, Xi be a Tychonoff space, Yi be a Hausdorff local

compactification of Xi and let’s assume, for simplicity of notation, that Xi ⊆ Yi. Let

f : X1 −→ X2 be a continuous function having a continuous extension g : Y1 −→ Y2.

Then:

(a) g is skeletal iff f is skeletal;

(b) g is an open map iff f satisfies the following condition:

(O′) ∀F,G ∈ RC(X1) such that clY1(F ) is compact, we have that

(clY1(F ) ⊆ ExY1(G)) → (clY2(f(F )) ⊆ ExY2(clX2(f(G))));
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(c) g is a perfect map iff f satisfies the following condition:

(P′) If G ∈ RC(X2) and clY2(G) is compact then clY1(f
−1(intX2(G))) is compact;

(d) clY2(g(Y1)) = Y2 iff clX2(f(X1)) = X2;

(e) g is an injection iff f satisfies the following condition:

(I′) For every F1, F2 ∈ RC(X1) such that clY1(F1) and clY1(F2) are disjoint com-

pact subsets of Y1, there exist G1, G2 ∈ RC(X2) such that clY2(G1) and clY2(G2)

are compact subsets of Y2, clY2(G1) ⊆ ExY2(G2), F1 ⊆ clX1(f
−1(intX2(G1))) and

clY1(f
−1(intX2(G2))) ∩ clY1(F2) = ∅;

(f) g is an open injection iff f satisfies condition (O′) and the following one:

(OI) ∀F ∈ RC(X1) ∃G ∈ RC(X2) such that F = clX1(f
−1(intX2(G)));

(g) g is a perfect surjection iff f satisfies condition (P′) and clX2(f(X1)) = X2.

4.3 Open and other kinds of map extensions over

zero-dimensional local compactifications

4.3.1 Introduction

In [8], B. Banaschewski proved that every zero-dimensional Hausdorff space X has a

zero-dimensional Hausdorff compactification β0X with the following remarkable prop-

erty: every continuous map f : X −→ Y , where Y is a zero-dimensional Hausdorff

compact space, can be extended to a continuous map β0f : β0X −→ Y ; in partic-

ular, β0X is the maximal zero-dimensional Hausdorff compactification of X. As far

as I know, there are no descriptions of the maps f for which the extension β0f is

open or quasi-open. In this section we solve the following more general problem: let

f : X −→ Y be a map between two zero-dimensional Hausdorff spaces and (lX, lX),

(lY, lY ) be Hausdorff zero-dimensional locally compact extensions of X and Y , respec-

tively; find the necessary and sufficient conditions which has to satisfy the map f in

order to have an “extension” g : lX −→ lY (i.e., g ◦ lX = lY ◦ f) which is a map

with some special properties (we consider the following properties: continuous, open,

perfect, quasi-open, skeletal, injective, surjective, dense embedding). In [78], S. Leader

solved such a problem for continuous extensions over Hausdorff local compactifications

using the language of local proximities. Hence, if one can describe the local proximi-

ties which correspond to zero-dimensional Hausdorff local compactifications then the

above problem will be solved for continuous extensions. Recently, G. Bezhanishvili
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[13], solving an old problem of L. Esakia, described the Efremovič proximities which

correspond (in the sense of the famous Smirnov Compactification Theorem 0.5.2.3) to

the zero-dimensional Hausdorff compactifications (and called them zero-dimensional

Efremovič proximities). We extend here his result to the Leader local proximities, i.e.,

we describe the local proximities which correspond to the Hausdorff zero-dimensional

local compactifications and call them zero-dimensional local proximities (see Theorem

4.3.3.2). We do not use, however, these zero-dimensional local proximities for solving

our problem. We introduce a simpler notion (namely, the admissibe ZLB-algebra) for

doing this. Ph. Dwinger [48] proved, using Stone’s Duality Theorem [108], that the

ordered set of all, up to equivalence, zero-dimensional Hausdorff compactifications of

a zero-dimensional Hausdorff space is isomorphic to the ordered by inclusion set of all

Boolean bases of X (i.e., of those bases of X which are Boolean subalgebras of the

Boolean algebra CO(X) of all clopen (= closed and open) subsets of X). This descrip-

tion is much simpler than that by the Efremovič proximities. It was rediscovered by

K. D. Magill Jr. and J. A. Glasenapp [81] and applied very successfully to the study

of the poset of all, up to equivalence, zero-dimensional Hausdorff compactifications of

a zero-dimensional Hausdorff space. We extend the cited above Dwinger Theorem [48]

to the zero-dimensional Hausdorff local compactifications (see Theorem 4.3.2.4 below)

with the help of our generalization of the Stone Duality Theorem proved in Chapter 3

(see Theorem 3.2.2.7) and the notion of an “admissible ZLB-algebra” introduced here.

We obtain our solution of the problem formulated above in the language of the ad-

missible ZLB-algebras (see Theorem 4.3.4.7). As a corollary, we characterize the maps

f : X −→ Y between two Hausdorff zero-dimensional spaces X and Y for which the

extension β0f : βoX −→ β0Y is open or quasi-open (see Corollary 4.3.4.8). Of course,

one can pass from admissible ZLB-algebras to zero-dimensional local proximities and

conversely (see Theorem 4.3.3.4 below; it generalizes an analogous result about the con-

nection between Boolean bases and zero-dimensional Efremovič proximities obtained

in [13]).

For the notions and notation not defined here see [48, 53, 75, 87].

The exposition of this section is based on the paper [30].

4.3.2 A generalization of Dwinger’s Theorem

In the next assertion we recall (for a convenience of the reader) some results from

Chapter 3; they will be used in this section.
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Proposition 4.3.2.1. Let (A, I) be a ZLBA. Set X = {u ∈ Ult(A) | u ∩ I ̸= ∅}. Set,
for every a ∈ A, λCA(a) = {u ∈ X | a ∈ u}. Let τ be the topology on X having as

an open base the family {λCA(a) | a ∈ I}. Then (X, τ) is a zero-dimensional locally

compact Hausdorff space, λCA(A) = CO(X), λCA(I) = KO(X) and λCA : A −→ CO(X)

is a Boolean isomorphism; hence, λCA : (A, I) −→ (CO(X), KO(X)) is a ZLBA-

isomorphism. We set Θa(A, I) = (X, τ). The space Θa(A, I) is compact iff A = I.

Definition 4.3.2.2. Let X be a zero-dimensional Hausdorff space. Then:

(a) A ZLBA (A, I) is called admissible forX if A is a Boolean subalgebra of the Boolean

algebra CO(X) and I is an open base of X.

(b) The set of all admissible for X ZLB-algebras will be denoted by

ZA(X).

(c) If (A1, I1), (A2, I2) ∈ ZA(X) then we set

(A1, I1) ≼0 (A2, I2)

if A1 is a Boolean subalgebra of A2 and for every V ∈ I2 there exists U ∈ I1 such that

V ⊆ U .

Notation 4.3.2.3. The set of all (up to equivalence) zero-dimensional locally compact

Hausdorff extensions of a zero-dimensional Hausdorff space X will be denoted by

L0(X).

The order on L0(X) induced by the order “ ≤” on LC(X) will be denoted again by

“ ≤”.

Theorem 4.3.2.4. Let X be a zero-dimensional Hausdorff space. Then the ordered sets

(L0(X),≤) and (ZA(X),≼0) are isomorphic; at that, the zero-dimensional compact

Hausdorff extensions of X correspond to the admissible for X (Z)LB-algebras of the

form (A,A).

Proof. Let (Y, f) be a locally compact Hausdorff zero-dimensional extension of X. Set

A(Y,f) = f−1(CO(Y )) and I(Y,f) = f−1(KO(Y )).(4.19)

Note that

A(Y,f) = {F ∈ CO(X) | clY (f(F )) is open in Y }
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and

I(Y,f) = {F ∈ A(Y,f) | clY (f(F )) is compact}.

We will show that (A(Y,f), I(Y,f)) ∈ ZA(X). Obviously, the map

r0(Y,f) : (CO(Y ), KO(Y )) −→ (A(Y,f), I(Y,f)), G 7→ f−1(G),(4.20)

is a Boolean isomorphism such that r0(Y,f)(KO(Y )) = I(Y,f). Hence (A(Y,f), I(Y,f)) is

a ZLBA and r0(Y,f) is an LBA-isomorphism. It is easy to see that I(Y,f) is a base of

X (because Y is locally compact). Hence (A(Y,f), I(Y,f)) ∈ ZA(X). It is clear that if

(Y1, f1) is a locally compact Hausdorff zero-dimensional extension of X equivalent to

the extension (Y, f), then (A(Y,f), I(Y,f)) = (A(Y1,f1), I(Y1,f1)). Therefore, the map

α0
X : L0(X) −→ ZA(X), [(Y, f)] 7→ (A(Y,f), I(Y,f)),(4.21)

is well-defined. Note that, by (4.19), A(Y,f) = I(Y,f) iff (Y, f) is a compact Hausdorff

zero-dimensional extension of X.

Let (A, I) ∈ ZA(X) and Y = Θa(A, I). Then Y is a locally compact Hausdorff

zero-dimensional space. For every x ∈ X, set

ux,A = {F ∈ A | x ∈ F}.(4.22)

Since I is a base of X, we get that ux,A is an ultrafilter in A and ux,A ∩ I ̸= ∅, i.e.,
ux,A ∈ Y . Define

f(A,I) : X −→ Y, x 7→ ux,A.(4.23)

Set, for short, f = f(A,I). Obviously, clY (f(X)) = Y . It is easy to see that f is a home-

omorphic embedding. Hence (Y, f) is a locally compact Hausdorff zero-dimensional

extension of X. We now set:

β0
X : ZA(X) −→ L0(X), (A, I) 7→ [(Θa(A, I), f(A,I))].(4.24)

Note that, by Proposition 4.3.2.1, Θa(A, I) is a compact Hausdorff zero-dimensional

space iff A = I.

We will show that

α0
X ◦ β0

X = idZA(X) and β0
X ◦ α0

X = idL0(X).(4.25)

Let [(Y, f)] ∈ L0(X). Set, for short, A = A(Y,f), I = I(Y,f), g = f(A,I), Z =

Θa(A, I) and φ = r0(Y,f). Then β0
X(α

0
X([(Y, f)])) = β0

X(A, I) = [(Z, g)]. We have to

show that [(Y, f)] = [(Z, g)]. Since φ is an LBA-isomorphism, we get that

h = Θa(φ) : Z −→ Θa(Θt(Y ))
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is a homeomorphism. Set Y ′ = Θa(Θt(Y )). By the proof of Theorem 3.2.1.11, the map

tCY : Y −→ Y ′, y 7→ uCO(Y )
y ,

is a homeomorphism. Let

h′ = (tCY )
−1 ◦ h.

Then h′ : Z −→ Y is a homeomorphism. We will prove that h′ ◦g = f and this will im-

ply that [(Y, f)] = [(Z, g)]. Let x ∈ X. Then h′(g(x)) = h′(ux,A) = (tCY )
−1(h(ux,A)) =

(tCY )
−1(φ−1(ux,A)). We have that ux,A = {f−1(F ) | F ∈ CO(Y ), x ∈ f−1(F )} =

{φ(F ) | F ∈ CO(Y ), f(x) ∈ F}. Thus φ−1(ux,A) = {F ∈ CO(Y ) | f(x) ∈ F} =

u
CO(Y )
f(x) . Hence (tCY )

−1(φ−1(ux,A)) = f(x). So, h′ ◦ g = f . Therefore, β0
X ◦α0

X = idL0(X).

Let (A, I) ∈ ZA(X) and Y = Θa(A, I). Set f = f(A,I), B = A(Y,f) and

J = I(Y,f). Then α0
X(β

0
X(A, I)) = (B, J). By Proposition 4.3.2.1, we have that

λCA : (A, I) −→ (CO(Y ), KO(Y )) is an LBA-isomorphism. Hence λCA(A) = CO(Y )

and λCA(I) = KO(Y ). We will show that f−1(λCA(F )) = F , for every F ∈ A. Recall

that λCA(F ) = {u ∈ Y | F ∈ u}. Now we have that if F ∈ A then f−1(λCA(F )) = {x ∈
X | f(x) ∈ λCA(F )} = {x ∈ X | ux,A ∈ λCA(F )} = {x ∈ X | F ∈ ux,A} = {x ∈ X | x ∈
F} = F . Thus

B = f−1(CO(Y )) = A and J = f−1(KO(Y )) = I.(4.26)

Therefore, α0
X ◦ β0

X = idZA(X).

We will now prove that α0
X and β0

X are monotone maps.

Let [(Yi, fi)] ∈ L0(X), where i = 1, 2, and [(Y1, f1)] ≤ [(Y2, f2)]. Then there

exists a continuous map g : Y2 −→ Y1 such that g ◦ f2 = f1. Set Ai = A(Yi,fi) and

Ii = I(Yi,fi), i = 1, 2. Then α0
X([(Yi, fi)]) = (Ai, Ii), where i = 1, 2. We have to

show that A1 ⊆ A2 and for every V ∈ I2 there exists U ∈ I1 such that V ⊆ U . Let

F ∈ A1. Then F ′ = clY1(f1(F )) ∈ CO(Y1) and, hence, G
′ = g−1(F ′) ∈ CO(Y2). Thus

(f2)
−1(G′) ∈ A2. Since (f2)

−1(G′) = (f2)
−1(g−1(F ′)) = (f2)

−1(g−1(clY1(f1(F )))) =

(f1)
−1(clY1(f1(F ))) = F , we get that F ∈ A2. Therefore, A1 ⊆ A2. Further, let V ∈ I2.

Then V ′ = clY2(f2(V )) ∈ KO(Y2). Thus g(V
′) is a compact subset of Y1. Hence there

exists U ∈ I1 such that g(V ′) ⊆ clY1(f1(U)). Then V ⊆ (f2)
−1(g−1(g(clY2(f2(V ))))) =

(f1)
−1(g(V ′)) ⊆ (f1)

−1(clY1(f1(U))) = U . So, α0
X([(Y1, f1)]) ≼0 α

0
X([(Y2, f2)]). Hence,

α0
X is a monotone function.

Let now (Ai, Ii) ∈ ZA(X), where i = 1, 2, and (A1, I1) ≼0 (A2, I2). Set, for

short, Yi = Θa(Ai, Ii) and fi = f(Ai,Ii), i = 1, 2. Then β0
X(Ai, Ii) = [(Yi, fi)], i = 1, 2.
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We will show that [(Y1, f1)] ≤ [(Y2, f2)]. We have that, for i = 1, 2, fi : X −→ Yi

is defined by fi(x) = ux,Ai
, for every x ∈ X. We also have that A1 ⊆ A2 and for

every V ∈ I2 there exists U ∈ I1 such that V ⊆ U . Let us consider the function

φ : (A1, I1) −→ (A2, I2), F 7→ F. Obviously, φ is a ZLBA-morphism. Then

g = Θa(φ) : Y2 −→ Y1

is a continuous map. We will prove that g ◦ f2 = f1, i.e., that for every x ∈ X,

g(ux,A2) = ux,A1 . So, let x ∈ X. We have that ux,A2 = {F ∈ A2 | x ∈ F} and

g(ux,A2) = φ−1(ux,A2). Clearly, φ−1(ux,A2) = {F ∈ A1 ∩ A2 | x ∈ F}. Since A1 ⊆ A2,

we get that φ−1(ux,A2) = {F ∈ A1 | x ∈ F} = ux,A1 . So, g ◦ f2 = f1. Thus [(Y1, f1)] ≤
[(Y2, f2)]. Therefore, β

0
X is also a monotone function. Since β0

X = (α0
X)

−1, we get that

α0
X (as well as β0

X) is an isomorphism.

Definition 4.3.2.5. Let (X, τ) be a zero-dimensional Hausdorff space. A Boolean

algebra A is called admissible for (X, τ) (or, a Boolean base of (X, τ)) if A is a Boolean

subalgebra of the Boolean algebra CO(X) and A is an open base of (X, τ). The set of

all admissible Boolean algebras for (X, τ) will be denoted by

BA(X, τ).

Notation 4.3.2.6. The set of all (up to equivalence) zero-dimensional compact Haus-

dorff extensions of a zero-dimensional Hausdorff space (X, τ) will be denoted by

K0(X, τ).

The order on K0(X, τ) induced by the order “ ≤ ” on the set L0(X, τ) (defined above)

will be denoted again by “ ≤ ”.

Corollary 4.3.2.7. (Ph. Dwinger [48]) Let (X, τ) be a zero-dimensional Hausdorff

space. Then the ordered sets (K0(X, τ),≤) and (BA(X, τ),⊆) are isomorphic.

Proof. Clearly, a Boolean algebra A is admissible for X iff the ZLBA (A,A) is admis-

sible for X. Also, if A1, A2 are two admissible for X Boolean algebras then A1 ⊆ A2

iff (A1, A1) ≼0 (A2, A2). Since the admissible (Z)LB-algebras of the form (A,A) and

only they correspond to the zero-dimensional compact Hausdorff extensions of X, it

becomes obvious that our assertion follows from Theorem 4.3.2.4.
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4.3.3 Zero-dimensional local proximities

With the next definition we generalize the notion of a zero-dimensional proximity in-

troduced in [13].

Definition 4.3.3.1. A local proximity space (X, δ,B) is called zero-dimensional if for

every A,B ∈ B with A≪ B there exists C ⊆ X such that A ⊆ C ⊆ B and C ≪ C.

The set of all separated zero-dimensional local proximity spaces on a Tychonoff

space (X, τ) (i.e., those which are compatible with the topology τ on X (see 0.5.1.9))

will be denoted by

LP0(X, τ).

The restriction of the order relation ≼ on LP(X, τ) (see 0.5.1.10) to the set LP0(X, τ)

will be denoted again by ≼.

Theorem 4.3.3.2. Let (X, τ) be a zero-dimensional Hausdorff space. Then the ordered

sets (LP0(X, τ),≼) and (L0(X),≤) are isomorphic (see 4.3.3.1 and 4.3.2.3 for the

notation).

Proof. Having in mind Leader’s Theorem 0.5.2.5, we need only to show that if [(Y, f)] ∈
LC(X) and γX([(Y, f)]) = (X, δ,B) then Y is a zero-dimensional space iff (X, δ,B) ∈
LP0(X).

So, let Y be a zero-dimensional space. Then, by Theorem 0.5.2.5, B = {B ⊆
X | clY (f(B)) is compact}, and for every A,B ⊆ X, AδB iff clY (f(A))∩clY (f(B)) ̸= ∅.
Let A,B ∈ B and A ≪ B. Then clY (f(A)) ∩ clY (f(X \ B)) = ∅. Since clY (f(A)) is

compact and Y is zero-dimensional, there exists U ∈ CO(Y ) such that clY (f(A)) ⊆
U ⊆ Y \ clY (f(X \B)). Set V = f−1(U). Then A ⊆ V ⊆ intX(B), clY (f(V )) = U and

clY (f(X \V )) = Y \U . Thus V ≪ V and A ⊆ V ⊆ B. Therefore, (X, δ,B) ∈ LP0(X).

Conversely, let (X, δ,B) ∈ LP0(X). We will prove that Y is a zero-dimensional

space. We have, by Theorem 0.5.2.5, that the formulas written in the preceding

paragraph for B and δ hold. Let y ∈ Y and U be an open neighborhood of y.

Since Y is locally compact and Hausdorff, there exist F1, F2 ∈ CR(Y ) such that

y ∈ F1 ⊆ intY (F2) ⊆ F2 ⊆ U . Let Ai = f−1(Fi), i = 1, 2. Then clY (f(Ai)) = Fi,

and hence Ai ∈ B, for i = 1, 2. Also, A1 ≪ A2. Thus there exists C ∈ B such that

A1 ⊆ C ⊆ A2 and C ≪ C. It is easy to see that F1 ⊆ clY (f(C)) ⊆ F2 and that

clY (f(C)) ∈ CO(Y ). Therefore, Y is a zero-dimensional space.
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By Theorem 0.5.2.5, for every Tychonoff space (X, τ), the local proximity spaces

of the form (X, δ, P (X)) on (X, τ) and only they correspond to the Hausdorff compact-

ifications of (X, τ). Obviously, a pair (X, δ), for which the triple (X, δ, P (X)) is a local

proximity space, is an Efremovič proximity space. An Efremovič proximity which is

a zero-dimensional local proximity is called a zero-dimensional proximity. This notion

was recently introduced by G. Bezhanishvili [13]. Let us denote by

P0(X, τ)

the set of all zero-dimensional proximities on a zero-dimensional Hausdorff space (X, τ).

Then our Theorem 4.3.3.2 implies immediately the following theorem of G. Bezhan-

ishvili [13]:

Corollary 4.3.3.3. (G. Bezhanishvili [13]) Let (X, τ) be a zero-dimensional Hausdorff

space. Then there exists an isomorphism between the ordered sets (K0(X, τ),≤) and

(P0(X, τ),≼) (see Notation 4.3.2.6 for K0(X, τ)).

The connection between the zero-dimensional local proximities on a zero-dimensi-

onal Hausdorff space X and the admissible for X ZLB-algebras is clarified in the next

result:

Theorem 4.3.3.4. Let (X, τ) be a zero-dimensional Hausdorff space. Then:

(a) Let (A, I) ∈ ZA(X, τ). Set B = {M ⊆ X | ∃B ∈ I such that M ⊆ B}, and for

every M,N ∈ B, let MδN ⇐⇒ (∀F ∈ I)[(M ⊆ F ) → (F ∩ N ̸= ∅)]; further, for
every K,L ⊆ X, let KδL ⇐⇒ [∃M,N ∈ B such that M ⊆ K,N ⊆ L and MδN ].

Then (X, δ,B) ∈ LP0(X, τ). Set

LX(A, I) = (X, δ,B).

(b) Let (X, δ,B) ∈ LP0(X, τ). Set A = {F ⊆ X | F ≪ F} and I = A ∩ B. Then

(A, I) ∈ ZA(X, τ). Set lX(X, δ,B) = (A, I).

(c) β0
X = (γX)

−1 ◦ LX and, for every (X, δ,B) ∈ LP0(X, τ), (β0
X ◦ lX)(X, δ,B) =

(γX)
−1(X, δ,B) (see Theorem 0.5.2.5, (4.24), as well as (a) and (b) here for the nota-

tion);

(d) The correspondence LX : (ZA(X, τ),≼0) −→ (LP0(X, τ),≼) is an isomorphism

(between posets) and L−1
X = lX .
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Proof. It follows from Theorems 4.3.2.4, 4.3.3.2 and 0.5.2.5.

The above assertion is a generalization of the analogous result of G. Bezhanishvili

[13] concerning the connection between the zero-dimensional proximities on a zero-

dimensional Hausdorff space X and the Boolean bases of X.

4.3.4 Map extensions over zero-dimensional local compactifi-
cations

Theorem 4.3.4.1. Let, for i = 1, 2, (Xi, τi) be a zero-dimensional Hausdorff space,

(Ai, Ii) ∈ ZA(Xi), Yi = Θa(Ai, Ii), fi = f(Ai,Ii) (see (4.23) for f(Ai,Ii)) and f : X1 −→
X2 be a function. Then there exists a continuous function g : Y1 −→ Y2 such that

g ◦ f1 = f2 ◦ f iff f satisfies the following conditions:

(ZEQ1) For every G ∈ A2, f
−1(G) ∈ A1 holds;

(ZEQ2) For every F ∈ I1 there exists G ∈ I2 such that f(F ) ⊆ G.

Proof. Note first that, according to the proof of Theorem 4.3.2.4, for i = 1, 2, (Yi, fi)

is a zero-dimensional Hausdorff local compactification of Xi, β
0
Xi
(Ai, Ii) = [(Yi, fi)] and

α0
Xi
([(Yi, fi)]) = (Ai, Ii).

(⇒) Let g : Y1 −→ Y2 be a continuous function such that g ◦ f1 = f2 ◦ f . By (4.26)

and Lemma 0.4.2.2, we have that the maps

rci : CO(Yi) −→ Ai, G 7→ (fi)
−1(G), eci : Ai −→ CO(Yi), F 7→ clYi(fi(F )),(4.27)

where i = 1, 2, are Boolean isomorphisms; moreover, since rci (KO(Yi)) = Ii and e
c
i(Ii) =

KO(Yi), we get that

rci : (CO(Yi), KO(Yi)) −→ (Ai, Ii) and e
c
i : (Ai, Ii) −→ (CO(Yi), KO(Yi)),(4.28)

where i = 1, 2, are LBA-isomorphisms. Set

ψg : CO(Y2) −→ CO(Y1), G 7→ g−1(G), and ψf = rc1 ◦ ψg ◦ ec2.(4.29)

Then ψf : A2 −→ A1. We will prove that

ψf (G) = f−1(G), for every G ∈ A2.(4.30)

Indeed, let G ∈ A2. Then ψf (G) = (rc1 ◦ψg ◦ ec2)(G) = (f1)
−1(g−1(clY2(f2(G)))) = {x ∈

X1 | (g ◦f1)(x) ∈ clY2(f2(G))} = {x ∈ X1 | f2(f(x)) ∈ clY2(f2(G))} = {x ∈ X1 | f(x) ∈
(f2)

−1(clY2(f2(G)))} = {x ∈ X1 | f(x) ∈ G} = f−1(G). This shows that condition
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(ZEQ1) is fulfilled. Since, by (3.3), ψg = Θt(g), we get that ψg is a ZLBA-morphism.

Thus ψf is a ZLBA-morphism. Therefore, for every F ∈ I1 there exists G ∈ I2 such

that f−1(G) ⊇ F . Hence, condition (ZEQ2) is also satisfied.

(⇐) Let f satisfy conditions (ZEQ1) and (ZEQ2). Set

ψf : A2 −→ A1, G 7→ f−1(G).

Then ψf : (A2, I2) −→ (A1, I1) is a ZLBA-morphism. Put g = Θa(ψf ). Then g :

Y1 −→ Y2 and g is a continuous function (see Theorem 3.2.1.11). We will show that

g ◦ f1 = f2 ◦ f . Let x ∈ X1. Then, by (4.23) and Theorem 3.2.1.11, g(f1(x)) =

g(ux,A1) = (ψf )
−1(ux,A1) = {G ∈ A2 | ψf (G) ∈ ux,A1} = {G ∈ A2 | x ∈ f−1(G)} =

{G ∈ A2 | f(x) ∈ G} = uf(x),A2 = f2(f(x)). Thus, g ◦ f1 = f2 ◦ f .

Corollary 4.3.4.2. Let, for i = 1, 2, Xi be a zero-dimensional Hausdorff space, (Yi, fi)

be a zero-dimensional Hausdorff local compactification of Xi, and f : X1 −→ X2 be a

function. Then there exists a continuous function g : Y1 −→ Y2 such that g ◦f1 = f2 ◦f
iff f satisfies the following conditions:

(ZEQ1’) For every G ∈ f−1
2 (CO(Y2)), f

−1(G) ∈ f−1
1 (CO(Y1)) holds;

(ZEQ2’) For every F ∈ f−1
1 (KO(Y1)) there exists G ∈ f−1

2 (KO(Y2)) such that f(F ) ⊆
G.

Corollary 4.3.4.3. Let (Xi, τi), i = 1, 2, be two zero-dimensional Hausdorff spaces,

Ai ∈ BA(Xi), (Yi, fi) = β0
Xi
(Ai, Ai) (see (4.24) for β0

Xi
), where i = 1, 2, and f :

X1 −→ X2 be a function. Then there exists a continuous function g : Y1 −→ Y2 such

that g ◦ f1 = f2 ◦ f iff f satisfies condition (ZEQ1).

Proof. It follows from Theorem 4.3.4.1 because for ZLB-algebras of the form (Ai, Ai),

where i = 1, 2, condition (ZEQ2) is always fulfilled.

4.3.4.4. Clearly, Theorem 4.3.2.7 implies (see [48]) that every zero-dimensional Haus-

dorff space X has a greatest zero-dimensional Hausdorff compactification which cor-

responds to the admissible for X Boolean algebra CO(X). This compactification was

discovered by B. Banaschewski [8]; it is denoted by

(β0X, β
X
0 ) (or, simply, by (β0X, β0))

and it is called the Banaschewski compactification of X.
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Using our Corollary 4.3.4.3, one obtains immediately the main property of the

Banaschewski compactification:

Corollary 4.3.4.5. (B. Banaschewski [8]) Let (Xi, τi), i = 1, 2, be zero-dimensional

Hausdorff spaces and (cX2, c) be a zero-dimensional Hausdorff compactification of X2.

Then for every continuous function f : X1 −→ X2 there exists a continuous function

g : β0X1 −→ cX2 such that g ◦ β0 = c ◦ f .

Proof. Since β0X1 corresponds to the admissible for X1 Boolean algebra CO(X1),

condition (ZEQ1) is clearly fulfilled when f is a continuous function. Now apply

Corollary 4.3.4.3.

If, in the above Corollary 4.3.4.5, we have that cX2 = β0X2, then the map g will

be denoted by

β0f.

4.3.4.6. It is natural to write

“f : (X1, A1, I1) −→ (X2, A2, I2)”

when, for i = 1, 2, Xi is a zero-dimensional Hausdorff space, (Ai, Ii) ∈ ZA(Xi) and

f : X1 −→ X2 is a function. Then, by analogy with Leader’s equicontinuous functions

(see the Leader Theorem 0.5.2.5), the functions

f : (X1, A1, I1) −→ (X2, A2, I2)

which satisfy conditions (ZEQ1) and (ZEQ2) will be called 0-equicontinuous functions.

Since I2 is a base of X2, we obtain that every 0-equcontinuous function is a

continuous function.

Theorem 4.3.4.7. Let f : (X1, A1, I1) −→ (X2, A2, I2) be a 0-equicontinuous function,

Yi = Θa(Ai, Ii), fi = f(Ai,Ii) (see (4.23) for f(Ai,Ii)) and g : Y1 −→ Y2 be a continuous

function such that g ◦ f1 = f2 ◦ f (its existence and uniqueness are guaranteed by

Theorem 4.3.4.1). Then:

(a) g is skeletal iff f is skeletal;

(b) g is an open map iff f satisfies the following condition:

(ZO) For every F ∈ I1, clX2(f(F )) ∈ I2 holds;

(c) g is a perfect map iff f satisfies the following condition:
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(ZP) For every G ∈ I2, f
−1(G) ∈ I1 holds (i.e., briefly, f−1(I2) ⊆ I1);

(d) clY2(g(Y1)) = Y2 iff clX2(f(X1)) = X2;

(e) g is an injection iff f satisfies the following condition:

(ZI) For every F1, F2 ∈ I1 such that F1∩F2 = ∅, there exist G1, G2 ∈ I2 with G1∩G2 = ∅
and f(Fi) ⊆ Gi, i = 1, 2;

(f) g is an open injection iff f satisfies condition (ZO) and I1 ⊆ f−1(I2) (i.e., for every

F ∈ I1 there exists G ∈ I2 such that F = f−1(G));

(g) g is a closed injection iff f−1(I2) = I1;

(h) g is a perfect surjection iff f satisfies condition (ZP) and clX2(f(X1)) = X2;

(i) g is a dense embedding iff clX2(f(X1)) = X2 and I1 ⊆ f−1(I2).

Proof. Note first that, according to the proof of Theorem 4.3.2.4, for i = 1, 2, (Yi, fi)

is a zero-dimensional Hausdorff local compactification of Xi, β
0
Xi
(Ai, Ii) = [(Yi, fi)] and

α0
Xi
([(Yi, fi)]) = (Ai, Ii).

Set ψg = Θt(g) (see (3.3)). Then

ψg : CO(Y2) −→ CO(Y1), G 7→ g−1(G).

Set also

ψf : A2 −→ A1, G 7→ f−1(G).

Let rci and e
c
i , i = 1, 2, be defined by (4.27). Then, (4.29) and (4.30) imply that

ψf = rc1 ◦ ψg ◦ ec2 and, hence, ψg = ec1 ◦ ψf ◦ rc2.(4.31)

(a) It follows from Lemma 4.2.3.5.

(b) We have, by (4.19), that Ii = (fi)
−1(KO(Yi)), for i = 1, 2. Thus, for every F ∈ Ii,

where i ∈ {1, 2}, clYi(fi(F )) ∈ KO(Yi) holds.

Let g be an open map and F ∈ I1. ThenG = clY1(f1(F )) ∈ KO(Y1). Thus g(G) ∈
KO(Y2). Since G is compact, we have that g(G) = clY2(g(f1(F ))) = clY2(f2(f(F ))) =

clY2(f2(clX2(f(F )))). Therefore, clX2(f(F )) = (f2)
−1(g(G)), i.e., clX2(f(F )) ∈ I2. So,

condition (ZO) is fulfilled.

Conversely, let f satisfies condition (ZO). Since KO(Y1) is an open base of Y1,

for showing that g is an open map, it is enough to prove that for every G ∈ KO(Y1),

g(G) = clY2(f2(clX2(f(F )))) holds, where F = (f1)
−1(G) and thus F ∈ I1. Ob-

viously, G = clY1(f1(F )). Using again the fact that G is compact, we get that
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g(G) = g(clY1(f1(F ))) = clY2(g(f1(F ))) = clY2(f2(f(F ))) = clY2(f2(clX2(f(F )))). So, g

is an open map.

(c) Since Y2 is a locally compact Hausdorff space and KO(Y2) is a base of Y2, we get,

using [53, Theorem 3.7.18], that g is a perfect map iff g−1(G) ∈ KO(Y1) for every

G ∈ KO(Y2). Now, using (4.31), we get that: (g is a perfect map) ⇐⇒ (for every

G ∈ I2, f
−1(G) ∈ I1 holds) ⇐⇒ (f satisfies condition (ZP)).

(d) This is obvious.

(e) Having in mind (4.28), (4.29) and (4.30), our assertion follows from Theorem 3.4.1.3.

A direct proof follows. Let g be an injection and F1, F2 ∈ I1, F1 ∩ F2 = ∅ and

F ′
i = clY1(f1(Fi)), where i = 1, 2. Then, by (4.19) and (4.28), F ′

1 and F ′
2 are disjoint

compact open subsets of Y1. Hence g(F ′
1) and g(F ′

2) are disjoint compact subsets of

Y2. Since KO(Y2) is a base of Y2, there exist G′
1, G

′
2 ∈ KO(Y2) which are disjoint and

g(F ′
i ) ⊆ G′

i for i = 1, 2. Setting Gi = f−1
2 (G′

i) for i = 1, 2, we get easily (using (4.19),

(4.29) and (4.30)) that G1, G2 ∈ I2, G1∩G2 = ∅ and f(Fi) ⊆ Gi, i = 1, 2. So, condition

(ZI) is fulfilled. Conversely, let condition (ZI) be satisfied and y1, y2 ∈ Y1, y1 ̸= y2.

Then there exist F ′
1, F

′
2 ∈ KO(Y1) which are disjoint and yi ∈ F ′

i for i = 1, 2. Setting

Fi = f−1
1 (F ′

i ) for i = 1, 2, we get that F1, F2 ∈ I1 and F1∩F2 = ∅. Thus, by (ZI), there

exist G1, G2 ∈ I2 with G1 ∩ G2 = ∅ and f(Fi) ⊆ Gi, i = 1, 2. Set G′
i = clY2(f2(Gi))

for i = 1, 2. Then, using continuity of g, we get that g(yi) ∈ G′
i for i = 1, 2. Since, by

(4.28), G′
1 ∩G′

2 = ∅, we obtain that g(y1) ̸= g(y2). Therefore, g is an injection.

(f) It follows from (b), (4.28), (4.29), (4.30), and Theorem 3.4.3.1. We will give a direct

proof as well. Let g be an open injection. Then, by (b), f satisfies condition (ZO). Let

F ∈ I1 and F ′ = clY1(f1(F )). By (4.19), F ′ is a compact open subset of Y1. Since g is

an open map, we get that G′ = g(F ′) ∈ KO(Y2). Further, the injectivity of g implies

that F ′ = g−1(G′). Setting G = f−1
2 (G′), we get that G ∈ I2 (by (4.19)). Now, using

(4.28), (4.29) and (4.30), we obtain that F = f−1(G). So, f−1(I2) ⊇ I1.

Conversely, let f−1(I2) ⊇ I1 and f satisfies condition (ZO). Then, by (b), g is an

open map. Suppose that there exist y1, y2 ∈ Y1 such that y1 ̸= y2 and g(y1) = g(y2).

Then there exists F ′ ∈ KO(Y1) such that y1 ∈ F ′ ⊆ Y1 \ {y2}. Setting F = f−1
1 (F ′),

we get that F ∈ I1 (see (4.19)). Thus there exists G ∈ I2 such that F = f−1(G). Let

G′ = clY2(f2(G)). Then G′ ∈ KO(Y2). Note that (4.28), (4.29) and (4.30) imply that

ec1 ◦ψf = ψg ◦ec2. Therefore g−1(G′) = F ′. We get that y2 ∈ F ′, a contradiction. Hence,

g is an injection.

(g) It follows from (c), (4.28), (4.29), (4.30), and Theorem 3.4.3.3. A direct proof
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will be given now. Let f−1(I2) = I1. Then, by (c), g is a closed map. Further,

the last paragraph of the proof of (f) shows that g is an injection. So, g is a closed

injection. Conversely, let g be a closed injection. Then g is a perfect map and (c)

implies that f−1(I2) ⊆ I1. Hence, we need only to show that f−1(I2) ⊇ I1. Let

F ∈ I1 and F ′ = clY1(f1(F )). By (4.19), F ′ is a compact open subset of Y1. Since

g�Y1 : Y1 −→ g(Y1) is a homeomorphism, we get that H = g(F ′) is an open subset

of g(Y1). Hence there exists an open subset U of Y2 such that U ∩ g(Y1) = H. Now,

using the compactness of H, we obtain that there exists a G′ ∈ KO(Y2) such that

H ⊆ G′ ⊆ U . Then, obviously, g−1(G′) = F ′. Setting G = f−1
2 (G′), we get that G ∈ I2

and F = f−1(G). So, f−1(I2) ⊇ I1.

(h) It follows from (c) and (d).

(i) It follows from (d), Theorem 3.4.3.4 and Proposition 3.4.1.1. We will also give a

direct proof of this fact. Obviously, if g is a dense embedding then g(Y1) is an open

subset of Y2 (because Y1 is locally compact); thus g is an open mapping and we can

apply (f) and (d). Conversely, if clX2(f(X1)) = X2 and I1 ⊆ f−1(I2), then, by (d),

g(Y1) is a dense subset of Y2. We will show that f satisfies condition (ZO). Let F1 ∈ I1.

Then there exists F2 ∈ I2 such that F1 = f−1(F2). Thus clX2(f(F1)) ⊆ F2. Suppose

that G2 = F2 \ clX2(f(F1)) ̸= ∅. Since G2 is open, there exists x2 ∈ G2 ∩ f(X1). Then

there exists x1 ∈ X1 such that f(x1) = x2 ∈ F2. Thus x1 ∈ F1 and hence x2 ̸∈ G2,

a contradiction. Therefore, clX2(f(F1)) = F2. Thus, clX2(f(F1)) ∈ I2. So, condition

(ZO) is fulfilled. Now, using (f), we get that g is an open injection. All this shows that

g is a dense embedding.

Corollary 4.3.4.8. Let X1, X2 be two zero-dimensional Hausdorff spaces and f :

X1 −→ X2 be a continuous function. Then:

(a) β0f is quasi-open iff f is skeletal;

(b) β0f is an open map iff f satisfies the following condition:

(ZOB) For every F ∈ CO(X1), clX2(f(F )) ∈ CO(X2) holds;

(c) β0f is a surjection iff clX2(f(X1)) = X2;

(d) β0f is an injection iff for every F ∈ CO(X1) there exists G ∈ CO(X2) such that

F = f−1(G).

Proof. (a) It follows from Theorem 4.3.4.7(a) and Corollary 2.5.2.5(b).
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(b) Since (β0Xi, β
Xi
0 ) = β0

Xi
(CO(Xi), CO(Xi)) (see 4.3.4.4 and (4.24)), condition (ZO)

in Theorem 4.3.4.7 transforms in condition (ZOB). Now all follows from Theorem

4.3.4.7(b).

(c) It follows from Theorem 4.3.4.7(d).

(d) Obviously, f−1(CO(X2)) ⊆ CO(X1). Thus, using the fact that β0f is a closed map,

we get, by Theorem 4.3.4.7(g), that β0f is an injection iff f−1(CO(X2)) ⊇ CO(X1).

Corollary 4.3.4.9. Let X1, X2 be two zero-dimensional Hausdorff spaces, f : X1 −→
X2 be a continuous function, B be a Boolean base of X2, (cX2, c) be the Hausdorff

zero-dimensional compactification of X2 corresponding to B (see Corollary 4.3.2.7)

and g : β0X1 −→ cX2 be a continuous function such that g ◦ β0 = c ◦ f (its existence

and uniqueness are guaranteed by Theorem 4.3.4.5). Then:

(a) g is quasi-open iff f is skeletal;

(b) g is an open map iff f satisfies the following condition:

(ZOC) For every F ∈ CO(X1), clX2(f(F )) ∈ B holds;

(c) g is a surjection iff clX2(f(X1)) = X2;

(d) g is an injection iff for every F ∈ CO(X1) there exists G ∈ B such that F =

f−1(G).

Proof. It is analogous to the proof of Corollary 4.3.4.8.

Corollary 4.3.4.10. Let, for i = 1, 2, Xi be a zero-dimensional Hausdorff space,

(Yi, fi) be a zero-dimensional Hausdorff local compactification of Xi, f : X1 −→ X2 be

a continuous function for which there exists a continuous function g : Y1 −→ Y2 such

that g ◦ f1 = f2 ◦ f . Then:

(a) g is skeletal iff f is skeletal;

(b) g is an open map iff f satisfies the following condition:

(ZO’) If F ∈ f−1
1 (KO(Y1)), then clY2(f2(f(F ))) ∈ KO(Y2);

(c) g is a perfect map iff f satisfies the following condition:

(ZP’) If G ∈ f−1
2 (KO(Y2)), then f

−1(G) ∈ f−1
1 (KO(Y1));

(d) clY2(g(Y1)) = Y2 iff clX2(f(X1)) = X2;

(e) g is an injection iff f satisfies the following condition:

(ZI’) For every F1, F2 ∈ f−1
1 (KO(Y1)) such that F1 ∩ F2 = ∅, there exist G1, G2 ∈

f−1
2 (KO(Y2)) with G1 ∩G2 = ∅ and f(Fi) ⊆ Gi, i = 1, 2;

240



(f) g is an open injection iff f satisfies condition (ZO’) and for every F ∈ f−1
1 (KO(Y1))

there exists G ∈ f−1
2 (KO(Y2)) such that F = f−1(G);

(g) g is a closed injection iff (F ∈ f−1
1 (KO(Y1))) ⇐⇒ (∃G ∈ f−1

2 (KO(Y2)) such that

F = f−1(G));

(h) g is a perfect surjection iff f satisfies condition (ZP’) and clX2(f(X1)) = X2;

(i) g is a dense embedding iff clX2(f(X1)) = X2 and for every F ∈ f−1
1 (KO(Y1)) there

exists G ∈ f−1
2 (KO(Y2)) such that F = f−1(G).

4.4 A Whiteheadian-type description of Euclidean

spaces, spheres, tori and Tychonoff cubes

4.4.1 Introduction

A description of the dual object of the real line under the localic duality (i.e., a de-

scription of the frame (or locale) determined by the topology of the real line) without

the help of the real line was given by Fourman and Hyland [56] (see, also, Grayson [66]

and Johnstone [75, IV.1.1-IV.1.3]), assuming the set of rationals as given.

In this section we construct directly the dual objects of Euclidean spaces, spheres,

tori and Tychonoff cubes under the de Vries duality [24] and the duality described in our

Theorem 2.2.2.12, i.e., we construct the complete LC-algebras isomorphic to the Roeper

triples of these spaces without the help of the corresponding spaces, assuming only the

set of natural numbers as given. Let us note explicitly that, as it follows from the results

of de Vries [24], Roeper [99] and our Theorem 2.2.2.12, the Euclidean spaces, spheres,

tori and Tychonoff cubes can be completely reconstructed as topological spaces from

the algebraical objects which we will describe in this section. Therefore, our results

can be regarded as a mathematical realization of the original philosophical ideas of

Whitehead [121, 123] and de Laguna [23] about Euclidean spaces; this realization is in

accordance with the Grzegorczyk’s [67] and Roeper’s [99] mathematical interpretations

of these ideas.

The exposition of this section is based on the paper [34].

4.4.2 A Whiteheadian-type description of Euclidean spaces

Notation 4.4.2.1. We will denote by Z the set of all integers with the natural order, by

I′ – the open interval (0, 1) with its natural topology, by N the set of natural numbers,
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and by J the subspace of the real line consisting of all irrational numbers. We set

Z0 = Z \ {0}, Z− = Z \ N and J2 = I′ \ D.

If (X,<) is a linearly ordered set and x ∈ X, then we set

succ(x) = {y ∈ X | x < y}, pred(x) = {y ∈ X | y < x};

also, we denote by x+ the successor of x (when it exists) and by x− – the predecessor of

x (when it exists). If M is a set, then we will denote by P (M) the power set Boolean

algebra of M .

Now we will construct a CLCA (Ã, σ̃, B̃) and we will show that it is LCA-

isomorphic to Ψt(R) (see (1.20)).

4.4.2.2. The construction of (Ã, σ̃, B̃). Let

Ai = P (Z0),

for every i ∈ N+. Thus, if i ∈ N+ and ai ∈ Ai, t hen ai is a subset of Z0 and its

cardinality will be denoted by |ai|. Let

(A, (φi)i∈N+)

be the sum of Boolean algebras {Ai | i ∈ N+}; then, by Proposition 2.3.3.1, for every

i ∈ N+,

φi : Ai −→ A

is a monomorphism, the family {φi(Ai) | i ∈ N+} is an independent family and the set∪
i∈N+ φi(Ai) generates A. Let

Ã be the completion of A.

We can suppose, without loss of generality, that

A ⊆ Ã.

The following subset of A will be important for us:

B0 = {φ1(a1) ∧ . . . ∧ φk(ak) | k ∈ N+, (∀i = 1, . . . , k)(ai ∈ Ai and |ai| = 1)}.(4.32)

If b ∈ B0 and b = φ1(a1) ∧ . . . ∧ φk(ak), where ak = {p}, then we set

b− = φ1(a1) ∧ φ2(a2) ∧ . . . ∧ φk−1(ak−1) ∧ φk({p−}).(4.33)
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For every b ∈ B0, where b = φ1(a1) ∧ . . . ∧ φk(ak), and every n ∈ N+, we set

qbn = (b− ∧ φk+1(succ(n))) ∨ (b ∧ φk+1(pred(−n))).(4.34)

Now we set

B1 = {qbn | b ∈ B0, n ∈ N+}.(4.35)

Let

B̃

be the ideal of Ã generated by the set B0 ∪B1. Now, we will define a relation σ̃ on Ã.

It will be, by definition, a symmetric relation.

Let r, r′ ∈ N+, b, b′ ∈ B0, b = φ1(a1) ∧ . . . ∧ φk(ak), b′ = φ1(a
′
1) ∧ . . . ∧ φl(a′l) and

ak = {n}, a′k = {m}. We can suppose, without loss of generality, that k ≤ l. If k < l,

then let a′k+1 = {p}. Now we set

bσ̃b′ ⇔ [(ai = a′i, ∀i ∈ {1, . . . , k − 1})(4.36)

and (

{
m ∈ {n−, n, n+}, if k = l
m = n, if k < l

)],

and

qbrσ̃qb′r′ ⇔ [(ai = a′i, ∀i ∈ {1, . . . , k − 1}) and(4.37)

(


m = n, if l = k
(m = n and p ≤ −r) or (m = n− and p > r), if l = k + 1 )].
(m = n and p < −r) or (m = n− and p > r), if l > k + 1

Let r ∈ N+, b, b′ ∈ B0, b = φ1(a1) ∧ . . . ∧ φk(ak), b′ = φ1(a
′
1) ∧ . . . ∧ φl(a′l) and

ak = {n}, a′k = {m}. If k < l, then let a′k+1 = {p}. Now, if k > l, we set

qbrσ̃b
′ ⇔ (ai = a′i, ∀i ∈ {1, . . . , l});(4.38)

if k ≤ l, we set

qbrσ̃b
′ ⇔ [(ai = a′i, ∀i ∈ {1, . . . , k − 1}) and(4.39)

(


m ∈ {n−, n}, if l = k
(p ≥ r and m = n−) or (p ≤ −r and m = n), if l = k + 1
(p > r and m = n−) or (p < −r and m = n), if l > k + 1

)].
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Further, for every two elements c and d of B̃, set

c(−σ̃)d⇔ (∃k, l ∈ N+ and ∃c1, . . . , ck, d1, . . . , dl ∈ B0 ∪B1 such that(4.40)

c ≤
k∨
i=1

ci, d ≤
l∨

j=1

dj and ci(−σ̃)dj, ∀i = 1, . . . , k and ∀j = 1, . . . , l).

Finally, for every two elements a and b of Ã, set

aσ̃b⇔ (∃c, d ∈ B̃ such that c ≤ a, d ≤ b and cσ̃d).(4.41)

Theorem 4.4.2.3. The triple (Ã, σ̃, B̃), constructed in 4.4.2.2, is a CLCA; it is LCA-

isomorphic to the CLCA (RC(R), ρR, CR(R)). Thus, the triple (Ã, σ̃, B̃) completely

determines the real line R with its natural topology.

Proof. In this proof, we will use the notation introduced in 4.4.2.2.

Let Z0 be endowed with the discrete topology. Then RC(Z0) = P (Z0) and

Proposition 2.3.3.2 shows that the algebra Ã, constructed in 4.4.2.2, is isomorphic

to RC(ZN+

0 ). Since the space ZN+

0 is homeomorphic to J (see, e.g., [53]), we get, by

Lemma 0.4.2.2, that Ã is isomorphic to RC(R). Clearly, RC(J) can be endowed with

an LCA-structure LCA-isomorphic to the LCA (RC(R), ρR, CR(R)). Then, using the

homeomorphism between J and ZN+

0 , we can transfer this structure to RC(ZN+

0 ) and,

hence, to Ã. For technical reasons, this plan will be slightly modified. We will use the

homeomorphism between ZN+

0 and J2 described in [4]. Since J2 is dense in the open

interval I′, and I′ is homeomorphic to R, we can use J2 instead of J for realizing the

desired transfer. So, we start with the description (given by P. S. Alexandroff [4]) of

the homeomorphism

f : ZN+

0 −→ J2.

Let, for every j ∈ N+, ∆j = [1− 1
2j
, 1− 1

2j+1 ] and let, for every j ∈ Z−, ∆j = [2j−1, 2j].

Set δ1 = {∆j | j ∈ Z0}. Further, for every ∆j ∈ δ1, where ∆j = [aj, bj], set dj = bj−aj
and ∆jk = [bj − dj

2k
, bj − dj

2k+1 ] when k ∈ N+, ∆jk = [aj + dj.2
k−1, aj + dj.2

k] when

k ∈ Z−. Let δ2 = {∆jk | j, k ∈ Z0}. In the next step we construct analogously the

family δ3, and so on. Set

δ =
∪

{δi | i ∈ N+}.

It is easy to see that the set of all end-points of the elements of the family δ coincides

with the set D. Now we define the function f : ZN+

0 −→ J2 by the formula

f(n1, n2, . . . , nk, . . .) = ∆n1 ∩∆n1n2 ∩ . . . ∩∆n1n2...nk
∩ . . . .
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One can prove that the definition of f is correct and that f is a homeomorphism. Set

Xi = Z0, for every i ∈ N+. Let X =
∏
{Xi | i ∈ N+} and let

πi : X −→ Xi,

where i ∈ N+, be the projection. Then, for every k ∈ N+ and every ni ∈ Xi, where

i = 1, . . . , k, we have that (writing, for short, “π−1
i (ni)” instead of “π−1

i ({ni})”)

f(
k∩
i=1

π−1
i (ni)) = ∆n1n2...nk

∩ J2.(4.42)

Let

ψi : RC(Xi) −→ RC(X), F 7→ π−1
i (F ),

where i ∈ N+; then, as we have seen in the proof of Proposition 2.3.3.2, ψi is a complete

monomorphism. Set

A′
i = ψi(RC(Xi)).

Since Xi is a discrete space, we have that Ai = RC(Xi) and A′
i ⊆ CO(X), for all

i ∈ N+. Thus, for the elements of the subset
∪
i∈N+ A′

i of RC(X), the Boolean operation

“meet in RC(X)” coincides with the set-theoretic operation “intersection” between the

subsets ofX, and the same for the Boolean complement in RC(X) and the set-theoretic

complement in X. We also have that the Boolean algebras Ai and A
′
i are isomorphic.

Let

A′

be the subalgebra of P (X) generated by
∪
i∈N+ A′

i. Then A
′ is isomorphic to A. Note

that A′ is a subalgebra of CO(X). Also, A′ is a dense subalgebra of RC(X); therefore,

RC(X) is the completion of A′. Thus, Ã is isomorphic to RC(X). So, without loss

of generality, we can think that Ã is RC(X), A is A′, φi = ψi and hence φi(Ai) is

A′
i, for i ∈ N+. We will now construct an LCA (RC(X), σ,B) LCA-isomorphic to

(RC(R), ρR, CR(R)). Then, identifying RC(X) with Ã, we will show that σ = σ̃ and

B = B̃.
Let

B2 = {M ∈ RC(J2) | clI′(M) is compact}.

For every two elements M and N of RC(J2), set

Mρ2N ⇔ clI′(M) ∩ clI′(N) ̸= ∅.
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Then, using Lemma 0.4.2.2, we get that the triple (RC(J2), ρ2,B2) is LCA-isomorphic

to the LCA (RC(I′), ρI′ , CR(I′)) (which, in turn, is LCA-isomorphic to the LCA

(RC(R), ρR, CR(R))). Now, for every two elements F,G ∈ RC(X), we set

FσG⇔ f(F )ρ2f(G).(4.43)

Also, we put

B = {f−1(M) | M ∈ B2}.(4.44)

Obviously, (RC(X), σ,B) is LCA-isomorphic to (RC(R), ρR, CR(R)). In the rest of

this proof, we will show that the definitions of B and σ given above agree with the

corresponding definitions of B̃ and σ̃ given in 4.4.2.2.

Note first that the subset B′
0 of A′, which corresponds to the subset B0 of A

described in 4.4.2.2, is the following:

B′
0 = {

k∩
i=1

π−1
i (ni) | k ∈ N+, (∀i = 1, . . . , k)(ni ∈ Xi)}.(4.45)

Let F,G ∈ B′
0 and F =

∩k
i=1 π

−1
i (ni), G =

∩l
i=1 π

−1
i (mi). We can suppose, without loss

of generality, that k ≤ l. Then, by (4.42) and Lemma 0.4.2.2, clI′(f(F )) = ∆n1n2...nk

and clI′(f(G)) = ∆m1m2...ml
. If k = l, then, clearly, ∆n1n2...nk

∩ ∆m1m2...mk
̸= ∅ iff

(ni = mi, for all i = 1, . . . , k − 1, and mk ∈ {n−
k , nk, n

+
k }). If k < l, then, obviously,

∆n1n2...nk
∩∆m1m2...ml

̸= ∅ iff (ni = mi, for all i = 1, . . . , k). Then, using (4.43) and the

formula (4.36), we get that σ and σ̃ agree on B′
0 (or, equivalently, on B0).

Let F ∈ B′
0, F =

∩k
i=1 π

−1
i (ni) and n ∈ N+. Then the element QFn of A′

corresponding to the element qbn of A, where b ∈ B0 corresponds to F , is the following:

QFn = [(
k−1∩
i=1

π−1
i (ni)) ∩ π−1

k (n−
k ) ∩ π

−1
k+1(succ(n))] ∪ [F ∩ π−1

k+1(pred(−n))].

Clearly,

QFn = [
∪

s∈succ(n)

(
k−1∩
i=1

π−1
i (ni) ∩ π−1

k (n−
k ) ∩ π

−1
k+1(s))] ∪(4.46)

[
∪

s∈pred(−n)

(
k∩
i=1

π−1
i (ni) ∩ π−1

k+1(s))].
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(It is easy to see, as well, that in the formula (4.46) the sign of the union can be

replaced everywhere with the sign of the join in RC(X).) Thus,

f(QFn) = [(
∪

s∈succ(n)

∆n1n2...nk−1n
−
k s
) ∪ (

∪
s∈pred(−n)

∆n1n2...nks)] ∩ J2.(4.47)

Let d be the left end-point of the closed interval ∆n1n2...nk
. Then it is easy to see that

clI′(f(QFn)) = [d− εn, d+ ε′n],(4.48)

where εn and ε
′
n depend from n and also from n1, . . . , nk (for simplicity, we don’t reflect

this dependence on the notation), but for fixed n1, . . . , nk, we have that εn > εn+1 > 0,

ε′n > ε′n+1 > 0, for all n ∈ N+, and limn→∞ εn = 0, limn→∞ ε′n = 0; also, the closed

interval [d − εn, d + ε′n] lies in the open interval having as end-points the middles of

the closed intervals ∆n1n2...nk−1n
−
k
and ∆n1n2...nk

. Since the family {D ∩ J2 | D ∈ δ} is

a base of J2 and every element of D appears as a left end-point of some element of the

family δ, we get that the family

B = {intI′(clI′((f(F ))), intI′(clI′((f(QFn))) | n ∈ N+, F ∈ B′
0}

is a base of I′. Also, if

B = {clI′((f(F )), clI′((f(QFn)) | n ∈ N+, F ∈ B′
0},

then B = {clI′(U) | U ∈ B} and B ⊆ CR(I′). Hence, B generates the ideal CR(I′) of
RC(I′). Clearly, the family

B′
1 = {QFn | F ∈ B′

0, n ∈ N+}(4.49)

corresponds to the subset B1 of A constructed in 4.4.2.2. Since B = {clI′(G) | G ∈
f(B′

0 ∪ B′
1)}, we get that the subset f(B′

0 ∪ B′
1) of RC(J2) generates the ideal B2

of RC(J2). Thus, the subset B′
0 ∪ B′

1 of RC(X) generates the ideal B of RC(X).

Therefore, B corresponds to B̃; we can even write that B = B̃.
Let now r, r′ ∈ N+, F, F ′ ∈ B′

0, F = π−1
1 (n1) ∩ . . . ∩ π−1

k (nk) and F
′ = π−1

1 (n′
1) ∩

. . .∩π−1
l (n′

l). We can suppose, without loss of generality, that k ≤ l. Let d and d′ be the

left end-points of the closed intervals ∆n1n2...nk
and ∆n′

1n
′
2...n

′
l
, respectively. Then, using

(4.48), we get that clI′(f(QFr)) = [d− εr, d+ ε′r] and clI′(f(QF ′r′)) = [d′ − εr′ , d
′ + ε′r′ ].

If k = l, then it is easy to see that clI′(f(QFr)) ∩ clI′(f(QF ′r′)) ̸= ∅ iff (ni = n′
i, for all

i = 1, . . . , k). If l = k+1, then one readily checks that clI′(f(QFr))∩ clI′(f(QF ′r′)) ̸= ∅
iff [(ni = n′

i, for all i = 1, . . . , k− 1) and ((nk = n′
k and n

′
k+1 ≤ −r) or (n′

k = (nk)
− and
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n′
k+1 > r))]. Finally, if l > k+1, then clI′(f(QFr))∩ clI′(f(QF ′r′)) ̸= ∅ iff [(ni = n′

i, for

all i = 1, . . . , k − 1) and ((nk = n′
k and n′

k+1 < −r) or (n′
k = (nk)

− and n′
k+1 > r))].

All this shows that the relations σ and σ̃ agree on B′
1 (or, equivalently, on B1).

Let r ∈ N+, F, F ′ ∈ B′
0, F = π−1

1 (n1) ∩ . . . ∩ π−1
k (nk) and F

′ = π−1
1 (n′

1) ∩ . . . ∩
π−1
l (n′

l). If l < k, then we get that clI′(f(QFr)) ∩ clI′(f(F
′)) ̸= ∅ iff (ni = n′

i, for

all i = 1, . . . , l). If l = k, then clI′(f(QFr)) ∩ clI′(f(F
′)) ̸= ∅ iff (ni = n′

i, for all

i = 1, . . . , k − 1, and n′
k ∈ {n−

k , nk}). If l = k + 1, then clI′(f(QFr)) ∩ clI′(f(F
′)) ̸= ∅

iff [(ni = n′
i, for all i = 1, . . . , k − 1), and ((n′

k = n−
k and n′

k+1 ≥ r) or (n′
k = nk and

n′
k+1 ≤ −r))]. Finally, if l > k + 1, then clI′(f(QFr)) ∩ clI′(f(F

′)) ̸= ∅ iff [(ni = n′
i, for

all i = 1, . . . , k − 1), and ((n′
k = n−

k and n′
k+1 > r) or (n′

k = nk and n′
k+1 < −r))]. We

get that the relations σ and σ̃ agree on B′
0 ∪B′

1 (or, equivalently, on B0 ∪B1).

Now, using the facts that B is a base of I′, I′ is a regular space, and clI′(f(F )) is

a compact set for all F ∈ B, we get that for all F,G ∈ B, clI′(f(F ))∩ clI′(f(G)) = ∅ iff

(there exist F1, . . . , Fk, G1, . . . , Gl ∈ B′
0 ∪B′

1 such that F ⊆
∪k
i=1 Fi, G ⊆

∪l
j=1Gj and

clI′(f(Fi)) ∩ clI′(f(Gj)) = ∅ for all i = 1, . . . , k and all j = 1, . . . , l). This shows that

the relations σ and σ̃ agree on B (or, equivalently, on B̃).
Finally, as in every LCA, for every F,G ∈ RC(X), we have that FσG iff (there

exist F ′, G′ ∈ B such that F ′ ⊆ F , G′ ⊆ G and F ′σG′). Therefore, the relations σ and

σ̃ agree on RC(X) (or, equivalently, on Ã).

Theorem 4.4.2.4. For every n ∈ N+, the CLCA (RC(Rn), ρRn , CR(Rn)) (= Ψt(Rn))

is LCA-isomorphic to the DHLC-sum (Ãn, σ̃n, B̃n) of n copies of the CLCA (Ã, σ̃, B̃),
constructed in 4.4.2.2; thus, the CLCA (Ãn, σ̃n, B̃n) completely determines the Eu-

clidean space Rn with its natural topology. For every n ∈ N+, the Boolean algebras Ãn

and Ã are isomorphic.

Proof. Since Jn is homeomorphic to J and is dense in Rn, we get that RC(Rn) is

isomorphic to RC(J), and thus, to Ã (see 4.4.2.2 and the proof of Theorem 4.4.2.3).

Now all follows from Theorems 4.4.2.3 and 2.3.3.5.

We will now present the description of the CLCA (RC(R), ρR, CR(R)) in two

new forms; the notation used in them permits to obtain a more compact form of the

definitions of the corresponding relations. As we have already mentioned, RC(R) is

isomorphic to RC(J), i.e., to RC(ZN+

0 ) or, equivalently, to RC(ωω). The last algebra,

which is one of the collapsing algebras RC(kω) (where k is an infinite cardinal equipped

with the discrete topology), has many abstract descriptions. The one, which is the
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most appropriate for our purposes, is the following: a complete Boolean algebra C is

isomorphic to the Boolean algebra RC(kω) iff it has a dense subset isomorphic to T ∗,

for the normal tree

T =
⊎

{kn | n ∈ N+}

(here

T ∗

is the tree T with the opposite partial order and kn∩ km = ∅ for n ̸= m) (see, e.g., [77,

14.16(a),(b)]). (Recall that a partially ordered set (T,≤T ) is called a tree if for every

t ∈ T , the set pred(t) is well-ordered by ≤T .) This shows that RC(kω) is isomorphic

to the Boolean algebra RC(T ∗), where the ordered set T ∗ is endowed with the left

topology, i.e., that one generated by the base {LT ∗(t) | t ∈ T} (here

LT ∗(t) = {t′ ∈ T | t′ ≤T ∗ t} = {t′ ∈ T | t ≤T t
′},

for every t ∈ T ) (see, e.g., [77, 4.11-4.16] and [53, 1.7.2]).

Let us add some details and introduce some notation.

Notation 4.4.2.5. For any n ∈ N+, we set

n = {1, . . . , n}.

We set

T0 =
⊎

{Zn0 | n ∈ N+},

i.e., Zn0 ∩Zm0 = ∅ for n ̸= m. Any element t ∈ Zn0 is interpreted, as usual, as a function

t : n −→ Z0.

Further, we let

⊥ ⊆ t and ⊥ ̸= t, for any t ∈ T0;

if n, n′ ∈ N+, t ∈ Zn0 and t′ ∈ Zn′
0 , then we set

t ⊆ t′ iff t′ is an extension of t, i.e., iff n ≤ n′ and t(i) = t′(i) for any i ∈ n.

Then the ordered set (T0 ∪ {⊥},⊆) is a normal tree of height ω with Zn0 as its nth

level; thus we set

Ln = Zn0 .
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We also put, for any t, t′ ∈ T0 ∪ {⊥},

t ≤ t′ ⇔ t′ ⊆ t.

We set

T ∗
0 = (T0 ∪ {⊥},≤).

Let T ∗
0 be endowed with its left topology (i.e., let (T0∪{⊥},⊆) be equipped with

its right topology (which is defined analogously to the left topology (see [53, 1.7.2]))).

Further, for any t ∈ T0 ∪ {⊥}, put

ct = {t′ ∈ T0 | t and t′ are T ∗
0 -compatible}.

(Recall that two elements x and y of a partially ordered set (M,≼) are compatible if

there is some z ∈ M such that z ≼ x and z ≼ y.) Then, as it is well known (see,

e.g., [77, 4.13,4.16,the formula for cl(up) in the proof of 4.16]), the embedding e of the

partially ordered set T ∗
0 into the Boolean algebra RC(T ∗

0 ) is given by the formula

e(t) = ct, ∀t ∈ T0 ∪ {⊥}.

(Note that the map e is an embedding because T ∗
0 is a separative partial order (see, e.g.,

[77, 4.15,4.16,p.226]).) Also, let us recall that the left topology on T0 ∪ {⊥} induced

by the ordered set T ∗
0 is an Alexandroff topology, i.e., the union of arbitrarily many

closed sets is a closed set (see, e.g., [53, 1.7.2]). Thus, the (finite or infinite) joins∨
{Fj | j ∈ J} in RC(T ∗

0 ) are just the unions
∪
{Fj | j ∈ J}.

Finally, for every n ∈ N+ \ {1} and every t ∈ Ln (i.e., t : n −→ Z0), define

tλ : n −→ Z0 by the formulas (tλ)| n−1 = t| n−1 and tλ(n) = (t(n))−;(4.50)

let, for t ∈ L1, tλ : 1 −→ Z0 be defined by tλ(1) = (t(1))−.

4.4.2.6. As we have already mentioned, the Boolean algebra RC(ZN+

0 ) is isomorphic

to the Boolean algebra RC(T ∗
0 ) (see, e.g., [77, 14.16(a),(b),4.11-4.16]). We will recall

the proof of this fact since we will use it later. For every t ∈ T0, set

at = {x ∈ ZN+

0 | t ⊆ x}.(4.51)

Note that if t : n −→ Z0, where n ∈ N+, then

at =
n∩
i=1

π−1
i (t(i))(4.52)
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and thus at is a clopen subset of ZN+

0 . Set

S = {at | t ∈ T0} ∪ ZN+

0 .(4.53)

Then S ⊆ CO(ZN+

0 ) ⊆ RC(ZN+

0 ). Now it is easy to see that the set S is dense in

RC(ZN+

0 ) and isomorphic to T ∗
0 (indeed, the map

s : T ∗
0 −→ S, where s(⊥) = ZN+

0 and s(t) = at,∀t ∈ T0(4.54)

is an isomorphism). Therefore, RC(ZN+

0 ) is isomorphic to the Boolean algebra RC(T ∗
0 ).

We will now equip the Boolean algebra RC(T ∗
0 ) defined above with an LCA-

structure (RC(T ∗
0 ), θ,BT ) and will prove that the obtained CLCA is LCA-isomorphic

to the CLCA (RC(R), ρR, CR(R)). Recall that two elements x and y of a partially

ordered set (M,4) are comparable if x 4 y or y 4 x.

4.4.2.7. The construction of the triple (RC(T ∗
0 ), θ,BT ).

For every k, n ∈ N+ and for every t ∈ Lk (recall that Lk = Zk0), set

dtn =
∪

{ct′ | (t′ ∈ Lk+1) & [(tλ ⊆ t′ & t′(k + 1) > n) or (t ⊆ t′ & t′(k + 1) < −n)]}.

Note that the fact that the left topology on T ∗
0 is an Alexandroff topology implies that

dtn =(4.55)

∨
{ct′ | (t′ ∈ Lk+1) & [(tλ ⊆ t′ and t′(k + 1) > n) or (t ⊆ t′ and t′(k + 1) < −n)]}.

Let

C0 = {ct | t ∈ T0} and C1 = {dtn | t ∈ T0, n ∈ N+}.(4.56)

Denote by

BT0

the ideal of RC(T ∗
0 ) generated by C0 ∪ C1.

For every k, k′, n, n′ ∈ N+ and every t ∈ Lk, t
′ ∈ Lk′ , set

ctθct′ ⇔
{
t = t′ or t = t′λ or t′ = tλ, if k = k′

t and t′ are comparable, if k ̸= k′,
(4.57)

and

dtnθdt′n′ ⇔(4.58)
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(t′ ⊆ t and t(k′ + 1) < −n′) or (t′λ ⊆ t and t(k′ + 1) > n′), if k > k′ + 1
(t′ ⊆ t and t(k) ≤ −n′) or (t′λ ⊆ t and t(k) > n′), if k = k′ + 1
t = t′, if k = k′

(t ⊆ t′ and t′(k′) ≤ −n) or (tλ ⊆ t′ and t′(k′) > n), if k = k′ − 1
(t ⊆ t′ and t′(k + 1) < −n) or (tλ ⊆ t′ and t′(k + 1) > n), if k < k′ − 1;

and also

dtnθct′ ⇔ ct′θdtn ⇔(4.59)


t′ ⊆ t, if k′ < k
t′ = t or t′ = tλ, if k′ = k
(tλ ⊆ t′ and t′(k′) ≥ n) or (t ⊆ t′ and t′(k′) ≤ −n), if k′ = k + 1
(tλ ⊆ t′ & t′(k + 1) > n) or (t ⊆ t′ & t′(k + 1) < −n), if k′ > k + 1.

Further, for every two elements c and d of BT0 , set

c(−θ)d⇔ (∃k, l ∈ N+ and ∃c1, . . . , ck, d1, . . . , dl ∈ C0 ∪ C1 such that(4.60)

c ⊆
k∪
i=1

ci, d ⊆
l∪

j=1

dj and ci(−θ)dj, ∀i = 1, . . . , k and ∀j = 1, . . . , l).

Finally, for every two elements a and b of RC(T ∗
0 ), set

aθb⇔ (∃c, d ∈ BT0 such that c ⊆ a, d ⊆ b and cθd).(4.61)

Theorem 4.4.2.8. The triple (RC(T ∗
0 ), θ,BT0), constructed in 4.4.2.7, is a CLCA; it is

LCA-isomorphic to the complete local contact algebra (RC(R), ρR, CR(R)). Thus, the

triple (RC(T ∗
0 ), θ,BT0) completely determines the real line R with its natural topology.

Proof. In this proof, we will use the notation introduced in 4.4.2.2, 4.4.2.5, 4.4.2.6 and

4.4.2.7. As it follows from 4.4.2.6 and [77, the proof of 4.14], there is an isomorphism

h : RC(T ∗
0 ) −→ RC(ZN+

0 )

defined by the formula

h(c) =
∨

RC(ZN+
0 )

{at | t ∈ T ∗
0 , ct ⊆ c},

for every c ∈ RC(T ∗
0 ). Thus, h(ct) = at =

∩k
i=1 π

−1
i (t(i)) and ct corresponds to∧k

i=1 φi(t(i)) (see 4.4.2.2), where t ∈ Lk ⊆ T ∗
0 (i.e., t : k −→ Z0). This implies that
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h(C0) = B′
0 = {at | t ∈ T0} and C0 corresponds to B0 = {

∧k
i=1 φi(t(i)) | k ∈ N+, t ∈ Lk}

(see (4.56), (4.45), (4.32)). Note that tλ corresponds to b− (see (4.50) and (4.33)). Since

h is a complete homomorphism, we get that h(dtn) = Qatn and thus dtn corresponds to

qatn, for every k, n ∈ N+ and every t ∈ Lk (see (4.55), (4.46), (4.34)). Then h(C1) = B′
1

and hence C1 corresponds to B1 (see (4.56), (4.49), (4.35)). Hence, h(BT0) = B and

therefore BT0 corresponds to B̃ (see the line after (4.56), (4.44) and the paragraph after

(4.49), the line after (4.35)). Having all these facts in mind, we obtain easily that the

formula (4.57) follows from the formula (4.36), (4.58) from (4.37), (4.59) from (4.39),

(4.60) from (4.40) and (4.61) from (4.41). This completes the proof of our theorem.

Theorem 4.4.2.9. A CLCA (M,µ,M) is LCA-isomorphic to the complete local con-

tact algebra (RC(R), ρR, CR(R)) iff there exists an embedding (between partially ordered

sets)

ζ : T ∗
0 −→M

such that the following three conditions are satisfied:

(a) ζ(T0) is dense in M ,

(b) the ideal M is generated by the set

Z = ζ(T0) ∪ {d̃tn | t ∈ T0, n ∈ N+},

where the elements d̃tn are defined by the formula (4.55) in which dtn is replaced by d̃tn

and ct is replaced by zt = ζ(t), for every t ∈ T0,

(c) the formulas (4.57), (4.58), (4.59), (4.40), (4.41), in which θ and σ̃ are replaced

by µ, ct by zt, dtn by d̃tn, B̃ by M, B0 ∪B1 by Z, and Ã by M , take place.

Proof. It follows from Theorem 4.4.2.8 and [77, 4.14,14.16].

4.4.3 A Whiteheadian-type description of Tychonoff cubes,
spheres and tori

Theorem 4.4.3.1. For every n ∈ N+, the CNCA (RC(Sn), ρSn) (= Ψt(Sn)) is CA-

isomorphic to the CNCA (Ãn, C(σ̃n,B̃n)
) (see 4.4.2.4 for the LCA (Ãn, σ̃n, B̃n), and

1.2.3.4 for C(σ̃n,B̃n)
); thus, the CNCA (Ãn, C(σ̃n,B̃n)

) completely determines the n-dimen-

sional sphere Sn with its natural topology. Note that Ãn is isomorphic to Ã, for every

n ∈ N+.
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Proof. As it follows from 0.4.2.2 and 1.2.3.4, if X is a locally compact Hausdorff space

then the complete normal contact algebra (RC(αX), ραX) is CA-isomorphic to the

complete normal contact algebra (RC(X), C(ρX ,CR(X))). Now, since αRn is homeomor-

phic to Sn, our result follows from Theorem 4.4.2.4.

For every cardinal number τ , denote by Tτ the space (S1)τ (for finite τ , this is

just the τ -dimensional torus).

Theorem 4.4.3.2. For every cardinal number τ , the complete normal contact algebra

(RC(Tτ ), ρTτ ) (= Ψt(Tτ )) is CA-isomorphic to the DHC-sum of τ copies of the CNCA

(Ã, Cσ̃,B̃) (see Theorem 4.4.3.1 for it); therefore, this DHC-sum completely determines

the space Tτ .

Proof. Since the CNCA (RC(S1), ρS1) is CA-isomorphic to the CNCA (Ã, C(σ̃,B̃)) (see

Theorem 4.4.3.1), our result follows from Theorem 2.3.3.7.

Using 2.6.3.3, we obtain the following result:

Theorem 4.4.3.3. Let (M,µ,M) be a CLCA which is LCA-isomorphic to the CLCA

(RC(R), ρR, CR(R)) and ζ : T ∗
0 −→M be the embedding described in Theorem 4.4.2.9.

Then, for each t ∈ T0, the CNCA (M |ζ(t), µ′), where µ′ is the restriction of the relation

µ to M |ζ(t), is NCA-isomorphic to the CNCA (RC(I), ρI).

Proof. By (4.42), (4.52) and the beginning of the proof of Theorem 4.4.2.3, if t ∈ T0,

i.e., t : n −→ Z0 for some n ∈ N+, then the element ζ(t) coresponds to the element

∆t(1)...t(n) of RC(I′) (see also the proofs of theorems 4.4.2.8 and 4.4.2.9). Since ∆t(1)...t(n)

is homeomorphic to I, our assertion follows from Theorem 2.6.3.3.

The last theorem shows, in particular, that the following assertion holds:

Theorem 4.4.3.4. Let (Ã, σ̃, B̃) be the CLCA described in 4.4.2.2, m ∈ N+, n1, . . . , nm

∈ Z0, aj = {nj} for j = 1, . . . ,m, u =
∧m
j=1 φj(aj) (see 4.4.2.2 for φj) and B = Ã|u.

Then the CNCA (B, σ̃′), where σ̃′ is the restriction of the relation σ̃ to B, is NCA-

isomorphic to the CNCA (RC(I), ρI). In particular, the CNCA (RC(I), ρI) is NCA-

isomorphic to the CNCA (Ã|φ1({1}), σ̃′).

A direct description of the CNCA (RC(I), ρI) is given below.

4.4.3.5. The construction of (Ã, σ̃′). We will use the notation from 4.4.2.2.

We will define a relation σ̃′ on the Boolean algebra Ã constructed in 4.4.2.2.
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For every n ∈ N+, set

u↑n = φ1(succ(n)) and u
↓
n = φ1(pred(−n))

and let

B2 = {u↑n, u↓n | n ∈ N+}.

For every a, b ∈ B0 ∪B1 ∪B2, set

aσ̃′b⇔ aσ̃b

(see 4.4.2.2 for the definition of the relation σ̃). For convenience of the reader, we will

write down the corresponding formulae. For every n,m ∈ N+,

u↑nσ̃
′u↑m, u

↓
nσ̃

′u↓m and u↓n(−σ̃′)u↑m.

Further, for every n, r ∈ N+ and every b = φ1(a1)∧ . . .∧φk(ak) ∈ B0, where a1 = {m},

bσ̃′u↑n ⇔
{
m ≥ n, if k = 1
m > n, if k > 1

, bσ̃′u↓n ⇔
{
m ≤ −n, if k = 1
m < −n, if k > 1

(4.62)

and

qbrσ̃
′u↑n ⇔ m > n, qbrσ̃

′u↓n ⇔
{
m ≤ −n, if k = 1
m < −n, if k > 1.

(4.63)

Now, for every c, d ∈ Ã, set

c(−σ̃′)d⇔ (∃k, l ∈ N+ and ∃c1, . . . , ck, d1, . . . , dl ∈ B0 ∪B1 ∪B2 such(4.64)

that c ≤
k∨
i=1

ci, d ≤
l∨

j=1

dj and ci(−σ̃′)dj, ∀i = 1, . . . , k and ∀j = 1, . . . , l).

Theorem 4.4.3.6. The pair (Ã, σ̃′), constructed in 4.4.3.5, is a complete normal con-

tact algebra; it is CA-isomorphic to the CNCA (RC(I), ρI). Thus, the pair (Ã, σ̃′)

completely determines the closed interval I with its natural topology.

Proof. The proof of this assertion is analogous to the proof of Theorem 4.4.2.3. We

will use in it the notation introduced in 4.4.2.3, 4.4.2.2 and 4.4.3.5.

Clearly, RC(R) is isomorphic to RC(I) (by Lemma 0.4.2.2). Thus, RC(I) is

isomorphic to RC(X), where X = ZN+

0 (see the proof of Theorem 4.4.2.3). We will

now construct an NCA (RC(X), σ′) CA-isomorphic to (RC(I), ρI). Then, identifying

RC(X) with Ã, we will show that σ′ = σ̃′.
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For every two elements M and N of RC(J2), set

Mρ1N ⇔ clI(M) ∩ clI(N) ̸= ∅.

Then, using Lemma 0.4.2.2, we get that the pair (RC(J2), ρ1) is CA-isomorphic to the

NCA (RC(I), ρI). Now, for every two elements F,G ∈ RC(X), we set

Fσ′G⇔ f(F )ρ1f(G),(4.65)

where f : X −→ J2 is the homeomorphism constructed in the proof of Theorem 4.4.2.3.

Obviously, (RC(X), σ′) is CA-isomorphic to (RC(I), ρI). In the rest of this proof, we

will show that the definition of σ′ given above agrees with the definition of σ̃′ given in

4.4.3.5.

Using the proof of Proposition 2.3.3.2, it is easy to see that the set

B′
2 = {π−1

1 (succ(n)), π−1
1 (pred(−n)) | n ∈ N+}

corresponds to the set B2 introduced in 4.4.3.5. Now, the formula (4.42) implies that,

for every n ∈ N+,

clI(f(π
−1
1 (succ(n)))) = [1− 1

2n+1
, 1] and clI(f(π

−1
1 (pred(−n)))) = [0,

1

2n+1
].(4.66)

Thus, for every m,n ∈ N+, clI(f(π
−1
1 (succ(n)))) ∩ clI(f(π

−1
1 (pred(−m)))) = ∅. Also,

for every m,n ∈ N+, we have that f(π−1
1 (succ(n))) ∩ f(π−1

1 (succ(m))) ̸= ∅ and

f(π−1
1 (pred(−n))) ∩ f(π−1

1 (pred(−m))) ̸= ∅. Having in mind these formulae and the

fact that clI(f(F )) = clI′(f(F )), for every F ∈ B′
0 ∪ B′

1 (see the proof of Theorem

4.4.2.3 for the notation), we get that GσH ⇔ Gσ′H, for every G,H ∈ B′
0 ∪ B′

1 ∪ B′
2.

This shows that aσ̃′b⇔ aσ̃b, for every a, b ∈ B0 ∪B1 ∪B2. Hence, the definitions of σ
′

and σ̃′ agree on B′
0 ∪B′

1 ∪B′
2 (or, equivalently, on B0 ∪B1 ∪B2).

Further, using (4.66), we get that the family B1 = B∪{intI(clI(f(F ))) | F ∈ B′
2}

(see the proof of Theorem 4.4.2.3 for the notation and for the fact that B is a base of

I′) is a base of I. Thus, by the regularity of I, every two disjoint elements of RC(I)
can be separated by the finite unions of the elements of the family {clI(f(F )) | F ∈
B′

0 ∪ B′
1 ∪ B′

2}. This implies that the definitions of σ′ and σ̃′ agree on RC(X) (or,

equivalently, on Ã).

Theorem 4.4.3.7. For every cardinal number τ , the complete normal contact algebra

(RC(Iτ ), ρIτ ) (= Ψt(Iτ )) is CA-isomorphic to the DHC-sum of τ copies of the CNCA

(Ã, σ̃′) (see Theorem 4.4.3.6 for it); therefore, this DHC-sum completely determines

the space Iτ .
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Proof. It follows from Theorems 4.4.3.6 and 2.3.3.7.
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Chapter 5

Some Isomorphism Theorems for
Scott and Tarski consequence
systems

5.1 Introduction

The notion of Scott consequence system (briefly, S-system) was introduced by D. Vaka-

relov in [113] in an analogy to a similar notion given by D. Scott in [100]. A standard

example of an S-system is the set of all formulas of some formalized logical language

with consequence relation X ⊢ Y between sets of formulas X and Y . A detailed study

of such consequence relations in the context of propositional languages is given by

Segerberg in [101] (see also [59]). The axioms of S-systems are abstract versions of

some properties of the consequence relation ⊢ taken from logic. There are however

many non-logical examples of S-systems and the main aim of this chapter is a study

of some mathematical properties of this notion taken in its full generality. One such

typical example is connected with the notion of a property system (briefly P-system),

which is a kind of a very simple information system P = (Ob, Pr, f), where Ob is a

non-empty set of “objects”, Pr is a set of “properties” and f : Ob −→ P (Pr) is a

function (called an information function), which assigns to each object x the set f(x)

of the “properties of x”.

The structure of this chapter is the following. In the second section, we give some

preliminary results. In the third section, we introduce the notion of an S-morphism

between two S-systems, which enables us to define the category SSyst of all S-systems

and all S-morphisms between them. The category SSyst, as well as its full subcategory

TSyst of all Tarski consequence systems, are the main objects of our investigations in
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this chapter. In the fourth section, we prove some isomorphism theorems for these cate-

gories. With one of these theorems we extend the representation theory of S-systems in

property systems, presented by D. Vakarelov in [113]. We also show that the categories

BoolAlg (of all Boolean algebras and all Boolean homomorphisms) and DLat (of all

distributive lattices and all lattice homomorphisms) are isomorphic to some reflective

full subcategories of the category SSyst. Let us give a more detailed description of our

isomorphism theorems. We define a category TPS, called the category of topological

property systems, and we prove that the category SSyst is isomorphic to a full subcat-

egory TPSS of TPS; then we show that the restriction of this isomorphism to the full

subcategory TSyst of SSyst is in fact an isomorphism between the category TSyst

and a subcategory T′ of the category Top of all topological spaces and all continuous

maps; the objects of the category T′ are some hyperspaces.

Let us note that the connections of P-systems and S-systems with some notions of

informational relations and some modal logics of information systems were studied in

[114]. Other references on this subject can also be found in [114]. Let us also mention

that in the book [10] of J. Barwise and J. Seligman, the P-systems and S-systems

(presented there under the names of classification systems and Gentzen systems) play

a crucial role in the definitions of the “information flows” and the “logic of distributed

systems” which are basic notions in [10].

For all undefined here notions and notation, see [53], [75] and [1].

The results of this chapter were published in [39]. A generalization of a result of

Iv. Prodanov [95], presented in [44], is used here as well.

5.2 Preliminaries

5.2.1 The definitions of S-systems, T-systems and P-systems

We will now give the precise definitions of some notions mentioned in the Introduction.

Definition 5.2.1.1. (see [101, 100, 113]) Let W be a non-empty set. By a Scott con-

sequence relation on W we mean a binary relation ⊢ on P (W ) satisfying the following

conditions for any A,B,A′, B′ ∈ P (W ) and x ∈ W :

(Refl) If A ∩B ̸= ∅ then A ⊢ B,

(Mono) If A ⊢ B, A ⊆ A′ and B ⊆ B′ then A′ ⊢ B′,

(Cut) If A ⊢ (B ∪ {x}) and ({x} ∪ A) ⊢ B then A ⊢ B,
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(Fin) If A ⊢ B then there exist finite subsets X ⊆ A and Y ⊆ B such that X ⊢ Y .

We say that (W,⊢) is a Scott consequence system, briefly, S-system, if W is a

non-empty set and ⊢ is a Scott consequence relation on W .

We will denote by “ 0” the negation of “ ⊢”.

Definition 5.2.1.2. (see [59, 113]) Let S = (W,⊢) be an S-system. We say that ⊢
is a Tarski consequence relation on W and S is a Tarski consequence system (briefly,

T-system), if the following condition is satisfied for any A,B ∈ P (W ):

(TFin) If A ⊢ B then there exist a finite set X ⊆ A and an element b ∈ B such that

X ⊢ {b}.

We will now recall some definitions and results from [115, 113]. They play a

crucial role in our further investigations:

Definition 5.2.1.3. ([115]) By a property system (briefly, P-system) we mean any

triple P = (Ob, Pr, f), where Ob and Pr are sets, Ob ̸= ∅ and f ∈ Set(Ob, P (Pr)).

The elements of Ob (resp. Pr; f(x)) are called objects (resp. properties; properties of

the object x). A P-system P = (Ob, Pr, f) is called a set-theoretical P-system if

Pr ⊆ P (Ob) and f(x) = {A ∈ Pr | x ∈ A}

for any x ∈ Ob.

5.2.1.4. Let (W,⊢) be an S-system. A subset p ⊆ W is called a prime ideal of (W,⊢)
if for all finite subsets A and B of W such that A ⊢ B,

A ∩ p = ∅ implies B \ p ̸= ∅.

A subset q ⊆ W is called a prime filter in (W,⊢) if the set W \ q is a prime ideal of

(W,⊢). The set of all prime ideals (resp., prime filters) of (W,⊢) will be denoted by

PrI(W,⊢) (resp., by PrF (W,⊢)).

Let us put

f(a) = {p ∈ PrI(W,⊢) | a ̸∈ p}

and

f ′(a) = {q ∈ PrF (W,⊢) | a ∈ q}

for all a ∈ W . Then the system

(W,PrI(W,⊢), f)
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is a P -system, called the canonical P -system over (W,⊢). It is denoted by

PS(W,⊢).

The system

(W,PrF (W,⊢), f ′)

is a set-theoretical P -system. It is called the canonical set-theoretical P -system over

(W,⊢) and is denoted by

PSS(W,⊢).

5.2.1.5. Let W ̸= ∅ be a set, L ∈ |DLat| and f ∈ Set(W,L). Define a binary relation

⊢L

in P (W ) as follows. For any A = {ai ∈ W | i = 1, . . . , n} and B = {bj ∈ W | j =

1, . . . ,m}, put

A ⊢L B ⇐⇒
∧

{f(ai) | i = 1, . . . , n} ≤
∨

{f(bj) | j = 1, . . . ,m}

(here n and m could be equal to zero as well). For arbitrary sets A′, B′ ⊆ W let

A′ ⊢L B′ ⇐⇒ there exist finite subsets A ⊆ A′ and B ⊆ B′ such that A ⊢L B.

Then (W,⊢L) is an S-system. In the special case of this construction when W = L and

f = id, the S-system (L,⊢L) is denoted by

Sc(L).

One more special case will be used here. Let P = (Ob, Pr, f) be a P -system.

Put L = (P (Pr),∪,∩, ∅, P r) and W = Ob. By the definition of a P-system, we have

that f ∈ Set(W,L). Hence, applying the above construction, we obtain the S-system

(W,⊢L). The relation ⊢L is denoted in this case by

⊢P .

The S-system

(Ob,⊢P )

is called the canonical S-system over P and is denoted by

Sc(P ).
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Proposition 5.2.1.6. ([113]) Let (W,⊢) be an S-system. Then, for any A,B ⊆ W ,

the following conditions are equivalent:

(a) A ⊢ B;

(b) if p is a prime ideal of (W,⊢) and A ∩ p = ∅ then B \ p ̸= ∅;

(c) if p is a prime filter in (W,⊢) and A ⊆ p then B ∩ p ̸= ∅.

Proposition 5.2.1.7. ([113]) Let (W,⊢) be an S-system. Then:

(1) For any F ⊆ W , the following conditions are equivalent:

(a) F is a prime filter (resp., prime ideal);

(b) (∀A ⊆ W ) ((F ⊢ A) implies (F ∩ A ̸= ∅)) (resp., (∀A ⊆ W ) (((W \ F ) ⊢ A)
implies (A \ F ̸= ∅)));

(c) F ̸⊢ (W \ F ) (resp., (W \ F ) ̸⊢ F ).

(2) W is a prime filter (resp., prime ideal) iff (∀A ⊆ W )(A ̸⊢ ∅) (resp., (∀A ⊆ W )(∅ ̸⊢
A)).

5.2.2 Coherent spaces and coherent maps

We now recall the definitions of coherent spaces and coherent maps (see, for example,

[75]):

5.2.2.1. Let (X,T) be a topological space. A closed subset F of X is called irreducible

if the equality F = F1 ∪ F2, where F1 and F2 are closed subsets of X, implies that

F = F1 or F = F2. The space (X,T) is called sober if it is a T0-space and for every

non-void irreducible subset F of X there exists a x ∈ X such that F = clX{x}. The

space (X,T) is called coherent if it is a compact sober space, the family KO(X,T)

is closed under finite intersections and KO(X,T) is a base for the topology T. A

continuous map f : (X ′,T′) −→ (X ′′,T′′) is called coherent if U ′′ ∈ KO(X ′′) implies

that f−1(U ′′) ∈ KO(X ′).

We denote by CohSp the category of all coherent spaces and all coherent maps

between them.

5.2.2.2. Let L = (L,∨,∧, 0, 1) ∈ |DLat|. Recall that (see, for example, [75]):

(a) an ideal p of L is called a prime ideal if 1 ̸∈ p and (a ∧ b ∈ p) ⇒ (a ∈ p or b ∈ p);

(b) the set of all prime ideals of L is denoted by

spec(L);
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(c) the family

O = {OI | I is an ideal of L},

where

{OI = {p ∈ spec(L) | I ̸⊆ p},

is a topology on the set spec(L), called the Stone topology;

(d) the topological space

(spec(L),O)

is the classical spectrum of the lattice L; it is a coherent space.

By the famous Stone duality theorem for distributive lattices (see [109]), the

categories DLat and CohSp are dual. Let’s recall the descriptions of the duality

functors

StL : CohSp −→ DLat and SaL : DLat −→ CohSp.

If X is a coherent space then

StL(X) = (KO(X),∪,∩, ∅, X);

if f ∈ CohSp(X1, X2) then

StL(f) : S
t
L(X2) −→ StL(X1)

is defined by the formula

StL(f)(U) = f−1(U)

for every U ∈ KO(X2); if L ∈ |DLat| then

SaL(L) = (spec(L),O),

where (spec(L),O) is the classical spectrum of the lattice L; if f ∈ DLat(L1, L2) then

SaL(f) : S
a
L(L2) −→ SaL(L1)

is defined by the formula

SaL(f)(p) = f−1(p)

for every p ∈ spec(L2).
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5.3 The category of S-systems and S-morphisms

5.3.1 The categories SSyst and SDLat

Definition 5.3.1.1. Let (W,⊢) and (W ′,⊢′) be two S-systems and f ∈ Set(W,W ′).

The function f is called an S-morphism if

(A ⊢ B) ⇒ (f(A) ⊢′ f(B))

for any A,B ∈ P (W ). We denote by SSyst the category of all S-systems and all

S-morphisms between them.

The following simple fact will be often used in this section:

Proposition 5.3.1.2. Let f : (W,⊢) −→ (W ′,⊢′) be an S-morphism and F ′ ⊆ W ′ be

a prime filter (resp., prime ideal) in (W ′,⊢′). Then f−1(F ′) is a prime filter (resp.,

prime ideal) in (W,⊢).

Proof. Let F ′ ⊆ W ′ be a prime filter in (W ′,⊢′), A ⊆ W and f−1(F ′) ⊢ A. Then

f(f−1(F ′)) ⊢′ f(A). Hence F ′ ⊢′ f(A). Thus, by 5.2.1.7(1), F ′ ∩ f(A) ̸= ∅. Then

A ∩ f−1(F ′) ̸= ∅. Therefore, by 5.2.1.7(1), f−1(F ′) is a prime filter in (W,⊢).
The corresponding statement for the prime ideals follows directly from the just

proved one.

Definition 5.3.1.3. We will denote by SDLat the full subcategory of the category

SSyst whose objects are of the form Sc(L), where L ∈ |DLat| (see 5.2.1.5 for the

notation).

Proposition 5.3.1.4. The category DLat is isomorphic to the subcategory SDLat of

the category SSyst.

Proof. We will prove that if DL : DLat −→ SDLat is defined on the objects by

DL(L) = Sc(L)

and on the morphisms by

DL(l) = l,

then DL is an isomorphism (see 5.2.1.5 for the notation). We have that

a ≤ b ⇐⇒ {a} ⊢L {b},
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for every a, b ∈ L (see 5.2.1.5 for ⊢L). This shows that if L,L′ ∈ |DLat| then Sc(L) =
Sc(L′) is equivalent to L = L′. Let now l ∈ DLat(L,L′). We will prove that l ∈
SDLat(Sc(L), Sc(L′)). Let A,B ⊆ L and A ⊢L B. Then there exist finite subsets

A′ = {ai | i = 1, . . . , n} ⊆ A and B′ = {bj | j = 1, . . . ,m} ⊆ B such that A′ ⊢L B′.

This means that
∧
{ai | i = 1, . . . , n} ≤

∨
{bj | j = 1, . . . ,m}. Thus we obtain that∧

{l(ai) | i = 1, . . . , n} ≤
∨
{l(bj) | j = 1, . . . ,m}. Hence l(A′) ⊢L′ l(B′) and this implies

that l(A) ⊢L′ l(B). Therefore l is an S-morphism, i.e., l ∈ SDLat(Sc(L), Sc(L′)).

Conversely, if l ∈ SDLat(Sc(L), Sc(L′)), then l ∈ DLat(L,L′). Indeed, if a, b ∈ L

and a ≤ b then {a} ⊢L {b} and hence {l(a)} ⊢L′ {l(b)}. Thus l(a) ≤ l(b). So,

l is an order-preserving map. Further, let a ∨ b = c in L. Then {c} ⊢L {a, b}.
Therefore {l(c)} ⊢L′ {l(a), l(b)}. This implies that l(a ∨ b) = l(c) ≤ l(a) ∨ l(b). On

the other hand, the inequalities a ≤ c and b ≤ c imply (since l is order-preserving)

that l(a) ∨ l(b) ≤ l(c) = l(a ∨ b). So, l(a ∨ b) = l(a) ∨ l(b). Analogously we prove that

l(a ∧ b) = l(a) ∧ l(b). Finally, since ∅ ⊢L {1L}, we have that ∅ ⊢L′ {l(1L)}. Hence

1L′ =
∧

∅ ≤ l(1L). So, l(1L) = 1L′ . Analogously, {0L} ⊢L ∅ implies that l(0L) = 0L′ .

Therefore, l ∈ DLat(L,L′). All this shows that DL is a functor. It is now easily seen

that DL is an isomorphism.

5.3.2 SDLat is a reflective subcategory of the category SSyst

We are now going to demonstrate that SDLat is a reflective subcategory of the category

SSyst. Let’s start with the following theorem which is a generalization of a result of

Iv. Prodanov from [95]. We formulated and proved it in [44].

Theorem 5.3.2.1. Let X be a set and S ⊆ P (X). Setting, for every x ∈ X,

U−
x = {p ∈ S | x ̸∈ p},

let T− be the topology on S having as a subbase the family

P− = {U−
x | x ∈ X}.

Suppose that (S,T−) is a coherent space and let

L = StL(S,T
−)

(see 5.2.2.2 for the notation). Then U−
x ∈ L for every x ∈ X. Set

φ : X −→ L, x 7→ U−
x .
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Then:

(i) the set φ(X) generates L;

(ii) φ−1(q) ∈ S for every q ∈ spec(L) (see 5.2.2.2 for the notation);

(iii) Φ′ : spec(L) −→ S, q −→ φ−1(q), is a CohSp-isomorphism;

(iv) if L′ ∈ |DLat| and θ : X −→ L′ is a function such that:

(1) θ−1(q) ∈ S for every q ∈ spec(L′), and

(2) Θ : spec(L′) −→ S, q −→ θ−1(q), is a CohSp-morphism,

then there exists a unique lattice homomorphism l : L −→ L′ with l ◦ φ = θ;

(v) φ : X −→ L is an injection iff for any two different points x and y of X there

exists a p ∈ S containing exactly one of them.

We also need the following result of Iv. Prodanov (see [44]):

Proposition 5.3.2.2. Let X be a set, S ⊆ P (X) and T− be the topology on S defined

in 5.3.2.1. Then the following conditions are equivalent:

(a) (S,T−) is a coherent space;

(b) S is a closed subset of the Cantor cube 2X (where S is identified with a subset

of 2X in the following way: any A ∈ S is identified with its characteristic function

χA : X −→ 2 (i.e., χA(x) = 1 iff x ∈ A)).

Proposition 5.3.2.3. Let (W,⊢) be an S-system. Put S = PrI(W,⊢) and define the

topology T− on S exactly as in 5.3.2.1. Then (S,T−) is a coherent space.

Proof. Identifying S with a subset of 2W as in 5.3.2.2, we have to prove, according to

5.3.2.2, that S is a closed subset of the Cantor cube 2W .

Let {pσ, σ ∈ Σ} be a net in S converging in 2W to a point p ∈ 2W . This means

that if fσ : W −→ 2 and f : W −→ 2 are functions such that f−1
σ (1) = pσ for every

σ ∈ Σ and f−1(1) = p, then {fσ, σ ∈ Σ} converges to f in 2W . We have to prove that

p ∈ S, i.e., that f−1(1) ∈ S.

Let A = {ai | i = 1, . . . , n} and B = {bj | j = 1, . . . ,m} be two finite subsets

of W and A ∩ p = ∅. We have to show that B \ p ̸= ∅ (see 5.2.1.4). For every

i = 1, . . . , n we have that f(ai) = 0. Let i ∈ {1, . . . , n}. Since the net {fσ(ai), σ ∈ Σ}
converges to f(ai), there exists a σi ∈ Σ such that fσ(ai) = 0 for every σ ≥ σi. Let

σ0 = sup{σi | i = 1, . . . , n}. Then, for every σ ≥ σ0 and for every i = 1, . . . , n, we have

that fσ(ai) = 0. Hence, for every σ ≥ σ0, we get that A ∩ pσ = ∅. Since pσ is a prime
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ideal, we obtain that B \ pσ ̸= ∅ for every σ ≥ σ0. Consequently, for every σ ≥ σ0,

there exists a j(σ) ∈ {1, . . . ,m} such that bj(σ) ̸∈ pσ, i.e., fσ(bj(σ)) = 0. Defining a

function α : {σ ∈ Σ | σ ≥ σ0} −→ B by the formula α(σ) = bj(σ), for every σ ≥ σ0,

we get that fσ(α(σ)) = 0 for every σ ≥ σ0. Obviously, there exists a j′ ∈ {1, . . . ,m}
such that the set Σ′ = α−1(bj′) is a cofinal subset of the directed set (Σ,≤). Then, for

every σ′ ∈ Σ′, we have that fσ′(bj′) = fσ′(α(σ′)) = 0. Since {fσ′(bj′), σ
′ ∈ Σ′} is a net

finer than the net {fσ(bj′), σ ∈ Σ} and the last one converges to f(bj′), we obtain that

the net {fσ′(bj′), σ
′ ∈ Σ′} converges also to f(bj′). Thus f(bj′) = 0, i.e., bj′ ∈ B \ p.

Therefore, we proved that B \p ̸= ∅. This implies that p is a prime ideal of (W,⊢), i.e.,
p ∈ S. Hence, S is a closed subset of 2W . Therefore, (S,T−) is a coherent space.

Theorem 5.3.2.4. Let (W,⊢) be an S-system. Then there exists a distributive lattice

(L,∨,∧) with 0 and 1, and a function φ : W −→ L such that:

(i) the set φ(W ) generates L;

(ii) for any two finite subsets A and B of W we have that A ⊢ B iff φ(A) ⊢L φ(B)

(see 5.2.1.5 for the notation);

(iii) if L′ ∈ |DLat| and θ : (W,⊢) −→ Sc(L′) is an S-morphism (see 5.2.1.5 for

the notation) then there exists a unique lattice homomorphism l : L −→ L′ such that

l ◦ φ = θ.

(iv) φ : W −→ L is an injection iff for any two different points x and y of W there

exists a prime ideal p in (W,⊢) containing exactly one of them.

Proof. Put S = PrI(W,⊢) and let T− be the topology on S defined exactly as in

5.3.2.1. Then, by 5.3.2.3, we have that (S,T−) is a coherent space. Hence, setting

L = StL(S,T
−)

and

φ : W −→ L, x 7→ U−
x = {p ∈ S | x ̸∈ p}

(see 5.2.2.2 for the notation and 5.3.2.1 for φ), we obtain, applying Theorem 5.3.2.1,

that the set φ(W ) generates L. Hence, condition (i) is fulfilled. It is obvious that

5.3.2.1(v) implies our condition (iv). So, let’s prove (ii).

Let A = {ai | i = 1, . . . , n} and B = {bj | j = 1, . . . ,m} be two finite subsets of

W . Recall that φ(A) ⊢L φ(B) iff
∩
{φ(ai) | i = 1, . . . , n} ⊆

∪
{φ(bj) | j = 1, . . . ,m}.

The following four cases are possible.
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Case 1: n ̸= 0 and m ̸= 0.

Let A ⊢ B and p ∈
∩
{φ(ai) | i = 1, . . . , n}. Then A ∩ p = ∅. Hence, by 5.2.1.4,

B \ p ̸= ∅. Therefore p ∈
∪
{φ(bj) | j = 1, . . . ,m}. Thus φ(A) ⊢L φ(B). Conversely,

let φ(A) ⊢L φ(B). Take a p ∈ S such that A∩p = ∅. Then p ∈
∩
{φ(ai) | i = 1, . . . , n}.

Thus p ∈
∪
{φ(bj) | j = 1, . . . ,m}, i.e., there exists a j ∈ {1, . . . ,m} such that bj ̸∈ p.

Therefore B \ p ̸= ∅. This shows, by 5.2.1.6, that A ⊢ B.

Case 2: n = 0 and m = 0.

We have that A = B = ∅. Let A ⊢ B. Then S = ∅. Indeed, if p ∈ S then

A∩ p = ∅ and B \ p = ∅ \ p = ∅, which is a contradiction. Hence S = ∅. Then |L| = 1,

i.e., 0 = 1. Therefore the inequality 1 ≤ 0 takes place. Thus
∧
∅ = 1 ≤ 0 =

∨
∅. So,

φ(A) ⊢L φ(B). Conversely, if φ(A) ⊢L φ(B) then 1 ≤ 0 and, hence, |L| = 1. This

shows that S = ∅. Now, 5.2.1.6 implies that A ⊢ B.

Case 3: n = 0 and m ̸= 0.

Let A ⊢ B. We will prove that
∪
{φ(bj) | j = 1, . . . ,m} = S. Suppose that

there exists a p ∈ S such that p ̸∈
∪
{φ(bj) | j = 1, . . . ,m}. Then B ⊆ p. This is

a contradiction because A ∩ p = ∅. Hence
∪
{φ(bj) | j = 1, . . . ,m} = S. Therefore

φ(A) ⊢L φ(B). Conversely, if φ(A) ⊢L φ(B) then
∪
{φ(bj) | j = 1, . . . ,m} = S. Let

p ∈ S. Then A ∩ p = ∅ and B \ p ̸= ∅. This shows, by 5.2.1.6, that A ⊢ B.

Case 4: n ̸= 0 and m = 0.

Let A ⊢ B. We will prove that
∩
{φ(ai) | i = 1, . . . , n} = ∅. Suppose that there

exists a p ∈
∩
{φ(ai) | i = 1, . . . , n}. Then A∩p = ∅. Hence, by 5.2.1.6, B\p ̸= ∅. This

is a contradiction because B \ p = ∅ \ p = ∅. Therefore
∩
{φ(ai) | i = 1, . . . , n} = ∅.

Thus φ(A) ⊢L φ(B). Conversely, let φ(A) ⊢L φ(B). Then
∩
{φ(ai) | i = 1, . . . , n} = ∅.

Let p ∈ S. Suppose that A ∩ p = ∅. Then p ∈
∩
{φ(ai) | i = 1, . . . , n}, which is a

contradiction. Hence, for every p ∈ S, we have that A ∩ p ̸= ∅. Now, 5.2.1.6 implies

that A ⊢ B. So, (ii) is proved.

We prove (iii) now. Let θ : W −→ L′ be as in (iii). Obviously, it is enough to

show that θ satisfies conditions (1) and (2) of 5.3.2.1(iv). In order to check condition

(1) of 5.3.2.1(iv), let’s take a q ∈ spec(L′). We have to prove that p = θ−1(q) ∈ S.

Suppose that p ̸∈ S. Then there exist two finite subsets A and B of W such that

A ⊢ B, A ∩ p = ∅ and B ⊆ p. Then θ(A) ∩ q = ∅ and θ(B) ⊆ q. Let A = {ai | i =
1, . . . , n} and B = {bj | j = 1, . . . ,m}. Since A ⊢ B, we have that

∧′{θ(ai) | i =
1, . . . , n} ≤

∨′{θ(bj) | j = 1, . . . ,m}. The equality θ(A) ∩ q = ∅ and the fact that

q is a prime ideal imply that
∧′{θ(ai) | i = 1, . . . , n} ̸∈ q. Hence

∨′{θ(bj) | j =
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1, . . . ,m} ̸∈ q. But this is impossible, since θ(B) is a subset of q and, therefore,∨′{θ(bj) | j = 1, . . . ,m} ∈ q (because q is an ideal). So, we got a contradiction. Hence

p = θ−1(q) ∈ S. Therefore, condition (1) of 5.3.2.1(iv) is fulfilled.

Now, we will show that condition (2) of 5.3.2.1(iv) is fulfilled, i.e., we will prove

that the function

Θ : spec(L′) −→ S, q 7→ θ−1(q),

is a CohSp-morphism. Let’s show first that Θ : (spec(L′),O′) −→ (S,T−) is a con-

tinuous map (here O′ is the Stone topology on spec(L′) (see 5.2.2.2)). Recall that the

family P− = {U−
x | x ∈ W}, where U−

x = {p ∈ S | x ̸∈ p} for every x ∈ W , is a subbase

of the topology T− on S. Hence, we have to prove that Θ−1(U−
x ) ∈ O′ for every x ∈ W .

Let x ∈ W . Then

Θ−1(U−
x ) = {q ∈ spec(L′) | Θ(q) ∈ U−

x } =

= {q ∈ spec(L′) | θ−1(q) ∈ U−
x } = {q ∈ spec(L′) | x ̸∈ θ−1(q)} =

= {q ∈ spec(L′) | θ(x) ̸∈ q} = {q ∈ spec(L′) | I(θ(x)) ̸⊆ q} = OI(θ(x))

(see 5.2.2.2 for the notation), where I(θ(x)) = {l ∈ L′ | l ≤ θ(x)}. Since I(θ(x)) is an
ideal of L′, we obtain that Θ−1(U−

x ) ∈ O′. Therefore, Θ is a continuous map.

Let K be a compact open subset of (S,T−). Then, obviously, K is a finite union

of elements of the family B− of all finite intersections of the elements of P−. Hence,

for showing that Θ−1(K) is a compact subset of spec(L′), it is enough to show that

Θ−1(U−
x ) is a compact subset of spec(L′) for every x ∈ W . (Here we use the fact that

the family KO(spec(L′)) of all compact open subsets of spec(L′) is closed under finite

intersections. It is so because the space spec(L′) is coherent (see 5.2.2.2)). Let x ∈ X.

As we have shown, Θ−1(U−
x ) = OI(θ(x)). Since OI(θ(x)) is a compact set (see [109]), the

proof is completed.

This theorem implies the following result:

Theorem 5.3.2.5. The category DLat is isomorphic to a reflective full subcategory

of the category SSyst of all S-systems and their morphisms.

Proof. In 5.3.1.4, we proved that the category DLat is isomorphic to the full subcate-

gory SDLat of the category SSyst. Let’s show that SDLat is a reflective subcategory

of SSyst. Take an S-system (W,⊢). Then, by 5.3.2.4, there exists an L ∈ |DLat|
and a function φ : W −→ L which, by 5.3.2.4(ii), is an S-morphism between (W,⊢)
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and Sc(L). So φ ∈ SSyst(W,Sc(L)). Now, using 5.3.2.4(iii) and the fact that

l ∈ DLat(L,L′) implies l ∈ SSyst(Sc(L), Sc(L′)) (see the proof of 5.3.1.4), we get

that φ is an SDLat-reflection arrow. Therefore, SDLat is a reflective subcategory of

SSyst.

Since the category BoolAlg is a reflective full subcategory of the category DLat

(see [88] or [75](Exercise 4.5)), we obtain immediately (using also 4G from [1]) the

following corollary:

Corollary 5.3.2.6. The category BoolAlg is isomorphic to a reflective full subcategory

of the category SSyst of all S-systems and their morphisms.

Theorem 5.3.2.4 implies also the following two results of D. Vakarelov [113]:

Corollary 5.3.2.7. ([113]) Let (W,⊢) be an S-system, satisfying the following addi-

tional condition:

(Antisymm) if {a} ⊢ {b} and {b} ⊢ {a} then a = b (a, b ∈ W ).

Then there exists a distributive lattice (L,∨,∧) with 0 and 1, and an injection φ :

W −→ L such that:

(i) the set φ(W ) generates L;

(ii) for any two finite subsets A = {ai | i = 1, . . . , n} and B = {bj | j = 1, . . . ,m} of

W we have that A ⊢ B iff
∧
{φ(ai) | i = 1, . . . , n} ≤

∨
{φ(bj) | j = 1, . . . ,m}.

Proof. By 5.3.2.4, there exist a distributive lattice L and a function φ : W −→ L

which satisfy conditions (i) and (ii). We have only to show that the function φ is an

injection.

Let a, b ∈ W and a ̸= b. Suppose that every prime ideal p in (W,⊢) contains

(resp. doesn’t contain) both a and b. Then, by the definition of φ (see the proof of

5.3.2.4), we get that φ(a) = 0 = φ(b) (resp. φ(a) = 1 = φ(b)). Hence, by (ii), we

obtain, in both cases, that {a} ⊢ {b} and {b} ⊢ {a}. Now, condition (Antisymm)

implies that a = b, which is a contradiction. Therefore, there exists a prime ideal p

in (W,⊢) containing exactly one of the points a and b. We thus get, using 5.3.2.4(iv),

that φ is an injection.

Corollary 5.3.2.8. (Vakarelov’s Representation Theorem for S-systems in P-systems)

Let (W,⊢) be an S-system. Then (W,⊢) = Sc(PS(W,⊢)) = Sc(PSS(W,⊢)) (see

5.2.1.4 and 5.2.1.5 for the notation).
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Proof. Let S = PrI(W,⊢). The definition of the function φ from the proof of 5.3.2.4

and Definition 5.2.1.4 show that PS(W,⊢) = (W, S, φ). Put P = (W, S, φ). Then,

using the notation of 5.2.1.5, we obtain, by 5.3.2.4(ii), that ⊢P = ⊢. Therefore,

(W,⊢) = Sc(P ) = Sc(PS(W,⊢)).

Put P ′ = PSS(W,⊢). It is easy to see, using only the definitions of the relevant notions

and notation, that ⊢P = ⊢P ′ . Thus Sc(PS(W,⊢)) = Sc(PSS(W,⊢)).

In the next section we will extend this representation theorem to an isomorphism

theorem (see 5.4.1.4).

5.4 Some Isomorphism Theorems

5.4.1 The categories SPS, TPS and TPSS

Definition 5.4.1.1. (a) Let (W,V, f) and (W ′, V ′, f ′) be two set-theoretical P-systems

and φ ∈ Set(W,W ′). The function φ is called a P-morphism if φ−1(V ′) ⊆ V . We

denote by SPS the category of all set-theoretical P-systems and P-morphisms.

(b) We denote by TPS the category whose objects are all pairs (X,P), where X

is a non-empty set and P ⊆ P (X), and, for any (X,P), (X ′,P′) ∈ |TPS|, the set

TPS((X,P), (X ′,P′)) consists of all f ∈ Set(X,X ′) such that f−1(P′) ⊆ P. The

objects of the category TPS are called topological property systems.

Remark 5.4.1.2. (a) The full subcategory Top′ of Top, consisting of all non-empty

topological spaces, is a full subcategory of TPS.

(b) SPS and TPS are isomorphic categories.

For proving (b), define two functors

Ha : SPS −→ TPS and H t : TPS −→ SPS

by

Ha(W,V, f) = (W,V )

(on the objects of SPS),

Haφ = φ

(on the morphisms of SPS),

H t(X,P) = (X,P, f),
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where f ∈ Set(X,P (P)) is defined by f(x) = {A ∈ P | x ∈ A}

(on the objects of TPS) and

H t(φ) = φ

(on the morphisms of TPS). Then it is easy to see that Ha◦H t = IdTPS and H t◦Ha =

IdSPS. Hence, SPS and TPS are isomorphic categories.

Definition 5.4.1.3. We denote by TPSS the full subcategory of TPS whose objects

are all (X,P) ∈ |TPS| which satisfy the following condition:

(TPSS) If V ⊆ X is such that for any two finite sets F ⊆ V and G ⊆ X \ V there

exists a U ∈ P with F ⊆ U and U ∩G = ∅, then V ∈ P.

Theorem 5.4.1.4. The categories SSyst and TPSS are isomorphic.

Proof. The proof will consist of several steps.

Step 1. In this step we will define two functors

T a : SSyst −→ TPS and T t : TPS −→ SSyst.

For any (W,⊢) ∈ |SSyst|, put

T a(W,⊢) = (W,PrF (W,⊢))

(see 5.2.1.4 for the notation) and let

T a(φ) = φ

on the morphisms of SSyst. It is easily seen, using 5.3.1.2, that T a is a functor.

For any (X,P) ∈ |TPS|, put

T t(X,P) = (X,⊢P),

where the binary relation ⊢P in P (X) is defined as follows: if A and B are two finite

subsets of X then

A ⊢P B ⇐⇒ [(∀U ∈ P)((A ⊆ U) → (U ∩B ̸= ∅))];

if A and B are two arbitrary subsets of X then

A ⊢P B ⇐⇒ ( there exist finite subsets A′ ⊆ A and B′ ⊆ B such that A′ ⊢P B
′).
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Put

T t(φ) = φ

on the morphisms of TPS.

Let’s show that T t is a functor from the category TPS to the category SSyst.

Take a (X,P) ∈ |TPS|. Define f : X −→ P (P) putting

f(x) = {U ∈ P | x ∈ U},

for every x ∈ X. Then P = (X,P, f) is a (set-theoretical) P-system such that

T t(X,P) = Sc(P ) (see 5.2.1.5 for Sc(P )). For proving this, take two finite subsets

A = {ai ∈ X | i = 1, . . . , n} and B = {bj ∈ X | j = 1, . . . ,m} of X. Let A ⊢P B.

This means that
∩
{f(ai) | i = 1, . . . , n} ⊆

∪
{f(bj) | j = 1, . . . ,m}. Let U ∈ P and

A ⊆ U . Then U ∈
∩
{f(ai) | i = 1, . . . , n}. Hence U ∈

∪
{f(bj) | j = 1, . . . ,m}.

Thus B ∩ U ̸= ∅. So, we have proved that A ⊢P B. Conversely, let A ⊢P B.

Take a U ∈
∩
{f(ai) | i = 1, . . . , n}. Then A ⊆ U . Now, the definition of the

relation ⊢P implies that U ∩ B ̸= ∅. Thus U ∈
∪
{f(bj) | j = 1, . . . ,m}. So,∩

{f(ai) | i = 1, . . . , n} ⊆
∪
{f(bj) | j = 1, . . . ,m}, i.e., A ⊢P B. Therefore the

relations ⊢P and ⊢P coincide on the finite subsets of X. Then, by their definitions,

they coincide on arbitrary subsets of X. So, T t(X,P) = Sc(P ). Since, by 5.2.1.5,

Sc(P ) is an S-system, we get that the images of the objects of the category TPS by

T t are objects of the category SSyst. Let’s show that the images of the morphisms of

the category TPS by T t are morphisms of the category SSyst. Indeed, let

φ ∈ TPS((X,P), (X ′,P′)).

Take two finite subsets A and B of X such that A ⊢P B. We have to prove that

φ(A) ⊢P′ φ(B). Let U ′ ∈ P′ be such that φ(A) ⊆ U ′. Then φ−1(U ′) ∈ P and

A ⊆ φ−1(U ′). Since A ⊢P B, we obtain that B ∩ φ−1(U ′) ̸= ∅. Thus U ′ ∩ φ(B) ̸= ∅.
So, φ(A) ⊢P′ φ(B). Therefore φ is an S-morphism. It is now easily seen that T t is a

functor from the category TPS to the category SSyst.

Step 2. We will prove that the functor T t ◦ T a coincides with the identity functor

IdSSyst of the category SSyst.

Let (W,⊢) ∈ |SSyst|. Then (T t ◦ T a)(W,⊢) = T t(W,PW ) = (W,⊢PW
) (using

the notation of Step 1 and denoting by PW the family PrF (W,⊢)). For any two finite

subsets A and B of W , we have, by 5.2.1.6, that A ⊢PW
B iff A ⊢ B. This implies that

the same is valid for arbitrary subsets of W . So, (T t ◦ T a)(W,⊢) = (W,⊢), i.e., T t ◦ T a
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and IdSSyst coincide on the objects of SSyst. Since they, obviously, coincide on the

morphisms of SSyst, the equality T t ◦ T a = IdSSyst is proved.

Step 3. We will prove that:

(a) if C = (T a ◦ T t)(TPS) then C = (T a ◦ T t)(C) and C = (T a ◦ T t)(C) for every

C ∈ |C|;
(b) the subcategory C of TPS is isomorphic to SSyst.

Using Step 2, we obtain that T a(SSyst) = (T a ◦ T t ◦ T a)(SSyst) ⊆ (T a ◦
T t)(TPS) = C. Hence the functor T a : SSyst −→ TPS can be regarded also as

a functor from SSyst to C. Denote this functor by T a1 , i.e.,

T a1 : SSyst −→ C.

Denote by T t1 the restriction of the functor T t to the subcategory C of the category

TPS, i.e.,

T t1 : C −→ SSyst.

Then, by Step 2, T t1 ◦ T a1 = IdSSyst. Further, we will show that T a1 ◦ T t1 = IdC. This is

obviously true on the morphisms of C. Let C ∈ |C|. Then C = (T a ◦ T t)(D) for some

D ∈ |TPS|. Using again Step 2, we obtain that (T a1 ◦T t1)(C) = (T a ◦T t ◦T a ◦T t)(D) =

(T a ◦ T t)(D) = C. So, T a1 ◦ T t1 = IdC. Hence, C = (T a ◦ T t)(C) and C is isomorphic

to SSyst.

Step 4. We will prove that the subcategories TPSS and C (see Step 3 for C) of the

category TPS coincide.

Let (X,P) ∈ |C|. We will show that (X,P) ∈ |TPSS|. Let V ⊆ X be such that

for any two finite sets F ⊆ V and G ⊆ X \ V there exists a U ∈ P with F ⊆ U and

U ∩G = ∅. By Step 3, we have that (X,P) = (T a ◦ T t)(X,P). Hence P = PrF (X,⊢P)

(see Step 1 for the notation). So, we have to prove that V is a prime filter in (X,⊢P).

By 5.2.1.7(1), it is enough to show that V ̸⊢P (X \ V ). Let A be a finite subset of V

and B be a finite subset of X \ V . Then, by our hypothesis, there exists a U ∈ P with

A ⊆ U and U ∩ B = ∅. This means that A ̸⊢P B (see the definition of ⊢P in Step 1).

Thus V ̸⊢P (X \ V ). So, we have proved that (X,P) ∈ |TPSS|.
Let (X,P) ∈ |TPSS|. We will show that (X,P) ∈ |C| by proving that (X,P) =

(T a ◦ T t)(X,P). Since (T a ◦ T t)(X,P) = (X,PrF (X,⊢P)), we have to prove that

P = PrF (X,⊢P). Let V ∈ PrF (X,⊢P) and let F be a finite subset of V . Since, by

5.2.1.7(1), V ̸⊢P (X \ V ), we obtain that F ̸⊢P G, for every finite subset G of X \ V .

Hence, by the definition of the relation ⊢P (see Step 1), for every finite subset G of
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X \ V there exists an element U of P such that F ⊆ U and U ∩ G = ∅. Since (X,P)

satisfies condition (TPSS) from 5.4.1.3, we obtain that V ∈ P. So, we have proved that

PrF (X,⊢P) ⊆ P. Conversely, let V ∈ P. Then the definition of the relation ⊢P implies

that if F is a finite subset of V and G is a finite subset of X \ V then F ̸⊢P G. Hence

V ̸⊢P (X \V ). Thus, by 5.2.1.7(1), V is a prime filter in (X,⊢P). So, P ⊆ PrF (X,⊢P).

Hence, P = PrF (X,⊢P). Therefore (X,P) ∈ |C|. So, the subcategories TPSS and C

of the category TPS coincide.

Now, we complete the proof of our theorem combining the results obtained in

Step 3 and Step 4.

Let’s remark that in Step 4 of the proof of 5.4.1.4 we obtained, in fact, the

following result:

Proposition 5.4.1.5. Let (X,P) ∈ |TPS| and P′ = PrF (X,⊢P) (see Step 1 in the

proof of 5.4.1.4 for the notation). Then a subset V of X belongs to P′ iff for any two

finite sets F ⊆ V and G ⊆ X \ V there exists an element U of P such that F ⊆ U and

U ∩G = ∅. In particular, P ⊆ P′.

As a special case of this proposition, we obtain immediately the following corol-

lary:

Corollary 5.4.1.6. Let (X,P) ∈ |TPS| and P′ = PrF (X,⊢P) (see Step 1 in the proof

of 5.4.1.4 for the notation). Then

(a) X ∈ P′ iff P is an ω-cover of X (i.e., for every finite subset F of X there exists

an element U of P containing F );

(b) ∅ ∈ P′ iff for every finite subset F of X there exists an element U of P such that

U ∩ F = ∅.

We have also the following result:

Proposition 5.4.1.7. Let (X,P) ∈ |TPS|, P′ = PrF (X,⊢P) (see Step 1 in the proof

of 5.4.1.4 for the notation) and let P be closed under finite intersections. Then P′ is

closed under arbitrary intersections.

Proof. First of all, using the fact that P is closed under finite intersections, we will

prove that for a subset V of X the following conditions are equivalent:

(1) V ∈ P′;
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(2) if F is a finite subset of V then
∩
{U ∈ P | F ⊆ U} ⊆ V .

The implication (1) ⇒ (2) follows immediately from 5.4.1.5. Let’s show that

(2) ⇒ (1). Let F be a finite subset of V and G = {gi | i = 1, . . . , n} ⊆ X \ V . Then,

by (2), for every i ∈ {1, . . . , n} there exists an element Ui of P such that F ⊆ Ui

and gi ̸∈ Ui. Putting U =
∩
{Ui | i = 1, . . . , n}, we obtain that U ∈ P, F ⊆ U and

U ∩G = ∅. Hence, by 5.4.1.5, V ∈ P′. So, the conditions (1) and (2) are equivalent.

Let A be a set and, for every α ∈ A, Vα be an element of P′. Put V =
∩
{Vα | α ∈

A}. We will check that V satisfies (2). Take a finite subset F of V . Then F ⊆ Vα, for

every α ∈ A. Since Vα ∈ P′, we have, by (2), that
∩
{U ∈ P | F ⊆ U} ⊆ Vα. Hence∩

{U ∈ P | F ⊆ U} ⊆
∩
{Vα | α ∈ A} = V . So, condition (2) is fulfilled. Thus, V ∈ P′.

5.4.2 T-systems and hyperspaces

Let’s now concentrate on T-systems.

Proposition 5.4.2.1. Let (W,⊢) be a T-system and P = PrF (W,⊢) (see 5.2.1.4 for

the notation). Then:

(a) for a V ⊆ W , we have that V ∈ P iff
∩
{U ∈ P | F ⊆ U} ⊆ V for every finite

subset F of V ;

(b) P is closed under arbitrary intersections.

Proof. (a) Let V be a subset of W . Using consecutively 5.2.1.7(1), (TFin) (see 5.2.1.2)

and 5.2.1.6, we obtain that (V ∈ P) ⇐⇒ (V ̸⊢ (W \ V )) ⇐⇒ (∀ w ∈ (W \ V ) and ∀
finite subset F of V we have that F ̸⊢ w) ⇐⇒ (∀ w ∈ (W \ V ) and ∀ finite subset F

of V ∃ U ∈ P such that F ⊆ U and w ̸∈ U) ⇐⇒ (
∩
{U ∈ P | F ⊆ U} ⊆ V , for every

finite subset F of V ).

(b) Let A be a set and, for every α ∈ A, Vα be an element of P. Put V =
∩
{Vα | α ∈ A}.

Let F be a finite subset of V . Then F ⊆ Vα, for every α ∈ A. By a) , we obtain that∩
{U ∈ P | F ⊆ U} ⊆ Vα}, for every α ∈ A. Hence

∩
{U ∈ P | F ⊆ U} ⊆

∩
{Vα | α ∈

A} = V . Now, a) implies that V ∈ P.

Corollary 5.4.2.2. Let (W,⊢) be a T-system and P = PrF (W,⊢) (see 5.2.1.4 for this

notation). Then, for a V ⊆ W , we have that V ∈ P iff for every finite subset F of V

there exists an element U of P such that F ⊆ U ⊆ V .
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Proof. It follows directly from a) and b) of 5.4.2.1.

Definition 5.4.2.3. ([3]) A topological space X is called an Alexandroff space if the

intersection of any family of open subsets of X is an open subset of X.

Remark 5.4.2.4. The Alexandroff spaces were introduced by P.S. Alexandroff in [3]

under the name of discrete spaces. They are now known as Alexandroff spaces or,

shortly, A-spaces (see [74]). Note that the term “A-space” or “Alexandroff space” is

used in the literature with another meaning as well (see, for example, [68]).

Definition 5.4.2.5. Let X be a set, M ⊆ P (X) and O be a topology on the set M.

We say that O is a topology of Tychonoff type on M if the family O ∩ {A+
M | A ⊆ X},

where

A+
M = {M ∈ M | M ⊆ A},

is an open base of O. In what follows, we will denote by

PO,M

the family {A ⊆ X | A+
M ∈ O}. When M = Fin(X) (see 0.1.2.1 for this notation), we

will write simply

PO

instead of PO,F in(X).

Remark 5.4.2.6. The above definition was given in [39]. After the publication of [39],

we learned that a particular case of such a topology (namely, when X is a topological

space and M is the family of all closed subsets of X) was introduced earlier by M.

Choban in his remarkable paper [17]. A detailed investigation of the topologies of

Tychonoff type on arbitrary families M (as they were introduced above) was done later

in [36].

Definition 5.4.2.7. We denote by T′ the category whose objects are all Alexandroff

spaces of the form (Fin(X),O), where X is a non-empty set and O is a topology of

Tychonoff type on Fin(X), and, for any two objects (Fin(X),O) and (Fin(X ′),O′) of

T′, the set T′((Fin(X),O), (Fin(X ′),O′)) consists of all f ∈ Set(X,X ′) for which the

map fFin : Fin(X) −→ Fin(X ′), defined by fFin(F ) = f(F ) for any F ∈ Fin(X), is

a continuous map between (Fin(X),O) and (Fin(X ′),O′).
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Proposition 5.4.2.8. Let f ∈ Set(X,X ′) and O (resp., O′) be a topology of Tychonoff

type on Fin(X) (resp., on Fin(X ′)). Then the following are equivalent:

(a) fFin ∈ Top((Fin(X),O), (Fin(X ′),O′)) (see 5.4.2.7 for the definition of fFin);

(b) f ∈ TPS((X,PO), (X
′,PO′)) (see 5.4.2.5 for the notation).

Proof. Let’s first remark that if A ⊆ X ′ then

f−1
Fin(A

+) = (f−1(A))+(5.1)

(here and below we write, for short,

A+

instead of A+
Fin(X) (see 5.4.2.5 for the notation A+

Fin(X)). Indeed, if F is a finite subset

of X then we have: (F ∈ f−1
Fin(A

+)) ⇐⇒ (fFin(F ) ∈ A+) ⇐⇒ (f(F ) ⊆ A) ⇐⇒
(F ⊆ f−1(A)) ⇐⇒ (F ∈ (f−1(A))+). So, f−1

Fin(A
+) = (f−1(A))+.

(a) ⇒ (b). Take an A ∈ PO′ . Then A+ ∈ O′ and hence f−1
Fin(A

+) ∈ O. Thus, by (**),

(f−1(A))+ ∈ O. This implies that f−1(A) ∈ PO. So, f
−1(PO′) ⊆ PO.

(b) ⇒ (a). Since, by the definition of Tychonoff type topology (see 5.4.2.5), the family

P+
O′ = {A+ | A ∈ PO′} = O′ ∩ {A+ | A ⊆ X ′}

is an open base of the topology O′, it is enough to show that f−1
Fin(A

+) ∈ O for every

A ∈ PO′ . So, let A ∈ PO′ . Then, by (5.1), f−1
Fin(A

+) = (f−1(A))+. Since f−1(A) ∈ PO,

we obtain that (f−1(A))+ ∈ O. Hence, fFin is a continuous function.

Notation 5.4.2.9. We denote by TSyst the full subcategory of SSyst whose objects

are all Tarski consequence systems.

Theorem 5.4.2.10. The categories TSyst and T′ are isomorphic.

Proof. If (W,⊢) ∈ |SSyst| then we will write

PW

instead of PrF (W,⊢); if X is a set then U+ will stand for U+
Fin(X) (see 5.2.1.4 and

5.4.2.5 for the notation).

The proof of the theorem will be carry out in several steps.

Step 1. In this step we define a functor T ′′ : TSyst −→ T′.
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For every (W,⊢) ∈ |TSyst|, put

T ′′(W,⊢) = (Fin(W ),O),

where O is the topology on the set Fin(W ) having as a base the family

P+
W = {U+ | U ∈ PW}.

If f ∈ TSyst((W,⊢), (W ′,⊢′)) then put

T ′′(f) = f.

Let’s show that T ′′ is a functor from the category TSyst to the category T′. Take

a (W,⊢) ∈ |TSyst|. Then, by 5.2.1.7(2) and (TFin) (see 5.2.1.2), we obtain that

W ∈ PW . Further, the family PW is closed under arbitrary intersections (by 5.4.2.1(b)).

Since, obviously,

(
∩

{Uα | α ∈ A})+ =
∩

{U+
α | α ∈ A}, for every set A,(5.2)

we get that P+
W is closed under arbitrary intersections. So, the family P+

W can be taken

as a base of a topology O on Fin(W ). Evidently, (Fin(W ),O) is an Alexandroff space.

Since O ∩ {A+ | A ⊆ W} ⊇ P+
W , we obtain that O is a topology of Tychonoff type on

Fin(W ). Thus, T ′′(W,⊢) ∈ |T′|.
Let’s prove that

O ∩ {A+ | A ⊆ W} = P+
W .(5.3)

We will use this equality in Step 3 below. Obviously, it suffices to demonstrate that

O ∩ {A+ | A ⊆ W} ⊆ P+
W . Let A ⊆ W and A+ ∈ O. Take an F ∈ A+. Since A+ ∈ O

and P+
W is a base of O, there exists an element U ∈ PW such that F ∈ U+ ⊆ A+. This

implies that F ⊆ U ⊆ A. Now, by 5.4.2.2, we obtain that A ∈ PW . Hence, A+ ∈ P+
W .

So, the equality (5.3) is proved.

Take now a morphism f ∈ TSyst((W,⊢), (W ′,⊢′)). We have to show that

T ′′(f) ∈ T′(T ′′(W,⊢), T ′′(W ′,⊢′)).

By 5.4.2.8, it is enough to prove that f−1(PW ′) ⊆ PW . Since this follows directly from

5.3.1.2, we get that T ′′(f) ∈ T′(T ′′(W,⊢), T ′′(W ′,⊢′)). It is now easily seen that T ′′ is

a functor from the category TSyst to the category T′.
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Step 2. We will define a functor

S ′′ : T′ −→ TSyst.

If (Fin(X),O) ∈ |T′| then we put

S ′′(Fin(X),O) = T t(X,PO),

where T t is the functor defined in Step 1 of the proof of 5.4.1.4 (see also 5.4.2.5, 5.4.2.7

and 0.1.2.1 for the notation). (Hence, S ′′(Fin(X),O) = (X,⊢PO
).)

If f ∈ T′((Fin(X),O), (Fin(X ′),O′)) then we put

S ′′(f) = f.

We will show that S ′′ is a functor from the category T’ to the category TSyst. Let

(Fin(X),O) ∈ |T′|. Then (X,PO) ∈ TPS and, by the proof of 5.4.1.4, T t(X,PO) is

an S-system. Hence S ′′(Fin(X),O) is an S-system and we have to prove only that it

satisfies condition (TFin) from 5.2.1.2. So, let A and B be two finite subsets of X and

A ⊢PO
B. Then, by the definition of ⊢PO

(see Step 1 of the proof of 5.4.1.4 for it),

(∀U ∈ PO)((A ⊆ U) ⇒ (U ∩B ̸= ∅)).

Since the family O is closed under arbitrary intersections, the equality (5.2) implies

that PO is also closed under arbitrary intersections. Hence

U0 =
∩

{U ∈ PO | A ⊆ U}

is an element of PO. Thus U0∩B ̸= ∅. Let b ∈ U0∩B. Then, for every U ∈ PO such that

A ⊆ U , we have that b ∈ U0∩B ⊆ U∩B. So b ∈ U , for every U ∈ PO such that A ⊆ U .

This means that A ⊢PO
{b}. Hence, condition (TFin) from 5.2.1.2 is fulfilled. Thus,

S ′′(Fin(X),O) is a T-system. Let now f ∈ T′((Fin(X),O), (Fin(X ′),O′)). Then, by

5.4.2.8, f ∈ TPS((X,PO), (X
′,PO′)). So, S ′′(f) = T t(f). Since, by the proof of 5.4.1.4,

T t(f) is an SSyst-morphism, we obtain that S ′′(f) is a TSyst-morphism. It is now

easily seen that S ′′ is a functor from the category T’ to the category TSyst.

Step 3. We will prove that S ′′ ◦ T ′′ = IdTSyst.

Let (W,⊢) ∈ |TSyst|. Then (S ′′ ◦ T ′′)(W,⊢) = S ′′(Fin(W ),O), where O has as

a base the family P+
W (see Step 1 here). Hence (S ′′ ◦ T ′′)(W,⊢) = (W,⊢PO

). Since, by

(5.3), PO = PW , we obtain, as in Step 2 of the proof of 5.4.1.4, that ⊢ coincides with
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⊢PO
. So, (S ′′ ◦ T ′′)(W,⊢) = IdTSyst(W,⊢). Since the corresponding equality for the

morphisms is obvious, we conclude that S ′′ ◦ T ′′ = IdTSyst.

Step 4. We will prove that T ′′ ◦ S ′′ = IdT′ .

Let (Fin(X),O) ∈ |T′|. Then

(T ′′ ◦ S ′′)(Fin(X),O) = T ′′(X,⊢PO
) = (Fin(X),O′),

where the topology O′ on Fin(X) has as a base the family P+
X (recall that PX =

PrF (X,⊢PO
)). Using 5.4.1.5 and the fact that PO is closed under arbitrary intersections

(since O has this property), we obtain: (V ∈ PX) ⇐⇒ (V ⊆ X and for any two finite

sets F ⊆ V and G ⊆ X \ V there exists an element U of PO such that F ⊆ U and

U ∩ G = ∅) ⇐⇒ (V ⊆ X and for every finite subset F of V there exists an element

U of PO such that F ⊆ U ⊆ V ) ⇐⇒ (V ⊆ X and for every F ∈ V + there exists an

element U of PO such that F ∈ U+ ⊆ V +) ⇐⇒ (V + ∈ O) ⇐⇒ (V ∈ PO). Hence,

PX = PO. This implies that O = O′. Thus (T ′′ ◦ S ′′)(Fin(X),O) = IdT′(Fin(X),O).

Since the corresponding equality for the morphisms is obvious, we get T ′′ ◦ S ′′ = IdT′ .

All this shows that the categories TSyst and T′ are isomorphic.
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[49] V. A. Efremovič. Nonequimorphism of the Euclidean and Lobačevski spaces (In
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