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Introduction

S. N. Bernstein introduced in 1912 an approximation operator, which is now
named after him, in order to give a simple proof of Weierstrass’s theorem
that every continuous function on a finite closed interval can be uniformly
approximated by algebraic polynomials [9].

The Bernstein operators or polynomials are defined for f ∈ C[0, 1], x ∈
[0, 1] and n ∈ N+ by

(0.1) Bnf(x) :=
n∑

k=0

f

(
k

n

)
pn,k(x), pn,k(x) :=

(
n

k

)
xk(1− x)n−k.

We have
lim
n→∞

Bnf(x) = f(x) uniformly on [0, 1],

that is
lim
n→∞

∥Bnf − f∥ = 0, f ∈ C[0, 1],

where ∥ ◦ ∥ stands for the supremum norm on the interval [0, 1].
Moreover, clearly

∥Bnf∥ ≤ ∥f∥, f ∈ C[0, 1], n ∈ N+.

Thus {Bn}∞n=1 is a strong approximation process on C[0, 1] (see [13, Def-
inition 12.0.1]).

Various estimates of the supremum norm of the error Bnf(x)−f(x) were
established. Some of the earliest ones were stated in terms of the so-called
moduli of smoothness (or continuity). For example, Popoviciu [86] (or see
[79, Theorem 1.6.1]) showed that

∥Bnf − f∥ ≤
5

4
ω1(f, n

−1/2).
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Introduction

Above ω1(f, t) is the modulus of continuity of f , defined by

ω1(f, t) := sup
|x−y|≤t

|f(x)− f(y)|.

Since Bnf interpolates f at the ends of the interval, one can expect that it
approximates the function better in their neighbourhood. This is indeed so.
The following estimate holds for f ∈ AC1

loc(0, 1) such that φ2f ′′ ∈ L∞[0, 1],
where φ(x) :=

√
x(1− x) (see e.g. [18, Chapter 10, § 7] or [23, Chapter 9])

(0.2) ∥Bnf − f∥ ≤
c

n
∥φ2f ′′∥, n ∈ N+.

Here and henceforward c denotes absolute constants.
This estimate can be further generalized for any f ∈ C[0, 1] and n ∈ N+

in the form

(0.3) ∥Bnf − f∥ ≤ c ω2
φ(f, n

−1/2),

where ω2
φ(f, t) is the Ditzian-Totik modulus of smoothness of second order

with varying step controlled by the weight φ(x) in the sup-norm on [0, 1]. It
is defined by

ω2
φ(f, t) := sup

0<h≤t
sup

x±hφ(x)∈[0,1]
|f(x+ hφ(x))− 2f(x) + f(x− hφ(x))|, t > 0.

Adell and G. Sangüesa [4] proved that (0.3) holds with c = 4. Later on
Gavrea, Gonska, Păltănea and Tachev [42] improved this estimate to c = 3,
then Păltănea [85, p. 96] to c = 5/2 (or see [12, p. 183]).

It turns out that (0.2) and (0.3) cannot be improved. The converse to
(0.3) is also valid—there holds (see [70] and [93])

(0.4) ∥Bnf − f∥ ≥ c ω2
φ(f, n

−1/2), n ≥ n0,

where n0 ∈ N+ is independent of f .
Earlier, Ditzian and Ivanov [22, Theorem 8.1] obtained a similar two-term

converse inequality.
The last estimate implies that Bnf cannot approximate f in the supre-

mum norm on [0, 1] with a rate faster than 1/n unless Bnf preserves f , that
is, f is an algebraic polynomial of degree at most 1. This is known as satu-
ration. It was first observed by Voronovskaya [99] (or see e.g. [18, Chapter
10, Theorem 3.1]). She proved that if f ∈ C2[0, 1], then

(0.5) lim
n→∞

n(Bnf(x)− f(x)) =
x(1− x)

2
f ′′(x)
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Introduction

uniformly on [0, 1].
The Bernstein polynomial possesses another property. As it was estab-

lished by Chlodowsky [17], Wigert [100] and Lorentz [78] (see e.g. [18, Chap-
ter 10, Theorem 2.1], or [12, p. 232]), it not only approximates the function,
but also its derivatives. More precisely, we have

lim
n→∞

(Bnf)
(s) (x) = f (s)(x) uniformly on [0, 1],

provided that f ∈ Cs[0, 1]. That phenomenon is referred to as simultaneous
approximation.

The main subject of the dissertation is to present estimates of the rate
of this approximation. We prove both direct estimates and matching one-
or two-term converse estimates, which show that the direct estimates are
sharp. The estimates are given in the ess sup-norm on [0, 1] with Jacobi
weights. As a further application of those results we characterize the rate
of the simultaneous approximation of the iterated Boolean sums of Bn and
of two modifications of Bn, which are polynomials with integer coefficients.
Finally, we investigate the rate of convergence in Voronovskaya’s theorem
(0.5).

The contents of the dissertation are organized as follows.
In Chapter 1 we collect the definitions and the basic properties of the

standard K-functionals and moduli of smoothness that are used in problems
of the type we consider. In later chapters, we introduce other K-functions
as well. The latter are more straightforwardly related to the error of the
approximation processes under considerations.

In Chapter 2 we establish inequalities between the weighted essential
supremum norms of the derivatives of functions as well as between them and
the norms of the values of the differential operators that are associated with
the simultaneous approximation by the Bernstein operator and by its iter-
ated Boolean sums. They enable us to relate the weighted supremum norm
of the values of these differential operators to the weighted supremum norms
of derivatives of the approximated function. They play a key role in the ap-
proach we adopt to investigating the rate of the simultaneous approximation
of the aforementioned operators. The results presented in this chapter were
published in [26, 27, 33].

In Chapter 3 we establish matching direct and two-term strong converse
estimates of the rate of the simultaneous approximation by the Bernstein op-
erator in the weighted essential supremum norm. We consider Jacobi weights
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Introduction

as the range of the exponents is the broadest natural one. The obtained char-
acterization of the rate of weighted simultaneous approximation by Bn is
stated in terms of moduli of smoothness and K-functionals. Also, analogous
results concerning the generalized Kantorovich operators are derived. The
strong converse inequality is further improved to one that exactly matches
the direct inequality for lower order derivatives and under additional restric-
tions on the weight exponents. Here we also obtain as auxiliary inequalities,
but having merit of its own, Voronovskaya-, Bernstein-, and Zamansky-type
inequalities. The material presented in this chapter was published in [27, 28].

In Chapter 4 most of the estimates of the previous chapter are extended to
iterated Boolean sums of the Bernstein operator. They provide higher order
approximation than Bn. Here we also apply results obtained in the previous
chapter to derive a direct and a matching two-term converse inequality for the
approximation by the iterated Boolean sums of the Bernstein operator itself.
The results presented in this chapter were published in [25, 26, 27, 31, 32].

In Chapter 5 we deal with two modifications of the Bernstein polyno-
mials, which provide approximation by algebraic polynomials with integer
coefficients. We prove that they possess the property of simultaneous ap-
proximation as well and establish direct estimates of the error of that ap-
proximation in uniform norm by means of moduli of smoothness. These
estimates are established under certain peculiar assumptions, but we show
that they are also necessary. In addition, we prove a weak converse estimate
for that approximation process. It is stated in terms of moduli of smooth-
ness. In particular, it yields a big O-characterization of the rate of that
approximation. We also show that the approximation process is saturated
and identify its saturation rate and trivial class. The results presented in
this chapter were published in [29, 30].

In Chapter 6 we characterize the rate of the convergence in the Voronov-
skaya’s theorem (0.5). The characterization is given in terms ofK-functionals
and moduli of smoothness. The results presented in this chapter were pub-
lished in [33], written jointly with I. Gadjev.

Acknowledgments. I am especially grateful to Professor Kamen Ivanov,
Professor Dany Leviatan, Kiril Delev and the anonymous Referees for com-
ments and corrections on the manuscripts. I am also indebted to Professor
Gancho Tachev for providing me with papers and discussions on problems
treated in the dissertation. I especially appreciate the support, encourage-
ment and advice, which I have been receiving from Professor Kamen Ivanov
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throughout my research. Also, the support I received from Professor Geno
Nikolov, Professor Nadejda Ribarska, Associate Professor Ivan Gadjev, As-
sociate Professor Parvan Parvanov and Associate Professor Rumen Uluchev
(in alphabetical order) has been very important for me.

9



Chapter 1

Basic K-functionals and moduli
of smoothness

In this chapter we will formulate the definition of the classical moduli of
smoothness and K-functionals that are extensively used in Approximation
Theory as well as their weighted analogues that are most popular. In later
chapters we will introduce other, K-functionals, which are more complicated,
but more naturally related to the approximation processes we will study. We
will characterize them by the former.

Generally, the K-functional between a normed space X with the norm
∥ ◦ ∥X and a semi-normed space Y ⊂ X with the semi-norm | ◦ |Y is defined
for f ∈ X and t > 0 by

K(f, t;X, Y ) := inf
g∈Y
{∥f − g∥X + t |g|Y }.

In Approximation Theory, the K-functionals are particularly useful to de-
scribe how well we can approximate elements in X by elements in Y .

The basic properties of the K-functional K(f, t) := K(f, t;X, Y ) are the
following:

(a) As a function of t ≥ 0, K(f, t) is increasing, concave, continuous and
bounded;

(b) K(f, t) is sub-additive on t: K(f, t1 + t2) ≤ K(f, t1) + K(f, t2) and

K(f, t) ≤ t

s
K(f, s) if 0 < s < t;

(c) K(f + g, t) ≤ K(f, t) +K(g, t).

10



Chapter 1. Basic K-functionals and moduli of smoothness

As we indicated in the beginning, we will make use of variousK-functionals
to derive strong—exact or nearly exact, estimates of the weighted simulta-
neous approximation by the Bernstein operator and certain modifications of
it. We will consider weighted (and, in particular, unweighted) K-functionals
in weighted essential supremum (semi-)norms on the interval [0, 1].

Before we define them, let us introduce some notations. We denote by
∥f∥ the essential supremum norm of the function f on the interval [0, 1].
When the norm is taken on an interval J ⊆ R, we will write ∥f∥J . As
usual, ACk[a, b], k ∈ N0, stands for the set of all functions, which are k
times differentiable and along with their derivatives up to order k are abso-
lutely continuous on [a, b]; ACk

loc(0, 1) is the set of the functions, which are
in ACk[a, b] for all 0 < a < b < 1 (e.g. the monograph [76] contains the basic
properties of these and related spaces). By c we will denote positive con-
stants, not necessarily the same at each occurrence, which are independent
of the functions involved in the inequalities but the weights.

The simplest K-functional we will use is the one between the spaces
X = L∞[0, 1] and Y = Wm

∞ [0, 1]. It is given by

Km(f, t) := inf
g∈Wm

∞ [0,1]

{
∥f − g∥+ t ∥g(m)∥

}
.

Here, as usual, Wm
∞ [0, 1] is the Sobolev space

Wm
∞ [0, 1] := {g ∈ ACm−1[0, 1] : g(m) ∈ L∞[0, 1]}.

If f ∈ C[0, 1], it is more natural to take the infimum on Cm[0, 1] instead.
On the other hand, we are interested in function characteristics which are

more directly related to the approximated function f . They are called moduli
of smoothness. To define them, we first introduce the difference operator.

The forward difference of f : [0, 1]→ R with step h > 0 of order m ∈ N+

is given by

(1.1)
−→
∆m

h f(x) =


m∑
i=0

(−1)i
(
m

i

)
f(x+ (m− i)h), x ∈ [0, 1−mh],

0, x ∈ (1−mh, 1].

Similarly, the backward difference is given by

←−
∆m

h f(x) =


m∑
i=0

(−1)i
(
m

i

)
f(x− ih), x ∈ [mh, 1],

0, x ∈ [0,mh).

11



Chapter 1. Basic K-functionals and moduli of smoothness

We will also make use of the symmetric difference, which is defined on
[0, 1] by

∆̄m
h f(x) =


m∑
i=0

(−1)i
(
m

i

)
f
(
x+

(m
2
− i
)
h
)
, x ∈

[
mh

2
, 1− mh

2

]
,

0, otherwise.

The classical unweighted fixed-step modulus of smoothness of order m of
f ∈ L∞[0, 1] is then defined for t > 0 by

(1.2) ωm(f, t) := sup
0<h≤t

∥
−→
∆m

h f∥.

Similarly, we can use backward or symmetric differences.
Its basic properties are the following (see e.g. [18, Ch. 2,§§ 7-8]):

(a) ωm(f + g, t) ≤ ωm(f, t) + ωm(g, t);

(b) ωm(cf, t) = |c|ωm(f, t), c ∈ R;

(c) ωm(f, λt) ≤ (λ+ 1)mωm(f, t), λ > 0;

(d) ωm(f, t) ≤ tm∥f (m)∥, f ∈ Wm
∞ [0, 1];

(e) If ωm(f, t) = O(tm), then f ∈ Wm
∞ [0, 1];

(f) ωm(f, t) = 0 for all t if f is equal a.e. with regard to the Lebesgue
measure to an algebraic polynomial of degree at mostm−1; conversely,
if ωm(f, t) = o(tm), then f is equal a.e. to an algebraic polynomial of
degree at most m− 1;

(g) limt→0 ωm(f, t) = 0 if and only if f is equal a.e. to a continuous function
on [0, 1].

Johnen [64] (see also [65]) showed that Km(f, t
m) and ωm(f, t) are equiv-

alent, that is, there exists c > 0 such that for all f ∈ L∞[0, 1] and t > 0

(1.3) c−1ωm(f, t) ≤ Km(f, t
m) ≤ c ωm(f, t).

We will denote the above relation by Km(f, t
m) ∼ ωm(f, t). More generally,

we say that Φ(f, t) and Ψ(f, t) are equivalent and write Φ(f, t) ∼ Ψ(f, t) if

12



Chapter 1. Basic K-functionals and moduli of smoothness

there exists a positive constant c such that c−1Φ(f, t) ≤ Ψ(f, t) ≤ cΦ(f, t)
for all f and t under consideration.

We will study approximation processes whose approximation rate is better
at the ends of the interval [0, 1]. Thus, in order to get, precise error estimates,
we will need K-functionals and moduli of smoothness, which take this into
account; moreover, we will be interested in approximation in weighted L∞-
spaces of functions on [0, 1]. The weight is given by (2.2), that is,

w(x) := w(γ0, γ1;x) := xγ0(1− x)γ1 , γ0, γ1 ≥ 0.

We will make use of the K-functionals:

Km(f, t)w := inf
g∈ACm−1

loc (0,1)

{
∥w(f − g)∥+ t∥wg(m)∥

}
(1.4)

and

Km,φ(f, t)w := inf
g∈ACm−1

loc (0,1)

{
∥w(f − g)∥+ t∥wφmg(m)∥

}
,(1.5)

where φ(x) :=
√
x(1− x). For the unweighted case w = 1 we set

Km,φ(f, t) := Km,φ(f, t)1.

Similarly to (1.3), we have

(1.6) Km(f, t
m)w ∼ ωm(f, t)w, 0 < t ≤ 1,

where the weighted modulus of smoothness ωm(f, t)w is defined by

(1.7) ωm(f, t)w := sup
0<h≤t

∥w
−→
∆m

h f∥[0,3/4] + sup
0<h≤t

∥w
←−
∆m

h f∥[1/4,1].

If γ1 = 0, we can use the simpler form

ωm(f, t)w := sup
0<h≤t

∥w
−→
∆m

h f∥,

and similarly in the case γ0 = 0.
In the case w = 1 we will rather use ωm(f, t), that is, we set

ωm(f, t)1 := ωm(f, t).

13



Chapter 1. Basic K-functionals and moduli of smoothness

One generalization of the classical moduli, which is equivalent to the K-
functional Km,φ(f, t

m), was introduced by Ditzian and Totik [23, (2.1.2)]. In
the unweighted case w = 1 it is given by

ωm
φ (f, t) := sup

0<h≤t
∥∆̄m

hφf∥.

Similarly, we can use forward or backward differences (see [23, Section 3.2]).
The generalization of that modulus of smoothness to the weighted case

is more complicated. For γ0, γ1 > 0 it is defined by (see [23, Appendix B])

(1.8) ωm
φ (f, t)w := sup

0<h≤t
∥w∆̄m

hφf∥[m2t2,1−m2t2] + sup
0<h≤m2t2

∥w
−→
∆m

h f∥[0,12m2t2]

+ sup
0<h≤m2t2

∥w
←−
∆m

h f∥[1−12m2t2,1],

where 0 < t ≤ 1/(m
√
2).

When either γ0 or γ1 are equal to 0, its definition is modified as in the
case of ωm(f, t)w.

We set
ωm
φ (f, t)1 := ωm

φ (f, t).

The weighted Ditzian-Totik modulus of smoothness possesses similar prop-
erties like the classical one, which were often established for 0 < t ≤ t0 with
t0 > 0 independent of f (see [23, Chapters 4 and 6] and [24]). In particular,
as it was shown in [23, Theorems 2.1.1 and 6.1.1], there exists t0 such that

(1.9) Km,φ(f, t
m)w ∼ ωm

φ (f, t)w, 0 < t ≤ t0.

It was shown in [72, Theorem 2.7] that we can take t0 = 2/r. A smaller value
of t0 was given in [18, Chapter 6, Theorem 6.2].

Earlier, weighted moduli of smoothness, which are equivalent to K-func-
tionals such as Km,φ(f, t) with general weight φ, were introduced by Ivanov
[56, 57, 58, 59, 60]. A modification of the Ditzian-Totik modulus of smooth-
ness was considered by Dzyadyk, Kopotun, Leviatan and Shevchuk [38, 71,
72, 73, 74, 75]. K-functionals such as Km,φ(f, t)w again with general φ were
characterized by the classical moduli of smoothness but taken on certain lin-
ear transform of the function in [34, 36, 37]. All aforementioned results were
established in Lp-spaces with 1 ≤ p ≤ ∞ and spaces of continuous functions.

14



Chapter 2

Embedding inequalities

We will extensively use embedding inequalities, that is, inequalities for the
norms of intermediate derivatives, in order to simplify estimates or show
that certain integrals are well-defined. Such inequalities are typical for that
setting; see e.g. [8, Lemmas 2, 3 and 4], [23, p. 135], [53, Lemma 2] and [54,
pp. 127-128].

First, we recall the well-known inequality (e.g. [18, Chapter 2, Theorem
5.6])

(2.1) ∥f (j)∥J ≤ c
(
∥f∥J + ∥f (m)∥J

)
, j = 0, . . . ,m,

where J is an interval on the real line and f ∈ Wm
∞(J).

Next, we will establish a generalization of [23, p. 135, (a) and (b)] by
means of an argument similar to the one used there. We set

(2.2) w(x) := w(γ0, γ1;x) := xγ0(1− x)γ1 , γ0, γ1 ≥ 0.

Proposition 2.1. Let j,m ∈ N0 as j < m. Let wµ := w(γµ,0, γµ,1) be given
by (2.2) with γµ,0, γµ,1 > 0 for µ = 1, 2 and let γ2,ν ≤ γ1,ν+m−j for ν = 0, 1.
Let also g ∈ ACm−1

loc (0, 1) be such that w2g
(m) ∈ L∞[0, 1]. Then

∥w1g
(j)∥ ≤ c

(
∥g∥[1/4,3/4] + ∥w2g

(m)∥
)
.

The value of the constant c is independent of g.

15



Chapter 2. Embedding inequalities

Proof. Let x ∈ [0, 1/2]. By Taylor’s formula we have

g(j)(x) =

m−j−1∑
i=0

g(i+j)(1/2)

i!

(
x− 1

2

)i

+
1

(m− j − 1)!

∫ x

1/2

(x− u)m−j−1g(m)(u) du.

Consequently, for x ∈ [0, 1/2] we have

(2.3) xγ1,0|g(j)(x)| ≤ xγ1,0
m−j−1∑
i=0

∣∣∣∣g(i+j)

(
1

2

)∣∣∣∣+ m−j−1∑
k=0

ψk(x),

where we have set

ψk(x) := xk+γ1,0

∫ 1/2

x

um−j−k−1|g(m)(u)| du, k = 0, . . . ,m− j − 1.

Clearly, by (2.1), we have

(2.4)

∣∣∣∣g(j)(1

2

)∣∣∣∣ ≤ c
(
∥g∥[1/4,1/2] + ∥g(m)∥[1/4,1/2]

)
, j = 0, . . . ,m− 1.

We set χ(x) := x. We get for x ∈ (0, 1/2]

ψk(x) ≤ xk+γ1,0

∫ 1/2

x

u−γ1,0−k−1du ∥χm+γ1,0−jg(m)∥[0,1/2]

≤ 1

γ1,0
∥χγ2,0g(m)∥[0,1/2], k = 0, . . . ,m− j − 1,

(2.5)

as for the second estimate above we have used that γ2,0 ≤ γ1,0 +m− j.
Now, (2.3)-(2.5) imply the inequality

(2.6) ∥χγ1,0g(j)∥[0,1/2] ≤ c
(
∥g∥[1/4,1/2] + ∥χγ2,0g(m)∥[0,1/2]

)
.

By symmetry, we get

(2.7) ∥(1− χ)γ1,1g(j)∥[1/2,1] ≤ c
(
∥g∥[1/2,3/4] + ∥(1− χ)γ2,1g(m)∥[1/2,1]

)
.

The last two estimates yield the assertion of the proposition.
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Chapter 2. Embedding inequalities

For an easier reference, we collect in the next propositions a number of
particular corollaries of Proposition 2.1 and (2.1), which we will use later on.

Proposition 2.2. Let m ∈ N+, w := w(γ0, γ1) be given by (2.2) with γ0, γ1 ≥
0, φ(x) :=

√
x(1− x) and g ∈ C[0, 1] be such that g ∈ ACm−1

loc (0, 1).

(a) If wφ2mg(m) ∈ L∞[0, 1], then

∥wφ2jg(j)∥ ≤ c
(
∥wg∥+ ∥wφ2mg(m)∥

)
, j = 0, . . . ,m.

(b) If wφmg(m) ∈ L∞[0, 1], then

∥wφjg(j)∥ ≤ c
(
∥wg∥+ ∥wφmg(m)∥

)
, j = 0, . . . ,m.

(c) If wg(m) ∈ L∞[0, 1], then

∥wg(j)∥ ≤ c
(
∥wg∥+ ∥wg(m)∥

)
, j = 0, . . . ,m.

The value of the constant c is independent of g.

Proof. We need to consider j = 1, . . . ,m− 1, m ≥ 2.
Assertion (a) follows from Proposition 2.1 with w1 = wφ2j, w2 = wφ2m.
Likewise, to get (b) we apply Proposition 2.1 with w1 = wφj and w2 =

wφm.
Assertion (c) with γ0, γ1 > 0 follows from Proposition 2.1 with w1 = w2 =

w, whereas for γ0 = γ1 = 0 it reduces to (2.1). In order to treat the cases
when one of the weight exponents is positive and the other is 0, we just
need to estimate |xγ0g(j)(x)| on [0, 1/2], and |(1 − x)γ1g(j)(x)| on [1/2, 1] by
Proposition 2.1, or (2.1) depending on whether γi > 0 or γi = 0.

Proposition 2.3. Let r ∈ N+, φ(x) :=
√
x(1− x) and g ∈ C[0, 1] be such

that g ∈ AC2r−1
loc (0, 1) and φ2rg(2r) ∈ L∞[0, 1].

(a) If r ≥ 2, then φ2g′′ ∈ L∞[0, 1] and

(2.8) ∥φ2g(i)∥ ≤ c
(
∥φ2g′′∥+ ∥φ2rg(2r)∥

)
, i = 3, . . . , r + 1.

(b) If r ≥ 3, then

∥φ2ig(i+r)∥ ≤ c
(
∥φ2g′′∥+ ∥φ2rg(2r)∥

)
, i = 2, . . . , r − 1.

17



Chapter 2. Embedding inequalities

The value of the constant c is independent of g.

Proof. To prove (a), we first apply Proposition 2.2(b) with w = 1, j = 2 and
m = 2r. Then we use Proposition 2.1 with g′′ in place of g, w1 = φ2 and
w2 = φ2r, m = 2r − 2 and j = i− 2 to get (2.8).

Similarly, (b) follows from Proposition 2.1 with g′′ in place of g, w1 = φ2i,
w2 = φ2r, m = 2r − 2 and j = i+ r − 2.

Proposition 2.4. Let φ(x) :=
√
x(1− x) and g ∈ C[0, 1] be such that g ∈

AC5
loc(0, 1) and φ6g(6) ∈ L∞[0, 1]. Then φ2g(4), φ4g(5) ∈ L∞(φ)[0, 1] too, as

moreover

∥φ2g(4)∥ ≤ c
(
∥φ4g(4)∥+ ∥φ6g(6)∥

)
(2.9)

and

∥φ4g(5)∥ ≤ c
(
∥φ4g(4)∥+ ∥φ6g(6)∥

)
.(2.10)

The value of the constant c is independent of g.

Proof. The assertion follows from Proposition 2.1 with g(4) in place of g,
w1 = φ2(j+1), w2 = φ6, m = 2 and j = 0, 1.

We proceed to several embedding inequalities, which will enable us to
transfer estimates in terms of the semi-norms ∥wφ2ig(j)∥ to such in terms
of the more complicated one ∥w(Drg)(s)∥, where Dg := φ2g′′ and φ(x) :=√
x(1− x). Their proof is based on the following Taylor-type formulas.

Lemma 2.5. Let s ∈ N+ and g ∈ ACs+1[0, 1].

(a) If s ≥ 2, then

g(s)(x) =

∫ 1

0

Ks(x, u) (Dg)
(s)(u) du, x ∈ [0, 1],

where

Ks(x, u) := −
1

s− 1


(u
x

)s−1

, u ≤ x,(
1− u
1− x

)s−1

, x ≤ u.

18



Chapter 2. Embedding inequalities

(b) If s ≥ 1, then

g(s+1)(x) =

∫ 1

0

Ls(x, u) (Dg)
(s)(u) du, x ∈ [0, 1],

where

Ls(x, u) :=


us−1

xs
, u ≤ x,

−(1− u)s−1

(1− x)s
, x < u.

Proof. Assertion (a) is verified by integration by parts. More precisely, we
expand (Dg)(s)(u) to get

(2.11) (Dg)(s)(u) = −s(s−1)g(s)(u)+s(1−2u)g(s+1)(u)+u(1−u)g(s+2)(u).

Next, we evaluate the integral∫ 1

0

Ks(x, u)
[
s(1− 2u)g(s+1)(u) + u(1− u)g(s+2)(u)

]
du.

We get by integration by parts∫ x

0

us−1
[
s(1− 2u)g(s+1)(u) + u(1− u)g(s+2)(u)

]
du

= xs(1− x)g(s+1)(x)− (s− 1)

∫ x

0

usg(s+1)(u) du

= xs(1− x)g(s+1)(x)− (s− 1)xsg(s)(x) + s(s− 1)

∫ x

0

us−1g(s)(u) du

and ∫ 1

x

(1− u)s−1
[
s(1− 2u)g(s+1)(u) + u(1− u)g(s+2)(u)

]
du

= −x(1− x)sg(s+1)(x) + (s− 1)

∫ 1

x

(1− u)sg(s+1)(u) du

= −x(1− x)sg(s+1)(x)− (s− 1)(1− x)sg(s)(x)

+ s(s− 1)

∫ 1

x

(1− u)s−1g(s)(u) du.
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Chapter 2. Embedding inequalities

Consequently,∫ 1

0

Ks(x, u)
[
s(1− 2u)g(s+1)(u) + u(1− u)g(s+2)(u)

]
du

= g(s)(x) + s(s− 1)

∫ 1

0

Ks(x, u) g
(s)(u) du,

which, in view of (2.11), completes the proof of (a).
Assertion (b) for s ≥ 2 is directly verified by differentiating the formula

in (a). If s = 1, we just have

1

x

∫ x

0

(Dg)′(u) du =
Dg(x)

x
= (1− x)g′′(x)

and

− 1

1− x

∫ 1

x

(Dg)′(u) du =
Dg(x)

1− x
= xg′′(x).

Hence (b) for s = 1 follows.

Proposition 2.6. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as
0 ≤ γ0, γ1 < s. Set js := 1 if s = 1, and js := 0 otherwise. Then for all
g ∈ AC2r+s−1[0, 1] there hold

∥wg(j+s)∥ ≤ c ∥w(Drg)(s)∥, j = js, . . . , r,(2.12)

and

∥wφ2rg(2r+s)∥ ≤ c ∥w(Drg)(s)∥.(2.13)

The value of the constant c is independent of g.

Proof. We will establish the assertions by induction on r. In order to verify
them for r = 1 we apply Lemma 2.5 and estimate the integrals in the formulas
in there.

We set

Ψ1(x) := x−s+1

∫ x

0

us−1(Dg)(s)(u) du,

Ψ2(x) := x−s

∫ x

0

us−1(Dg)(s)(u) du.
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Chapter 2. Embedding inequalities

and, to recall, χ(x) := x. Clearly,

(2.14) ∥wΨ1∥ ≤ ∥wΨ2∥.

We will estimate the sup-norm of wΨ2 separately on the intervals [0, 1/2] and
[1/2, 1].

For the estimate on [0, 1/2] we use that s−γ0 > 0 to arrive for x ∈ (0, 1/2]
at

|xγ0Ψ2(x)| ≤ xγ0−s

∫ x

0

us−γ0−1du ∥χγ0(Dg)(s)∥[0,1/2]

=
1

s− γ0
∥χγ0(Dg)(s)∥[0,1/2].

Consequently,

(2.15) ∥χγ0Ψ2∥[0,1/2] ≤ c ∥w(Dg)(s)∥[0,1/2].

Let x ∈ [1/2, 1). Since γ1 ≥ 0, then (1− u)−γ1 ≤ (1− x)−γ1 for u ∈ [0, x].
Therefore,

|(1− x)γ1Ψ2(x)| ≤ (1− x)γ1
∫ x

0

us−γ0−1(1− u)−γ1du ∥w(Dg)(s)∥

≤
∫ x

0

us−γ0−1du∥w(Dg)(s)∥

=
1

s− γ0
∥w(Dg)(s)∥.

Thus

(2.16) ∥(1− χ)γ1Ψ2∥[1/2,1] ≤ c ∥χγ0(Dg)(s)∥.

Inequalities (2.14)-(2.16) imply

∥wΨ1∥ ≤ ∥wΨ2∥ ≤ c ∥w(Dg)(s)∥.

By symmetry, we get the analogue of the last estimates for the terms

(1− x)−s+i

∫ 1

x

(1− u)s−1(Dg)(s)(u) du, i = 0, 1.
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Chapter 2. Embedding inequalities

Thus, we establish that∥∥∥∥w ∫ 1

0

Ks(◦, u) (Dg)(s)(u) du
∥∥∥∥ ≤ c ∥w(Dg)(s)∥, s ≥ 2,

and ∥∥∥∥w ∫ 1

0

Ls(◦, u) (Dg)(s)(u) du
∥∥∥∥ ≤ c ∥w(Dg)(s)∥, s ≥ 1.

Now, we complete the proof of inequalities (2.12) for r = 1 by Lemma 2.5.
Then (2.13) follows from (2.11). The proposition is established for r = 1.

We proceed by induction on r, so let us assume that (2.12)-(2.13) are
valid for some r. Then applying (2.12) with Dg in place of g, we arrive at

(2.17) ∥w(Dg)(j+s)∥ ≤ c ∥w(Dr+1g)(s)∥, j = js, . . . , r.

On the other hand, by what we have already shown in the case r = 1, we
have

(2.18) ∥wg(j′+j+s)∥ ≤ c ∥w(Dg)(j+s)∥, j′ = 0, 1.

Let us note that jj+s = 0 because j + s ≥ 2 for j ≥ js.
Now, (2.17)-(2.18) yield

∥wg(j+s)∥ ≤ c ∥w(Dr+1g)(s)∥, j = js, . . . , r + 1.

Thus (2.12) is verified for r + 1 in place of r.
To complete the proof of (2.13), we need to show that

∥wφ2r+2g(2r+s+2)∥ ≤ c ∥w(Dr+1g)(s)∥.

In view of (2.11) with 2r+s in place of s, that will follow from the inequalities

∥wφ2r(Dg)(2r+s)∥ ≤ c ∥w(Dr+1g)(s)∥(2.19)

and

∥wφ2rg(j+2r+s)∥ ≤ c ∥w(Dr+1g)(s)∥, j = 0, 1.(2.20)

Inequality (2.19) follows from (2.13) with Dg in place of g. To establish
(2.20) we first apply (2.12) with r = 1, wφ2r in place of w, and 2r + s in
place of s and thus get

(2.21) ∥wφ2rg(j+2r+s)∥ ≤ c ∥wφ2r(Dg)(2r+s)∥, j = 0, 1.

Inequalities (2.19) and (2.21) imply (2.20).
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Chapter 2. Embedding inequalities

The last inequalities are due to Gonska and Zhou [53, (1), (2) and (4)].
We include them for an easier reference.

Proposition 2.7. For f ∈ C2r[0, 1] there hold:

(a) ∥Drf∥ ≤ c
(
∥f∥+ ∥φ2rf (2r)∥

)
;

(b) ∥φ2rf (2r)∥ ≤ c ∥Drf∥;

(c) ∥Djf∥ ≤ c ∥Drf∥, j = 1, . . . , r.

The value of the constant c is independent of f .

Actually, Gonska and Zhou [53] stated the assertions above only for al-
gebraic polynomials since that was what they needed, but the same consid-
erations verify them for all functions in C2r[0, 1].

Remark 2.8. There is an elegant Taylor-type formula through which the
embedding inequalities in Proposition 2.7 can be verified.

Let f ∈ AC1
loc(0, 1) be such that

lim
x→0

f(x) = lim
x→1

f(x) = 0 and lim
x→0

φ2(x)f ′(x) = lim
x→1

φ2(x)f ′(x) = 0.

Then

(2.22) f(x) =

∫ 1

0

[xu−min{x, u}]f ′′(u) du, x ∈ [0, 1].

This formula is verified by integration by parts.
If f ∈ AC1

loc(0, 1) is such that φ2f ′′ ∈ L∞[0, 1], then

f ′(x) = f ′
(
1

2

)
+

∫ x

1/2

f ′′(t) dt, x ∈ (0, 1/2];

hence

|xf ′(x)| ≤ x

∣∣∣∣f ′
(
1

2

)∣∣∣∣+ 2x| lnx| ∥φ2f ′′∥, x ∈ (0, 1/2],

and we arrive at limx→0 φ
2(x)f ′(x) = 0.

By symmetry, we get limx→1 φ
2(x)f ′(x) = 0 as well.
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Chapter 2. Embedding inequalities

Thus, if f ∈ C[0, 1] is such that f(0) = f(1) = 0, f ∈ AC1
loc(0, 1) and

φ2f ′′ ∈ L∞[0, 1], then formula (2.22) is applicable and yields

|f(x)| ≤
∫ 1

0

min{x, u} − xu
φ2(u)

du ∥Df∥, x ∈ [0, 1].

Hence, taking into account that,∫ 1

0

min{x, u} − xu
φ2(u)

du = −x log x− (1− x) log(1− x) ≤ log 2, x ∈ (0, 1),

we arrive at the inequality

∥f∥ ≤ log 2 ∥Df∥.

Iterating it, we get Proposition 2.7(c) for f ∈ C2r−2[0, 1] such that f (2r−2) ∈
AC1

loc(0, 1).
Formula (2.22) can be extended. Let r ∈ N+ and f ∈ C2r−2[0, 1] be such

that f (2r−2) ∈ AC1
loc(0, 1) and f(0) = f(1) = 0. Then

(2.23) f(x) =

∫ 1

0

Kr(x, u)D
rf(u) du, x ∈ [0, 1],

where the kernel is defined by the recurrence relation

K1(x, u) :=
xu−min{x, u}

φ2(u)
, Kj+1(x, u) :=

∫ 1

0

Kj(x, v)K1(v, u) dv.

This kernel possesses various properties. They include the symmetries

Kj(x, u) = Kj(u, x), Kj(x, u) = Kj(1− x, 1− u)

and the relation

φ2(x)
∂2Kj+1

∂x2
(x, u) = Kj(x, u).

However, its explicit form is quite complicated even for j = 2. So it is easier
to verify Proposition 2.7 (a) and (b) by the method used by H. Gonska and
X.-l. Zhou rather than by (2.23).
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Chapter 3

Weighted simultaneous
approximation by the Bernstein
operator

3.1 Background

As it follows from a result due to Voronovskaya [99], the Bernstein operator
(0.1) cannot approximate a function with a rate faster than n−1 unless it
preserves it. To recall, Voronovskaya’s classic result states (see e.g. [18,
Chapter 10, Theorems 3.1 and 5.1])

(3.1) lim
n→∞

n (Bnf(x)− f(x)) =
x(1− x)

2
f ′′(x) uniformly on [0, 1]

for f ∈ C2[0, 1].
This is known as saturation of an approximation process (see [13, Defini-

tion 12.0.2], or [18, p. 336]). Thus the sequence of approximating operators
{Bn}∞n=1 is saturated, as its saturation rate is n−1.

Relation (3.1) shows that the differential operator which describes the rate
of approximation of Bn (up to a constant multiple) is Df(x) := φ2(x)f ′′(x)
with φ(x) :=

√
x(1− x). A quantitative description of this rate is given by

(see (0.3)-(0.4))

(3.2) ∥Bnf − f∥ ∼ ω2
φ(f, n

−1/2), n ≥ n0,

with some n0 ∈ N+, which is independent of f ∈ C[0, 1].
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operator

It is known that the derivatives of the Bernstein polynomial of a smooth
function approximate the corresponding derivatives of the function (see [18,
Chapter 10, Theorem 2.1]). López-Moreno, Mart́ınez-Moreno and Muñoz-
Delgado [77] and Floater [40] extended (3.1), showing that for f ∈ Cs+2[0, 1]
we have

(3.3) lim
n→∞

n
(
(Bnf(x))

(s) − f (s)(x)
)
=

1

2
(Df(x))(s) uniformly on [0, 1].

Hence the differential operator that describes the simultaneous approxima-
tion by Bn is (d/dx)sD. Results about the rate of convergence in (3.3) were
established in [46, 47, 52].

The first quantitative result for the simultaneous approximation by means
of Bn was given by Popoviciu [87] (or see [12, p. 232]). It states

∥(Bnf)
(s) − f (s)∥ ≤ 3 + 2

√
s

2
ω1

(
f (s),

1√
n− s

)
+
s(s− 1)

2n
∥f (s)∥, n > s.

Numerous improvements of this estimate have been established since then
(see [6, 40, 44, 67, 69, 92] and [12, Section 4.6]). Approximation in Hölder
norms was considered in [49, 50], and in the uniform and the Hausdorff
metrics in [88, 89].

To the best of my knowledge, all but one estimate established previously
(see Remark 3.6 below) use the classical fixed-step modulus of smoothness
of first and second order. The estimates we will prove use the Ditzian-Totik
modulus and take into account that the approximation is better near the
ends of the interval, besides we consider approximation generally in weighted
spaces. Moreover, we also establish matching converse inequalities, which
show that the direct estimates are sharp. A point-wise direct inequality,
which demonstrates that the approximation improves near the ends of the
interval was established by Jiang [61] (or see [12, p. 237]), who proved for
the first derivative that

|(Bnf(x))
′ − f ′(x)| ≤ 13

4
ω2

(
f ′,

2φ(x)√
n− 1

)
+ ω1(f

′, n−1).

We consider simultaneous approximation by Bn with the Jacobi weights
(2.2):

w(x) := w(γ0, γ1;x) := xγ0(1− x)γ1 , x ∈ [0, 1],

where γ0, γ1 ≥ 0.
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3.2. One elementary result

To characterize the rate of the simultaneous approximation by Bn, we
will use the K-functional

KD
s (f, t)w := inf

g∈Cs+2[0,1]

{
∥w(f − g(s))∥+ t∥w(Dg)(s)∥

}
.

However, we will not directly relate this K-functional to the norm of the
error ∥w(Bnf)

(s)− f (s))∥. It is much easier to establish estimates in terms of
the norms of the components into which (Dg)(s) expands and then making
use of certain embedding inequalities we can get to estimates in terms of
∥w(Dg)(s)∥. That will allow us not only to avoid some technical difficulties,
but also to derive characterizations of ∥w(Bnf − f)(s)∥ both by the more
natural K-functional KD

s (f, t)w and by the more useful ones K2,φ(f, t)w and
K1(f, t)w.

3.2 One elementary result

We begin with one direct estimate of the sup-norm of the error of simultane-
ous approximation by Bn, which is quite straightforward to get. We include
it here because it is based on a neat representation of the derivatives of
the Bernstein polynomial. Its shortcoming, however, is an additional factor,
which appears with this derivative and depends on n.

In all our considerations, c denotes a positive constant, not necessarily the
same at each occurrence, which is independent of the approximated function
and the order of the approximation operator.

Theorem 3.1. Let s ∈ N+. Then there exists n0 ∈ N+ with n0 > s such
that for f ∈ Cs[0, 1] and n ≥ n0 there holds∥∥∥∥ns(n− s)!

n!
(Bnf)

(s) − f (s)

∥∥∥∥ ≤ c
(
ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1)

)
.

The value of the constant c is independent of f and n.

Proof. It is known (see [83] or [18, Chapter 10, (2.3)], [23, p. 125]) that for
n ≥ s

(3.4) (Bnf)
(s)(x) =

n!

(n− s)!

n−s∑
k=0

−→
∆s

1/nf

(
k

n

)
pn−s,k(x).
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operator

We set

D̃s,nf(x) := ns−→∆s
1/nf

(
n− s
n

x

)
, x ∈ [0, 1].

Then by (3.4)

(3.5)
ns(n− s)!

n!
(Bnf)

(s)(x) = Bn−s(D̃s,nf)(x), x ∈ [0, 1].

Hence ∥∥∥∥ns(n− s)!
n!

(Bnf)
(s) − f (s)

∥∥∥∥ = ∥Bn−s(D̃s,nf)− f (s)∥

≤ ∥Bn−s(D̃s,nf)−Bn−s(f
(s))∥+ ∥Bn−s(f

(s))− f (s)∥
≤ ∥D̃s,nf − f (s)∥+ ∥Bn−s(f

(s))− f (s)∥.

By virtue of (0.3), we have

(3.6) ∥Bn−s(f
(s))− f (s)∥ ≤ c ω2

φ(f
(s), n−1/2), n ≥ n0,

where n0 ∈ N+ is independent of f .
To estimate ∥D̃s,nf − f (s)∥ we use that the finite forward difference of

order s of f ∈ ACs−1[a, b] can be represented in the integral form

(3.7)
−→
∆s

hf(x) = hs−1

∫ sh

0

Ms(u/h)f
(s)(x+ u) du, x ∈ [a, b− sh],

whereMs is the s-fold convolution of the characteristic function of [0, 1] with
itself (see e.g. [18, p. 45]). Consequently,

D̃s,nf(x) = n

∫ s/n

0

Ms(nu)f
(s)

(
n− s
n

x+ u

)
du, x ∈ [0, 1],

and

|D̃s,nf(x)− f (s)(x)|

≤ n

∫ s/n

0

Ms(nu)

∣∣∣∣f (s)

(
n− s
n

x+ u

)
− f (s)(x)

∣∣∣∣ du
≤ c ω1(f

(s), n−1), x ∈ [0, 1].

(3.8)

Above we have used that ∫ s

0

Ms(u) du = 1.

Now, (3.6) and (3.8) imply the assertion of the theorem.
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3.3. A characterization of the rate of the weighted simultaneous
approximation by the Bernstein operator

Remark 3.2. Based on Ditzian [20], Jiang and Xie [62] (or see [63, (16)])
gave a pointwise version of the estimate in Theorem 3.1.

3.3 A characterization of the rate

of the weighted simultaneous approxima-

tion by the Bernstein operator

We will establish the following direct estimate of the rate of simultaneous
approximation by the Bernstein operator.

Theorem 3.3. Let s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as 0 ≤
γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and wf (s) ∈
L∞[0, 1], and all n ∈ N+ there holds

(3.9) ∥w(Bnf − f)(s)∥ ≤ cKD
s (f (s), n−1)w.

The value of the constant c is independent of f and n.

This estimate can be simplified. The K-functional KD
s (f, t)w can be

characterized by the simpler K1(f, t)w and K2,φ(f, t)w given in (1.4) and
(1.5). We will show in Theorem 4.4 in the next chapter that if 0 < γ0, γ1 < s,
then for all wf ∈ L∞[0, 1] and 0 < t ≤ 1 there holds

(3.10) KD
s (f, t)w ∼

K2,φ(f, t)w +K1(f, t)w, s = 1,

K2,φ(f, t)w + t ∥wf∥, s ≥ 2.

The result in the case w = 1 is of a different form (Theorem 4.5):

(3.11) KD
s (f, t)1 ∼

K2,φ(f, t) +K1(f, t), s = 1,

K2,φ(f, t) +K1(f, t) + t ∥f∥, s ≥ 2,

for all f ∈ C[0, 1] and 0 < t ≤ 1. The characterization of KD
s (f, t)w in the

case when one of the γs is 0 and the other is positive is a “mixture” of (3.10)
and (3.11).

Remark 3.4. Let us note that the assertion in (3.10) in the case s = 1
actually holds for all 0 ≤ γ0, γ1 < 1, as it will be briefly shown in the proof
of Theorem 4.4 in Section 4.7.

29



Chapter 3. Weighted simultaneous approximation by the Bernstein
operator

Further, we can take into account that K1(f, t)w is equivalent to the
weighted modulus of smoothness ω1(f, t)w, and K2,φ(f, t

2)w is equivalent to
the weighted Ditzian-Totik modulus of smoothness ω2

φ(f, t)w (see (1.6) and
(1.9)) to get the following Jackson-type estimates.

Theorem 3.5. Let s ∈ N+ and w := w(γ0, γ1) be given by (2.2). Then for all
f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all n ∈ N+

there holds

∥w(Bnf − f)(s)∥

≤ c



ω2
φ(f

′, n−1/2)w + ω1(f
′, n−1)w, s = 1, 0 ≤ γ0, γ1 < 1,

ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1) +

1

n
∥f (s)∥, s ≥ 2, γ0 = γ1 = 0,

ω2
φ(f

(s), n−1/2)w +
1

n
∥wf (s)∥, s ≥ 2, 0 < γ0, γ1 < s.

The value of the constant c is independent of f and n.

Note that the direct estimates are stated for all n ∈ N+, whereas the
equivalence between K2,φ(F, t

2) and ω2
φ(F, t) was established for t > 0 small

enough (see (1.9)). We will give brief details how we can get rid of this
limitation when we consider the generalization of the Bernstein operator
given by its iterated Boolean sum in Theorems 4.7 and 4.8.

Remark 3.6. Jiang and Xie [62] (or see [12, Theorem 4.57]) proved a point-
wise direct estimate, which implies the estimate in Theorem 3.5 in the case
s ≥ 2, γ0 = γ1 = 0. It also follows from Theorem 3.1.

Remark 3.7. The range of γ0 and γ1 in Theorems 3.3 and 3.5 is the broadest
possible, which allows direct estimates under natural assumptions on the
functions (see Remark 3.15 below).

The direct estimates stated above are sharp—the following strong con-
verse estimate holds.

Theorem 3.8. Let s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as 0 ≤
γ0, γ1 < s. Then there exists R ∈ N+ such that for all f ∈ C[0, 1] with
f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all k, n ∈ N+ with k ≥ Rn there
holds

KD
s (f (s), n−1)w ≤ c

k

n

(
∥w(Bnf − f)(s)∥+ ∥w(Bkf − f)(s)∥

)
.
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3.4. Auxiliary identities for the Bernstein operator

In particular,

KD
s (f (s), n−1)w ≤ c

(
∥w(Bnf − f)(s)∥+ ∥w(BRnf − f)(s)∥

)
.

The value of the constant c is independent of f , n and k.

Remark 3.9. Let us note that the last estimate in Theorem 3.5 is, in general,
not true in the case s ≥ 2, γ0γ1 = 0. To avoid certain technical details we
will show that for γ0 = γ1 = 0. Let f (s)(x) = x log x. Then f (s), φ2f (s+2) ∈
L∞[0, 1] but f (s+1) ̸∈ L∞[0, 1]. If the last estimate in Theorem 3.5 was true
for s ≥ 2, γ0 = γ1 = 0, then the last assertion of Theorem 3.8 and (3.11)
would imply K1(f

(s), n−1) = O(n−1); hence f (s+1) ∈ L∞[0, 1] (see Chapter
1 or [18, Chapter 2, Theorem 9.3 and Chapter 6, Theorem 2.4]), which is a
contradiction.

Remark 3.10. We have stated Theorems 3.3, 3.5 and 3.8 under mini-
mal assumptions on f . However, we have an approximation if and only
if limt→0 ω

2
φ(f

(s), t)w = 0 and, in addition, limt→0 ω1(f
(s), t)w = 0 in the cases

s = 1, 0 ≤ γ0, γ1 < 1 or s ≥ 2, γ0 = γ1 = 0. In the case w = 1, we have
limt→0 ω1(g, t) = 0 if and only if g ∈ C[0, 1]; similarly limt→0 ω

2
φ(g, t) = 0 if

and only if g ∈ C[0, 1] (considering two functions which are equal a.e. with
regard to the Lebesgue measure as identical); see [23, p. 37]. If γ0 > 0, then
we must have that g(x) is continuous on (0, 1) and limx→0 x

γ0g(x) = 0; if
γ1 > 0, then we must have limx→1(1− x)γ1g(x) = 0 (see e.g. [35, p. 94]).

In the following two sections we will establish a number of auxiliary results
we need to prove the theorems stated above. Some of this results are of inde-
pendent importance since they describe the approximation rate for smooth
functions. They include Jackson- and Voronovskaya-type inequalities. The
proof of Theorems 3.3 and 3.8 are given in Section 3.6

3.4 Auxiliary identities for the Bernstein op-

erator

In this section we will present several technical results for the Bernstein
operator, which we will use.

Direct computation yields the following formulas for the derivatives of
the polynomials pn,k, k = 0, . . . , n (see e.g. [18, Chapter 10, (2.1)]):

p′n,k(x) = n[pn−1,k−1(x)− pn−1,k(x)](3.12)
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operator

and

p′n,k(x) = φ−2(x)(k − nx)pn,k(x),(3.13)

where we have set for convenience pn,k = 0 if k < 0 or k > n.
For a sequence {ak}k∈Z we set ∆ak := ak−ak−1. Now, if we put pk(n, x) :=

pn,k(x), then iterating (3.12) we get

(3.14) p
(s)
n,k(x) = (−1)s n!

(n− s)!
∆spk(n− s, x).

Similarly, using (3.13), it is verified by induction that (cf. [23, (9.4.8)])

p
(s)
n,k(x) = φ−2s(x) pn,k(x)

s∑
j=0

(k − nx)j
∑

0≤i≤(s−j)/2

qs,j,i(x)
(
nφ2(x)

)i
,

where qs,j,i(x) are polynomials, whose coefficients are independent of n. Re-
arranging the summands, we get

(3.15) p
(s)
n,k(x) = φ−2s(x) pn,k(x)

∑
0≤i≤s/2

(
nφ2(x)

)i s−2i∑
j=0

qs,j,i(x)(k − nx)j.

We will often use the quantities

Tn,ℓ(x) :=
n∑

k=0

(k − nx)ℓpn,k(x).

It is known (see [18, Chapter 10, Theorem 1.1]) that

(3.16) Tn,ℓ(x) =
∑

1≤ρ≤ℓ/2

tℓ,ρ(x)
(
nφ2(x)

)ρ
, ℓ ∈ N+,

where tℓ,ρ(x) are polynomials, whose coefficients are independent of n.
In particular (see e.g. [18, p. 304] and [79, p. 14]),

Tn,0(x) = 1, Tn,1(x) = 0, Tn,2(x) = nφ2(x),

Tn,3(x) = (1− 2x)nφ2(x),

Tn,4(x) = 3n2φ4(x) + nφ2(x)(1− 6φ2(x)).

(3.17)
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3.4. Auxiliary identities for the Bernstein operator

Identity (3.16) implies (see also [23, Lemma 9.4.4]) that

(3.18) 0 ≤ Tn,2m(x) ≤ c

{
nφ2(x), nφ2(x) ≤ 1,

(nφ2(x))
m
, nφ2(x) ≥ 1.

Let α > 0. We fix m ∈ N+ such that 2m/α > 1. Then Hölder’s inequality,
(3.18) and the identity

∑n
k=0 pn,k(x) ≡ 1 imply

0 ≤
n∑

k=0

|k − nx|αpn,k(x) ≤ T
α/(2m)
n,2m (x)

≤ c

{
1, nφ2(x) ≤ 1,

(nφ2(x))
α/2

, nφ2(x) ≥ 1.

(3.19)

We will need the analogue of Tn,ℓ associated with the differentiated Bern-
stein polynomial. We set

Ts,n,ℓ(x) :=
n∑

k=0

(k − nx)ℓp(s)n,k(x).

The following formula, similar to (3.16), holds.

Lemma 3.11. Let ℓ, n, s ∈ N+. Then

Ts,n,ℓ(x) =
s∑

ρ=1

t̃s,ℓ,ρ(x)n
ρ + ns

∑
1≤ρ≤(ℓ−s)/2

ts,ℓ,ρ(x)
(
nφ2(x)

)ρ
,

where ts,ℓ,ρ(x) and t̃s,ℓ,ρ(x) are polynomials, whose coefficients are indepen-
dent of n.

Above we follow the usual convention that an empty sum is considered
to be equal to 0.

Proof of Lemma 3.11. Let ℓ ≥ 2. We apply (3.15). Then we sum on k, use
(3.16) and finally reorder the summands to get

Ts,n,ℓ(x) = ns
∑

0≤i≤s/2

(
nφ2(x)

)i−s
s−2i∑
j=0

qs,j,i(x)Tn,j+ℓ(x)

= ns
∑

0≤i≤s/2

∑
1≤ρ≤(s+ℓ−2i)/2

ts,i,ℓ,ρ(x)
(
nφ2(x)

)i+ρ−s
,
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operator

where we have set

ts,i,ℓ,ρ(x) =
s−2i∑

j=max{0,2ρ−ℓ}

qs,j,i(x) tj+ℓ,ρ(x).

Let us note that ts,i,ℓ,ρ(x) are polynomials, whose coefficients are independent
of n.

Consequently,

Ts,n,ℓ(x) = ns
∑

1−s≤ρ≤(ℓ−s)/2

ts,ℓ,ρ(x)
(
nφ2(x)

)ρ
with some polynomials ts,ℓ,ρ(x), whose coefficients are independent of n. To
get the assertion of the lemma for ℓ ≥ 2, we need only take into account
that the left-hand side of the last identity is a polynomial in x; hence so is
φ2ρ(x)ts,ℓ,ρ(x) for each negative ρ. Here we also use that ts,ℓ,ρ(x) are inde-
pendent of n.

Minor changes in the above argument establish the lemma for ℓ = 1
too.

We proceed to several identities concerning the derivatives of the error
of the Bernstein operators. We will use them to establish Jackson- and
Voronovskaya-type estimates. We denote the set of the algebraic polynomials
of degree at most j by πj.

Lemma 3.12. Let s ∈ N+, f ∈ C[0, 1], f ∈ ACs+1
loc (0, 1) and φ2s+2f (s+2) ∈

L[0, 1]. Then

(3.20) (Bnf(x)− f(x))(s) =
1

n
As,nf

(s)(x) +
1

n
Bs,n(x)f

(s+1)(x)

+
1

(s+ 1)!

n∑
k=0

p
(s)
n,k(x)

∫ k/n

x

(
k

n
− u
)s+1

f (s+2)(u) du, x ∈ (0, 1),

where

As,n =
s−2∑
ν=0

as,ν n
−ν , Bs,n(x) =

s−1∑
ν=0

bs,ν(x)n
−ν ,

and as,ν and bs,ν(x) are respectively constants and linear functions, which are
independent of n.

34



3.4. Auxiliary identities for the Bernstein operator

Above we again use the usual convention that an empty sum is zero. Note
that the order of the derivatives on the right of (3.20) is at least max{2, s}.

Proof of Lemma 3.12. Let us make two observations that will justify our
usage of Taylor’s expansions, integration by parts and induction on s below.

First, if f ∈ ACσ+1
loc (0, 1) and φ2σ+2f (σ+2) ∈ L[0, 1] for some σ ∈ N+, then

(3.21) φ2σf (σ+1) ∈ L[0, 1].

That follows from Proposition 2.1 with p = 1, g = f , j = σ + 1, m = σ + 2,
w1 = φ2σ and w2 = φ2σ+2.

Further, using the representation

uσ+1f (σ+1)(u) =
1

2σ+1
f (σ+1)

(
1

2

)
− (σ + 1)

∫ 1/2

u

vσf (σ+1)(v) dv

−
∫ 1/2

u

vσ+1f (σ+2)(v) dv, u ∈ (0, 1),

we deduce that limu→0+0 u
σ+1f (σ+1)(u) exists as a finite limit. Moreover, if we

assume that it is not 0, then we will get that uσ|f (σ+1)(u)| ≥ C/u for u ∈ (0, δ)
with some positive constants C and δ, which contradicts φ2σf (σ+1) ∈ L[0, 1].
Consequently,

(3.22) lim
u→0+0

uσ+1f (σ+1)(u) = 0.

By symmetry, we get

(3.23) lim
u→1−0

(1− u)σ+1f (σ+1)(u) = 0.

Let us proceed to the proof of the lemma. We will establish it by means
of induction on s. To check it for s = 1 we note that by (3.21) with σ = 1 we
have φ2f ′′ ∈ L[0, 1] and we can expand f(t) at x ∈ (0, 1) by Taylor’s formula
to get

f(t) = f(x) + (t− x)f ′(x) +

∫ t

x

(t− u)f ′′(u) du, t ∈ [0, 1].

Then we apply the operator Bn to both sides of the above identity, take into
account that it preserves the linear functions and arrive at

(3.24) Bnf(x)− f(x) =
n∑

k=0

pn,k(x)

∫ k/n

x

(
k

n
− u
)
f ′′(u) du.
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We differentiate (3.24), integrate by parts as we take into account (3.22)-
(3.23) with σ = 1 and use (3.13) and (3.17) to derive

(Bnf(x)− f(x))′ = −
1

n
Tn,1(x)f

′′(x) +
n∑

k=0

p′n,k(x)

∫ k/n

x

(
k

n
− u
)
f ′′(u) du

=
φ−2(x)

2n2
Tn,3(x)f

′′(x)

+
1

2

n∑
k=0

p′n,k(x)

∫ k/n

x

(
k

n
− u
)2

f ′′′(u) du

=
1− 2x

2n
f ′′(x) +

1

2

n∑
k=0

p′n,k(x)

∫ k/n

x

(
k

n
− u
)2

f ′′′(u) du.

Thus the lemma is verified for s = 1.
Next, let us assume that the assertion of the lemma is true for some s and

let f ∈ C[0, 1], f ∈ ACs+2
loc (0, 1) and φ2s+4f (s+3) ∈ L[0, 1]. Then by (3.21)

with σ = s + 1 we have φ2s+2f (s+2) ∈ L[0, 1]. Therefore, by the induction
hypothesis, formula (3.20) is valid for that s. We differentiate it and integrate
by parts using (3.22)-(3.23) with σ = s+ 1. Thus we arrive at

(Bnf(x)− f(x))(s+1) =
1

n

(
As,n +B′

s,n(x)
)
f (s+1)(x)

+
1

n
Bs,n(x)f

(s+2)(x)

− 1

(s+ 1)!

n∑
k=0

p
(s)
n,k(x)

(
k

n
− x
)s+1

f (s+2)(x)

+
1

(s+ 2)!

n∑
k=0

p
(s+1)
n,k (x)

(
k

n
− x
)s+2

f (s+2)(x)

+
1

(s+ 2)!

n∑
k=0

p
(s+1)
n,k (x)

∫ k/n

x

(
k

n
− u
)s+2

f (s+3)(u) du.

(3.25)

According to the induction hypothesis the expression As+1,n = As,n+B
′
s,n(x)

is of the form
∑s−1

ν=0 as+1,ν n
−ν with some constants as+1,ν , which are inde-

pendent of n.
Let us denote by Bs+1,n(x) the factor of f (s+2)(x)/n in the expansion

(3.25). From the induction hypothesis and Lemma 3.11 with ℓ = s + 1 it
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3.4. Auxiliary identities for the Bernstein operator

follows that it is of the form

(3.26) Bs+1,n(x) =
s∑

ν=0

bs+1,ν(x)n
−ν ,

where bs+1,ν(x) are polynomials, whose coefficients are independent of n. To
show that they are of degree 1, we set in (3.25) f(x) = xs+2. We get

(Bnf(x)− f(x))(s+1) =
As+1,n (s+ 2)!

n
x+

(s+ 2)!

n
Bs+1,n(x).

Since Bnf ∈ πs+2, we deduce that Bs+1,n ∈ π1; hence bs+1,ν ∈ π1 because
their coefficients are independent of n.

This completes the proof of the lemma.

Lemma 3.13. Let s ∈ N+, f ∈ C[0, 1], f ∈ ACs+2
loc (0, 1) and φ2s+4f (s+3) ∈

L[0, 1]. Then(
Bnf(x)− f(x)−

1

2n
Df(x)

)(s)

=
1

n2
Ãs,nf

(s)(x) +
1

n2
B̃s,n(x)f

(s+1)(x)

+
1

n2
C̃s,n(x)f

(s+2)(x) +
1

(s+ 2)!

n∑
k=0

p
(s)
n,k(x)

∫ k/n

x

(
k

n
− u
)s+2

f (s+3)(u) du,

x ∈ (0, 1),

where

Ãs,n =
s−3∑
ν=0

ãs,ν n
−ν , B̃s,n(x) =

s−2∑
ν=0

b̃s,ν(x)n
−ν , C̃s,n(x) =

s−1∑
ν=0

c̃s,ν(x)n
−ν

and ãs,ν, b̃s,ν(x) and c̃s,ν(x) are polynomials of degree respectively 0, 1 and 2,
whose coefficients are independent of n.

Let us note that the order of the derivatives on the right of the formula
in the lemma is at least max{3, s}.

Proof of Lemma 3.13. We verify the lemma just similarly to the previous
one.

To check it for s = 1 we apply (3.21) with σ = 2 and get φ4f ′′′ ∈ L[0, 1].
Then

f(t) = f(x)+(t−x)f ′(x)+
1

2
(t−x)2f ′′(x)+

1

2

∫ t

x

(t−u)2f ′′′(u) du, t ∈ [0, 1].
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We apply the operator Bn to both sides of the above identity, take into
account that it preserves the linear functions and also that Tn,2(x) = nφ2(x)
(see (3.17)) and arrive at

(3.27) Bnf(x)−f(x)−
1

2n
Df(x) =

1

2

n∑
k=0

pn,k(x)

∫ k/n

x

(
k

n
− u
)2

f (3)(u) du.

We set

(3.28) Vnf(x) := Bnf(x)− f(x)−
1

2n
Df(x).

We differentiate (3.27), integrate by parts, taking into account (3.22)-(3.23)
with σ = 2, and apply (3.13). Thus we arrive at

(Vnf)
′(x) = − 1

2n2
Tn,2(x)f

(3)(x) +
1

2

n∑
k=0

p′n,k(x)

∫ k/n

x

(
k

n
− u
)2

f (3)(u) du

=
1

6n2

(
φ−2(x)

n
Tn,4(x)− 3Tn,2(x)

)
f (3)(x)

+
1

3!

n∑
k=0

p′n,k(x)

∫ k/n

x

(
k

n
− u
)3

f (4)(u) du.

To complete the proof for s = 1 we apply (3.17), which yields

φ−2(x)

n
Tn,4(x)− 3Tn,2(x) = 1− 6φ2(x).

Next, let us assume that the lemma is valid for some s. Let f ∈ C[0, 1],
f ∈ ACs+3

loc (0, 1) and φ2s+6f (s+4) ∈ L[0, 1]. Then by (3.21) with σ = s+2 we
have φ2s+4f (s+3) ∈ L[0, 1]; hence the formula of the lemma is true for that
s. We differentiate it and integrate by parts as we use (3.22)-(3.23) with
σ = s+ 2. Thus we arrive at

(Vnf)
(s+1) =

1

n2

(
Ãs,n + B̃′

s,n(x)
)
f (s+1)(x)

+
1

n2

(
B̃s,n(x) + C̃ ′

s,n(x)
)
f (s+2)(x)

+
1

n2

(
C̃s,n(x) + D̃s,n(x)

)
f (s+3)(x)

+
1

(s+ 3)!

n∑
k=0

p
(s+1)
n,k (x)

∫ k/n

x

(
k

n
− u
)s+3

f (s+4)(u) du,

(3.29)

38



3.5. Basic estimates for the simultaneous approximation
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where we have set

D̃s,n(x) =
n2

(s+ 3)!

(
n∑

k=0

p
(s)
n,k(x)

(
k

n
− x
)s+3

)′

.

The induction hypothesis implies that the factors of f (s+1)(x) and f (s+2)(x)
are of the stated form. To establish that for the factor of f (s+3)(x), we use
Lemma 3.11 with ℓ = s+ 3 to deduce that

D̃s,n(x) =
s∑

ν=0

d̃s,ν(x)n
−ν

with some polynomials d̃s,ν , whose coefficients do not depend on n. Conse-
quently, if we set

C̃s+1,n(x) = C̃s,n(x) + D̃s,n(x),

then

C̃s+1,n(x) =
s∑

ν=0

c̃s+1,ν(x)n
−ν

with some polynomials c̃s+1,ν , whose coefficients do not depend on n. To
prove that they are of degree 2, we set f(x) := xs+3 in (3.29) and argue as
in the proof of Lemma 3.12.

3.5 Basic estimates for the simultaneous ap-

proximation by the Bernstein operator

In this section we will establish the basic inequalities which imply the char-
acterization of the error of the simultaneous approximation by means of Bn.
We use techniques, which have already become standard for this set of prob-
lems (see e.g. [23, Chapters 9 and 10]). To establish the converse estimate
we apply the general method developed by Ditzian and Ivanov [22, Theorem
3.2]. These methods allow us to establish both, the direct and the converse
estimate, by means of several other basic estimates concerning the approxi-
mation properties of the operator.
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3.5.1 Boundedness

We begin with the following basic estimate concerning the boundedness of
the weighted L∞-norm of (Bnf)

(s).

Proposition 3.14. Let s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as
0 ≤ γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and
wf (s) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(Bnf)
(s)∥ ≤ c ∥wf (s)∥.

The value of the constant c is independent of f and n.

Proof. The inequality is trivial for n < s. For n ≥ s we use (3.4), which
states

(Bnf)
(s)(x) =

n!

(n− s)!

n−s∑
k=0

−→
∆s

1/nf

(
k

n

)
pn−s,k(x),

and (3.7) in the form

−→
∆s

hf(x) = hs
∫ s

0

Ms(u)f
(s)(x+ hu) du, x ∈ [0, 1− sh],

to get by Hölder’s inequality the estimate

(3.30)

∣∣∣∣−→∆s
1/nf

(
k

n

)∣∣∣∣ ≤ wn,k

ns
∥wf (s)∥[k/n,(k+s)/n], k = 0, . . . , n− s,

where

(3.31) wn,k := n

∫ (k+s)/n

k/n

∣∣∣∣Ms(nu− k)
w(u)

∣∣∣∣ du.
Relations (3.4) and (3.30) yield

(3.32) |w(x)(Bnf)
(s)(x)| ≤ cw(x)

n−s∑
k=0

wn,k pn−s,k(x) ∥wf (s)∥[k/n,(k+s)/n].

We will show that the right-hand side of (3.32) is bounded above by c ∥wf (s)∥.
Due to symmetry it is sufficient to consider only the summands for k =
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0, . . . , [(n−s)/2] on the right-hand side of (3.32). Indeed, for w̄(x) = w(1−x),
f̄(x) = f(1− x), and w̄n,k, defined by (3.31) with w̄ in place of w, we have

wn,n−s−k = w̄n,k, ∥wf (s)∥ = ∥w̄f̄ (s)∥,
∥wf (s)∥[(n−s−k)/n,(n−k)/n] = ∥w̄f̄ (s)∥[k/n,(k+s)/n],

(3.33)

as for the first relation above we have taken into account that Ms(s − u) =
Ms(u). Consequently, with y = 1− x we have

(3.34)
∑

(n−s)/2≤k≤n−s

wn,k pn−s,k(x) ∥wf (s)∥[k/n,(k+s)/n]

=
∑

0≤k≤(n−s)/2

w̄n,k pn−s,k(y) ∥w̄f̄ (s)∥[k/n,(k+s)/n].

Thus it is sufficient to consider only the summands for k = 0, . . . , [(n− s)/2]
on the right-hand side of (3.32).

It is known that

0 ≤Ms(u) ≤ c[u(s− u)]s−1, 0 ≤ u ≤ s.

Hence the assertion follows for n = s.
Let n > s. We have

Ms(nu)

w(u)
≤ c nγ0 (nu)s−γ0−1, u ∈ (0, s/n],

and

Ms(nu− k)
w(u)

≤ c nγ0k−γ0 , u ∈ [k/n, (k + s)/n], 1 ≤ k ≤ (n− s)/2;

hence, under the assumptions on γ0, we get

(3.35) wn,k ≤ c

(
n

k + 1

)γ0

, 0 ≤ k ≤ (n− s)/2.

Inequality (3.35) and Hölder’s inequality imply

[(n−s)/2]∑
k=0

wn,k pn−s,k(x) ≤ c

n−s∑
k=0

(
n

k + 1

)γ0

pn−s,k(x)

≤ c

(
n−s∑
k=0

(
n

k + 1

)s

pn−s,k(x)

)γ0/s

.

(3.36)
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There holds (see [23, (10.2.4)])

(3.37)
n∑

k=0

(
n

k + 1

)s

pn,k(x) ≤ c x−s, x ∈ (0, 1].

Consequently,

(3.38) w(x)

[(n−s)/2]∑
k=0

wn,k pn−s,k(x) ≤ c, x ∈ [0, 1].

Now, (3.32), (3.34) and (3.38) imply the assertion of the proposition for and
n > s.

Certain particular cases of the proposition have been established before—
e.g. [23, (9.3.7)] contains it with w = φ2ℓ and s = 2ℓ.

Remark 3.15. The range of γ0 and γ1 in the proposition above cannot be
generally expanded even for a fixed n unless we impose additional assump-
tions on f . This means that the range of the γs cannot be expanded in
Theorems 3.3 and 3.5 either because each one of them implies the inequality
in Proposition 3.14.

We will consider only the case s = 1. Analogous arguments can be used
for s ≥ 2.

If γ0 < 0, then since (Bnf)
′(0) = n(f(1/n)−f(0)) (see (3.4)), the function

f has to satisfy quite restrictive and specific assumptions in a neighbourhood
of 0.

Let γ0 ≥ 1. We consider the functions fm(x) := ln(x + 1/m), x ∈ [0, 1],
m ∈ N+. We have fm ∈ C1[0, 1] and 0 ≤ xγ0f ′

m(x) < 1, for all x ∈ [0, 1] and
all m. On the other hand, since fm(x) is increasing, (3.4) yields for

(Bnfm)
′
(
1

2

)
= n

n−1∑
k=0

−→
∆1/nfm

(
k

n

)
pn−1,k

(
1

2

)
≥ n21−n

[
fm

(
1

n

)
− fm(0)

]
= n21−n ln

(m
n

+ 1
)
→ +∞ as m→ +∞,

for any fixed n. Therefore, the assertion of Proposition 3.14 is not valid for
γ0 ≥ s = 1.
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3.5.2 Jackson-type estimates

Now, we will establish Jackson-type estimates for the operators (Bnf)
(s). We

will use the following technical result.

Lemma 3.16. Let α, β, δ ∈ R be such that 0 ≤ α, β ≤ δ. Set γ := min{α, β}.
Then for x, t ∈ (0, 1) and u between x and t there holds

|t− u|δ

uα(1− u)β
≤ 2|γ−1| |t− x|δ

xα(1− x)β
.

Proof. For u between t and x such that x, t ∈ (0, 1) we have the inequalities:

(3.39)
|t− u|
u

≤ |t− x|
x

,
|t− u|
1− u

≤ |t− x|
1− x

.

The first one is checked directly and the second one follows from it by sym-
metry.

Next, we will show that under the same conditions on x, t and u we have

(3.40)
|t− u|µ

[u(1− u)]µ
≤ 2|µ−1| |t− x|µ

[x(1− x)]µ
, µ ≥ 0.

To establish that we raise each of the inequalities in (3.39) to the power of µ
and sum them up. Thus we arrive at

|t− u|µ u
µ + (1− u)µ

[u(1− u)]µ
≤ |t− x|µ x

µ + (1− x)µ

[x(1− x)]µ
.

To get (3.40), it remains to observe that min{1, 21−µ} ≤ xµ + (1 − x)µ ≤
max{1, 21−µ} for x ∈ [0, 1].

Further, we set γ̂ := max{α, β} and

ϕ(x) :=

{
x, α ≥ β,

1− x, β > α.

Now, to prove the lemma we need only multiply the inequalities:

|t− u|γ

[u(1− u)]γ
≤ 2|γ−1| |t− x|γ

[x(1− x)]γ
,(3.41) (

|t− u|
ϕ(u)

)γ̂−γ

≤
(
|t− x|
ϕ(x)

)γ̂−γ

(3.42)
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and

|t− u|δ−γ̂ ≤ |t− x|δ−γ̂.(3.43)

Inequality (3.41) is (3.40) with µ = γ ≥ 0, (3.42) follows from (3.39) and
γ ≤ γ̂, and (3.43) from γ̂ ≤ δ.

Proposition 3.17. Let s ∈ N+ and w := w(γ0, γ1) be given by (2.2). Set
s′ := max{2, s}. If 0 < γ0, γ1 ≤ s, then for all f ∈ C[0, 1] such that f ∈
ACs+1

loc (0, 1) and wf (s′), wφ2f (s+2) ∈ L∞[0, 1], and all n ∈ N+ there holds

(3.44) ∥w(Bnf − f)(s)∥ ≤
c

n

(
∥wf (s′)∥+ ∥wφ2f (s+2)∥

)
.

If γ0γ1 = 0 and still 0 ≤ γ0, γ1 ≤ s, then

(3.45) ∥w(Bnf − f)(s)∥ ≤
c

n

(
∥wf (s′)∥+ ∥wf (s+1)∥+ ∥wφ2f (s+2)∥

)
,

provided that wf (s+1) ∈ L∞[0, 1] too.
The value of the constant c is independent of f and n.

Proof. First, let us note that if γ0, γ1 > 0, the assumption wφ2f (s+2) ∈
L∞[0, 1] implies wf (s′) ∈ L∞[0, 1]. This follows from Proposition 2.1 with
w1 = w, w2 = wφ2, j = s′ and m = s+ 2.

The proof of the proposition is based on Lemma 3.12. Since wφ2f (s+2) ∈
L∞[0, 1], then φ2s+2f (s+2) ∈ L∞[0, 1]; and hence the lemma is applicable.

We will prove that if 0 ≤ γ0, γ1 ≤ s, then for all f ∈ C[0, 1] such that
f ∈ ACs+1

loc (0, 1) and wf (s′), wf (s+1), wφ2f (s+2) ∈ L∞[0, 1], and all n ∈ N+

there holds

(3.46) ∥w(Bnf − f)(s)∥ ≤
c

n

(
∥wf (s′)∥+ ∥wf (s+1)∥+ ∥wφ2f (s+2)∥

)
.

That contains, in particular, (3.45), and estimate (3.44) follows from (3.46)
and the inequality

∥wf (s+1)∥ ≤ c
(
∥wf (s′)∥+ ∥wφ2f (s+2)∥

)
,

which is established by means of Proposition 2.1 with g = f (s′), j = s−s′+1,
m = s− s′ + 2, w1 = w and w2 = wφ2.
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Let us set

Rs,nf(x) :=
1

(s+ 1)!

n∑
k=0

p
(s)
n,k(x)

∫ k/n

x

(
k

n
− u
)s+1

f (s+2)(u) du.

We will show that

(3.47) ∥wRs,nf∥ ≤
c

n

(
∥wf (s+1)∥+ ∥wφ2f (s+2)∥

)
,

which verifies (3.46) in view of Lemma 3.12.
In order to simplify our argument, we will consider two cases for the

domain of x.
Case 1. Let nφ2(x) ≥ 1. We make use of (3.15) and Lemma 3.16 with

δ = s+ 1, α = γ0 + 1 and β = γ1 + 1 to get

(3.48) |w(x)Rs,nf(x)|

≤ c

n

∑
0≤i≤s/2

(
nφ2(x)

)i−s−1
s−2i∑
j=0

n∑
k=0

pn,k(x)|k − nx|s+j+2∥wφ2f (s+2)∥.

Further, we apply estimate (3.19) and get

(3.49)
∑

0≤i≤s/2

(
nφ2(x)

)i−s−1
s−2i∑
j=0

n∑
k=0

pn,k(x)|k − nx|s+j+2

≤ c
∑

0≤i≤s/2

s−2i∑
j=0

(
nφ2(x)

)(2i+j−s)/2 ≤ c,

as at the last inequality we have taken into account that nφ2(x) ≥ 1 and
2i+ j − s ≤ 0.

Now, (3.48)-(3.49) imply

(3.50) ∥wRs,nf∥In ≤
c

n
∥wφ2f (s+2)∥,

where In := {x ∈ [0, 1] : nφ2(x) ≥ 1}.
Case 2. Let nφ2(x) ≤ 1. Due to symmetry, we may also assume that

x ≤ 1/2. Therefore, x ≤ 2/n. By means of (3.14) and Abel’s transform we
derive for n ≥ s the relation (cf. (3.4))

Rs,nf(x) =
1

(s+ 1)!

n!

(n− s)!

n−s∑
k=0

−→
∆s

1/nrs,x

(
k

n

)
pn−s,k(x),
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where we have set

rs,x(t) :=

∫ t

x

(t− u)s+1 f (s+2)(u) du.

Consequently,

(3.51) |w(x)Rs,nf(x)| ≤ c ns max
i=0,...,s

n−s∑
k=0

∣∣∣∣w(x) rs,x(k + i

n

)∣∣∣∣ pn−s,k(x).

Just as in Case 1 we estimate rs,x(t) by means of Lemma 3.16 and get

(3.52)

∣∣∣∣w(x) rs,x(k + i

n

)∣∣∣∣ ≤ c φ−2(x)

∣∣∣∣k + i

n
− x
∣∣∣∣s+2

∥wφ2f (s+2)∥.

Next, we observe that for k ≥ 1 and i = 0, . . . , s we have k+ i+1 ≥ 2 ≥ nx.
Therefore for n > s there holds

n−s∑
k=1

∣∣∣∣k + i

n
− x
∣∣∣∣s+2

pn−s,k(x) ≤
x

ns+1

n−s−1∑
k=0

|k + i+ 1− nx|s+2pn−s−1,k(x)

≤ c x

ns+1

(
1 +

n−s−1∑
k=1

(k + i+ 1− nx)s+2pn−s−1,k(x)

)

≤ c x

ns+1

(
1 +

n−s−1∑
k=1

(k + s+ 1− nx)s+2pn−s−1,k(x)

)
.

Further, we use the binomial formula to represent (k+ s+ 1− nx)s+2 in the
form

(k + s+ 1− nx)s+2 =
(
[k − (n− s− 1)x] + [(s+ 1)(1− x)]

)s+2

=
s+2∑
j=0

(
s+ 2

j

)
[k − (n− s− 1)x]j[(s+ 1)(1− x)]s−j+2.

Consequently,

n−s∑
k=1

∣∣∣∣k + i

n
− x
∣∣∣∣s+2

pn−s,k(x)

≤ c x

ns+1

(
1 +

s+2∑
j=0

n−s−1∑
k=1

|k − (n− s− 1)x|jpn−s−1,k(x)

)
≤ c x

ns+1
,
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where at the last estimate, we applied (3.19). Consequently, by (3.52) we get

n−s∑
k=1

∣∣∣∣w(x) rs,x(k + i

n

)∣∣∣∣ pn−s,k(x) ≤
c

ns+1
∥wφ2f (s+2)∥, i = 0, . . . , s;

hence we arrive at

(3.53)

∥∥∥∥∥
n−s∑
k=1

w rs,◦

(
k + i

n

)
pn−s,k

∥∥∥∥∥
I′n

≤ c

ns+1
∥wφ2f (s+2)∥, i = 0, . . . , s,

where I ′n := {x ∈ [0, 1/2] : nφ2(x) ≤ 1}.
It remains to estimate the terms for k = 0 in (3.51). First, we observe

that by (3.52) with k = i = 0 we have

|w(x)rs,x(0)| ≤ c xs+1|w(x)φ2(x)f (s+2)(x)| ≤ c

ns+1
∥wφ2f (s+2)∥;

hence

(3.54) ∥w rs,◦(0)∥I′n ≤
c

ns+1
∥wφ2f (s+2)∥.

To estimate w(x)rs,x(i/n) for i = 1, . . . , s, we expand (i/n − u)s+1 by the
binomial formula and get

(3.55)

∣∣∣∣w(x)rs,x( in
)∣∣∣∣ ≤ c xγ0

ns+1

s+1∑
j=0

∣∣∣∣∣
∫ i/n

x

(nu)jf (s+2)(u) du

∣∣∣∣∣ .
Further, taking into account that in the case under consideration we have
nx ≤ 2, we get for i = 2, . . . , s and n ≥ s but not i = n = s the inequality∣∣∣∣w(x)rs,x( in

)∣∣∣∣ ≤ c

ns+1
xγ0
∫ s/(s+1)

x

|f (s+2)(u)| du.

Consequently, if γ0 > 0, then

(3.56)

∥∥∥∥w rs,◦( in
)∥∥∥∥

I′n

≤ c

ns+1
∥wφ2f (s+2)∥

for i = 2, . . . , s and n ≥ s but not i = n = s.
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For γ0 > 0, i = 1, n ≥ s but not n = s = 1 we split the interval I ′n
into two intervals. On [0, 1/n] (note that n ≥ 2), the same considerations as
above yield

(3.57)

∥∥∥∥w rs,◦( 1

n

)∥∥∥∥
[0,1/n]

≤ c

ns+1
∥wφ2f (s+2)∥.

Let us denote the right end of the interval I ′n by xn. We have xn ≤ 2/n.
Then for x ∈ [1/n, xn] there hold∫ x

1/n

|f (s+2)(u)| du ≤ c nγ0+1

∫ x

1/n

|w(u)φ2(u)f (s+2)(u)| du ≤ c x−γ0∥wφ2f (s+2)∥.

Consequently, we have for x ∈ [1/n, xn]

xγ0
∫ x

1/n

|f (s+2)(u)| du ≤ c ∥wφ2f (s+2)∥.

Thus, in view of (3.55), we have established

(3.58)

∥∥∥∥w rs,◦( 1

n

)∥∥∥∥
[1/n,xn]

≤ c

ns+1
∥wφ2f (s+2)∥.

Combining (3.57) and (3.58), we get

(3.59)

∥∥∥∥w rs,◦( 1

n

)∥∥∥∥
I′n

≤ c

ns+1
∥wφ2f (s+2)∥

for γ0 > 0.
For γ0 = 0, i = 1, . . . , s and n ≥ s but not i = n = s we apply (3.55) to

derive ∣∣∣∣w(x)rs,x( in
)∣∣∣∣

≤ c

ns+1

∣∣∣∣∣
∫ i/n

x

f (s+2)(u) du

∣∣∣∣∣+ c

ns+1

s+1∑
j=1

∣∣∣∣∣
∫ i/n

x

(nu)j|f (s+2)(u)| du

∣∣∣∣∣
≤ c

ns+1

∣∣∣∣∣
∫ i/n

x

f (s+2)(u) du

∣∣∣∣∣+ c

ns

∣∣∣∣∣
∫ i/n

x

u|f (s+2)(u)| du

∣∣∣∣∣ .
(3.60)
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For the first term on the right above we have∣∣∣∣∣
∫ i/n

x

f (s+2)(u) du

∣∣∣∣∣ ≤ |f (s+1)(x)|+
∣∣∣∣f (s+1)

(
i

n

)∣∣∣∣
≤ 2 ∥f (s+1)∥[0,s/(s+1)] ≤ c ∥wf (s+1)∥.

(3.61)

We estimate the second term on the right of (3.60) in the following way:

(3.62)

∣∣∣∣∣
∫ i/n

x

u|f (s+2)(u)| du

∣∣∣∣∣ ≤ c

n
∥χf (s+2)∥[0,s/(s+1)] ≤

c

n
∥wφ2f (s+2)∥.

Combining (3.60)-(3.62) we deduce that

(3.63)

∥∥∥∥w rs,◦( in
)∥∥∥∥

I′n

≤ c

ns+1

(
∥wf (s+1)∥+ ∥wφ2f (s+2)∥

)
for γ0 = 0, i = 1, . . . , s and n ≥ s except i = n = s.

It remains to estimate the sup-norm of w(x)rs,x(i/n) on I
′
n for i = n = s.

It is enough to do so for the function xγ0rs,x(1) on [0, 1/2]. To this end,
we split the integral in rs,x(1) by means of the intermediate point 1/2 and
consider the two quantities separately. For the first one we get for x ∈ [0, 1/2]
and γ0 > 0 ∣∣∣∣∣xγ0

∫ 1/2

x

(1− u)s+1f (s+2)(u) du

∣∣∣∣∣
≤ xγ0

∫ 1/2

x

u−γ0−1du ∥χγ0+1f (s+2)∥[0,1/2]

≤ c ∥wφ2f (s+2)∥.

(3.64)

In the case γ0 = 0 we apply the same considerations, by which we established
(3.63), to arrive at

(3.65)

∣∣∣∣∣
∫ 1/2

x

(1− u)s+1f (s+2)(u) du

∣∣∣∣∣
≤ c

(
∥wf (s+1)∥+ ∥wφ2f (s+2)∥

)
, x ∈ [0, 1/2].
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For the other one we simply have for x ∈ [0, 1/2] and any γ0 ≥ 0∣∣∣∣xγ0 ∫ 1

1/2

(1− u)s+1f (s+2)(u) du

∣∣∣∣
≤ c

∣∣∣∣xγ0 ∫ 1

1/2

w(u)φ2(u)f (s+2)(u) du

∣∣∣∣ ≤ c∥wφ2f (s+2)∥.
(3.66)

Relations (3.64)-(3.66) show that

(3.67) ∥w rs,◦(1)∥[0,1/2] ≤ c
(
∥wf (s+1)∥+ ∥wφ2f (s+2)∥

)
.

To summarize, (3.54), (3.56), (3.59), (3.63) and (3.67) yield

(3.68)

∥∥∥∥w rs,◦( in
)∥∥∥∥

I′n

≤ c

ns+1

(
∥wf (s+1)∥+ ∥wφ2f (s+2)∥

)
for i = 0, . . . , s, n ≥ s and a weight w satisfying the assumptions in assertion
(3.46). Let us explicitly note that (3.63) and (3.65) are used only if γ0 = 0.
So the term ∥wf (s+1)∥ in (3.68) is redundant except when γ0 = 0.

Now, (3.51), (3.53) and (3.68) imply

(3.69) ∥wRs,nf∥I′n ≤
c

n

(
∥wf (s+1)∥+ ∥wφ2f (s+2)∥

)
.

Finally, estimates (3.50) and (3.69) yield (3.47). Thus (3.46) is verified.

The upper estimate can be stated in a more concise form in terms of
the differential operator (d/dx)sD. This result follows directly from Propo-
sition 2.6 and Proposition 3.17.

Corollary 3.18. Let s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as 0 ≤
γ0, γ1 < s. Then for all f ∈ ACs+1[0, 1] such that wφ2f (s+2) ∈ L∞[0, 1], and
all n ∈ N+ there holds

∥w(Bnf − f)(s)∥ ≤
c

n
∥w(Df)(s)∥.

The value of the constant c is independent of f and n.

A very neat though generally less practical Jackson-type estimate of the
error of simultaneous approximation by the Bernstein operator can be stated
in terms of the differential operator D.
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Proposition 3.19. Let s ∈ N+. Then for all f ∈ C2s+2[0, 1] and n ∈ N+

there holds

∥Ds(Bnf − f)∥ ≤
c

n
∥Ds+1f∥.

The value of the constant c is independent of f and n.

Proof. The estimate is a direct corollary of (3.44) and Proposition 2.7. In-
deed, applying consecutively Proposition 2.7(a), (3.44) with w = φ2s, (4.6),
and Proposition 2.7, (b) and (c), we get

∥Ds(Bnf − f)∥ ≤ c
(
∥Bnf − f∥+ ∥φ2s(Bnf − f)(2s)∥

)
≤ c

n

(
∥Df∥+ ∥φ2sf (2s)∥+ ∥φ2s+2f (2s+2)∥

)
≤ c

n
∥Ds+1f∥.

Thus the assertion of the proposition is verified.

3.5.3 Voronovskaya-type estimates

We proceed to Voronovskaya-type estimates.

Proposition 3.20. Let s ∈ N+ and w := w(γ0, γ1) be given by (2.2). Set
s′′ := max{3, s}. If 0 < γ0, γ1 ≤ s + 1, then for all f ∈ C[0, 1] such that
f ∈ ACs+3

loc (0, 1) and wf (s′′), wφ4f (s+4) ∈ L∞[0, 1], and all n ∈ N+ there holds∥∥∥∥∥w
(
Bnf − f −

1

2n
Df

)(s)
∥∥∥∥∥ ≤ c

n2

(
∥wf (s′′)∥+ ∥wφ4f (s+4)∥

)
.

If γ0γ1 = 0 and still 0 ≤ γ0, γ1 ≤ s+ 1, then∥∥∥∥∥w
(
Bnf − f −

1

2n
Df

)(s)
∥∥∥∥∥
≤ c

n2

(
∥wf (s′′)∥+ ∥wf (s+2)∥+ ∥wφ4f (s+4)∥

)
provided that wf (s+2) ∈ L∞[0, 1] too.

The value of the constant c is independent of f and n.
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Proof. First, let us note that if γ0, γ1 > 0, the assumption wφ4f (s+4) ∈
L∞[0, 1] implies wf (s′′) ∈ L∞[0, 1]. This follows from Proposition 2.1 with
w1 = w, w2 = wφ4, j = s′′ and m = s+ 4.

The proof of the proposition is based on Lemma 3.13 and is similar to
that of the previous proposition.

Using ∥wφ4f (s+4)∥ <∞, we get by Proposition 2.1 with g = f , j = s+3,
m = s+4, w1 = φ2s+4 and w2 = wφ4 that φ2s+4f (s+3) ∈ L∞[0, 1] and we can
apply Lemma 3.13.

We will prove that if 0 ≤ γ0, γ1 ≤ s+1, then for all f ∈ C[0, 1] such that
f ∈ ACs+3

loc (0, 1) and wf (s′′), wf (s+2), wφ4f (s+4) ∈ L∞[0, 1], and all n ∈ N+

there holds

(3.70)

∥∥∥∥∥w
(
Bnf − f −

1

2n
Df

)(s)
∥∥∥∥∥

≤ c

n2

(
∥wf (s′′)∥+ ∥wf (s+2)∥+ ∥wφ4f (s+4)∥

)
.

That establishes the second assertion of the proposition; the first one follows
from (3.70) and

∥wf (s+2)∥ ≤ c
(
∥wf (s′′)∥+ ∥wφ4f (s+4)∥

)
,

which is established by Proposition 2.1 with g = f (s′′), j = s − s′′ + 2,
m = s− s′′ + 4, w1 = w and w2 = wφ4.

Let us set

R̃s,nf(x) :=
1

(s+ 2)!

n∑
k=0

p
(s)
n,k(x)

∫ k/n

x

(
k

n
− u
)s+2

f (s+3)(u) du.

We will show that

(3.71) ∥wR̃s,nf∥ ≤
c

n2

(
∥wf (s+2)∥+ ∥wφ2f (s+3)∥+ ∥wφ4f (s+4)∥

)
.

Then Lemma 3.13 implies

(3.72) ∥w(Vnf)(s)∥ ≤
c

n2

(
s+2∑
k=s′′

∥wf (k)∥+ ∥wφ2f (s+3)∥+ ∥wφ4f (s+4)∥

)
,
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where Vnf(x) is defined in (3.28). By Proposition 2.2(c) with g = f (s), j = 1
and m = 2 we have for s ≥ 3

(3.73) ∥wf (s+1)∥ ≤ c
(
∥wf (s′′)∥+ ∥wf (s+2)∥

)
,

and by Proposition 2.2(a) with g = f (s+2), j = 1 and m = 2 we have

(3.74) ∥wφ2f (s+3)∥ ≤ c
(
∥wf (s+2)∥+ ∥wφ4f (s+4)∥

)
.

Now, estimate (3.70) follows from (3.72)-(3.74).
It remains to prove (3.71). We consider two cases for the domain of x.
Case 1. Let nφ2(x) ≥ 1. Since wφ4f (s+4) ∈ L∞[0, 1], then φ2s+6f (s+4) ∈

L[0, 1]; hence (3.22)-(3.23) are valid for σ = s+ 2. Using them we integrate

by parts in R̃s,nf and represent it in the form

R̃s,nf(x) = S̃s,nf(x) + R̃′
s,nf(x),

where

S̃s,nf(x) :=
1

(s+ 3)!

n∑
k=0

p
(s)
n,k(x)

(
k

n
− x
)s+3

f (s+3)(x)

and

R̃′
s,nf(x) :=

1

(s+ 3)!

n∑
k=0

p
(s)
n,k(x)

∫ k/n

x

(
k

n
− u
)s+3

f (s+4)(u) du.

We will show that∣∣∣∣∣
n∑

k=0

p
(s)
n,k(x)

(
k

n
− x
)s+3

∣∣∣∣∣ ≤ c

n2
φ2(x), x ∈ In,(3.75)

and

∥wR̃′
s,nf∥In ≤

c

n2
∥wφ4f (s+4)∥,(3.76)

where In := {x ∈ [0, 1] : nφ2(x) ≥ 1}. Then it will follow that

(3.77) ∥wR̃s,nf∥In ≤
c

n2

(
∥wφ2f (s+3)∥+ ∥wφ4f (s+4)∥

)
.
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Estimate (3.75) follows directly from Lemma 3.11 with ℓ = s+3 and from
n−1 ≤ φ2(x).

We make use of (3.15) and Lemma 3.16 with δ = s + 3, α = γ0 + 2 and
β = γ1 + 2 to get

(3.78) |w(x) R̃′
s,nf(x)|

≤ c

n2

∑
0≤i≤s/2

(
nφ2(x)

)i−s−2
s−2i∑
j=0

n∑
k=0

pn,k(x)|k − nx|s+j+4∥wφ4f (s+4)∥.

Further, we apply estimate (3.19) and get

(3.79)
∑

0≤i≤s/2

(
nφ2(x)

)i−s−2
s−2i∑
j=0

n∑
k=0

pn,k(x)|k − nx|s+j+4

≤ c
∑

0≤i≤s/2

s−2i∑
j=0

(
nφ2(x)

)(2i+j−s)/2 ≤ c.

Now, (3.78) and (3.79) imply (3.76).
Case 2. Let nφ2(x) ≤ 1 and, because of the symmetry, we may also

assume that x ≤ 1/2. Just as in the proof of Proposition 3.17, case 2, we

represent R̃s,nf in the form

R̃s,nf(x) =
1

(s+ 2)!

n!

(n− s)!

n−s∑
k=0

−→
∆s

1/nrs+1,x

(
k

n

)
pn−s,k(x)

and derive (cf. (3.51))

(3.80) |w(x)R̃s,nf(x)| ≤ c ns max
i=0,...,s

n−s∑
k=0

∣∣∣∣w(x) rs+1,x

(
k + i

n

)∣∣∣∣ pn−s,k(x).

Just similarly to (3.53) and (3.68) we establish the following estimates∥∥∥∥∥
n−s∑
k=1

w rs+1,◦

(
k + i

n

)
pn−s,k

∥∥∥∥∥
I′n

≤ c

ns+2
∥wφ2f (s+3)∥

and ∥∥∥∥w rs+1,◦

(
i

n

)∥∥∥∥
I′n

≤ c

ns+2

(
∥wf (s+2)∥+ ∥wφ2f (s+3)∥

)
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for i = 0, . . . , s and n ≥ s. Actually the second estimate follows directly
from (3.68).

Consequently,

(3.81) ∥wR̃s,nf∥I′n ≤
c

n2

(
∥wf (s+2)∥+ ∥wφ2f (s+3)∥

)
.

Estimates (3.77) and (3.81) yield (3.71). Thus (3.70) is verified.

Remark 3.21. In Proposition 3.20 we have assumed higher degree of smooth-
ness than usual—wφ4f (s+4) ∈ L∞[0, 1] rather than the weaker wφ3f (s+3) ∈
L∞[0, 1]. However, the latter assumption yields an order of n−3/2 on the
right in the corresponding Voronovskaya-type estimate. It still can be used
to prove the converse inequality about simultaneous approximation by Bn,
but the order of n−2 as in Proposition 3.20 seems more natural in this setting
and is easier to work with (see [54, Lemma 2.1]).

Similarly to Corollary 3.18 we get by Proposition 2.6 and Proposition 3.20
the following Voronovskaya-type estimate.

Corollary 3.22. Let s ∈ N+ and w = w(γ0, γ1) be given by (2.2) as 0 ≤
γ0, γ1 < s. Then for all f ∈ ACs+3[0, 1] such that wφ4f (s+4) ∈ L∞[0, 1], and
all n ∈ N+ there holds∥∥∥∥∥w

(
Bnf − f −

1

2n
Df

)(s)
∥∥∥∥∥ ≤ c

n2
∥w(D2f)(s)∥.

The value of the constant c is independent of f and n.

3.5.4 Bernstein-type inequalities

The last several estimates, we will need, are traditionally regarded to as
Bernstein-type inequalities.

Proposition 3.23. Let ℓ, s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as
0 ≤ γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and
wf (s) ∈ L∞[0, 1], and all n ∈ N+ there hold:

(a) ∥wφ2ℓ(Bnf)
(2ℓ+s)∥ ≤ c nℓ∥wf (s)∥;

(b) ∥w(Bnf)
(ℓ+s)∥ ≤ c nℓ∥wf (s)∥.
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The value of the constant c is independent of f and n.

Proof. Again we will consider two cases for the domain of x.

Case 1. Let (n− s)φ2(x) ≥ 1. Differentiating (3.4) we get

(3.82) (Bnf)
(2ℓ+s)(x) =

n!

(n− s)!

n−s∑
k=0

−→
∆s

1/nf

(
k

n

)
p
(2ℓ)
n−s,k(x).

Next, we express p
(2ℓ)
n−s,k(x) by means of (3.15) and estimate

∣∣∣−→∆s
1/nf(k/n)

∣∣∣ by
(3.30). Thus we arrive at

∣∣w(x)φ2ℓ(x)(Bnf)
(2ℓ+s)(x)

∣∣ ≤ c nℓ

ℓ∑
i=0

2(ℓ−i)∑
j=0

(
nφ2(x)

)i−ℓ

× w(x)
n−s∑
k=0

pn−s,k(x)wn,k ∥wf (s)∥[k/n,(k+s)/n]|k − (n− s)x|j

≤ c nℓ

2ℓ∑
j=0

(
nφ2(x)

)−j/2

× w(x)
n−s∑
k=0

pn−s,k(x)wp,n,k ∥wf (s)∥[k/n,(k+s)/n]|k − (n− s)x|j,

(3.83)

where at the last step we have used that nφ2(x) ≥ 1 and i− ℓ ≤ −j/2.
We have to estimate the weighted sup-norm of the right-hand side of

the last inequality. Moreover, due to symmetry, we can restrict the range
of summation on k to {0, . . . , [(n − s)/2]} (see (3.33)-(3.34) and note that
|k − (n− s)x| = |n− s− k − (n− s)y| with y = 1− x).

We apply Cauchy’s inequality to derive

(3.84) w(x)

[(n−s)/2]∑
k=0

pn−s,k(x)wn,k ∥wf (s)∥[k/n,(k+s)/n]|k − (n− s)x|j

≤

w2(x)

[(n−s)/2]∑
k=0

w2
n,k pn−s,k(x)

1/2

(Tn−s,2j(x))
1/2 ∥wf (s)∥.
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Further, just as in (3.38) we see that

(3.85) w2(x)

[(n−s)/2]∑
k=0

w2
n,k pn−s,k(x) ≤ c, x ∈ [0, 1].

Also, (3.18) yields

(3.86)
(
nφ2(x)

)−j/2
(Tn−s,2j(x))

1/2 ≤ c, (n− s)φ2(x) ≥ 1.

Relations (3.83)-(3.86) imply

(3.87) ∥wφ2ℓ(Bnf)
(2ℓ+s)∥In−s ≤ c nℓ∥wf (s)∥,

where, to recall, In := {x ∈ [0, 1] : nφ2(x) ≥ 1}.
Case 2. Let (n − s)φ2(x) ≤ 1 and n ≥ 2ℓ + s. Differentiating ℓ times

(3.4) with ℓ+ s in place of s, we get

(Bnf)
(2ℓ+s)(x) =

n!

(n− ℓ− s)!

n−ℓ−s∑
k=0

−→
∆ ℓ+s

1/nf

(
k

n

)
p
(ℓ)
n−ℓ−s,k(x).

Consequently,

(3.88) |(Bnf)
(2ℓ+s)(x)|

≤ c nℓ max
ν=0,...,ℓ

n!

(n− s)!

n−ℓ−s∑
k=0

∣∣∣∣−→∆s
1/nf

(
k + ν

n

)∣∣∣∣ |p(ℓ)n−ℓ−s,k(x)|.

Just as in Case 1 we estimate
∣∣∣−→∆s

1/nf((k + ν)/n)
∣∣∣ by means of (3.30) and

express p
(ℓ)
n−ℓ−s,k(x) by means of (3.15). Thus for each ν = 0, . . . , ℓ we have

n!

(n− s)!
w(x)φ2ℓ(x)

n−ℓ−s∑
k=0

∣∣∣∣−→∆s
1/nf

(
k + ν

n

)∣∣∣∣ |p(ℓ)n−ℓ−s,k(x)|

≤ c
∑

0≤i≤ℓ/2

ℓ−2i∑
j=0

(
nφ2(x)

)i
w(x)

n−ℓ−s∑
k=0

pn−ℓ−s,k(x)

× wn,k+ν ∥wf (s)∥[(k+ν)/n,(k+ν+s)/n]|k − (n− ℓ− s)x|j

≤ c

ℓ∑
j=0

w(x)
n−ℓ−s∑
k=0

pn−ℓ−s,k(x)

× wn,k+ν ∥wf (s)∥[(k+ν)/n,(k+ν+s)/n]|k − (n− ℓ− s)x|j,

(3.89)
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where at the last estimate we have taken into account that nφ2(x) ≤ c.
We proceed as in Case 1. Again due to symmetry it is sufficient to restrict

the range of summation on k to {0, . . . , [(n− ℓ− s)/2]}, as now we have with
k̄ = n− ℓ− s− k and ν̄ = ℓ− ν (cf. (3.33)-(3.34)) the relations

wn,k̄+ν = w̄n,k+ν̄ ,

∥wf (s)∥[(k̄+ν)/n,(k̄+ν+s)/n] = ∥w̄f̄ (s)∥[(k+ν̄)/n,(k+ν̄+s)/n].
(3.90)

Let us note that we still have

(3.91) wn,k+ν ≤ c

(
n

k + 1

)γ0

, 0 ≤ k ≤ (n− ℓ− s)/2,

for ν = 0, . . . , ℓ. Consequently, there holds

w2(x)

[(n−ℓ−s)/2]∑
k=0

w2
n,k+ν pn−ℓ−s,k(x) ≤ c, x ∈ [0, 1].

Also, (3.18) implies

Tn−ℓ−s,2j(x) ≤ c, (n− s)φ2(x) ≤ 1.

Now, just similarly to Case 1, we derive from (3.88), (3.89), the symmetry
on k, and the last two estimates above the inequality

(3.92) ∥wφ2ℓ(Bnf)
(2ℓ+s)∥I′′n−s

≤ c nℓ∥wf (s)∥,

where I ′′n := {x ∈ [0, 1] : nφ2(x) ≤ 1}.
Estimates (3.87) and (3.92) yield

∥wφ2ℓ(Bnf)
(2ℓ+s)∥ ≤ c nℓ∥wf (s)∥.

To establish (b) we apply (3.4) with ℓ+ s in place of s and (3.30). Thus
we get

|(Bnf)
(ℓ+s)(x)| ≤ n!

(n− ℓ− s)!

n−ℓ−s∑
k=0

∣∣∣∣−→∆ ℓ+s
1/nf

(
k

n

)∣∣∣∣ pn−ℓ−s,k(x)

≤ c nℓ+s max
ν=0,...,ℓ

n−ℓ−s∑
k=0

∣∣∣∣−→∆s
1/nf

(
k + ν

n

)∣∣∣∣ pn−ℓ−s,k(x)

≤ c nℓ max
ν=0,...,ℓ

n−ℓ−s∑
k=0

wn,k+ν pn−ℓ−s,k(x) ∥wf (s)∥.
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To complete the proof we need only recall (3.91), (3.36)-(3.37) and use the
symmetry on k, see (3.90).

Further, we will state two analogues of the above Bernstein-type inequal-
ities in terms of the differential operator D.

Corollary 3.24. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as
0 ≤ γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and
wf (s) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(DBnf)
(s)∥ ≤ c n∥wf (s)∥.

The value of the constant c is independent of f and n.

Proof. We have

(Dg(x))(s) = φ2(x)g(s+2)(x) + s(1− 2x)g(s+1)(x)− s(s− 1)g(s)(x).

Hence

(3.93) ∥w(Dg)(s)∥ ≤ c
(
∥wg(s′)∥+ ∥wg(s+1)∥+ ∥wφ2g(s+2)∥

)
,

where s′ := max{2, s}.
Now, the assertion of the corollary follows from (3.93) with g = Bnf and

Propositions 3.14 and 3.23, (a) and (b), with ℓ = 1.

Corollary 3.25. Let s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as
0 ≤ γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs+1[0, 1] and
wφ2f (s+2) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(D2Bnf)
(s)∥ ≤ c n ∥w(Df)(s)∥.

The value of the constant c is independent of f and n.

Proof. We iterate (3.93) to arrive with at

∥w(D2g)(s)∥ ≤ c
(
∥w(Dg)(s′)∥+ ∥w(Dg)(s+1)∥+ ∥wφ2(Dg)(s+2)∥

)
≤ c
(
∥wg(s′)∥+ ∥wg(s′+1)∥+ ∥wφ2g(s

′+2)∥
)

+ c
(
∥wg(s+1)∥+ ∥wg(s+2)∥+ ∥wφ2g(s+3)∥

)
+ c
(
∥wφ2g(s+2)∥+ ∥wφ2g(s+3)∥+ ∥wφ4g(s+4)∥

)
≤ c
(
∥wg(s′)∥+ ∥wg(s+1)∥+ ∥wg(s+2)∥+ ∥wφ2g(s+3)∥+ ∥wφ4g(s+4)∥

)
.
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We apply this estimate with g = Bnf .
Proposition 3.14 implies

∥wg(s′)∥ ≤ c ∥wf (s′)∥

and

∥wg(s+1)∥ ≤ c ∥wf (s+1)∥;

Proposition 3.23(b) with ℓ = 1 implies

∥wg(s+2)∥ ≤ c n∥wf (s+1)∥;

Proposition 3.23(a) with ℓ = 1 but s+ 1 in place of s implies

∥wφ2g(s+3)∥ ≤ c n∥wf (s+1)∥;

Proposition 3.23(a) with ℓ = 1 but wφ2 in place of w and s+ 2 in place of s
implies

∥wφ4g(s+4)∥ ≤ c n∥wφ2f (s+2)∥.
We combine all the above estimates to get

∥w(D2Bnf)
(s)∥ ≤ c

(
∥wf (s′)∥+ n∥wf (s+1)∥+ n∥wφ2f (s+2)∥

)
.

Now, the assertion of the corollary follows from Proposition 2.6 with
r = 1.

3.6 Proof of the characterization of the rate

of the simultaneous approximation

We are now able to give the proofs of the direct and converse estimates stated
in Section 3.3.

Proof of Theorem 3.3. The estimate follows from Proposition 3.14 and Corol-
lary 3.18 via a standard argument (see e.g. [22, Theorem 3.4]). Namely, for
any g ∈ Cs+2[0, 1] we have

∥w(Bnf − f)(s)∥ ≤ ∥w(f (s) − g(s))∥+ ∥w(Bng − g)(s)∥
+ ∥w(Bn(f − g))(s)∥

≤ c

(
∥w(f (s) − g(s))∥+ 1

n
∥w(Drg)(s)∥

)
.

Taking an infimum on g ∈ Cs+2[0, 1], we arrive at (3.9).
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To prove the converse inequality in Theorem 3.8 we will apply the general
method to prove such converse estimates given in [22].

Proof of Theorem 3.8. To establish the converse estimate we apply [22, The-
orem 3.2] with the operator Qn = Bn on the space

X = {f ∈ C[0, 1] : f ∈ ACs−1
loc (0, 1), wf (s) ∈ L∞[0, 1]}

with a semi-norm ∥f∥X := ∥wf (s)∥. Let us note that [22, Theorem 3.2]
continues to hold for a semi-norm ∥ ◦ ∥X since in its proof the property that
distinguishes a norm from a semi-norm is not used. Let also Y = Cs+2[0, 1]
and Z = Cs+4[0, 1].

Proposition 3.14 implies that Qn is a bounded operator on X, so that [22,
(3.3)] holds.

By virtue of Corollary 3.22, we have for Φ(f) = ∥w(D2f)(s)∥ and f ∈ Z∥∥∥∥∥w
(
Qnf − f −

1

2n
Df

)(s)
∥∥∥∥∥ ≤ c

n2
Φ(f),

which shows that [22, (3.4)] is valid with λ(n) = (2n)−1 and λ1(n) = c n−2,
where the constant c is the one from Corollary 3.22.

Further, we set g := Bnf for f ∈ X and apply Corollary 3.25 to obtain

Φ(Q2
nf) = Φ(Bng) ≤ c n ∥w(Dg)(s)∥ = c n ∥w(DBnf)

(s)∥.

Hence [22, (3.5)] is established with m = 2 and ℓ = 1.
Finally, Corollary 3.24 yields for f ∈ X

∥w(DQnf)
(s)∥ ≤ c n∥wf (s)∥,

which is [22, (3.6)].
Now, [22, Theorem 3.2] implies the assertion of the theorem.

3.7 An improved converse estimate

We are able to prove a stronger converse estimate that the one given in
Theorem 3.8 for small order derivatives and a narrower range of the weight
exponents, but still including the unweighted case w = 1.
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operator

Theorem 3.26. Let s ∈ N+ as s ≤ 6, and let w := w(γ0, γ1) be given
by (2.2) with γ0, γ1 ∈ [0, s/2]. Then there exists n0 ∈ N+ such that for all
f ∈ C[0, 1] with f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all n ∈ N+ with
n ≥ n0 there holds

KD
s (f (s), n−1)w ≤ c ∥w(Bnf − f)(s)∥.

The value of the constant c is independent of f and n.

Remark 3.27. Using earlier results, it can be easily shown that, in the un-
weighted case, the converse inequality above holds for all n. We will demon-
strate that after proving the theorem.

Remark 3.28. The proof of the theorem is based on a number of very
technical results. In establishing just a small fragment of them (namely
(3.140) for j = 0) we imposed an upper bound on s—all the other ones are
verified for all positive integers s. Refinements of the calculations can yield
the validity of the theorem for s larger than 6. However, it seems that settling
the general case requires much effort or another approach.

Remark 3.29. The assumption γ0, γ1 ∈ [0, s/2] in Theorem 3.26 is due to
the method of proof we use. It is quite plausible that Theorem 3.26 remains
valid for all γ0, γ1 ∈ [0, s).

Theorem 3.26 holds for s = 0 (see [70, 93]). Its assertion for s = 1 and
w = 1 has already been established in [54].

Combining Theorems 3.3 and 3.26, we verify that the error of the weighted
simultaneous approximation by the Bernstein operator is equivalent to the
K-functional KD

s (f (s), n−1)w. Thus the following characterization of the rate
of the weighted simultaneous approximation by the Bernstein operator holds
true.

Theorem 3.30. Let s ∈ N+ as s ≤ 6, and let w := w(γ0, γ1) be given
by (2.2) with γ0, γ1 ∈ [0, s/2]. Then there exists n0 ∈ N+ such that for all
f ∈ C[0, 1] with f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all n ∈ N+ with
n ≥ n0 there holds

∥w(Bnf − f)(s)∥ ∼ KD
s (f (s), n−1)w.

Similarly, Theorems 3.5 and 3.26 along with (3.10)-(3.11) yield
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Theorem 3.31. Let s ∈ N+, as s ≤ 6, and w := w(γ0, γ1) be given by (2.2).
Then there exists n0 ∈ N+ such that for all f ∈ C[0, 1] with f ∈ ACs−1

loc (0, 1)
and wf (s) ∈ L∞[0, 1], and all n ∈ N+ with n ≥ n0 there hold:

∥w(Bnf − f)′∥ ∼ ω2
φ(f

′, n−1/2)w + ω1(f
′, n−1)w, s = 1, 0 ≤ γ0, γ1 ≤ 1/2,

∥(Bnf − f)(s)∥ ∼ ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1) + n−1∥f (s)∥,

2 ≤ s ≤ 6, γ0 = γ1 = 0,

∥w(Bnf − f)(s)∥ ∼ ω2
φ(f

(s), n−1/2)w + n−1∥wf (s)∥,
2 ≤ s ≤ 6, 0 < γ0, γ1 ≤ s/2.

To compare, the characterization in the case s = 0 is of the form (see
(3.2))

∥Bnf − f∥ ∼ ω2
φ(f, n

−1/2).

3.7.1 Strengthened Bernstein-type inequalities

To prove the converse inequality of Theorem 3.26, we again apply the method
developed by Ditzian and Ivanov [22]. As we saw earlier in this chapter, it
allows us to establish such converse estimates by means of several other basic
estimates concerning the approximation properties of the operator. All but
one of them were established in Section 3.5. What remains to be shown is
that the more iterates of Bn we apply, the smaller constant we can take on
the right-hand side of the Bernstein-type inequalities in Proposition 3.23 and
Corollary 3.25.

As we established in Proposition 3.14, if 0 ≤ γ0, γ1 < s, then

(3.94) ∥w(Bnf)
(s)∥ ≤ c ∥wf (s)∥

for all f ∈ C[0, 1] such that f ∈ ACs−1
loc (0, 1) and wf (s) ∈ L∞[0, 1]. We will

need a stronger form of this estimate that gives an upper bound of the order
by which the constant c can increase when we take iterates of the Bernstein
operator.

Proposition 3.32. Let m, s ∈ N+ as m ≥ 2, and let w := w(γ0, γ1) be
given by (2.2) with γ0, γ1 ∈ [0, s). Then for all f ∈ C[0, 1] such that f ∈
ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all n ∈ N+ such that n ≥ m+ s there
holds

∥w(Bm
n f)

(s)∥ ≤ c logm ∥wf (s)∥.
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The value of the constant c is independent of f , n and m.

Proof. It is known that

(3.95)
−→
∆s

hf(x)

=

∫ h

0

· · ·
∫ h

0

f (s)(x+ u1 + · · ·+ us) du1 · · · dus, x ∈ [0, 1− sh].

Note that, under the assumptions of the proposition, f (s)(x+u1+ · · ·+us) is
a summable function of the variables (u1, . . . , us) on the cube [0, h]s for each
x ∈ [0, 1− sh].

Identities (3.4) and (3.95) yield the representation

(Bnf)
(s)(x) =

n!

(n− s)!

×
n−s∑
k=0

∫ 1/n

0

· · ·
∫ 1/n

0

f (s)

(
k

n
+ u1 + · · ·+ us

)
du1 · · · dus pn−s,k(x), x ∈ [0, 1].

Iterating it, we arrive at the formula

(3.96) (Bm
n f)

(s)(x) =
n!

(n− s)!

×
∑
k̄

∫ 1/n

0

· · ·
∫ 1/n

0

f (s)

(
k1
n

+ u1 + · · ·+ us

)
du1 · · · dus Pn,s,k̄ pn−s,km(x),

where the summation is carried over kj = 0, . . . , n− s, j = 1, . . . ,m, and we
have set k̄ := (k1, . . . , km),

Pn,s,k̄ :=
m−1∏
j=1

pn,s,kj

(
kj+1

n

)
,

pn,i,k(x) :=
n!

(n− i)!

∫ 1/n

0

· · ·
∫ 1/n

0

pn−i,k(x+ u1 + · · ·+ ui) du1 · · · dui.

(3.97)

Taking into account (3.95), we can write (3.96) in the form

(3.98) (Bm
n f)

(s)(x)

=
n!

(n− s)!
∑
k̄

−→
∆s

1/nf

(
k1
n

)
Pn,s,k̄ pn−s,km(x), x ∈ [0, 1].
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As it follows from (3.30) and (3.35) and symmetry, there holds

(3.99)

∣∣∣∣−→∆s
1/nf

(
k1
n

)∣∣∣∣ ≤ c

ns
w

(
k1 + 1

n

)−1

∥wf (s)∥, k1 = 0, . . . , n− s.

We will establish in (3.116) of Lemma 3.35 that

w(x)
∑
k̄

w

(
k1 + 1

n

)−1

Pn,s,k̄ pn−s,km(x) ≤ c logm, x ∈ [0, 1],

for m ≥ 2 and n ≥ m + s with a constant c independent of m and n. Now,
(3.98), (3.99) and the last estimate imply the assertion of the proposition.

Next, we proceed to the Bernstein-type inequalities for the iterated Bern-
stein operator.

Proposition 3.33. Let m, s ∈ N+ as m ≥ 2, and let w := w(γ0, γ1) be
given by (2.2) with γ0, γ1 ∈ [0, s/2]. Then for all f ∈ C[0, 1] such that
f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all n ∈ N+ such that n ≥ m + s
there hold:

(a) ∥wφ(Bm
n f)

(s+1)∥ ≤ c
√

logm
m

√
n ∥wf (s)∥, 2 ≤ s ≤ 9;

(b) ∥wφ2(Bm
n f)

(s+2)∥ ≤ c logm
m

n ∥wf (s)∥, 2 ≤ s ≤ 8;

(c) ∥w(Bm
n f)

(s+1)∥ ≤ c
√

logm
m

n ∥wf (s)∥, 2 ≤ s ≤ 9.

The value of the constant c is independent of f , n and m.

Proof. To prove assertion (a), we follow the argument in [70, pp. 318–320].
We differentiate (3.98) in x and apply the formula (see e.g. [18, Chapter 10,
(2.1)])

(3.100) p′n,k(x) = n[pn−1,k−1(x)− pn−1,k(x)],

where we have set for convenience pn,k = 0 if k < 0 or k > n. Then we use
the Abel transform to derive m − 1 different representations of (Bm

n f)
(s+1).

This is the key step in the considerations of Knoop and Zhou in [70, pp.
318–320].
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Thus we arrive at the formula

(3.101) (Bm
n f)

(s+1)(x)

=
1

m− 1

n!

(n− s)!
∑
k̄

−→
∆s

1/nf

(
k1
n

)
Pn,s,k̄Qn,s,k̄pn−s−1,km(x),

where the summation is carried over kj = 0, . . . , n − s and j = 1, . . . ,m,
Pn,s,k̄ is given in (3.97), and we have set

Qn,s,k̄ :=
m−1∑
j=1

Qn,s,j,k̄, Qn,s,m−1,k̄ := ℓ∗n,s,km−1

(
km
n

)
,

Qn,s,j,k̄ := ℓ∗n,s,kj

(
kj+1

n

)
ℓn,s,kj+1

(
kj+2

n

)
· · · ℓn,s,km−1

(
km
n

)
, j = 1, . . . ,m− 2,

ℓ∗n,s,k(x) :=
(n− s)

∫ 1/n

0
p′n,s,k(x+ u) du

pn,s,k(x)
, ℓn,s,k(x) :=

pn,s+1,k(x)

pn,s,k(x)
.

Further, we apply Cauchy’s inequality and (3.99) to derive from (3.101)
the estimate

(3.102)

|w(x)φ(x)(Bm
n f)

(s+1)(x)| ≤ c

m

(
φ2(x)

∑
k̄

Pn,s,k̄Q
2
n,s,k̄ pn−s−1,km(x)

)1/2

× ∥wf (s)∥

(
w2(x)

∑
k̄

w−2

(
k1 + 1

n

)
Pn,s,k̄ pn−s−1,km(x)

)1/2

.

We will show in (3.127) of Lemma 3.36 below that

φ2(x)
∑
k̄

Pn,s,k̄Q
2
n,s,k̄ pn−s−1,km(x) ≤ cmn, x ∈ [0, 1],

for 2 ≤ s ≤ 9, m ≥ 2, and n ≥ m+ s. Also, (3.117) of Lemma 3.35 with w2

in place of w yields

w2(x)
∑
k̄

w−2

(
k1 + 1

n

)
Pn,s,k̄ pn−s−1,km(x) ≤ c logm, x ∈ [0, 1],
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for m ≥ 2, and n ≥ m+ s. In view of these two inequalities, (3.102) implies
assertion (a).

To prove (b) for even m ≥ 4 we just apply (a) twice with m/2 in place
of m, as the first time we take wφ in place of w, and s+ 1 in place of s.

We reduce the case of odd m ≥ 5 to the case of even m’s greater than
or equal to 4 by applying (3.94) with Bm−1

n f in place of f , s+ 2 in place of
s, and wφ2 in place of w. Assertion (b) for m = 2, 3 follows directly from
(3.94) and Proposition 3.23(a) with ℓ = 1.

Assertion (c) is verified similarly to (a) as instead of (3.127) we use
(3.128).

Corollary 3.34. Let m, s ∈ N+ as s ≤ 6 and m ≥ 2, and let w := w(γ0, γ1)
be given by (2.2) with γ0, γ1 ∈ [0, s/2]. Then for all f ∈ Cs+2[0, 1] and
n ∈ N+ such that n ≥ m+ s+ 2 there holds

∥w(D2Bm
n f)

(s)∥ ≤ c′
√

logm

m
n∥w(Df)(s)∥.

The value of the constant c′ is independent of f , n and m.

Proof. As we have shown in the beginning of the proof of Corollary 3.25,

(3.103) ∥w(D2g)(s)∥
≤ c
(
∥wg(s′)∥+ ∥wg(s+1)∥+ ∥wg(s+2)∥+ ∥wφ2g(s+3)∥+ ∥wφ4g(s+4)∥

)
.

We will apply this estimate with g = Bm
n f and show that each of the

terms on the right above is estimated from above by c
√

logm
m

n∥w(Df)(s)∥,
where the constant c is independent of m, n and f .

By Proposition 2.6 with r = 1 we have

∥wf (s′)∥ ≤ c ∥w(Df)(s)∥,(3.104)

∥wf (s+1)∥ ≤ c ∥w(Df)(s)∥(3.105)

and

∥wφ2f (s+2)∥ ≤ c ∥w(Df)(s)∥.(3.106)

Proposition 3.32 with s′ in place of s and inequality (3.104) imply the
estimates

∥w(Bm
n f)

(s′)∥ ≤ c logm∥wf (s′)∥ ≤ c logm∥w(Df)(s)∥

≤ c

√
logm

m
n∥w(Df)(s)∥.

(3.107)
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Similarly, Proposition 3.32 with s+ 1 in place of s and (3.105) yield

(3.108) ∥w(Bm
n f)

(s+1)∥ ≤ c

√
logm

m
n∥w(Df)(s)∥.

Next, Proposition 3.33(c) with s+ 1 in place of s and (3.105) imply

(3.109) ∥w(Bm
n f)

(s+2)∥ ≤ c

√
logm

m
n ∥wf (s+1)∥ ≤ c

√
logm

m
n ∥w(Df)(s)∥.

Further, by Proposition 3.33(b) with s+ 1 in place of s, and (3.105), we
get

∥wφ2(Bm
n f)

(s+3)∥ ≤ c
logm

m
n ∥wφ2f (s+1)∥

≤ c

√
logm

m
n ∥w(Df)(s)∥.

(3.110)

Finally, again by means of Proposition 3.33(b) but with s+ 2 in place of
s and wφ2 in place of w, and (3.106) we arrive at

∥wφ4(Bm
n f)

(s+4)∥ ≤ c
logm

m
n ∥wφ2f (s+2)∥

≤ c

√
logm

m
n ∥w(Df)(s)∥.

(3.111)

Estimates (3.103) and (3.107)-(3.111) imply the assertion of the corollary.

3.7.2 Proof of the improved converse estimate

Below we will prove Theorem 3.26 and the assertion of Remark 3.27.

Proof of Theorem 3.26. We apply [22, Theorem 4.1] with the operator Qα =
Bn on the space

X = {f ∈ C[0, 1] : f ∈ ACs−1
loc (0, 1), wf (s) ∈ L∞[0, 1]}

with the semi-norm ∥f∥X := ∥wf (s)∥. Let also Y = Cs+2[0, 1] and Z =
Cs+4[0, 1].

Inequality (3.94) shows that Bn is a bounded operator on X, so that [22,
(3.3)] holds.
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Next, by virtue of Corollary 3.22 yields∥∥∥∥∥w
(
Bnf − f −

1

2n
Df

)(s)
∥∥∥∥∥ ≤ c′′

n2
∥w(D2f)(s)∥, f ∈ Z,

where c′′ is a positive constant, which is independent of f and n. Thus [22,
(3.4)] with Φ(f) := ∥w(D2f)(s)∥, λ(n) := 1/(2n) and λ1(n) := c′′/n2 is valid.

Further, we apply Corollary 3.34 with Bnf in place of f to obtain

∥w(D2Bm+1
n f)(s)∥ ≤ c′

√
logm

m
n∥w(DBnf)

(s)∥, f ∈ X.

Hence [22, (3.5)] is established with m+ 1 in place of m, ℓ = 1, and

A = 2c′c′′
√

logm

m
.

We fix m ≥ 2 so large that A < 1.
Finally, by Corollary 3.24 we have

∥w(DBnf)
(s)∥ ≤ c n∥wf (s)∥, f ∈ X,

which is [22, (3.6)] with ℓ = 1.
Now, [22, Theorem 4.1] implies the converse estimate for n ≥ m+s+2.

Proof of Remark 3.27. To show that the converse estimate in Theorem 3.26
for w = 1 holds also for small n, we follow the considerations in [70, p. 317].

Let n < m + s + 2, where m is the positive integer fixed in the proof of
Theorem 3.26. By Proposition 3.23(b) we have the estimates

(3.112) ∥(Bnf)
(s+ℓ)∥ ≤ c ∥f (s)∥, ℓ = 1, 2,

for f ∈ Cs[0, 1].
We readily deduce from (3.4) and (3.95) that for f ∈ Cs[0, 1] and s ≥ 2

there holds

∥(Bnf)
(s)∥ ≤ n− 1

n
∥f (s)∥;

hence

(3.113) ∥(Bi
nf)

(s)∥ ≤
(
n− 1

n

)i

∥f (s)∥.
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Further, as is known [68, Theorem 1],

(3.114) lim
i→∞

Bi
nf(x) = B1f(x), x ∈ [0, 1].

We apply (3.94) and (3.112)-(3.114) to get for j = 0, 1, 2 and s+ j ≥ 2

∥(Bnf)
(s+j)∥ ≤

∞∑
i=1

∥∥∥(Bi
n(f −Bnf)

)(s+j)
∥∥∥

≤
∞∑
i=1

(
n− 1

n

)i−1 ∥∥∥(Bn(f −Bnf))
(s+j)

∥∥∥
≤ c ∥(f −Bnf)

(s)∥.

(3.115)

By (3.93) with w = 1 we have

∥(DBnf)
(s)∥ ≤ c

(
∥(Bnf)

(s′)∥+ ∥(Bnf)
(s+1)∥+ ∥(Bnf)

(s+2)∥
)
,

where s′ := max{s, 2}.
Now, (3.115) imply

∥(DBnf)
(s)∥ ≤ c ∥(f −Bnf)

(s)∥.

Consequently,

KD
s (f (s), n−1)1 ≤ ∥(f −Bnf)

(s)∥+ ∥(DBnf)
(s)∥ ≤ c ∥(f −Bnf)

(s)∥

for n < m+ s+ 2 as well.

3.7.3 Auxiliary lemmas

Here we will provide proofs of the technical lemmas we used to verify Propo-
sitions 3.32 and 3.33.

Lemma 3.35. Let m,n, s ∈ N+, n ≥ m + s, m ≥ 2 and w := w(γ0, γ1) be
given by (2.2) with 0 ≤ γ0, γ1 ≤ s. Then

w(x)
∑
k̄

w

(
k1 + 1

n

)−1

Pn,s,k̄ pn−s,km(x) ≤ c logm, x ∈ [0, 1],(3.116)
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and

w(x)
∑
k̄

w

(
k1 + 1

n

)−1

Pn,s,k̄ pn−s−1,km(x) ≤ c logm, x ∈ [0, 1],(3.117)

where the summation is carried over kj = 0, . . . , n−s and j = 1, . . . ,m. The
value of the constant c is independent of m, n and x.

Proof. We follow the considerations of Knoop and Zhou [70] (see the proof
of Lemma 3.1 there). Throughout c denotes a constant whose value is inde-
pendent of m,n and x in the specified ranges.

By means of the inequalities:

1

2

(
x−γ0 + (1− x)−γ1

)
≤ w(x)−1 ≤ 2s−1

(
x−γ0 + (1− x)−γ1

)
, x ∈ (0, 1),

Hölder’s inequality and the relations∑
k̄

Pn,s,k̄pn−s−r,km(x) ≡
(

n!

(n− s)!ns

)m−1

≤ 1, r = 0, 1,

we reduce the assertion of the lemma to the estimates∑
k̄

(k1 + 1)−sPn,s,k̄ pn−s−r,km(x) ≤ c logm (nx)−s, x ∈ (0, 1),

and ∑
k̄

(n− k1)−sPn,s,k̄ pn−s−r,km(x) ≤ c logm (n(1− x))−s, x ∈ (0, 1),

where r = 0, 1.
We set for τ ∈ [0, 1]

Fn,0(τ) := 1− τ, Fn,j(τ) := 1− e−
n−s
n

Fn,j−1(τ), j = 1, 2, . . . .

Just as in [70, pp. 322–324] we show that∑
k̄

(k1 + 1)−sPn,s,k̄ pn−s−r,km(x)

≤
(

n

n− s

)s(m−1)∫ 1

0

· · ·
∫ 1

0

F s
n,m−1(τ1· · ·τs)
F s
n,0(τ1· · ·τs)

e−(n−s−r)Fn,m−1(τ1···τs)xdτ1· · ·dτs
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and∑
k̄

(n− k1)−sPn,s,k̄ pn−s−r,km(x)

≤
(

n

n− s

)s(m−1)∫ 1

0

· · ·
∫ 1

0

F s
n,m−1(τ1 · · · τs)
F s
n,0(τ1 · · · τs)

e−(n−s−r)Fn,m−1(τ1···τs)(1−x)dτ1 · · · dτs.

Since

(3.118)

(
n

n− s

)m

≤ es, n ≥ m+ s,

to complete the proof of the lemma it is sufficient to show

(3.119)

∫ 1

0

· · ·
∫ 1

0

F s
n,m−1(τ1 · · · τs)
F s
n,0(τ1 · · · τs)

e−(n−s−1)Fn,m−1(τ1···τs)xdτ1 · · · τs

≤ c logm (nx)−s

for all n ≥ m+ s, m ≥ 2 and x ∈ (0, 1].

Using that yse−y ≤ c, y ≥ 0, we get

(3.120) F s
n,m−1(τ)e

−(n−s−1)Fn,m−1(τ)x ≤ c(nx)−s, x ∈ (0, 1], τ ∈ [0, 1].

Also, we clearly have Fn,0(τ) ≥ 1/2 for τ ∈ [0, 1/2]. Therefore, if D ⊂ [0, 1]s

is a parallelepiped with at least one side of the form [0, 1/2], then

(3.121)

∫
D

F s
n,m−1(τ1 · · · τs)
F s
n,0(τ1 · · · τs)

e−(n−s−1)Fn,m−1(τ1···τs)x dτ1 · · · dτs ≤ c(nx)−s

for all n ≥ m+ s, m ≥ 2 and x ∈ (0, 1].

In order to estimate the integral on the cube [1/2, 1]s, we set

Fn,m−1(τ, x) :=
F s
n,m−1(τ)

F s
n,0(τ)

e−(n−s−1)Fn,m−1(τ)x,

make the change of the variables, defined by the formulae σj = τ1 · · · τj,
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j = 1, . . . , s, and arrange the order of integration from σ1 to σs to get∫ 1

1/2

· · ·
∫ 1

1/2

Fn,m−1(τ1 · · · τs, x) dτ1 · · · dτs

≤
∫ 1

2−s

[
Fn,m−1(σs, x)

∫ 1

σs

(
· · ·
(

1

σ3

∫ 1

σ3

(
1

σ2

∫ 1

σ2

1

σ1
dσ1

)
dσ2

)
· · ·
)
dσs−1

]
dσs

≤ c

∫ 1

2−s

[
Fn(σs, x)

∫ 1

σs

(
· · ·
(∫ 1

σ3

(∫ 1

σ2

dσ1

)
dσ2

)
· · ·
)
dσs−1

]
dσs

≤ c

∫ 1

2−s

Fn,m−1(σ, x)(1− σ)s−1dσ.

We make the change of the variable σ = 1− t and set Gn,j(t) := Fn,j(1− t).
Thus we arrive at

(3.122)

∫ 1

1/2

· · ·
∫ 1

1/2

F s
n,m−1(τ1 · · · τs)
F s
n,0(τ1 · · · τs)

e−(n−s−1)Fn,m−1(τ1···τs)x dτ1 · · · dτs

≤ c

∫ 1

0

t−1Gs
n,m−1(t) e

−(n−s−1)Gn,m−1(t)x dt.

By means of induction on m we show that (cf. [70, (4.7)])

(3.123)

(
n− s
n

)m (
t− m

2
t2
)
≤ Gn,m−1(t) ≤ t, t ∈ [0, 1].

We split the integral on the right-hand side of (3.122) by means of the inter-
mediate point 1/m. For the one between 0 and 1/m we apply (3.118) and
(3.123) to get

(3.124)

∫ 1/m

0

t−1Gs
n,m−1(t) e

−(n−s−1)Gn,m−1(t)x dt

≤
∫ 1

0

ts−1e−cnxt dt ≤ c(nx)−s,

as the last estimate is verified by integration by parts.
For the other integral we again use (3.120) to derive

(3.125)

∫ 1

1/m

t−1Gs
n,m−1(t) e

−(n−s−1)Gn,m−1(t)x dt

≤ c(nx)−s

∫ 1

1/m

dt

t
= c logm (nx)−s.
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Estimates (3.122), (3.124) and (3.125) yield

(3.126)

∫ 1

1/2

· · ·
∫ 1

1/2

F s
n,m−1(τ)

F s
n,0(τ)

e−(n−s−1)Fn,m−1(τ)x dτ1 · · · dτs

≤ c logm (nx)−s

for all n ≥ m+ s, m ≥ 2 and x ∈ (0, 1].
Now, (3.121) and (3.126) imply (3.119).

Lemma 3.36. Let m,n, s ∈ N+ as 2 ≤ s ≤ 9, m ≥ 2, and n ≥ m+ s. Then

φ2(x)
∑
k̄

Pn,s,k̄Q
2
n,s,k̄ pn−s−1,km(x) ≤ cmn, x ∈ [0, 1],(3.127)

and ∑
k̄

Pn,s,k̄Q
2
n,s,k̄ pn−s−1,km(x) ≤ cmn2, x ∈ [0, 1],(3.128)

where the summation is carried over kj = 0, . . . , n−s and j = 1, . . . ,m. The
value of the constant c is independent of m, n and x.

Remark 3.37. The proof of the lemma is reduced to several simpler inequal-
ities. All but one of them is verified for all s ≥ 2 (see Remark 3.40).

Proof of Lemma 3.36. Both estimates are verified just like [70, Lemma 3.2],
where the case s = 2 was considered. We will indicate the modifications we
need to make. Often that amounts only to replacing n− 2 with n− s.

To establish (3.127) it is enough to verify (see [70, p. 328]) that∑
k̄

Pn,s,k̄Q
2
n,s,j,k̄ pn−s−1,km(x) ≤ c nφ−2(x), x ∈ (0, 1), j = 1, . . . ,m− 1.

It follows from the estimates:

(3.129)
n−s∑
k=0

pn,s,k

(
j

n

)
ℓ∗n,s,k

(
j

n

)2

≤ c nφ−2

(
j + 1

n− s+ 1

)
=

c n(n− s+ 1)2

(j + 1)(n− s− j)
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and

(3.130)
n−s−1∑
k=0

p2n,s+1,k

(
j
n

)
(k + 1)(n− s− k)pn,s,k

(
j
n

) ≤ 1 + c
n

(j + 1)(n− s− j)
,

for j = 0, . . . , n− s− 1, and also

(3.131)
n−s−1∑
k=0

pn−s−1,k(x)

(k + 1)(n− s− k)
≤ c

n2
φ−2(x), x ∈ (0, 1).

Inequalities (3.129) and (3.130) are established in Lemmas 3.38 and 3.39
below, and (3.131) directly follows from [70, (4.21)] with n− 2 replaced with
n− s.

Similarly, (3.128) follows from (3.129) and (3.130) and the trivial inequal-
ity

n−s−1∑
k=0

pn−s−1,k(x)

(k + 1)(n− s− k)
≤ c

n
, x ∈ [0, 1].

Lemma 3.38. Let n, s ∈ N+, as n ≥ s+ 2. Then

(3.132)
n−s∑
k=0

pn,s,k

(
j

n

)
ℓ∗n,s,k

(
j

n

)2

≤ c nφ−2

(
j + 1

n− s+ 1

)
for j = 0, . . . , n− s− 1. The value of the constant c is independent of n.

Proof. We estimate each of the summands on the left-hand side as we con-
sider two cases: j = 0, n− s− 1 and 1 ≤ j ≤ n− s− 2.

For j = 0 we apply (3.100) to derive

(3.133) ns+1

∫ 1/n

0

· · ·
∫ 1/n

0

|p′n−s,k(u1 + · · ·+ us+1)| du1 · · · dus+1

≤ (n− s)

[(
n− s− 1

k − 1

)(
s+ 1

n

)k−1

+

(
n− s− 1

k

)(
s+ 1

n

)k
]

for k = 0, . . . , n− s, as we set for convenience
(

α
−1

)
= 0.

Using that
(u1 + · · ·+ us)

k ≥ uk1
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and

(1− u1 − · · · − us)n−s−k ≥
(
1− s

n

)n
≥ c,

we estimate the denominators of the terms on the left-hand side of (3.132)
by

(3.134) ns

∫ 1/n

0

· · ·
∫ 1/n

0

pn−s,k(u1+· · ·+us) du1 · · · dus ≥
c

k + 1

(
n− s
k

)
1

nk
.

Estimates (3.133) and (3.134) yield (cf. [70, p. 326])

n−s∑
k=0

pn,s,k

(
j

n

)
ℓ∗n,s,k

(
j

n

)2

≤ c n2

{
n−s∑
k=1

(k + 1)
(
n−s−1
k−1

)2(
n−s
k

) [
(s+ 1)2

n

]k−2

+
n−s−1∑
k=0

(k + 1)
(
n−s−1

k

)2(
n−s
k

) [
(s+ 1)2

n

]k}
.

To complete the proof of the lemma for j = 0, it remains to show that the
two sums on the right above are bounded on n. For the first one we have

n−s∑
k=1

(k + 1)
(
n−s−1
k−1

)2(
n−s
k

) [
(s+ 1)2

n

]k−2

≤ c

(
1 +

n−s∑
k=3

(
n− s− 3

k − 3

)[
(s+ 1)2

n

]k−3
)

= c

(
1 +

n−s−3∑
k=0

(
n− s− 3

k

)[
(s+ 1)2

n

]k)

≤ c

(
1 +

(s+ 1)2

n

)n−s−3

≤ c e(s+1)2 .

The other sum is treated in a similar way.

Next, we reduce the case j = n− s− 1 to j = 0. More precisely, we make
the change of the variables vi = 1/n− ui, i = 1, . . . , s+ 1, and apply (3.135)
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to arrive at∫ 1/n

0

· · ·
∫ 1/n

0

p′n−s,k

(
n− s− 1

n
+ u1 + · · ·+ us+1

)
du1 · · · dus+1

=

∫ 1/n

0

· · ·
∫ 1/n

0

p′n−s,k(1− v1 − · · · − vs+1) dv1 · · · dvs+1

= −
∫ 1/n

0

· · ·
∫ 1/n

0

p′n−s,n−s−k(v1 + · · ·+ vs+1) dv1 · · · dvs+1;

similarly, using the same change of the variables and the inequality(
1− v1 − · · · − vs − 1

n

1− v1 − · · · − vs

)k

≥
(
1− 1

n− s

)n−s

≥ c,

we deduce

pn,s,k

(
n− s− 1

n

)
=

n!

(n− s)!

∫ 1/n

0

· · ·
∫ 1/n

0

pn−s,n−s−k

(
v1 + · · ·+ vs +

1

n

)
dv1 · · · dvs

≥ c pn,s,n−s−k(0).

Consequently,

pn,s,k

(
n− s− 1

n

)
ℓ∗n,s,k

(
n− s− 1

n

)2

≤ c pn,s,n−s−k(0)ℓ
∗
n,s,n−s−k(0)

2.

It only remains to observe that

φ2

(
n− s

n− s+ 1

)
= φ2

(
1

n− s+ 1

)
to derive the assertion of the lemma for j = n− s− 1 from the one for j = 0.

Let 1 ≤ j ≤ n− s− 2. Set U := j/n+ u1 + · · ·+ us+1.

As we have already noted (see e.g. [18, Chapter 10, (2.1)]),

(3.135) p′n,k(x) = φ−2(x)(k − nx)pn,k(x).
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By means of that identity and Cauchy’s inequality, we get

pn,s,k

(
j

n

)
ℓ∗s,n,k

(
j

n

)2

≤ c ns+3

∫ 1/n

0

· · ·
∫ 1/n

0

φ−4(U)

×
(

k

n− s
− U

)2 p2n−s,k

(
j
n
+ u1 + · · ·+ us+1

)
pn−s,k

(
j
n
+ u1 + · · ·+ us

) du1 · · · dus+1.

Further, we set

(3.136) A :=

(
j
n
+ u1 + · · ·+ us+1

)2
j
n
+ u1 + · · ·+ us

, B :=

(
1− j

n
− u1 − · · · − us+1

)2
1− j

n
− u1 − · · · − us

.

There hold

φ2(U) ≥ c φ2

(
j + 1

n− s+ 1

)
≥ c

n
,(3.137)

A+B = 1 +
u2s+1

φ2
(
j
n
+ u1 + · · ·+ us

) ≤ 1 +
c

n
(3.138)

and (
k

n− s
− U

)2

≤ 2

(
k

n− s
− A

)2

+
c

n2

for 0 ≤ ui ≤ 1/n, i = 1, . . . , s+ 1.
Consequently, if we denote the sum at the left-hand side of (3.132) by S,

we get

(3.139) S ≤ c ns+3

φ4
(

j+1
n−s+1

)
×

[∫ 1/n

0

· · ·
∫ 1/n

0

(
n−s∑
k=0

(
k

n− s
− A

)2(
n− s
k

)
AkBn−s−k

+
1

n2
(A+B)n−s

)
du1 · · · dus+1

]
.

Using (3.137) and (3.138), we readily get

c ns+1

φ4
(

j+1
n−s+1

) ∫ 1/n

0

· · ·
∫ 1/n

0

(A+B)n−s du1 · · · dus+1 ≤ c nφ−2

(
j + 1

n− s+ 1

)
.
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So, to complete the proof of (3.132) for 1 ≤ j ≤ n − s − 2, it remains to
estimate the first multiple integral on the right of (3.139). To this end, we
apply the identity (cf. [70, (4.18)])

n−s∑
k=0

(
k

n− s
− A

)2(
n− s
k

)
AkBn−s−k

= (A+B)n−s−2

(
A2(A+B − 1)2 +

AB

n− s

)
,

inequality (3.138) and the estimate (cf. [70, (4.19)])

A2(A+B − 1)2 +
AB

n− s
≤ c

n
φ2

(
j + 1

n− s+ 1

)
.

The latter follows from the inequalities

A ≤ c
j + 1

n
, B ≤ c

n− s− j
n

,

(3.137) and (3.138).

Lemma 3.39. Let n, s ∈ N+ as 2 ≤ s ≤ 9 and n ≥ s+ 2. Then

(3.140)
n−s−1∑
k=0

p2n,s+1,k

(
j
n

)
(k + 1)(n− s− k)pn,s,k

(
j
n

) ≤ 1 + c
n

(j + 1)(n− s− j)

for j = 0, . . . , n− s− 1. The value of the constant c is independent of n.

Remark 3.40. The assertion of the lemma for j = 1, . . . , n−s−1 is verified
for any positive integer s ≥ 2 in the proof below.

Proof of Lemma 3.39. The assertion of the lemma was verified for s = 2 in
[70, (4.20)]. So, we can assume that s ≥ 3.

First, let j = 0. In order to estimate the denominators of the terms on
the left-hand side of (3.140), we expand (u1 + · · · + us)

k by the binomial
formula to get

(u1 + · · ·+ us)
k =

k∑
i=0

(
k

i

)
(u1 + · · ·+ us−1)

k−iuis,
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apply the trivial estimate

(1− u1 − · · · − us)n−s−k ≥
(
1− u1 − · · · − us−1 −

1

n

)n−s−k

for us ∈ [0, 1/n] and integrate on us ∈ [0, 1/n]. Thus we get

pn,s,k(0) ≥
n!

(n− s)!
1

n(k + 1)

∫ 1/n

0

· · ·
∫ 1/n

0

(
n− s
k

)
×

k∑
i=0

(
k

i

)
(u1 + · · ·+ us−1)

k−i

(
1

n

)i

×
(
1− u1 − · · · − us−1 −

1

n

)n−s−k

du1 . . . dus−1.

We apply the binomial formula once again and arrive at

pn,s,k(0)

≥ (n− 1)!

(k + 1)(n− s)!

∫ 1/n

0

· · ·
∫ 1/n

0

pn−s,k

(
u1 + · · ·+ us−1 +

1

n

)
du1 · · · dus−1.

Further, we use Cauchy’s inequality to get the estimate

(3.141)
p2n,s+1,k(0)

(k + 1)(n− s− k) pn,s,k(0)

≤ ns+1

∫ 1/n

0

· · ·
∫ 1/n

0

p2n−s−1,k(u1 + · · ·+ us+1)

(n− s− k) pn−s,k

(
u1 + · · ·+ us−1 +

1
n

) du1 · · · dus+1.

We set

Ã :=
(u1 + · · ·+ us+1)

2

u1 + · · ·+ us−1 +
1
n

, B̃ :=
(1− u1 − · · · − us+1)

2

1− u1 − · · · − us−1 − 1
n

.

Then (3.141) yields

p2n,s+1,k(0)

(k + 1)(n− s− k) pn,s,k(0)

≤ ns+2

(n− s)2

∫ 1/n

0

· · ·
∫ 1/n

0

(
n− s− 1

k

)
ÃkB̃n−s−1−k du1 · · · dus+1
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and, consequently, for n ≥ s+ 3 we have

(3.142)
n−s−1∑
k=2

p2n,s+1,k(0)

(k + 1)(n− s− k) pn,s,k(0)
≤ ns+2

(n− s)2

×
∫ 1/n

0

· · ·
∫ 1/n

0

[(Ã+B̃)n−s−1−B̃n−s−1−(n−s−1)ÃB̃n−s−2] du1 · · · dus+1.

By means of the inequality 1 + x ≤ ex, we get

Ã+ B̃ = 1 +

(
us + us+1 − 1

n

)2(
u1 + · · ·+ us−1 +

1
n

) (
1− u1 − · · · − us−1 − 1

n

)
≤ 1 +

(
us + us+1 − 1

n

)2(
u1 + · · ·+ us−1 +

1
n

) (
1− s

n

)
≤ e

(nus+nus+1−1)2

(n−s)(nu1+···+nus−1+1) .

Therefore

(3.143) (Ã+ B̃)n−s−1 ≤ e
(nus+nus+1−1)2

nu1+···+nus−1+1 .

Similarly, by means of the inequality 1 + x ≥ (1 − x2)ex, x ∈ [−1, 1], we
establish

B̃ ≥ 1 +
1

n
− u1 − · · · − us−1 − 2us − 2us+1

≥

(
1−

(
s+ 2

n

)2
)
e

1
n
−u1−···−us−1−2us−2us+1 ;

hence, using Bernoulli’s inequality (1 + x)n ≥ 1 + nx for x ≥ −1, and
ex ≥ 1 + x, we derive

(3.144) B̃n−s−j ≥
(
1− c

n

)
e1−nu1−···−nus−1−2nus−2nus+1 , j = 1, 2.

We apply estimates (3.142)-(3.144), make the change of the variables ti =
nui, i = 1, . . . , s+ 1, and use the representation

(t1 + · · ·+ ts+1)
2

t1 + · · ·+ ts−1 + 1
= −1 + t1 + · · ·+ ts−1 + 2ts + 2ts+1 +

(ts + ts+1 − 1)2

t1 + · · ·+ ts−1 + 1
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to obtain

(3.145)
n−s−1∑
k=2

p2n,s+1,k(0)

(k + 1)(n− s− k) pn,s,k(0)
≤ 1

n− s

(
1 +

c

n

)
(I ′s − I ′′s ),

where we have set

I ′s :=

∫ 1

0

· · ·
∫ 1

0

e
(ts+ts+1−1)2

t1+···+ts−1+1dt1 · · · dts+1,

I ′′s :=

∫ 1

0

· · ·
∫ 1

0

(t1 +· · ·+ ts−1 + 2ts + 2ts+1)e
1−t1−···−ts−1−2ts−2ts+1dt1· · ·dts+1.

We estimate the first integral by means of the inequality

ex ≤ 1 + x+
e x2

2
, x ∈ [0, 1],

and direct computations. Thus we get

(3.146)
I ′3 ≤ 1.11327, I ′4 ≤ 1.08629, I ′5 ≤ 1.06929, I ′6 ≤ 1.05773,

I ′7 ≤ 1.0494, I ′8 ≤ 1.04314, I ′9 ≤ 1.03827.

We evaluate I ′′s and get
(3.147)

I ′′s =
e

4

(
1− e−1

)s
(1 + e−1)

[
(s− 1)(1− 2e−1)(1 + e−1) + 2(1− 3e−2)

]
;

hence

(3.148)
I ′′3 ≥ 0.44866; I ′′4 ≥ 0.33725; I ′′5 ≥ 0.24709; I ′′6 ≥ 0.17762,

I ′′7 ≥ 0.12583, I ′′8 ≥ 0.0881, I ′′9 ≥ 0.0611.

We will now estimate the first two terms in the sum in (3.140). We use
the inequalities (1− x2)ex ≤ 1 + x ≤ ex, x ∈ [−1, 1], to derive

p2n,s+1,0(0)

(n− s)pn,s,0(0)

=
n!

(n− s− 1)!

(∫ 1/n

0
· · ·
∫ 1/n

0
(1− u1 − · · · − us+1)

n−s−1 du1 · · · dus+1

)2
∫ 1/n

0
· · ·
∫ 1/n

0
(1− u1 − · · · − us)n−s du1 · · · dus
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≤ n!

(n− s− 1)!

(
1 +

c

n

) (∫ 1/n

0
· · ·
∫ 1/n

0
e−(n−s−1)(u1+···+us+1) du1 · · · dus+1

)2
∫ 1/n

0
· · ·
∫ 1/n

0
e−(n−s)(u1+···+us) du1 · · · dus

≤ n!

(n− s− 1)!

(
1 +

c

n

) (∫ 1/n

0
· · ·
∫ 1/n

0
e−n(u1+···+us+1) du1 · · · dus+1

)2
∫ 1/n

0
· · ·
∫ 1/n

0
e−n(u1+···+us) du1 · · · dus

≤ 1

n− s

(
1 +

c

n

) (∫ 1

0
· · ·
∫ 1

0
e−(t1+···+ts+1) dt1 · · · dts+1

)2
∫ 1

0
· · ·
∫ 1

0
e−(t1+···+ts) dt1 · · · dts

.

Consequently,

(3.149)
p2n,s+1,0(0)

(n− s)pn,s,0(0)
≤ 1

n− s

(
1 +

c

n

) (
1− e−1

)s+2
.

Similarly, we derive

(3.150)
p2n,s+1,1(0)

2(n− s− 1)pn,s,1(0)

≤ 1

n− s

(
1 +

c

n

) 1

2

(∫ 1

0
· · ·
∫ 1

0
(t1 + · · ·+ ts+1) e

−(t1+···+ts+1) dt1 · · · dts+1

)2
∫ 1

0
· · ·
∫ 1

0
(t1 + · · ·+ ts) e−(t1+···+ts) dt1 · · · dts

.

We have∫ 1

0

· · ·
∫ 1

0

(t1 + · · ·+ ts) e
−(t1+···+ts) dt1 · · · dts = s(1− e−1)s−1(1− 2e−1).

Consequently,
(3.151)

p2n,s+1,1(0)

2(n− s− 1)pn,s,1(0)
≤ 1

n− s

(
1 +

c

n

) (s+ 1)2

2s
(1− e−1)s+1(1− 2e−1).

For

Js :=
(
1− e−1

)s+2
+

(s+ 1)2

2s
(1− e−1)s+1(1− 2e−1)

we have

(3.152)
J3 ≤ 0.21343, J4 ≤ 0.14714, J5 ≤ 0.10102, J6 ≤ 0.06901,

J7 ≤ 0.04691, J8 ≤ 0.03175, J9 ≤ 0.0214.
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operator

By (3.145), (3.149) and (3.150) we have

n−s−1∑
k=0

p2n,s+1,k

(
j
n

)
(k + 1)(n− s− k)pn,s,k

(
j
n

) ≤ 1

n− s

(
1 +

c

n

)
(Js + I ′s − I ′′s ).

Inequalities (3.146), (3.148) and (3.152) imply

Js + I ′s − I ′′s ≤ 1, s = 3, 4, . . . , 9.

Thus the lemma is established for j = 0.
Let s ≥ 2. For 1 ≤ j ≤ n− s− 1 we get by means of Cauchy’s inequality

p2n,s+1,k

(
j
n

)
pn,s,k

(
j
n

)
≤ ns+1

∫ 1/n

0

· · ·
∫ 1/n

0

p2n−s−1,k

(
j
n
+ u1 + · · ·+ us+1

)
pn−s,k

(
j
n
+ u1 + · · ·+ us

) du1 · · · dus+1.

Therefore,

p2n,s+1,k

(
j
n

)
(k + 1)(n− s− k)pn,s,k

(
j
n

)
≤ ns+1

(n− s)2

∫ 1/n

0

· · ·
∫ 1/n

0

(
n−s
k+1

)
Ak+1Bn−s−k−1

A
(
1− j

n
− u1 − · · · − us

) du1 · · · dus+1

with A and B defined in (3.136). We sum up these inequalities for k =
0, . . . , n− s− 1 and apply the binomial formula. Thus we get the estimate
(3.153)

S ≤ ns+1

(n− s)2

∫ 1/n

0

· · ·
∫ 1/n

0

(A+B)n−s

A
(
1− j

n
− u1 − · · · − us

) du1 · · · dus+1,

where S denotes the sum on the left of estimate (3.140)
Further, we again use (3.138) and the inequality 1 + x ≤ ex to deduce

(A+B)n−s ≤ e
nu2s+1

φ2(j/n+u1+···+us) ;

and hence

(A+B)n−s ≤
(
1 +

c

n

)e
n2u2s+1

ξ , 1 ≤ j ≤ (n− s)/2,

e
n2u2s+1

n−ξ , (n− s)/2 ≤ j ≤ n− s− 1,
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3.7. An improved converse estimate

where ξ = j+nu1+· · ·+nus. We apply that estimate in (3.153) and make the
change of the variables ti = nui, i = 1, . . . , s+1. Thus, for 1 ≤ j ≤ (n−s)/2,
we arrive at

(3.154) S ≤
(
1 +

c

n

) 1

n− s− j

×
∫ 1

0

· · ·
∫ 1

0

j + t1 + · · ·+ ts
(j + t1 + · · ·+ ts+1)2

e
t2s+1

j+t1+···+ts dt1 · · · dts+1.

Using that the function T (T + t)−2et
2/T is decreasing on T in [1,∞) for any

fixed t ∈ [0, 1], we deduce that

(3.155)
j + t1 + · · ·+ ts

(j + t1 + · · ·+ ts+1)2
e

t2s+1
j+t1+···+ts ≤ j + t1 + t2

(j + t1 + t2 + ts+1)2
e

t2s+1
j+t1+t2

for all ti ∈ [0, 1], i = 1, . . . , s+ 1.
Combining (3.154), (3.155) and [70, (4.10)], we verify (3.140) for 1 ≤ j ≤

(n− s)/2 and s ≥ 2.
Similarly, for (n− s)/2 ≤ j ≤ n− s− 1 we have

(3.156) S ≤
(
1 +

c

n

) 1

j + 1

×
∫ 1

0

· · ·
∫ 1

0

1

n− j − t1 − · · · − ts
e

t2s+1
n−j−t1−···−ts dt1 · · · dts+1.

Above we used that the function T/(T + t)2 is decreasing on T in [1,∞) for
any fixed t ∈ [0, 1] to derive

j + t1 + · · ·+ ts
(j + t1 + · · ·+ ts+1)2

≤ j

(j + ts+1)2
≤ 1

j + 1

(
1 +

c

n

)
.

Next, we make the change of the variables vi = 1 − ti, i = 1, . . . , s, in the
integral in (3.156). Thus we arrive at

S ≤
(
1 +

c

n

) 1

j + 1

×
∫ 1

0

· · ·
∫ 1

0

1

n− s− j + v1 + · · ·+ vs
e

t2s+1
n−s−j+v1+···+vs dv1 · · · dus dts+1.

Now, (3.140) for (n − s)/2 ≤ j ≤ n − s − 1 and s ≥ 2 follows from the fact
that the function T−1et

2/T is decreasing on T in [1,∞) for any fixed t ∈ [0, 1]
and [70, (4.11)].
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operator

3.8 Simultaneous approximation by the Kan-

torovich operator in weighted L∞-spaces

Results about the simultaneous approximation by the Bernstein operator can
be easily transferred to the Kantorovich operator. The Kantorovich operators
or polynomials are defined for f ∈ L[0, 1] and x ∈ [0, 1] by

Knf(x) :=
n∑

k=0

(n+1)

∫ (k+1)/(n+1)

k/(n+1)

f(t) dt pn,k(x), pn,k(x) :=

(
n

k

)
xk(1−x)n−k.

They are related to the Bernstein polynomials as follows

(3.157) Knf(x) = (Bn+1F (x))
′ , F (x) :=

∫ x

0

f(t) dt.

More generally, we set for f ∈ L[0, 1] and m ∈ N+ (see [89])

K⟨m⟩
n f(x) := (Bn+mFm(x))

(m) ,

where

Fm(x) :=
1

(m− 1)!

∫ x

0

(x− t)m−1f(t) dt.

The operator K
⟨m⟩
n is referred to as the generalized Kantorovich operator

of order m. That generalization of the Kantorovich polynomials or similar
modifications of related operators were studied in [14, 15, 46, 47, 52, 55].

Using that Bn is degree reducing w.r.t. the algebraic polynomials (see e.g.
[18, p. 306]), it can be verified by induction on j that

(3.158)
(
K⟨m⟩

n

)j
f =

(
Bj

n+mFm

)(m)
.

All that enables us to transfer all the above results about simultaneous
approximation by Bn to K

⟨m⟩
n . Theorems 3.3 and 3.8 with s+m in place of s,

Fm in place of f , and n+m in place of n yield the following characterization
of the rate of the simultaneous approximation by K

⟨m⟩
n .

Theorem 3.41. Let m ∈ N+, s ∈ N0 and w := w(γ0, γ1) be given by (2.2)
as 0 ≤ γ0, γ1 < s +m. Then for all f ∈ L∞[0, 1] such that f ∈ ACs−1

loc (0, 1)
and wf (s) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(K⟨m⟩
n f − f)(s)∥ ≤ cKD

s+m(f
(s), n−1)w.
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3.8. Simultaneous approximation by the Kantorovich operator in weighted
L∞-spaces

Conversely, there exists R ∈ N+ such that for all f ∈ L∞[0, 1] with f ∈
ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all ℓ, n ∈ N+ with ℓ ≥ Rn there holds

KD
s+m(f

(s), n−1)w ≤ c

(
ℓ

n

)r (
∥w(K⟨m⟩

n f − f)(s)∥+ ∥w(K⟨m⟩
ℓ f − f)(s)∥

)
.

In particular,

KD
s+m(f

(s), n−r)w ≤ c
(
∥w(K⟨m⟩

n f − f)(s)∥+ ∥w(K⟨m⟩
Rn f − f)

(s)∥
)
.

The value of the constant c is independent of f , n and ℓ.

In the statement of the last theorem the condition f ∈ ACs−1
loc (0, 1) is to

be ignored for s = 0.

Remark 3.42. As it is clear from the last theorem, the higher the order of
the generalized Kantorovich operator is, the broader the space of functions
it approximates is. More precisely, let us denote by Ws

m the set of functions,
for which Theorem 3.41 is established, i.e. Ws

m is the set of all f ∈ L∞[0, 1]
such that f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1] for some Jacobi weight
w := w(γ0, γ1) with 0 ≤ γ0, γ1 < s + m. Then we have Ws

m ⊂ Ws
m+1. Or,

to put it otherwise, given an s ∈ N0 and a function f ∈ ACs−1
loc (0, 1) such

that wf (s) ∈ L∞[0, 1] for some Jacobi weight w := w(γ0, γ1), then (K
⟨m⟩
n f)(s)

approximates f (s) in L∞ with a weight w, provided that we take m large
enough, namely, m > max{γ0, γ1} − s.

Remark 3.43. We can enlarge the domain of K
⟨m⟩
n if we replace Fm in its

definition by

fm(x) :=
1

(m− 1)!

∫ x

1/2

(x− t)m−1f(t) dt.

If w̃f ∈ L∞[0, 1], where w̃ := w(γ̃0, γ̃1) with γ̃0, γ̃1 < m, then fm ∈ C[0, 1]
(as we established in the proof of Lemma 4.24). Theorem 3.41 holds for

this modification of K
⟨m⟩
n as the condition f ∈ L∞[0, 1] is replaced with

w̃f ∈ L∞[0, 1], γ̃0, γ̃1 < m.

Theorem 3.30 with s = 1, F in place of f , and n + 1 in place of n
implies the following characterization of the error of approximation of the
Kantorovich operator (i.e. m = 1) in weighted L∞-spaces.
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operator

Theorem 3.44. Let w := w(γ0, γ1) be given by (2.2) with γ0, γ1 ∈ [0, 1/2].
Then there exists n0 ∈ N+ such that for all f ∈ L[0, 1] with wf ∈ L∞[0, 1],
and all n ∈ N+ with n ≥ n0 there holds

∥w(Knf − f)∥ ∼ KD
1 (f, n−1)w.

The direct estimate for the Kantorovich operator in the case w = 1 and
s = 0 is due to Berens and Xu [8, Theorem 6]. There a weak converse in-
equality was established as well. The corresponding one-term strong converse
inequality and the characterization of the K-functional by the Ditzian-Totik
modulus were proved by Gonska and Zhou [54]. Mache [81] established the
direct estimate for the Kantorovich operator and a weak converse one in the
case w = φ2ℓ and s = 2ℓ, ℓ ∈ N+. All those results were obtained in the
Lp-norm, 1 ≤ p ≤ ∞.
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Chapter 4

Weighted simultaneous
approximation by iterated
Boolean sums of Bernstein
operators Br,n

4.1 Background

One way to increase the approximation rate of the Bernstein operator Bn,
defined in (0.1), is to form the following linear combination of its iterates

Br,n := I − (I −Bn)
r,

where I stands for the identity and r ∈ N+. Clearly, Br,n : C[0, 1] → C[0, 1]
is a bounded linear operator.

If P and Q are operators on a linear space X, then their Boolean sum
P ⊕Q is defined by

P ⊕Q := P +Q− PQ.

Then we have (see [53])

Br,n = Bn ⊕ · · · ⊕Bn︸ ︷︷ ︸
r times

;

hence we can refer to Br,n as iterated Boolean sums of Bn.
In [84] it was shown that the saturation order of Br,n is n−r.
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sums of Bernstein operators Br,n

An important and nice characterization of the error of Br,n was given by
Gonska ans Zhou [53]. They established the following upper estimate

(4.1) ∥Br,nf − f∥ ≤ c

(
ω2r
φ (f, n−1/2) +

1

nr
∥f∥

)
, f ∈ C[0, 1], n ∈ N+.

A Stechkin-type converse inequality was also proved. That enabled them to
deduce the trivial class of the operator and a big O equivalence characteri-
zation of the error.

Since Bn preserve the algebraic polynomials of degree at most 1, replac-
ing in (4.1) f with f − p1, where p1 is the polynomial of degree 1 of best
approximation of f in the uniform norm on [0, 1], we immediately arrive at

(4.2) ∥Br,nf − f∥ ≤ c

(
ω2r
φ (f, n−1/2) +

1

nr
E1(f)

)
, f ∈ C[0, 1], n ∈ N+,

where E1(f) denotes the best approximation of f by algebraic polynomials
of degree 1 in the uniform norm on [0, 1].

Later on Ding and Cao [19] characterized the error of the multivariate
generalization of Br,n on the simplex. In the univariate case, the direct in-
equality they proved is of the form

(4.3) ∥Br,nf − f∥ ≤ cKD
r,0(f, n

−r), f ∈ C[0, 1], n ∈ N+,

where
KD

r,0(f, t) := inf
g∈C2r[0,1]

{∥f − g∥+ t∥Drg∥}

with, to recall, Dg := φ2g′′ and φ(x) :=
√
x(1− x).

They also proved a strong converse inequality of type D (in the terminol-
ogy introduced in [22]), that is

(4.4) KD
r,0(f, n

−r) ≤ c max
k≥n
∥Br,kf − f∥, f ∈ C[0, 1], n ∈ N+.

However, as we will show in Theorem 4.23 below,

KD
r,0(f, t) ∼ K2r,φ(f, t) + tE1(f), 0 < t ≤ 1.

Therefore, taking also into account (1.9), we see that the function character-
istics on the right side of (4.2) and (4.3) are equivalent.
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In addition, we will establish in this theorem that

KD
r,0(f, t) ∼ K2r,φ(f, t) +K2,φ(f, t), 0 < t ≤ 1.

Then, taking into account (1.9) (along with [72, Theorem 2.7]), we arrive at
the following relation between KD

r,0(f, t) and Ditzian-Totik moduli:

KD
r,0(f, n

−r) ∼ ω2r
φ (f, n−1/2) + ω2

φ(f, n
−r/2), f ∈ C[0, 1], n ≥ r2.

When we apply it in (4.3), we get the direct estimate

∥Br,nf − f∥ ≤ c
(
ω2r
φ (f, n−1/2) + ω2

φ(f, n
−r/2)

)
, f ∈ C[0, 1], n ≥ r2.

Quite recently, Cheng and Zhou [16] derived another converse inequality
from the Stechkin-type converse inequality in [53]. It is similar to (4.4),
though weaker than it.

A historical overview of the study of Br,n and the motivation to regard
them as iterated Boolean sums can be found in [53].

4.2 A characterization of the rate of approx-

imation by Br,n
We will first demonstrate that the result of Gonska and Zhou (4.1) can be
derived from the direct estimates on simultaneous approximation by Bn,
presented in the previous chapter. In my opinion, such an approach is more
elementary and more straightforward (though not shorter) than the one used
by H. Gonska and X.-l. Zhou. It is more elementary because essentially it
uses only Taylor’s formula and simple integral estimates, whereas highly non-
trivial results on best approximation by algebraic polynomials were applied
in [53]. Besides that it is more straightforward because it is independent of
the close relation between best algebraic approximation and approximation
by the Bernstein polynomials, as in both cases the weight φ(x) plays an
important role. However, it should be noted, the method used by H. Gonska
and X.-l. Zhou enabled them to prove also an important converse inequality.
The approach of Ding and Cao [19] was similar to that of H. Gonska and
X-l. Zhou.

Clearly, since ∥Bnf∥ ≤ ∥f∥ for all f ∈ C[0, 1] and n ∈ N+, then

(4.5) ∥Br,nf∥ ≤ c ∥f∥, f ∈ C[0, 1], n ∈ N+.

The following Jackson-type estimate holds.
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sums of Bernstein operators Br,n

Theorem 4.1. Let r ∈ N+. Then for all f ∈ C[0, 1] such that f ∈
AC2r−1

loc (0, 1) and φ2rf (2r) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥Br,nf − f∥ ≤
c

nr

(
∥f∥+ ∥φ2rf (2r)∥

)
.

The value of the constant c is independent of f and n.

Proof. Let us set Fρ := (Bnf − f)ρ. As is known

(4.6) ∥Bng − g∥ ≤
c

n
∥φ2g′′∥

for any g ∈ AC1
loc(0, 1) and n ∈ N+.

Therefore,

∥Fr∥ ≤
c

n
∥φ2F ′′

r−1∥.

Next, if r ≥ 2, we estimate the norm on the right above by (3.44) with
w = φ2 and s = 2 and thus arrive at

∥Fr∥ ≤
c

n2

(
∥φ2F

(2)
r−2∥+ ∥φ4F

(4)
r−2∥

)
.

If r ≥ 3, we proceed in a similar fashion, i.e. we estimate above each of the
two terms on the right by means of (3.44). Note that at each such step:

(i) The power of n increases by one,

(ii) The number of iterates of Bn − I decreases by one,

(iii) The range of the index ℓ of the terms ∥φ2ℓF
(2ℓ)
ρ ∥ increases by one.

The inequality between the power of φ2 and the order of the derivative in
(3.44) is always satisfied.

Thus we arrive at the upper estimate

(4.7) ∥Br,nf − f∥ ≤
c

nr

r∑
k=1

∥φ2kf (2k)∥.

To complete the proof, we need only apply Proposition 2.2(b) with w = 1
and m = 2r.
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4.3. A characterization of the rate of the weighted simultaneous
approximation by Br,n

By the standard argument used in the proof of Theorem 3.3, we derive
from (4.5) and Theorem 4.1 the estimate

(4.8) ∥Br,nf − f∥ ≤ c

(
K2r,φ(f, n

−r) +
1

nr
∥f∥

)
, f ∈ C[0, 1], n ∈ N+.

Relations (4.8) and (1.9) imply (4.1) for n ≥ n0 with some fixed n0 ∈ N+.
For n ≤ n0 it trivially follows from (4.5).

Estimates we will further establish concerning the simultaneous approx-
imation by Br,n can be used to verify a two-term strong converse inequality
that matches the direct one in (4.3) and improves the aforementioned earlier
converse inequalities.

Theorem 4.2. Let r ∈ N+. Then there exists R ∈ N+ such that for all
f ∈ C[0, 1] and k, n ∈ N+ with k ≥ Rn there holds

KD
r,0(f, n

−r) ≤ c

(
k

n

)r

(∥Br,nf − f∥+ ∥Br,kf − f∥) .

In particular,

KD
r,0(f, n

−r) ≤ c (∥Br,nf − f∥+ ∥Br,Rnf − f∥) .

The value of the constant c is independent of f , n and k.

4.3 A characterization of the rate

of the weighted simultaneous approxima-

tion by Br,n
Taking into consideration relation (3.3), we arrive at the hypothesis that the
differential operator related to the rate of the simultaneous approximation
by Br,n is (d/dx)sDr and the saturation order is n−r. Thus, to characterize
this rate, we will use the K-functional

KD
r,s(f, t)w := inf

g∈C2r+s[0,1]

{
∥w(f − g(s))∥+ t∥w(Drg)(s)∥

}
.

We will establish the following direct estimate of the error of the simul-
taneous approximation by Br,n.
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sums of Bernstein operators Br,n

Theorem 4.3. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as 0 ≤
γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and wf (s) ∈
L∞[0, 1], and all n ∈ N+ there holds

∥w(Br,nf − f)(s)∥ ≤ cKD
r,s(f

(s), n−r)w.

The value of the constant c is independent of f and n.

The estimate in Theorem 4.3 can be simplified. The involvedK-functional
KD

r,s(f, t)w can be characterized by the simpler onesK2r,φ(f, t)w andKm(f, t)w.
In the last section of this chapter, we will show that the following character-
ization of Kr,s(f, t)w holds.

Theorem 4.4. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2) with
0 < γ0, γ1 < s. Then for all wf ∈ L∞[0, 1] and 0 < t ≤ 1 there holds

KD
r,s(f, t)w ∼

K2r,φ(f, t)w +K1(f, t)w, s = 1,

K2r,φ(f, t)w + t ∥wf∥, s ≥ 2.

The result in the case w = 1 is of a different form.

Theorem 4.5. Let r, s ∈ N+. Then for all f ∈ C[0, 1] and 0 < t ≤ 1 there
holds

KD
r,s(f, t)1 ∼

K2r,φ(f, t) +Kr(f, t) +K1(f, t), s = 1,

K2r,φ(f, t) +Kr(f, t) + t ∥f∥, s ≥ 2.

Remark 4.6. The middle term on the right-hand side in the characteriza-
tion in Theorem 4.5 cannot be omitted. Indeed, if f(x) = xr log x, then
f, φ2rf (2r) ∈ L∞[0, 1] and f ′ ∈ L∞[0, 1] (the latter in the case r ≥ 2), but
f (r) ̸∈ L∞[0, 1].

Further, we can take into account that Kr(f, t
r)w ∼ ωr(f, t)w (see (1.3)

and (1.6)) and K2r,φ(f, t
2r)w ∼ ω2r

φ (f, t)w (see (1.9)) and deduce from Theo-
rems 4.3-4.5 the following Jackson-type estimates.

Theorem 4.7. Let r, s ∈ N+ and w = w(γ0, γ1) be given by (2.2) as 0 <
γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and wf (s) ∈
L∞[0, 1], and all n ∈ N+ there holds

∥w(Br,nf − f)(s)∥ ≤ c


ω2r
φ (f ′, n−1/2)w + ω1(f

′, n−r)w, s = 1,

ω2r
φ (f (s), n−1/2)w +

1

nr
∥wf (s)∥, s ≥ 2.
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4.3. A characterization of the rate of the weighted simultaneous
approximation by Br,n

The value of the constant c is independent of f and n.

Theorem 4.8. Let r, s ∈ N+. Then for all f ∈ Cs[0, 1] and n ∈ N+ there
holds

∥(Br,nf − f)(s)∥ ≤ c


ω2r
φ (f ′, n−1/2) + ωr(f

′, n−1) + ω1(f
′, n−r), s = 1,

ω2r
φ (f (s), n−1/2) + ωr(f

(s), n−1) +
1

nr
∥f (s)∥, s ≥ 2.

The value of the constant c is independent of f and n.

Similar estimates can be stated in terms of the differential operator D.
They are given in the next theorem. We state this direct estimate only for
the unweighted case. We set

K̂r,s(F, t) := inf
g∈C2(r+s)[0,1]

{∥F −Dsg∥+ t∥Dr+sg∥}.

Theorem 4.9. Let r, s ∈ N+. Then for all f ∈ C2s[0, 1] and n ∈ N+ there
holds

∥Ds(Br,nf − f)∥ ≤ c K̂r,s(D
sf, n−r).

The value of the constant c is independent of f and n.

The direct estimates above are sharp. We will verify a strong converse
inequality that matches the direct one in Theorem 4.3.

Theorem 4.10. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as
0 ≤ γ0, γ1 < s. Then there exists R ∈ N+ such that for all f ∈ C[0, 1] with
f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all k, n ∈ N+ with k ≥ Rn there
holds

Kr,s(f
(s), n−r)w ≤ c

(
k

n

)r (
∥w(Br,nf − f)(s)∥+ ∥w(Br,kf − f)(s)∥

)
.

In particular,

Kr,s(f
(s), n−r)w ≤ c

(
∥w(Br,nf − f)(s)∥+ ∥w(Br,Rnf − f)(s)∥

)
.

The value of the constant c is independent of f , n and k.
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sums of Bernstein operators Br,n

To establish the results stated above, we adopt the same approach as
in treating the simultaneous approximation by Bn. Since the differential
operator associated with the simultaneous approximation by Br,n, that is
(d/dx)sDr, is rather involved, we do not directly aim at establishing esti-
mates by it. It is much easier to prove estimates in terms of the norms of
the components into which (Drg)(s) expands. They are of the form qφ2ig(j),
where q is an algebraic polynomial, which can be ignored, and i, j ∈ N0. Due
to the validity of certain embedding inequalities their number can be reduced
to two or three and the sum of their weighted L∞-norms is equivalent to the
norm of (Drg)(s). That allows us not only to get round the technical difficul-
ties of dealing with (d/dx)sDr, but also to derive almost simultaneously both
characterizations of ∥w(Br,nf − f)(s)∥: the more natural one by KD

r,s(f, t)w
and the more useful one by K2r,φ(f, t)w and Km(f, t)w.

In the next section we will extend the basic inequalities for Bn in the
previous chapter to Br,n. They will enable us to prove the converse estimate
for the approximation rate of Br,n and the direct and converse estimates for
the simultaneous approximation by it. The proofs are then given in Sections
4.5 and 4.6. The proof of Theorems 4.4 and 4.5 are given in Section 4.7.

4.4 Basic estimates for the simultaneous ap-

proximation by Br,n
We will extend the estimates obtained in Section 3.5 for the Bernstein oper-
ator to its iterated Boolean sum.

We begin with the following basic estimates concerning the boundedness
of the weighted L∞-norm of (Br,nf)(s).

Proposition 4.11. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as
0 ≤ γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and
wf (s) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(Br,nf)(s)∥ ≤ c ∥wf (s)∥.

The value of the constant c is independent of f and n.

Proof. The assertion follows from Proposition 3.14 by iteration.
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4.4. Basic estimates for the simultaneous approximation by Br,n

4.4.1 A Jackson-type estimate

The following Jackson-type estimate of the error of Br,n holds for smooth
functions.

Proposition 4.12. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2).
Set s′ := max{2, s}. If 0 < γ0, γ1 ≤ s, then for all f ∈ C[0, 1] such that
f ∈ AC2r+s−1

loc (0, 1) and wf (s′), wφ2rf (2r+s) ∈ L∞[0, 1], and all n ∈ N+ there
holds

∥w(Br,nf − f)(s)∥ ≤
c

nr

(
∥wf (s′)∥+ ∥wφ2rf (2r+s)∥

)
.

If γ0γ1 = 0 and still 0 ≤ γ0, γ1 ≤ s, then

∥w(Br,nf − f)(s)∥ ≤
c

nr

(
∥wf (s′)∥+ ∥wf (r+s)∥+ ∥wφ2rf (2r+s)∥

)
provided that wf (r+s) ∈ L∞[0, 1] too.

The value of the constant c is independent of f and n.

Proof. Actually, if γ0, γ1 > 0, the assumption wφ2rf (2r+s) ∈ L∞[0, 1] implies
wf (s′) ∈ L∞[0, 1]. This follows from Proposition 2.1 with w1 = w, w2 = wφ2r,
j = s′ and m = 2r + s.

We will prove that if 0 ≤ γ0, γ1 ≤ s, then for all f ∈ C[0, 1] such that
f ∈ AC2r+s−1

loc (0, 1) and wf (s′), wf (r+s), wφ2rf (2r+s) ∈ L∞[0, 1], and all n ∈
N+ there holds

(4.9) ∥w(Br,nf − f)(s)∥ ≤
c

nr

(
∥wf (s′)∥+ ∥wf (r+s)∥+ ∥wφ2rf (2r+s)∥

)
.

That already contains the second assertion of the corollary; to get the first
one we apply

(4.10) ∥wf (r+s)∥ ≤ c
(
∥wf (s′)∥+ ∥wφ2rf (2r+s)∥

)
,

which follows from Proposition 2.1 with g = f (s′), j = r+s−s′,m = 2r+s−s′,
w1 = w and w2 = wφ2r.

To establish (4.9) for s ≥ 2 we use Proposition 3.17 to derive by induction
on r the estimate

(4.11) ∥w[(Bn − I)rf ](s)∥ ≤
c

nr

r∑
i=0

i+r∑
j=2i

∥wφ2if (j+s)∥.
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In order to estimate above the terms with i = 0 on the right side of the last
relation, we apply Proposition 2.2(c) with g = f (s) and m = r to get for
j = 0, . . . , r

(4.12) ∥wf (j+s)∥ ≤ c
(
∥wf (s)∥+ ∥wf (r+s)∥

)
,

whereas to estimate above the terms with i > 0, we apply Proposition 2.1
with g = f (s), m = 2r, w1 = wφ2i and w2 = wφ2r to get for j = 2i, . . . i+ r

(4.13) ∥wφ2if (j+s)∥ ≤ c
(
∥wf (s)∥+ ∥wφ2rf (2r+s)∥

)
.

Now, (4.9) for s ≥ 2 follows from (4.11)-(4.13).
To prove (4.9) for s = 1 we first observe that Proposition 3.17 and what

we have already established yield

∥w(Br,nf − f)′∥ ≤
c

n

(
∥w(Br−1,nf − f)′′∥+ ∥wφ2(Br−1,nf − f)′′′∥

)
≤ c

nr

(
∥wf ′′∥+ ∥wf (r+1)∥+ ∥wφ2r−2f (2r)∥

+ ∥wφ2f ′′′∥+ ∥wφ2f (r+2)∥+ ∥wφ2rf (2r+1)∥
)
.

Next, to complete the proof in this case, we use that

∥wφ2jf (r+j+1)∥ ≤ c
(
∥wf (r+1)∥+ ∥wφ2rf (2r+1)∥

)
, j = 1, r − 1,

and

∥wφ2f ′′′∥ ≤ c
(
∥wf ′′∥+ ∥wφ2rf (2r+1)∥

)
,

which follow from Proposition 2.1 respectively with g = f (r+1), m = r,
w1 = wφ2j, w2 = wφ2r (or see Proposition 2.2(a)) and g = f ′′, j = 1,
m = 2r − 1, w1 = wφ2, w2 = wφ2r.

The upper estimate can be stated in a more concise form in terms of the
differential operator (d/dx)sDr. This result follows directly from Proposi-
tion 2.6 and Proposition 4.12.

Corollary 4.13. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as 0 ≤
γ0, γ1 < s. Then for all f ∈ AC2r+s−1[0, 1] such that wφ2rf (2r+s) ∈ L∞[0, 1],
and all n ∈ N+ there holds

∥w(Br,nf − f)(s)∥ ≤
c

nr
∥w(Drf)(s)∥.

The value of the constant c is independent of f and n.
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4.4.2 Voronovskaya-type estimates

Now, we will extend the Voronovskaya-type estimates for the simultaneous
approximation by Bn to Br,n.

Proposition 4.14. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2). Set
s′′ := max{3, s}. If 0 < γ0, γ1 ≤ s + 1, then for all f ∈ C[0, 1] such that
f ∈ AC2r+s+1

loc (0, 1) and wf (s′′), wφ2r+2f (2r+s+2) ∈ L∞[0, 1], and all n ∈ N+

there holds∥∥∥∥∥w
(
Br,nf − f −

(−1)r−1

(2n)r
Drf

)(s)
∥∥∥∥∥

≤ c

nr+1

(
∥wf (s′′)∥+ ∥wφ2r+2f (2r+s+2)∥

)
.

If γ0γ1 = 0 and still 0 ≤ γ0, γ1 ≤ s+ 1, then∥∥∥∥∥w
(
Br,nf − f −

(−1)r−1

(2n)r
Drf

)(s)
∥∥∥∥∥

≤ c

nr+1

(
∥wf (s′′)∥+ ∥wf (r+s+1)∥+ ∥wφ2r+2f (2r+s+2)∥

)
.

provided that wf (r+s+1) ∈ L∞[0, 1] too.
The value of the constant c is independent of f and n.

Proof. Actually, if γ0, γ1 > 0, the assumption wφ2r+2f (2r+s+2) ∈ L∞[0, 1]
implies wf (s′′) ∈ L∞[0, 1]. This follows from Proposition 2.1 with w1 = w,
w2 = wφ2r+2, j = s′′ and m = 2r + s+ 2.

We will establish that if 0 ≤ γ0, γ1 ≤ s + 1, then for all f ∈ C[0, 1] such
that f ∈ AC2r+s+1

loc (0, 1) and wf (s′′), wf (r+s+1), wφ2r+2f (2r+s+2) ∈ L∞[0, 1],
and all n ∈ N+ there holds

(4.14)

∥∥∥∥∥w
(
Br,nf − f −

(−1)r−1

(2n)r
Drf

)(s)
∥∥∥∥∥

≤ c

nr+1

(
∥wf (s′′)∥+ ∥wf (r+s+1)∥+ ∥wφ2r+2f (2r+s+2)∥

)
.

That verifies the second estimate in the corollary; to get the first one we also
use the inequality

∥wf (r+s+1)∥ ≤ c
(
∥wf (s′′)∥+ ∥wφ2r+2f (2r+s+2)∥

)
,
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which follows from Proposition 2.1 with g = f (s′′), j = r + s − s′′ + 1,
m = 2r + s− s′′ + 2, w1 = w and w2 = wφ2r+2.

So, let us proceed to the proof of (4.14). We set

Vr,nf := Br,nf − f −
(−1)r−1

(2n)r
Drf.

For s ≥ 3 we establish by induction on r that

(4.15) ∥w(Vr,nf)(s)∥ ≤
c

nr+1

r+1∑
i=0

i+r+1∑
j=2i

∥wφ2if (j+s)∥.

To this end, we use the relation

(4.16) ∥w(Vr+1,nf)
(s)∥ ≤ ∥w(V1,nFr,n)

(s)∥+ 1

n
∥w(DVr,nf)(s)∥,

where Fr,n := (Bn−I)rf , as we estimate ∥w(V1,nFr,n)
(s)∥ by means of Propo-

sition 3.20 and (4.11), and the term ∥w(DVr,nf)(s)∥ by (see (2.11))

(4.17) ∥w(DVr,nf)(s)∥
≤ c

(
∥w(Vr,nf)(s)∥+ ∥w(Vr,nf)(s+1)∥+ ∥wφ2(Vr,nf)

(s+2)∥
)

and the induction hypothesis.
Next, we estimate above the terms of (4.15) with i = 0 by means of

Proposition 2.2(c) with g = f (s) and m = r + 1 to get for j = 0, . . . , r + 1

(4.18) ∥wf (j+s)∥ ≤ c
(
∥wf (s)∥+ ∥wf (r+s+1)∥

)
.

For the terms with i > 0, we apply Proposition 2.1 with g = f (s), m = 2r+2,
w1 = wφ2i and w2 = wφ2r+2 to get for j = 2i, . . . , i+ r + 1

(4.19) ∥wφ2if (j+s)∥ ≤ c
(
∥wf (s)∥+ ∥wφ2r+2f (2r+s+2)∥

)
.

Now, estimate (4.14) for s ≥ 3 follows from (4.15)-(4.19).
The proof in the case s = 2 is similar. We verify by induction on r that

∥w(Vr,nf)′′∥ ≤
c

nr+1

r+1∑
i=0

i+r+1∑
j=max{1,2i}

∥wφ2if (j+2)∥,
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as besides (4.16), (4.17), Proposition 3.20 and (4.11) we also use (4.15). Then
we complete the proof by means of Proposition 2.1 just similarly as in the
case s ≥ 3.

Finally, in the case s = 1, we apply (4.16) with s = 1 and r − 1 in place
of r, Propositions 3.20 and 4.12, the trivial estimate

∥w(DVr−1,nf)
′∥ ≤ c

(
∥w(Vr−1,nf)

′′∥+ ∥wφ2(Vr−1,nf)
′′′∥
)

and what we have already established to deduce

∥w(Vr,nf)′∥ ≤
c

nr+1

(
∥wf (3)∥+ ∥wf (r+2)∥+ ∥wφ4f (5)∥+ ∥wφ2f (r+3)∥

+ ∥wφ2r−2f (2r+1)∥+ ∥wφ2rf (2r+2)∥+ ∥wφ2r+2f (2r+3)∥
)
.

To complete the proof of (4.14) for s = 1 we need only take into account the
inequalities

∥wφ2jf (r+j+2)∥ ≤ c
(
∥wf (r+2)∥+ ∥wφ2r+2f (2r+3)∥

)
, j = 1, r − 1, r,

and

∥wφ4f (5)∥ ≤ c
(
∥wf (3)∥+ ∥wφ2r+2f (2r+3)∥

)
,

which follow from Proposition 2.1 respectively with g = f (r+2), m = r + 1,
w1 = wφ2j, w2 = wφ2r+2 and g = f (3), j = 2, m = 2r, w1 = wφ4, w2 =
wφ2r+2.

Similarly to Corollary 3.18 we get by Propositions 2.6 and 4.14 the fol-
lowing Voronovskaya-type estimate.

Corollary 4.15. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as
0 ≤ γ0, γ1 < s. Then for all f ∈ AC2r+s+1[0, 1] such that wφ2r+2f (2r+s+2) ∈
L∞[0, 1], and all n ∈ N+ there holds∥∥∥∥∥w

(
Br,nf − f −

(−1)r−1

(2n)r
Drf

)(s)
∥∥∥∥∥ ≤ c

nr+1
∥w(Dr+1f)(s)∥.

The value of the constant c is independent of f and n.
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4.4.3 Bernstein-type inequalities

The last several estimates, we will need, are several Bernstein-type inequali-
ties.

Proposition 4.16. Let ℓ, r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2)
as 0 ≤ γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and
wf (s) ∈ L∞[0, 1], and all n ∈ N+ there hold:

(a) ∥wφ2ℓ(Br,nf)(2ℓ+s)∥ ≤ c nℓ∥wf (s)∥;

(b) ∥w(Br,nf)(ℓ+s)∥ ≤ c nℓ∥wf (s)∥;

(c) ∥wφ2ℓ(Br,nf)(2ℓ+s)∥ ≤ c nℓK2ℓ,φ(f
(s), n−ℓ)w.

The value of the constant c is independent of f and n.

Proof. Assertion (a) and (b) follow from Propositions 3.23 and 3.14 since
Br,n is a linear combination of iterates of Bn.

Finally, to prove (c) we apply (a) and Proposition 3.14 to derive for any
g ∈ AC2ℓ+s−1

loc (0, 1) the estimate

∥wφ2ℓ(Br,nf)(2ℓ+s)∥ ≤ c nℓ
(
∥w(f (s) − g(s))∥+ n−ℓ∥wφ2ℓg(2ℓ+s)∥

)
.

Taking an infimum on g we get (c).

Similarly to the Bernstein operator, Br,n satisfies analogues of the above
Bernstein-type inequalities in terms of the differential operator (Drg)s. They
directly follow from them and the embedding inequalities in Chapter 2.

Corollary 4.17. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as
0 ≤ γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and
wf (s) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(DrBr,nf)(s)∥ ≤ c nr∥wf (s)∥.

The value of the constant c is independent of f and n.

Proof. It can be established by induction on r that (cf. [53, p. 24])

Drg = φ2

r+1∑
i=2

qr,i−2 g
(i) +

r∑
i=2

φ2i q̃r,r−i g
(i+r),
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where qr,j, q̃r,j ∈ πj. Hence we derive that

(4.20) (Drg)(s) =
r+s∑
i=s′

q̂r,s,i g
(i) +

r∑
i=1

φ2i q̂r,s,r+s+i g
(i+r+s),

where s′ := max{2, s} and q̂r,s,j are polynomials. Hence

∥w(Drg)(s)∥ ≤ c

r+s∑
i=s′

∥wg(i)∥+
r∑

i=1

∥wφ2ig(i+r+s)∥.

The embedding inequality Proposition 2.2(c) yields for i = s′, . . . , r + s

∥wg(i)∥ ≤ c
(
∥wg(s′)∥+ ∥wg(r+s)∥

)
≤ c

(
∥wg(s)∥+ ∥wg(r+s)∥

)
.

Similarly, by means of Proposition 2.2(a) we get for i = 1, . . . , r

∥wφ2ig(i+r+s)∥ ≤ c
(
∥wg(r+s)∥+ ∥wφ2rg(2r+s)∥

)
.

Consequently,

∥w(Drg)(s)∥ ≤ c
(
∥wg(s′)∥+ ∥wg(r+s)∥+ ∥wφ2rg(2r+s)∥

)
(4.21)

≤ c
(
∥wg(s)∥+ ∥wg(r+s)∥+ ∥wφ2rg(2r+s)∥

)
(4.22)

and the middle term can be omitted except when γ0γ1 = 0.
Now, the assertion of the corollary follows from (4.22) with g = Br,nf and

Propositions 4.11, 4.16, (a) and (b), with ℓ = r.

Corollary 4.18. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (2.2) as
0 ≤ γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ AC2r+s−1[0, 1] and
wφ2rf (2r+s) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(Dr+1Br,nf)(s)∥ ≤ c n ∥w(Drf)(s)∥.

The value of the constant c is independent of f and n.

Proof. Just as in the previous proof, we apply (4.21) with r + 1 in place of
r and g = Br,nf , Proposition 4.11, Proposition 4.16(a) with ℓ = 1, wφ2r in
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place of w, and 2r + s in place of s, and Proposition 4.16(b) with ℓ = 1 and
r + s in place of s to derive the estimate

∥w(Dr+1Br,nf)(s)∥ ≤ c
(
∥wf (s′)∥+ n ∥wf (r+s)∥+ n ∥wφ2rf (2r+s)∥

)
.

In fact, the term ∥w(Br,nf)(r+s+1)∥ and hence n ∥wf (r+s)∥ appear only in the
case γ0γ1 = 0.

Now, the assertion of the corollary follows from Proposition 2.6.

4.5 Proof of the converse estimate for the ap-

proximation by Br,n
We establish Theorem 4.2 again by means of the method introduced by
Ditzian and Ivanov [22]. To this end, we need a Voronovskaya-type inequal-
ity and several Bernstein-type inequalities, which relate the approximation
operator Br,n to the differential operator Dr.

We begin with two Voronovskaya-type estimates (cf. [53, Lemma 4]).

Proposition 4.19. Let r ∈ N+. Then for all g ∈ C[0, 1] such that g ∈
AC2r+1

loc (0, 1) and φ2r+2g(2r+2) ∈ L∞[0, 1], and all n ∈ N+ there holds∥∥∥∥Br,ng − g − (−1)r−1

(2n)r
Drg

∥∥∥∥ ≤ c

nr+1

(
∥φ2g(3)∥+ ∥φ2r+2g(2r+2)∥

)
.

The value of the constant c is independent of f and n.

Proof. We note that by virtue of Proposition 2.3(a) we have φ2g′′, φ2g(3) ∈
L∞[0, 1] too.

First, we establish the assertion for r = 1. Applying Taylor’s formula, we
have for x ∈ (0, 1)

g

(
k

n

)
= g(x) +

(
k

n
− x
)
g′(x) +

1

2

(
k

n
− x
)2

g′′(x)

+
1

6

(
k

n
− x
)3

g(3)(x) +
1

6

∫ k/n

x

(
k

n
− v
)3

g(4)(v) dv.
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Multiplying both sides by pn,k(x), summing with respect to k and using the
identities (3.17) we obtain∣∣∣∣Bng(x)− g(x)−

1

2n
φ2(x)g′′(x)

∣∣∣∣
=

∣∣∣∣∣(1− 2x)φ2(x)

6n2
g(3)(x) +

1

6

n∑
k=0

pn,k(x)

∫ k/n

x

(
k

n
− v
)3

g(4)(v) dv

∣∣∣∣∣
≤ 1

6n2
∥φ2g(3)∥+ 1

6
∥φ4g(4)∥

∣∣∣∣∣
n∑

k=0

pn,k(x)

∫ k/n

x

(
k

n
− v
)3

φ−4(v) dv

∣∣∣∣∣
We will show that

Rn(x) :=

∣∣∣∣∣
n∑

k=0

pn,k(x)

∫ k/n

x

(
k

n
− v
)3

φ−4(v) dv

∣∣∣∣∣ ≤ c

n2
.

Obviously, it is enough to prove it for 0 < x ≤ 1/2. We consider two cases.
Case 1. 1/n ≤ x ≤ 1/2.

Then φ2(x) ≥ 1/2n and by using (for v between x and k/n) the inequality
[23, p. 141] ∣∣ k

n
− v
∣∣

φ2(v)
≤
∣∣ k
n
− x
∣∣

φ2(x)

and (3.17), we obtain

Rn(x) ≤
n∑

k=0

pn,k(x)

(
k
n
− x
)2

φ4(x)

∣∣∣∣∣
∫ k/n

x

(
k

n
− v
)
dv

∣∣∣∣∣
=
φ−4(x)

2

n∑
k=0

pn,k(x)

(
k

n
− x
)4

=
φ−4(x)

2

[
3φ4(x)

n2
+

(1− 6φ2(x))φ2(x)

n3

]
≤ c

n2
.

Case 2. 0 < x ≤ 1/n.
Analogously to [22, Lemma 8.3], we will estimate the terms in the sum of
Rn(x) separately for k = 0, 1 and k ≥ 2. We have for k = 0

pn,0(x)

∫ x

0

v3φ−4(v) dv = (1− x)n
∫ x

0

v3 dv(
v(1− v)

)2
≤ (1− x)n−2

∫ x

0

v dv =
x2(1− x)n−2

2
≤ c

n2
.
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For k = 1 and n ≥ 2 we have

pn,1(x)

∫ 1/n

x

(
1

n
− v
)3

φ−4(v) dv = nx(1− x)n−1

∫ 1/n

x

(
1
n
− v
)3
dv(

v(1− v)
)2

≤ nx(1− x)n−1

(
1− 1

n

)−2 ∫ 1/n

x

(
1
n

)3
dv

v2
≤ c

n2
.

Trivially, for n = k = 1 we have

p1,1(x)

∫ 1

x

(1− v)3φ−4(v) dv = x

∫ 1

x

(1− v)3dv(
v(1− v)

)2 ≤ x

∫ 1

x

dv

v2
≤ 1.

For k ≥ 2 and n ≥ 3 we have∣∣∣∣∣
n∑

k=2

pn,k(x)

∫ k/n

x

(
k

n
− v
)3

φ−4(v) dv

∣∣∣∣∣
≤ cx−2

n∑
k=2

pn,k(x)

(
k

n
− x
)4

≤ cx−2

n∑
k=2

pn,k(x)

(
k

n

)4

= cx−2

n−2∑
k=0

n!

(k + 2)!(n− k − 2)!
xk+2(1− x)n−k−2

(
k + 2

n

)4

≤ c

n−2∑
k=0

pn−2,k(x)

(
k

n− 2

)2

= c

(
x2 +

φ2(x)

n− 2

)
≤ c

n2
,

where at the last but one estimate we have taken into account (3.17). The
case n = k = 2 is again trivial. The proof is complete.

Let r ≥ 2. We set Jr,ng := (I −Bn)
rg and

Vr,ng := Br,ng − g −
(−1)r−1

(2n)r
Drg.

We use the relation

Vr,ng = V1,nJr−1,ng −
1

2n
DVr−1,ng.

It implies

(4.23) ∥Vr,ng∥ ≤ ∥V1,nJr−1,ng∥+
1

n
∥φ2(Vr−1,ng)

′′∥.
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By virtue of Proposition 4.19 with r = 1,

(4.24) ∥V1,nJr−1,ng∥ ≤
c

n2

(
∥φ2(Jr−1,ng)

(3)∥+ ∥φ4(Jr−1,ng)
(4)∥
)
.

Further, we estimate the first term on the right above by means of Proposi-
tion 4.12 with r − 1 in place of r, s = 3 and w = φ2. Thus we get

(4.25) ∥φ2(Jr−1,ng)
(3)∥ ≤ c

nr−1

(
∥φ2g(3)∥+ ∥φ2rg(2r+1)∥

)
.

Similarly, again by Proposition 4.12 with and r − 1 in place of r, but s = 4
and w = φ4 we have for the other term

(4.26) ∥φ4(Jr−1,ng)
(4)∥ ≤ c

nr−1

(
∥φ4g(4)∥+ ∥φ2r+2g(2r+2)∥

)
.

Next, by virtue of Proposition 2.1 with j = 1, m = 2r − 1, w1 = φ4,
w2 = φ2r+2 and g(3) in place of g, we get

(4.27) ∥φ4g(4)∥ ≤ c
(
∥φ2g(3)∥+ ∥φ2r+2g(2r+2)∥

)
.

Likewise, by means of the same proposition with m = 2r − 1, w2 = φ2r+2

and g(3) in place of g, but with j = 2r − 2 and w1 = φ2r, we get

(4.28) ∥φ2rg(2r+1)∥ ≤ c
(
∥φ2g(3)∥+ ∥φ2r+2g(2r+2)∥

)
.

Combining, (4.24)-(4.28), we get

(4.29) ∥V1,nJr−1,ng∥ ≤
c

nr+1

(
∥φ2g(3)∥+ ∥φ2r+2g(2r+2)∥

)
.

It remains to estimate the second term on the right side of (4.23). To this
end, we apply Proposition 4.14 with r − 1 in place of r, s = 2, and w = φ2

and get

(4.30) ∥φ2(Vr−1,ng)
′′∥ ≤ c

nr

(
∥φ2g(3)∥+ ∥φ2r+2g(2r+2)∥

)
.

Now, (4.23), (4.29) and (4.30) imply the assertion for r ≥ 2.

Corollary 4.20. Let r ∈ N+. Then for all g ∈ C2r+2[0, 1] and all n ∈ N+

there holds ∥∥∥∥Br,ng − g − (−1)r−1

(2n)r
Drg

∥∥∥∥ ≤ c

nr+1
∥Dr+1g∥.

The value of the constant c is independent of f and n.
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Proof. The estimate follows from the previous proposition and several em-
bedding inequalities.

We apply Proposition 2.7(b) with r + 1 in place of r to get

(4.31) ∥φ2r+2g(2r+2)∥ ≤ c ∥Dr+1g∥.

Also, by virtue of Proposition 2.3(a) with i = 3 and r + 1 in place of r, we
have

∥φ2g(3)∥ ≤ c
(
∥φ2g′′∥+ ∥φ2r+2g(2r+2)∥

)
.

Taking into account (4.31) and Proposition 2.7(c) with j = 1 and r + 1 in
place of r, we arrive at

(4.32) ∥φ2g(3)∥ ≤ c ∥Dr+1g∥.

Now, Proposition 4.20 follows from Proposition 4.19, (4.31) and (4.32).

Next we will establish several Bernstein-type inequalities.

Proposition 4.21. Let r ∈ N+. Then for all f ∈ C[0, 1] and n ∈ N+ there
holds

∥DrBr,nf∥ ≤ c nr∥f∥.

The value of the constant c is independent of f and n.

Proof. Let g ∈ C2r[0, 1]. It is established by induction on r that (cf. [53, p.
24])

Drg = φ2

r+1∑
i=2

qr,i−2 g
(i) +

r∑
i=2

φ2i q̃r,r−i g
(i+r),

where qr,j and q̃r,j are algebraic polynomials of degree at most j.
Therefore

(4.33) ∥Drg∥ ≤ c

(
r+1∑
i=2

∥φ2g(i)∥+
r∑

i=2

∥φ2ig(i+r)∥

)
.

Let r ≥ 2. By virtue of Proposition 2.3(a), we have

(4.34) ∥φ2g(i)∥ ≤ c
(
∥φ2g(2)∥+ ∥φ2rg(2r)∥

)
, i = 3, . . . , r + 1.

Also, this trivially holds for i = 2, r = 1.
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Let r ≥ 3. By virtue of Proposition 2.3(b), we have

(4.35) ∥φ2ig(i+r)∥ ≤ c
(
∥φ2g(2)∥+ ∥φ2rg(2r)∥

)
, i = 2, . . . , r − 1.

The above estimate trivially holds for i = r, r ≥ 2, as well.
Inequalities (4.33)-(4.35) yield

(4.36) ∥Drg∥ ≤ c
(
∥φ2g(2)∥+ ∥φ2rg(2r)∥

)
, r ∈ N+.

With g = Br,nf we get

(4.37) ∥DrBr,nf∥ ≤ c
(
∥φ2(Br,nf)(2)∥+ ∥φ2r(Br,nf)(2r)∥

)
.

Then we take into account that the operator Br,n is a linear combination of
iterates of Bn and also that (see Proposition 3.14 with w = φ2ℓ and s = 2ℓ)

(4.38) ∥φ2ℓ(Bng)
(2ℓ)∥ ≤ c ∥φ2ℓg(2ℓ)∥, g ∈ C2ℓ[0, 1],

to derive from (4.37) the estimate

∥DrBr,nf∥ ≤ c
(
∥φ2(Bnf)

(2)∥+ ∥φ2r(Bnf)
(2r)∥

)
.

Now, the assertion of the proposition follows from

∥φ2ℓ(Bnf)
(2ℓ)∥ ≤ c nℓ∥f∥, ℓ ∈ N+,

which was established in [23, Theorem 9.4.1].

Proposition 4.22. Let r ∈ N+. Then for all g ∈ C2r[0, 1] and n ∈ N+ there
holds

∥Dr+1Br,ng∥ ≤ c n∥Drg∥.
The value of the constant c is independent of f and n.

Proof. We make use of (4.36) with r + 1 in place of r and Br,ng in place of
g, then apply (4.38), Proposition 3.23(a) with w = φ2r, ℓ = 1, s = 2r, and,
finally, Proposition 2.7(c) with j = 1, to arrive at

∥Dr+1Br,ng∥ ≤ c
(
∥φ2(Br,ng)(2)∥+ ∥φ2r+2(Br,ng)(2r+2)∥

)
≤ c

(
∥φ2g(2)∥+ ∥φ2r+2(Bng)

(2r+2)∥
)

≤ c
(
∥φ2g(2)∥+ n ∥φ2rg(2r)∥

)
≤ c n∥Drg∥.

Thus the proposition is verified.
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Equipped with the estimates established in the previous section, we are
now ready to verify Theorem 4.2.

Proof of Theorem 4.2. We apply [22, Theorem 3.2] with the operator Qn =
Br,n and the spaces X = C[0, 1] (with the uniform norm on [0, 1]), Y =
C2r[0, 1] and Z = C2r+2[0, 1].

As is known,
∥Bnf∥ ≤ ∥f∥.

Therefore, since Br,n is linear combination of iterates of Bn, we have

∥Br,nf∥ ≤ c ∥f∥, f ∈ C[0, 1], n ∈ N+.

Thus [22, (3.3)] is satisfied.
By virtue of the Voronovskaya-type inequality Proposition 4.20, we have

[22, (3.4)] with (−1)r−1Dr in place of D, Φ(f) = ∥Dr+1f∥, λ(n) = (2n)−r

and λ1(α) = c n−r−1, where the constant c is the one in Proposition 4.20.
Next, Proposition 4.22 with g = Br,nf implies [22, (3.5)] with ℓ = 1 and

m = 2.
Finally, Proposition 4.21 yields [22, (3.6)].

Let us note that [22, Theorems 10.4 and 10.5] are not applicable because
condition (c) there is not satisfied.

4.6 Proof of the characterization of the rate

of the simultaneous approximation by Br,n
We are ready now to verify the theorems in Section 4.3.

Proof of Theorem 4.3. The estimate follows from Proposition 4.11 and Corol-
lary 4.13 via a standard argument (see e.g. [22, Theorem 3.4]). For any
g ∈ C2r+s[0, 1] we have

∥w(Br,nf − f)(s)∥ ≤ ∥w(f (s) − g(s))∥+ ∥w(Br,ng − g)(s)∥
+ ∥w(Br,n(f − g))(s)∥

≤ c

(
∥w(f (s) − g(s))∥+ 1

nr
∥w(Drg)(s)∥

)
.

Taking an infimum on g ∈ C2r+s[0, 1], we arrive at the estimate stated in the
theorem.
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4.6. Proof of the characterization of the rate of the simultaneous
approximation by Br,n

Proof of Theorems 4.7 and 4.8. By virtue of (1.6) and (1.9), the assertions
of the corollaries follow for n ≥ n0 with some n0 ∈ N+ from Theorems 4.3-4.5.
For n < n0 we apply Proposition 4.11 to get

(4.39) ∥w(Br,nf − f)(s)∥ ≤
c

nr
∥wf (s)∥,

which completes the proof for s ≥ 2. For s = 1 we use that Br,nf preserves
the linear functions to deduce from (4.39) the estimate

∥w(Br,nf − f)′∥ ≤
c

nr
E0(f

′)w, n < n0.

Then we apply (4.54) below with f ′ in place of f and the relationK1(f
′, t)w ≤

c ω1(f
′, t)w, 0 < t ≤ 1.

Proof of Theorem 4.9. We proceed as in the proof of Theorem 4.3. We need
to show that

(4.40) ∥DsBr,nf∥ ≤ c ∥Dsf∥, n ∈ N+.

To this end, we apply consecutively Propositions 2.7(a), 4.11 with w = φ2s

and Proposition 2.7(b) to derive

∥DsBr,nf∥ ≤ c (∥Br,nf∥+ ∥φ2s(Br,nf)(2s)∥)
≤ c (∥f∥+ ∥φ2sf (2s)∥)
≤ c (∥f∥+ ∥Dsf∥);

hence
∥DsBr,nf∥ ≤ c (E1(f) + ∥Dsf∥).

To complete the proof of (4.40), we need only to take into account (see (4.6))

E1(g) ≤ ∥B1g − g∥ ≤ c ∥φ2g′′∥, g ∈ AC1
loc(0, 1),

and apply Proposition 2.7(c).

We proceed to the proof of the converse inequality.

Proof of Theorem 4.10. Just as in the proof of Theorem 3.8, we apply [22,
Theorem 3.2] with the operator Qn = Br,n on the space

X = {f ∈ C[0, 1] : f ∈ ACs−1
loc (0, 1), wf (s) ∈ Lp[0, 1]}
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with a semi-norm ∥f∥X := ∥wf (s)∥. Let also Y = C2r+s[0, 1] and Z =
C2r+s+2[0, 1].

Proposition 4.11 implies that Qn is a bounded operator on X, so that [22,
(3.3)] holds.

By virtue of Corollary 4.15, we have for Φ(f) := ∥w(Dr+1f)(s)∥ and f ∈ Z∥∥∥∥∥w
(
Qnf − f −

(−1)r−1

(2n)r
Drf

)(s)
∥∥∥∥∥ ≤ c

nr+1
Φ(f),

which shows that [22, (3.4)] is valid with (−1)r−1Dr in place of D, λ(n) :=
(2n)−r and λ1(n) := c n−r−1, where the constant c is the one from Corol-
lary 4.15.

Further, we set g := Br,nf for f ∈ X and apply Corollary 4.18 to obtain

Φ(Q2
nf) = Φ(Br,ng) ≤ c n ∥w(Drg)(s)∥ = c n ∥w(DrBr,nf)(s)∥.

Hence [22, (3.5)] is established with m = 2 and ℓ = 1.
Finally, Corollary 4.17 yields for f ∈ X

∥w(DrQnf)
(s)∥ ≤ c nr∥wf (s)∥,

which is [22, (3.6)].
Now, [22, Theorem 3.2] implies the converse estimate in Theorem 4.3.

Let us explicitly note that the characterization of the weighted simulta-
neous approximation by Br,n in terms of the K-functionals K2r,φ(f, t)w and
Kj(f, t)w can be directly derived from Propositions 4.11, 4.12, 4.14, 4.16, (a)
and (b), by means of [22, Theorems 3.2 and 3.4].

4.7 Relations between K-functionals

In this section, first we will show that the direct estimates (4.2) and (4.3)
are equivalent. More precisely, we will establish that the quantities on the
right hand-side of (4.3) and (4.8) with ∥f∥ replaced by E1(f) are equiva-
lent. In addition, we will verify a characterization of KD

r,0(f, t) by means
K-functionals of the form Km,φ(f, t).

Theorem 4.23. Let r ∈ N+. For all f ∈ C[0, 1] and 0 < t ≤ 1 we have

KD
r,0(f, t) ∼ K2r,φ(f, t) + t E1(f)(4.41)

∼ K2r,φ(f, t) +K2,φ(f, t).(4.42)
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Proof. The first assertion will follow from the inequalities:

K2r,φ(f, t) ≤ cKD
r,0(f, t),

t E1(f) ≤ cKD
r,0(f, t)

and

KD
r,0(f, t) ≤ c (K2r,φ(f, t) + t E1(f)) .

The first one follows directly from Proposition 2.7(b). The second one follows
from the estimate

t E1(f) ≤ E1(f − g) + t E1(g) ≤ c (∥f − g∥+ t ∥Dg∥)
≤ c (∥f − g∥+ t ∥Drg∥) , g ∈ C2r[0, 1], 0 < t ≤ 1,

where at the second step we have taken into account the estimate

E1(g) ≤ ∥B1g − g∥ ≤ c ∥φ2g′′∥, g ∈ AC1
loc(0, 1),

and at the third Proposition 2.7(c).
In order to verify the third inequality, we apply Proposition 2.7(a) to get

for any g ∈ C2r[0, 1] and t ≤ 1 that

t ∥Drg∥ ≤ c t
(
∥φ2rg(2r)∥+ E1(g)

)
≤ c

(
∥f − g∥+ t ∥φ2rg(2r)∥+ t E1(f)

)
.

Consequently,

KD
r,0(f, t) ≤ c

(
inf

g∈C2r[0,1]

{
∥f − g∥+ t∥φ2rg(2r)∥

}
+ t E1(f)

)
.

It remains to observe that

(4.43) inf
g∈C2r[0,1]

{
∥f − g∥+ t∥φ2rg(2r)∥

}
≤ cK2r,φ(f, t).

To justify the latter, we recall that the Steklov-type function used in [23,
Chapter 2] to establish the inequality

K2r,φ(f, t) ≤ c ω2r
φ (f, t)
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belongs to C2r[0, 1] (or see [18, Chapter 6, § 6], where a spline was used).
Therefore the K-functional on the left hand-side of (4.43) is estimated above
by ω2r

φ (f, t) (at least for t ≤ t0); and hence, in view of (1.9), by K2r,φ(f, t).
We proceed to the proof of the second assertion of the theorem:

(4.44) K2r,φ(f, t) + tE1(f) ∼ K2r,φ(f, t) +K2,φ(f, t), 0 < t ≤ 1.

Trivially, for any g ∈ C[0, 1] such that g ∈ AC1
loc(0, 1) and φ2g′′ ∈

L∞[0, 1], and any t ∈ (0, 1] we have the estimates

tE1(f) ≤ ∥f − g∥+ t ∥g −B1g∥ ≤ ∥f − g∥+ ct∥φ2g′′∥;

hence
tE1(f) ≤ cK2,φ(f, t), 0 < t ≤ 1.

Above we used the inequality

∥g −B1g∥ ≤ ∥φ2g′′∥,

which is directly established by Taylor’s formula (see e.g. [22, p. 87]).
To complete the proof of (4.44), it remains to show that

(4.45) K2,φ(f, t) ≤ c (K2r,φ(f, t) + tE1(f)) , 0 < t ≤ 1.

Let g ∈ C[0, 1] be such that g ∈ AC2r−1
loc (0, 1) and φ2rg(2r) ∈ L∞[0, 1].

Then, by e.g. Proposition 2.2 (b) with w = 1, j = 1 and m = 2r, we deduce
that φ2g′′ ∈ L∞[0, 1] too, as, moreover,

∥φ2g′′∥ ≤ c
(
∥g∥+ ∥φ2rg(2r)∥

)
.

Consequently, we have for t ∈ (0, 1]

K2,φ(f, t) ≤ ∥f − g∥+ t∥φ2g′′∥
≤ c

(
∥f − g∥+ t∥φ2rg(2r)∥

)
+ ct∥f∥.

Taking the infimum on g, we arrive at

K2,φ(f, t) ≤ c (K2r,φ(f, t) + t∥f∥) .

Finally, we replace f with f − p1, where p1 is the algebraic polynomial of
degree 1 of best approximation in C[0, 1] to f , to get (4.45).
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Next, we will verify the assertions of Theorems 4.4 and 4.5 as well as of
Remark 3.4. First, we will present a couple of auxiliary inequalities between
K-functionals.

It is known that in the case w = 1 in the definition of Km,φ(f, t) the
infimum can be equivalently taken on Cm[0, 1]. That is evident from the
proof of [23, Theorem 2.1.1] (see also [21, p. 110]). That equivalence probably
holds for any Jacobi weight w. For our purposes weaker relations will suffice.
They are given in the lemma below. Using them one can derive the above
mentioned equivalence under the conditions of the lemma, but we will not
establish that here.

Lemma 4.24. Let r, s ∈ N+, and w := w(γ0, γ1) be given by (2.2) with
0 < γ0, γ1 < s. Then for all wf ∈ L∞[0, 1] and 0 < t ≤ 1 there holds

(4.46) inf
g∈C2r+s[0,1]

{
∥w(f − g(s))∥+ t ∥wφ2rg(2r+s)∥

}
≤ c (K2r,φ(f, t)w + t ∥wf∥) , s ≥ 2,

and

(4.47) inf
g∈C2r+1[0,1]

{
∥w(f − g′)∥+ t ∥wφ2rg(2r+1)∥

}
≤ c (K2r,φ(f, t)w +K1(f, t)w) .

The value of the constant c is independent of f .

Proof. For a given function f such that wf ∈ L∞[0, 1] with γ0, γ1 < s,
s ∈ N+, we set

fs(x) :=
1

(s− 1)!

∫ x

1/2

(x− u)s−1f(u) du, x ∈ [0, 1].

Clearly, φ2s−2f ∈ L[0, 1]. Hence fs(x) is well-defined and finite at x = 0
and x = 1; moreover, fs ∈ C[0, 1]. The continuity of fs(x) at every interior
point for any s as well as at x = 0, 1 for s = 1 is clear. To see that fs(x)
is continuous at x = 0, 1 for s ≥ 2 we can apply Lebesgue’s dominated
convergence theorem.

Now, we are ready to verify the inequalities in the lemma. We set n :=
[t−1/r] + 1 and gt := Br,nfs. In view of the above remarks, gt is well defined
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and clearly gt ∈ C2r+s[0, 1]. To verify (4.46) and (4.47) it is enough to show
that

∥w(f − g(s)t )∥ ≤ c (K2r,φ(f, t)w + t ∥wf∥) , s ≥ 2,(4.48)

∥w(f − g′t)∥ ≤ c (K2r,φ(f, t)w +K1(f, t)w)(4.49)

and

t ∥wφ2rg
(2r+s)
t ∥ ≤ cK2r,φ(f, t)w, s ≥ 1.(4.50)

Let G ∈ AC2r−1
loc (0, 1) with wG,wφ2rG(2r) ∈ L∞[0, 1] be arbitrarily fixed.

Then Gs ∈ C[0, 1]. Let s ≥ 2. Applying Propositions 4.11 and 4.12 and the
trivial estimate

(4.51) ∥wG∥ ≤ ∥w(f −G)∥+ ∥wf∥,

we get

∥w(f − g(s)t )∥ ≤ ∥w(f −G)∥+ ∥w(Br,nGs −Gs)
(s)∥

+ ∥w(Br,n(fs −Gs))
(s)∥

≤ c ∥w(f −G)∥+ c

nr

(
∥wG(s)

s ∥+ ∥wφ2rG(2r+s)
s ∥

)
≤ c

(
∥w(f −G)∥+ t ∥wφ2rG(2r)∥+ t ∥wf∥

)
.

We take an infimum on G and arrive at (4.48).
For s = 1 by means of a similar argument we arrive at

(4.52) ∥w(f − g′t)∥ ≤ c
(
∥w(f −G)∥+ t ∥wφ2rG(2r)∥+ t ∥wG′∥

)
.

Next, we estimate the last term on the right above by means of Proposi-
tion 2.1 with j = 1, m = 2r, w1 = w and w2 = wφ2r. Thus we get

∥wG′∥ ≤ c
(
∥wG∥+ ∥wφ2rG(2r)∥

)
.

Consequently, for an arbitrary real α we have

∥wG′∥ ≤ c
(
∥w(G− α)∥+ ∥wφ2rG(2r)∥

)
.

Setting E0(f)w := infα∈R ∥w(f − α)∥, we arrive at the estimate

(4.53) t ∥wG′∥ ≤ c
(
∥w(f −G)∥+ t ∥wφ2rG(2r)∥

)
+ ct E0(f)w.
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For wf ∈ L∞[0, 1], where γ0, γ1 ≥ 0, and 0 < t ≤ 1 we have

(4.54) t E0(f)w ≤ cK1(f, t)w.

That easily follows from the estimate

E0(g)w,p ≤ ∥w(g − g(1/2))∥ =
∥∥∥∥w ∫ ◦

1/2

g′(t) dt

∥∥∥∥ ≤ c ∥wg′∥,

where g ∈ ACloc(0, 1).
Combining (4.52)-(4.54) we arrive at (4.49).
Finally, to verify (4.50) we apply Proposition 4.16(c) with ℓ = r to get

t ∥wφ2rg
(2r+s)
t ∥ ≤ c tnrK2r,φ(f

(s)
s , n−r)w ≤ cK2r,φ(f, t)w.

Let us proceed now to the proof of Theorems 4.4 and 4.5.

Proof of Theorems 4.4 and 4.5. Let 0 ≤ γ0, γ1 < s and g ∈ C2r+s[0, 1].
Proposition 2.6 yields

∥wf∥ ≤ ∥w(f − g(s))∥+ c ∥w(Drg)(s)∥, s ≥ 2,(4.55)

∥wg(j+s)∥ ≤ c ∥w(Drg)(s)∥, j = 1, r, s ≥ 1,(4.56)

and

∥wφ2rg(2r+s)∥ ≤ c ∥w(Drg)(s)∥, s ≥ 1.(4.57)

Taking an infimum on g ∈ C2r+s[0, 1] in (4.55) we get for 0 < t ≤ 1

t ∥wf∥ ≤ cKr,s(f, t)w, s ≥ 2.

Next, since g(s) ∈ ACj−1
loc (0, 1) for j = 1, r, we derive from (4.56) that

Kj(f, t)w ≤ c
(
∥w(f − g(s))∥+ t ∥w(Drg)(s)∥

)
, s ≥ 1.

Taking an infimum on g ∈ C2r+s[0, 1] we arrive at

Kj(f, t)w ≤ cKr,s(f, t)w, j = 1, r, s ≥ 1.
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Just similarly, using that g(s) ∈ AC2r−1
loc (0, 1) and (4.57), we establish that

K2r,φ(f, t)w ≤ cKr,s(f, t)w, s ≥ 1.

Thus we have shown that Kr,s(f, t)w estimates above the quantities on the
right-hand side of the relations in Theorems 4.4 and 4.5.

Let us proceed to the reverse inequalities. Let 0 < γ0, γ1 < s. Let
g ∈ C2r+s[0, 1]. By (4.21) (see also (4.10)), we have

(4.58) ∥w(Drg)(s)∥ ≤ c
(
∥wg(s′)∥+ ∥wφ2rg(2r+s)∥

)
,

where s′ := max{2, s}. Hence, using (4.51) with g(s) in place of G, we get
for s ≥ 2 the estimate

∥w(Drg)(s)∥ ≤ c
(
∥w(f − g(s))∥+ ∥wφ2rg(2r+s)∥+ ∥wf∥

)
.

Consequently, for s ≥ 2 we have

Kr,s(f, t)w ≤ c

(
inf

g∈C2r+s[0,1]

{
∥w(f − g(s))∥+ t ∥wφ2rg(2r+s)∥

}
+ t ∥wf∥

)
≤ c (K2r,φ(f, t)w + t ∥wf∥) .

Here we have taken into account (4.46).
Similarly, relations (4.58) with s = 1, (4.53) with g′ in place of G, (4.54)

and (4.47) yield

Kr,1(f, t)w ≤ c (K2r,φ(f, t)w +K1(f, t)w) .

This completes the proof of Theorem 4.4.
To establish the upper estimate of Kr,s(f, t)1 in Theorem 4.5 we use the

quasi-interpolant Q(f) := QT (f) constructed in the proof of [18, Chapter 6,
Theorem 6.2] but with 2r in place of r and for the interval [0, 1] instead of
[−1, 1]. It has the properties (see [18, p. 191]):

∥f −Q(f)∥ ≤ c ω2r
φ (f, t)

and

t2r∥φ2rQ(f)(2r)∥ ≤ c ω2r
φ (f, t),
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where t = 1/m, m ∈ N+ and m ≥ m0 with some fixed m0 ∈ N+. Likewise,
by means of [18, Chapter 5, Proposition 4.6 and Chapter 6, Theorem 4.2] we
get

t2r∥Q(f)(j)∥ ≤ c t2(r−j)ωj(f, t
2), j = 1, r,

for t = 1/m, m ∈ N+ and m ≥ m0. Hence, taking into account the inequali-
ties ωj(f, t) ≤ cKj(f, t

j) and ω2r
φ (f, t) ≤ cK2r,φ(f, t

2r), we arrive at

∥f −Q(f)∥ ≤ cK2r,φ(f, t
2r),

t2r∥φ2rQ(f)(2r)∥ ≤ cK2r,φ(f, t
2r),

t2r∥Q(f)(j)∥ ≤ cKj(f, t
2r), j = 1, r,

(4.59)

for t = 1/m, m ∈ N+ and m ≥ m0.
Now, the upper estimate of Kr,s(f, t)1 for all t ∈ (0, 1] follows from (4.21)

with w = 1 and g(s) = Q(f), (4.51) with Q(f) in place of G, or [18, Chapter
5, Theorem 4.4] (if s ≥ 2), and the basic property of the K-functionals

(4.60) K(f, t1) ≤ max

{
1,
t1
t2

}
K(f, t2),

where K(f, t) stands for any of the considered here K-functionals.
Let us briefly show the validity of Remark 3.4. In view of what already

has been established, it is enough to demonstrate that

K1,1(f, t)w ≤ c (K2,φ(f, t)w +K1(f, t)w)

for γ0 > 0 and γ1 = 0. To this end we will apply a well-known patching
technique (see e.g. [18, p. 176]). By (2.6), 3/4 instead of 1/2, g′ in place of
g, γ1,0 = γ0,γ2,0 = γ0 + 1, j = 1 and m = 2, we get

∥χγ0g′′∥[0,3/4] ≤ c
(
∥χγ0g′∥[0,3/4] + ∥χγ0+1g′′′∥[0,3/4]

)
.

Then, just as above, we derive that

t ∥χγ0g′′∥[0,3/4]
≤ c

(
∥χγ0(f − g′)∥[0,3/4] + t ∥χγ0+1g′′′∥[0,3/4]

)
+ cK1(f, t)w.

Using the last inequality and (4.47) with r = 1, we deduce that there exists
g̃t ∈ C3[0, 3/4] such that

(4.61) ∥χγ0(f − g̃′t)∥[0,3/4] + t2∥χγ0 g̃′′t ∥[0,3/4] + t2∥χγ0+1g̃′′′t ∥[0,3/4]
≤ c

(
K2,φ(f, t

2)w +K1(f, t
2)w
)
.
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Further, let Q̃(f) := Q̃T̃ (f) be the quasi-interpolant considered above for

r = 1 and modified for the interval [1/5, 1]. We set φ̃(x) :=
√

(x− 1/5)(1− x)
and denote byK(f, t)J the modification of theK-functionalK(f, t), in which
the sup-norm is taken on the interval J instead of [0, 1]. Then (cf. (4.59)) we
have

∥f − Q̃(f)∥[1/4,1] ≤ ∥f − Q̃(f)∥[1/5,1]
≤ cK2,φ̃(f, t

2)[1/5,1] ≤ cK2,φ(f, t
2)w,

t2∥φ2Q̃(f)′′∥[1/4,1] ≤ c t2∥φ̃2Q̃(f)′′∥[1/5,1]
≤ cK2,φ̃(f, t

2)[1/5,1] ≤ cK2,φ(f, t
2)w,,

t2∥Q̃(f)′∥[1/4,1] ≤ t2∥Q̃(f)′∥[1/5,1]
≤ cK1(f, t

2)[1/5,1] ≤ cK1(f, t
2)w

(4.62)

for t = 1/m, m ∈ N+ and m ≥ m0 with some fixed m0 ∈ N+.

Let the function gt ∈ C3[0, 1] be such that g′t = (1−ψ)g̃′t+ψQ̃(f), where
ψ ∈ C∞(R), ψ(x) = 0 for x ≤ 1/4 and ψ(x) = 1 for x ≥ 3/4. It can be
shown by (4.21) with r = s = 1, (4.61) and (4.62) that (see [18, p. 176])

∥w(f − g′t)∥+ t2∥w(Dgt)′∥ ≤ c
(
K2,φ(f, t

2)w +K1(f, t
2)w
)

for t = 1/m, m ∈ N+ and m ≥ m0. In view of property (4.60) that completes
the proof of Remark 3.4.

4.8 Simultaneous approximation by the iter-

ated Boolean sums of the Kantorovich

operator in weighted L∞-spaces

As in the last section of the previous chapter, the results about the simulta-
neous approximation by the iterated Boolean sums of the Bernstein operator
can be easily transferred to their analogue with the Kantorovich operator.

To recall, the Kantorovich polynomials are defined for f ∈ L[0, 1] and
x ∈ [0, 1] by

Knf(x) :=
n∑

k=0

(n+1)

∫ (k+1)/(n+1)

k/(n+1)

f(t) dt pn,k(x), pn,k(x) :=

(
n

k

)
xk(1−x)n−k.
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More generally, we will consider again the generalized Kantorovich operator
of order m ∈ N+, which is defined for f ∈ L[0, 1] by

K⟨m⟩
n f(x) := (Bn+mFm(x))

(m) ,

where

Fm(x) :=
1

(m− 1)!

∫ x

0

(x− t)m−1f(t) dt.

Further, we set
K⟨m⟩

r,n := I − (I −K⟨m⟩
n )r.

Relation (3.158) yields

K⟨m⟩
r,n f = (Br,n+mFm)

(m) .

This enables us to transfer all the above results about simultaneous approx-
imation by Br,n to Kr,n. In particular, we get the following characterization

of the rate of the simultaneous approximation by K⟨m⟩
r,n .

Theorem 4.25. Let m, r ∈ N+, s ∈ N0 and w := w(γ0, γ1) be given by (2.2)
as 0 ≤ γ0, γ1 < s +m. Then for all f ∈ L∞[0, 1] such that f ∈ ACs−1

loc (0, 1)
and wf (s) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(K⟨m⟩
r,n f − f)(s)∥ ≤ cKD

r,s+m(f
(s), n−r)w.

Conversely, there exists R ∈ N+ such that for all f ∈ L[0, 1] with f ∈
ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all ℓ, n ∈ N+ with ℓ ≥ Rn there holds

KD
r,s+m(f

(s), n−r)w ≤ c

(
k

n

)r (
∥w(K⟨m⟩

r,n f − f)(s)∥+ ∥w(K
⟨m⟩
r,ℓ f − f)

(s)∥
)
.

In particular,

KD
r,s+m(f

(s), n−r)w ≤ c
(
∥w(K⟨m⟩

r,n f − f)(s)∥+ ∥w(K
⟨m⟩
r,Rnf − f)

(s)∥
)
.

The value of the constant c is independent of f , n and ℓ.

In the statement of the last theorem the condition f ∈ ACs−1
loc (0, 1) is to

be ignored for s = 0.
The observations made in Remarks 3.42 and 3.43 hold for K⟨m⟩

r,n as well.
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Chapter 5

Simultaneous approximation by
Bernstein polynomials with
integer coefficients

5.1 Background

There is an extensive literature on the approximation of functions by poly-
nomials with integer coefficients. A quite helpful introduction to the subject
is the monograph [39] and also [80, Chapter 2, § 4]. In particular, the ex-
tension of the classical results on simultaneous approximation by algebraic
polynomials with real coefficients to the integer case is due to Gelfond [43]
and Trigub [94, 95, 96, 97, 98].

Bernstein [10] posed the problem of determining to what extent the re-
quirement on the coefficients of the algebraic polynomials to be integers af-
fects the order of the best algebraic approximation in the uniform norm. To
solve this problem Kantorovich [66] (or e.g. [39, pp. 3–4], or [80, Chapter 2,
Theorem 4.1]) introduced an integer modification of Bn. It is given by

B̃n(f)(x) :=
n∑

k=0

[
f

(
k

n

)(
n

k

)]
xk(1− x)n−k.

Above [α] denotes the largest integer that is less than or equal to the real α.
L. Kantorovich showed that if f ∈ C[0, 1] is such that f(0), f(1) ∈ Z, then

lim
n→∞

∥B̃n(f)− f∥ = 0.
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Clearly, the conditions f(0), f(1) ∈ Z are also necessary in order to have

limn→∞ B̃n(f)(0) = f(0) and limn→∞ B̃n(f)(1) = f(1), respectively.
Following L. Kantorovich and applying (0.3), we get a direct estimate of

the error of B̃n for f ∈ C[0, 1] with f(0), f(1) ∈ Z. For x ∈ [0, 1] and n ∈ N+

we have

|B̃n(f)(x)− f(x)| ≤ |Bnf(x)− f(x)|

+
n−1∑
k=1

(
f

(
k

n

)(
n

k

)
−
[
f

(
k

n

)(
n

k

)])
xk(1− x)n−k

≤ ∥Bnf − f∥+
n−1∑
k=1

xk(1− x)n−k

≤ c ω2
φ(f, n

−1/2) +
1

n

n−1∑
k=1

pn,k(x)

≤ c ω2
φ(f, n

−1/2) +
1

n
.

(5.1)

We will show that the simultaneous approximation by B̃n(f) satisfies a
similar estimate. Before stating that result, let us note that another integer
modification of Bnf possesses actually better properties regarding simulta-
neous approximation. In it, instead of the integer part [α] we use the nearest
integer ⟨α⟩ to the real α. More precisely, if α ∈ R is not the arithmetic
mean of two consecutive integers, we set ⟨α⟩ to be the integer at which the
minimum minm∈Z |α−m| is attained. When α is right in the middle between
two consecutive integers, we can define ⟨α⟩ to be either of them even without
following a given rule. The results we will prove are valid regardless of our
choice in this case.

We will denote that integer modification of the Bernstein polynomial by
B̂n(f), that is, we set

B̂n(f)(x) :=
n∑

k=0

〈
f

(
k

n

)(
n

k

)〉
xk(1− x)n−k

for f ∈ C[0, 1] and x ∈ [0, 1].
An argument similar to (5.1) yields

(5.2) ∥B̂n(f)− f∥ ≤ c ω2
φ(f, n

−1/2) +
1

2n
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for all f ∈ C[0, 1] with f(0), f(1) ∈ Z and all n ∈ N+.
Combining (5.1) and (5.2) with (3.2), we arrive at the characterization

c−1

(
ω2
φ(f, n

−1/2) +
1

n

)
≤ ∥B̃n(f)− f∥+

1

n

≤ c

(
ω2
φ(f, n

−1/2) +
1

n

)(5.3)

and

c−1

(
ω2
φ(f, n

−1/2) +
1

n

)
≤ ∥B̂n(f)− f∥+

1

n

≤ c

(
ω2
φ(f, n

−1/2) +
1

n

)(5.4)

valid for all f ∈ C[0, 1] with f(0), f(1) ∈ Z and all n ≥ n0 with some n0,
which is independent of f .

Consequently, if 0 < α ≤ 1, then

∥B̃n(f)− f∥ = O(n−α) ⇐⇒ ω2
φ(f, h) = O(h2α)(5.5)

and

∥B̂n(f)− f∥ = O(n−α) ⇐⇒ ω2
φ(f, h) = O(h2α),(5.6)

provided that f(0), f(1) ∈ Z; we assume f ∈ C[0, 1].
In addition, we will prove in the last section of the chapter that the

approximation generated by B̃n and B̂n in the uniform norm on [0, 1] is

saturated with the saturation rate of 1/n and if ∥B̃n(f) − f∥ = o(1/n) or

∥B̂n(f) − f∥ = o(1/n), then, similarly to the Bernstein operator, we have

that B̃n(f) = B̂n(f) = f and f is a polynomial of the type px + q, where
p, q ∈ Z.

Let us explicitly note that for any fixed n ≥ 2 the operator B̃n : C[0, 1]→
C[0, 1] is not bounded in the sense that there does not exist a constant M
such that

∥B̃nf∥ ≤M ∥f∥ ∀ f ∈ C[0, 1].
Therefore we cannot drop the quantity 1/n on the right-hand side of the
estimate (5.1), or replace it with c ∥f∥n−1. That operator is not continuous

either. On the other hand, B̂n is bounded but not continuous. Both operators
are not linear. To emphasize the latter we write B̃n(f) and B̂n(f), not B̃nf

and B̂nf .
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5.2 A characterization of the rate of the si-

multaneous approximation by Bernstein

polynomials with integer coefficients

We established in Theorem 3.5, that for all f ∈ Cs[0, 1] and n ∈ N+ there
holds

(5.7) ∥(Bnf)
(s) − f (s)∥

≤ c


ω2
φ(f

′, n−1/2) + ω1(f
′, n−1), s = 1,

ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1) +

1

n
∥f (s)∥, s ≥ 2,

as, moreover, these estimates cannot be improved since a matching strong
converse inequality is also valid (see Theorem 3.8 and (3.11)).

We will verify that the integer forms of the Bernstein polynomials B̃n and
B̂n satisfy similar direct inequalities. They are stated in the following two
theorems.

Theorem 5.1. Let s ∈ N+. Let f ∈ Cs[0, 1] be such that

f(0), f(1), f ′(0), f ′(1) ∈ Z and f (i)(0) = f (i)(1) = 0, i = 2, . . . , s.

Let also there exist n0 ∈ N+, n0 ≥ s, such that

f

(
k

n

)
≥ f(0) +

k

n
f ′(0), k = 1, . . . , s, n ≥ n0,(5.8)

f

(
k

n

)
≥ f(1)−

(
1− k

n

)
f ′(1), k = n− s, . . . , n− 1, n ≥ n0.(5.9)

Then for n ≥ n0 there holds

∥(B̃n(f))
(s) − f (s)∥

≤ c


ω2
φ(f

′, n−1/2) + ω1(f
′, n−1) +

1

n
, s = 1,

ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1) +

1

n
∥f (s)∥+ 1

n
, s ≥ 2.

The value of the constant c is independent of f and n.
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Remark 5.2. Certainly, it suffices to assume instead of the cumbersome
(5.8)-(5.9) that there exists δ ∈ (0, 1) such that

f(x) ≥ f(0) + x f ′(0), x ∈ [0, δ],

f(x) ≥ f(1)− (1− x)f ′(1), x ∈ [1− δ, 1].

However, it turns out that the conditions (5.8)-(5.9) are also necessary unlike
the ones above (see Theorem 5.12).

Remark 5.3. An analogous result holds for the integer form of the Bernstein
operator defined by means of the ceiling function instead of the integer part.
Then we assume that the reverse inequalities for f(k/n) hold, that is,

f

(
k

n

)
≤ f(0) +

k

n
f ′(0), k = 1, . . . , s, n ≥ n0,

f

(
k

n

)
≤ f(1)−

(
1− k

n

)
f ′(1), k = n− s, . . . , n− 1, n ≥ n0.

The proof is quite similar and we will omit it.

The estimates of the rate of convergence for B̂n are valid under weaker
assumptions.

Theorem 5.4. Let s ∈ N+. Let f ∈ Cs[0, 1] be such that

f(0), f(1), f ′(0), f ′(1) ∈ Z and f (i)(0) = f (i)(1) = 0, i = 2, . . . , s.

Then

∥(B̂n(f))
(s) − f (s)∥

≤ c


ω2
φ(f

′, n−1/2) + ω1(f
′, n−1) +

1

n
, s = 1,

ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1) +

1

n
∥f (s)∥+ 1

n
, s ≥ 2.

The value of the constant c is independent of f and n.

We will show that the assumptions made in Theorems 5.1 and 5.4 are
necessary in order to have uniform simultaneous approximation. Concerning
the difference between the set of conditions on the derivatives for s = 1 and
s ≥ 2, let us note that B̃n and B̂n preserve the polynomials of the form
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p x + q, where p, q ∈ Z (that is verified just as for the Bernstein operator).
Therefore it is not surprising that there are not any restrictions on the values
of the function and its first derivative at the endpoints except that they must
be integers. However, the requirement that the derivatives of order 2 and
higher must be equal to 0 at the endpoints is quite unexpected. Technically,
it is related to the fact that

(
k
n

)s (n
k

)
∈ Z for all k and n iff s = 0 or s = 1.

I am aware of only one result concerning approximation of the derivatives
of smooth functions by means of integer forms of the Bernstein polynomi-
als. Martinez [82] considered this problem but the coefficients are replaced
by their integer part after differentiating the Bernstein polynomial of the
function.

Another result in this chapter is an analogue of the equivalence relations
(5.5)-(5.6) for the simultaneous approximation by the operators B̃n and B̂n.
We will establish the following weak converse relations that complement the
direct estimates in Theorems 5.1 and 5.4.

Theorem 5.5. Let s ∈ N+ and 0 < α < 1. Let f ∈ Cs[0, 1], f(0), f(1) ∈ Z,
and

∥(B̃n(f))
(s) − f (s)∥ = O(n−α) or ∥(B̂n(f))

(s) − f (s)∥ = O(n−α).

Then
ω2
φ(f

(s), h) = O(h2α) and ω1(f
(s), h) = O(hα).

Combining this theorem with Theorems 5.1 and 5.4, we get the following
two big O equivalence relations.

Corollary 5.6. Let s ∈ N+ and 0 < α < 1. Let f ∈ Cs[0, 1] be such that
f(0), f(1), f ′(0), f ′(1) ∈ Z and f (i)(0) = f (i)(1) = 0, i = 2, . . . , s. Let also
there exist n0 ∈ N+, n0 ≥ s, such that

f

(
k

n

)
≥ f(0) +

k

n
f ′(0), k = 1, . . . , s, n ≥ n0,

f

(
k

n

)
≥ f(1)−

(
1− k

n

)
f ′(1), k = n− s, . . . , n− 1, n ≥ n0.

Then

∥(B̃n(f))
(s) − f (s)∥ = O(n−α)

⇐⇒ ω2
φ(f

(s), h) = O(h2α) and ω1(f
(s), h) = O(hα).
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Corollary 5.7. Let s ∈ N+ and 0 < α < 1. Let f ∈ Cs[0, 1] be such that
f(0), f(1), f ′(0), f ′(1) ∈ Z and f (i)(0) = f (i)(1) = 0, i = 2, . . . , s. Then

∥(B̂n(f))
(s) − f (s)∥ = O(n−α)

⇐⇒ ω2
φ(f

(s), h) = O(h2α) and ω1(f
(s), h) = O(hα).

In the next section, we will establish the direct estimates stated in Theo-
rems 5.1 and 5.4. Then we will show in Section 5.4 that the assumptions on
the approximated function near the ends of the interval and its derivatives
are also necessary in order to have simultaneous approximation. In Section
5.5 we will prove the converse relations in Theorem 5.5. In Section 5.6, we
consider the saturation of the approximation by B̃n and B̂n. In the last
section we present a Kantorovich-type integral modification of B̂n.

5.3 Proof of the direct estimates

The integer modifications of the Bernstein polynomials B̃n and B̂n are not
linear. That is why the simplest way to estimate their rate of approximation
is to consider their deviation from the linear operator Bn (see (5.1)). We will
apply the same approach to estimate their rate of simultaneous approxima-
tion.

For n ∈ N+ and k = 0, . . . , n, we set

b̃n(k) := b̃fn(k) :=

[
f

(
k

n

)(
n

k

)] (
n

k

)−1

and

b̂n(k) := b̂fn(k) :=

〈
f

(
k

n

)(
n

k

)〉 (
n

k

)−1

.

Then the operators B̃n and B̂n can be written respectively in the form

B̂n(f)(x) =
n∑

k=0

b̃n(k) pn,k(x)

and

B̂n(f)(x) =
n∑

k=0

b̂n(k) pn,k(x).
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We will use the forward finite difference operator
−→
∆h with step h. If

h = 1, we will omit the subscript, writing
−→
∆ :=

−→
∆1. Thus

(5.10)
−→
∆sb̃n(k) =

s∑
i=0

(−1)i
(
s

i

)
b̃n(k + s− i), k = 0, . . . , n− s;

and analogously for b̂n.
Similarly to (3.4), for n ≥ s we have

(B̃n(f))
(s)(x) =

n!

(n− s)!

n−s∑
k=0

−→
∆sb̃n(k) pn−s,k(x), x ∈ [0, 1],(5.11)

and

(B̂n(f))
(s)(x) =

n!

(n− s)!

n−s∑
k=0

−→
∆sb̂n(k) pn−s,k(x), x ∈ [0, 1].(5.12)

We proceed to the results that relate B̃n and B̂n to Bn.

Theorem 5.8. Let s ∈ N+. Let f ∈ Cs[0, 1] be such that

f(0), f(1), f ′(0), f ′(1) ∈ Z and f (i)(0) = f (i)(1) = 0, i = 2, . . . , s.

Let also there exist n0 ∈ N+, n0 ≥ s, such that

f

(
k

n

)
≥ f(0) +

k

n
f ′(0), k = 1, . . . , s, n ≥ n0,

f

(
k

n

)
≥ f(1)−

(
1− k

n

)
f ′(1), k = n− s, . . . , n− 1, n ≥ n0.

Then

∥(Bnf)
(s) − (B̃n(f))

(s)∥ ≤ c

(
ω1(f

(s), n−1) +
1

n

)
, n ≥ n0.

The value of the constant c is independent of f and n.

Theorem 5.9. Let s ∈ N+. Let f ∈ Cs[0, 1] be such that

f(0), f(1), f ′(0), f ′(1) ∈ Z and f (i)(0) = f (i)(1) = 0, i = 2, . . . , s.

Then

∥(Bnf)
(s) − (B̂n(f))

(s)∥ ≤ c

(
ω1(f

(s), n−1) +
1

n

)
.

The value of the constant c is independent of f and n.
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Now, Theorems 5.1 and 5.4 follow directly from (5.7) and Theorems 5.8
and 5.9, respectively.

Let us establish Theorems 5.8 and 5.9.

Proof of Theorem 5.8. Let n ≥ n0. We make use of (3.4), (5.11), and the
identities

∑s
j=0

(
s
j

)
= 2s and

∑n−s
k=0 pn−s,k(x) ≡ 1 to get

(5.13)
∣∣∣(Bnf)

(s)(x)− (B̃n(f))
(s)(x)

∣∣∣
≤ 2s ns max

0≤k≤n

(
f

(
k

n

)
− b̃n(k)

)
, x ∈ [0, 1].

Note that f(k/n)− b̃n(k) ≥ 0, k = 0, . . . , n, because [α] ≤ α.
We will estimate f(k/n)−b̃n(k) separately for k ≤ s, s+1 ≤ k ≤ n−s−1,

and k ≥ n− s. For the middle part, we simply use that if n ≥ 2s+ 2, then

f

(
k

n

)
− b̃n(k) =

(
f

(
k

n

)(
n

k

)
−
[
f

(
k

n

)(
n

k

)])(
n

k

)−1

≤
(

n

s+ 1

)−1

≤ c

ns+1
, k = s+ 1, . . . , n− s− 1.

(5.14)

Next, we will show that

(5.15) f

(
k

n

)
− b̃n(k) ≤

c

ns
ω1(f

(s), n−1), k = 0, . . . , s.

We apply Taylor’s formula, as we take into consideration that f (i)(0) = 0 for
i = 2, . . . , s, to arrive at

(5.16) f

(
k

n

)
= f(0) +

k

n
f ′(0)

+
1

(s− 1)!

∫ k/n

0

(
k

n
− t
)s−1 (

f (s)(t)− f (s)(0)
)
dt.

That implies

f

(
k

n

)
−
(
f(0) +

k

n
f ′(0)

)
≤ 1

s!

(
k

n

)s

ω1

(
f (s),

k

n

)
≤ c

ns
ω1(f

(s), n−1), k = 0, . . . , s.

(5.17)
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At the second estimate, we have taken into account the well-known property
of the modulus of continuity

ω1(F, rt) ≤ rω1(F, t),

where r ∈ N+.
On the other hand, (5.8) and

(5.18) f(0)

(
n

k

)
+ f ′(0)

k

n

(
n

k

)
∈ Z,

imply [
f

(
k

n

)(
n

k

)]
≥ f(0)

(
n

k

)
+ f ′(0)

k

n

(
n

k

)
, k = 0, . . . , s.

Consequently,

(5.19) b̃n(k) ≥ f(0) +
k

n
f ′(0), k = 0, . . . , s.

Estimates (5.17) and (5.19) imply (5.15).
Finally, we observe that, by symmetry, (5.15) yields

(5.20) f

(
k

n

)
− b̃n(k) ≤

c

ns
ω1(f

(s), n−1), k = n− s, . . . , n.

More precisely, with f̄(x) := f(1− x) and

¯̃bn(k) :=

[
f̄

(
k

n

)(
n

k

)] (
n

k

)−1

we have

f̄

(
k

n

)
= f

(
n− k
n

)
,

¯̃bn(k) = b̃n(n− k),
ω1(f̄

(s), t) = ω1(f
(s), t).

(5.21)

Note also that f̄ ∈ Cs[0, 1], f̄(0), f̄ ′(0) ∈ Z, f̄ (i)(0) = 0, i = 2, . . . , s, and for
n ≥ n0 and k = 1, . . . , s we have by (5.9)

f̄

(
k

n

)
= f

(
n− k
n

)
≥ f(1)− k

n
f ′(1) = f̄(0) +

k

n
f̄ ′(0).
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So, f̄ satisfies the condition (5.8) and, by virtue of (5.15), we have

f̄

(
k

n

)
− ¯̃bn(k) ≤

c

ns
ω1(f̄

(s), n−1), k = 0, . . . , s.

As we take into account (5.21), we get (5.20).
Inequalities (5.13)-(5.15) and (5.20) imply the assertion of the theorem.

We will use the following elementary lemma in the proof the theorem
about B̂n.

Lemma 5.10. Let m ∈ Z and α, ω ∈ R. If |α−m| ≤ ω, then | ⟨α⟩−m| ≤ 2ω.

Proof. If ω < 1/2, then ⟨α⟩ = m. If, on the other hand, ω ≥ 1/2, then

| ⟨α⟩ −m| ≤ | ⟨α⟩ − α|+ |α−m| ≤ 1

2
+ ω ≤ 2ω.

Proof of Theorem 5.9. We proceed similarly to the proof of the previous the-
orem. Since the assertion is trivial for n < s, we assume that n ≥ s. We
make use of (3.4) and (5.12) to get

(5.22)
∣∣∣(Bnf)

(s)(x)− (B̂n(f))
(s)(x)

∣∣∣
≤ 2s ns max

0≤k≤n

∣∣∣∣f (kn
)
− b̂n(k)

∣∣∣∣ , x ∈ [0, 1].

Again we estimate separately the terms |f(k/n)− b̂n(k)| for k ≤ s, s+1 ≤
k ≤ n − s − 1, and k ≥ n − s. For the middle part, we have similarly to
(5.14)

(5.23)

∣∣∣∣f (kn
)
− b̂n(k)

∣∣∣∣ ≤ c

ns+1
, k = s+ 1, . . . , n− s− 1, n ≥ 2s+ 2.

Next, we will show that

(5.24)

∣∣∣∣f (kn
)
− b̂n(k)

∣∣∣∣ ≤ c

ns
ω1(f

(s), n−1), k = 0, . . . , s.
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By virtue of (5.16), we have

(5.25)

∣∣∣∣f (kn
)
−
(
f(0) +

k

n
f ′(0)

)∣∣∣∣ ≤ c

ns
ω1(f

(s), n−1), k = 0, . . . , s.

That implies

(5.26)

∣∣∣∣f (kn
)(

n

k

)
−
(
f(0)

(
n

k

)
+ f ′(0)

k

n

(
n

k

))∣∣∣∣
≤ c

ns

(
n

k

)
ω1(f

(s), n−1), k = 0, . . . , s.

We apply Lemma 5.10 with

α = f

(
k

n

)(
n

k

)
,

m = f(0)

(
n

k

)
+ f ′(0)

k

n

(
n

k

)
∈ Z,

ω =
c

ns

(
n

k

)
ω1(f

(s), n−1),

where the constant c is the one on the right-hand side of (5.26).
Thus we arrive at∣∣∣∣〈f (kn

)(
n

k

)〉
−
(
f(0)

(
n

k

)
+ f ′(0)

k

n

(
n

k

))∣∣∣∣
≤ c

ns

(
n

k

)
ω1(f

(s), n−1), k = 0, . . . , s,

and, consequently,

(5.27)

∣∣∣∣b̂n(k)− (f(0) + k

n
f ′(0)

)∣∣∣∣ ≤ c

ns
ω1(f

(s), n−1), k = 0, . . . , s.

Estimates (5.25) and (5.27) yield (5.24).
Finally, we derive

(5.28)

∣∣∣∣f (kn
)
− b̂n(k)

∣∣∣∣ ≤ c

ns
ω1(f

(s), n−1), k = n− s, . . . , n.
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from (5.24) by symmetry just as in the proof of (5.20) with ¯̃bn(k) replaced
with

¯̂
bn(k) :=

〈
f̄

(
k

n

)(
n

k

)〉 (
n

k

)−1

.

Inequalities (5.22)-(5.24) and (5.28) imply the assertion of the theorem.

5.4 Optimality of the assumptions

We will establish the necessity of the assumptions made in Theorems 5.1 and
5.4. We begin with the operator B̂n since stronger results are valid for it.

First of all, let us note that if

(5.29) lim
n→∞

∥B̂n(f)− f∥ = 0 and lim
n→∞

∥(B̂n(f))
(s) − f (s)∥ = 0,

then f (i)(0), f (i)(1) ∈ Z for i = 0, . . . , s. Indeed, as is known, for any g ∈
Cs[0, 1] we have (see (2.1))

∥g(i)∥ ≤ c
(
∥g∥+ ∥g(s)∥

)
, i = 1, . . . , s− 1.

Therefore (5.29) implies

(5.30) lim
n→∞

∥(B̂n(f))
(i) − f (i)∥ = 0, i = 0, . . . , s;

hence f (i)(0), f (i)(1) ∈ Z for i = 0, . . . , s. A similar result holds for B̃n.

Theorem 5.11. Let s ∈ N+, s ≥ 2, and f ∈ Cs[0, 1]. If

(5.31) lim
n→∞

∥B̂n(f)− f∥ = 0 and lim
n→∞

∥(B̂n(f))
(s) − f (s)∥ = 0,

then f (i)(0) = f (i)(1) = 0, i = 2, . . . , s.

Proof. It is sufficient to establish the theorem at the point x = 0; for x = 1
it follows by symmetry. We use induction on s.

Let s = 2. Relation (5.30), in particular, yields

lim
n→∞

(B̂n(f))
′(0) = f ′(0),
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that is (see (5.12) with s = 1),

(5.32) lim
n→∞

n
−→
∆ b̂n(0) = f ′(0).

Since n
−→
∆ b̂n(0) ∈ Z for all n, (5.32) implies

n
−→
∆ b̂n(0) = f ′(0) for n large enough;

hence

(5.33) b̂n(1) = b̂n(0) +
1

n
f ′(0) = f(0) +

1

n
f ′(0).

Similarly, from limn→∞(B̂n(f))
′′(0) = f ′′(0) we derive

(5.34) n(n− 1)
−→
∆2b̂n(0) = f ′′(0) for n large enough.

By Taylor’s formula, we have

(5.35) f

(
2

n

)
= f(0)+

2

n
f ′(0)+

2

n2
f ′′(0)+

∫ 2/n

0

(
2

n
− t
)
(f ′′(t)−f ′′(0)) dt.

Next, we proceed similarly to the proof of Theorem 5.9. We multiply both
sides of the above identity by

(
n
2

)
and rearrange the terms to get

(5.36) f

(
2

n

)(
n

2

)
−
(
f(0)

(
n

2

)
+ (n− 1)f ′(0) + f ′′(0)

)
= − 1

n
f ′′(0) +

(
n

2

)∫ 2/n

0

(
2

n
− t
)
(f ′′(t)− f ′′(0)) dt.

Consequently,∣∣∣∣f ( 2

n

)(
n

2

)
−
(
f(0)

(
n

2

)
+ (n− 1)f ′(0) + f ′′(0)

)∣∣∣∣
≤ 1

n
|f ′′(0)|+ ω1

(
f ′′,

2

n

)
,

which shows that for large n we have〈
f

(
2

n

)(
n

2

)〉
= f(0)

(
n

2

)
+ (n− 1)f ′(0) + f ′′(0).
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Therefore

(5.37) b̂n(2) = f(0) +
2

n
f ′(0) +

2

n(n− 1)
f ′′(0) for n large enough.

Now, fixing some n large enough, we deduce from (5.33)-(5.37) that

f ′′(0) = n(n− 1)(b̂n(2)− 2b̂n(1) + b̂n(0))

= n(n− 1)

(
f(0) +

2

n
f ′(0) +

2

n(n− 1)
f ′′(0)− 2

(
f(0) +

1

n
f ′(0)

)
+ f(0)

)
= 2f ′′(0);

hence f ′′(0) = 0.
Let the assertion of the theorem hold for some s−1, s ≥ 3. We will prove

that then it holds for s too.
As we noted in the beginning of the section, (5.31) implies

lim
n→∞

∥(B̂n(f))
(s−1) − f (s−1)∥ = 0.

Hence, by virtue of the induction hypothesis, we have f (i)(0) = 0 for i =
2, . . . , s− 1.

By Taylor’s formula we have

(5.38) f

(
k

n

)
= f(0) +

k

n
f ′(0) +

(
k

n

)s
f (s)(0)

s!

+
1

(s− 1)!

∫ k/n

0

(
k

n
− t
)s−1

(f (s)(t)− f (s)(0)) dt.

We multiply both sides by
(
n
k

)
. For 1 ≤ k < s we derive the inequality∣∣∣∣f (kn

)(
n

k

)
−
(
f(0)

(
n

k

)
+ f ′(0)

k

n

(
n

k

)) ∣∣∣∣
≤
(
n

k

)(
k

n

)s
1

s!

(
|f (s)(0)|+ ω1

(
f (s),

k

n

))
≤ c

n

(
|f (s)(0)|+ ω1(f

(s), n−1)
)
.

Consequently, for large n we have〈
f

(
k

n

)(
n

k

)〉
= f(0)

(
n

k

)
+ f ′(0)

k

n

(
n

k

)
;
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hence

(5.39) b̂n(k) = f(0) +
k

n
f ′(0) for 0 ≤ k < s and large n.

In order to calculate b̂n(s), we observe that

lim
n→∞

(
n

s

)( s
n

)s
=
ss

s!
.

We proceed just as in this case s = 2: we multiple both sides of (5.38) by(
n
s

)
and rearrange the terms to arrive at∣∣∣∣f ( sn)

(
n

s

)
−
(
f(0)

(
n

s

)
+ f ′(0)

s

n

(
n

s

)
+

ss

(s!)2
f (s)(0)

) ∣∣∣∣
≤
(
ss

s!
−
(
n

s

)( s
n

)s) 1

s!
|f (s)(0)|+ 1

s!

(
n

s

)( s
n

)s
ω1

(
f (s),

s

n

)
≤ c

n
|f (s)(0)|+ c ω1(f

(s), n−1).

Consequently, for large n〈
f
( s
n

)(n
s

)〉
= f(0)

(
n

s

)
+ f ′(0)

s

n

(
n

s

)
+

〈
ss

(s!)2
f (s)(0)

〉
+ rs,n,

where rs,n ∈ {−1, 0, 1}. Consequently,

(5.40) b̂n(s) = f(0) +
s

n
f ′(0) +

(〈
ss

(s!)2
f (s)(0)

〉
+ rs,n

)(
n

s

)−1

.

Relations (5.39) and (5.40) yield

(5.41)
−→
∆sb̂n(0) =

(〈
ss

(s!)2
f (s)(0)

〉
+ rs,n

)(
n

s

)−1

.

On the other hand, since limn→∞ ∥(B̂n(f))
(s) − f (s)∥ = 0, and, in partic-

ular, limn→∞(B̂n(f))
(s)(0) = f (s)(0), we have that

lim
n→∞

n!

(n− s)!
−→
∆sb̂n(0) = f (s)(0).
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Taking into account that

n!

(n− s)!
−→
∆sb̂n(0) ∈ Z ∀n,

we deduce that for large n there holds

n!

(n− s)!
−→
∆sb̂n(0) = f (s)(0).

That, in combination with (5.41), yields

(5.42) s!

(〈
ss

(s!)2
f (s)(0)

〉
+ rs,n

)
= f (s)(0) for n large enough.

First of all, this relation implies that the integer f (s)(0) is divisible by s!,
i.e. f (s)(0) = s!ms with some ms ∈ Z. Secondly, it implies that rs,n has one
and the same value for large n; denote it by rs. Thus (5.42) can be reduced
to 〈

ss

s!
ms

〉
+ rs = ms.

Consequently,

|ms|
(
ss

s!
− 1

)
≤ 3

2
.

It remains to take into account that ss/s! increases on s; hence ss/s! ≥ 9/2
for s ≥ 3, and then |ms| ≤ 3/7, which is possible only if ms = 0. Thus
f (s)(0) = 0.

Necessary conditions for the simultaneous approximation by means of B̃n

are given in the following theorem.

Theorem 5.12. Let s ∈ N+ and f ∈ Cs[0, 1]. If

(5.43) lim
n→∞

∥B̃n(f)− f∥ = 0 and lim
n→∞

∥(B̃n(f))
(s) − f (s)∥ = 0,

then f (i)(0) = f (i)(1) = 0, i = 2, . . . , s, and there exists n0 ∈ N+, n0 ≥ s,
such that

f

(
k

n

)
≥ f(0) +

k

n
f ′(0), k = 1, . . . , s, n ≥ n0,(5.44)

f

(
k

n

)
≥ f(1)−

(
1− k

n

)
f ′(1), k = n− s, . . . , n− 1, n ≥ n0.
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Proof. It is sufficient to establish the theorem at the point x = 0; for x = 1
it follows by symmetry.

We argue as in the proof of the preceding theorem. However, here more
efforts are required.

Using induction on s, we will prove that f (i)(0) = 0, i = 2, . . . , s and

(5.45) b̃n(k) = f(0) +
k

n
f ′(0), k = 1, . . . , s, n ≥ n0.

with some n0. The latter implies directly the inequalities (5.44) because

f

(
k

n

)
≥
[
f

(
k

n

)(
n

k

)](
n

k

)−1

= f(0) +
k

n
f ′(0), k = 1, . . . , s, n ≥ n0.

As in the proof of Theorem 5.11, we deduce from

lim
n→∞

∥(B̃n(f))
(s) − f (s)∥ = 0

that there exists n0 ∈ N+, n0 ≥ s, such that

(5.46)
n!

(n− i)!
−→
∆ ib̃n(0) = f (i)(0), i = 1, . . . , s, n ≥ n0.

That directly yields (5.45) for s = 1 and the assertion of the theorem is
verified for s = 1.

In order to complete the proof for larger s, we use that if f ∈ Cs[0, 1] and

limn→∞ ∥(B̃n(f))
(s) − f (s)∥ = 0, then

lim
n→∞

∥(Bnf)
(s) − (B̃n(f))

(s)∥ = 0;

hence

(5.47) lim
n→∞

(
(Bnf)

(s)
(y
n

)
− (B̃n(f))

(s)
(y
n

))
= 0, y ∈ [0, 1].

By (3.4) and (5.11), after reordering the terms, we arrive at the identity

(5.48) (Bnf)
(s)(x)− (B̃n(f))

(s)(x)

=
n!

(n− s)!

n−s∑
k=0

k+s∑
j=k

(−1)s+j−k

(
s

j − k

)(
f

(
j

n

)
− b̃n(j)

)
pn−s,k(x).
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We observe that, by virtue of (5.14), for n ≥ 3s + 2 and x ∈ [0, 1] there
holds (cf. (5.13))∣∣∣∣∣

n−2s−1∑
k=s+1

k+s∑
j=k

(−1)s+j−k

(
s

j − k

)(
f

(
j

n

)
− b̃n(j)

)
pn−s,k(x)

∣∣∣∣∣ ≤ c

ns+1
(5.49)

and ∣∣∣∣∣
s∑

k=1

k+s∑
j=s+1

(−1)s+j−k

(
s

j − k

)(
f

(
j

n

)
− b̃n(j)

)
pn−s,k(x)

∣∣∣∣∣ ≤ c

ns+1
.(5.50)

Next, we observe that if n ≥ 4s + 1, then pn−s,k(y/n) ≤ c n−s−1 for all
y ∈ [0, 1] and k = n − 2s, . . . , n − s. Indeed, since in this case (n − s)/2 ≤
n− 2s, then for k = n− 2s, . . . , n− s there holds(

n− s
k

)
≤
(
n− s
n− 2s

)
=

(
n− s
s

)
≤ c ns.

Next, we take into account that for n ≥ 4s + 1 and k ≥ n − 2s we have
k ≥ 2s+ 1; hence

yk

nk
≤ 1

n2s+1
, y ∈ [0, 1].

These two relations along with the trivial estimate (1− y/n)n−s−k ≤ 1 imply
that pn−s,k(y/n) ≤ c n−s−1 for all y ∈ [0, 1] and k = n − 2s, . . . , n − s,
n ≥ 4s+ 1.

Further, taking also into account that 0 ≤ f(j/n)− b̃n(j) ≤ 1 and arguing
as in (5.14), we arrive at

(5.51)

∣∣∣∣∣
n−s∑

k=n−2s

k+s∑
j=k

(−1)s+j−k

(
s

j − k

)(
f

(
j

n

)
− b̃n(j)

)
pn−s,k

(y
n

)∣∣∣∣∣
≤ c

ns+1
, y ∈ [0, 1].

We subtract (5.49) and (5.50) with x = y/n, and (5.51) from (5.48) with
x = y/n, reorder the terms and take into account (5.47) and b̃n(0) = f(0).
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Thus, for y ∈ [0, 1], we deduce that

(5.52) lim
n→∞

n!

(n− s)!

s∑
j=1

(−1)s−j

(
f

(
j

n

)
− b̃n(j)

)

×
j∑

k=0

(−1)k
(

s

j − k

)
pn−s,k

(y
n

)
= 0.

We will evaluate that limit in another way. Clearly,

(5.53) lim
n→∞

j∑
k=0

(−1)k
(

s

j − k

)
pn−s,k

(y
n

)
=

1

ey

j∑
k=0

(−1)k y
k

k!

(
s

j − k

)
.

We proceed by induction on s. Relations (5.43) imply

lim
n→∞

∥(B̃n(f))
(s−1) − f (s−1)∥ = 0.

Therefore, by virtue of the induction hypothesis, we have that f (i)(0) = 0,
i = 2, . . . , s− 1, s ≥ 2, and

(5.54) b̃n(j) = f(0) +
j

n
f ′(0), j = 1, . . . , s− 1, n ≥ n0.

Then Taylor’s formula yields

f

(
j

n

)
= f(0) +

j

n
f ′(0) +

js

ns

f (s)(0)

s!
+ o(n−s), j = 1, . . . , s.

The relations (5.46) with i = s and (5.54) imply

(5.55) b̃n(s) = f(0) +
s

n
f ′(0) +

(n− s)!
n!

f (s)(0), n ≥ n0.

Therefore

n!

(n− s)!

(
f

(
j

n

)
− b̃n(j)

)
=
js

s!
f (s)(0) + o(1), j = 1, . . . , s− 1,

and

n!

(n− s)!

(
f
( s
n

)
− b̃n(s)

)
=

(
ss

s!
− 1

)
f (s)(0) + o(1).
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Now, if we substitute the last two relations into (5.52) and take into
account (5.53), we arrive at

f (s)(0)
s∑

k=0

(−1)kyk

k!

((
s

k

)
−

s∑
j=k

(−1)s−j j
s

s!

(
s

j − k

))
= 0, y ∈ [0, 1]

(actually the summand for k = 0 is 0). Consequently, the coefficient of ys is
equal to zero, that is,

(−1)sf (s)(0)

s!

(
1− ss

s!

)
= 0.

Therefore f (s)(0) = 0 and then, by virtue of (5.55), b̃n(s) = f(0)+ s
n
f ′(0).

5.5 Proof of the converse estimates

Let s ∈ N+ and f ∈ Cs[0, 1]. As it follows from Theorem 3.8 with w =
1, (3.11) and [23, Theorem 2.1.1], there hold the following strong converse
inequalities:

ω2
φ(f

(s), n−1/2) ≤ c
(
∥(Bnf)

(s) − f (s)∥+ ∥(BRnf)
(s) − f (s)∥

)
(5.56)

and

ω1(f
(s), n−1) ≤ c

(
∥(Bnf)

(s) − f (s)∥+ ∥(BRnf)
(s) − f (s)∥

)
(5.57)

for n ≥ n0 with some positive integers R and n0, which are independent
of f and n. It was shown in Theorem 3.26 (see also (3.11)) that the two
estimates above still hold true without the second term on the right-hand
side for s ≤ 6.

The operators B̂n and B̃n are not linear. We will use the following prop-
erty to compensate that. It also incorporates a Bernstein-type inequality.

Lemma 5.13. Let s ∈ N+, f ∈ Cs[0, 1] and g ∈ Cs+1[0, 1]. Let f(0), f(1),
f ′(0), f ′(1) ∈ Z and f (i)(0) = f (i)(1) = 0, i = 2, . . . , s. Then

∥(B̂n(f))
(s+1)−(Bng)

(s+1)∥ ≤ c n

(
∥f (s) − g(s)∥+ 1

n
∥g(s+1)∥+ 1

n

)
, n ∈ N+.
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If also there exists n0 ∈ N+, n0 ≥ s, such that for n ≥ n0 there hold

f

(
k

n

)
≥ f(0) +

k

n
f ′(0), k = 1, . . . , s,

f

(
k

n

)
≥ f(1)−

(
1− k

n

)
f ′(1), k = n− s, . . . , n− 1,

then

∥(B̃n(f))
(s+1)− (Bng)

(s+1)∥ ≤ c n

(
∥f (s) − g(s)∥+ 1

n
∥g(s+1)∥+ 1

n

)
, n ≥ n0.

The value of the constant c is independent of f , g, and n.

Proof. We will consider in detail only the operator B̂n and indicate, in due
course, the minor changes for B̃n.

We assume that n ≥ s+1 since otherwise the assertion is trivial. We apply
(3.4) and (5.12) (or (5.11) for B̃n) with s+1 in place of s, and the identities∑s+1

j=0

(
s+1
j

)
= 2s+1 and

∑n−s−1
k=0 pn−s−1,k(x) ≡ 1 to deduce for x ∈ [0, 1] that

|(B̂n(f))
(s+1)(x)− (Bng)

(s+1)(x)|

≤ ns+1

n−s−1∑
k=0

∣∣∣∣−→∆s+1b̂fn(k)−
−→
∆s+1

1/ng

(
k

n

)∣∣∣∣ pn−s−1,k(x)

≤ ns+1

n−s−1∑
k=0

∣∣∣∣−→∆s+1b̂fn(k)−
−→
∆s+1

1/nf

(
k

n

)∣∣∣∣ pn−s−1,k(x)

+ ns+1

n−s−1∑
k=0

∣∣∣∣−→∆s+1
1/n (f − g)

(
k

n

)∣∣∣∣ pn−s−1,k(x)

≤ (2n)s+1 max
k=0,...,n

∣∣∣∣f (kn
)
− b̂fn(k)

∣∣∣∣+ ns+1∥
−→
∆s+1

1/n (f − g)∥[0,1−(s+1)/n].

By virtue of (5.23), (5.24) and (5.28) (for B̃n we use (5.14), (5.15) and (5.20)
instead) and basic properties of the modulus of continuity, we arrive at∣∣∣∣f (kn

)
− b̂fn(k)

∣∣∣∣ ≤ c

ns

(
ω1(f

(s), n−1) +
1

n

)
≤ c

ns

(
ω1(f

(s) − g(s), n−1) + ω1(g
(s), n−1) +

1

n

)
≤ c

ns

(
∥f (s) − g(s)∥+ 1

n
∥g(s+1)∥+ 1

n

)
, k = 0, . . . , n.
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To complete the proof it remains to recall that (see e.g. [18, p. 45])

∥
−→
∆s+1

1/n (f − g)∥[0,1−(s+1)/n] ≤ 2 ∥
−→
∆s

1/n(f − g)∥[0,1−s/n] ≤
2

ns
∥f (s) − g(s)∥.

Now, we are ready to give the proof of the weak converse estimate.

Proof of Theorem 5.5. We will consider in detail only the operator B̂n. Just
the same arguments, but based on the corresponding properties of B̃n, yield
the assertion for it.

Let ∥(B̂n(f))
(s) − f (s)∥ ≤ Cf n

−α for n ≥ nf with some constants Cf > 0
and nf ∈ N+ that may depend on f . Henceforward we will denote by Cf

positive constants, which may depend on f , but not on n and h, δ, and g to
be specified below.

We have limn→∞ ∥(B̂n(f))
(s) − f (s)∥ = 0. Since f(0), f(1) ∈ Z, we have

limn→∞ ∥B̂n(f) − f∥ = 0 too. Now, Theorem 5.11 implies that f (i)(0) =

f (i)(1) = 0, i = 2, . . . , s. For B̃n we apply Theorem 5.12 instead. Note also
that for both operators we have f ′(0), f ′(1) ∈ Z.

Then Theorem 5.9 (or Theorem 5.8 for B̃n), (5.56) and the monotonicity
of the modulus of continuity on its second argument imply

ω2
φ(f

(s), n−1/2) ≤ c
(
∥(Bnf)

(s) − f (s)∥+ ∥(BRnf)
(s) − f (s)∥

)
≤ c

(
∥(Bnf)

(s) − (B̂n(f))
(s)∥+ ∥(B̂n(f))

(s) − f (s)∥
)

+ c
(
∥(BRnf)

(s) − (B̂Rn(f))
(s)∥+ ∥(B̂Rn(f))

(s) − f (s)∥
)

≤ Cf

(
ω1(f

(s), n−1) + n−α
)
.

Thus, to complete the proof, it suffices to show that

(5.58) ω1(f
(s), h) = O(hα)

and take into account the monotonicity of ω2
φ(f

(s), h) on h.
We consider the K-functional

K(f (s), t) := inf
g∈Cs+1[0,1]

{∥f (s) − g(s)∥+ t ∥g(s+1)∥}.

As is known (see e.g. [18, Chapter 6, Theorem 2.4 and its proof], or (1.3)),

ω1(f
(s), t) ≤ 2K(f (s), t);
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hence, to establish (5.58), it is sufficient to show

(5.59) K(f (s), h) = O(hα).

To this end, we will apply a standard argument based on the Berens-
Lorentz Lemma (see [7], or e.g. [18, Chapter 10, Lemma 5.2]).

Let 0 < h ≤ δ ≤ 1/nf . Set n := [1/δ]. For any g ∈ Cs+1[0, 1], we have

K(f (s), h) ≤ ∥f (s) − (B̂n(f))
(s)∥+ h ∥(B̂n(f))

(s+1)∥
≤ Cf n

−α + h ∥(B̂n(f))
(s+1) − (Bng)

(s+1)∥+ h ∥(Bng)
(s+1)∥

≤ Cf δ
α + c

h

δ

(
∥f (s) − g(s)∥+ δ ∥g(s+1)∥+ δ

)
,

where, at the last step, we estimated the second term by Lemma 5.13, and
the third by Proposition 3.14 with s+ 1 in place of s, and w = 1. The value
of the constant c above is independent of f , g, h, and δ, and Cf is a positive
constant, which may depend on f , but not on g, h, and δ.

We take the infimum on g ∈ Cs+1[0, 1] and thus arrive at

K(f (s), h) + h ≤ Cf δ
α + c

h

δ

(
K(f (s), δ) + δ

)
.

Now, the Berens-Lorentz Lemma with ϕ(x) := K(f (s), x2)+x2 and 2α in place
of α (in the notations of [18, Chapter 10, Lemma 5.2]) implies (5.59).

5.6 Saturation

We will show that the approximation processes given by (B̃n(f))
(s) → f (s)

and (B̂n(f))
(s) → f (s) in the uniform norm are saturated with the saturation

rate of 1/n and the trivial class consists of the polynomials of the form px+q
with p, q ∈ Z. Note that these processes are neither linear, nor positive.

Theorem 5.14. Let s ∈ N0 and f ∈ Cs[0, 1] be such that f(0), f(1) ∈ Z. If

∥(B̃n(f))
(s) − f (s)∥ = o(1/n) or ∥(B̂n(f))

(s) − f (s)∥ = o(1/n),

then f(x) = px + q with some p, q ∈ Z and thus B̃n(f) = B̂n(f) = f for all
n.

145



Chapter 5. Simultaneous approximation by Bernstein polynomials with
integer coefficients

Proof. We consider B̂n. The argument for B̃n is just the same.
First of all, let us note that if f(x) = px+ q with p, q ∈ Z, then(

p
k

n
+ q

)(
n

k

)
∈ Z, k = 0, . . . , n;

hence B̂n(f) = Bnf . As is known, Bn preserves the linear functions. There-

fore B̂n(f) = f for all n.
We consider the case s = 0. Let δ ∈ (0, 1/2) be fixed. For x ∈ [δ, 1 − δ]

we have

|Bnf(x)− B̂n(f)(x)| ≤
n−1∑
k=1

∣∣∣∣f (kn
)(

n

k

)
−
〈
f

(
k

n

)(
n

k

)〉∣∣∣∣xk(1− x)n−k

≤ 1

2

n−1∑
k=1

xk(1− x)n−k ≤ 1

2

n−1∑
k=1

(1− δ)k(1− δ)n−k

=
n− 1

2
(1− δ)n.

Consequently,

(5.60) ∥Bnf − f∥[δ,1−δ] = o(1/n).

Further, by virtue of (5.6) with α = 1 and ∥B̂n(f)− f∥ = o(1/n), we get
ω2
φ(f, h) = O(h2).
By virtue of [23, Theorem 4.2.1(b)], we have for any f ∈ C[0, 1]

(5.61) ω2
φ(f, t) = O(t2)

⇐⇒ f ∈ AC[0, 1], f ′ ∈ ACloc(0, 1), φ
2f ′′ ∈ L∞[0, 1].

Therefore f ∈ W 2
∞[δ, 1− δ].

Now, Voronovskaya’s classical result (0.5) and (5.60) yield that f ′′(x) = 0
a.e. in [δ, 1−δ]. Since δ was arbitrarily fixed in (0, 1/2), we arrive at f ′′(x) = 0
a.e. in [0, 1]. Consequently, f(x) is a linear function. It assumes integral
values at 0 and 1; hence f(x) = px+ q with some p, q ∈ Z.

Let s ∈ N+. As before, using the inequality (2.1)

∥g(i)∥ ≤ c
(
∥g∥+ ∥g(s)∥

)
, i = 1, . . . , s− 1,
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where g ∈ Cs[0, 1], we deduce from

lim
n→∞

∥B̂n(f)− f∥ = 0 and lim
n→∞

∥(B̂n(f))
(s) − f (s)∥ = 0

that

lim
n→∞

∥(B̂n(f))
(i) − f (i)∥ = 0, i = 1, . . . , s− 1.

In particular, we have limn→∞(B̂n(f))
(i)(0) = f (i)(0), i = 0, . . . , s − 1.

Since (B̂n(f))
(i)(0) ∈ Z, we deduce that for all n large enough we have

(B̂n(f))
(i)(0) = f (i)(0), i = 0, . . . , s− 1.

Consequently,

B̂n(f)(x)− f(x) =
1

(s− 1)!

∫ x

0

(x− u)s−1
(
(B̂n(f))

(s)(u)− f (s)(u)
)
du;

hence

∥B̂n(f)− f∥ = o(1/n),

which reduces the assertion to the case s = 0.

Now, Theorem 5.14 with s = 0, (5.3), (5.4) and (5.61) yield the following

assertion about the saturation class of the integer forms B̃n and B̂n of the
Bernstein operator.

Corollary 5.15. The approximation processes, generated by the operators
B̃n and B̂n, are saturated with the saturation rate of 1/n. Their saturation
class consists of those functions f ∈ AC[0, 1] such that f(0), f(1) ∈ Z, f ′ ∈
ACloc(0, 1) and φ

2f ′′ ∈ L∞[0, 1].

I was not able to identify the saturation class of the approximation pro-
cesses (B̃n(f))

(s) → f (s) and (B̂n(f))
(s) → f (s) with s ≥ 1. In the proof of

Theorem 5.14 we observed that (B̃n(f))
(s)(x) and (B̃n(f))

(s)(x) interpolate
f (s)(x) at 0 and 1 for large n, depending on f . Therefore the description of
the saturation class of these approximation processes might not involve the
classical modulus of continuity of f (s) as in Corollaries 5.6 and 5.7. However,
under an additional assumption, it is quite straightforward to establish the
following converse result.
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Proposition 5.16. Let s ∈ N+. Let f ∈ Cs[0, 1], f(0), f(1) ∈ Z, and f (s)(x)
be absolutely continuous with an essentially bounded derivative in some neigh-
bourhoods of 0 and 1. If

∥(B̃n(f))
(s) − f (s)∥ = O(n−1) or ∥(B̂n(f))

(s) − f (s)∥ = O(n−1),

then

ω2
φ(f

(s), h) = O(h2) and ω1(f
(s), h) = O(h);

hence f (s) ∈ AC[0, 1], f (s+1) ∈ ACloc(0, 1) and f
(s+1), φ2f (s+2) ∈ L∞[0, 1].

Proof. We will consider only the operator B̂n. The proof for B̃n is quite
similar.

As in the proof of Theorem 5.5 we first deduce that f ′(0), f ′(1) ∈ Z and
f (i)(0) = f (i)(1) = 0, i = 2, . . . , s. Then we observe that the considerations
in the proof of Theorem 5.9 actually imply

∥(Bnf)
(s)− (B̂n(f))

(s)∥ ≤ c

(
ω1(f

(s), n−1)[0,s/n] + ω1(f
(s), n−1)[1−s/n,1] +

1

n

)
,

where we have set for the interval J ⊂ [0, 1]

ω1(F, t)J := sup
|x−y|≤t
x,y∈J

|F (x)− F (y)|.

We have f (s) ∈ W 1
∞[0, s/n] and f (s) ∈ W 1

∞[1− s/n, 1] for all n large enough;
hence

∥(Bnf)
(s) − (B̂n(f))

(s)∥ = O(n−1).

Consequently,

∥(Bnf)
(s) − f (s)∥ = O(n−1).

By virtue of (5.56)-(5.57), this implies

ω2
φ(f

(s), t) = O(t2) and ω1(f
(s), t) = O(t).

Basic properties of the moduli (see (5.61) and [18, Chapter 2, Theorem
9.3]) yield the second assertion of the proposition.
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5.7. Simultaneous approximation by a Kantorovich-type modification of
the Bernstein polynomials with integer coefficients

5.7 Simultaneous approximation by a Kanto-

rovich-type modification of the Bernstein

polynomials with integer coefficients

Following the relation between the Kantorovich polynomials and the Bern-
stein polynomials given in (3.157), we define

K̂n(f)(x) :=
(
B̂n+1(F )(x)

)′
, F (x) :=

∫ x

0

f(t) dt,

where f ∈ L[0, 1] and x ∈ [0, 1].
Then we have

K̂n(f)(x) =
n∑

k=0

(
(k + 1)

〈∫ k+1
n+1

0

f(t) dt

(
n+ 1

k + 1

)〉

− (n− k + 1)

〈∫ k
n+1

0

f(t) dt

(
n+ 1

k

)〉)
xk(1− x)n−k.

Now, Theorem 5.4 with F in place of f and s+1 in place of s implies the
following direct estimate of the rate of simultaneous approximation by K̂n.

Theorem 5.17. Let s ∈ N0. Let f ∈ Cs[0, 1] be such that∫ 1

0

f(t) dt ∈ Z, f(0), f(1) ∈ Z,

f (i)(0) = f (i)(1) = 0, i = 1, . . . , s.

Then

∥(K̂n(f))
(s) − f (s)∥

≤ c


ω2
φ(f, n

−1/2) + ω1(f, n
−1) +

1

n
, s = 0,

ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1) +

1

n
∥f (s)∥+ 1

n
, s ≥ 1.

The value of the constant c is independent of f and n.

Clearly, the only advantage of K̂n to B̂n could be that it is defined by
integrals of f rather than its values, which is useful in case the former are
more readily available than the latter.
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Chapter 6

Direct and converse
Voronovskaya estimates for the
Bernstein operator

6.1 Background

Our goal is to estimate the rate of the convergence in the Voronovskaya’s
theorem [99] (or see e.g. [18, p. 307], or [79, p. 22]), which states that if
f ∈ C2[0, 1], then

lim
n→∞

n(Bnf(x)− f(x)) =
x(1− x)

2
f ′′(x)

uniformly on [0, 1].
We introduce the linear operator

Dnf(x) := n(Bnf(x)− f(x))

and we will refer to it as the Voronovskaya operator.
We will consider it on the Sobolev-type function spaces

Wm
∞(φ)[0, 1] := {f ∈ C[0, 1] : f ∈ ACm−1

loc (0, 1), φmf (m) ∈ L∞[0, 1]},

where φ(x) :=
√
x(1− x). Let us note that, by virtue of Proposition 2.2(b),

we have Wm+1
∞ (φ)[0, 1] ⊂ Wm

∞(φ)[0, 1].

For f ∈ W 2
∞(φ)[0, 1] we set Df(x) := φ2(x)

2
f ′′(x).
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6.2. A characterization of the rate of approximation of the Voronovskaya
operator

It is known that (see [22, Lemma 8.3])

(6.1)

∥∥∥∥Bnf − f −
1

2n
φ2f ′′

∥∥∥∥ ≤ c

n3/2
∥φ3f (3)∥, f ∈ W 3

∞(φ)[0, 1],

which can be written in the form

∥Dnf −Df∥ ≤
c

n1/2
∥φ3f (3)∥, f ∈ W 3

∞(φ)[0, 1].

We will show, assuming a higher degree of smoothness, that∥∥∥∥Bnf − f −
1

2n
φ2f ′′

∥∥∥∥ ≤ c

n2

(
∥φ2f (3)∥+ ∥φ4f (4)∥

)
, f ∈ W 4

∞(φ)[0, 1],

that is,

∥Dnf −Df∥ ≤
c

n

(
∥φ2f (3)∥+ ∥φ4f (4)∥

)
.

Let us note that if f ∈ W 4
∞(φ)[0, 1], then φ2f (3) ∈ L∞[0, 1] (see Proposi-

tion 2.3(a) with r = 2 and i = 3). That slightly improves the estimate∥∥∥∥Bnf − f −
1

2n
φ2f ′′

∥∥∥∥ ≤ c

n2

(
∥f (3)∥+ ∥f (4)∥

)
, f ∈ C4[0, 1],

established in [51] (see also [48]).

6.2 A characterization of the rate of approx-

imation of the Voronovskaya operator

To state our main results we will use the K-functionals K2,φ(F, t)w defined
in (1.5) and

K̃(F, t) := inf
g∈W 4

∞(φ)[0,1]

{
∥F −Dg∥+ t

(
∥φ2g(3)∥+ ∥φ4g(4)∥

)}
.

We will establish the following characterization of the rate of approxima-
tion of Df by means of Dnf .

Theorem 6.1. For all f ∈ W 2
∞(φ)[0, 1] and all n ∈ N+ there holds

(6.2) ∥Dnf −Df∥ ≤ c K̃(Df, n−1) ≤ c

(
K2,φ(f

′′, n−1)φ2 +
1

n
∥φ2f ′′∥

)
.
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Conversely, for all f ∈ W 2
∞(φ)[0, 1] and all k, n ∈ N+ there holds

(6.3) K2,φ(f
′′, n−1)φ2 ≤ 2 ∥Dkf −Df∥+ c

k

n
K2,φ(f

′′, k−1)φ2 +
c

n
∥φ2f ′′∥.

The value of the constant c is independent of f , n and k.

The above two estimates can also be written in the form

(6.4)

∥∥∥∥Bnf − f −
1

2n
φ2f ′′

∥∥∥∥ ≤ c

n
K̃(Df, n−1)

≤ c

n
K2,φ(f

′′, n−1)φ2 +
c

n2
∥φ2f ′′∥

and

(6.5)
c

k
K2,φ(f

′′, n−1)φ2 ≤ 2

∥∥∥∥Bkf − f −
1

2k
φ2f ′′

∥∥∥∥
+
c

n
K2,φ(f

′′, k−1)φ2 +
c

nk
∥φ2f ′′∥.

We will refer to (6.2) and (6.4) as direct Voronovskaya inequalities, and to
(6.3) and (6.5) as weak converse Voronovskaya inequalities.1

Similar direct point-wise estimates were established in [45, Theorem 3.2]
and [91, Theorem 2] ([45] contains an overview of other related results). The
assumptions on the functions made there are more restrictive. However,
the first of these results is very general and both give explicit values to the
absolute constant.

Remark 6.2. Since the quantities Dnf −Df and K2,φ(f
′′, t)φ2 are invariant

to translations of f by a quadratic polynomial, the relations above directly
imply the following slight improvement:

∥Dnf −Df∥ ≤ c

(
K2,φ(f

′′, n−1)φ2 +
1

n
E0(f

′′)φ2

)
and

K2,φ(f
′′, n−1)φ2 ≤ 2 ∥Dkf −Df∥

+ c

(
k

n
K2,φ(f

′′, k−1)φ2 +
1

n
E0(f

′′)φ2

)
,

where E0(F )φ2 := infα∈R ∥φ2(F − α)∥.
1The term “inverse Voronovskaya theorem” is also used for a different type of results

(see [1, 5]).
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6.2. A characterization of the rate of approximation of the Voronovskaya
operator

From Theorem 6.1 we will derive the following equivalence relation.

Corollary 6.3. Let f ∈ W 2
∞(φ)[0, 1] and 0 < α < 1. Then

∥Dnf −Df∥ = O(n−α) ⇐⇒ K2,φ(f
′′, t)φ2 = O(tα).

Bernstein [11] proved that if f ∈ C2r[0, 1], then

lim
n→∞

nr

(
Bnf(x)− f(x)−

2r∑
i=1

Bn

(
(◦ − x)i

)
(x)

f (i)(x)

i!

)
= 0

uniformly on [0, 1] (see also [90]). A quantitative estimate of this convergence
for positive linear operators on C[0, 1] was established by Gonska [45] (see
also [2, 3, 41]).

Setting r = 2 above we have for f ∈ C4[0, 1] (see (3.17))

(6.6) lim
n→∞

n(Dnf(x)−Df(x)) = D′f(x)

uniformly on [0, 1], where

D′f(x) :=
(1− 2x)φ2(x)

3!
f (3)(x) +

3φ4(x)

4!
f (4)(x).

This shows that the operator Dn is saturated, as its saturation order is n−1

and its trivial class is the set of the algebraic polynomials of degree at most
2.

We will establish the following quantitative estimate of the convergence
in (6.6).

Theorem 6.4. For all f ∈ W 4
∞(φ)[0, 1] and all n ∈ N+ there holds∥∥∥∥Dnf −Df −

1

n
D′f

∥∥∥∥ ≤ c

n
K2,φ2(f (4), n−1)φ4 +

c

n2
∥φ4f (4)∥.

The value of the constant c is independent of f and n.

Instead of K2,φ(F, t)φr one can use the weighted Ditzian-Totik modulus
of smoothness ω2

φ(F, t)φr (see (1.8) and (1.9)). In fact, the weighted Ditzian-
Totik main-part modulus of smoothness allows us to restate the characteri-
zation in Corollary 6.3 in a simpler form. Corollary 6.3 and [23, (6.2.6) and
(6.2.10)] yield
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Corollary 6.5. Let f ∈ W 2
∞(φ)[0, 1] and 0 < α < 1. Then

∥Dnf −Df∥ = O(n−α) ⇐⇒ ∥φ2∆̄2
hφf

′′∥[2h2,1−2h2] = O(h2α).

In the next section we recall several pertinent properties of the Bernstein
operator and establish Jackson, Bernstein, and Voronovskaya-type inequali-
ties concerning Dn. Then in Section 6.4 we present proofs of Theorems 6.1
and 6.4 and of Corollary 6.3.

6.3 Basic properties of the Voronovskaya op-

erator

First, we note that the operator Dn is bounded in the following sense.

Proposition 6.6. For all f ∈ W 2
∞(φ)[0, 1] and all n ∈ N+ there holds

∥Dnf∥ ≤ 2 ∥Df∥.

Proof. As is known (see e.g. [22, p. 87]),

∥Bnf − f∥ ≤
1

n
∥φ2f ′′∥.

Hence the assertion immediately follows.

Next, we will establish a Jackson-type estimate.

Proposition 6.7. For all g ∈ W 4
∞(φ)[0, 1] and all n ∈ N+ there holds

∥Dng −Dg∥ ≤
c

n

(
∥φ2g(3)∥+ ∥φ4g(4)∥

)
.

The value of the constant c is independent of g and n.

Proof. First, we note that by virtue of Proposition 2.3(a) with r = 2 and
i = 3 we have φ2g′′, φ2g(3) ∈ L∞[0, 1] too.

Applying Taylor’s formula, we have for x ∈ (0, 1)

g

(
k

n

)
= g(x) +

(
k

n
− x
)
g′(x) +

1

2

(
k

n
− x
)2

g′′(x)

+
1

6

(
k

n
− x
)3

g(3)(x) +
1

6

∫ k/n

x

(
k

n
− v
)3

g(4)(v) dv.
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6.3. Basic properties of the Voronovskaya operator

Multiplying both sides by pn,k(x), summing with respect to k and using
identities (3.17) we obtain

|Dng(x)−Dg(x)| =
∣∣∣∣n(Bng(x)− g(x))−

1

2
φ2(x)g′′(x)

∣∣∣∣
=

∣∣∣∣∣(1− 2x)φ2(x)

6n
g(3)(x) +

n

6

n∑
k=0

pn,k(x)

∫ k/n

x

(
k

n
− v
)3

g(4)(v) dv

∣∣∣∣∣
≤ 1

6n
∥φ2g(3)∥+ n

6
∥φ4g(4)∥

∣∣∣∣∣
n∑

k=0

pn,k(x)

∫ k/n

x

(
k

n
− v
)3

φ−4(v) dv

∣∣∣∣∣
We will show that

Rn(x) :=

∣∣∣∣∣
n∑

k=0

pn,k(x)

∫ k/n

x

(
k

n
− v
)3

φ−4(v) dv

∣∣∣∣∣ ≤ c

n2
.

Obviously, it is enough to prove it for 0 < x ≤ 1/2. We consider two cases.
Case 1. 1/n ≤ x ≤ 1/2.

Then φ2(x) ≥ 1/2n and by using (for v between x and k/n) the inequality
[23, p. 141] ∣∣ k

n
− v
∣∣

φ2(v)
≤
∣∣ k
n
− x
∣∣

φ2(x)

and (3.17), we obtain

Rn(x) ≤
n∑

k=0

pn,k(x)

(
k
n
− x
)2

φ4(x)

∣∣∣∣∣
∫ k/n

x

(
k

n
− v
)
dv

∣∣∣∣∣
=
φ−4(x)

2

n∑
k=0

pn,k(x)

(
k

n
− x
)4

=
φ−4(x)

2

[
3φ4(x)

n2
+

(1− 6φ2(x))φ2(x)

n3

]
≤ c

n2
.

Case 2. 0 < x ≤ 1/n.
Analogously to [22, Lemma 8.3], we will estimate the terms in the sum of
Rn(x) separately for k = 0, 1 and k ≥ 2. We have for k = 0

pn,0(x)

∫ x

0

v3φ−4(v) dv = (1− x)n
∫ x

0

v3 dv(
v(1− v)

)2
≤ (1− x)n−2

∫ x

0

v dv =
x2(1− x)n−2

2
≤ c

n2
.
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For k = 1 and n ≥ 2 we have

pn,1(x)

∫ 1/n

x

(
1

n
− v
)3

φ−4(v) dv = nx(1− x)n−1

∫ 1/n

x

(
1
n
− v
)3
dv(

v(1− v)
)2

≤ nx(1− x)n−1

(
1− 1

n

)−2 ∫ 1/n

x

(
1
n

)3
dv

v2
≤ c

n2
.

Trivially, for n = k = 1 we have

p1,1(x)

∫ 1

x

(1− v)3φ−4(v) dv = x

∫ 1

x

(1− v)3dv(
v(1− v)

)2
≤ x

∫ 1

x

dv

v2
≤ 1.

For k ≥ 2 and n ≥ 3 we have∣∣∣∣∣
n∑

k=2

pn,k(x)

∫ k/n

x

(
k

n
− v
)3

φ−4(v) dv

∣∣∣∣∣
≤ cx−2

n∑
k=2

pn,k(x)

(
k

n
− x
)4

≤ cx−2

n∑
k=2

pn,k(x)

(
k

n

)4

= cx−2

n−2∑
k=0

n!

(k + 2)!(n− k − 2)!
xk+2(1− x)n−k−2

(
k + 2

n

)4

≤ c
n−2∑
k=0

pn−2,k(x)

(
k

n− 2

)2

= c

(
x2 +

φ2(x)

n− 2

)
≤ c

n2
,

where at the last but one estimate we have taken into account (3.17). The
case n = k = 2 is again trivial. The proof is complete.

To prove the weak converse inequality in Theorem 6.1, we will use the
operator An defined for f ∈ W 2

∞(φ)[0, 1] by

Anf(x) := 2n

∫ x

1/2

(x− t)φ−2(t)[Bnf(t)− f(t)] dt, x ∈ [0, 1].

It is easy to see that An is well-defined. In fact, we have that Anf ∈ C[0, 1]
for any f ∈ W 2

∞(φ)[0, 1]. That follows from the next lemma.
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6.3. Basic properties of the Voronovskaya operator

Lemma 6.8. If f ∈ W 2
∞(φ)[0, 1], then φ−2.(Bnf − f) ∈ L[0, 1].

Proof. Clearly, φ−2(x)[Bnf(x) − f(x)] is continuous on (0, 1). To complete
the proof of the lemma, we will show that it is dominated by a summable
function on [0, 1]. To this end, we expand f(t) at x ∈ (0, 1) by Taylor’s
formula to get

f(t) = f(x) + f ′(x)(t− x) +
∫ t

x

(t− u)f ′′(u) du, t ∈ [0, 1],

and apply Bn with respect to t to both sides of this identity to arrive at

Bnf(x) = f(x) +
n∑

k=0

pn,k(x)

∫ k/n

x

(
k

n
− u
)
f ′′(u) du.

Here we have used that Tn,0(x) = 1 and Tn,1(x) = 0 (see (3.17)).
Consequently,

(6.7) Bnf(x)− f(x) =
n∑

k=0

pn,k(x)

∫ k/n

x

(
k

n
− u
)
f ′′(u) du.

For k = 1, . . . , n− 1, n ≥ 2, we have φ−2pn,k ∈ C[0, 1] and∣∣∣∣∣
∫ k/n

x

(
k

n
− u
)
f ′′(u) du

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ k/n

x

du

u(1− u)

∣∣∣∣∣ ∥φ2f ′′∥

≤ [lnn− lnx− ln(1− x)] ∥φ2f ′′∥.

For k = 0 and k = n, we have, respectively,∣∣∣∣pn,0(x)φ2(x)

∫ x

0

uf ′′(u) du

∣∣∣∣ ≤ − ln(1− x)
x

∥φ2f ′′∥

and ∣∣∣∣pn,n(x)φ2(x)

∫ 1

x

(1− u)f ′′(u) du

∣∣∣∣ ≤ − lnx

1− x
∥φ2f ′′∥.

Hence the assertion of the lemma follows.

To verify the converse inequality we need two inequalities concerning the
derivatives of Anf . The first one is a Bernstein-type inequality.
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Proposition 6.9. For all f ∈ W 2
∞(φ)[0, 1] and n ∈ N+ we have Anf ∈

AC3
loc(0, 1) and

∥φ4(Anf)
(4)∥ ≤ cn ∥φ2f ′′∥.

The value of the constant c is independent of f and n.

Proof. Clearly, if f ∈ W 2
∞(φ)[0, 1], then Anf ∈ AC3

loc(0, 1). To establish the
inequality, we first evaluate the fourth derivative of Anf(x) for x ∈ (0, 1).
Using the representation (6.7), we get

(Anf)
(3)(x) = 2n

n∑
k=0

(
pn,k(x)

φ2(x)

)′ ∫ k/n

x

(
k

n
− u
)
f ′′(u) du− 2f ′′(x)

φ2(x)
Tn,1(x)

a.e. in (0, 1). Taking into account that Tn,1(x) = 0, f ′′(x) is finite almost
everywhere, and that the functions (Anf)

(3)(x) and the sum on the right
above are continuous on (0, 1), we deduce that
(6.8)

(Anf)
(3)(x) = 2n

n∑
k=0

(
pn,k(x)

φ2(x)

)′ ∫ k/n

x

(
k

n
− u
)
f ′′(u) du, x ∈ (0, 1).

We differentiate once more and arrive at

(6.9) (Anf)
(4)(x) = 2n

n∑
k=0

(
pn,k(x)

φ2(x)

)′′ ∫ k/n

x

(
k

n
− u
)
f ′′(u) du

− 2nf ′′(x)
n∑

k=0

(
pn,k(x)

φ2(x)

)′(
k

n
− x
)

a.e. in (0, 1).

Let us consider the second sum on the right above. We calculate the deriva-
tive (

pn,k(x)

φ2(x)

)′

=
2x− 1

φ4(x)
pn,k(x) +

p′n,k(x)

φ2(x)
,

and apply identities (3.13), Tn,1(x) = 0 and Tn,2(x) = nφ2(x) (see (3.17)), to
arrive at

n∑
k=0

(
pn,k(x)

φ2(x)

)′(
k

n
− x
)

=
1

φ2(x)
.
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Consequently, by (6.9) we get

φ4(x)(Anf)
(4)(x) = 2nφ4(x)

n∑
k=0

(
pn,k(x)

φ2(x)

)′′ ∫ k/n

x

(
k

n
− u
)
f ′′(u) du

− 2nφ2(x)f ′′(x).

Thus to complete the proof of the proposition, it remains to show that

(6.10)

∣∣∣∣∣φ4(x)
n∑

k=0

(
pn,k(x)

φ2(x)

)′′ ∫ k/n

x

(
k

n
− u
)
f ′′(u) du

∣∣∣∣∣ ≤ c ∥φ2f ′′∥

for x ∈ (0, 1). We use that (see e.g. Lemma 3.16)∣∣∣∣∣
∫ k/n

x

(
k

n
− u
)
f ′′(u) du

∣∣∣∣∣ ≤ c

φ2(x)

(
k

n
− x
)2

∥φ2f ′′∥.

So, to verify (6.10), it suffices to establish the estimate

(6.11) φ2(x)
n∑

k=0

∣∣∣∣(pn,k(x)φ2(x)

)′′∣∣∣∣ (kn − x
)2

≤ c, x ∈ (0, 1).

First, let nφ2(x) ≥ 1. By means of (3.13) we represent the second deriva-
tive of φ−2(x)pn,k(x) in the form(

pn,k(x)

φ2(x)

)′′

=

(
2− n
φ4(x)

+
2(1− 2x)2

φ6(x)

)
pn,k(x)

− 3
1− 2x

φ6(x)
(k − nx)pn,k(x) +

1

φ6(x)
(k − nx)2pn,k(x).

Consequently,

φ2(x)
n∑

k=0

∣∣∣∣(pn,k(x)φ2(x)

)′′∣∣∣∣ (kn − x
)2

≤ 1

n2

(
n+ 2

φ2(x)
+

2

φ4(x)

)
Tn,2(x)

+
3

n2φ4(x)

n∑
k=0

|k − nx|3pn,k(x) +
1

n2φ4(x)
Tn,4(x)

and (6.11) for nφ2(x) ≥ 1 follows from (3.19).
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Now, let nφ2(x) ≤ 1. Since

[xk−1(1− x)n−k−1]′′ = (k − 1)(k − 2)xk−3(1− x)n−k−1

−2(k−1)(n−k−1)xk−2(1−x)n−k−2+(n−k−1)(n−k−2)xk−1(1−x)n−k−3,

in order to verify (6.11), it is enough to show for x ∈ (0, 1) that

n∑
k=0

(
n

k

)
(k − 1)(k − 2)xk−3(1− x)n−k−1(k − nx)2 ≤ cn2

φ2(x)
,

n∑
k=0

(
n

k

)
(k − 1)(n− k − 1)xk−2(1− x)n−k−2(k − nx)2 ≤ cn2

φ2(x)
,

n∑
k=0

(
n

k

)
(n− k − 1)(n− k − 2)xk−1(1− x)n−k−3(k − nx)2 ≤ cn2

φ2(x)
.

We will prove the first of these inequalities. The proof of the other two
is quite similar. We directly see that the terms for k = 0 and k = n are
estimated above by cn2φ−2(x). Hence it remains to show

(6.12)
n−1∑
k=3

(
n

k

)
(k − 1)(k − 2)xk−3(1− x)n−k−1(k − nx)2 ≤ cn3,

where n ≥ 4.
We change the summation index and use that n/[ℓ(n − ℓ)] ≤ c for ℓ =

1, . . . , n− 1, to deduce

n−1∑
k=3

(
n

k

)
(k − 1)(k − 2)xk−3(1− x)n−k−1(k − nx)2

=
n−4∑
k=0

(
n

k + 3

)
(k + 1)(k + 2)xk(1− x)n−4−k(k + 3− nx)2

≤ cn3

n−4∑
k=0

pn−4,k(x)(k + 3− nx)2

= cn3

n−4∑
k=0

pn−4,k(x)
[
(k − (n− 4)x) + (3− 4x)

]2
= cn3

[
Tn−4,2(x) + 2(3− 4x)Tn−4,1(x) + (3− 4x)2Tn−4,0(x)

]
≤ cn3,
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where at the last step we have taken into account (3.17). Thus (6.12) is
verified.

This completes the proof of (6.11) for nφ2(x) ≤ 1, and the proof of the
proposition.

Next, we will estimate ∥φ4(Ang)
(4)∥ using higher order derivatives. In

preparation, we establish the following auxiliary result.

Lemma 6.10. If f ∈ C3[0, 1], then the second derivative of φ−2(x)[Bnf(x)−
f(x)] is continuous and bounded on (0, 1).

Proof. Clearly, φ−2(x)[Bnf(x)− f(x)] is twice continuously differentiable on
(0, 1). By (6.8) we have(
Bnf(x)− f(x)

φ2(x)

)′

=
n∑

k=0

(
pn,k(x)

φ2(x)

)′ ∫ k/n

x

(
k

n
− u
)
f ′′(u) du, x ∈ (0, 1).

The summands on the right above for k = 1, . . . , n−1, n ≥ 2, are in C1[0, 1].
Also, it is clear that the first derivatives of the terms with k = 0 and k = n
are continuous on (0, 1). It remains to show that they are bounded on (0, 1).
We will demonstrate this only for k = 0; the case of k = n is treated in a
similar way.

For k = 0 we have(
pn,0(x)

φ2(x)

)′ ∫ x

0

uf ′′(u) du = −(n− 1)
(1− x)n−2

x

∫ x

0

uf ′′(u) du

− (1− x)n−1

x2

∫ x

0

uf ′′(u) du

Set

F1(x) :=
1

x

∫ x

0

uf ′′(u) du, F2(x) :=
1

x2

∫ x

0

uf ′′(u) du.

For the derivative of F1(x) we have

F ′
1(x) = f ′′(x)− 1

x2

∫ x

0

uf ′′(u) du

and since ∣∣∣∣ 1x2
∫ x

0

uf ′′(u) du

∣∣∣∣ ≤ 1

2
∥f ′′∥, x ∈ (0, 1),
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then F ′
1(x) is bounded on (0, 1).

To show this for F2(x), we integrate by parts and get

F2(x) =
1

2x2

∫ x

0

f ′′(u)d(u2) =
1

2
f ′′(x)− 1

2x2

∫ x

0

u2f (3)(u) du.

So, it remains to show that the derivative of the function

F3(x) :=
1

x2

∫ x

0

u2f (3)(u) du

is bounded on (0, 1). This is verified again straightforwardly since we have

F ′
3(x) = f (3)(x)− 2

x3

∫ x

0

u2f (3)(u) du

and ∣∣∣∣ 1x3
∫ x

0

u2f (3)(u) du

∣∣∣∣ ≤ 1

3
∥f (3)∥, x ∈ (0, 1).

Proposition 6.11. For all g ∈ C4[0, 1] and all n ∈ N+ we have

∥φ4(Ang)
(4)∥ ≤ c

(
∥φ2g′′∥+ ∥φ4g(4)∥

)
.

The value of the constant c is independent of g and n.

Proof. By virtue of Lemma 6.10 we have Ang ∈ AC3[0, 1]. To establish the
inequality, we apply (2.13) with r = 1, s = 2, w = φ2, and Ang in place of
g, and get (note that D = 2D)

∥φ4(Ang)
(4)∥ ≤ c ∥D2(Ang)∥ = c ∥φ2(Dng)

′′∥.

Finally, we get by means of (3.44) with s = 2 and w = φ2, the inequality

∥φ2(Dng)
′′∥ = n ∥φ2(Bng − g)′′∥ ≤ c

(
∥φ2g′′∥+ ∥φ4g(4)∥

)
.

We proceed to a Voronovskaya-type estimate for the operator Dn.
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Proposition 6.12. For all g ∈ W 6
∞(φ)[0, 1] and all n ∈ N+ there holds∥∥∥∥Dng −Dg −

1

n
D′g

∥∥∥∥ ≤ c

n2

(
∥φ4g(4)∥+ ∥φ6g(6)∥

)
.

The value of the constant c is independent of g and n.

Proof. First, we note that by virtue of Propositions 2.3(a) (with r = 2 and
i = 3) and 2.4 we have φ2g′′, φ2g(3), φ2g(4), φ4g(5) ∈ L∞[0, 1] too.

Again we consider two cases.
Let nφ2(x) ≥ 1. We expand g(t) at x ∈ (0, 1) by Taylor’s formula to get

for t ∈ [0, 1]

g(t) =
5∑

i=0

g(i)(x)
(t− x)i

i!
+

1

5!

∫ t

x

(t− u)5g(6)(u) du.

We apply Bn to both sides of the above identity, take into account (3.17),
multiply by n, and rearrange the terms to get

(6.13) Dng(x)−Dg(x)−
1

n
D′g(x) =

1− 6φ2(x)

4!n2
φ2(x)g(4)(x)

+
1

5!n4
Tn,5(x)g

(5)(x) +
n

5!

n∑
k=0

pn,k(x)

∫ k/n

x

(
k

n
− u
)5

g(6)(u) du.

By (3.16) with ℓ = 5 and (2.10) we have

(6.14)
∣∣Tn,5(x)g(5)(x)∣∣ ≤ c(nφ2(x))2

∣∣g(5)(x)∣∣ ≤ cn2
(
∥φ4g(4)∥+ ∥φ6g(6)∥

)
.

Further, we use that (see e.g. Lemma 3.16)∣∣∣∣∣
∫ k/n

x

(
k

n
− u
)5

g(6)(u) du

∣∣∣∣∣ ≤ c

φ6(x)

(
k

n
− x
)6

∥φ6g(6)∥.

Therefore, taking into account (3.19) with m = 3, we have

(6.15)

∣∣∣∣∣
n∑

k=0

pn,k(x)

∫ k/n

x

(
k

n
− u
)5

g(6)(u) du

∣∣∣∣∣
≤ c

n6φ6(x)
Tn,6(x) ∥φ6g(6)∥ ≤ c

n3
∥φ6g(6)∥.
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Combining (6.13), (2.9), (6.14) and (6.15), we arrive at the inequality∣∣∣∣Dng(x)−Dg(x)−
1

n
D′g(x)

∣∣∣∣ ≤ c

n2

(
∥φ4g(4)∥+ ∥φ6g(6)∥

)
.

for nφ2(x) ≥ 1.

Now, let nφ2(x) ≤ 1. Using symmetry, we can also assume that 0 < x ≤
1/2. Then x ≤ 2/n. In this case we start with the expansion

g(t) =
4∑

i=0

g(i)(x)
(t− x)i

i!
+

1

4!

∫ t

x

(t− u)4g(5)(u) du, t ∈ [0, 1].

We apply Bn to both sides of the above identity, take into account (3.17),
multiply by n, and rearrange the terms to get

(6.16) Dng(x)−Dg(x)−
1

n
D′g(x) =

1− 6φ2(x)

4!n2
φ2(x)g(4)(x)

+
n

4!

n∑
k=0

pn,k(x)

∫ k/n

x

(
k

n
− u
)4

g(5)(u) du.

In order to estimate the sum on the right above, we consider separately
the terms with k = 0 and k = 1.

For k = 0 we have, bearing in mind that 0 < x ≤ 1/2 and x ≤ 2/n,∣∣∣∣(1− x)n ∫ x

0

u4g(5)(u) du

∣∣∣∣ ≤ ∫ x

0

u2

(1− u)2
du ∥φ4g(5)∥ ≤ c

n3
∥φ4g(5)∥.

Similarly, for k = 1 and n ≥ 2 we have∣∣∣∣∣nx(1− x)n−1

∫ 1/n

x

(
1

n
− u
)4

g(5)(u) du

∣∣∣∣∣
≤ cx

n3

∣∣∣∣∣
∫ 1/n

x

du

u2(1− u)2

∣∣∣∣∣ ∥φ4g(5)∥

≤ cx

n3

∣∣∣∣∣
∫ 1/n

x

du

u2

∣∣∣∣∣ ∥φ4g(5)∥ ≤ c

n3
∥φ4g(5)∥.
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Straightforward calculations yield for n = k = 1 the estimate∣∣∣∣x∫ 1

x

(1− u)4g(5)(u) du
∣∣∣∣ ≤ x

∫ 1

x

(1− u)2

u2
du ∥φ4g(5)∥

≤ x

∫ 1

x

du

u2
∥φ4g(5)∥ ≤ ∥φ4g(5)∥.

Thus we have established that

(6.17)

∣∣∣∣∣pn,k(x)
∫ k/n

x

(
k

n
− u
)4

g(5)(u) du

∣∣∣∣∣
≤ c

n3
∥φ4g(5)∥, k = 0, 1, n ∈ N+.

In order to estimate the remaining part of the sum on the right of (6.16),
we take into account that (see e.g. Lemma 3.16)∣∣∣∣∣

∫ k/n

x

(
k

n
− u
)4

g(5)(u) du

∣∣∣∣∣ ≤ c

φ4(x)

∣∣∣∣kn − x
∣∣∣∣5 ∥φ4g(5)∥.

Hence, for n ≥ 2, we have∣∣∣∣∣
n∑

k=2

pn,k(x)

∫ k/n

x

(
k

n
− u
)4

g(5)(u) du

∣∣∣∣∣
≤ c

n5φ4(x)

n∑
k=2

pn,k(x)|k − nx|5∥φ4g(5)∥.

We estimate the sum on the right. We have
n∑

k=2

pn,k(x)|k − nx|5

=
n−2∑
k=0

n!

(k + 2)!(n− k − 2)!
xk+2(1− x)n−k−2|k + 2− nx|5

≤ n2x2
n−2∑
k=0

pn−2,k(x) |(k − (n− 2)x) + 2(1− x)|5

≤ c n2x2
n−2∑
k=0

pn−2,k(x)
[
|k − (n− 2)x|5 + 1

]
≤ c n2x2,
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as at the last step we have taken into account (3.19).
Thus we have established that

(6.18)

∣∣∣∣∣
n∑

k=2

pn,k(x)

∫ k/n

x

(
k

n
− u
)4

g(5)(u) du

∣∣∣∣∣ ≤ c

n3
∥φ4g(5)∥.

Combining (6.16), (6.17), (6.18), (2.9) and (2.10), we arrive at∣∣∣∣Dng(x)−Dg(x)−
1

n
D′g(x)

∣∣∣∣ ≤ c

n2

(
∥φ4g(4)∥+ ∥φ6g(6)∥

)
.

for nφ2(x) ≤ 1.
The proof of the proposition is completed.

6.4 Proof of the characterization

Proof of Theorem 6.1. The direct inequality

(6.19) ∥Dnf −Df∥ ≤ c K̃(Df, n−1)

follows from Propositions 6.6 and 6.7 and Proposition 2.3(a) by means of a
standard technique. For any g ∈ W 4

∞(φ)[0, 1] we have

∥Dnf −Df∥ ≤ ∥Dn(f − g)∥+ ∥Dng −Dg∥+ ∥D(f − g)∥

≤ c

[
∥Df −Dg∥+ 1

n

(
∥φ2g(3)∥+ ∥φ4g(4)∥

)]
.

We take the infimum on g and arrive at (6.19).
Next, we observe that Proposition 2.3(a) with r = 2 and i = 3 directly

implies for g ∈ C4[0, 1] and 0 < t ≤ 1

K̃(Df, t) ≤ c
[
∥φ2(f ′′ − g′′)∥+ t

(
∥φ2g′′∥+ ∥φ4g(4)∥

)]
≤ c

(
∥φ2(f ′′ − g′′)∥+ t ∥φ4g(4)∥

)
+ ct ∥φ2f ′′∥.

Taking the infimum on g, we get

K̃(Df, t) ≤ c inf
g∈C4[0,1]

{
∥φ2(f ′′ − g′′)∥+ t ∥φ4g(4)∥

}
+ ct ∥φ2f ′′∥

≤ c
(
K2,φ(f

′′, t)φ2 + t ∥φ2f ′′∥
)
,
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as, to get the last estimate, we have applied Lemma 4.24 with r = 1, s = 2
and w = φ2.

That completes the proof of (6.2). We proceed to the weak converse one
given in (6.3).

For any g ∈ C4[0, 1] we have

(6.20) K2,φ(f
′′, n−1)φ2 ≤ ∥φ2[f ′′ − (Akf)

′′]∥+ 1

n
∥φ4(Akf)

(4)∥

≤ 2 ∥Dkf −Df∥+
1

n

(
∥φ4(Ak(f − g))(4)∥+ ∥φ4(Akg)

(4)∥
)
.

We estimate the second term by Proposition 6.9 to get

(6.21) ∥φ4(Ak(f − g))(4)∥ ≤ ck ∥φ2(f ′′ − g′′)∥.

For the third term, by means of Proposition 6.11, we derive the estimate

∥φ4(Akg)
(4)∥ ≤ c

(
∥φ2g′′∥+ ∥φ4g(4)∥

)
≤ c

(
∥φ2(f ′′ − g′′)∥+ ∥φ4g(4)∥+ ∥φ2f ′′∥

)
.

(6.22)

Now, combining (6.20)-(6.22), we arrive at

K2,φ(f
′′, n−1)φ2 ≤ 2 ∥Dkf −Df∥

+ c
k

n

(
∥φ2(f ′′ − g′′)∥+ 1

k
∥φ4g(4)∥

)
+
c

n
∥φ2f ′′∥.

Consequently,

K2,φ(f
′′, n−1)φ2 ≤ 2 ∥Dkf −Df∥

+ c

(
k

n
inf

g∈C4[0,1]

{
∥φ2(f ′′ − g′′)∥+ 1

k
∥φ4g(4)∥

}
+

1

n
∥φ2f ′′∥

)
.

Now, (6.3) follows from Lemma 4.24 with r = 1, s = 2 and w = φ2.

Proof of Corollary 6.3. If K2,φ(f
′′, t)φ2 = O(tα) for some α ∈ (0, 1], then

(6.2) implies ∥Dnf −Df∥ = O(n−α).
To establish the converse implication, we use a standard method based

on the Berens-Lorentz Lemma (see [7], or e.g. [18, Chapter 10, Lemma 5.2]).
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Let ∥Dnf −Df∥ = O(n−α) for some α ∈ (0, 1). Then (6.3) implies

(6.23) K2,φ(f
′′, n−1)φ2 ≤ Cfk

−α + c
k

n
K2,φ(f

′′, k−1)φ2 +
c

n
∥φ2f ′′∥,

where Cf is a positive constant that generally may depend on f , but not on
k or n.

Let 0 < s ≤ t ≤ 1. Set n :=]1/s[ and k :=]1/t[, where ]γ[ denotes the
smallest integer not less than the positive real γ. Then

(6.24) 1 ≤ sn ≤ 2, 1 ≤ tk ≤ 2.

Using (6.23), (6.24) and the subadditivity of the K-functional on its second
argument, that is,

K2,φ(F, δ1)φ2 ≤ max

{
1,
δ1
δ2

}
K2,φ(F, δ2)φ2 ,

we arrive at the estimate

K2,φ(f
′′, s)φ2 ≤ 2K2,φ(f

′′, n−1)φ2

≤ Cf t
α + c

s

t
K2,φ(f

′′, t)φ2 + cs ∥φ2f ′′∥,

where, to recall, the constant c is independent of f , s and t, and the constant
Cf may depend on f , but is independent of s and t.

Consequently,

(6.25) K2,φ(f
′′, s)φ2 + s ∥φ2f ′′∥ ≤ Cf t

α + c
s

t

(
K2,φ(f

′′, t)φ2 + t ∥φ2f ′′∥
)
.

We set ϕ(y) := K2,φ(f
′′, y2)φ2 + y2∥φ2f ′′∥. Let 0 < x ≤ y ≤ 1. We put

s := x2 and t := y2 in (6.25) and get

(6.26) ϕ(x) ≤ Cf

(
y2α +

x2

y2
ϕ(y)

)
, 0 < x ≤ y ≤ 1,

with some constant Cf , which may depend on f , but is independent of x and
y.

Now, the Berens-Lorentz Lemma yields

ϕ(y) ≤ Cfy
2α, 0 ≤ y ≤ 1,

with some constant Cf , which may depend on f , but is independent of y.
Consequently,

K2,φ(f
′′, t)φ2 = O(tα).
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Proof of Theorem 6.4. We proceed similarly to the proof of the direct in-
equality in Theorem 6.1.

Let g ∈ C6[0, 1] and h(x) := αx3/6 with α := (f − g)(3)(1/2). We have,
by virtue of Propositions 6.7 and 6.12,∥∥∥∥Dnf −Df −

1

n
D′f

∥∥∥∥ ≤ ∥Dn(f − g − h)−D(f − g − h)∥

+
1

n
∥D′(f − g − h)∥+

∥∥∥∥Dn(g + h)−D(g + h)− 1

n
D′(g + h)

∥∥∥∥
≤ c

n

(
∥φ2[(f − g)(3) − α]∥+ ∥φ4(f − g)(4)∥

)
+

c

n2

(
∥φ4g(4)∥+ ∥φ6g(6)∥

)
.

(6.27)

Trivially, we have

(6.28) ∥φ4g(4)∥ ≤ ∥φ4(f − g)(4)∥+ ∥φ4f (4)∥.

Also, for F ∈ ACloc(0, 1) such that φ4F ′ ∈ L∞[0, 1], and x ∈ (0, 1) there
holds

|φ2(x)(F (x)− F (1/2))| =
∣∣∣∣φ2(x)

∫ x

1/2

F ′(u) du

∣∣∣∣
≤
∣∣∣∣φ2(x)

∫ x

1/2

du

φ4(u)

∣∣∣∣ ∥φ4F ′∥ ≤ c ∥φ4F ′∥.
(6.29)

The estimates (6.27), (6.28), and (6.29) with F = (f − g)(3) imply∥∥∥∥Dnf −Df −
1

n
D′f

∥∥∥∥ ≤ c

n

(
∥φ4(f (4) − g(4))∥+ 1

n
∥φ6g(6)∥

)
+

c

n2
∥φ4f (4)∥.

We complete the proof as we take the infimum on g ∈ C6[0, 1] in the
relation above and apply Lemma 4.24 with r = 1, s = 4 and w = φ4.
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