
SOFIA UNIVERSITY "ST. KLIMENT OHRIDSKI"

FACULTY OF MATHEMATICS AND INFORMATICS

COMPUTABLE STRUCTURE THEORY :
JUMP OF STRUCTURE,
CODING AND DECODING

Alexandra Andreeva Soskova

DISSERTATION FOR DOCTOR OF SCIENCES DEGREE IN MATHEMATICS
4.5. MATHEMATICS

(MATHEMATICAL LOGIC)

S O F I A
2 0 2 0

Dedicated to my daughter Mariya Soskova,

to my grandson Edgar Evan Soskov Miller,

and to the bright memory of

Ivan Soskov,

Maria Velcheva,

Andrey Velchev

Contents

1 Introduction 7

2 Preliminaries 23
2.1 Turing reducibility . 23
2.2 Genericity and forcing . 27
2.3 Enumeration reducibility . 31
2.4 Degree spectra . 36
2.5 Definability in a structure . 42

2.5.1 Relatively intrinsically Σ0
α relations 42

2.5.2 Computable infinitary formulas 45

3 Jump of a structure 49
3.1 Jump of a structure . 50
3.2 Every Jump Spectrum is Spectrum 55
3.3 Jump inversion theorem . 58

3.3.1 Marker’s Extensions . 59
3.3.2 Join of Two Structures 61
3.3.3 Representation of Σ0

2(D) Sets 62
3.3.4 The Jump Inversion theorem 64

3.4 Some Applications . 68

4 Strong jump inversion 75
4.1 Canonical jump and strong jump inversion 76
4.2 General result . 79
4.3 Examples . 83

4.3.1 Linear orderings . 84
4.3.2 Boolean algebras . 88
4.3.3 Trees . 91

3

4 CONTENTS

4.3.4 Models of a theory with few B1-types 93
4.3.5 Differentially closed fields 96

5 Effective embeddings and interpretations 109
5.1 Coding and decoding in linear ordering 110

5.1.1 Borel embeddings . 111
5.1.2 Turing computable embeddings 113
5.1.3 Medvedev reductions . 113
5.1.4 Sample embedding . 114
5.1.5 Effective interpretations and computable functors . . . 115
5.1.6 Interpretations by more general formulas 118

5.2 Interpreting graphs in linear orderings 118
5.2.1 Turing computable embedding of graphs in linear or-

derings . 120
5.2.2 The relations ∼γ . 124
5.2.3 ∼γ-equivalence in linear orderings 125
5.2.4 More on the orderings L(G) 125
5.2.5 Proof of Theorem 5.2.7 129

5.3 Interpreting a field into the Heisenberg group 134
5.3.1 Defining F in H(F) . 135
5.3.2 The computable functor 138
5.3.3 Defining the interpretation directly 141
5.3.4 Question of bi-interpretability 144
5.3.5 Generalizing the method 146

5.4 Interpreting ACF (0) - C in a special linear group SL2(C) . . 150
5.4.1 Defining (C ∖ {0}, ⋅) . 152
5.4.2 Defining (C,+, ⋅) . 152

6 Cohesive powers 155
6.1 Basic properties . 157
6.2 Non-Isomorphic Cohesive Powers of Isomorphic Structures . . 162
6.3 Linear orders and their cohesive powers 166
6.4 Cohesive powers of computable copies of ω 175
6.5 A cohesive power of order-type ω + η 184
6.6 Shuffling finite linear orders . 192

CONTENTS 5

7 On Cototality and the Skip Operator 203
7.1 Cototality . 204
7.2 The skip . 206
7.3 Examples of cototal sets and degrees 208

7.3.1 Total degrees . 208
7.3.2 The complement of the graph of a total function . . . 208
7.3.3 Complements of maximal independent sets 210
7.3.4 Complements of maximal antichains in ω<ω 212
7.3.5 The set of words that appear in a minimal subshift . . 213
7.3.6 The non-identity words in a finitely generated simple

group . 214
7.3.7 Joins of nontrivial K-pairs 215
7.3.8 Continuous degrees . 216
7.3.9 Sets with good approximations have cototal degree . . 218

7.4 The skip . 219
7.4.1 Skip inversion . 220
7.4.2 Further properties of the skip operator and examples . 223

7.5 Separating cototality properties 231
7.5.1 Degrees that are not weakly cototal 231
7.5.2 Weakly cototal degrees that are not cototal 233

7.6 There is a cototal degree that is not graph-cototal 234
7.7 Open questions . 253

7.7.1 Definability . 253
7.7.2 Arithmetical zigzag . 253
7.7.3 Graph-cototal degrees 253
7.7.4 Skip cototality . 254

8 Bibliography 255

6 CONTENTS

Chapter 1

Introduction

The mathematical analysis of the notion of definability is one of the prin-
cipal objectives of Mathematical Logic. Our only access to the objects of
mathematics is by explicitly referring to them. Some objects are intrinsically
more complicated than others, and that difference is reflected in the means
needed to define them. The goal of Computability Theory is to understand
the definability for such objects and the relative definability between them.

Now we will be more specific. The first step is to study the most basic
mathematical objects - the real numbers, or equivalently, the sets of natural
numbers. For X and Y , sets of natural numbers, we intend “X is definable
from Y ” to mean that whether n is an element of X can be determined
concretely once Y is given. For example, there could be an algorithm to
determine whether n ∈X when given Y as data—-Turing reducibility ≤T , or
the algorithm could be used to enumerate instances of membership in X
from instances of membership in Y—enumeration reducibility ≤e. When we
omit Y , the set X, defined this way, is computable or computably enumerable,
respectively. Each reducibility ≤ has a natural representation as an ordered
degree structure by identification of sets reducible to each other: DT for the
Turing degrees ordered by ≤T , and its extension De the enumeration degrees
ordered by ≤e. Elements that stand higher up in this order are more difficult
to describe than elements that are closer to the computable or c.e. elements.

The relation ≤T is a preorder on the subsets of the natural numbers and
induces an equivalence relation: A ≡T B if and only if A ≤T B and B ≤T A.
The equivalence class of a set A under this relation is the Turing degree of
A, denoted by dT (A). The Turing degrees are ordered by dT (A) ≤T dT (B)
if and only if A ≤T B. The least upper bound of two degrees dT (A) ∨ dT (B)

7

8 CHAPTER 1. INTRODUCTION

is dT (A ⊕B), where A ⊕B = 2A ∪ (2B + 1) is the disjoint union of A and
B, also known as join. Finally, relativizing the halting problem to any set
induces a jump operation, which maps a degree a to a degree a′, such that
a <T a′. Thus the structure of the Turing degrees DT is an upper semi-lattice
with jump operation.

Just like Turing reducibility, enumeration reducibility is a pre-order on
the set of the natural numbers, it induces an equivalence relation ≡e and a
degree structure De. The structure of the enumeration degrees is also an
upper semi-lattice.

There is a strong connection between the relations that we defined: A ≤T B
if and only if A ⊕A is c.e. in B if and only if A ⊕A ≤e B ⊕B. This gives
the natural embedding ι of the Turing degrees into the enumeration degrees:
ι(dT (A)) = de(A⊕A). The embedding preserves the least element, the partial
order and the jump operation. The image of the Turing degrees under the
embedding ι, defines a substructure of the enumeration degrees, isomorphic
to DT . An enumeration degree is total if it is an image of a Turing degree.
In 1967 Rogers wrote his famous expository text [Rog67a], describing the
state of the art of the field and marking the important open questions that
stood open. Among them was the question of the first order definability of
the total enumeration degrees. The full answer to Rogers’ question is finally
obtained through the collaboration of Cai, Ganchev, Lempp, Miller and M.
Soskova, [CGL+16], confirming Ganchev and Soskova’s conjecture: The total
enumeration degrees are first order definable in De.

Understanding the fundamental building blocks of mathematical objects
is only the first step in these investigations. The next step is to understand
the objects of higher type: mathematical structures. We all know that in
mathematics there are proofs that are more difficult than others, constructions
that are more complicated than others, and objects that are harder to describe
than others. Different fields in mathematics study different structures: in
Algebra we study groups, rings, fields, in Topology and Analysis we study
topological spaces, metric spaces, polish spaces, in Discrete Mathematics we
study linear orderings, graphs and trees. In Computable Structure Theory
we want to understand all of these structures from the point of view of logic
and definability. Computable Structure Theory studies the interplay between
complexity and structures. It is an area inside Computability Theory and
Logic that is concerned with the computable aspects of mathematical objects
and constructions. Our motivations come from questions of the following
sort: Are there syntactical properties that explain why certain objects (like

9

structures, relations, or isomorphisms) are easier or harder to compute or to
describe?

In Chapter 2. of the thesis we introduce the basic notions and facts
that we need. We begin with the properties of the structures of Turing and
enumeration degrees with jumps and present the properties of degree spectra
and enumeration degree spectra and their co-spectra. We introduce one of the
general methods in Computable Structure Theory - the forcing method and
genericity. We present the normal form of relatively intrinsically Σ0

α relations
in a given countable structure for a computable ordinal α, by computable
infinitary Σc

α formulas.
Our work concentrates on the complexity of structures. By complexity,

we mean descriptional or computational complexity, in the sense of how
difficult it is to describe or compute a certain object. We want to measure the
complexity of a structure, so we attach to every structure a set of degrees that
describes it: the degree spectrum of a structure. Since computability theory
is developed on the natural numbers we need to work with structures with
countable domains, whose elements can be enumerated by natural numbers.
Given a structure A, a presentation (enumeration) of A is nothing more than
an isomorphic or homomorphic copy of A whose domain is either the set of the
natural numbers N, or an initial segment of N. The degree spectrum DS(A)
is the set of all Turing degrees of the atomic diagrams of the presentations
of the structure A, a notion, introduced by Richter [Ric81] and investigated
by Knight [Kni86] and many others. Knight introduces the jump spectrum
DS1(A) as the set of all jumps of elements of the spectrum of A. Soskov
[Sos04] initiates a generalization of the notion of spectrum, basing it on
enumeration reducibility. The advantage is that these spectra are closed
upwards relative to total enumeration degrees. He introduces also the co-
spectrum CS(A) of the structure A as the set of all enumeration degrees,
which are lower bounds of elements of the spectrum and shows that every
countable ideal of enumeration degrees is a co-spectrum of a structure. He
shows a number of structural properties of spectra and co-spectra, such as
the existence of minimal pairs and quasi-minimal degrees for the spectrum.
The author [SS04, Sos05b, Sos05a, Sos07b, Sos06] generalizes the notion of
spectrum relative to a finite sequence of structures - called joint and relative
spectra, and shows that all the properties of spectra and co-spectra are
preserved. Together with Soskov [Sos07a, SS07, SS09a], we show that every
jump spectrum is a spectrum of a structure and we prove a jump inversion

10 CHAPTER 1. INTRODUCTION

theorem for spectra.
One of the important methods used in computable structure theory is

the method of forcing, introduced first by Cohen, in order to show the
independence of the continuum hypothesis from Zermelo-Fraenkel set theory
and later adapted to arithmetic by Feferman. It is very effective for the
description of the structural properties of the Turing degrees. We show the
standard construction of a generic set, which includes a sequence of initial
segments of the desired set.We also give a proof of Friedberg’s [Fri57] jump
inversion theorem, which we will generalize for structures and will use this
method in Chapter 3.

Another way to characterize the complexity of a structure A is to analyze
the definable sets in A. This gives a finer measure as it may happen that two
structures have the same degree spectra but greatly differ in their definability
power and model theoretic properties. A relation R on a structure A is rela-
tively intrinsically Σ0

α for some computable ordinal α, if for every isomorphic
copy (presentation) (B;Q) of (A;R) on the natural numbers, Q is Σ0

α in
the atomic diagram D(B) of B. Thus, these relations are exactly the ones
that can be defined within α Turing jumps of the structure, independently of
the presentation of the structure. In order to characterize syntactically the
relatively intrinsically Σ0

α relations in a structure, we need some infinite Lω1,ω

formulas – which allow countable disjunctions and conjunctions of formulas,
all with finitely many free fixed variables (see [AK00]). The Σc

0 and Πc
0 for-

mulas are formulas without quantifiers. For α > 0, a computable Σc
α formula

ϕ(x) is a c.e. disjunction of formulas of the form ∃yψ(x, y), where ψ(x, y)
is a Πc

β formula for some β < α. Similarly, a computable Πc
α formula is a c.e.

conjunction of formulas of the form ∀yψ(x, y), where ψ(x, y) is a computable
Σc
β formula, for some β < α. Ash, Knight, Manasse and Slaman [AKMS89]

and independently Chisholm [Chi90] prove that the relation R on a structure
A is relatively intrinsically Σ0

α iff R is definable by a Σc
α formula ϕ(x, y) with

finitely many parameters, i.e. there exists b ∈ ∣A∣k, a ∈ R ⇐⇒ A ⊧ ϕ(a, b), for
every a.

Chapter 3. introduces a notion of jump of a structure and represents
the proof of two Jump inversion theorems for structures, one — based on
Marker’s extensions and the other on forcing. Some applications of the Jump
inversion theorems are presented.

The idea of the jump of a structure is first considered by Soskov and his
student Baleva [Bal06] in the context of s-reducibility between structures,

11

a reducibility based on relative search computability. Given a structure A,
the goal is to define a structure A′ — the jump of A, so that A′ knows
the sets definable by computable infinitary Σc

1 formulas in A. Moreover the
definable subsets of the domain of A by computable infinitary Σc

2 formulas
are exactly those, that are definable by computable infinitary Σc

1 in A′. This
notion resurfaced in computable structure theory in the period 2002–2010
independently in our works with Soskov [Sos07a, SS07, SS09a], in papers of
Montalbán [Mon09, Mon12, HM12] and in results of Stukachev [Stu09, Stu10].
With Soskov, we define the jump A′ of the structure A by considering the
Moschovakis extension of A, together with a new predicate — an analogue of
the Kleene’s Halting set, which codes all the sets, definable by computable
infinitary Σc

1 formulas with parameters. This changes the domain of the
structure, but keeps the language finite, if the original is finite. Montalbán’s
approach is to keep the domain of the structure the same and to add a
complete set of relations definable by computable infinitary Πc

1 formulas.
This can possibly make the language infinite, however Montalbán gives some
examples of structures, such as linear orderings and Boolean algebras, where
the complete set of relations is finite and natural. With Knight, Montalbán,
Soskov, et.al. [Mon12] we give some additional examples of structures with
finite complete Πc

2 set of relations, and of others, which do not have finite
complete Σc

1 set. Since the results remained unpublished, Antonio Montalbán
included them in his paper [Mon12]. Morozov [Mor04] and later Puzarenko
[Puz09] also define the jump, but for an admissible structure. Stukachev
extends that definition to all structures in the terms of Σ-definability in
hereditarily finite extension of the structure. Vatev [Vat13, Vat14, Vat15]
extends the notion of jump of a structure to the α-th jump of a structure for
arbitrary computable ordinal α.

In the classical computability theory, Friedberg [Fri57] shows a jump
inversion theorem: if X ≥T ∅′, then there is a set Y , such that Y ′ ≡T X.
Jump inversion for a structure can be formulated in the following way: for
every structure A which codes ∅′, i.e. 0′ is a lower bound of DS(A), there
is a structure C, such that C′ is equivalent to A. A commonly used notion
is to say that A and B are equivalent if they have the same Turing-degree
spectrum. In this case we say that A and B are Muchnik equivalent, and
write A ≡w B (w for weak, as it is weaker than the Medvedev equivalence),
where A ≤w B ⇐⇒ DS(B) ⊆ DS(A). Another notion, often used in work
of Russian mathematicians, is to say that A and B are Σ equivalent, if each
one can be interpreted in the structure of hereditary finite sets over the other

12 CHAPTER 1. INTRODUCTION

one in an effective way; in this case we write A ≡Σ B (This notion is due
to Ershov[Ers85]). We prove with Soskov, [Sos07a, SS07, SS09a], this jump
inversion theorem for structures, using Marker extensions. Furthermore, we
present a relativized version of the theorem to all structures. That is, if
A ≥w B′, then there is a structure C ≥w B, such that A ≡w C′. Actually, our
proof is in the terms of degree spectra, i.e. if DS(A) ⊆ DS(B′), then there
exists a structure C with the property DS1(C) =DS(A) and DS(C) ⊆DS(B).
The jump inversion theorem was proved later by Stukachev [Stu09, Stu10]
for the notion of Σ equivalence.

This result for any computable successor ordinal appears in some form
in Goncharov, Harizanov, et.al. [GHK+05]. They only do it for graphs, but
we know that any degree spectrum can be realized as the degree spectrum
of a graph [HKSS02]. They proved the result above only as a tool to get
other results to build a structure that is ∆α-categorical but not relatively so.
They do not mention the jump of a structure. Based on their method Vatev
[Vat13, Vat14, Vat15] extends the jump inversion of a structure for arbitrary
successor ordinal α. Vatev’s approach relies also on the notion of conservative
extension. This notion provides a finer way to compare the relative definability
between two structures at arbitrary levels of the Σc

α-hierarchy. Soskov [Sos13b]
gives an example that the jump inversion theorem does not hold for a limit
ordinal.

Another way to formulate the jump inversion on structures is: for every
structure A, if Y ⊆ N computes a copy of the jump A′, then there isX ⊆ N such
thatX ′ ≡T Y andX computes a copy of A. Montalbán [Mon09, Mon12, Mon]
calls this the second jump inversion theorem. In other words: the jump
spectrum of A is the spectrum of A′, i.e. DS1(A) =DS(A′). We prove this
result with Soskov [SS07, SS09a] and independently later Montalbán [Mon09]
also proved it in another terms.

InChapter 4. we present some general sufficient conditions for a structure
to admit strong jump inversion.

Downey and Jockusch [DJ94] show that for every Boolean algebra A, if
X ′ computes a copy of A with added predicate atom(x), then X computes
a copy of A. Montalbán [Mon09] proved that a Boolean algebra A with
added predicate atom(x) is in some sense equivalent to A′. This suggests the
following strengthening of the jump inversion.

The structure A admits strong jump inversion, if whenever X ′ computes
a copy of A′, then X computes a copy of A. This is equivalent to: for all X,

13

if A has a copy that is low over X, then it has a copy that is computable in
X. Here, when we say that C is low over X, we mean that D(C)′ ≤T X ′.

The result of Downey and Jockusch shows that every Boolean algebra
admits strong jump inversion. Lerman and Schmerl [LS79] prove that for
every ℵ0-categorical theory T , if T ∩Σ2 is c.e., then every model of T admits
strong jump inversion. Some equivalence structures and some abelian p-groups
admit strong jump inversion. Recently, D. Marker and R. Miller [MM17]
show that all countable models of the theory of differentially closed fields of
characteristic 0 (DCF0) admit strong jump inversion.

Not all structures admit strong jump inversion. Jockush and Soare [JS91]
show that there are low linear orders without computable copies, and hence
they do not admit strong jump inversion. There exist low complete extensions
of Peano arithmetic T , for which there exists a model A whose complete
diagram is computable in T , but since A is nonstandard, it does not possess a
computable copy. The problem here is the following: find sufficient conditions
for a structure to admit strong jump inversion. In particular, study some
classes of linear orderings, which admit strong jump inversion. With Calvert,
Frolov, et.al., [CFH+18], we establish a general result with sufficient conditions
on a structure A, which guarantee strong jump inversion of A. They are
expressed in terms of saturation and enumeration properties of sets of types
having formulas of low arithmetic complexity: as computable enumeration
R of the B1-types, where these are made up of formulas that are Boolean
combinations of existential formulas, effective type completion, and R-labeling
of A. When a structure A admits strong jump inversion, and A is low relative
to an oracle X, we also consider the complexity of the isomorphisms between
A and its X-computable copies.

Our general result applies to structures from some familiar classes, includ-
ing certain classes of linear orderings and trees. While we do not get the result
of Downey and Jockusch for arbitrary Boolean algebras, we do get a result
for Boolean algebras with no 1-atom, with some extra information on the
complexity of the isomorphism. Such an isomorphism can be chosen to be ∆0

3

relative to X. This is interesting, because Knight and Stob established in 2000
that any low Boolean algebra has a computable copy and a corresponding ∆0

4

isomorphism, and this bound has been proven to be sharp. We apply also
our general conditions on the models of first order theory T such that T ∩Σ2

is computably enumerable and for each tuple of variables x, there are only
finitely many B1-types in variables x consistent with T . Our general result
includes the result of Marker and Miller. As a side result, we get that the

14 CHAPTER 1. INTRODUCTION

saturated model of DCF0 has a decidable copy.

Chapter 5. is devoted to some uniform methods for coding and decoding
of one class of structures to another.

We consider also classes of structures from the viewpoint of computability
theory. By classes of structures we mean classes like the one of fields, groups,
linear orderings, graphs, etc. Our general objective is to consider global
properties of the classes and derive properties about their individual structures.
In Model Theory, the relevant issues include ones about transferring model-
theoretic phenomena from structures of one class such as graphs, where certain
properties are easy to arrange, to others such as groups where they are less
obvious (as in Mekler, [Mek81]). In Descriptive Set Theory, the analysis
frequently centers around the issue of completeness of various properties
at different levels of a hierarchy with respect to Borel reducibilities (as,
for example, in Friedman and Stanley, [FS89], Camerlo and Gao, [CG01],
Hjorth and Kechris [HK96]). There are various ways of mapping structures
from one class into another. For each of these reducibilities we have classes,
that are on top in the sense, that all other classes can be reduced to it.
Starting by Borel reducibility, and moving on to effective reducibility as
Turing-computable reducibility, sometimes we have a uniform method for
coding each member of one class in some member of the other. We are
interested in cases where there is a uniform effective procedure for decoding,
and in cases where the decoding is highly non-effective. We consider also
a stronger notion of reducibility, introduced by Montalbán [Mon14, Mon],
based on the idea of effective interpretability between structures. It captures
the idea of effective decoding. When a structure A from one class is coded
effectively and uniformly in a structure B from another class, possibly in
another signature, the question is: can we decode effectively and uniformly
the structure B from A? The uniformity we receive by finding some formulas,
that the coded structure should satisfy, and this is true for all structures
in the first class. One part of the uniform effective interpretability is the
Medvedev reduction, i.e. there is a Turing operator, for a copy of B it gives a
copy of A, and the second part is two isomorphic structures from one class to
be coded into isomorphic structures from the other class. R. Miller proposed
a notion of effective interpretability based on computable functor—a pair of
Turing operators, the first one gives the Medvedev reduction and the second
the preserving the isomorphism, between copies. Harrison-Trainor, Melnikov,
R. Miller, and Montalbán [HTMMM17] prove that these the two notions of

15

effective uniform interpretability coincide. Harrison-Trainor, R. Miller, and
Montalbán [HTMM18] show similar result for Borel functors and infinitary
interpretations.

Historically the first well-known notion of Borel reducibility, introduced by
Friedman and Stanley [FS89], in order to get a classification of some classes
of structures. The effective version is the Turing-computable reducibility
[CCKM04, KMVB07], introduced by Julia Knight and her students. The class
of undirected graphs and the class of linear orderings both lie on top under
Turing computable embeddings. The standard Turing computable embeddings
of directed graphs (or structures for an arbitrary computable relational
language) in undirected graphs come with uniform effective interpretations.
The question is: does the class of linear orderings lie also on the top of
uniform effective interpretability? With Knight and Vatev [KSV19], we give
examples of graphs that are not Medvedev reducible to any linear ordering, or
to the jump of any linear ordering. We observe that any graph can be coded
in the second jump of a linear ordering, so we have a Medvedev reduction.
For the known Turing computable embedding of graphs in linear orderings,
due to Friedman and Stanley, we show that there is no uniform effective
interpretation, defined even by Lω1ω formulas. Our conjecture is that there
is no effective uniform way for coding graphs in linear orders with uniform
effective decoding. In support of this Montalbán and Harrison-Trainor [HT20]
independently prove that for each computable ordinal α there is a structure
A with no ∆0

α copy, but the Friedman and Stanley’s embedding L(A) has
a computable copy. We relativize: if A is interpreted in L(A) using ΣX

α

formulas, then any copy of L(A) will ∆0,X
α -computes a copy of A.

Our second result here is positive. With Alvir, Calvert, et.al. [ACG+20],
we consider an effective uniform interpretation of fields in some 2-step nilpotent
groups. We improve on and generalize a 1960 result of Mal’tsev. For a field F ,
we denote by H(F) the Heisenberg group with entries in F . Mal’tsev [Mal60]
showed that there is a copy of F defined in H(F), using existential formulas
with an arbitrary non-commuting pair (u, v) as parameters. We show that
F is interpreted in H(F) using computable Σc

1-formulas with no parameters.
We give two proofs. The first is an existence proof, relying on a result of
Harrison-Trainor, Melnikov, R. Miller, and Montalbán [HTMMM17] based on
a computable functor. This proof allows the possibility that the elements of F
are represented by tuples in H(F) of no fixed arity. The second proof is direct,
giving explicit finitary existential formulas that define the interpretation, with
elements of F represented by triples in H(F). Looking at what was used to

16 CHAPTER 1. INTRODUCTION

arrive at this parameter-free interpretation of F in H(F), we give general
conditions sufficient to eliminate parameters from interpretations.

For an algebraically closed field C of characteristic 0, let SL2(C) be a
special linear group of 2 × 2 matrices over C with determinant 1. Clearly,
SL2(C) is defined in C without parameters. With Alvir, Knight, R. Miller,
[AKMS] we define an interpretation of the field C in SL2(C) using finitary
existential formulas with two parameters. There are old model theoretic
results, due to Poizat [Poi01], that give uniform definability of a copy of C
in SL2(C) using elementary first order formulas without parameters. So,
we have, not necessarily an effective interpretation without parameters, but
one that is defined by elementary first order formulas. We do not know the
complexity of the formulas.

In Chapter 6. we consider some model theoretical properties of cohesive
powers of linear orders.

Skolem’s 1934 construction [Sko34] of a countable non-standard model of
arithmetic was the first, using this technique. He considered the arithmetical
cohesiveness of a set of natural numbers C, i.e. for every arithmetical A ⊆ N,
either C ⊆∗ A or C ⊆∗ A, one then showed that this structure is elementarily
equivalent to (N;+, ⋅,<). Here, C ⊆∗ A ⇐⇒ C∖A is finite, i.e. an inclusion of
sets up to finitely many elements. He define an equivalence relation =C on the
arithmetical functions f∶ N→ N by f =C g if and only if C ⊆∗ {n ∶ f(n) = g(n)}.
The elements of the structure are the classes of equivalence of this relation and
the +, ⋅,< are defined appropriately, e.g. [f] < [g] ⇐⇒ C ⊆∗ {n ∶ f(n) < g(n)}.
The structure is countable because there are only countably many arithmetical
functions, and it has non-standard elements, such as the element represented
by the identity function. Cohesive powers of computable structures can be
viewed as effective ultrapowers over effectively indecomposable sets called
cohesive sets, where cohesive sets play the role of ultrafilters. The ultraproduct
construction is a very powerful and widely used in Model theory. An infinite
set C ⊆ N is cohesive (r-cohesive) if for every c.e. (computable) set W, either
W ∩C or W ∩C is finite. For computable functions f and g and a r-cohesive
set C, Feferman, Scott, and Tennenbaum (see [FST59]) proved that the
structure R/ =C , with domain the set of recursive functions modulo =C , is a
model only of a fragment of arithmetic.

The effective version of cohesive powers of computable structures, based
on partial computable functions has been introduced by Dimitrov, [Dim09],
in relation to the study of automorphisms of the lattice L∗(V∞) of effective

17

vector spaces. Cohesive powers on the field of rational numbers were used in
[Dim08, DH16] to characterize certain principal filters and interesting orbits
of L∗(V∞). Their isomorphism types and automorphisms were further studied
in [DHMM14].

With Dimitrov, Harizanov, Morozov, Shafer and Vatev [DHM+19, DHM+20]
we consider some properties of cohesive powers of linear orders. We show
that if A is a computable structure that is ultrahomogeneous in a uniformly
computable way, then A is isomorphic to its cohesive powers. We investigate
the isomorphism types of cohesive powers ΠCL for familiar computable linear
orders L. The goal of this investigations is to show that the presentation
of a computable structure matters for the isomorphism type of its cohesive
power. If L is a computable copy of ω that is computably isomorphic to the
standard presentation of ω, then every cohesive power of L has order-type
ω + ζη. There is a computable copy L of ω that is not computably isomor-
phic to the standard presentation of ω, but every cohesive power of L has
order-type ω + ζη. However, there are computable copies of ω, necessarily
not computably isomorphic to ω, having cohesive powers not elementarily
equivalent to ω + ζη. For example, we show that there is a computable copy
of ω with a cohesive power of order-type ω + η. Our most general result
is that if X ⊆ N ∖ {0} is either a Σ0

2 set or a Π0
2 set, thought of as a set

of finite order-types, then there is a computable copy of ω with a cohesive
power of order-type ω + σ(X ∪ {ω + ζη + ω∗}), where σ(X ∪ {ω + ζη + ω∗})
denotes the shuffle sum of the order-types in X and the order-type ω+ζη+ω∗.
Furthermore, if X is finite and non-empty, then there is a computable copy
of ω with a cohesive power of order-type ω + σ(X).

In Chapter 7. our last result is in the degree theory, more specifically
in enumeration degrees. With Andrews, Ganchev, et.al. [AGK+19] we in-
vestigate the properties of a substructure of the enumeration degrees: the
cototal degrees. A set A ⊆ N is cototal if it is enumeration reducible to its
complement, A. The skip of A is the uniform upper bound of the complements
of all sets enumeration reducible to A. These are closely connected: A has
cototal degree if and only if it is enumeration reducible to its skip. We study
cototality and related properties, using the skip operator as a tool in our
investigation. We give many examples of classes of enumeration degrees that
either guarantee or prohibit cototality. Our study of cototality is motivated
by two examples of cototal sets that were pointed out to us by Jeandel [Jea15].
He shows that the set of non-identity words in a finitely generated simple

18 CHAPTER 1. INTRODUCTION

group is cototal. Jeandel also gives an example from symbolic dynamics: The
set of words that appear in a minimal subshift is cototal.

The complement of a graph of a total function is cototal and these degrees
that contain such set we call graph-cototal. An enumeration degree is weakly-
cototal if it contains a set A such that A has total enumeration degree. We
have

graph-cototal Ô⇒ cototal Ô⇒ weakly cototal.

We show that these three properties are distinct. The harder separation
is to construct a cototal degree that is not graph-cototal, where we use an
infinite-injury argument of 0′′′ relative to 0′. Case [Cas69] is conjecturing
that, in our terms, if A has weakly cototal degree, then it has total degree.
Gutteridge [Gut71, Chapter II] disproved this conjecture by constructing a
quasiminimal graph-cototal degree. In particular, quasiminimal degrees are
nontotal. Sanchis [San78], apparently unaware of Case’s conjecture, gave an
explicit construction of a cototal set that is not total. Sorbi [Sor88] constructed
also a quasiminimal cototal degree. The name “cototal” was essentially first
used, in an abstract of Pankratov from 2000 [Pan00]. The graph-cototal sets
and degrees are further studied by Solon, Pankratov’s advisor. In [Sol06], he
used “co-total” to refer to what we call “graph-cototal”.

We explain Jeandel’s examples in more detail, and we give several other
examples of cototal sets and degrees. We show that every Σ0

2-set is cototal, in
fact, graph-cototal. We show that the complement of a maximal independent
subset of a computable graph is cototal, and that every cototal degree contains
the complement of a maximal independent subset of ω<ω. Ethan McCarthy
[McC18] proves that the same is true of complements of maximal antichains
in ω<ω. We show that joins of nontrivial K-pairs are cototal. A pairs of
sets {A,B} form a K-pair if there is a c.e. set W such that A ×B ⊆W and
A ×B ⊆W . A K-pair is nontrivial if neither of its components is c.e. K-pairs
are introduced by Kalimullin [Kal03]. He shows that they are first-order
definable in the structure of the enumeration degrees and used them to give a
first-order definition of the enumeration jump. Cai, Ganchev, Lempp, Miller,
and M. Soskova [CGL+16] used K-pairs to define the class of total enumeration
degrees. The structure of continuos degrees is introduced by Miller [Mil04]
in order to capture the complexity of elements of computable metric spaces,
such as C[0,1] and [0,1]ω, and is motivated by a question of Pour-El and
Lempp from computable analysis. We show that the natural embedding of
the continuous degrees into the enumeration degrees maps into the cototal

19

degrees. Finally, we note that Harris [Har10] proved that sets with a good
approximation have cototal degree.

Cototality is closely related to the other main subject: the skip operator.
We define the skip of A ⊆ N to be A◊ = KA. In fact a set A has cototal
degree if and only if A ≤e A◊. In some ways, the skip is analogous to the
jump operator in the Turing degrees. For example, a standard diagonalization
argument shows that A◊ ≰e A. We restate the well-known fact that A ≤e B if
and only if A◊ ≤1 B◊, mirroring the jump in the Turing degrees. We prove
a skip inversion theorem, as analogues of Friedberg jump inversion theorem.
The biggest difference between the skip and the Turing jump is that it is
not always the case that A ≤e A◊ (because not all enumeration degrees are
cototal). We also study the skip operator for its own sake, noting that it has
many of the nice properties of the Turing jump, even though the skip of A is
not always above A. In fact, there is a set that is its own double skip. We
investigate the properties of the skip operator for the class of enumeration
degrees of 1-generic sets and skips of nontrivial K-pairs.

We have some open questions arising from this investigation. The main
problem is: which cototality notions are first-order definable in the enumer-
ation degrees? Is the skip first-order definable in the enumeration degrees?
Kalimullin [Kal03] showed that the enumeration jump is first-order definable.
Note that a positive answer to the second question would imply, that the
cototal degrees are definable. Another open question: Is there a continuous
enumeration degree that is not graph-cototal?

The jump inversion theorems and their applications are published in:

[Sos07a] Alexandra A. Soskova. A jump inversion theorem for the degree
spectra. In S. B. Cooper, B. Löwe, A. Sorbi eds. Computation and Logic in
the Real World, CiE 2007. Vol. 4497 of Lecture Notes in Comp. Sci, 716–726,
2007. Springer Berlin Heidelberg.

[SS07] Alexandra A. Soskova and Ivan N. Soskov. In Proceeding of the 6th
Panhellenic Logic Symposium, Volos, Greece, 114–117, 2007.

[SS09a] Alexandra A. Soskova and Ivan N. Soskov. A Jump Inversion
Theorem for the Degree Spectra. Journal of Logic and Computation, 19(1):199–
215, 2009.

[SS09b] Alexandra A. Soskova and Ivan N. Soskov. Some applications
of the Jump Inversion theorem. In: C. Drossos, P. Peppas, C. Tsinakis eds.
Proceedings of the 7th Panhellenic Logic Symposium, 157–161, 2009, Patra

20 CHAPTER 1. INTRODUCTION

University press.

The general result of strong jump inversion is published in:

[CFH+18] W. Calvert, A. Frolov, V. Harizanov, J. Knight, C. McCoy,
A. Soskova, and S. Vatev. Strong Jump inversion, Journal of Logic and
Computation, 28(7):1499–1522, 2018.

The results about effective interpretability on graphs, linear orderings,
fields and groups are published in:

[KSV19] Julia F. Knight, Alexandra A. Soskova, and Stefan V. Vatev.
Coding in graphs and linear orderings, Journal of Symbolic Logic, 85(2):673–
690, 2019.

[ACG+20] R. Alvir, W. Calvert, G. Goodman, V. Harizanov, J. Knight,
A. Morozov, R. Miller, A. Soskova, and R. Weisshaar. Interpreting a field in
its Heisenberg group, Journal of Symbolic Logic December 2020. Accepted.

The results on cohesive powers are published in:

[DHM+19] Rumen Dimitrov, Valentina Harizanov, Andrey Morozov, Paul
Shafer, Alexandra Soskova, and Stefan Vatev. Cohesive powers of linear orders.
In: F. Manea, B. Martin, D. Paulusma, G. Primiero G. eds. Computing with
Foresight and Industry. CiE 2019. Vol. 11558 of Lecture Notes in Computer
Science, 168–180, Cham, 2019. Springer International Publishing.

[DHM+20] R. Dimitrov, V. Harizanov, A. Morozov, P. Shafer, A. Soskova,
S. Vatev. On cohesive powers of linear orders. Submitted, 2020.

The results on cototal degrees and the skip operator are publish in:

[AGK+19] Uri Andrews, Hristo A. Ganchev, Rutger Kuyper, Steffen
Lempp, Joseph S. Miller, Alexandra A. Soskova, and Mariya I. Soskova. On
cototality and the skip operator in the enumeration degrees. Transaction of
American Mathematical Society, 372(2): 1631–1670, 2019.

I would like to thank all my colleagues of the Department of Mathematical
Logic and its Applications of our Faculty. Especially to my teacher Dimiter
Skordev, from whom I learned what is worth in mathematics. I am thankful
to Ivan Soskov, Angel Ditchev, Stela Nikolova, Tinko Tinchev, and Dimiter

21

Vakarelov for the helpful logic discussions and observations during my whole
life. I thank also to my young colleagues Mariya Soskova and Hristo Ganchev
for the beautiful mathematics that they are doing, to my student Stefan Vatev
who was always open for discussions. I am thankful also to all my coauthors:
Uri Andrews, Wesley Calvert, Rumen Dimitrov, Valentina Harizanov, Julia
Knight, Steffen Lempp, Charles McCoy, Joseph Miller, Paul Shafer, and to
my co-editors and friends Barry Cooper and Andrea Sorbi. I am thankful
to Ted Slaman, Antonio Montalbán, Andy Lewis-Pay, Iskander Kalimullin
and Katia Fokina, from whom I learned a lot. Finally thanks to my friends
Simeon Zamkovoy, Gergana Eneva, Nadja Zlateva and Evgenia Velikova for
the whole support.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

2.1 Turing reducibility

The concept of Turing reducibility goes back to Turing [Tur37, Tur39]. Turing
wanted to formally capture the notion of an algorithmically computable
function. He developed his Turing machines, a mathematical abstract system
that describes a class of functions, corresponding to the intuitive notion of
algorithmically computable. In today’s language, we would say that a function
f ∶ N→ N is partial computable if there is a computer program that on input
n halts and outputs f(n), or does not halt, if f(n) is not definable. A partial
computable function is computable if it stops on every input.

An important aspect of the Turing machines is that they can be enumer-
ated: we denote by ϕe or simple by {e} the function computed by the e-th
Turing machine. It is now easy to design a function that is not in this list
using diagonalization. Let f(e) = 0 if ϕe(e) does not halt and f(e) = ϕe(e)+1
if ϕe(e) halts. The function f , is not computable by any Turing machine. We
call the set K = {e ∣ ϕe(e) halts} the halting set (K from Kleene).

We write ϕe(n) ↓ to mean that this computation converges, that is, that
it halts after a finite number of steps; and we write ϕe(n) ↑ to mean that it
diverges, i.e., it never returns an answer. Computers, and Turing machines,
run on a step-by-step basis. We use ϕe,s(n) to denote the output of ϕe(n)
after s steps of computation. Notice that, given e, s, n, we can decide whether
ϕe,s(n) converges or not, computably: All we have to do is run ϕ(n) for
s steps. If f and g are partial functions, we write f(n) = g(n) to mean
that either both f(n) and g(n) are undefined, or both are defined and have

23

24 CHAPTER 2. PRELIMINARIES

the same value. Sometimes, when it is important that the functions could
be partial, we use the notation f(n) ≃ g(n). We say that f ⊆ g if (∀n)
(f(n) ↓⇒ g(n) ↓ & f(n) = g(n)). We write f = g if f ⊆ g & g ⊆ f , i.e.
f(n) ≃ g(n), for all n.

We identify subsets of N with their characteristic functions, i.e. for a set
A ⊆ N, χA(n) = 1 if n ∈ A and χA(n) = 0 if n /∈ A, and we will move from one
viewpoint to the other without even mentioning it. For instance, a set A is
said to be computable if its characteristic function is. An enumeration of a set
A is an onto function g ∶ N→ A. A set A is computably enumerable (c.e.) if it
has an enumeration that is computable or it is empty. Equivalently, a set is
computably enumerable if it is the domain of a partial computable function.
We denote We = {n ∣ ϕe(n) ↓} and We,s = {n ∣ ϕe,s(n) ↓}.

In 1939 Turing extended his model of computability by Turing machine
to allow for questions to an oracle, i.e. the Turing machine is allowed to use
the function f as a primitive function during its computation; that is, the
program can ask questions about the value of f(n) for different n’s and can
use the answers to make decisions while the program is running. The function
f is called the oracle of this computation. For a partial function f ∶ N → N
we define ϕfe to be the function computed by the e-th Turing machine using
as oracle the function f . We shall assume that if during a computation, the
oracle f is called with an argument outside its domain, then the computation
is unsuccessfully. For B ⊆ N we define ϕBe to denote the function computed
by the e-th Turing machine using as oracle the set B ⊆ N, and actually we
mean ϕχBe , where χB is the characteristic function of B.

Definition 2.1.1. A partial function f is Turing reducible to a partial function
g (denoted f ≤T g) if f = ϕge for some e. We say that a set of natural numbers
A is computable from or Turing reducible to a set of natural numbers B
(denoted A ≤T B) if and only if the characteristic function of the set A is ϕBe
for some natural number e.

If x ∈ A = dom(ϕBe) =W
B
e then ϕBe (x) halts for finitely many steps. Then

there is a finite part (subfunction) τ ⊆ χB such that x ∈W τ
e , i.e. the questions

to the oracle are finitely many. So, x ∈WB
e ⇐⇒ ∃ finite τ ⊆ χB(x ∈W τ

e).
The relation ≤T is a preorder on the subsets of the natural numbers and

induces an equivalence relation: A ≡T B if and only if A ≤T B and B ≤T A.
The equivalence class of a set A under this relation is the Turing degree of
A, denoted by dT (A). The Turing degrees are ordered by dT (A) ≤ dT (B) if
and only if A ≤T B. The least upper bound of two degrees dT (A) ∨ dT (B) is

2.1. TURING REDUCIBILITY 25

dT (A⊕B), where A⊕B = {2n ∣ n ∈ A} ∪ {2n + 1 ∣ n ∈ B} is the disjoint union
of A and B, also known as join of A and B. The set 0 of all computable
sets is the smallest degree. Finally relativizing the halting problem to any
set A, we have KA = {e ∣ ϕAe (e) ↓}, denoted by A′. The set KA we call the
jump of A and induces over degree structure the jump operation which maps
a degree a to a degree a′, such that a < a′ (see below). Thus the structure
of the Turing degrees DT is an upper semi-lattice with jump operation and
minimal element.

Post and Kleene [KP54] established basic algebraic facts about the struc-
ture of the Turing degrees: it is an uncountable upper semi-lattice with
least element and jump operation. They showed that every countable partial
ordering can be embedded in the Turing degrees. Their successors, including
Shoenfield, Spector, Sacks, Jockusch, Posner and many others, developed
more sophisticated methods and showed further structural properties, for
example the existence of minimal elements in the structure. The structure
of the Turing degrees was revealed as mathematically non-trivial, rich in
ideas and results. The next generation of researchers had sufficient tools to
tackle problems related to first order definability in the structure. The general
question is which interesting relations on DT are actually definable in terms
of relative computability alone. The most notable result in this direction is
by Slaman and Shore [SS99]: they showed that the jump operation is first
order definable in DT . Their solution relies on a methodology introduced by
Slaman and Woodin [SW86] to analyze the automorphism group of DT .

All of the following properties could be found in [Rog67b, Soa87, Odi99,
Coo04].

A stronger reducibility is the many-one reducibility (m-reducibility), which
gives a very natural way of comparing the computability of different В—
possibly incomputable В— sets of natural numbers A and B.

The set A is many-one reducible (m-reducible) to B (A ≤m B) if there
is a computable function h with the property (∀n)(n ∈ A ⇐⇒ h(n) ∈ B).
Let A ≤1 B ⇐⇒ A ≤m B by an one to one computable function. It is clear
that if B is computable (c.e) and A ≤m B then A is computable (c.e.). Using
Smn theorem we easily see that A is c.e. iff A ≤m K. We call such sets as K
complete sets for the c.e. sets.

The set A is computably enumerable (c.e.) in B iff for some e A =
dom(ϕBe) =W

B
e .

One can easily proves from the definitions the following properties:

26 CHAPTER 2. PRELIMINARIES

1. A ≤T B ⇒ A is c.e. in B.

2. A is c.e. in B and B ≤T C ⇒ A is c.e. in C.

Theorem 2.1.2 (Post). A ≤T B ⇐⇒ A is c.e. in B and A is c.e. in B.

Notice that the relation “c.e. in” is not transitive. Since K is c.e. in K and K
is c.e. in ∅, (K is c.e.), if we assume the transitivity of “c.e. in” then K is c.e.
in ∅ ≤T N. Thus K will be c.e., a contradiction.

The Turing jump A′ =KA of a set A has the following properties.

Proposition 2.1.3. 1. KA is c.e. in A.

2. Using Smn theorem we can prove that if B is c.e. in A then B ≤m KA.

3. A <T A′, since KA is not c.e. in A.

Here, A <T A′ means that A ≤T A′ & A /≡T A′.

Proposition 2.1.4. A ≤T B ⇐⇒ A′ ≤m B′.

Proof. (⇒) Let A ≤T B. We have A′ is c.e. in A and then A′ is c.e. in B.
Thus A′ ≤m B′ (by Proposition 2.1.3).

(⇐) Let A′ ≤m B′. We have A is c.e. in A⇒ A ≤m A′ ≤m B′ and A is c.e.
in A⇒ A ≤m A′ ≤m B′. Then A ≤m B′,A ≤m B′. But by Proposition 2.1.3 B′

is c.e. in B and so A is c.e. in B, and A is c.e. in B. By Post Theorem 2.1.2,
A ≤T B. ◻

Actually more stronger is true: A ≤T B ⇐⇒ A′ ≤1 B′.

Corollary 2.1.5 (Monotonicity of the jump). A ≤T B ⇒ A′ ≤T B′.

Definition 2.1.6. (dT (A))′ = dT (A′).

Since A <T KA, then dT (A) < dT (A′).
The computably enumerable sets, and correspondingly degrees, appear

in many other branches of mathematics. The solution to Hilbert’s tenth
problem by Davis, Putnam, Robinson and Matiyasevich [Mat93] essentially
relies on the existence of a computably enumerable set that is not computable.
Friedberg and Muchnik developed a powerful method used to construct c.e.
degrees with specific properties, the priority method. We will use the priority
method in Chapter 7.

2.2. GENERICITY AND FORCING 27

A major theme in degree theory is the study of the local structure R - the
computably enumerable Turing degrees, degrees that contain a c.e. set, and the
local structure DT (≤ 0′) = {a ∣ a ≤ 0′}. A recent result of Sleman and Soskova
[SS18] shows a relationship between the local structure DT (≤ 0′) = {a ∣ a ≤ 0′}
and first order arithmetic, similar to the one proved by Slaman and Woodin
[SW05] for the global structure DT and second order arithmetic.

The jump hierarchy, also known as the high/low hierarchy, was introduced
independently by Cooper (see [Coo04]) and Soare [Soa74]. The jump classes
are: Hn = {a ∣ a ≤ 0′ & a(n) = 0(n+1)} of highn degrees and Ln = {a ∣ a ≤
0′ & a(n) = 0(n)} of lown degrees. Nies, Shore and Slaman [NSS96] obtained
the first order definition of the jump classes Hn (Ln+1) in R, for every natural
number n ≥ 1. Later on, Shore [Sho14] showed for the local structure DT (≤ 0′)
that the classes Hn and Ln+1 for every natural number n ≥ 1 are definable in
there as well. One class of degrees which has managed to elude every attempt
at definability in both local structures is that of the low1 degrees, L1, the
degrees whose jump is the least possible degree 0T

′. The definability in the
degree structures is in a close relationship with the automorphisms on the
structures, since the definable sets are preserved under automorphism.

2.2 Genericity and forcing
Forcing and generic sets are useful tools all over computability theory. The
first forcing-style argument in computability theory can be traced back to the
Kleene-Post construction of two incomparable degrees [KP54], published a
decade before the invention of forcing. In this section, we give an introduction
to the forcing method in computable structure theory. We consider 1-generics,
which have relatively low computational complexity. The notion of forcing was
introduced by Cohen to prove that the continuum hypothesis does not follow
from the ZFC axioms of set theory. Soon after, forcing became one of the main
tools in set theory in order to prove independence results of all kinds. This
implies that if a generic object satisfies a particular property, it must belong
to a class where most objects have that property, and hence there is a clear
reason why it has that the property. Our forcing arguments will essentially
have that form: If a generic presentation has a certain computational property,
then there must be a structural reason for it.

Definition 2.2.1. Every finite mapping τ ∶ [0;n − 1] Ð→ N we call a finite
part. We denote by ∣τ ∣ = n the length of the interval, where τ is defined. For

28 CHAPTER 2. PRELIMINARIES

any a ∈ N and τ ∶ [0;n − 1]Ð→ N, let λx.(τ ∗ a)(x) be the finite part:

(τ ∗ a)(x) ≃ (τ ∗ n→ a)(x) ≃

⎧⎪⎪
⎨
⎪⎪⎩

τ(x) if 0 ≤ x < n,

a if x = n.

If A is a set of natural numbers, we write τ ⊆ A instead of τ ⊆ χA, i.e. τ is a
subfunction of the characteristic function χA of A.

We denote the finite parts with the Greek letters: σ, δ, τ, ρ. . . . Let remain,
that σ ⊆ ρ if (∀x) (σ(x) ↓⇒ ρ(x) ↓ & σ(x) = ρ(x)).

Definition 2.2.2. The set G is 1-generic, if for every c.e. set S of finite parts:

(∃σ ⊆ G) (σ ∈ S ∨ (∀ρ ⊇ σ)(ρ ∉ S))
´¹¹¹¸¹¹¶

σ decides S

.

We will call such sets generic sets for short. For n-generic sets the difference
is that the set of finite parts S is Σ0

n, not only c.e.(Σ0
1).

A set of finite parts S is called dense in G, if (∀σ ⊆ G)(∃ρ ∈ S)(σ ⊆ ρ).
Equivalently, G is generic, if whenever S is dense in G, then G meets S, i.e.
(∃σ ⊆ G)(σ ∈ S).

Let S be the set of all finite parts and Se =We ∩S, e ∈ N. There is a total
computable function h, such that Se =Wh(e) for every e.

We will show for illustration how to construct a generic set.

Proposition 2.2.3. There is a generic set below ∅′.

Proof. We construct finite parts σs, by stages, which will approximate χG,
σs ⊆ σs+1 ⊆ G.

We start with σ0 = ∅.
On stage s + 1 = e we define σs+1 so that it decides the eth c.e. set We, i.e.

we ask if there is an extension of σs in Se. If there is, set σs+1 to be the least
one. If there is not then we let σs+1 = σs.

Let χG = ⋃s σs. The construction assures that G is generic and one can see
that χG is a total function, since for every n the set of finite parts {τ ∣ ∣τ ∣ ≥ n}
is c.e., i.e. We for some e. The only step in the construction that is not
computable is checking whether there exists an extension of σs in Se or not.
This is a question that ∅′ can answer, and hence the whole construction is
computable in ∅′. ◻

2.2. GENERICITY AND FORCING 29

It is easy to see that if G is generic then G is not a finite set. Otherwise if
x ∈ G⇒ x ≤ n, for some n, then the set S = {σ ∣ (∃m > n)(σ(m) ≃ 1)} is c.e.
Since G is generic then (∃σ ⊆ G)(σ ∈ S ∨ (∀ρ ⊇ σ)(ρ ∉ S)). Since G is finite,
σ ∉ S. Then (∀ρ ⊇ σ)(∀m > n)(ρ(m) /≃ 1), which is impossible. Hence G is
infinite. On the other side one can see in a similar way that if G is generic
then every c.e. V ⊆ G is finite, and hence every generic is not c.e.

Every c.e. V ≤T G is computable. Supose that V ≤T G, V is c.e. and
G is generic. We know V ≤T V ≤T G, and hence there is an e, such that
V = dom({ϕGe }). Let S = {σ ∣ (∃x ∈ V)(ϕσe (x) ↓)}. Since S is c.e. and G is
generic there is σ ⊆ G, such that σ ∈ S ∨(∀ρ ⊇ σ)(ρ ∉ S). If σ ∈ S, then (∃x ∈
V)(ϕGe (x) ↓). Then x ∈ V , a contradiction. So, (∀ρ ⊇ σ)(∀x ∈ V)(ϕρe(x) ↑).
If x ∈ V then ϕGe (x) ↓. By the compactness of the computation there is ρ ⊆ G,
ϕρe(x) ↓. We can suppose that ρ ⊇ σ. Hence

x ∈ V ⇐⇒ (∃ρ ⊇ σ)(ϕρe(x)) ↓,

i.e. V is c.e. But V is c.e., therefore V is computable. So every c.e. V ≤T G is
computable.

We can relativize the notion of genericity. Let X ⊆ N. Say that G is
1-generic relative to X (X-1-generic) if every c.e. in X set of finite parts is
decided by an initial segment of G. The next lemma from [Mon] implies that
the only sets that are c.e. in all generic sets are the ones that are already c.e.

Lemma 2.2.4. Suppose that G is X-1-generic. Then X is not c.e. in G,
unless X is c.e. already.

In particular, we get that if G is X-1-generic, then G computes X if and
only if X is computable. Thus, if G is X-1-generic, G and X form a minimal
pair, i.e., there is no non-computable set computable from both. This is
because if Y ≤T X then G is Y −1-generic too, so if also Y ≤T G, then Y must
be computable.

We will explain the basic relations ⊧ and ⊩. We will use these relations in
Chapter 3. And here we will see some basic properties including the Theorem
2.2.6.

The set G models the formula Fe(x):

G ⊧ Fe(x) ⇐⇒ {e}G(x) ↓ ⇐⇒ x ∈WG
e .

The finite part σ forces formula Fe(x):

σ⊩Fe(x) ⇐⇒ {e}σ(x) ↓ .

30 CHAPTER 2. PRELIMINARIES

Here are some properties of these relations, following from the definitions.

1. σ ⊆ G&σ⊩Fe(x)⇒ G ⊧ Fe(x).

2. σ ⊆ ρ&σ⊩(¬)Fe(x)⇒ ρ⊩(¬)Fe(x).

3. G ⊧ Fe(x)⇔ (∃σ ⊆ G)(σ⊩Fe(x)).

Lemma 2.2.5. The set {(σ, e, x) ∣ σ⊩Fe(x)} is c.e.

G ⊧ ¬Fe(x) ⇐⇒ G ⊭ Fe(x) ⇐⇒ ¬{e}G(x) ↓ .
σ⊩¬Fe(x) ⇐⇒ (∀ρ ⊇ σ)(ρ⊮Fe(x)).

Theorem 2.2.6. Let G be a generic set. Then

G ⊧ ¬Fe(x) ⇐⇒ (∃σ ⊆ G)(σ⊩¬Fe(x)).

Proof. (⇐) Let σ ⊆ G&σ⊩¬Fe(x). Suppose that G ⊧ Fe(x). Then
(∃ρ ⊆ G)(ρ⊩Fe(x)). Let τ = σ ∪ ρ. Then τ ⊇ ρ and hence τ ⊩Fe(x). But
τ ⊇ σ, so σ⊩¬Fe(x) and then τ ⊮Fe(x) - a contradiction.

(⇒) Let G ⊧ ¬Fe(x). We search for σ ⊆ G, σ⊩¬Fe(x), i.e. no extension of
σ could forces Fe(x). But G is generic. Suppose that (∀σ ⊆ G)(σ⊮¬Fe(x)).
Hence (∀σ ⊆ G)(∃ρ ⊇ σ)(ρ⊩Fe(x)). Set Se,x = {ρ ∣ ρ⊩Fe(x)}. Se,x is c.e.
and dense in G, then there is σ ⊆ G,σ ∈ Se,x, i.e. σ⊩Fe(x). Then G ⊧ Fe(x),
a contradiction. So (∃σ ⊆ G)(σ⊩¬Fe(x)). ◻

Corollary 2.2.7 (Truth lemma). If G is generic, then

G ⊧ (¬)Fe(x) ⇐⇒ (∃σ ⊆ G)(σ⊩(¬)Fe(x)).

Notice that {(σ, e, x) ∣ σ⊩¬Fe(x)} ≤T ∅′.

Corollary 2.2.8. For every generic G we have G′ ≡T G⊕∅′.

Proof. (⇐) G′ is a upper bound of ∅′ and G. Hence ∅′⊕G ≤T G′.
(⇒) G′ = KG = {x ∣ x ∈ WG

x } is c.e. in G. Then there is e, such that
x ∈ KG ⇐⇒ {e}G(x) ↓ ⇐⇒ G ⊧ Fe(x) ⇐⇒ (∃σ ⊆ G)(σ⊩Fe(x)). Thus,
KG is c.e. in G⊕∅′. G is generic, then x ∈ KG ⇐⇒ {e}G(x) ↑ ⇐⇒

G ⊭ Fe(x) ⇐⇒ (∃σ ⊆ G)(σ⊩¬Fe(x)). So, KG is c.e. in G⊕∅′. Thus,
KG = G′ ≤T G⊕∅′ by Post theorem. ◻

In Chapter 3. we will prove the Friedberg’s jump inversion theorem for
the structures. Here is the original theorem.

2.3. ENUMERATION REDUCIBILITY 31

Theorem 2.2.9 (Friedberg’s jump Inversion theorem). [Fri57] Let ∅′ ≤T B.
There exists a generic G, such that G′ ≡T B, and hence B ≡T G′ ≡T G⊕∅′.

Proof. We will construct a generic set G ≤T B by stages. Then since G will
be generic, by Corollary 2.2.8, G′ ≡T G⊕∅′, and hence G′ ≤T B. To get the
other direction B ≤T G′ we will code B in G. On each stage s we will define
a finite part σs of χG, so that σs ⊆ σs+1. And at the end χG = ∪sσs. Denote
by S⟨e,x⟩ = {ρ ∣ ρ⊩Fe(x)} = {ρ ∣ x ∈W ρ

e }.
We start with σ0 = ∅. Let σs has been constructed. On stage s we ask: “Is

it true that: (∃ρ ⊇ σs)(ρ ∈ Ss)?”. Since the set V = {(τ, t) ∣ (∃ρ ⊇ τ)(ρ ∈ St)}
is c.e., we have V ≤T K = ∅′. If the answer is yes, set σ′s will be the minimal
(with a minimal code) such ρ, if the answer is no, then σ′s = σs. Thus assures
that G is generic. Set σs+1 = σ′s ∗ χB(s).

It is clear that G ≤T B. Since ∣σs+1∣ ≥ s, s ∈ G ⇐⇒ σs+1(s) = 1. And
σs+1 ≤T B⊕∅′ ≤T B.

G is generic, since σ′s assures genericity with respect to Ss.
B ≤T G⊕∅′, since we have k ∈ B ⇐⇒ σk+1(∣σ′k∣) = 1. We can construct

B repeating the construction, changing χB(s) with χG(∣σ′s∣). So, using oracle
G and ∅′ we have B ≤T G⊕∅′.

Thus G is generic and G′ ≡T B. ◻

Corollary 2.2.10. There exists a generic G ≢T ∅ such that G′ ≡T ∅′.

2.3 Enumeration reducibility
Enumeration reducibility was defined by Friedberg and Rogers [FR59] in the
late 1950’s to capture a notion of reducibility between sets in which only
positive information about membership in the set is either used or computed.
Actually, Uspenskĭı, [Usp55] introduced in 1955 essentially the same concept.
This notion turns out to be as natural as Turing reducibility in a number of
settings, e.g., in group theory and computable model theory.

A set A is enumeration reducible to a set B if there is an effective uniform
way, given by an enumeration operator, to obtain an enumeration of A
given any enumeration of B. The enumeration operators are interesting in
themselves, as they give the semantics of the type free λ-calculus in graph
models, suggested by Plotkin [Plo72] in 1972. The interest in enumeration
reducibility is also supported by the fact that the structure of the enumeration
degrees contains the structure of the Turing degrees without being elementary

32 CHAPTER 2. PRELIMINARIES

equivalent to it. Contemporary defninability results [CGL+16, GS15, GS12,
SS12] in the theory of the enumeration degrees show that the structure is
useful for the study of the structure of Turing degrees.

Definition 2.3.1. Let A and B be sets of natural numbers. The set A is
enumeration reducible to the set B, written A ≤e B, if there is a c.e. set We,
such that:

A =W (B) = {x ∣ (∃D)[⟨x,D⟩ ∈We & D ⊆ B]},

where D is a finite set coded in the standard way.

The definition above associates an effective operator on sets to every c.e.
set We, the aforementioned enumeration operator. Let {Γe}e∈N be an effective
list of all enumeration operators.

Here are some examples which shows some basic properties of the enu-
meration reducibility.

1. If A is c.e. then A ≤e B via the c.e. set W = { ⟨x,∅⟩ ∣ x ∈ A}.

2. If f is computable function for A ≤m B, i.e. A = f−1(B), then A ≤e B
via the c.e. set W = { ⟨x,{f(x)}⟩ ∣ x ∈ N}.

Let ϕ and ψ are partial functions. Let ϕ ≤e ψ ⇐⇒ Gϕ ≤e Gψ.

Proposition 2.3.2. ϕ ≤T ψ ⇒ ϕ ≤e ψ.

Just like Turing reducibility, enumeration reducibility is a pre-order on the
natural numbers, it induces an equivalence relation ≡e and a degree structure
De. The structure of the enumeration degrees is also an upper semi-lattice.
The set A⊕B is a least upper bound of A and B with respect to ≤e. Two
sets A and B are enumeration equivalent (A ≡e B) if A ≤e B and B ≤e A.
The equivalence class of a set A under this relation is its enumeration degree
de(A). The set De consisting of all enumeration degrees, together with the
naturally induced partial order and least upper bound operation is the upper
semi-lattice of the enumeration degrees. It has a least element 0e consisting
of all computably enumerable sets. For an introduction to the enumeration
degrees the reader might consult Cooper [Coo90].

There is a strong relationship between the relations that we defined:
A ≤T B if and only if A⊕A is c.e. in B if and only if A⊕A ≤e B⊕B. The set
A⊕A codes in a positive way the positive and negative information about a
set A. This suggests a relationship between Turing reducibility, enumeration
reducibility and the relation “c.e. in” formally expressed as follows.

2.3. ENUMERATION REDUCIBILITY 33

Proposition 2.3.3. Let A and B be sets of natural numbers.

1. A ≤T B if and only if A⊕A ≤e B ⊕B.

2. A is c.e. in B if and only if A ≤e B ⊕B.

This gives the natural embedding ι of the Turing degrees into the enumer-
ation degrees ([Med55, Myh61]):

ι(dT (A)) = de(A⊕A).

A set A is called total if and only if A ≡e A⊕A. Examples of total sets are
the graphs of total functions. An enumeration degree is total if it contains a
total set. The enumeration degrees in the range of ι coincide with the total
enumeration degrees.

The following theorem by Selman shows that the total enumeration degrees
play an important role in the structure: an enumeration degree can be
characterized by the set of total degrees above it.

Theorem 2.3.4. [Sel71] For any A,B ⊆ N the following are equivalent:

1. A ≤e B;

2. {X ∣ B is c.e. in X} ⊆ {X ∣ A is c.e. in X};

3. {x ∈ De ∣ x is total & de(B) ≤ x} ⊆ {x ∈ De ∣ x is total & de(A) ≤ x}.

Finally, we give the definition of a jump operator for the enumeration
degrees, originally due to Cooper and studied by McEvoy [Coo84, McE85].

Definition 2.3.5. Let KA = {⟨e, x⟩ ∣ x ∈ Γe(A)}. The set

A′
e =KA ⊕KA

is called the enumeration jump of A and de(A)′ = de(A′
e).

Note that KA = ⊕e∈NΓe(A) = {⟨e, x⟩ ∣ x ∈ Γe(A)}. It is clear that KA ≡e A.
Denote by A+ = A⊕A. The enumeration jump is monotone and agrees with
the Turing jump in the following sense: (A′)+ ≡e (A+)′e, and A′ ≡T (A+)′e
[Coo84, McE85].

We will use Soskov’s jump inversion theorem for the enumeration jump:

34 CHAPTER 2. PRELIMINARIES

Theorem 2.3.6. [Sos00] For every enumeration degree a there exists a total
enumeration degree b, such that a ≤ b and a′ = b′.

The pioneering work on the enumeration degrees dates back to Case
[Cas71] and Medvedev [Med55]. In particular, Case shows that De is not a
lattice as a consequence of the exact pair theorem and Medvedev proves the
existence of quasi-minimal degrees: a degree is quasi-minimal if it bounds no
nonzero total enumeration degree. Cooper laid the foundations of the study of
the enumeration degrees in his survey paper [Coo84] from 1990. He established
many important algebraic properties of the global and local structure, such as
the lack of minimal elements, which shows that the theory of the enumeration
degrees is different from the theory of the Turing degrees. McEvoy [McE85],
a student of Cooper, defined the enumeration jump operation, which maps
an enumeration degree a to a total enumeration degree a′, such that a <e a′.
McEvoy then showed that the embedding ι preserves the jump operation.
Kalimullin obtained a definable class of pairs of enumeration degrees which
came to be known as Kalimullin pairs, or K-pairs. Kalimullin [Kal03] showed
that the enumeration jump is definable in De. Ganchev and M. Soskova [GS15]
give an alternative proof of the definability of the enumeration jump. Their
proof is an instance of a more general phenomenon: they introduce the notion
of a maximal K-pair and conjecture that a nonzero enumeration degree is total
if and only if it is the least upper bound of the elements of a maximal K-pair.
They show that if this conjecture is true than this would imply the first order
definability the image (under the embedding of DT in De) of the relation on
Turing degrees “c.e. in”. In [GS12] they show that the first order theory of
true arithmetic can be interpreted in De(≤ 0′e), using coding methods based
on K-pairs, settling an open problem from Cooper’s 1990 survey paper. In
[GS15] they show further that the class of low enumeration degrees is first
order definable. More importantly, they show that their conjecture for the
first order definability of the total Σ0

2 degrees in De(≤ 0′e) using maximal
K-pairs is true for the local structure De(≤ 0′e), thus settling the local version
of Rogers’ 1967 question. The full answer to Rogers’ 1967 question is finally
obtained through the collaboration of Cai, Ganchev, Lempp, Miller and M.
Soskova, confirming Ganchev and Soskova’s conjecture.

Theorem 2.3.7 (Cai, Ganchev, Lempp, Miller, M. Soskova). [CGL+16]
The total enumeration degrees are first order definable in De. A nonzero
enumeration degree is total if and only if it is the least upper bound of the
members of a maximal Kalimullin pair.

2.3. ENUMERATION REDUCIBILITY 35

Recent work [GS18] of Ganchev and M. Soskova shows that all classes
of high enumeration degrees Hn = {a ∣ a ≤ 0′e & a(n) = 0

(n+1)
e } and low

enumeration degrees Ln = {a ∣ a ≤ 0′e & a(n) = 0
(n)
e } are definable in De, for

each n ≥ 1.
The relationship between enumeration degrees and abstract models of

computability inspires a new direction in the field of computable structure
theory. You could see more in our expository paper with M. Soskova [SS17].

In the last chapter we will show our latest results on a subclass of the
enumeration degrees — the cototal degrees. Call a set A ⊆ N cototal if
A ≤e A and call an enumeration degree cototal if it contains a cototal set. We
will introduce an analog of jump operation - the skip operator and we will
investigate its properties.

We will investigate the skip for the class of enumeration degrees of 1-generic
sets, studied by Copestake [Cop88]. We define a relativized form of 1-generic-
ity, suitable for the context of the enumeration degrees. We use the notation
“relative to ⟨X⟩” to denote “relative to the enumeration degree of X” (not of
X ⊕X as in Turing degrees).

Definition 2.3.8. Let G and X be sets of natural numbers. G is 1-generic
relative to ⟨X⟩ if and only if for every set of finite parts S such that S ≤e X:

(∃σ ⊆ G)(σ ∈ S ∨ (∀τ ⪰ σ)[τ ∉ S]).

If X = ∅, then we call G simply 1-generic and if X =K, then G is 2-generic.

Note that G is 1-generic relative to X in the usual sense if and only if G
is 1-generic relative to ⟨X ⊕X⟩ in the sense of the definition above.

Definition 2.3.9. An enumeration degree a is quasiminimal if it is nonzero
and the only total enumeration degree bounded by a is 0e.

McEvoy [McE85] proved that the enumeration jump restricted to the
quasiminimal degrees has the same range as the unrestricted jump operator.
Relativizing the notion of quasiminimality, we get the following two notions:

Definition 2.3.10. An enumeration degree a is a quasiminimal cover of an
enumeration degree b if b < a and there is no total enumeration degree x
such that b < x ≤ a. The degree a is a strong quasiminimal cover of b if b < a
and every total enumeration degree x bounded by a is below b.

36 CHAPTER 2. PRELIMINARIES

The next proposition exhibits two important properties of generic enumer-
ation degrees.

Proposition 2.3.11. Let G be 1-generic relative to ⟨X⟩.

1. de(G⊕X) is a strong quasiminimal cover of de(X).

2. G is 1-generic relative to ⟨X⟩.

Proof. X ≤e G⊕X. To see that G ≰e X, note that G must be infinite and for
every enumeration operator Γ the set S = {σ ∣ (∃n)[σ(n) = 0 ∧ n ∈ Γ(X)]} is
enumeration reducible to X. If G ≤e X, then G = Γ(X) for some enumeration
operator Γ. Then (∃σ ⊆ G)(σ ∈ S ∨ (∀τ ⊇ σ)[τ ∉ S]). But σ /∈ S and hence
(∀τ ⊇ σ)[τ ∉ S], which is impossible.

Let Y be a set of natural numbers and assume that Y ⊕ Y ≤e G⊕X via
the enumeration operator Γ. We will show that Y ⊕Y ≤e X. Consider the set

Q = {σ ∣ (∃x)({2x,2x + 1} ⊆ Γ(σ ⊕X))},

where we write σ⊕X to mean {n ∣ σ(n) = 1}⊕X. Note that Q is enumeration
reducible to X and so, by our assumptions, G must avoid it, i.e., no σ ∈ Q
is an initial segment of G. Let σ ⊆ G be a finite part with no extension
in Q. Then z ∈ Y ⊕ Y if and only if there is an extension τ ⊇ σ such that
z ∈ Γ(τ ⊕X).

For the second part of this proposition, we introduce the following notation.
If σ ∈ 2<ω is a finite part, then let σ be the the finite part, obtained by inverting
every bit of σ. For W ⊆ 2<ω, let W − = {σ ∣ σ ∈W}. Note that σ ⊆ G if and
only if σ ⊆ G. So if G meets W − then G meets W , and if G avoids W − then G
avoids W . Finally, note that W ≤e X implies that W − ≤e X. ◻

2.4 Degree spectra
The Turing degree spectrum of a countable structure A provides a natural
measure of the complexity of the isomorphism type of that structure. The
spectrum of A is introduced by Richter [Ric81], as the set of those Turing
degrees a such that for some copy B of A (that is, for some B ≃ A with domain
N), the atomic diagram of B has Turing degree a.

Let A = (A,R1, . . . ,Rk) be a countable relational structure. If in the
language of the structure there are some functions symbols we represent them

2.4. DEGREE SPECTRA 37

by their graphs. An enumeration of A is a total surjective mapping of N onto
∣A∣. Given an enumeration f of A and a subset of B of ∣A∣a, let

f−1(B) = {⟨x1, . . . , xa⟩ ∣ (f(x1), . . . , f(xa)) ∈ B}.

Denote by f−1(A) = f−1(R1) ⊕ ⋅ ⋅ ⋅ ⊕ f−1(Rk) ⊕ f−1(=). By D(A) we denote
the atomic diagram of A.

Definition 2.4.1. The degree spectrum of A is the set

DS(A) = {dT (f
−1(A)) ∣ f is an enumeration of A}.

If a is the least element of DS(A), then a is called the degree of A.

We shall use the following two simple properties of the degree spectra.
They are proved by Soskov in [Sos04] for enumeration degree spectra. Suppose
that A is infinite and the domain of A is the set of the natural numbers.

Proposition 2.4.2. Let f be an arbitrary enumeration of A. Then there
exists an injective enumeration g of A such that g−1(A) ≤T f−1(A).

Proof. Let Ef = {⟨x, y⟩ ∶ f(x) = f(y)}. Clearly Ef ≤T f−1(A). Define the
function h by means of primitive recursion as follows:

h(0) ≃ 0
h(n + 1) ≃ µz[(∀k ≤ n)(⟨h(k), z⟩ /∈ Ef)].

Set g(n) = f(h(n)). Now one can easily check that g is bijective and
g−1(A)⊕Ef ≡T f−1(A). ◻

One noticeable difference with the standard definition of Turing degree
spectra is that in the definition of the degree spectra, we use the surjective
enumerations, instead of bijective enumerations. Consider the structure
A = (N;=) if we define the degree spectrum of A by taking into account only
the bijective enumerations, then it will be equal to {0}, while if we take
all surjective enumerations, then DS(A) will consist of all Turing degrees.
Fortunately, this difference does not affect the notion of degree of a structure
since by Proposition 2.4.2 for every enumeration f of A there exists a bijective
enumeration g of A such that g−1(A) ≤T f−1(A). On the other hand it
allows us to show that the degree spectrum is always closed upwards, i.e. if
a ∈DS(A), and a ≤ b then b ∈DS(A). This can be seen as follows: if g is an

38 CHAPTER 2. PRELIMINARIES

enumeration of A and F is a set such that g−1(A) ≤T F then we can define a
new enumeration f of A, which mimics g on the even numbers: f(n/2) = g(n)
and codes F on the odd numbers, by mapping all of them to one of two
distinct members of A depending on membership in F .

Proposition 2.4.3. For every structure A the degree spectrum DS(A) is
upwards closed.

Knight proved in [Kni86], that the degree spectrum using injective enu-
merations is closed upwards only in nontrivial structures (in a trivial structure
there is a finite tuple such that every permutation of the domain fixing that
tuple is an automorphism of A).

For every computable ordinal α, following Knight [Kni86] we define the
α-th jump spectrum DSα(A) of a structure A to be the set of all αth jumps
of the elements of the degree spectrum of A. If a is the least element of
DSα(A), then a is called the α-th jump degree of A. We will show in Chapter
3. that the first jump spectrum is always upwards closed.

It is very important if a structure has a degree (αth jump degree for some
computable ordinal α) or not. If the degree is 0, then the structure has a
simple computable presentation, i.e. with domain N and computable relations.
In the different classes of structures the situation is different. Richter’s
[Ric81] proved that the Turing degree spectrum DS(A) of a linear ordering
has a degree then it is computable, i.e. this degree should be 0-the set of all
computable sets. Knight [Kni86] extended Richter’s result to show that the
only possible first jump Turing degree of a linear ordering is 0′, so not every
linear ordering has a first jump degree. Downey and Knight [DK92] proved
next that for every computable ordinal α there exists a linear order A such
that A has αth jump degree equal to 0(α) but for all β < α there is no βth
jump degree of A. Slaman [Sla98] and independently Wehner [Weh98] gave
an example of a structure A whose Turing degree spectrum consists of all
nonzero Turing degrees, DS(A) = {a ∣ 0 < a}. We will give some very simple
proofs of the last two results in Chapter 3. as an application of the jump
Inversion theorem for structures.

The enumeration degree spectrum DSe(A) of a countable structure A is
introduced by Soskov [Sos04] as the set of all enumeration degrees generated
by the presentations (homomorphic copies in N) of A. It is also closed upwards
with respect to total degrees, i.e. if a ∈ DSe(A), b is a total e-degree and
a ≤ b, then b ∈DSe(A).

2.4. DEGREE SPECTRA 39

Just like Turing reducibility can be expressed in terms of enumeration
reducibility, the Turing degree spectrum of a structure A corresponds to the
enumeration degree spectrum of a structure, denoted by A+, which codes in
a positive way both the positive and negative facts about the predicates in
A. If A = (A,R1, . . . ,Rk) then let A+ = (A,R1, . . . ,Rk,¬R1, . . . ,¬Rk). The
image of the Turing degree spectrum of A under the natural embedding is
exactly DSe(A+).

Note, that DSe(A+) consists only of total enumeration degrees. A struc-
ture A is called total if for every enumeration f of A the set f−1(A) is total.
In general, if A is a total structure then DSe(A) = ι(DS(A)), so if A is a
total structure then A and A+ have the same enumeration degree spectrum.
Note that, however, not all structures whose degree spectrum consist only
of total enumeration degrees are total. Consider for example, the structure
A = (N;GS,K), where GS is the graph of the successor function and K is
the halting set. Then DSe(A) consists of all total degrees. On the other
hand if f = λx.x, then f−1(A) is a c.e. set. Hence K /≤e f−1(A). Clearly
K ≤e (f−1(A))+, so f−1(A) is not a total set.

A natural question arises here: if DSe(A) consists of total degrees does
there exist a total structure B such that DSe(A) =DSe(B)? In his last paper
[Sos13a] Soskov, generalizing the Marker extension method of a sequence
of structures, proves the following general result, giving a much stronger
relationship between Turing degree spectra and enumeration degree spectra:

Theorem 2.4.4. [Sos13a] For every structure A there exists a total structure
M such that DSe(M) = {a ∣ a is total ∧ (∃x ∈DSe(A))(x ≤ a)}.

The degree spectrum of a structure measures how difficult is to present the
structure. If instead we want to measure how much information is encoded in
a structure, one approach is to use co-spectra. Here a set X ⊆ N is encoded
in A if X ≤e f−1(A), for every enumeration f of A.

Co-spectrum CS(A) of a structure A is the set of all lower bounds of the
enumeration degree spectrum of the structure A. If CS(A) has a greatest
element, then it is the co-degree of A. For every computable ordinal α we
denote by CSα(A) the co-spectrum of DSα(A).

An application of Selman’s theorem shows that the co-spectrum of A
depends only on the total elements of the spectrum of A. Soskov’s example
of this phenomenon [Sos04] is a generalization, of a result of Rozinas [Roz78]:
for every computable ordinal α and b ∈ DSα(A) there exist total e-degrees
f0 and f1 such that : f0

(α) ≤ b and f1
(α) ≤ b, and f0

(β), f1
(β) /∈ CSβ(A) for

40 CHAPTER 2. PRELIMINARIES

β < α, and {x ∣ x ∈ De & x ≤ f0
(β) & x ≤ f1

(β)} = CSβ(A) for every β + 1 < α.
He shows that there exist quasi minimal enumeration degrees for the degree
spectrum, i.e. an e-degree q /∈ CS(A), and every total x ≤ q → x ∈ DS(A),
and every total x ≥ q→ x ∈ CS(A). This is an analogue of a quasi minimal
degree.

Kalimullin [Kal09b], building on Wehner’s result, transfers these ideas to
enumeration degree spectra: There is a structure A such that DSe(A) = {a ∣
a ∈ De & a > 0e}.

If a structureA has a degree a then a is also its co-degree. The reverse is not
always true. We have already seen one such example: Kalimullin’s structure A
with degree spectrum DSe(A) consisting of all nonzero enumeration degrees
clearly has no enumeration degree, but has co-degree 0e. As a second example,
consider Richter’s [Ric81] result on a linear ordering A: the Turing degree
spectrum DS(A) always contains a minimal pair. Thus the co-degree of
DSe(A+) is always 0, and non-computable linear orderings have co-degree
but no degree. An analysis of Knight’s proof [Kni86] generalizing the Richter’s
result, shows that the first jump co-spectrum of a linear ordering consists of
all Σ0

2 enumeration degrees, and so the first jump co-degree is always 0′e, even
though not every linear ordering has a first jump degree.

There are also structures with no co-degree. For example, consider A =
(N;GΨ, P), where Ψ is a function such that Ψ(⟨n,x⟩) = ⟨n,x + 1⟩ and
the relation P (x) is defined and true if (∃t)(x = ⟨0, t⟩) or (∃n)(∃t)(x =
⟨n + 1, t⟩ & t ∈ ∅(n+1)). For every X ⊆ N we have that de(X) ∈ CS(A) iff
(∃n)(X ≤e ∅(n)). It follows that CS(A) consists of all arithmetical degrees
and hence has no greatest element, i.e. A has no co-degree.

The co-degree and e-degree of a structure are closely related to what Knight
[Kni98] and Montalbán [Mon] call the “enumeration degree of a structure”. A
set X ⊆ N is the “enumeration degree” of a structure A if every enumeration of
X computes a copy of A, and every copy of A computes an enumeration of X.
Thus by Selman’s theorem the enumeration degree of X is the co-degree of the
structure A+. This co-degree, however has an additional property: DS(A+)
is exactly the set of total enumeration degrees above de(X). Thus, examples
of structures with “enumeration degree” translate to examples of structures
with co-degree and there are many of those: [Mon] Given X ⊆ N, consider
the group GX =⊕i∈X Zpi , where pi is the i-th prime number. Then GX has
“enumeration degree” X, as we can easily build GX given any enumeration of
X, and for the reverse direction, we have that n ∈X if and only if there is an
elements g ∈ GX of order pn.

2.4. DEGREE SPECTRA 41

Example 2.4.5. A further example is the torsion free abelian group G of
rank 1, i.e. a subgroup of (Q,+,=). Downey and Jockusch [Dow97] analyze
the computability theoretic properties of such groups. Using results that
go back to Baer, they discover a way to associate a set S(G), called the
characteristic of G, to every torsion free abelian group G of rank 1, so that
the Turing degree spectrum of G is precisely {dT (Y) ∣ S(G) is c.e. in Y }. On
the other hand, they show that for every set of natural numbers S there is
a torsion free abelian group G of rank 1, such that S(G) ≡1 S. They knew
from Richter [Ric81] that this meant that not all such groups have a degree.
Coles, Downey and Slaman [CDS00] use a forcing construction to show that,
however, every such group has first jump degree.

Soskov [Sos04] considers the problem from the point of view of enumeration
reducibility. Any subgroup of the rationals can be seen as a total structure, as
the only relation involved is the graph of addition, which is a total function.
Let G be such a group and let sb = de(S(G)). It follows that

DS(G) = {b ∣ b is total and sb ≤e b}.

It is an easy consequence of Selman’s theorem that sb is the co-degree of
G. Furthermore, G has degree if and only if sb is total. The result of Coles,
Downey and Slaman now follows from Theorem 2.3.6. There is a total
enumeration degree f ≥ sb with f ′ = s′b and so the first jump spectrum of
G consists of all total enumeration degrees greater than or equal to s′b, in
particular s′b is the first jump degree of G.

Another consequence of this example is that every principal ideal of
enumeration degrees is a co-spectrum of a structure, namely the co-spectrum
of some torsion free abelian group of rank one. Further Soskov proved [Sos04]
that every countable ideal of enumeration degrees is the co-spectrum of a
structure.

Understanding which subsets of the Turing degrees can be realized as
degree spectra is an important open problem in the area. A natural question
here: is every set of degrees that is upwards closed with respect to total
elements the enumeration spectrum of a structure? The answer is, of course,
‘No’. One way to see this is via the notion of a base and its relationship to
the existence of a degree.

A subset B ⊆ C of a set of enumeration degrees C is a base of C if (∀a ∈
C)(∃b ∈ B)(b ≤ a). Using generic enumerations and an argument much like
that used in Selman’s theorem we can show the following.

42 CHAPTER 2. PRELIMINARIES

Theorem 2.4.6. [Sos04] A structure A has an e-degree if and only if DSe(A)
has a countable base.

Figure 2.1: An upwards closed set with respect to total degrees which is not
a degree spectra of a structure

In particular the union of two cones above incomparable degrees (and even
countable cones) cannot be the enumeration degree spectrum of a structure
(just like it cannot be the Turing degree spectrum of a structure). Nevertheless,
degree spectra play well with co-spectra and behave structurally with respect
to their elements just like the cone of total degrees above a fixed enumeration
degree.

2.5 Definability in a structure
Another way to characterize the complexity of a structure A is to analyze
the definable sets in A. This gives a finer measure as it may happen that two
structures have the same degree spectra but greatly differ in their definability
power and model theoretic properties.

2.5.1 Relatively intrinsically Σ0
α relations

We will explain first some basic facts about the hierarchies.

2.5. DEFINABILITY IN A STRUCTURE 43

Arithmetical hierarchy. Let X ⊆ N. We define classes of Σ0
n(X),

Π0
n(X) and ∆0

n(X) for n ≥ 1 inductively. A relation P (x) on the natural
numbers is Σ0

1(X) if it can be expressed in the form ∃yR(x, y), where R(x, y)
is computable in X. P (x) is Π0

1(X) if it is a negation of a Σ0
1(X) relation.

And it is ∆0
1(X) if it is both Σ0

1(X) and Π0
1(X). Proceeding by induction, for

n > 1, a relation P (x) is Σ0
n(X) if it can be expressed in the form ∃yR(x, y),

where R(x, y) is Π0
n−1(X). P (x) is Π0

n(X) if it is a negation of a Σ0
n(X)

relation, and is ∆0
n(X) if it is both Σ0

n(X) and Π0
n(X).

Theorem 2.5.1. [AK00] For n ≥ 1,

• the Σ0
n(X) relations are those which are c.e. relative to X(n−1),

• the Π0
n(X) relations are those which are co-c.e. (the complement is c.e.),

relative to X(n−1),

• the ∆0
n(X) relations are those which are computable relative to X(n−1).

We can approximate a ∆0
2 function, total or partial, by a total computable

function. If g(x, s) is a total function, we write lims→∞g(x, s) = y for the
partial function f(x) that is defined, with value y, just in case g(x, s) has
value y for all sufficiently large s.

Theorem 2.5.2 (Limit Lemma). [AK00] A function f(x) is partial ∆0
2

if and only if there exists a total computable function g(x, s) such that
f(x) = lims→∞g(x, s).

Actually, a relation P (x) is Σ0
2 if and only if there is a total computable

function g(x, s) taking values 0 and 1, such that P (x) if and only if for all
sufficiently large s, g(x, s) = 1.

Hyperarithmetical hierarchy. The hyperarithmetical sets can be de-
fined using infinitely iterated Turing jumps and can be classified into a
hierarchy extending the arithmetical hierarchy. Each level of the hyperarith-
metical hierarchy corresponds to a countable ordinal. An ordinal notation is
an effective description of a countable ordinal by a natural number. A system
of ordinal notations is required in order to define the hyperarithmetic hierarchy.
The fundamental property an ordinal notation must have is that it describes
the ordinal in terms of smaller ordinals in an effective way. In the system of
notations for ordinals, given by Kleene [Kle38], we define, simultaneously, a

44 CHAPTER 2. PRELIMINARIES

set of notations O, a function λa.∣a∣O taking each a ∈ O to an ordinal α = ∣a∣O
and a strict partial ordering <O on O. Let 1 is a notation for the ordinal 0,
i.e. 0 = ∣1∣O. If a is a notation for α then 2a is a notation for α + 1. In the
partial ordering, we let b <O 2a if either b <O a or b = a. For a limit ordinal α
the notation is of the form 3.5e, where e is the index of a total computable
function ϕe with values in O such that ϕe(0) < ϕe(1) < ⋅ ⋅ ⋅ < ϕe(n) . . . , and
α is the least upper bound of the sequence of ordinals α(n) = ∣ϕe(n)∣O. We
write α = limα(n). In the partial ordering, we let b <O 3.5e if there exists n
such that b <O ϕe(n). For the properties of the set of notations O and the
relation "<O" the reader may consult [Rog67b] or [Sac90].

We define the hyperarithmetical sets H(a), following [AK00], for a ∈ O by
transfinite recursion on the ordinals ∣a∣O, (we will write only ∣a∣) as follows:

H(1) = ∅,
H(2a) =H(a)′,
H(3.5e) = {⟨u, v⟩ ∣ u <O 3.5e & v ∈H(u)} =
{⟨u, v⟩ ∣ ∃n(u <O ϕe(n) & v ∈H(u))}.

Lemma 2.5.3 (Spector). There is a partial computable function f such that
for each a ∈ O, f(a) is an index for {b ∈ O ∣ ∣b∣ < ∣a∣} as a set computable in
H(a)′.

Theorem 2.5.4 (Spector). There is a partial computable function f such
that for a, b ∈ O with ∣a∣ < ∣b∣, f(a, b) is an index for H(a) as a set computable
in H(b).

Corollary 2.5.5. If x, y ∈ O and ∣x∣ = ∣y∣, then H(x) ≡T H(y).

Now, following Kleene, we define classes Σ0
α, Π0

α and ∆0
α for all computable

ordinals α ≥ ω. For infinite α, a relation is said to be Σ0
α, Π0

α and ∆0
α if it is,

respectively, c.e., co-c.e., or computable relative to H(a) for some a ∈ O with
∣a∣ = α. By Corollary 2.5.5, such a relation will be c.e., co-c.e., or computable
relative to H(a) for every a ∈ O with ∣a∣ = α. Finally, a relation is said to be
hyperarithmetical if it is ∆0

α for some computable ordinal α. Note that there
is a lack of uniformity in the definition above when we pass from finite to
infinite computable ordinals. For finite α, say α = n > 0, by Theorem 2.5.1
Σ0
n relations are the ones that are c.e. relative to ∅(n−1) and ∅(n−1) ≡ H(a),

where ∣a∣ is n−1, not n. We could relativize the above definition relative to an
arbitrary set X ⊆ N, starting with HX(1) =X, and receiving the sets Σ0

α(X),
Π0
α(X) and ∆0

α(X). So, the αth-Turing jump of X for α ≥ ω is ∆0
α(X).

2.5. DEFINABILITY IN A STRUCTURE 45

Relatively intrinsically Σ0
α relations. Let A = (A,R1,R2, . . . ,Rk) be

a countable structure. For simplicity we suppose that A = N.

Definition 2.5.6. A relation R on A is relatively intrinsically Σ0
α in a struc-

ture A if for each (B, P) ≃ (A,R) the relation P is Σ0
α in the atomic dia-

gram D(B), which in our terms means that for every enumeration f of A,
f−1(R) ∈ Σ0

α(f
−1(A)).

For example, consider a linear orderingA = (A,<), and S-successor relation.
S is relatively intrinsically Π0

1 in A, since ¬S(x, y) ⇐⇒ x /< y∨∃z(x < z & z <
y) is relatively intrinsically Σ0

1 in A. The “block” relation B(x, y) ⇐⇒ there
are finitely many elements z1, . . . , zn such that S(x, z1),S(z1, z2), . . . , S(zn, y)
is relatively intrinsically Σ0

2 in A, and there is no Σ0
2 formula, which defines B.

But B can be defined by a computable infinite disjunction of such formulas
as we shall see in the next subsection.

Ash, Knight, Manasse and Slaman [AKMS89] and independently Chisholm
[Chi90] prove that a relation is relatively intrinsically Σ0

α in A iff it is definable
by an computable infinitary Σc

α formula with finitely many parameters in A.

2.5.2 Computable infinitary formulas

Let L be a fixed computable language. Some mathematical properties, such
as the Archimedean property (true of subfields of the ordered field of reals),
are expressed in a natural way by an infinitely long formula. We consider
formulas of Lω1,ω (see Keisler [Kei71]). Here ω1 indicates that the disjunctions
and conjunctions are over only countable sets, and ω indicates that there is
only finite nesting of quantifiers. For example, in the language of ordered
fields, there is a sentence, which adding it to the axioms of ordered fields, the
models are exactly the Archimedean ordered fields (∀x)⋁n(x < τn) , where
τn = 1 + 1 + ⋅ ⋅ ⋅ + 1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

.

The computable infinitary Σc
α and Πα formulas, denoted by Σc

α and Πc
α,

with free variables among x1, . . . , xl, are defined by transfinite induction on α
as follows.

The Σc
0 and Πc

0 formulas are quantifier free formulas on x1, . . . , xl.
For α > 0, a Σc

α formula is the disjunction of a c.e. set of formulas of the
form ∃y1 . . .∃ymΨ(x1, . . . , xl, y1, . . . , ym), where Ψ is a Πc

β formula, for some
β < α, with free variables among x1, . . . , xl, y1, . . . , ym.

46 CHAPTER 2. PRELIMINARIES

A Πc
α formula is the conjunction of a c.e. set of formulas of the form

∀y1 . . .∀ymΨ(x1, . . . , xl, y1, . . . , ym), where Ψ is a Σc
β formula, for some β < α,

with free variables among x1, . . . , xl, y1, . . . , ym.
Formally, the c.e. disjunction above is a c.e. set of codes of such formulas.

If a is a notation of α, codes are quadruples in which the first component is
the symbol Σ or Π (we could use 0 and 1), the second is a notation a for α,
the third is (the code for) a tuple of variables, and the fourth is a natural
number e for the c.e. set We. (see [AK00] 7.2.)

Definition 2.5.7. A relation R ⊆ ∣A∣l is definable in a structure A by a Σc
α

formula Φ(x1, . . . , xl,w1, . . . ,wr), if there are parameters t1, . . . , tr ∈ ∣A∣ such
that for every a1, . . . , al ∈ ∣A∣ the following equivalence holds:

(a1, . . . , al) ∈ R ⇐⇒ A ⊧ Φ(x1/a1, . . . , xl/al,w1/t1, . . . ,wr/tr).

Ash, Knight, Manasse and Slaman [AKMS89] and independently Chisholm
[Chi90] prove that the relatively intrinsically Σ0

α relations in the structure
A are the definable ones by a computable Σc

α formula with finitely many
parameters in A.

Theorem 2.5.8. Let R be a relation on the structure A. The following are
equivalent:

1. R is relatively intrinsically Σ0
α in a structure A.

2. R is definable by a computable Σc
α formula with finitely many parameters

in A.

Antonio Montalbán extends in his book [Mon] this result for α = 1 not
only for relations with a fixed argument but also of those R ⊆ ∣A∣<ω. For
example over a Q-vector space V , the relation LD ⊆ V <ω of inear dependence
is always c.e. in V . To enumerate LD in a D(V)-computable way, go through
all the possible non-trivial Q-linear combinations q0v0+⋅ ⋅ ⋅+qkvk of all possible
tuples of vectors ⟨v0, . . . , vk⟩ ∈ V <ω, and if you find one that is equal to 0⃗,
enumerate ⟨v0, . . . , vk⟩ into LD. It is clear that we could write a Σc

1 formula
that define this relation but the free variable will not be fixed.

Definition 2.5.9 (Generalized computable Σc
1-definition). Let R ⊆ B<ω, and

let ϕn(xn)n∈ω be a computable sequence of computable Σc
1 formulas, where

ϕn(xn) has arity n. If for each n, ϕn(xn) defines R ∩ Bn, then we say that
⋁nϕn(xn) is a generalized computable Σc

1 definition of R.

2.5. DEFINABILITY IN A STRUCTURE 47

Thus a generalized computable Σc
1 formula allows consideration of tuples

of all finite arities. Such a formula is technically not in Lω1ω, as it uses
infinitely many free variables; however, it is a computable disjunction, over
all n ∈ ω, of Lω1ω formulas ϕn with free variables x1, . . . , xn.

Montalbán [Mon] proved that the result of Theorem 2.5.8 holds for such
relations R ⊆ ∣A∣<ω, i.e. R is relatively intrinsically Σ0

1 in a structure A if
and only if R is Σ0

1 definable in A with parameters. He call these relations
relatively intrinsically c.e. (r.i.c.e.). He uses this result for the characterization
of the effective interpretability [HTMMM17]. We will use this theorem in
Chapter 5.

48 CHAPTER 2. PRELIMINARIES

Chapter 3

Jump of a structure

The notion of jump of a structure contains information about the sets definable
by computable infinitary Σc

1 formulas. This notion has been independently
defined various times in the last few years. It is an analogue of the jump
operation in the degree structures. The first appearance of definition of jump
of structure in print is due to Vessela Baleva in [Bal02, Bal06], as part of
her Ph.D. thesis under the supervision of Ivan Soskov. That definition uses,
as for the jump of A, the Moschovakis extension [Mos69] of A, which is
essentially the closure of A under a pairing operation, and then a universal
semi-search-computable predicate is added. The notion of jump of structure
is in terms of the s-reducibilities between structures, based on the notion
search computability of Moschovakis. In 2007 we, with Soskov, [SS07, SS09a]
use a modified definition based on Moschovakis extensions for proving two
jump inversions theorems for structures in terms of degree spectra. We add
an analogue of Kleene predicate to the Moschovakis extension of the structure
which is universal for all relations, definable by computable infinitary Σc

1

formulas.
Independently Montalbán [Mon09] in 2009 suggests another approach to

the definition of the jump of a structure - he does not change the domain of
the structure but he adds a complete set of relations, definable by computable
infinitary Πc

1 (later he called this a structural jump). In [Mon12, Mon] he
changed the added complete set of relations by those, definable by computable
infinitary Σc

1 formulas and received an equivalent notion as ours.
First Morozov [Mor04] in 2004 and then Puzarenko [Puz09] in 2009

also define the jump of an admissible structure. Later, Alexey Stukachev
[Stu09, Stu10] extended this definition to all structures A by considering

49

50 CHAPTER 3. JUMP OF A STRUCTURE

the admissible structure HF(A) in the terms of Σ-definability in hereditarily
finite extension of the structure.

The fact that all these notions and results have been rediscovered over and
over is not surprising given that the authors in different countries use com-
pletely different ways to represent structures and to talk about computability
on algebraic structures.

In [Sos07a, SS07, SS09a], with Soskov, we prove two jump inversion
theorems, one is as the Friedberg’s jump inversion Theorem 2.2.9 and the other
one that shows that every jump spectrum is a spectrum of a structure. The first
one says: for every structureA, for which the degree spectrum is a subset of the
jump degree spectrum of another structure B, with DS(A) ⊆DS1(B), there
exists a structure C with the property DS1(C) =DS(A) and DS(C) ⊆DS(B).
The structure C is obtained from the Marker’s extension of A. Stukachev
[Stu09, Stu10] shows a similar result for the Σ definability. The second theorem
shows that every jump degree spectrum DS1(A) is a degree spectrum of the
structure - the jump of A. Independently, later Montalbán [Mon09] proved
similar result.

I want to mention that Goncharov, Harizanov, Knight, McCoy, R. Miller
and Solomon [GHK+05] give an idea how the jump inversion - Friedberg’s
style could be generalized for a computable successor ordinal. They only do it
for graphs, but we know [HKSS02] any degree spectrum can be realized as the
degree spectrum of a graph. They proved the result above only as a tool to
get get other results about and relative intrinsically relations. Vatev [Vat14]
uses this idea and proves the jump-inversion theorem for any computable
successor ordinal. Soskov proves in [Sos13b] that such theorem is not true for
computable limit ordinals.

We will define first in Section 3.1 the jump of a structure and then in
Section 3.2 we show that every jump spectrum is a spectrum of a structure
and in Section 3.3 we will prove the jump inversion theorem. The content
of these three sections are from [SS09a]. In the last Section 3.4 we will show
some applications of the jump inversion theorems. The content of the last
section is from [SS09b].

3.1 Jump of a structure

Let A = (A;R1, . . . ,Rs) be a countable structure and let equality be among
the predicates R1, . . . ,Rs. We suppose that the domain A of A is infinite.

3.1. JUMP OF A STRUCTURE 51

Following Moschovakis [Mos69] the least acceptable extension of the struc-
ture A is defined as follows.

Let 0 be an object which does not belong to A and Π be a pairing operation
chosen so that neither 0 nor any element of A is an ordered pair. Let A∗

be the least set containing all elements of A0 = A ∪ {0} and closed under Π.
Denote by N the set of all natural numbers.

We associate an element n∗ of A∗ with each natural number n ∈ N by
induction:

0∗ = 0;
(n + 1)∗ = Π(0, n∗).

The set of all elements n∗ defined above will be denoted by N∗.
Let L and R be the functions on A∗ satisfying the following conditions:

L(0) = R(0) = 0;
(∀t ∈ A)(L(t) = R(t) = 1∗);
(∀s, t ∈ A∗)(L(Π(s, t)) = s & R(Π(s, t)) = t).

The pairing function allows us to code finite sequences of elements: let
Π1(t1) = t1, Πn+1(t1, t2, . . . , tn+1) = Π(t1,Πn(t2, . . . , tn+1)) for every
t1, t2, . . . , tn+1 ∈ A∗.

For each predicate Ri of the structure A define the respective predicate
R∗
i on A∗ by

R∗
i (t) ⇐⇒ (∃a1 ∈ A) . . . (∃ari ∈ A)(t = Πri(a1, . . . , ari) & Ri(a1, . . . , ari)).

Definition 3.1.1. Moschovakis’ extension of A is the structure

A∗ = (A∗;A0,R
∗
1 , . . . ,R

∗
s ,GΠ,GL,GR,=),

where GΠ, GLand GR are the graphs of Π, L and R respectively.

Lemma 3.1.2. Let f be an enumeration of A. There exists an enumeration
f∗ of A∗ such that (f∗)−1(A∗) ≡T f−1(A).

Proof. Let J(x, y) = 2x+1.(2y + 1) be an effective coding of the or-
dered pairs of natural numbers. Denote by induction J1(x1) = x1 and
Jn+1(x1, x2, . . . , xn+1) = J(x1, Jn(x2, . . . , xn+1)) for any x1, x2, . . . , xn+1 ∈ N .
And let l and r be computable functions satisfying the equalities:

52 CHAPTER 3. JUMP OF A STRUCTURE

l(0) = r(0) = 0,
l(2x + 1) = r(2x + 1) = 2 = J(0,0),
l(J(x, y)) = x & r(J(x, y)) = y.

Define f∗ by means of the following inductive definition:

f∗(0) = 0∗,
f∗(2x + 1) = f(x),
f∗(J(x, y)) = Π(f∗(x), f∗(y)).

Clearly f∗ is an enumeration of A∗. It is easy to see that (f∗)−1(A0) =
{2x + 1 ∣ x ∈ N} ∪ {0}, (f∗)−1(GΠ) = {⟨x, y⟩ ∶ (x, y) ∈ GJ}, (f∗)−1(GL) =
{⟨x, y⟩ ∶ (x, y) ∈ Gl} and (f∗)−1(GR) = {⟨x, y⟩ ∶ (x, y) ∈ Gr}.

Fix a natural number i, 1 ≤ i ≤ s. Then

⟨x1, . . . , xri⟩ ∈ f
−1(Ri) ⇐⇒ (f(x1), . . . , f(xri)) ∈ Ri ⇐⇒

(f∗(2x1 + 1), . . . , f∗(2xri + 1)) ∈ Ri ⇐⇒
Πri(f

∗(2x1 + 1), . . . , f∗(2xri + 1))) ∈ R∗
i ⇐⇒

Jri(2x1 + 1, . . . ,2xri + 1) ∈ (f∗)−1(R∗
i).

Finally, let R1 be the equality on A. Then

⟨x, y⟩ ∈ (f∗)−1(=) ⇐⇒ [(x, y ∈ (f∗)−1(A) & ⟨x/2, y/2⟩ ∈ f−1(R1))∨
(x = y = 0)∨
(x = J(x1, x2) & y = J(y1, y2) &
⟨x1, y1⟩ ∈ (f∗)−1(=) & ⟨x2, y2⟩ ∈ (f∗)−1(=))].

Clearly
⟨x, y⟩ ∈ f−1(R1) ⇐⇒ ⟨2x + 1,2y + 1⟩ ∈ (f∗)−1(=).

So (f∗)−1(=) ≡T f−1(R1).
Combining all above, we get that (f∗)−1(A∗) ≡T f−1(A). ◻
From now on given an enumeration f of the structure A, by f∗ we shall

denote the enumeration of A∗ defined in the lemma above.

Proposition 3.1.3. DS(A) =DS(A∗).

Proof. Let a ∈ DS(A) and let f be an enumeration of A witnessing this,
i.e. f−1(A) ∈ a. Then (f∗)−1(A∗) ≡T f−1(A) and hence a ∈DS(A∗).

3.1. JUMP OF A STRUCTURE 53

Now let a ∈DS(A∗) and let h be an enumeration of A∗ with h−1(A∗) ∈ a.
By Proposition 2.4.2, there exists an injective enumeration g of A∗ such
that g−1(A∗) ≤T h−1(A∗). Our goal is to construct an enumeration f of A
such that f−1(A) ≤T g−1(A∗). Then by Proposition 2.4.3 we would get that
a ∈DS(A).

Let 0# = g−1(0∗). Then the set g−1(A) = g−1(A0) ∖ {0#} is computable in
g−1(A∗). Fix an element z0 ∈ g−1(A) and let

m(0) = z0;
m(i + 1) = µz ∈ g−1(A)[(∀k ≤ i)(m(k) /= z)].

Note that m ≤T g−1(A∗) is a bijective enumeration of g−1(A). Let

J(x, y) = g−1(Π(g(x), g(y))).

Clearly J is computable in g−1(A∗). As usual set J1(x) = x and

Jn+1(x1, . . . , xn+1) = J(x1, Jn(x2, . . . , xn+1)).

Set f = λx.g(m(x)). Clearly f is an injective enumeration of the structure
A. Consider a predicate Ri of A. Then

f−1(Ri) = {⟨x1, . . . , xri⟩ ∶ Jri(m(x1), . . . ,m(xri)) ∈ g
−1(R∗

i)}

and hence f−1(Ri) is computable in g−1(A∗).
Thus f−1(A) ≤T g−1(A∗). ◻
Let f be an enumeration of A. Given natural numbers e and x let

f ⊧ Fe(x) ⇐⇒ x ∈W
f−1(A)
e

and let
f ⊧ ¬Fe(x) ⇐⇒ f /⊧ Fe(x).

We shall connect with the modeling relation "⊧" a forcing with conditions
all finite mappings of N into A ordered in the usual way. We call these finite
mappings finite parts. The finite parts will be denoted by the letters δ, τ .

Given a finite part δ and R ⊆ An, let δ−1(R) be the finite function on the
natural numbers taking values in {0,1} such that

δ−1(R)(u) ≃ 1 ⇐⇒ (∃x1, . . . xn ∈ dom(δ))(u = ⟨x1, . . . , xn⟩ &
(δ(x1), . . . , δ(xn)) ∈ R) and
δ−1(R)(u) ≃ 0 ⇐⇒ (∃x1, . . . xn ∈ dom(δ))(u = ⟨x1, . . . , xn⟩ &
(δ(x1), . . . , δ(xn)) /∈ R).

(3.1.1)

54 CHAPTER 3. JUMP OF A STRUCTURE

By δ−1(A) we shall denote the finite function δ−1(R1)⊕ ⋅ ⋅ ⋅ ⊕ δ−1(Rs).
If α is a partial function and e ∈ N , then by Wα

e we shall denote the set of
all x such that the computation {e}α(x) halts successfully. We shall assume
that if during a computation the oracle α is called with an argument outside
it’s domain, then the computation halts unsuccessfully.

Definition 3.1.4. For any e, x ∈ N and for every finite part δ, define the
forcing relations δ ⊩ Fe(x) and δ ⊩ ¬Fe(x) as follows:

δ ⊩ Fe(x) ⇐⇒ x ∈W
δ−1(A)
e

δ ⊩ ¬Fe(x) ⇐⇒ (∀τ ⊇ δ)(τ /⊩ Fe(x)).

The following two properties of the forcing relation are obvious:

(F1) δ ⊩ (¬)Fe(x) & δ ⊆ τ ⇒ τ ⊩ (¬)Fe(x).

(F2) For every enumeration f of A,

f ⊧ Fe(x) ⇐⇒ (∃τ ⊆ f)(τ ⊩ Fe(x)).

Definition 3.1.5. An enumeration f of A is generic if for every e, x ∈ N :

(∃τ ⊆ f)(τ ⊩ Fe(x) ∨ τ ⊩ ¬Fe(x)).

Note, that this is equivalent to Definition 2.2.2 for a 1-generic set, only
take G = f−1(A) and S to be the set of finite parts {τ ∣ τ ⊩ Fe(x)}. It is clear
that S is c.e.

We know from Theorem 2.2.6 that for every generic enumeration f of A
for all e, x ∈ N ,

f ⊧ ¬Fe(x) ⇐⇒ (∃τ ⊆ f)(τ ⊩ ¬Fe(x)).

With each finite part τ /= ∅ such that dom(τ) = {x1, . . . , xn} and τ(x1) =
s1, . . . , τ(xn) = sn, we associate the element τ∗ = Πn(Π(x∗1, s1), . . . ,Π(x∗n, sn))
of A∗. Let τ∗ = 0 if τ = ∅.

Define KA = {Π3(δ∗, e∗, x∗) ∣ (∃τ ⊇ δ)(τ ⊩ Fe(x)) & e∗, x∗ ∈ N∗}.

Definition 3.1.6. The jump of the structure A is the following structure:

A′ = (A∗;A0,R
∗
1 , . . . ,R

∗
s ,GΠ,GL,GR,=,KA).

The following proposition follows directly from Lemma 3.1.2.

Proposition 3.1.7. Let f be an enumeration of A. Then

(f∗)−1(A′) ≡T f
−1(A)⊕ (f∗)−1(KA).

3.2. EVERY JUMP SPECTRUM IS SPECTRUM 55

3.2 Every Jump Spectrum is Spectrum
Theorem 3.2.1. For every structure A there exists a structure B such that
DS1(A) =DS(B).

Proof. Let B = A′ defined above. We shall prove that DS1(A) = DS(B).
We divide the proof into two parts.

Proposition 3.2.2. DS1(A) ⊆DS(B).

Proof. Let a ∈ DS1(A) and let g be an enumeration of A such that
g−1(A)′ ∈ a. By Proposition 2.4.2, there exists an injective enumeration f
of A such that f−1(A) ≤T g−1(A). Since f−1(A)′ ≤T g−1(A)′ and DS(B) is
closed upwards, it is sufficient to show that dT (f−1(A))′ ∈ DS(B). For we
shall show that (f∗)−1(B) ≤T f−1(A)′ and use once more the fact that DS(B)
is closed upwards.

From the construction of the enumeration f∗ in the proof of Lemma 3.1.2
it follows that f∗ is also injective.

Recall the definition of the subset N∗ = {x∗ ∶ x ∈ N} of A∗. For every nat-
ural number x let x# = (f∗)−1(x∗) and let N# = {x# ∶ x ∈ N} = (f∗)−1(N∗).
Notice that 0# = 0 and (x + 1)

#
= J(0, x#) and hence N# is a computable set.

Clearly there exist computable functions n1 and n2 such that for all natural
numbers x, n1(x#) = x and n2(x) = x#.

Denote by ∆ the set of all finite parts in A. Clearly for every finite part
τ , there exists a unique element τ∗ of A∗ defined as in the previous section
and a unique natural number τ# = (f∗)−1(τ∗).

Let ∆∗ = {τ∗ ∶ τ ∈ ∆} and ∆# = {τ# ∶ τ ∈ ∆} = (f∗)−1(∆∗).
It is easy to see that a number τ# belongs to ∆# if and only if τ# = 0 or

for some n ≥ 1 there exist n distinct elements x1
#, . . . , xn# of N# and n odd

numbers y1, . . . , yn such that

τ# = Jn(J(x1
#, y1), . . . , J(xn

#, yn)).

Therefore the set ∆# is also computable.
Given a τ# = Jn(J(x1

#, y1), . . . , J(xn#, yn)) ∈ ∆#, let

dom(τ#) = {x1
#, . . . , xn

#}

and for every xi# ∈ dom(τ#), set τ#(xi#) ≃ yi.
We shall assume that dom(τ#) = ∅ if τ# = 0.

56 CHAPTER 3. JUMP OF A STRUCTURE

Notice that dom(τ#) = {x# ∶ x ∈ dom(τ)} and for every x ∈ dom(τ),
f∗(τ#(x#)) ≃ f(τ#(x#)/2) ≃ τ(x).

Let R ⊆ An and τ ∈ ∆. Recall the definition of the finite function τ−1(R)
given in the previous subsection. Clearly

τ−1(R)(u) ≃ 1 ⇐⇒ (∃x1
#, . . . , xn# ∈ dom(τ#))(u = ⟨x1, . . . , xn⟩ &

⟨τ#(x1
#)/2, . . . , τ#(xn#)/2⟩ ∈ f−1(R))

(3.2.1)
and

τ−1(R)(u) ≃ 0 ⇐⇒ (∃x1
#, . . . , xn# ∈ dom(τ#))(u = ⟨x1, . . . , xn⟩ &

⟨τ#(x1
#)/2, . . . , τ#(xn#)/2⟩ /∈ f−1(R)).

(3.2.2)
By (3.2.1) and (3.2.2), there exists a computable function ρ such that for

every τ ∈ ∆, τ−1(A) = {ρ(τ#)}f
−1(A).

It is easy to see that there exists a computable predicate P such that for
all τ, δ ∈ ∆, P (τ#, δ#) ≃ 1 ⇐⇒ τ ⊆ δ.

Thus we obtain that

(f∗)−1(KA) = {J3(δ#, e#, x#) ∶ (∃τ ∈ ∆)(δ ⊆ τ & τ ⊩ Fe(x))} =

{J3(δ#, e#, x#) ∶ (∃τ# ∈ ∆#)(P (δ#, τ#) ≃ 1 & x ∈W
{ρ(τ#)}f

−1(A)

e)}.

Hence (f∗)−1(KA) is c.e. in f−1(A). From here it follows that (f∗)−1(KA) ≤T
f−1(A)′. Therefore, by Proposition 3.1.7, (f∗)−1(B) ≤T f−1(A)′.

◻
Now we turn to the proof of the reverse inclusion. We shall need the

following property of the jump spectrum:

Lemma 3.2.3. Every jump spectrum is closed upwards.

Proof. Consider a structure A. Let b be a degree, b ≥ a and a ∈ DS1(A).
Then for some c ∈DS(A), c′ = a. By the relativized jump inversion theorem
of Friedberg, there is a degree d ≥ c such that d′ = b. By Proposition 2.4.3,
d ∈DS(A). Thus b = d′ ∈DS1(A). ◻

Proposition 3.2.4. DS(B) ⊆DS1(A).

Proof. Let a ∈DS(B) and m be an enumeration of B such that m−1(B) ∈ a.
By Proposition 2.4.2, there exists an injective enumeration f of B such that
f−1(B) ≤T m−1(B). We shall construct an enumeration g of the structure A
such that g−1(A)′ ≤T f−1(B). Then, by Lemma 3.2.3, a ∈DS1(A).

3.2. EVERY JUMP SPECTRUM IS SPECTRUM 57

Recall that B = A′. Let f−1(A) = A# and f−1(KA) =K#. Clearly the sets
A# and K# are computable in f−1(B). defnine the computable in f−1(B)
function J by J(x, y) = f−1(Π(f(x), f(y))). Clearly there exist computable
in f−1(B) functions l and r such that for all x, y ∈ N ,

l(J(x, y)) = x and r(J(x, y)) = y.

Set J1(x1) = x1 and Jn+1(x1, . . . , xn+1) = J(x1, Jn(x2, . . . , xn+1)).
For every natural number x consider the element x∗ of A∗ and let x# =

f−1(x∗). Let N# = {x# ∶ x ∈ N}. Now, we have that N# is computable in
f−1(B) and that there exist computable in f−1(B) functions n1 and n2 such
that for all x ∈ N , n1(x) = x# and n2(x#) = x.

Given a partial mapping h of N in A, by h# we shall denote the unique
mapping of N# in A# satisfying for all natural numbers x the equality:

h#(x#) ≃ f−1(h(x)).

Clearly for all partial mappings h1 and h2 of N in A,

h1 ⊆ h2 ⇐⇒ h1
⊆ h2

#.

For finite parts τ we shall identify τ# and its code f−1(τ∗). Denote by ∆
the set of all finite parts and let ∆# = {τ# ∶ τ ∈ ∆}. Notice that the set ∆# is
computable in f−1(B).

As in the proof of the previous proposition one can easily see that there
exists a computable in f−1(B) function ρ such for every finite part τ , τ−1(A) =
{ρ(τ#)}f

−1(B).
Now we turn to the construction of the enumeration g. We shall construct

g as a generic enumeration such that g# is computable in f−1(B).
The enumeration g will be constructed by stages. At each stage s we shall

define a finite part τs so that τs ⊆ τs+1 and let g = ⋃s τs.
From the construction it will follow that the function λs.τs# is computable

in f−1(B) and hence the mapping g# is also computable in f−1(B).
We shall consider two kinds of stages. On stages s = 2r we shall ensure

that the mapping g is total and surjective. On stages s = 2r + 1 we shall
ensure that g is generic.

Let τ0 = ∅. Suppose that we have already defined τs.
(a) Case s = 2r. Let x be the least natural number such that x# does

not belong to dom(τs#) and let y be the least natural number in A# which

58 CHAPTER 3. JUMP OF A STRUCTURE

does not belong to the range of τs#. Set τs+1(x) = f(y) and τs+1(z) ≃ τs(z)
for z ≠ x.

(b) Case s = 2⟨e, x⟩ + 1. Consider the set X⟨e,x⟩ = {δ ∣ δ ⊩ Fe(x)}. Check
whether there exists a finite part δ ∈X⟨e,x⟩ which extends τs. Clearly this is
equivalent to J3(τs#, e#, x#) ∈K#.

If the answer is negative then τs ⊩ ¬Fe(x). Set τs+1 = τs.
In the case of a positive answer find a δ# such that τs# ⊆ δ# and

x ∈W
{ρ(δ#)}f

−1(B)

e .

We can do that effectively in f−1(B) by enumerating all triples (δ#, t1, t2),
where τs# ⊆ δ#, t1, t2 ∈ N and checking for every such triple whether

x ∈W
{ρ(δ#)}f

−1(B)
t2

e,t1
.

Set τs+1 = δ.
End of the construction
By the genericity of g,

x ∈ g−1(A)′ ⇐⇒ g ⊧ Fx(x) ⇐⇒ (∃τ ⊆ g)(τ ⊩ Fx(x)) ⇐⇒

(∃τ# ⊆ g#)(x ∈W
{ρ(τ#)}f

−1(B)

x).

and

x ∈ N ∖ g−1(A)′ ⇐⇒ g ⊧ ¬Fx(x) ⇐⇒ (∃τ ⊆ g)(τ ⊩ ¬Fx(x)) ⇐⇒
(∃τ# ⊆ g#)(J3(τ#, x#, x#) /∈K#).

Since g# is computable in f−1(B), we get from here that g−1(A)′ and
N ∖ g−1(A)′ are c.e. in f−1(B) and hence g−1(A)′ ≤T f−1(B). ◻

The proof of the theorem is concluded. ◻

3.3 Jump inversion theorem
Naturally, once we have a jump of a structure, the question of jump inversion
arises: Given a structure A with DS(A) consisting of total degree above 0′, is
there a structure C such that DS1(C) =DS(A). We will prove an even more
general Friedberg’s style jump inversion theorem. Let A and B be structures

3.3. JUMP INVERSION THEOREM 59

such that DS(A) ⊆DS1(B) (so, all elements of DS(A) are above 0′). Then
there exists a structure C such that DS(C) ⊆DS(B) and DS1(C) =DS(A).

The proof of this theorem uses the method of Marker extensions, which
will be discussed in detail in the next subsection.

3.3.1 Marker’s Extensions

Marker [Mar89] presented a method of constructing for any n ≥ 1 an ℵ0-
categorical almost strongly minimal theory which is not Σn-axiomatizable.
Further Goncharov and Khoussainov [GK02] adapted the construction to
the general case in order to find for any n ≥ 1 examples of ℵ1-categorical
computable models as well as ℵ0-categorical computable models whose theories
are Turing equivalent to ∅(n). We shall give the definition of Marker’s ∃ and
∀ extensions following [GK02].

LetA = (A;R1, . . . ,Rs,=) be a countable structure such that each predicate
Ri has arity ri.

Marker’s ∃-extension of Ri, denoted by R∃
i , is defined as follows. Consider

a set Xi with new elements such that Xi = {xi⟨a1,...,ari ⟩
∣ Ri(a1, . . . , ari)}. We

shall call the set Xi an ∃-fellow for Ri. We suppose that all sets A, X1,. . . ,
Xs are pairwise disjoint.

The predicate R∃
i is a predicate of arity ri + 1 such that

R∃
i (a1, . . . , ari , x) ⇐⇒ a1, . . . , ari ∈ A & x ∈Xi & x = xi⟨a1,...,ari ⟩

.

The property of R∃
i is that for every a1, . . . , ari ∈ A

(∃x ∈Xi)R
∃
i (a1, . . . , ari , x) ⇐⇒ Ri(a1, . . . , ari). (3.3.1)

Definition 3.3.1. The structure A∃ is defined as follows:

(A ∪
s

⋃
i=1

Xi;R
∃
1 , . . . ,R

∃
s ,X1, . . . ,Xs,=),

where each R∃
i is the Marker’s ∃-extension of Ri with the ∃-fellow Xi.

Further, Marker’s ∀-extension of R∃
i , denoted by R∃∀

i , is defined as follows.
Consider an infinite set Yi of new elements such that

Yi = {yi⟨a1,...,ari ,x⟩
∶ ¬R∃

i (a1, . . . , ari , x) & a1, . . . , ari ∈ A, & x ∈Xi}.

60 CHAPTER 3. JUMP OF A STRUCTURE

We shall call the set Yi a ∀-fellow for R∃
i . We suppose that all sets A, X1,. . . ,

Xs and Y1,. . . , Ys are pairwise disjoint.
The predicate R∃∀

i is a predicate of arity ri + 2 such that
1. If R∃∀

i (a1, . . . , ari , x, y) then a1, . . . , ari ∈ A, x ∈Xi and y ∈ Yi;
2. If a1, . . . , ari ∈ A, & x ∈ Xi & y ∈ Yi then

¬R∃∀
i (a1, . . . , ari , x, y) ⇐⇒ y = yi⟨a1,...,ari ,x⟩

.

From the definition of R∃∀
i it follows that if a1, . . . , ari ∈ A and x ∈Xi then

(∀y ∈ Yi)R
∃∀
i (a1, . . . , ari , x, y) ⇐⇒ R∃

i (a1, . . . , ari , x). (3.3.2)

Definition 3.3.2. The structure A∃∀ is defined as follows

(A ∪
s

⋃
i=1

Xi ∪
s

⋃
i=1

Yi;R
∃∀
1 , . . . ,R∃∀

s ,X1, . . . ,Xs, Y1, . . . , Ys,=),

where Xi is the ∃-fellow for Ri and Yi is the ∀-fellow for R∃
i .

The structure A∃∀ has the following properties:

Proposition 3.3.3. 1. Let a1, . . . , ari ∈ A. Then:

(a) Ri(a1, . . . , ari) ⇐⇒ (∃x ∈Xi)(∀y ∈ Yi)R∃∀
i (a1, . . . , ari , x, y);

(b) If Ri(a1, . . . , ari) then there exists a unique x ∈Xi such that
(∀y ∈ Yi)R∃∀

i (a1, . . . , ari , x, y);

2. For each sequence a1, . . . , ari ∈ A and x ∈ Xi there exists at most one
y ∈ Yi such that ¬R∃∀

i (a1, . . . , ari , x, y);

3. For each y ∈ Yi there exists a unique sequence a1, . . . , ari ∈ A and x ∈Xi

such that ¬R∃∀
i (a1, . . . , ari , x, y);

4. For each x ∈Xi there exists a unique sequence a1, . . . , ari ∈ A such that
for all y ∈ Yi the predicate R∃∀

i (a1, . . . , ari , x, y) is true.

Proof. 1. (a)(⇒) Let Ri(a1, . . . , ari). Then by (3.3.1) there exists x ∈ Xi

such that R∃
i (a1, . . . , ari , x) (in fact x = xi⟨a1,...,ari ⟩). By (3.3.2) it follows that

for every y ∈ Yi R∃∀
i (a1, . . . , ari , x, y).

(⇐) Let x ∈ Xi and R∃∀
i (a1, . . . , ari , x, y) for all y ∈ Yi. Then by (3.3.2)

R∃
i (a1, . . . , ari , x) and hence by (3.3.1) Ri(a1, . . . , ari).

3.3. JUMP INVERSION THEOREM 61

1. (b) Follows from the definition of Xi and (3.3.2).
2. Follows from (3.3.2) and the definition of Yi.
3. Follows from the definition of Yi.
4. Let x ∈ Xi. Then x = xi⟨a1,...,ari ⟩

for some a1, . . . , ari from A such that
Ri(a1, . . . , ari). Hence R∃

i (a1, . . . , ari , x). Then, by (3.3.2), there is no y ∈ Yi
such that ¬R∃∀

i (a1, . . . , ari , x, y). Clearly for every sequence b1, . . . , bri ∈ A not
equal to a1, . . . , ari , R∃

i (b1, . . . , bri , x) is false and hence for y = yi⟨b1,...,bri ,x⟩ the
predicate R∃∀

i (b1, . . . , bri , x, y) is false.
◻

3.3.2 Join of Two Structures

Let A = (A;R1, . . . ,Rs,=) and B = (B;P1, . . . , Pt,=) be countable structures
in the languages L1 and L2 respectively. Suppose that L1 ∩ L2 = {=} and
A ∩B = ∅. Let L = L1 ∪L2 ∪ {A,B}, where A and B are unary predicates.

Definition 3.3.4. The join of the structures A and B is the structure A⊕B =
(A ∪B;R1, . . . ,Rs, P1, . . . , Pt,A,B,=) in the language L, where

(a) the predicate A is true only over the elements of A and similarly B is
true only over the elements of B;

(b) each predicate Ri is defined on the elements of A as in the structure
A and false if some of the arguments of Ri are not in A and similarly each
predicate Pj is defined as in the structure B over the elements of B and false
if some of the arguments of Pj are not in B.

Lemma 3.3.5. Let A and B be countable structures and C = A⊕ B. Then
DS(C) ⊆DS(A) and DS(C) ⊆DS(B).

Proof. We shall prove that DS(C) ⊆DS(A). The proof of DS(C) ⊆DS(B)
is similar.

Let f be an enumeration of C. Fix z0 ∈ f−1(A). defnine

m(0) = z0;
m(i + 1) = µz ∈ f−1(A)[(∀k ≤ i)(⟨m(k), z⟩ /∈ f−1(=))].

Set h = λx.f(m(x)). Note that m ≤T f−1(C) and the enumeration h of A
is injective and hence h−1(=) is computable. Moreover

⟨x1, . . . , xri⟩ ∈ h
−1(Ri) ⇐⇒ Ri(f(m(x1)), . . . , f(m(xri)))

⇐⇒ ⟨m(x1), . . . ,m(xri)⟩ ∈ f
−1(Ri).

62 CHAPTER 3. JUMP OF A STRUCTURE

Thus h−1(Ri) ≤T f−1(C).
Then h−1(A) ≤T f−1(C). Since DS(A) is closed upwards, dT(f−1(C)) ∈

DS(A). ◻

3.3.3 Representation of Σ0
2(D) Sets

Let D ⊆ N . A set M ⊆ N is in Σ0
2(D) if there exists a computable in D

predicate Q such that

n ∈M ⇐⇒ ∃a∀bQ(n, a, b) .

Definition 3.3.6. [GK02] If M ∈ Σ0
2(D) then M is one-to-one representable

if there exists a computable in D predicate Q with the following properties:

1. n ∈M ⇐⇒ ∃a∀bQ(n, a, b);

2. n ∈M ⇐⇒ there exists a unique a such that ∀bQ(n, a, b);

3. for every pair ⟨n, a⟩ there is at most one b such that ¬Q(n, a, b);

4. for every b there is a unique pair ⟨n, a⟩ such that ¬Q(n, a, b);

5. for every a there exists a unique n such that ∀bQ(n, a, b).

The predicate Q from the above definition is called an one-to-one repre-
sentation of M . Goncharov and Khoussainov [GK02] proved the following
lemma:

Lemma 3.3.7. IfM is a co-infinite Σ0
2(D) subset of N and there is an infinite

computable in D subset S of M such that M ∖ S is infinite, then M has an
one-to-one representation.

Remark. We will use the lemma in the next subsection in the proof of
Theorem 3.3.9. In order to satisfy the conditions of the lemma we need the
following technical explanations.

Let A = (A;R1, . . . ,Rs,=) be a countable structure. Recall that the set A
is infinite. We can easily find a structure A# with the same degree spectrum
as A and such that for every injective enumeration f# of A# and for each
predicate R of A# the set f#−1

(R) is co-infinite and there is a computable
infinite subset S of f#−1

(R) such that f#−1
(R) ∖ S is infinite.

3.3. JUMP INVERSION THEOREM 63

One way to do this is the following. We add to the domain A of the
structure A two new elements say “T” and “F”. For each r-ary predicate R of
A define a (r + 1)-ary predicate R# as follows:

R#(a1, . . . , ar, b) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

true if T∈ {a1, . . . , ar, b};
false if F ∈ {a1, . . . , ar, b} & T /∈ {a1, . . . , ar, b};
R(a1, . . . , ar) if F ,T /∈ {a1, . . . , ar, b}.

Let A# = (A ∪ {T,F};R1
#, . . . ,Rs

#,=).

Lemma 3.3.8. DS(A) = DS(A#) and for every injective enumeration f#

of A# and each nontrivial predicate Ri
the set f#−1

(Ri
#) is co-infinite and

there is a computable infinite set S ⊆ f#−1
(Ri

#) such that f#−1
(Ri

#) ∖ S is
infinite.

Proof. For each injective enumeration f of A we construct an enumeration
f# of A# as follows: f#(0) =T, f#(1) =F and f#(x + 2) = f(x). Then

⟨x1, . . . , xri , z⟩ ∈ f
#−1

(Ri
#) ⇐⇒ (0 ∈ {x1, . . . , xri , z})∨

(0,1 /∈ {x1, . . . , xri , z} & ⟨x1 − 2, . . . , xri − 2⟩ ∈ f−1(Ri)).

It is obvious that f#−1
(Ri

#) ≤−1
T (Ri). Moreover let c /= 0,1.

⟨x1, . . . , xri⟩ ∈ f
−1(Ri) ⇐⇒ ⟨x1 + 2, . . . , xri + 2, c⟩ ∈ f#−1

(Ri
#).

So f#−1
(Ri

#) ≡T f−1(Ri).
For each injective enumeration f# of A# we construct an injective enu-

meration f of A as follows. Let tt = f#−1
(T), ff = f#−1

(F) and a ∈ f#−1
(A).

m(0) = a;
m(i + 1) = µz[(∀k ≤ i)(z /=m(k) & z /= tt & z /= ff].

Set f = λx.f#(m(x)). Then

⟨x1, . . . , xri⟩ ∈ f
−1(Ri) ⇐⇒ ⟨m(x1), . . . ,m(xri), a⟩ ∈ f

#−1
(Ri

#).

⟨x1, . . . , xri , z⟩ ∈ f
#−1

(Ri
#) ⇐⇒ (tt ∈ {x1, . . . , xri , z})∨

(tt, ff /∈ {x1, . . . , xri , z} & ⟨m−1(x1), . . . ,m−1(xri)⟩ ∈ f
−1(Ri)).

So f−1(Ri) ≡T f#−1
(Ri

#).

64 CHAPTER 3. JUMP OF A STRUCTURE

In order to see that DS(A) ⊆ DS(A#) let a ∈ DS(A) and let h be an
enumeration of A, h−1(A) ∈ a. By Proposition 2.4.2, there exists an injective
enumeration f of A such that f−1(A) ≤T h−1(A). Then let f# be the
enumeration of A# constructed above and so f−1(A) ≡T f#−1

(A#). Then by
Proposition 2.4.3 we have that a ∈DS(A#). The proof of DS(A#) ⊆DS(A)
is similar.

For each injective enumeration f# of A# the set f#−1
(Ri

#) is co-infinite
since the set {⟨x1, . . . , xri , z⟩ ∣ ff ∈ {x1, . . . , xri , z} & tt /∈ {x1, . . . , xri , z}} is
infinite, here tt = f#−1

(T), ff = f#−1
(F). There is an infinite computable

subset S = {⟨x1, . . . , xri , z⟩ ∣ tt ∈ {x1, . . . , xri , z}} of f#−1
(Ri

#). Moreover
f#−1

(Ri
#) ∖ S is infinite. Let a1, . . . , ari ∈ A such that Ri(a1, . . . , ari). The

set {⟨f#−1
(a1), . . . , f#−1

(ari), z⟩ ∣ z ∈ N & z /∈ {tt, ff}} ⊆ f#−1
(Ri

#) ∖ S is
infinite.

Note that actually the set f#−1
(¬Ri

#) is also co-infinite and there is
an infinite computable subset P of f#−1

(¬Ri
#), so that f#−1

(¬Ri
#) ∖ P is

infinite. ◻

3.3.4 The Jump Inversion theorem

Theorem 3.3.9. LetA and B be structures such thatDS(A) ⊆DS1(B). then
there exists a structure C such that DS(C) ⊆DS(B) and DS1(C) =DS(A).

Proof. Let A = (A;R1, . . . ,Rs,=). For every predicate Ri consider a new
predicate Rc

i which is equal to the negation of Ri, i.e.

Rc
i(a1, . . . , ari) ⇐⇒ ¬Ri(a1, . . . , ari),

for every a1, . . . , ari ∈ A.
By Lemma 3.3.8 we may suppose that for every injective enumeration

f of A and each nontrivial predicate Ri the sets f−1(Ri) and f−1(Rc
i) are

co-infinite and there are computable infinite sets S ⊆ f−1(Ri) and P ⊆ f−1(Rc
i)

such that f−1(Ri) ∖ S and f−1(Rc
i) ∖ P are infinite.

We extend the structure A including the negations of the predicates as
follows:

A = (A;R1,R
c
1, . . . ,Rs,R

c
s,=).

We will denote the new structure by A = (A;R1,R2, . . . ,R2s−1,R2s,=), where
R2i−1 = Ri and R2i = Rc

i for i = 1, . . . , s.
It is clear that DS(A) = DS(A) since for each enumeration f of A we

have that f−1(A) ≡T f−1(A).

3.3. JUMP INVERSION THEOREM 65

Consider now the structure A
∃∀
. Let Xj be the ∃-fellow of Rj and Yj be

the ∀-fellow of R
∃
j , j = 1, . . . ,2s.

Without loss of generality we may assume that the structures
B = (B;P1, . . . , Pt,=) and A

∃∀
are disjoint.

Let C = B ⊕A
∃∀
. By Lemma 3.3.5, DS(C) ⊆DS(B). We shall prove that

DS1(C) =DS(A).
We start with the proof of the inclusion DS1(C) ⊆DS(A).
Let c ∈DS1(C) and let g be an enumeration of C such that c = dT(g−1(C))′.

By Proposition 2.4.2 there is an injective enumeration h of C such that
h−1(C) ≤T g−1(C). We shall construct an enumeration f of A such that
f−1(A) ≤T h−1(C)′ and hence f−1(A) ≤T g−1(C)′. Then by Proposition 2.4.3,
c ∈DS(A).

We have

z ∈ h−1(A) ⇐⇒ (∀j ≤ 2s)(z /∈ h−1(Xj) & z /∈ h−1(Yj)) & z /∈ h−1(B).

Thus h−1(A) ≤T h−1(C).
Fix x0 ∈ h−1(A). Let
m(0) = x0; m(i + 1) = µz ∈ h−1(A)[(∀k ≤ i)(m(k) /= z)].
Clearly m ≤T h−1(C).
Set f = λa.h(m(a)). Note that the enumeration f is injective.
Let R be an r-ary predicate of A, X be the ∃-fellow of R and Y be the

∀-fellow of R∃.
By Proposition 3.3.3, we have

⟨a1, . . . , ar⟩ ∈ f−1(R) ⇐⇒ R(f(a1), . . . , f(ar)) ⇐⇒
(∃a ∈X)(∀b ∈ Y)R∃∀(f(a1), . . . , f(ar), a, b) ⇐⇒
(∃x ∈ h−1(X))(∀y ∈ h−1(Y))R∃∀(h(m(a1)), . . . , h(m(ar)), h(x), h(y)) ⇐⇒
(∃x ∈ h−1(X))(∀y ∈ h−1(Y))(⟨m(a1), . . . ,m(ar), x, y⟩ ∈ h−1(R∃∀)) ⇐⇒
(∃x)(∀y)(⟨m(a1), . . . ,m(ar), x, y⟩ ∈ h−1(R∃∀) & x ∈ h−1(X) & y ∈ h−1(Y)).

Hence f−1(R) ∈ Σ0
2(h

−1(C)).
Consider now the complement predicate Rc and let Xc be the ∃-fellow for

Rc and Y c be the ∀-fellow for (Rc)∃. We have again:

⟨a1, . . . , ar⟩ ∈ f−1(Rc) ⇐⇒ Rc(f(a1), . . . , f(ar)) ⇐⇒
(∃a ∈Xc)(∀b ∈ Y c)(Rc)∃∀(f(a1), . . . , f(ar), a, b) ⇐⇒
(∃x ∈ h−1(Xc))(∀y ∈ h−1(Y c))(⟨m(a1), . . . ,m(ar), x, y⟩ ∈ h−1(Rc)∃∀).

66 CHAPTER 3. JUMP OF A STRUCTURE

Thus f−1(Rc) ∈ Σ0
2(h

−1(C)). Therefore f−1(R) ∈ ∆0
2(h

−1(C)) and hence

f−1(R) ≤T h
−1(C)′.

So, f−1(A) ≤T h−1(C)′.
Now we turn to the proof of the reverse inclusion DS(A) ⊆DS1(C).
Let a ∈DS(A) and let n be an enumeration of A such that a = dT(n−1(A)).

By Proposition 2.4.2, there is an injective enumeration f of A such that
f−1(A) ≤T n−1(A). We are going to construct an enumeration h of C such
that h−1(C)′ ≤T f−1(A). Since, by Lemma 3.2.3, DS1(C) is closed upwards
we shall obtain that a ∈ DS1(C).

Recall that DS(A) =DS(A) ⊆DS1(B) and dT(f−1(A)) ∈DS(A). Then
there is an enumeration g of B such that f−1(A) ≡T (g−1(B))′. Set D = g−1(B).
Consider the predicate Rj . Let Rj be r-ary. Since f−1(A) ≤T D′, we have that
f−1(Rj) ≤T D′. Then f−1(Rj) ∈ Σ0

2(D). Set Mj = f−1(Rj). the enumeration
f is injective and hence the set Mj is co-infinite and there is a computable
infinite set S ⊆Mj such that Mj ∖ S is infinite. So Mj satisfies all conditions
from Lemma 3.3.7. Then by Lemma 3.3.7 there exists a computable in D
predicate Qj which is a one-to-one representation of Mj. Then

1. ⟨n1, . . . , nr⟩ ∈Mj ⇐⇒ there exists a unique a such that
(∀b)Qj(⟨n1, . . . , nr⟩, a, b);

2. for every b let r(b) = ⟨⟨n1, . . . , nr⟩, a⟩ be the unique pair such that

¬Qj(⟨n1, . . . , nr⟩, a, b);

3. for every a let l(a) = ⟨n1, . . . , nr⟩ be the unique ⟨n1, . . . , nr⟩ such that
∀bQj(⟨n1, . . . , nr⟩, a, b).

Let N1 = {⟨1, n⟩ ∣ n ∈ N}, N2 = {⟨2, j, a⟩ ∣ j ≤ 2s & a ∈ N} and N3 =
{⟨3, j, b⟩ ∣ j ≤ 2s & b ∈ N}. Set N0 = N ∖ (⋃3

i=1 Ni). Consider a computable
bijection m from N onto N0.

The definition of the enumeration h of C is the following:
h(m(n)) = g(n);
h(⟨1, n⟩) = f(n);
h(⟨2, j, a⟩) = xj⟨f(n1),...,f(nr)⟩, if l(a) = ⟨n1, . . . , nr⟩;
h(⟨3, j, b⟩) = yj⟨f(n1),...,f(nr),h(⟨2,j,a⟩)⟩, if r(b) = ⟨⟨n1, . . . , nr⟩, a⟩.

3.3. JUMP INVERSION THEOREM 67

Recall that Xj = {xj⟨a1,...,ar⟩ ∣ Rj(a1, . . . , ar)} is the ∃-fellow for Rj and

Yj = {yj⟨a1,...,ar,x⟩ ∣ ¬R
∃
j (a1, . . . , ar, x)} is the ∀-fellow for R

∃
j .

From the choice of Yj it follows that

¬Qj(⟨n1, . . . , nr⟩, a, b) ⇐⇒ r(b) = ⟨⟨n1, . . . , nr⟩, a⟩

⇐⇒ h(⟨3, j, b⟩) = yj⟨f(n1),...,f(nr),h(⟨2,j,a⟩)⟩

⇐⇒ ¬R
∃∀
j (f(n1), . . . , f(nr), h(⟨2, j, a⟩), h(⟨3, j, b⟩)).

And then

Qj(⟨n1, . . . , nr⟩, a, b) ⇐⇒ R
∃∀
j (⟨f(n1), . . . , f(nr), h(⟨2, j, a⟩), h(⟨3, j, b⟩)).

defnine

R
∃∀,h
j (⟨⟨1, n1⟩, . . . , ⟨1, nr⟩, ⟨2, j, a⟩, ⟨3, j, b⟩⟩) ⇐⇒ Qj(⟨n1, . . . , nr⟩, a, b) .

It follows that R
∃∀,h
j ≤T D. Moreover

R
∃∀,h
j (⟨⟨1, n1⟩, . . . , ⟨1, nr ⟩, ⟨2, j, a⟩, ⟨3, j, b⟩⟩) ⇐⇒

R
∃∀
j (h(⟨1, n1⟩), . . . , h(⟨1, nr⟩)), h(⟨2, j, a⟩), h(⟨3, j, b⟩))

So R
∃∀,h
j = h−1(R

∃∀
j) and hence h−1(R

∃∀
j) ≤T D.

The sets h−1(A) = N1, h−1(Xj) = {⟨2, j, a⟩ ∣ a ∈ N} , h−1(Yj) = {⟨3, j, b⟩ ∣

b ∈ N} are computable. Then h−1(A
∃∀

) ≤T D.
Note that

Rj(f(n1), . . . , f(nr)) ⇐⇒ ⟨n1, . . . , nr⟩ ∈ f−1(Rj)
⇐⇒ (∃a)(∀b)Qj(⟨n1, . . . , nr⟩, a, b)

⇐⇒ (∃a)(∀b)R
∃∀,h
j (⟨⟨1, n1⟩ . . . ⟨1, nr⟩, ⟨2, j, a⟩, ⟨3, j, b⟩⟩)

⇐⇒ (∃x ∈Xj)(∀y ∈ Yj)R
∃∀
j (f(n1), . . . , f(nr), x, y).

For every predicate Pj of B it holds that
h−1(Pj) = {⟨m(n1), . . . ,m(npj)⟩ ∣ ⟨n1, . . . , npj⟩ ∈ g

−1(Pj)} and h−1(B) = N0. It
is obvious that h−1(B) ≤T D = g−1(B).

The pullback of the equality is defined over the elements which are pull-
backs of elements of B as g−1(=). Over the other elements the equality is
defined in the usual way. So, h−1(=) is the set:

{⟨x, y⟩ ∣ (⟨m−1(x),m−1(y)⟩ ∈ g−1(=) & x, y ∈ N0) ∨ (x = y & x, y /∈ N0)}.

68 CHAPTER 3. JUMP OF A STRUCTURE

Then h−1(=) ≤T D. Thus h−1(B ⊕A
∃∀

) = h−1(C) ≤T D = g−1(B). Using that
g−1(B)′ ≡T f−1(A), we get from here that h−1(C)′ ≤T f−1(A). ◻

The next natural questions is if one can extend the jump inversion theorem
to every constructive ordinal α. As we explained at the beginning of the chap-
ter, Goncharov, Harizanov, Knight, McCoy, Miller and Solomon [GHK+05]
show that this is true if α is a computable successor ordinal, even though
they do not state their result in terms of the jump of a structure. This result
was useful later on, for instance Greenberg, Montalbán and Slaman [GMS13]
use it to build a structure whose spectrum consists of the non-hyperarithetic
degrees. Vatev [Vat14, Vat13, Vat15] proves the α-jump inversion theorem
for a computable successor ordinal α based on the construction in [GHK+05].
He shows also that for any structure A such that the elements of DS(A) are
above 0(α) for a computable successor ordinal α ≥ ω, there is a structure C such
that C(α) ≡w A and moreover for every X ⊆ A, (X ∈ Σc

α(C) ⇐⇒ X ∈ Σc
1(A)).

The problem of jump inversion for α = ω, or, in general, any computable
limit ordinal remains open for longer. In one of his last papers Soskov [Sos13b]
finally proves that there is a good reason for that.

Theorem 3.3.10. [Sos13b] There is a total structure A with DS(A) ⊆ {b ∣

0
(ω)
e ≤ b} for which there is no structureM with DSω(M) =DS(A).

The proof relies on an analysis of the ω-jump co-spectrum of a structure.

3.4 Some Applications

We will present some applications of the jump inversion theorems [SS09a,
SS09b]. The jump inversion theorem proved in the previous section can be
easily generalized in the following way. Let remain the definition of the jump
spectra.

Definition 3.4.1. Given a structure A and n ≥ 0, let the nth jump spectrum
DSn(A) be the set {a(n) ∶ a ∈DS(A)}.

We denote by A(n) the n-th jump of structure A defined inductively:
A(0) = A; A(n+1) = (An)′.

Clearly DS0(A) =DS(A) and DSn+1(A) = {a′ ∶ a ∈DSn(A)}. Using this
and Theorem 3.2.1, one can easily see by induction on n that for every n
there exists a structure A(n) such that DSn(A) =DS(A(n)).

3.4. SOME APPLICATIONS 69

Theorem 3.4.2. Let A and B be structures such that DS(A) ⊆ DSn(B).
Then there exists a structure C such that DS(C) ⊆ DS(B) and DSn(C) =
DS(A).

Proof. Induction on n. The assertion is obvious for n = 0. Suppose that
it is true for some n. Let DS(A) ⊆ DSn+1(B). Consider a structure B(n)

such that DS(B(n)) = DSn(B). Clearly DS(A) ⊆ DS1(B(n)) and hence by
Theorem 3.3.9 there exists a structure C∗ such that DS(C∗) ⊆DS(B(n)) and
DS1(C∗) = DS(A). By the induction hypothesis, there exists a structure
C such that DS(C) ⊆ DS(B) and DSn(C) = DS(C∗). Then DSn+1(C) =
DS1(C∗) =DS(A). ◻

Recall that degree a is said to be the nth jump degree of a structure A if
a is the least element of DSn(A). Notice that if a is the nth jump degree of
A then for all k, a(k) is the (n + k)th jump degree of A. Hence if a structure
A possesses a nth jump degree then it possesses (n + k)th jump degrees for
all k.

With respect to the jump degrees of A it does not matter whether we
consider arbitrary enumerations of A or only injective enumerations of A.
Indeed, by Proposition 2.4.2, if a is the least element of the spectrum of A
then a = dT(f−1(A)) for some injective enumeration f .

The definitions above of the jump spectrum can be naturally generalized
for all computable ordinals α. In [DK92] Downey and Knight proved with
a fairly complicated construction that for every computable ordinal α there
exists a linear order A such that A has αth jump degree equal to 0(α) but
for all β < α, there is no βth jump degree of A. Now we can obtain this
theorem for the finite ordinals as an application of Theorem 3.3.9. Consider
a structure B such that DS(B) consists of all degrees above 0(n) and has no
least element, and such that 0(n+1) is the least element of DS1(B). Let A be
any total computable structure, e.g. A = (N ;=) Clearly DS(B) ⊆ DSn(A).
By Theorem 3.4.2 there exists a structure C such that DSn(C) = DS(B).
Therefore C does not have a n-th jump degree and so no k-th jump degree
for k ≤ n. On the other hand DSn+1(C) = DS1(B) and hence the (n + 1)-th
jump degree of C is 0(n+1).

Why does such a structure B exist? We want:

(C1) DS(B) ⊆ {a ∣ 0(n) ≤ a}.

(C2) DS(B) has no least element.

70 CHAPTER 3. JUMP OF A STRUCTURE

(C3) B has a first jump degree equal to 0(n+1).

To explain this we use a following result. There is an e-degree q that
is quasi-minimal relative to 0(n) and with q′ = 0(n+1). This follows from a
relativization of the Jump inversion theorem of McEvoy [McE85] :

There is a set S, such that

1. ∅(n) ⊕ (N ∖ ∅(n)) <e S;

2. (∀X)(X ⊕ (N ∖X) ≤e S ⇒X ≤T ∅(n));

3. ∅(n+1) ≡T S′e.

Let q = de(S). Let B = G be the torsion free abelian group of rank 1 from
Example 2.4.5 with characteristic S(G) = S. So, sb = q = de(S). Recall that
DS(G) = {a ∣ sG ≤e a and a is total} and the first jump degree of G is s′b. So,
we have:

1. DS(G) = {dT(X) ∣ S is c.e. in X}.

2. dT(S′e) is the first jump degree of G.

Let dT(X) ∈DS(G). Then S is c.e. in X and hence ∅(n) ⊕N ∖∅(n) is c.e.
in X. Then ∅(n) ≤T X. So, G satisfies (C1). Clearly G satisfies (C3).

Assume that dT(X) is the least element of DS(G). Then, by Selman’s
theorem [Sel71], X ⊕ (N ∖X) ≤e S, and hence X ≤T ∅(n). Thus S is c.e. in
∅(n). From here it follows that S ≤e ∅(n) ⊕ (N ∖ ∅(n)). A contradiction. So,
G satisfies (C2).

An easy application of Theorem 3.2.1 is the main property of the jump of a
structure. Consider a relation R ⊆ An. The relation R is relatively intrinsically
Σ0

2 on A if and only if R is relatively intrinsically Σ0
1 on A′. Indeed, let R

be relatively intrinsically Σ0
1 on A′. If f is an enumeration of A, we have to

show that f−1(R) is Σ0
2 in f−1(A), or equivalently f−1(R) is c.e. in f−1(A)′.

Consider the enumeration f∗ of A′, that extends f , defined in Lemma 3.1.2.
We know that f−1(R) ≡T (f∗)−1(R) and (f∗)−1(A′) ≤T f−1(A)′. Since R is
relatively intrinsically Σ0

1 on A′, we have that (f∗)−1(R) is c.e. in (f∗)−1(A′).
So, f−1(R) is c.e. in f−1(A)′.

For the other direction let R be relatively intrinsically Σ0
2 on A. Let f

is an enumeration of A′. We have to prove that f−1(R) is c.e. in f−1(A′).

3.4. SOME APPLICATIONS 71

We construct a generic enumeration g of A as in Theorem 3.2.1 and we have
that g−1(A)′ ≤T f−1(A′). Since R be relatively intrinsically Σ0

2 on A, g−1(R)

is c.e in g−1(A)′. So, since f−1(R) ≡T g#−1
(R#), and the mapping g# is

computable in f−1(A′), we have f−1(R) is c.e. in f−1(A′).

Our next application is a generalization of results of Slaman [Sla98] and
Wehner [Weh98]. They give an example of a structure with degree spectrum
consisting of all noncomputable Turing degrees.

Theorem 3.4.3. [Weh98] There is a family of finite sets, which has no c.e.
enumeration, i.e. c.e. universal set, and for each noncomputable set X there
is a enumeration computable in X.

First we relativize this theorem.

Theorem 3.4.4. Let B ⊆ N . There is a family F of sets, which has no c.e.
in B enumeration, and for each set X >T B there is a enumeration of the
family F , computable in X.

Following an idea of Kalimullin [Kal09b] we consider the following family
of sets

F = {{0}⊕B} ∪ {{1}⊕B} ∪ {{n + 2}⊕ F ∣ F finite set, F ≠WB
n }.

Proposition 3.4.5. Let X ⊆ N . If a universal for F set U is c.e. in X then
X >T B.

It is clear that B ≤T X.
If we assume that B ≡T X, then we can construct a computable in B

function g, such that (∀n)(WB
g(n) /= WB

n). This is a contradiction with the
recursion theorem.

Proposition 3.4.6. Let B <T X. There exists a universal set U for the
family F , such that U ≤T X.

Since X /≤ B then at least one of the sets X or X is not c.e. in B. Without
loss of generality assume that X is not c.e. in B. Fix an enumeration of
X = {x1, . . . , xs, . . .} and denote by νs = ⟨x1, . . . , xs⟩.

The set U we construct in stages. At each stage s we find an approximation
U s of U and a witness xsn,F,i for every finite set F and i, n ∈ N .

72 CHAPTER 3. JUMP OF A STRUCTURE

Construction

U0 = {(0,0)} ∪ {(0,2x + 1) ∣ x ∈ B} ∪ {(1,2)} ∪ {(1,2x + 1) ∣ x /∈ B}∪
{(⟨n,F, i⟩ + 2,2n + 4)} ∪ {(⟨n,F, i⟩ + 2,2x + 1) ∣ x ∈ F}

(3.4.1)
for each finite set F and i, n ∈ N and let x0

n,F,i = −1.
At stage s, denote by F s

⟨n,F,i⟩ = {x ∣ (⟨n,F, i⟩ + 2,2x + 1) ∈ U s}.

• If F s
⟨n,F,i⟩ /=WB

n,s and xsn,F,i /= −1, we set xs+1
n,F,i = x

s
n,F,i.

• If F s
⟨n,F,i⟩ =W

B
n,s and xsn,F,i /= −1, we set xs+1

n,F,i = −1 and add (⟨n,F, i⟩ +

2,2νs + 1) to U s+1.

• If xsn,F,i = −1, we check if there is a z such that z ∈ F s
⟨n,F,i⟩ /⇔ z ∈WB

n,s.
If there is such a number z, we set xs+1

n,F,i to be the least one. If not, we
add (⟨n,F, i⟩ + 2,2νs + 1) to U s+1.

End of construction
Let U = ⋃sU s and F = ⋃F s.
Consider the sequence {xsn,F,i}.

1. If this sequence has a limit a natural number, i.e. it is stable for all
s ≥ s0 for some s0, then the index ⟨n,F, i⟩ is an index of a finite set
from the family F .

2. If the sequence has a limit −1 or it does not have a limit at all, then
there exists a monotone sequence of stages s1 < s2 < ⋅ ⋅ ⋅ < sk < . . . , such
that WB

n,s = {νsk ∣ k ∈ N} ∪ F . It follows that the set {νsk ∣ k ∈ N} is c.e.
in B, and hence X is c.e. in B. A contradiction.

It follows that every set with index greater than 1 in U is finite and belongs
to the family F . It is clear that every member of the family F has an index.

Moreover (⟨n,F, i⟩+ 2, 2x+ 1) ∈ U if and only if one of the following holds:

1. x ∈ F ;

2. x = ⟨ν0, . . . , νs⟩, for some s.

Hence U ≤T X.
So the constructed set U is universal for the family F and U ≤T X.

3.4. SOME APPLICATIONS 73

Theorem 3.4.7 (Wehner, Slaman). [Weh98][Sla98] There is a structure C,
for which DS(C) = {x ∣ x >T 0}.

The relativized result is the following:

Theorem 3.4.8. For each n ∈ N and every Turing degree b ≥ 0(n) there
exists C, for which DSn(C) = {x ∣ x >T b} .

We construct the structure A, such that DS(A) = {x ∣ x >T b}, using
the family F in the same way as is done in [Weh98]. Let B = (N ;=). It
is clear that b ∈ DSn(B) for each b ≥ 0(n). Thus DS(A) ⊆ DSn(B). By
the Jump inversion Theorem 3.4.2 there exists a structure C, such that
DSn(C) =DS(A).

We would like to note that there is a relativized variant of Wehner’s result
for b = 0(n) and for b = 0′′ as follows: Goncharov, Harizanov, Knight, McCoy,
R. Miller and Solomon [GHK+05] show that for every n there is a structure
C, such that DS(C) = {x ∣ x(n) >T 0(n)}, i.e. the degree spectrum contains
exactly all non-lown Turing degrees.

Harizanov and R. Miller [HM07] proved that there is a structure C, such
that DS(C) = {x ∣ x′ ≥T 0′′} and the last author made a suggestion that they
can use an arbitrary Turing degree b in place of 0′′ and thereby building
structures with spectrum {x ∣ x′ ≥T b}.

In conclusion would like to point out that the Jump inversion theorem
gives a method to lift some interesting results for degree spectra to the nth
jump spectra.

74 CHAPTER 3. JUMP OF A STRUCTURE

Chapter 4

Strong jump inversion

In this chapter we will present a general result with sufficient conditions for
a countable structure to admit strong ump inversion. We will show several
classes of structures where these conditions apply, such as some classes of
linear orderings, Boolean algebras, trees, models of theory with few types and
differentially closed fields. These investigations are join with Wesley Calvert,
Andrey Frolov, Valentina Harizanov, Julia Knight, Charles McCoy, Stefan
Vatev, and started when most of them visited Sofia in 2013 and are published
in the paper [CFH+18].

We say that a structure A admits strong jump inversion provided that
for every oracle X, if X ′ computes D(C)′ for some C ≅ A, then X computes
D(B) for some B ≅ A. Jockusch and Soare [JS91] showed that there are
low linear orderings without computable copies, but Downey and Jockusch
[DJ94] showed that every Boolean algebra admits strong jump inversion. D.
Marker and R. Miller [MM17] have shown recently that all countable models
of DCF0 (the theory of differentially closed fields of characteristic 0) admit
strong jump inversion. We establish a general result with sufficient conditions
for a structure A to admit strong jump inversion. Our conditions involve
an enumeration of B1-types, where these are made up of formulas that are
Boolean combinations of existential formulas. We apply them on several
classes of structures.

We start with some definitions and examples. In Section 4.2, we give a
general result with sufficient conditions for strong jump inversion. In Section
4.3, we give several applications of our general result. The last of these gives
the result of Marker and Miller [MM17] saying that all models of DCF0 admit
strong jump inversion. We add a result saying that the countable saturated

75

76 CHAPTER 4. STRONG JUMP INVERSION

model of DCF0 has a decidable copy.

4.1 Canonical jump and strong jump inversion
We often identify a structure A with its atomic diagram D(A). We are
interested in the following notion of jump inversion.

Definition 4.1.1. A structure A admits strong jump inversion provided that
for all sets X, if X ′ computes D(C)′ for some C ≅ A, then X computes D(B)
for some B ≅ A.

Remark 4.1.2. The structure A admits strong jump inversion iff for all X,
if A has a copy that is low over X, then it has a copy that is computable in
X. Here when we say that C is low over X, we mean that D(C)′ ≤T X ′.

The definition of strong jump inversion was motivated by the following
result of Downey and Jockusch [DJ94].

Theorem 4.1.3 (Downey-Jockusch). All Boolean algebras admit strong jump
inversion.

Proof. [Sketch of proof]
Let A be a Boolean algebra that is low over X. Then X ′ computes

the set of atoms in A. Downey and Jockusch showed that if X ′ computes
(A, atom(x)), then X computes a copy of A. The proof involves some non-
uniformity. A Boolean algebra with only finitely many atoms obviously has
a computable copy. Suppose A has infinitely many atoms. If A is low over
X, then there is an X-computable Boolean algebra B with a function f , ∆0

2

relative to X, which would be an isomorphism from B to A except that it
may map a finite join of atoms in B to a single atom in A. We convert f into
an isomorphism by re-apportioning the atoms (see Vaught [Vau55]). ◻

Here are some further examples of structures that admit strong jump
inversion.

Example 4.1.4 (Equivalence structures). Each equivalence structure is char-
acterized up to isomorphism by the number of equivalence classes of various
sizes. We consider equivalence structures with infinitely many infinite classes.
It is well-known, and easy to prove, that such an equivalence structure
has an X-computable copy iff the set of pairs (n, k) such that there are at
least k classes of size n is Σ0

2 relative to X. (See [AK00] for a complete
characterization of the equivalence structures with computable copies.)

4.1. CANONICAL JUMP AND STRONG JUMP INVERSION 77

Proposition 4.1.5. Let A be an equivalence structure with infinitely many
infinite classes. Then A admits strong jump inversion.

Proof.
If A is low over X, then the set Q consisting of pairs (n, k) such that

there are at least k classes of size n is Σ0
2 relative to A, so it is Σ0

2 relative to
X. Then A has an X-computable copy. ◻

Example 4.1.6 (Abelian p-groups of length ω). By Ulm’s Theorem, a count-
able Abelian p-group is characterized up to isomorphism by the Ulm sequence
and the dimension of the divisible part. For an account of this, see [Kap69].
An Abelian p-group of length ω can be expressed as a direct sum of copies
of Zpn+1 , for finite n, and the Prüfer group Zp∞ . Then the Ulm sequence is
(un(G))n∈ω, where un(G) is the number of direct summands of form Zpn+1 .
The dimension of the divisible part is the number of direct summands of
form Zp∞ . It is well-known, and easy to prove, that if G is an Abelian
p-group of length ω with a divisible part of infinite dimension, then G has an
X-computable copy iff the set {(n, k) ∶ un(G) ≥ k} is Σ0

2 relative to X.

Proposition 4.1.7. Let G be an Abelian p-group of length ω such that the
divisible part has infinite dimension. Then G admits strong jump inversion.

Proof.
Suppose G itself is low over X. The set {(n, k) ∶ un(G) ≥ k} is Σ0

2 relative
to G, so it is Σ0

2 relative to X. Then G has an X-computable copy. ◻

Not all countable structures admit strong jump inversion.

Example 4.1.8. Jockusch and Soare [JS91] showed that there are low linear
orderings with no computable copy.

Example 4.1.9. Let T be a low completion of PA. There is a model A such
that the atomic diagram D(A), and even the complete diagram Dc(A), are
computable in T . Then D(A)′ is ∆0

2. By a well-known result of Tennenbaum,
since A is necessarily non-standard, there is no computable copy.

There is a computable set of indices for computable Σc
1 formulas, so we can

enumerate, uniformly in D(A), all relations that are relatively intrinsically
Σ0

1 on A (r.i.c.e.). Moreover, we can uniformly compute all of these relations
from the Turing jump of the diagram, D(A)′. The jump of A is often defined
to be a structure A′ obtained by adding to A a specific named family of r.i.c.e.

78 CHAPTER 4. STRONG JUMP INVERSION

relations, from which all others are effectively obtained. As we know from the
previous chapter the r.i.c.e. relations on A′ are just those which are relatively
intrinsically Σ0

2 on A itself.
We used in previous chapter our definition of the jump of structure when

we proved the jump inversions theorems. Here we will use the Montalbán’s
definition from [Mon09] but modified in [Mon12], in order to show that it is
equivalent to our notion.

Definition 4.1.10 (Canonical jump). For a structure A, the canonical jump
is a structure A′ = (A, (Ri)i∈ω), where (Ri)i∈ω are relations from which we
can uniformly compute all r.i.c.e. relations on A, and from the index i of the
relation Ri, we can compute the arity of Ri and a computable Σc

1 formula
(without parameters) that defines it in A.

Remark 4.1.11. The set ∅′ is included in the canonical jump. We may give
it by a family of relations Rf(e), for a computable function f , where Rf(e) is
always true if e ∈ ∅′ and always false otherwise. We may define Rf(e) by the
computable Σc

1 formula ⋁s τe,s, where τe,s is ⊺ if e has entered ∅′ by step s
and � otherwise.

For some structures, there is a smaller subset of the relations that is
sufficiently powerful to replace the full set.

Definition 4.1.12 (Structural jump). A structural jump of A is an expansion
A′ = (A, (Ri)i∈ω) such that each Ri has a Σc

1 defining formula that we can
compute from i, and every relation that is relatively intrinsically Σ0

2 on A is
r.i.c.e. on A′ ⊕∅′.

Here the structure A′ ⊕∅′ is the expansion of A′ by a family of relations
that encode the set ∅′, as explained in Remark 4.1.11.

For certain classes of structures, there is a structural jump formed by
adding a finite set of such relations. In particular, the relation atom(x)
is sufficient for Boolean algebras, and the successor relation succ(x, y) is
sufficient for linear orders. See [Mon09, Mon12] for further examples.

There are different statements of “jump inversion”. As we know from
Chapter 2. Theorem 2.2.9 the Friedberg jump inversion theorem says that
if ∅′ ≤T Y , then there is a set X such that X ′ ≡T Y ≡ ∅′ ⊕X. We can easily
produce a structure B such that X ≡T B, and then Y ≡T B′. This is one kind
of jump inversion. A more interesting kind of jump inversion theorem that

4.2. GENERAL RESULT 79

we proved with Soskov [SS07, SS09a], and later (independently) Montalbán
[Mon09]. This is Theorem 3.2.1 from previous chapter, formulated in other
terms.

Theorem 4.1.13 (Soskov, A. Soskova, Montalbán). For any countable struc-
ture A, if Y computes a copy of the canonical jump A′ of A, there exists a
set X such that X ′ ≡T Y and X computes a copy of A.

The proposition below shows that we can express strong jump inversion in
terms of copies of the canonical jump structure A′, as opposed to the Turing
jump of the atomic diagram for various copies B.

Proposition 4.1.14. For any structure A, the following are equivalent:

(1) A admits strong jump inversion.

(2) For all sets X, if X ′ computes a copy of the canonical jump A′ of A,
then X computes a copy of A.

(3) For all sets X and Y , if X ′ ≡T Y ′ and Y computes a copy of A then so
does X.

Proof.
For (2) ⇒ (1), assume A has a copy B with (D(B))′ ≤T X ′. Since

D(B′) ≤T (D(B))′ ≤T X ′, (2) implies that X computes a copy of A.
For (1)⇒ (3), let X ′ ≡T Y ′, where Y computes a copy B of A. Then X ′

computes D(B)′. By (1), X computes a copy of A.
For (3)⇒ (2), suppose X ′ computes a copy of A′. By Theorem 4.1.13,

there exists Y such that Y computes a copy of A and Y ′ ≡T X ′. By (3), X
computes a copy of A. ◻

4.2 General result
In this section, we give a result with conditions sufficient to guarantee that a
structure admits strong jump inversion. The content of this section is from
[CFH+18]. The result is not difficult to prove. However, there are a number
of examples where it applies. To state the result, we need some definitions.

Definition 4.2.1. Let S be a countable family of sets. An enumeration of S
is a set R of pairs (i, k) such that S is the family of sets Ri = {k ∶ (i, k) ∈ R}.
If A = Ri, we say that i is an R-index for A.

80 CHAPTER 4. STRONG JUMP INVERSION

Note: When we say that R is a computable enumeration of a family of
sets, we mean that R is a computable set of pairs. This means that the
sets Ri are computable, uniformly in i. Some researchers have used the term
differently, saying that R is a computable enumeration if the sets Ri are
uniformly computably enumerable.

Below, we define Bn-types precisely. We shall focus on B1-types.

Definition 4.2.2.

1. A Bn-formula is a finite Boolean combination of ordinary finite elemen-
tary Σn-formulas.

2. A Bn-type is the set of Bn-formulas in the complete type of some tuple
in some structure for the language.

Definition 4.2.3. Fix a structure A. Let S be a set of B1-types including
all those realized in A. Let R be an enumeration of S. An R-labeling of A is
a function taking each tuple a in A to an R-index for the B1-type of a.

We are interested in structures A with the following property.

Definition 4.2.4 (Effective type completion). The structure A satisfies
effective type completion if there is a uniform effective procedure that, given
a B1-type p(u) realized in A and an existential formula ϕ(u,x) such that
(∃x)ϕ(u,x) ∈ p(u), yields a B1-type q(u,x) with ϕ(u,x) ∈ q(u,x), such that
if a in A realizes p(u), then some b in A realizes q(a, x).

Here is our general result.

Theorem 4.2.5. A structure A admits strong jump inversion if it satisfies
the following conditions:

(1) There is a computable enumeration R of a set of B1-types including all
those realized by tuples in A.

(2) A satisfies effective type completion.

(3) For all sets X, if X ′ computes the jump of some copy of A, then X ′

computes a copy of A with an R-labeling.

4.2. GENERAL RESULT 81

Moreover, if C is a copy of A with an X ′-computable R-labeling, then we get
an X-computable copy B of A with an X ′-computable isomorphism from B
to C.

Remark 4.2.6. For some structures A, Condition (3) is satisfied in a strong
way. For any C ≅ A, D(C)′ computes an R-labeling of C. Hence, if A is low,
there is a ∆0

2 isomorphism from A to a computable copy.

Proof. [Proof of Theorem 4.2.5]
Suppose that A satisfies the three conditions. Let X be a set such that

X ′ computes the jump of some copy of A. By Condition (3), X ′ computes
a copy with an R-labeling. We must show that there is an X-computable
copy. For simplicity, we suppose that A has a ∆0

2 R-labeling, and we produce
a computable copy B, basing our construction on guesses at various portions
of the R-labeling of A. Note that once we have guessed the label for a tuple
a correctly, we computably know the entire B1-type of that tuple. We build
a computable copy B and a ∆0

2 isomorphism f from B to A. We have the
following requirements.

R2a: a ∈ ran(f)

R2b+1: b ∈ dom(f)

We start with an R-index for the type of ∅, where this type is the B1-
theory of A. At each stage s, we have a tentative partial isomorphism fs
mapping a tuple d from B to a tuple c in A, where the R-indices of the types
of c and all of its initial segments still look correct. (At a later stage t, we
may see that some of the guesses at these indices are incorrect, and we retain
only the portion of fs satisfying an initial segment of requirements based on
guesses at R-indices that all look correct.) Moreover, we have enumerated a
finite part δ(d, b) of the atomic diagram of B; this can never change, since B
must be computable. We will have checked the consistency of δ(d, b) with our
guesses at the R-indices of the B1-types of the tuple c and its initial segments.
Supposing that the function taking d to c satisfies the earlier requirements,
we can satisfy the requirement R2a once we guess the R-index for the B1-type
p(u,x) of c, a. We map some b, either old or new, to a so that δ(u, v) is
consistent with p(u,x). (Recall that the B1-types are computable.)

Suppose that the function taking d to c satisfies the requirement Ri for
all i < 2b + 1, and R2b+1 is least that is unsatisfied at this stage s. Again,

82 CHAPTER 4. STRONG JUMP INVERSION

we assume that we have correct guesses on the R-indices for the B1 types
of c and all of its initial segments; let p(u) be the B1-type of c. Finally, we
have put δ(d, b, b) in the atomic diagram of B. Now we use the assumption of
effective type completion. We determine, effectively in p(u) and the existential
formula (∃v)δ(u,x, v), a type q(u,x) appropriate for c and a putative fs(b).
If c realizes p(u), then some a will realize q(c, x). At step s, we can give a
computable index for q(u,x), but not an R-index.

By effective type completion, if p(u) really is the B1-type of c, then q(c, x)
will be realized in A. We define fs(b) as follows. We find the first a such
that, based on our guess at the R-index of the B1 type of c, a, this type and
q(u,x) agree on the first s formulas; then fs(b) = a. Of course, this guess
at the element a is likely wrong. Therefore, in order to guarantee that this
requirement is satisfied, at each subsequent stage t, we need to check that,
based on our guess at the R-index of the B1 type of c, a, this type and q(u,x)
agree on the first t formulas. If this is not the case, then we need to re-define
ft(b), but always maintaining q(u,x) as the guaranteed type of q(c, f(b)),
so long as our work on earlier requirements seems correct. (In particular,
note that as we check consistency of the atomic diagram with the B1 types
associated with requirement R2b+1, we use the computable index for q(u,x).)
There is a first a realizing q(c, x), and eventually, we will have the R-index
for the B1 type of c, a. Then we will have fs(b) = f(b) = a. ◻

In several examples, A has effective type completion because it satisfies a
property that we call weak 1-saturation. To describe this property, we need a
preliminary definition.

Definition 4.2.7. Suppose p(u) and q(u,x) are B1-types. We say that
q(u,x) is generated by the formulas of p(u) and existential formulas provided
that q(u,x) ⊇ p(u), and for any universal formula ψ(u,x) (in the indicated
variables), writing neg(ψ) for the natural existential formula logically equiva-
lent to ¬ψ, we have ψ(u,x) ∈ q(u,x) iff there is a finite conjunction χ(u,x)
of existential formulas in q(u,x) such that (∃x)[χ(u,x) & neg(ψ(u,x))] is
not in p(u).

Definition 4.2.8. The structure A is weakly 1-saturated provided that if p(u)
is the B1-type of a tuple a, and q(u,x) is a B1-type generated by formulas of
p(u) and existential formulas, then q(a, x) is realized in A.

The following is clear.

4.3. EXAMPLES 83

Lemma 4.2.9. Let p(u) be a B1-type. Suppose q(u,x) is a B1-type that
is generated by formulas of p(u) and existential formulas. Then q(u,x) is
consistent with all extensions of p(u) to a complete type in variables u.

Proposition 4.2.10. If A is weakly 1-saturated, then it satisfies effective
type completion.

Proof.
Let p(u) be a B1-type, and suppose ϕ(u,x) is an existential formula such

that (∃x)ϕ(u,x) ∈ p(u). We effectively produce a type q(u,x) extending
p(u) and containing the formula ϕ(u,x), such that if a realizes p(u), then
some b realizes q(a, x). The type q(u,x) is generated by formulas of p(u)
and existential formulas, including the formula ϕ(u,x). We determine this
B1-type computably as follows. We start with p(u) and ϕ(u,x). We have
a computable list (ϕn(u,x))n∈ω of all existential formulas in variables u,x,
in order of Gödel number. We consider these formulas, in order, and we
put ϕn(u,x) into q(u,x) iff it is consistent with what we have already put
into q(u,x). (This consistency check is computable relative to p(u), because
it entails only asking whether the relevant B1 formulas are in p(u).) If we
fail to put ϕn(u,x) in, then all tuples satisfying what we did put in must
satisfy neg(ϕn(u,x)), so that is in q(u,x). Knowing exactly which existential
formulas are in q(u,x), we can determine which B1 formulas are in (using
truth tables). We have described an effective procedure for determining
q(u,x). By weak 1-saturation, there is some b in A realizing q(a, x). ◻

4.3 Examples
The content of this section is from [CFH+18].

In this section, we consider some examples of structures that admit strong
jump inversion. The examples are chosen to illustrate the use of Theorem
4.2.5. In Subsection 4.3.1, we discuss two special kinds of linear orderings.
For both, we can apply Theorem 4.2.5. For the first, Condition (3) holds in
a strong way, as in Remark 4.2.6. In Subsection 4.3.2, we consider Boolean
algebras with no 1-atoms. The result of Downey and Jockusch says that every
low Boolean algebra has a computable copy. In the case where there are no
1-atoms, our result gives a ∆0

3 isomorphism from a low copy to a computable
one. In Subsection 4.3.3, we apply Theorem 4.2.5 to some special classes of
trees.

84 CHAPTER 4. STRONG JUMP INVERSION

In Subsection 4.3.4, we consider models of an ℵ0-categorical elementary
first order theory T such that T ∩Σ2 is computably enumerable. The fact
that the B1-types are all isolated makes it easy to produce a computable enu-
meration. By contrast, in Subsection 4.3.5, we consider models of the theory
of differentially closed fields of characteristic 0. Here, although the theory is
decidable, with all types computable, producing a computable enumeration
of them is not trivial. We get a result of Marker and R. Miller [MM17]
saying that all models of DCF0 admit strong jump inversion. Moreover, a
result of Morley in [Mor76] implies that, since the types of the theory have a
computable enumeration, the saturated model of DCF0 has a decidable copy.

4.3.1 Linear orderings

Frlolov proved strong jump inversion for two special classes of linear orderings,
with further results on complexity of isomorphisms. The results are given in
[Fro06], [Fro10], [Fro12]. Here we prove these results using Theorem 4.2.5.

First, we describe the possible B1 types in linear orderings. Every B1-type
p(u) is determined uniquely by the sizes of the intervals to the left of the first
element, between successive elements, and to the right of the last element.
Thus, we can define a computable enumeration R of all B1-types realized in
linear orderings so that from the index i of the B1-type Ri, we can effectively
obtain the sizes of the intervals.

Let p(u1, u2) be a B1-type in which the interval (u1, u2) is infinite. We
consider B1-types q(u1, u2, x), with u1 < x < u2. To understand which of these
are generated by formulas from p(u1, u2) and existential formulas, it is helpful
to consider the following cases.

Case 1: Let q(u1, u2, x) be a B1-type such that the interval (u1, x) is finite,
of size k, and the interval (x,u2) is infinite. Let t(u1, u2) be a complete type
saying that u1 and u2 are infinitely far apart and u1 belongs to a maximal
discrete interval of size less than k. Clearly, p(u1, u2) is consistent with
t(u1, u2), whereas q(u1, u2, x) is not. By Lemma 4.2.9, q(u1, u2, x) is not
generated by p(u1, u2) and existential formulas.

Case 2: Let q(u1, u2, x) extend p(u1, u2) such that u1 < x < u2, and the
intervals (u1, x) and (x,u2) are both infinite. Then q(u1, u2, x) is generated
by p(u1, u2) and the infinite set of existential formulas saying that for each n,
there are at least n elements in the intervals (u1, x) and (x,u2).

4.3. EXAMPLES 85

Proposition 4.3.1. Let A be a linear ordering such that every infinite
interval can be split into two infinite parts. Then A is weakly 1-saturated.

Proof. For a tuple a, we consider the possible B1-types q(a, x). First,
suppose q(a, x) locates x in a finite interval (−∞, a0), (ai, ai+1), or (an,∞) so
that the sizes of the two subintervals to the left and right of x add up properly.
Then q(u,x) is generated by formulas of p(u) and existential formulas saying
that the subintervals have at least the desired size, and q(a, x) must be realized.
Next, suppose q(a, x) locates x in an infinite interval (−∞, a0), (ai, ai+1), or
(an,∞). If q(a, x) is generated by formulas of p(u) and existential formulas,
then x must split the interval into two infinite parts. The ordering A has
exactly this feature. ◻

Here is the simpler of the two results on linear orderings.

Theorem 4.3.2. Let A be a linear ordering such that each element lies on
a maximal discrete set that is finite. Suppose there is a finite bound on the
sizes of these sets. Then A admits strong jump inversion. Moreover, if A is
low over X, then there is an X-computable copy with an isomorphism that
is ∆0

2 relative to X.

Proof.
Let N be the finite bound on the sizes of the maximal discrete sets. It is

∆0
2 relative to A to say that the interval (a, b) has size n for some fixed n. It

is Σ0
1 relative to A to say that the interval is infinite—we just ask whether

the interval has size greater than N .
Suppose that A is low over X. We can apply a procedure that is ∆0

2

relative to X to assign an R-index to the type of any tuple a = (a1, . . . , an).
Any of the intervals (−∞, a1), (an,∞) and (ai, ai+1) is infinite if it has size
greater than N . Using a procedure that is ∆0

2 relative to X, we can determine
whether the size is k, for k ≤ N . We have an R-labeling of A that is ∆0

2

relative to X. Then Theorem 4.2.5 gives an X-computable copy with an
isomorphism that is ∆0

2 relative to X. ◻
The next result, Theorem 4.3.3, is more complicated. Before we state

the result, we review some well-known, basic concepts about linear orderings.
Recall the block equivalence relation ∼ on a linear ordering A, where a ∼ b iff
[a, b] is finite. For any linear ordering A, each equivalence class under this
relation is an interval that is either finite or of order type ω,ω∗, or ζ = ω∗ +ω.
Furthermore, the quotient structure A/∼ is itself a linear ordering, where each
distinct point represents an equivalence class under ∼.

86 CHAPTER 4. STRONG JUMP INVERSION

In Theorem 4.3.3, for a given A that is low over X, it is not clear that A
itself has an R-labeling that is ∆0

2 relative to X. However, we can build a copy
B with such an R-labeling. We write η for the order type of the rationals.

Theorem 4.3.3. Let A be a linear ordering for which the quotient A/∼ has
order type η. Suppose also that in A, every infinite interval has arbitrarily
large finite successor chains. Then A admits strong jump inversion. Moreover,
if A is low over X, then there is an X-computable copy B with an isomorphism
that is ∆0

3 over X from A to B.

Proof.
As in the previous result, let R be a computable enumeration of all B1-

types realized in linear orderings, such that from the index i of the type
Ri, we can compute the sizes, including ∞, of the intervals. Also, as in the
previous result, every infinite interval in A has an element that splits the
interval into two infinite parts. This implies that A is weakly 1-saturated.
Suppose A is low over X. We will prove the following.

Lemma 4.3.4. There is a copy B of A with an R-labeling that is ∆0
2 over X.

Moreover, there is an isomorphism f from B to A such that f is ∆0
3 relative

to X.

Assuming the lemma, we complete the proof of Theorem 4.3.3 as follows.
Given A, low over X, the lemma gives a copy B with an R-labeling that is
∆0

2 relative to X, and an isomorphism f from B to A that is ∆0
3 relative to X.

By Theorem 4.2.5, there is an X-computable copy C with an isomorphism g
from C to B that is ∆0

2 relative to X. Then f ○ g is an isomorphism from C to
A that is ∆0

3 relative to X.
Proof. [Proof of Lemma]

For simplicity, we suppose that A is low. We build a ∆0
2 copy B, along

with some labels for sizes of intervals and a ∆0
3 isomorphism f . We suppose

that the universe of A is ω. The copy B, also with universe ω, will have the
intervals labeled by size. Throughout, we use the oracle ∆0

2. Suppose An is the
true ordering on the first n elements of A, with the intervals correctly labeled
by size. At stage s, we construct (using the ∆0

2 oracle) an approximation
An,s in which the intervals are either correctly labeled with a finite number
at most s, or else carry the label ∞. We have a finite sub-ordering Bs of B in
which the intervals are labeled by size, once and for all.

We want an isomorphism f from B onto A. We must satisfy the following
requirements.

4.3. EXAMPLES 87

R2a: Put a into ran(f).

R2b+1: Put b into dom(f).

By the end of each stage s, we have a finite function fs that seems to
satisfy the first few requirements, so that our current labels on the intervals
with endpoints in ran(fs) match the labels on the corresponding intervals in
dom(fs). Moreover, we ensure that if fs(b) = a, then for any successor chain
around b in Bs, we also have seen, by stage s, a corresponding successor chain
around a in A.

An interval that seemed infinite at stage s may be seen to be finite at
stage s + 1. So in defining fs+1, we first determine the largest initial segment
of fs (in terms of priority requirements) that can be preserved. Consider the
highest priority requirement that now must be satisfied.

Suppose the next requirement to be satisfied is to put a into ran(f).
We have no problem finding an appropriate pre-image b and assigning the
appropriate sizes to the intervals having b as an endpoint.

Suppose the next requirement to be satisfied is to put b into dom(f). In
the interesting sub-case, b lies in an interval (d, d′), where (d, b) and (b, d′

are both labeled infinite, fs(d) = c and fs(d′) = c′, where (c, c′) appears to
be infinite. We need to define a = fs+1(b) such that (c, a) and (a, c′) both
appear infinite, and whatever successor chain surrounding b is matched by
one surrounding a. The naive strategy is to just look for a. This strategy
may not work. Believing that we have found a, and seeing that a lies in a
finite interval inside (c, c′), we may create a bigger successor chain around b,
inside (d, d′). Eventually, we may discover that the interval (c, a) or (a, c′) is
finite. Now, we cannot map b to a. Moreover, we have made the search for
f(b) more difficult in that it must lie in a larger finite interval matching the
one we have created around b. This can keep happening. Our current guess
at the appropriate a = f(b) may keep attaching itself to a successor chain
around c or c′.

We need a better strategy. Instead of trying to define a = fs+1(b) imme-
diately, we identify the first (relative to the standard ordering on pairs of
the universe ω of A) “buffer pair” (z, z′) such that (c, z), (z, z′) and (z′, c′)
all appear infinite in A. Once we find such a (z, z′), then we search within
(z, z′) for an element a and a successor chain around it sufficient to match
whatever one we may have created around b; we define fs+1(b) = a. Assuming
the interval (c, c′) is correctly labeled as infinite, then, at some stage, we will

88 CHAPTER 4. STRONG JUMP INVERSION

settle on the first correct buffer pair (z, z′), i.e., one such that (c, z), (z, z′)
and (z′, c′) all are really infinite in A. Then, applying the hypothesis about
A, we are guaranteed to find in (z, z′) an element a with a finite interval
around it large enough to correspond to whatever one we may have built
around b by this stage. (Recall that, in general, when we map b to a for some
requirement, we vow not to locate b in a finite interval larger than the one we
have seen around a.) Following this procedure, we can eventually satisfy all
requirements. ◻ ◻

4.3.2 Boolean algebras

As we mentioned in the introduction, Downey and Jockusch [DJ94] showed
that every low Boolean algebra has a computable copy. In [KS00], it is shown
that for a low Boolean algebra A, there is a computable copy B with a ∆0

4

isomorphism. In unpublished work, Knight and Stob proved that this is
best possible, in the sense that there is a low Boolean algebra with no ∆0

3

isomorphism taking A to a computable copy B.
For every element a in the Boolean algebra B, we say that a has size n if

it is the join of n atoms of B. If a is not the join of finitely many atoms of B,
then we say that a has infinite size. Here we consider Boolean algebras with
no 1-atoms, which means that every infinite element splits into two infinite
elements. To describe the B1-type of a tuple a in B, we consider the finite
sub-algebra of B generated by a. Note that an atom in this finite sub-algebra
is not necessarily an atom of B. It is easy to see that for a tuple a in B, the
B1-type of a is uniquely determined by the sizes in B of the atoms in the finite
sub-algebra generated by a. Thus, we can define a computable enumeration
R of all B1-types realized in Boolean algebras so that from the index i of the
B1-type Ri we can effectively obtain the sizes of the atoms in the sub-algebra
generated by a tuple that satisfies this B1-type.

Let p(u) be a B1-type saying that u is infinite. We need to know which
B1-types q(u,x) are generated by p(u) and existential formulas. We have
two interesting cases.

Case 1: Let q(u,x) be the B1-type extending p(u) in which x splits u into
one finite element, say of size k, and one infinite element. Let t(u) be a
complete type saying that u has infinite size, but there are fewer than k atoms
below it. Clearly, p(u) is consistent with t(u), whereas q(u,x) is not. By
Lemma 4.2.9, it follows that q(u,x) is not generated by p(u) and existential

4.3. EXAMPLES 89

formulas.

Case 2: Let q(u,x) be the B1-type extending p(u) in which x splits u into
two elements of infinite sizes. Then q(u,x) is generated by p(u) and the
infinite set of existential formulas saying that there are at least n distinct
elements below x and u ∖ x, for every n.

The proof of the following is then straightforward.

Lemma 4.3.5. If A is a Boolean algebra with no 1-atoms, then A is weakly
1-saturated.

Proposition 4.3.6. Suppose A is an infinite Boolean algebra with no 1-
atoms. Then A admits strong jump inversion. Moreover, if A is low over X,
there is an X-computable copy B with an isomorphism that is ∆0

3 relative
to X.

Proof.
We are assuming that A is low over X. To show that there is an X-

computable copy, it is enough to show the following.

Lemma 4.3.7. Let A be Boolean algebra with no 1-atom. If A is low over
X, then X ′ computes a copy B with an R-labeling. Moreover, there is an
isomorphism f from B to A that is ∆0

3 relative to X.

Proof.
For simplicity, we suppose that A is low, and our entire construction uses

a ∆0
2 oracle. For notational convenience, when we write a ∈ A or b ∈ B, we

identify the tuple with the finite sub-algebra (of A or B) determined by the
tuple. Since A is low, the atom relation on A is ∆0

2. Since we will guess (using
the ∆0

2 oracle) that an element of A is finite iff we recognize it as the join of
finitely many atoms of A, any such guess is correct. Now at a particular stage
s, our guess may incorrectly assign an R-label of infinite to a finite element a
of A; however, there will be a stage t where we correctly guess the R-label
of a from that stage onward. For any truly infinite element a, we guess the
R-label correctly at all stages.

We must computably (relative to ∆0
2) construct B with an R-labeling and

an isomorphism f between B and A that is correct in the limit, so that f
is ∆0

3.
As usual, we have the following requirements.

90 CHAPTER 4. STRONG JUMP INVERSION

R2a: a ∈ ran(f)

R2b+1: b ∈ dom(f)

At stage s = 0, we define f(0B) = 0A and f(1B) = 1A; this will never
change. We guess that 1A is labeled with ∞ (this will never be wrong), and
we label 1B with ∞.

Assume that by the end of stage s we have defined b ∈ B with R-labels
and fs ∶ d→ c, where d is a subsequence of b, so that the following hold:

(1) the finite algebras d and c agree;

(2) if fs(d) = c, then the R-label on d matches the stage s approximation
of the R-label on c;

(3) if fs(d) = c, and the finite R-labels among those we have assigned to Bs
imply that there are at least k atoms (of B) below d, then by stage s,
we have seen at least k atoms below c.

Stage (s + 1) approximations of R-labelings of A may reveal that an
element in A with stage s approximate R-label ∞ actually is finite. So in
defining fs+1, we first determine the largest initial segment of fs (in terms of
priority requirements) that can be preserved. Consider the highest priority
requirement that now must be satisfied.

Suppose the next requirement to be satisfied is to put a into ran(f). The
element a splits each atom α of the subalgebra c into α1 and α2, each of
which has a stage s+ 1 approximation of its R-label. If fs(β) = α, then β can
be split—using the other elements of b or introducing new elements into B if
necessary—into β1 and β2 so that if we extend fs by defining fs+1(β1) = α1

and fs+1(β2) = α2, then properties (1) - (3) above are maintained and R2a is
satisfied.

Suppose the next requirement to be satisfied is to put b into dom(f).
If b has not yet appeared among b, then simply extend fs to include b in
any way consistent with what we’ve defined so far about b and consistent
with conditions (1)-(3) above, and define the R-labels on the elements of b, b
accordingly. Otherwise, b splits each atom β of the subalgebra d into β1 and
β2, each of which has an R-label that must be preserved. The only interesting
case is when β1, β2 both have R-label ∞. By conditions (1) and (2) above,
α, the atom in c corresponding to β, has a current approximate R-label ∞.

4.3. EXAMPLES 91

Because A contains no 1-atom, we “look ahead” if necessary, either to discover
that this R-label on α is incorrect, or to find the least (in terms of the universe
ω) element α1 below α so the approximate R-labels of both α1 and α − α1

are ∞. If we discover the former, then we must use a smaller initial segment
of fs and start over to satisfy a higher priority requirement. Otherwise, we
are almost ready to meet the requirement R2b+1. If the R-labels in b imply
that there are at least k1 atoms (of B) below β1 and at least k2 atoms (of B)
below β2, then by property (3) above, we have seen at least k1 + k2 atoms (of
A) below α. Consider the element α1± finitely many atoms below α so that
this new element α′1 has at least k1 atoms below it, and α − α′1 has at least
k2 atoms below it. Extend fs by defining fs+1(β1) = α′1 and fs+1(β2) = α − α′1.
Then properties (1) - (3) above are maintained and R2b+1 is satisfied. ◻

◻

4.3.3 Trees

We consider some special classes of subtrees of ω<ω. Our trees grow downward.
The top node is ∅. For the language of trees, we use the predecessor function,
where ∅—the root—is its own predecessor. We consider two special classes of
trees. The first is very simple.

Proposition 4.3.8. Suppose A is a tree such that the top node is infinite
(i.e., it has infinitely many successors), and each infinite node has only finitely
many successors that are terminal, with the rest all infinite. Then A admits
strong jump inversion.

Proof.
The B1-type of a tuple a is determined by the subtree generated by a and

labels “infinite” or “terminal” on the nodes, in particular, on the ai. We have
a computable enumeration of all possible labeled finite subtrees of trees of
this kind. From this, we get a computable enumeration R of the B1-types.
Suppose that A is low. Then there is a ∆0

2 R-labeling of A.

Weak 1-saturation. Take a in A. Consider a possible B1-type p(a, x),
generated by formulas true of a and existential formulas. The type may locate
x in the subtree generated by a. Then the type is realized. The type may
locate x properly below some infinite ai, or at some level not below any ai.
Again the type is realized by a new infinite element.

92 CHAPTER 4. STRONG JUMP INVERSION

By Theorem 4.2.5, we get a computable copy of A. ◻
The second class of trees is a bit more complicated. We use some definitions

and notation. If T is a sub-tree of ω<ω, and a ∈ T , we write Ta for the tree
consisting of a and all nodes below.

Definition 4.3.9. For nodes a in a fixed tree T ,

(1) we say that a is finite if Ta is finite,

(2) we say that a is infinite if Ta is infinite. (For the trees we consider
below, if a is infinite, we will require not only that Ta is infinite, but
also that a has infinitely many successors, so we will have agreement
with the definition we used in Proposition 4.3.8.)

Notation. Let a be finite, with Ta the subtree below a. Let T 1
a be a possible

re-labeling of the nodes in Ta in which the nodes in a subtree are labeled ∞.
We write (T 1

a)
∗ for the infinite tree that results from extending the labeled

tree T 1
a so that all new nodes in (T 1

a)
∗ are labeled ∞, and each node labeled

∞ has infinitely many successors labeled ∞. (No finite node in T 1
a acquires

successors in (T 1
a)

∗.)

Here is the result for the second class of trees.

Proposition 4.3.10. Suppose T is a subtree of ω<ω such that the top node
is infinite, and for any infinite node a, there are only finitely many finite
successors. Suppose also that for any infinite node a, for any finite successor
b, if T 1

b is a possible re-labeling of Tb making all nodes in a certain subtree
infinite, then there are infinitely many successors bn of a such that
Tbn ≅ (T 1

b)
∗. Then T admits strong jump inversion.

Proof.
For simplicity, we suppose that T is low, and we apply Theorem 4.2.5 to

produce a computable copy. For a tuple a in T , the B1-type of a is determined
by the subtree generated by a and formulas saying, for an element a of this
subtree that it is infinite, or that it is finite with a specific finite tree Ta. We
can show that T is weakly 1-saturated. Consider a B1-type for a, x, generated
by B1-formulas true of a and existential formulas. The type may put x in the
subtree generated by a, or in one of the trees Tai , where ai (in the subtree)
is finite. In either of these cases, the type is realized. Or, the type may put

4.3. EXAMPLES 93

x below some infinite ai (in the subtree). Again, the type is realized, since
there is a copy of ω<ω below ai. This shows that A is weakly 1-saturated.

We have a computable enumeration of the possible finite labeled subtrees,
and, hence, of the B1-types realized in trees of this kind. Let R be this
computable enumeration of B1-types. To apply Theorem 4.2.5, we need the
following.

Lemma 4.3.11. There is a copy B of T with a ∆0
2 R-labeling.

Proof.
We build a ∆0

2 copy B of T with nodes labeled as infinite, or with a
specific finite tree below. We suppose that the ω-list of elements of T has the
feature that the top element comes first, and any other element comes after
its predecessor. This condition will also hold for the copy B. For B, we label
the top node ∞. Having built a finite labeled subtree of B, and determined a
tentative partial isomorphism f from this to a subtree of T , we may find that
some first node b labeled ∞ in B is mapped to a node a in T such that Ta is
actually finite. The predecessor of b, say b′, is labeled ∞, and we may still
believe that the predecessor a′ of a in T has an infinite tree below. In our
B, we vow to add no more terminal nodes to Bb and we look for a successor
a′′ of a with the appropriate Ta′′ . At a given stage, we take the first a′′ that
seems to work. Our first guess may not be correct—we may eventually see an
unwanted finite node in Ta′′ . However, because of the structural properties we
are assuming about T , we will eventually find a good a′′, with Ta′′ matching
our Bb. ◻

Applying Theorem 4.2.5, we get a computable copy of T . ◻

4.3.4 Models of a theory with few B1-types

Lerman and Schmerl [LS79] gave conditions under which an ℵ0-categorical
theory T has a computable model. They assumed that the theory is arith-
metical and T ∩ Σn+1 is Σ0

n for each n. In [Kni94], the assumption that T
is arithmetical is dropped, and, instead, it is assumed that T ∩Σn+1 is Σ0

n

uniformly in n. The proof in [LS79] gives the following.

Theorem 4.3.12 (Lerman-Schmerl). Let T be an ℵ0-categorical theory that
is ∆0

N and suppose that for all 1 ≤ n < N , T ∩ Σn+1 is Σ0
n. Then T has a

computable model.

To prove this, Lerman and Schmerl showed the following.

94 CHAPTER 4. STRONG JUMP INVERSION

Lemma 4.3.13. For any n < N , if A is a model whose Bn+1-diagram is
computable in X ′, and T ∩Σn+2 is Σ0

1 in X, then there is a model B whose
Bn-diagram is computable in X.

Let T be as in the Lerman-Schmerl Theorem. Let A be a model of T that
is low over X. Then the Σ1 diagram of A is computable in X ′. Of course,
T ∩ Σ2 is Σ0

1, so it is Σ0
1 relative to X. The lemma implies that A has an

X-computable copy. In fact, we get the following.

Theorem 4.3.14. Let T be an elementary first order theory, in a computable
language, such that T ∩Σ2 is Σ0

1. Suppose that for each tuple of variables
x, there are only finitely many B1-types in variables x consistent with T .
Then every model A admits strong jump inversion. Moreover, if A is low over
X, then there is an X-computable copy B with an isomorphism that is ∆0

2

relative to X.

Proof.
First, we show that there is a computable enumeration of all the B1-

types. Uniformly in each tuple of variables x, we build a c.e. tree Px whose
paths represent the B1-types in x. We have a computable enumeration of
B1-formulas (ϕn(x))n∈ω. At level n, the nodes σ in Px represent the different
finite sequences of formulas ±ϕk (in the appropriate tuple of variables), for
k < n, that we see to be consistent with T , using the fact that T ∩Σ2 is c.e.
Note that each node σ ∈ Px extends to a path. Also, Px has only finitely
many paths. We may suppose, running the enumeration of T ∩Σ2 ahead, if
necessary, that at step s, for the first s tuples of variables x, the terminal
nodes in our approximation to Px all have length s.

We use all of these trees together to define the enumeration R. At stage s,
we have assigned indices to the currently terminal nodes σ in Px for the first
s tuples of variables x. For a given node σ, assigned index i, we will have put
into Ri the formulas ±ϕ corresponding to this node σ. At stage 0, we assign
the index 0 to the top node of P∅. At stage s+ 1, for each of the first s tuples
of variables x, each node σ of length s in Px has at least one extension of
length s + 1. We give the index of σ to one such τ . There may be further
extensions of σ or other old nodes, and we give these new indices. In addition,
for the (s + 1)st tuple of variables x, we assign indices to the terminal nodes
of the stage s + 1 approximation. For the indices i assigned by stage s + 1
to nodes σ of tree Px, we put into Ri all of the formulas corresponding to

4.3. EXAMPLES 95

σ. This process yields the desired computable enumeration of the B1-types
consistent with T .

Next, we show that A is weakly 1-saturated. Suppose q(u,x) is a B1-type
(consistent, of course) generated by formulas true of a and existential formulas
ϕ(u,x). Since q(u,x) is isolated, it is principal, with a generating formula
γ(u,x), of the form ρ(u) & χ(u,x), where ρ(u) is in the B1-type of a, and
χ(u,x) is a finite conjunction of existential formulas. B1 type of a includes
the formula (∃x)χ(u,x). We have (∃x)χ(u,x) true of a in A, so the type is
realized.

Lemma 4.3.15. If A is low over X, then there is an R-labeling of A that is
∆0

2 relative to X.

Proof.
For simplicity, we suppose A is low. For a tuple of variables x, ∆0

2 can
find generating formulas for all of the B1-types. Then ∆0

2 can check which
generating formula is true of a given tuple of elements a. Then we have a ∆0

2

R-labeling. ◻
Finally, we apply Theorem 4.2.5 to get an X-computable copy B of A

with an isomorphism from B to A that is ∆0
2 relative to X. ◻

Note: There are non-ℵ0-categorical theories satisfying the conditions of
Theorem 4.3.14.
Proof.

We write Θ for the ordering of type η+2+η. In [DK92], it was shown that
for any linear ordering A, Θ ⋅A has a computable copy iff A has a ∆0

2 copy.
Let T1 be a complete theory of linear orderings that is not ℵ0-categorical. Let
T be the complete theory whose models are exactly the orderings of the form
Θ ⋅A, where A is a model of T1. The theory T has a sentence saying that
every element lies on an interval of type Θ. In addition, there are axioms
guaranteeing that the restriction of our ordering to the set of elements that
are the first in a successor pair satisfies all sentences ϕ in T1.

We note that the B1-types realized in models of T come from partitions
into intervals of size 0 or ∞, with no two adjacent intervals of size 0. These
are principal, so they are realized in all models of T . We note that if we
replace T1 by some other theory S1 of infinite linear orderings, and form S in
the same way, then the B1-types realized in any and all models of S would
be the same. Therefore, the Σ2 theories are the same. If S1 is decidable, then
so is S. Thus, whether or not T1 is decidable, T ∩Σ2 is decidable. We chose
T1 not ℵ0-categorical, so T is also not ℵ0-categorical. ◻

96 CHAPTER 4. STRONG JUMP INVERSION

4.3.5 Differentially closed fields

DF0

A differential field is a field with one or more derivations satisfying the
following familiar rules:

1. δ(u + v) = δ(u) + δ(v), and

2. δ(u ⋅ v) = u ⋅ δ(v) + δ(u) ⋅ v.

We consider differential fields of characteristic 0, and with a single derivation δ.
Trivially, Q is a differential field, under the derivation that takes all

elements to 0. If a is an element of a differential field K, then a generates a
differential field F ⊆K, where the elements of F are gotten from a by closing
under addition, multiplication, subtraction, division, and derivation.

DCF0

Roughly speaking, a differentially closed field is a differential field in which
differential polynomials have roots, where a differential polynomial is a poly-
nomial p(x) in x and its various derivatives. We write DCF0 for the theory
of differentially closed fields (of characteristic 0, with a single derivation). A.
Robinson showed that the theory DCF0 admits elimination of quantifiers. L.
Blum, in her thesis, gave a nice computable set of axioms, showing that the
theory is decidable. Thus, the elimination of quantifiers is effective. Blum also
showed that DCF0 is ω-stable. Then general model-theoretic results imply
the existence and uniqueness of prime models over an arbitrary set. The
existence and uniqueness of differential closures were not proved by algebraic
methods—they really used the model theoretic results. For a discussion of
differentially closed fields, emphasizing Blum’s results, see Sacks [Sac10].

Differential polynomials

We consider differential polynomials p(x) in a single variable x. A differential
polynomial p(x), over a differential field K, may be thought of as an algebraic
polynomial in K[x, δ(x), δ(2)(x), . . . , δ(n)(x)], for some n. We write K⟨x⟩ for
the set of differential polynomials over K. Initially, we let K be Q, where
δ(q) = 0 for all q ∈ Q. Later, K will be a finitely generated extension of Q.
Differential fields satisfy the quotient rule—this is easy to prove from the

4.3. EXAMPLES 97

product rule. From this, it follows that if a is an element of a differential field
extending K, and F is the differential subfield generated over K by a, then
each element of F can be expressed in the form p(a)

q(a) , where p(x), q(x) ∈K⟨x⟩.

Definition 4.3.16 (Order). For p(x) ∈K⟨x⟩, the order is the greatest n such
that δ(n)(x) appears non-trivially in p(x). There are some special cases. An
algebraic polynomial in x (with no derivatives) has order 0. The 0 polynomial
has order ∞.

Definition 4.3.17 (degree, rank, order of ranks). For p(x) ∈K⟨x⟩ of finite
order n, the degree of p(x) is the highest power k of δ(n)(x) that appears. The
rank of p(x) is the ordered pair (n, k), where n is the order and k is the degree.
We order the possible ranks of differential polynomials lexicographically.

Definition 4.3.18. A differential polynomial p(x) ∈K⟨x⟩ of order n is said
to be irreducible if it is irreducible when considered as an algebraic polynomial
in K[x, δ(x), . . . , δ(n)(x)] (think of x and its derivatives as indeterminates).
We count the 0 polynomial as irreducible.

Blum’s axioms for DCF0

Blum’s axioms say that a differentially closed field (of characteristic 0 and
with a single derivation), is a differential field K such that

(1) for any pair of differential polynomials p(x), q(x) ∈K⟨x⟩ such that the
order of q(x) is less than that of p(x), there is some x satisfying p(x) = 0
and q(x) /= 0,

(2) if p(x) has order 0, then p(x) has a root.

The axioms of form (2) say that K is algebraically closed.

Types

We want to understand the types, in any number of variables, realized in
models of DCF0. For a single variable x, each type over ∅ is determined by an
irreducible differential polynomial p(x) ∈ Q⟨x⟩. If p(x) ∈ Q⟨x⟩ is irreducible
of order n, then the corresponding type consists of formulas provable from
the axioms of DCF0, the formula p(x) = 0 and further formulas q(x) /= 0,
for q(x) ∈ Q⟨x⟩ of order less than n. The formulas q(x) /= 0, for q(x) ∈ Q⟨x⟩

98 CHAPTER 4. STRONG JUMP INVERSION

of order less than n, say that x, δ(x), δ(2)(x), . . . , δ(n−1)(x) are algebraically
independent over Q. We allow the case where p(x) is the 0 polynomial, which
has order ∞. In this case, the corresponding type λp consists of the formulas
provable from the axioms of DCF0 and the formulas q(x) /= 0 for q(x) of all
finite orders.

Similarly, for a differential field K, each type over K (to be realized in
some extension of K to a model of DCF0) is determined by an irreducible
differential polynomial p(x) ∈ K⟨x⟩. If p(x) is irreducible of order n, the
corresponding type λK,p consists of formulas provable from the axioms of
DCF0, the atomic diagram of K, the formula p(x) = 0, and further formulas
q(x) /= 0, for q(x) of order less than n. The formulas q(x) /= 0, taken together,
say that x, δ(x), . . . , δ(n−1)(x) are algebraically independent over K.

A proof of the following result can be found in Sacks [Sac10], pp. 297-298.

Proposition 4.3.19.

1. If p(x) ∈ Q⟨x⟩ is irreducible, the corresponding type λp is complete over
∅. Moreover, all types over ∅ (in the variable x) have this form.

2. For a differential field K, if p(x) ∈ K⟨x⟩ is irreducible, then λK,p is a
complete type over K, and all types over K (in the variable x) have
this form.

Among the types in one variable (over ∅, or over K), there is a unique
type, obtained from the 0 polynomial, that is differential transcendental.
The other types, obtained from differential polynomials of finite rank, are
differential algebraic.

Types in several variables

In general, we can determine a type in variables (x1, . . . , xn) by giving the
type of x1 (over ∅), the type of x2 over x1, the type of x3 over (x1, x2),
and so on. To describe a type in variables (x1, . . . , xn), we imagine a large
differentially closed field M and we consider various elements and differential
subfields. The type of x1 is λp1 for some irreducible p1 ∈ Q⟨x1⟩. Let K1 be
the differential subfield of M generated by x1 over Q, where x1 satisfies λp1
in M . The type of x2 over K1 is λK1,p2 for some irreducible p2 ∈K1⟨x2⟩. Let
K2 be the differential field generated by x2 over K1. In general, given Ki

generated by x1, . . . , xi, the type of xi+1 over Ki is λKi,pi+1 for some irreducible

4.3. EXAMPLES 99

pi+1 ∈ Ki⟨xi+1⟩, and then Ki+1 is the differential subfield of M generated by
xi+1 over Ki.

Toward strong jump inversion

Marker and R. Miller [MM17] showed that all models of DCF0 admit strong
jump inversion. Our goal in this subsection is to obtain this result using our
Theorem 4.2.5. In the earlier applications of Theorem 4.2.5, the structures
satisfied the condition of effective type completion because they were weakly
1-saturated. Among the countable models of DCF0, only the saturated one is
weakly 1-saturated. There are 2ℵ0 non-isomorphic countable models. (In fact,
Marker and Miller gave a method for coding an arbitrary countable graph in
a model of DCF0.) We will need to show effective type-completion in some
other way. There is a lemma in [MM17] that does exactly this. Since we
have effective quantifier elimination, we can work with quantifier-free types.
Most of our effort goes into producing a computable enumeration R of the
quantifier-free types realized in models of DCF0. Once we have this, we can
show easily that for any model A, D(A)′ computes an R-labeling of A. This
puts us in position to apply Theorem 4.2.5.

Computable enumeration of types

It may at first seem that it should be easy to produce a computable enu-
meration of types. After all, the theory DCF0 is decidable and all types are
computable. However, T. Millar [Mil78] gave an example of a decidable theory
T , with all types computable, such that there is no computable enumeration
of all types. So, we have some work to do.

By quantifier elimination, we can pass effectively from a quantifier-free
type λ(x) to the complete type generated by DCF0 ∪ λ(x). In what follows,
we will enumerate quantifier-free types. We will consider realizations of the
quantifier-free types in differential fields K that are not differentially closed,
bearing in mind that a tuple realizing λ(x) in K will realize the corresponding
complete type generated by DCF0 ∪ λ(x) in any extension of K to a model
of DCF0.

We eventually give a uniform procedure that, for a given tuple of variables
x, yields an enumeration of the types in x. But first, we give a procedure for
a single variable x in order to elucidate the relevant issues before proceeding
to the full procedure. We determine a type λ(x) corresponding to each

100 CHAPTER 4. STRONG JUMP INVERSION

differential polynomial p(x) ∈ Q⟨x⟩, irreducible or not. Let (ϕs)s∈ω be a
computable list of the atomic formulas in variable x, in order of Gödel
number. At each stage, we will have put into λ(x) finitely many formulas,
always checking consistency with DCF0.

At stage 0, we put into the type λ(x) just the formula p(x) = 0, assuming
that this is consistent. We also determine the order of p(x)—we can do this
just by inspection. At stage s, we will decide ϕs, putting it or its negation
into λ(x). If p(x) is irreducible, there will be a proof of exactly one of ϕs,
¬ϕs from DCF0, p(x) = 0, and the formulas q(x) /= 0, for q(x) ∈ Q⟨x⟩ of order
less than that of p(x). So, we search for a proof. Being reducible is c.e., and
if p(x) is reducible, we will eventually see this.

At stage s, we search until we either find a proof of ±ϕs or discover that
p(x) is reducible. If we find a proof of ϕs (or ¬ϕs), then we add this formula
to our type, provided that it is consistent to do so. If we find that p(x) is
reducible, then we just decide ϕs so as to maintain consistency with DCF0.
The procedure we have just described gives a type λ corresponding to each
p ∈ Q⟨x⟩. If p is irreducible, then λ = λp. Thus, by considering all p ∈ Q⟨x⟩,
we get all types in the variable x.

A type in one variable corresponded to a differential polynomial p(x)
over Q. Intuitively, we’d like to enumerate types in n variables using all
n-tuple of polynomials, according to the pattern described above in types in
several variables. Unfortunately, since the fields themselves depend on the
polynomials in the tuple, it is not even clear if a potential polynomial would
make sense; one of its coefficients might actually be undefined. Therefore,
our enumeration construction takes these obstacles into account with a more
formal approach. A type in n variables will correspond to an n-tuple of
formal differential polynomials p1(x1), . . . , pn(xn). Here p1(x1) is an actual
differential polynomial with coefficients in Q. For i ≥ 1, pi+1(xi+1) looks
like a differential polynomial, but the coefficients come from a set KF

i of
formal names for possible elements of a differential field generated by elements
x1, . . . , xi. We say more about these formal names below. We define the sets
KF
i and KF

i ⟨xi+1⟩ by induction on i.
The many lemmas below allow us to prove Proposition 4.3.32, the com-

putable enumeration of types, from the basic definitions and results in [Sac10].

Definition 4.3.20.

1. KF
0 = Q, and KF

0 ⟨x1⟩ = Q⟨x1⟩,

4.3. EXAMPLES 101

2. KF
i ⟨xi+1⟩ is the set of formal expressions that look like differential

polynomials in the variable xi+1 but have coefficients in KF
i as opposed

to a well-defined differential field,

3. KF
i+1 consists of the expressions r(xi+1)

s(xi+1) , where r, s ∈K
F
i ⟨xi+1⟩.

Lemma 4.3.21. Uniformly in n, we can enumerate the n-tuples p1(x1), . . . ,
pn(xn), where pi+1(xi+1) ∈KF

i ⟨xi+1⟩.

Proof.
The set KF

0 is a fixed computable set with computable index, and there
is a uniform, effective procedure to construct KF

i ⟨xi+1⟩ from KF
i and KF

i+1

from KF
i ⟨xi+1⟩. Therefore, there is a single, computable function that gives

computable indices for all of these sets. Then there is computable function
that, given n, finds a computable index of KF

0 ⟨x1⟩ ×KF
1 ⟨x2⟩ ×⋯ ×KF

n−1⟨xn⟩.
◻

Given an n-tuple of formal differential polynomials p1, . . . , pn as above,
we will obtain a type λ(x1, . . . , xn) by producing a sequence of differential
fields K0, . . . ,Kn, where K0 = Q, and Ki+1 is generated over Ki by an element
xi+1 satisfying a chosen type λi+1 that depends on pi+1. In the end, Kn will
be generated by x1, . . . , xn, and λ(x1, . . . , xn) will be the type realized by
x1, . . . , xn that generates Kn. We give several lemmas.

Lemma 4.3.22. There is a uniform effective procedure that, given a differ-
ential field K and a type λ(x) over K, yields a differential field K ′ ⊇K that
is generated over K by an element x realizing λ.

Proof. Uniformly in K, we construct a computable, formal set NK that
consists of names of the form r(x)

s(x) , where r(x), s(x) ∈K⟨x⟩. Next, we define
the universe of K ′ from NK and λ(x) by induction:

1. at step 1, consider the first element of NK , which is a formal expression
of the form r(x)

s(x) . We use λ(x) to determine if s(x) = 0. If so, then we
do not include r(x)

s(x) in the universe of K ′; otherwise we do.

2. at step n + 1, consider the (n + 1)st element of NK , which is a formal
expression of the form r(x)

s(x) , where r(x), s(x) ∈ K⟨x⟩. We use λ(x) to
determine if s(x) = 0. If so, then we do not include r(x)

s(x) in the universe
of K ′. If not, then we use λ(x) and simple “cross multiplication” to

102 CHAPTER 4. STRONG JUMP INVERSION

determine if r(x)
s(x) is equal to any r1(x)

s1(x) that we included in K ′ an earlier
step. If so, then we do not include r(x)

s(x) in the universe of K ′; otherwise
we do.

Uniformly in K and λ(x), the above procedure computably enumerates the
elements of the universe of K ′ in order; therefore, the universe of K ′ is
uniformly computable in K and λ(x).

Finally, to define the constants and operations on the universe of K ′, we
first use λ(x) to identify element in the universe K ′ that is equal to 0K

1K
and

the element equal to 1K
1K

. Next, to calculate a sum or product of two elements
r(x)
s(x) and r1(x)

s1(x) in K ′, or to calculate δ (r(x)s(x)), we add, multiply, or differentiate
formally, and then we use λ(x) to determine what element in the universe of
K ′ the formal expression is equal to. The definitions of these operations are
uniformly computable from K ′ and λ, and thus ultimately from K and λ. ◻

Given an actual differential field Ki, generated by elements x1, . . . , xi,
some names from KF

i have a definite value in Ki, while others do not. Recall
that the names are quotients. We do not get a value if the denominator is 0.

Lemma 4.3.23. There is a uniform effective procedure that, given a dif-
ferential field Ki generated by elements x1, . . . , xi, and an element f ∈ KF

i ,
determines whether f makes sense, and if so, assigns to f a definite value in
Ki.

Proof.
We first form a finite set S of names such that f ∈ S, and if g ∈ S ∩KF

j ,
for 0 < j ≤ i, and h is a coefficient from the numerator or denominator of g,
then h ∈ S. We form Kj for 0 ≤ j ≤ i. We then proceed by induction on j to
determine for all g ∈ S ∩KF

j , whether g has value in Kj, and if so, to assign
the value. Then f has a value iff all elements of S have a value. ◻

Lemma 4.3.24. There is a uniform effective procedure that, given p ∈
KF
i ⟨xi+1⟩ and a differential field Ki generated by elements x1, . . . , xi, deter-

mines whether p makes sense (i.e., whether the coefficients all have value in
Ki), and if so, identifies p with an element of Ki⟨xi+1⟩.

Proof. Given the p ∈ KF
i ⟨xi+1⟩, we simply identify its coefficients as

elements of KF
i . Then we apply the previous lemma to each of the co-

efficients individually. If all of the co-efficients make sense, then we assign

4.3. EXAMPLES 103

each of them a definite value in Ki and then construct the corresponding
element of Ki⟨xi+1⟩. Otherwise, if at least one of the coefficients does not
make sense, p does not make sense. ◻

Lemma 4.3.25. There is a uniform effective procedure that, given a dif-
ferential field K and a differential polynomial p(x) over K, enumerates the
differential polynomials q(x) of order lower than that of p(x).

Proof.
First, there is a computable procedure, uniform inK, that computes orders

of p(x) ∈K⟨x⟩. Namely, assuming p(x) is written where formal “like terms”
already are combined, then the procedure looks for the term with the highest
derivative δn(x) appearing as a factor, where the coefficient in K for at least
one such term is non-zero. Then, uniformly inK and p(x), there is an effective
procedure that lists all algebraic polynomials in K[x, δ(x), . . . , δn−1(x)]. ◻

Lemma 4.3.26. There is a uniform effective procedure that, given a differen-
tial field K and a differential polynomial p(x) over K, enumerates the proofs
of formulas ϕ(x) (with parameters in K) from DCF0, D(K), p(x) = 0, and
q(x) /= 0, for q of lower order.

Proof.
By Lemma 4.3.25, we can enumerate the polynomials q(x) of lower order,

so we can enumerate the axioms to use in our proofs. Then we can enumerate
proofs from these axioms of formulas of the kind we are interested in. ◻

In Lemma 4.3.26, we did not assume that p(x) is irreducible. So, the set
of axioms may not generate a consistent, complete type over K.

Lemma 4.3.27. There is a uniform effective procedure that, given a differ-
ential field K, enumerates the reducible differential polynomials p(x) over
K.

Proof.
For a given p(x) we enumerate D(K), searching for a formula of form

r(x) ⋅ s(x) = p(x), where r(x) and s(x) are differential polynomials over K,
both non-constant. The search halts iff p(x) is reducible. ◻

Lemma 4.3.28. Let K be a differential field. For any tuple k in K, DCF0

together with the quantifier-free type of k generates a complete type that
would be realized by k in any extension of K to a model of DCF0.

104 CHAPTER 4. STRONG JUMP INVERSION

Proof.
Let K ⊆M , where M is a differentially closed field. By quantifier elimina-

tion, any formula true of k in M is proved from DCF0 and the quantifier-free
formulas true of k. ◻

Lemma 4.3.29. There is a uniform effective procedure for determining, for a
differential field K and a formula ϕ(k, x) (with parameters k in K), whether
ϕ(k, x) is consistent with DCF0 ∪D(K).

Proof.
Let γ(k) be the quantifier-free type realized by k in K. By Lemma 4.3.28,

DCF0 ∪ γ(k) generates a complete type that would be realized by k in
any extension of K to a model of DCF0. Then ϕ(k, x) is consistent with
DCF0 ∪D(K) iff (∃x)ϕ(k, x) is in this type. ◻

Lemma 4.3.30. There is a uniform effective procedure that, given a differen-
tial field K and p(x) ∈K⟨x⟩, enumerates a type λ(x) for x over K. Moreover,
if p(x) is irreducible, then λ(x) = λK,p.

Proof.
We can determine the order of p(x), just by inspection. At each step,

we will have put finitely many formulas into the type λ(x), having checked
consistency with DCF0 ∪D(K) as in Lemma 4.3.29 (the parameters from K
that appear in the formulas form the relevant k). At step 0, we put into λ(x)
the formula p(x) = 0, assuming that this is consistent. We have a computable
enumeration of the atomic formulas ϕs(x) with parameters in K. At step
s + 1, we decide ϕs(x), adding ϕs(x) or ¬ϕs(x) to the type λ(x). If we have
already seen that p(x) is reducible, then we add ϕs(x) to the type if it is
consistent to do so, and otherwise, we add ¬ϕs(x). Suppose that p(x) appears
to be irreducible. Then we simultaneously search for the following:

(1) a proof of ±ϕs from DCF0 ∪D(K), p(x) = 0, and formulas q(x) /= 0 for
q of order less than that of p,

(2) evidence that p(x) is reducible over K.

By Lemmas 4.3.26 and 4.3.27, these are computable searches. One of the
searches will halt, since if p(x) is irreducible, then the formulas in (1) above
generate a complete type over K. If we find that p(x) is reducible, then we
proceed as above, adding ±ϕs(x) just to maintain consistency. (We check

4.3. EXAMPLES 105

consistency as in Lemma 4.3.29.) If we find a proof of ϕs, or ¬ϕs, then we
add this formula to the type, provided that it is consistent to do so. We take
inconsistency as evidence that p(x) is reducible, and we proceed as above. ◻

Proposition 4.3.31. Uniformly in n, we can enumerate the types in n
variables.

Proof.
By Lemma 4.3.21, uniformly in n, we can enumerate the n-tuples of

formal differential polynomials p1, . . . , pn, where p1 ∈ Q⟨x1⟩, pi+1 ∈ KF
i ⟨xi+1⟩.

The jth n-tuple of differential polynomials p1, . . . , pn will yield the jth type
λ(x1, . . . , xn) in variables x1, . . . , xn. We describe λ(x1, . . . , xn) in terms of
some differential fields K1, . . . ,Kn and types λi(xi) over Ki−1. We note that
p1 is an actual differential polynomial over K0 = Q. We apply Lemma 4.3.30
to p1 and Q, to get a type λ1(x1). We apply Lemma 4.3.22 to Q and λ1 to
get the differential field K1 generated by x1 realizing λ1.

Now, p2(x2) is only an element of KF
1 ⟨x2⟩, where KF

1 is not an actual
differential field. We apply Lemma 4.3.24 to K1 to determine whether p2(x2)
makes sense as a differential polynomial over K1. If not, then we generate
a type λ2 for x2 over K1 using DCF0 ∪D(K1) as follows. We run through
the atomic formulas ϕs(x2) (over K1) in order, adding ϕs if it is consistent
to do so, and otherwise adding ¬ϕs. We check consistency at each step as in
Lemma 4.3.29. If p2 makes sense as a differential polynomial over K1, then
we apply Lemma 4.3.30 to get λ2. We then apply Lemma 4.3.22 to get the
differential field K2 generated by x2 realizing λ2 over K1.

In general, given Ki, we apply Lemma 4.3.24 to determine whether pi+1

makes sense as differential polynomial over Ki. If not, then we generate a type
λi+1, using DCF0 ∪D(Ki). If pi+1 makes sense as a differential polynomial
over Ki, then we apply Lemma 4.3.30 to get a type λi+1 for xi+1 over Ki.
From Ki and λi+1, we get Ki+1 as in Lemma 4.3.22. After finitely many steps,
calculating computable indices for the differential fields Ki and the types λi,
we arrive at the differential field Kn. This is generated over Q by the elements
x1, . . . , xn. The quantifier-free type we want is that realized by x1, . . . , xn
in Kn. Of course, since DCF0 has effective quantifier elimination, we then
effectively compute the complete type realized by x1, . . . , xn. ◻

As planned, we combine the enumerations of types in variables x1, . . . , xn,
for various n.

Proposition 4.3.32. There is a computable enumeration R of all complete
types realized in models of DCF0.

106 CHAPTER 4. STRONG JUMP INVERSION

Now, we can prove the result of Marker and Miller, using our Theorem
4.2.5.

Proposition 4.3.33. Every countable model of DCF0 admits strong jump
inversion.

Proof.
By Proposition 4.3.32, there is a computable enumeration R of the com-

plete types realized in models of DCF0, and thus, of the B1 types. Thus,
Condition (1) of Theorem 4.2.5 holds. The following lemma shows that
Condition (3) holds in the strong way.

Lemma 4.3.34. Let X be a subset of ω, and let A be a model of DCF0 that
is low over X. Then X ′ computes an R-labeling of A.

Proof. [Proof of Lemma]
Note that for each tuple a, we have an A-computable procedure for finding,

at step s, the first index i such that Ri agrees with the type of a on the first
s quantifier-free formulas. After some step s, this i is the first index for the
B1-type of a. Thus, we have an R-labeling that is computable in D(A)′, and
hence, in X ′, since A is low over X. ◻

We need to establish Condition (2), effective type completion. There is a
uniform effective procedure for computing, from a type p(u) and a formula
ϕ(u,x), consistent with p(u), a type q(u,x) such that if c satisfies p(u), then
some a satisfies q(c, x). Marker and Miller [MM17] needed this for the same
reason we do. It is Lemma 4.3 in their paper. (The type q(c, x) will be
realized in the differential closure of c.) The conditions for Theorem 4.2.5 are
all satisfied. Therefore, A admits strong jump inversion. ◻

Decidable saturated model of DCF0

In general, a structure A is computable if its atomic diagram is computable,
and A is decidable if the complete diagram is computable. By elimination
of quantifiers, a model of DCF0 is decidable iff it is computable. Using
Proposition 4.3.32, we can show that the countable saturated model of DCF0

has a decidable copy. We need the following result from Morley [Mor76].

Theorem 4.3.35. Let T be a countable complete elementary first order
theory for a computable language. Then the following are equivalent:

4.3. EXAMPLES 107

1. T has a decidable saturated model,

2. there is a computable enumeration of all types realized in models of T .

Using Theorem 4.3.35 and Proposition 4.3.32, we get the following.

Corollary 4.3.36. The saturated model of DCF0 has a decidable copy.

108 CHAPTER 4. STRONG JUMP INVERSION

Chapter 5

Effective embeddings and
interpretations

There are different notions that describe the coding (and decoding) of a
structure A in another structure B. The main idea is to see which classes of
structures have more expressive power. We are interested in cases where there
is a uniform effective procedure for coding and decoding, and in cases where
there is no such procedure. We give one negative and one positive result.

Friedman and Stanley [FS89] considered a Borel embedding L of directed
graphs in linear orderings. In [CCKM04], the authors relaxed the convention
that the structures have universe N, to allow finite structures. They introduced
an effective version of Borel embedding. A Turing computable embedding Φ
of class of structures K into another class of structures K ′, Φ gives a uniform
effective procedure for coding each structure from K in a structure from K ′,
which preserves the back-and-forth structure [KMVB07] and isomorphisms.

The decoding may or may not be effective. Some of the known exam-
ples of Turing computable embeddings involve uniformly defined effective
interpretations. In particular, this is true of the standard codings (due to
Marker, Lavrov, and Nies) of directed graphs, or structures from an arbitrary
computable language, in undirected graphs. One step of decoding gives us
the Medvedev reducibility. Recall that a structure A is Medvedev reducible
to a structure B if there is a Turing operator Φ, that takes a copy of B to a
copy of A. There is a Turing computable embedding Θ of directed graphs
A in undirected graphs (see [Mar02]). Moreover, there is a fixed tuple of
existential formulas that give a uniform effective interpretation; i.e., for all
directed graphs A, these formulas interpret A in Θ(A). So, these existential

109

110CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

formulas gives us the decoding. It follows that A is Medvedev reducible to
Θ(A) uniformly; i.e., A ≤s Θ(A) with a fixed Turing operator Φ that serves
for all A.

Hirschfeldt, Khoussainov, Shore, and Slinko [HKSS02] gave conditions on
Turing operators Φ from a class K to a class K ′ guaranteeing that A ∈K and
Φ(A) share many properties—having the same spectrum, the same computable
dimension, etc. They found conditions that give an interpretation of A in
Φ(A), using computable Σc

1 formulas that may have parameters. There are
conditions making Φ(A) rigid over A. In [HKSS02], the class of undirected
graphs, the class of rings, and the class of 2-step nilpotent groups lie on top.

A more general notion is considered by Montalbàn [Mon14] - the notion
of effective bi-interpretability. Two structures are effectively-bi-interpretable
if there are effective-interpretations of each structure in the other and the
composition of the isomorphisms interpreting one structure inside the other
and then interpreting the other back into the first one to be effective. He
shows that the effective bi-interpretability preserves the most computability
theoretic properties. A more recent result of R. Miller, Poonen, Schoutens,
and Shlapentokh [MPSS18] shows that undirected graphs can be effectively
interpreted in fields and fields are on top for effective-bi-interpretability.

In the next section we present our results with Julia Knight and Stefan
Vatev [KSV19] for coding and decoding graphs in linear orderings. In the
second section of this chapter we present an effective interpretation of fields
in 2-step nilpotent groups — Heisenberg groups [ACG+20]. The last section is
devoted to an interpretation of an algebraic closed field C with characteristic
0 in a special linear group SL2(C).

5.1 Coding and decoding in linear ordering

Friedman and Stanley [FS89] introduced Borel embeddings as a way of
comparing classification problems for different classes of structures. A Borel
embedding of a class K in a class K′ represents a uniform procedure for coding
structures from K in structures from K′. Many Borel embeddings are actually
Turing computable [CCKM04]. A Turing computable embedding of a class K
in a class K′ represents an effective coding procedure.

When A is coded in B, effective decoding is represented by a Medvedev
reduction of A to B. Harrison-Trainor, Melnikov, R. Miller, and Montalbán
[HTMMM17] considered a notion of effective interpretation of A in B. They

5.1. CODING AND DECODING IN LINEAR ORDERING 111

also defined a notion of computable functor, where this is a pair of Turing oper-
ators, one taking copies of B to copies of A, and the other taking isomorphisms
between copies of B to isomorphisms between the corresponding copies of A.
They showed that A is effectively interpreted in B iff there is a computable
functor from B to A. The first operator is a Medvedev reduction. This
uniform Medvedev reduction represents uniform effective decoding. Harrison-
Trainor, R. Miller, and Montalbán [HTMM18] also considered interpretations
by Lω1ω formulas, guaranteeing Borel decoding.

The class of undirected graphs and and the class of linear orderings
both lie on top under Turing computable embeddings. The standard Turing
computable embeddings of directed graphs (or structures for an arbitrary
computable relational language) in undirected graphs come with uniform
effective interpretations. We give examples of graphs that are not Medvedev
reducible to any linear ordering, or to the jump of any linear ordering. Any
graph can be interpreted in a linear ordering using computable Σc

3 formulas.
For the known Turing computable embedding of graphs in linear orderings,
due to Friedman and Stanley, we show that there is no uniform interpretation
defined by Lω1ω formulas; that is, no fixed tuple of Lω1ω formulas can interpret
every graph in its Friedman-Stanley ordering.

We assume that the language of each structure is computable, where
this means that the set of non-logical symbols is computable and we can
effectively determine the type and arity of each symbol. We may assume
that the languages are relational. We restrict our attention to structures
with universe equal to N. Let Mod(L) be the class of L-structures with this
universe. We identify a structure A with its atomic diagram D(A). We may
identify this, via Gödel numbering, with a set of natural numbers, or with
an element of 2ω. Thus, we think of Mod(L) as a subclass of 2ω. For a class
of structures K ⊆ Mod(L), we suppose that K is axiomatized by an Lω1ω

sentence. By a result of López-Escobar [LE65], this is the same as assuming
that K is a Borel subclass of Mod(L) closed under isomorphism.

5.1.1 Borel embeddings

The following definition is from [FS89].

Definition 5.1.1. We say that a class K is Borel embeddable in a class K′,
and we write K ≤B K′, if there is a Borel function Φ ∶ K → K′ such that for
A,B ∈ K, A ≅ B iff Φ(A) ≅ Φ(B).

112CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

A Borel embedding of K into K′ represents a uniform procedure for coding
structures from K in structures from K′.

Theorem 5.1.2. [FS89]
The following classes lie on top under ≤B.

1. undirected graphs

2. fields of any fixed characteristic

3. 2-step nilpotent groups

4. linear orderings

Friedman and Stanley defined an embedding of graphs in fields of any
fixed characteristic. They also defined an embedding of graphs in linear
orderings. For the other classes listed above, Friedman and Stanley credit
earlier sources. Lavrov [Lav63] defined an embedding of Mod(L) (structures
with a domain N in the language L) in undirected graphs, for any language
L. There are similar constructions due to Nies [Nie96] and Marker [Mar02].
Mekler [Mek81] defined an embedding of graphs in 2-step nilpotent groups.
Alternatively, we get an embedding of graphs in 2-step nilpotent groups by
composing the embedding of graphs in fields with an earlier embedding by
Mal’tsev [Mal60] of fields in 2-step nilpotent groups.

Example 5.1.3. Friedman and Stanley [FS89] interpreted an undirected
graph in a field, say of characteristic 0. Let F ∗ be an algebraically closed
field with transcendence basis b0, b1, b2, For a graph G, let F (G) be the
subfield generated by the following:

1. bi, for i ∈ G,

2. elements of acl(bi),

3.
√
d + d′, where for some i, j joined by an edge in G, d is inter-algebraic

with bi and d′ is inter-algebraic with bj.

The formulas that define the interpretation are computable Π0
2 or simpler.

Hence, for any F ≅ F (G), we get a copy of G computable in F ′′.

Note: We have a Borel procedure for coding structures from structures of
class K in structures from K ′. As we shall see, there may or may not be a
Borel decoding procedure.

5.1. CODING AND DECODING IN LINEAR ORDERING 113

5.1.2 Turing computable embeddings

Kechris suggested to Knight that she and her students should consider effective
embeddings. This is done in [CCKM04], [KMVB07].

Definition 5.1.4. We say that a class K is Turing computably embedded in
a class K′, and we write K ≤tc K′, if there is a Turing operator Φ ∶ K → K′

such that for all A,B ∈ K, A ≅ B iff Φ(A) ≅ Φ(B).

A Turing computable embedding represents an effective coding procedure.
The next result is in [CCKM04].

Theorem 5.1.5. The following classes lie on top under ≤tc.

1. undirected graphs

2. fields of any fixed characteristic

3. 2-step nilpotent groups

4. linear orderings

The reason for this is that the Borel embeddings of Friedman-Stanley,
Lavrov, Nies, Marker, Mekler, and Mal’tsev are all, in fact, Turing computable.

5.1.3 Medvedev reductions

A problem is a subset of 2ω or Nω. Problem P is Medvedev reducible to
problem Q if there is a Turing operator Φ that takes elements of Q to elements
of P . The problems that interest us ask for copies of particular structures,
where each copy is identified with an element of 2ω.

Definition 5.1.6. We say that A is Medvedev reducible to B, and we write
A ≤s B if there is a Turing operator that takes copies of B to copies of A.

Supposing that A is coded in B, a Medvedev reduction of A to B represents
an effective decoding procedure.

In a number of familiar examples where A ≤s B, the structure A is defined
or interpreted in B using formulas that let us recover a copy of A from each
copy of B.

The notion of Medvedev reducibility captures the idea of effective recovery
(decoding) of a copy of A from a copy of B. It is uniform (strong) reducibility.

114CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

The other (weak) not uniform reducibility is introduced by Muchnik
[Muc16]. A structure A is Muchnik reducible to B, and we write A ≤w B, if
every copy of B computes a copy of A. It is equivalent to say DS(B) ⊆DS(A).

Example 5.1.7. Here are some examples of Montalbán’s book [Mon].

• Given a ring R, R[x] ≤s R.

• For every structure A there is a graph GA such that A ≡s GA.

• In every linear ordering A every segment [a, b]A is Muchnik reducible
to A but not necessary Medvedev computable to A.

5.1.4 Sample embedding

Below, we describe Marker’s Turing computable embedding of directed graphs
in undirected graphs.

1. For each point a in the directed graph A, the undirected graph B has a
point ba connected to a triangle.

2. For each ordered pair of points (a, a′) from A, B has a point p(a,a′) that
is connected directly to ba and with one stop to ba′ . The point p(a,a′)
is connected to a square if there is an arrow from a to a′, and to a
pentagon otherwise.

For structures A with more relations, the same idea works—we use more
special points and more n-gons.

Fact: For Marker’s embedding Φ of directed graphs in undirected graphs,
there are finitary existential formulas that, for all inputs A, define the follow-
ing.

1. the set D of ba connected to a triangle,

2. the set of ordered pairs (ba, ba′) such that the special point p(a,a′) is
connected to a square,

3. the set of ordered pairs (ba, ba′) such that the special point p(a,a′) is
connected to a pentagon.

This guarantees that any copy of Φ(A) computes a copy of A.

5.1. CODING AND DECODING IN LINEAR ORDERING 115

5.1.5 Effective interpretations and computable functors

Informally, a structure A is effectively interpretable in a structure B if there
is an interpretation of A in B (as in Model theory [Mar02]), but the domain
of the interpretation is allowed to be a subset of B<ω, while in the classical
definition it is required to be a subset of Bn for some n), and where all sets in
the interpretation are required to be computable within the structure (while
in the classical definition they should be first-order definable). The formulas
defining the interpretation are computable infinitary Σc

1. A version with
parameters of the effective intrepretability is introduced by Ershov [Ers85] —
the Σ-definability over HF(B), the structure of hereditarily finite sets over B.
It uses the first-order logic over HF(B), and is studied in Russia over the last
twenty years [EPS11, Puz09, MK08, Stu13, Kal09a]. Antonio Montalbán in
[Mon, Mon12] shows that Σ-definability over HF(B) corresponds to effective
interpretability in B with parameters.

In a number of familiar examples where A ≤s B, the structure A is defined
or interpreted in B using formulas of special kinds.

Example 5.1.8. The usual definition of the ring of integers Z involves an
interpretation in the semi-ring of natural numbers N. Let D be the set of
ordered pairs (m,n) of natural numbers. We think of the pair (m,n) as
representing the integer m − n. With this in mind, we can easily give finitary
existential formulas that define ternary relations of addition and multiplication
on D, and the complements of these relations, and a congruence relation ∼
on D, and the complement of this relation, such that (D,+, ⋅)/∼ ≅ Z.

Harrison-Trainor, Melnikov, R. Miller, and Montalbán [HTMMM17] con-
sidered a notion of effective interpretation of A in B, a very general kind
of interpretation, guaranteeing that A ≤s B. The tuples in B that represent
elements of A have no fixed arity. Normally, we consider formulas with a
fixed tuple of variables. However, following [HTMMM17], we will consider
relations R ⊆ B<ω in our interpretations, and we will say that such a relation
R is defined in B by a generalized Σc

1 formula (see Definition 2.5.9) that
when there is a computable sequence of Σc

1 formulas ϕn(xn) defining R ∩ Bn.
Our Σc

1 definition of R is ⋁nϕn(xn). A relation R defined in this way is c.e.
relative to B.

In a given structure, a relation R is computable ∆c
1-definable over c if

R and the complementary relation ¬R are both defined by computable Σc
1

formulas, with parameters in c.

116CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

As we know by a result from [AKMS89], [Chi90], Theorem 2.5.8, for a
relation R and a structure A, R is relatively intrinsically c.e. (or Σ0

α) on
A iff it is defined in A by a computable Σc

1 (or computable Σc
α) formula,

with a finite tuple c of parameters in A. Actually, as we mention before, as
Montalbán proved in [Mon12], a relation R ⊂ A<ω is relatively intrinsically
c.e. (r.i.c.e.) on A if it is defined by a generalized computable Σc

1 formula
with no parameters but with with infinitely many free variables.

Example 5.1.9. The dependence relation on tuples in a Q-vector space
is a familiar relation with no fixed arity. It is defined by a Σc

1 formula
⋁nϕn(xn) of the kind that we use for effective interpretations. We let
ϕn(xn) = ⋁λ λ(xn) = 0, where λ ranges over the non-trivial rational linear
combinations of xn = (x1, . . . , xn).

Definition 5.1.10. A structure A = (A,Ri) is effectively interpreted in
a structure B if there is a set D ⊆ B<ω, Σc

1-definable over ∅, and there
are relations ∼ and R∗

i on D, computable Σc
1-definable over ∅, such that

(D,R∗
i)/∼ ≅ A.

Above, we described Marker’s Turing computable embedding of directed
graphs in undirected graphs, and we saw there are uniform finitary existential
formulas that in the output directed graph a set D and relations ±R∗ such that
(D,R∗) is isomorphic to the input undirected graph. Friedman and Stanley’s
original embedding of graphs in fields involved a uniform interpretation by
means of Σc

3 formulas. A more recent embedding of graphs in fields, due to
R. Miller, Poonen, Schoutens, and Shlapentokh [MPSS18], gives a uniform
effective interpretation.

Harrison-Trainor, Melnikov, R. Miller, and Montalbán [HTMMM17] de-
fined a second notion with gives in equivalent definition.

Definition 5.1.11. [Computable functor][HTMMM17]
A computable functor from B to A is a pair of Turing operators, Φ and Ψ,

with the following features:

(1) For each C ≅ B, we have Φ(C) ≅ A,

(2) For any B1,B2 ≅ B and any isomorphism f from B1 onto B2, Ψ(B1,B2, f)
is an isomorphism from Φ(B1) onto Φ(B2). The operator Ψ is required
to satisfy some natural properties.

5.1. CODING AND DECODING IN LINEAR ORDERING 117

(a) If B1 = B2 ≅ B and f is the identity function, then Ψ(B1,B2, f) is
the identity on Φ(B1).

(b) For B1,B2,B3 ≅ B, and isomorphisms f from B1 to B2 and g from
B2 to B3, Ψ(B1,B3, g ○ f) = Ψ(B2,B3, g) ○Ψ(B1,B2, f).

The main result from [HTMMM17] gives the equivalence of the two
notions.

Theorem 5.1.12. For structures A and B, A is effectively interpreted in B
iff there is a computable functor Φ,Ψ from B to A.

Corollary 5.1.13. If A is effectively interpreted in B, then A ≤s B.

Proof.
We get a Medvedev reduction by taking the first half Φ of the computable

functor Φ,Ψ. ◻

Kalimullin [Kal12] showed that the converse of the corollary fails. We can
have a Turing operator Φ taking copies of B to copies of A without having a
Turing operator Ψ taking triples (B1,B2, f) to g, where B1,B2 are copies of B
and B1 ≅f B2 and Φ(B1) ≅g Φ(B2).

In the proof of Theorem 5.1.12, it is important that the set D in the
interpretation consist of tuples from B of arbitrary arity. The same is true in
the proof of the following.

Proposition 5.1.14. If A is computable, then A is effectively interpreted in
all structures B.

Proof.
Let D = B<ω. Let b ∼ c if b, c are tuples of the same length. For simplicity,

suppose A = (N,R), where R is binary. If A ⊧ R(m,n), then R∗(b, c) for all
b of length m and c of length n. ◻

Mal’tsev’s embedding Φ of fields in 2-step nilpotent groups involves inter-
preting F in Φ(F) using formulas with parameters. Recently, we show that
there is a uniform computable functor from Φ(F) to F . Hence, there is a
uniform effective interpretation of F in Φ(F) in which the formulas do not
have parameters. We will prove this in the next section.

118CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

5.1.6 Interpretations by more general formulas

We may consider interpretations of A in B, where D, ± ∼, and ±R∗
i are defined

in B by Σc
2 formulas formulas, and we have (D, (R∗

i)i∈N)/∼ ≅ A.
Recall the properties of the jump of A.

1. For a structure A, the jump is a structure A′ such that the relations
defined in A by Σc

2 formulas are just those defined in A′ by Σc
1 formulas.

2. For a structure A, the jump structure A′ is computed by D(A)′.

3. The relations defined in A(2) by Σc
1 formulas are just those defined in

A by Σc
2 formulas.

Harrison-Trainor, R. Miller, and Montalbán [HTMM18] proved the ana-
logue of the result from [HTMMM17] in which the interpretations are defined
by formulas of Lω1ω, and the functors are Borel. Again for an interpretation of
A in B, the set of tuples in B that represent elements of A may have arbitrary
arity. If R ⊆ B<ω, and we have a countable sequence of Lω1ω-formulas ϕn(xn)
defining R ∩ Bn, then we refer to ⋁nϕn(xn) as an Lω1ω definition of R.

Theorem 5.1.15. A structure A is interpreted in B using Lω1ω-formulas iff
there is a Borel functor (Φ,Ψ) from B to A.

5.2 Interpreting graphs in linear orderings
The content of this subsection is from [KSV19].

As we have seen, any structure can be effectively interpreted in a graph.
Linear orderings do not have so much interpreting power. To show this, we
use the following result of Linda Jean Richter [Ric81].

Proposition 5.2.1 (Richter). For a linear ordering L, the only sets com-
putable in all copies of L are the computable sets.

Proposition 5.2.2. There is a graph G such that for all linear orderings L,
G /≤s L.

Proof.
Let S be a non-computable set. Let G be a graph such that every copy

computes S. We may take G to be a “daisy” graph, consisting of a center

5.2. INTERPRETING GRAPHS IN LINEAR ORDERINGS 119

node with a “petal” of length 2n + 3 if n ∈ S and 2n + 4 if n ∉ S. Now, apply
Proposition 5.2.1. ◻

The following result, from [Kni86], is a lifting of Proposition 5.2.1.

Proposition 5.2.3. For a linear ordering L, the only sets computable in all
copies of L′ (or in the jumps of all copies of L) are the ∆0

2 sets.

This yields a lifting of Proposition 5.2.2.

Proposition 5.2.4. There is a graph G such that for all linear orderings L,
G /≤s L′.

Proof.
Let S be a non-∆0

2 set. Let G be a graph such that every copy computes
S. Then apply Proposition 5.2.3. ◻

The pattern above does not continue. The following is well-known (see
Theorem 9.12 [AK00]).

Proposition 5.2.5. For any set S, there is a linear ordering L such that for
all copies of L, the second jump computes S.

Proof. [Proof sketch]
For a set A, the ordering σ(A∪{ω}) (the “shuffle sum” of orderings of type

n for n ∈ A and of type ω) consists of densely many copies of each of these
orderings. The degrees of copies of σ(A∪ {ω}) are the degrees of sets X such
that A is c.e. relative to X(2). Let A = S ⊕ Sc, where Sc is the complement
of S. Consider the linear ordering L = σ(A ∪ {ω}). Then we have a pair of
finitary Σ3 formulas saying that n ∈ S iff L has a maximal discrete set of size
2n and n /∈ S iff L has a maximal discrete set of size 2n + 1. It follows that
any copy of L(2) uniformly computes the set S.

◻

Using Proposition 5.2.5, we get the following.

Proposition 5.2.6. For any graph G, there is a linear ordering L such that
G ≤s L(2),

Proof.
Let S be the diagram of a specific copy of G and let L be as in Proposition

5.2.5. Then G ≤s L(2). ◻

120CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

5.2.1 Turing computable embedding of graphs in linear
orderings

The class of linear orderings, like the class of graphs, lies on top under Turing
computable embeddings. We describe the Turing computable embedding L,
given in [FS89], of directed graphs in linear orderings.

Friedman-Stanley embedding. First, let (An)n∈ω be an effective partition
of Q into disjoint dense sets. Let (tn)1≤n<ω be a list of the atomic types in
the language of directed graphs. We let t1 be the type of ∅, we put the types
for single elements next, then the types for distinct pairs, then the types for
distinct triples, etc. For a graph G, the ordering L(G) is a sub-ordering of
Q<ω, with the lexicographic ordering. The elements of L(G) are the finite
sequences r0q1r1 . . . rn−1qnrnk ∈ Q<ω such that

1. for i < n, ri ∈ A0, and rn ∈ A1,

2. there is a special tuple in G, of length n, satisfying the atomic type tm,
and k is a natural number less than m,

3. if n ≥ 1 and the special tuple is a1, . . . , an, then for all i with 1 ≤ i ≤ n,
qi ∈ Aai .

In talks, Knight has claimed, without any proof, that this embedding does
not represent an interpretation. Our goal in the rest of the section is to prove
the following theorem.

Theorem 5.2.7 (Main Theorem). There do not exist Lω1ω-formulas that,
for all graphs G, interpret G in L(G).

We begin with some definitions and simple lemmas about L(G).

Definition 5.2.8. Let b = r0q1r1 . . . rn−1qnrnk ∈ L(G). We say that bmentions
a if a is the special tuple in G of length n, such that for 1 ≤ i ≤ n, qi ∈ Aai .

Lemma 5.2.9. Suppose b ∈ L(G) mentions a. Then b lies in a maximal
discrete interval of some finite size m ≥ 1. The number m tells us the atomic
type of a; in particular, it tells us the length of a.

5.2. INTERPRETING GRAPHS IN LINEAR ORDERINGS 121

Proof.
It is clear from the definition of L(G) that if b mentions a, where a satisfies

the atomic type tm on our list, then b lies in a maximal discrete set of size
m. Knowing just that b lies in a maximal discrete set of size m, we know the
atomic type, and this tells us the length of a. ◻

The structure of the linear ordering L(G) does not directly tell us the
lengths of the elements b (as elements of Q<ω). However, if b mentions a of
length n, then b has length 2n + 2.

Lemma 5.2.10. If b ∈ L(G) has length 2n+2, then there is an infinite interval
around b that consists entirely of elements of length at least 2n + 2.

Proof.
Suppose that b = r0q1r1 . . . rn−1qnrnk. The elements d that extend the

initial segment r0q1r1 . . . rn−1qn, of length 2n, are closer to b than those that
differ on one of the first 2n terms. These d all have length at least 2n+ 2, and
they form the interval we want. ◻

Lemma 5.2.11. Let b, b′ ∈ L(G), where b < b′, and let d be an element of
[b, b′] of minimum length. If d mentions c, then all elements of [b, b′] mention
extensions of c.

Proof.
Say that d has length 2k + 2. Then b and b′ are both in an interval around

d consisting of elements of length at least 2k + 2. Let σ be the initial segment
of d of length 2k. Then all elements of [b, b′] must extend σ. Thus, all of
these mention extensions of c. ◻

Let b be a tuple in L(G). For each bi in b, let ai be the tuple in G
mentioned by bi. The formulas true of b in L(G) are determined by the
formulas true in G of the various ai, together with the “shape” of b.

Definition 5.2.12. For a tuple b = (b1, . . . , bn) in L(G), with b1 < b2 < . . . < bn,
the shape encodes the following information:

1. the order type of b—for simplicity, we suppose that
b1 < b2 < . . . < bn,

2. the size of each interval (bi, bi+1)—we note that the interval is infinite
unless bi, bi+1 belong to the same finite discrete set in L(G), which
means that they agree on all but the last term,

122CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

3. the location of each bi in the finite discrete interval to which it belongs,

4. the length of each bi,

5. for i < n, the number ki such that 2ki + 2 is the length of a shortest
element d in the interval [bi, bi+1]—d mentions a tuple c of length ki,
and all elements of [bi, bi+1] mention tuples that extend c.

Proposition 5.2.13. For each n-tuple b, there exist Πc
4, and Σc

4 formulas in
the language of linear orderings saying, in L(G) for any G, that the n-tuple
x has the same shape as some fixed tuple b.

Proof.
We note the following.

1. For any finite n, we have a finitary d-Σ1 formula (difference of two Σ1

formulas) saying of an interval that it has at least n elements and it
does not have at least n + 1 elements. Thus, there are finitary Σ2 and
Π2 formulas saying that an interval (bi, bi+1) has size n.

2. We have a finitary Σ3 formula saying that bi sits a specific position in a
maximal discrete set of size n.

3. Assuming that our list of the atomic types (tn)1≤n<ω is as described
above, we have finitary Σ3 formulas saying that bi has length 2n+ 2—we
take a finite disjunction of formulas saying that bi lies in a maximal
discrete interval of size r, where tr is the atomic type of a tuple of length
n.

4. For each k, we have a finitary Π3 formula saying that all z ∈ [bi, bi+1]
have length at least 2k + 2.

Taking an appropriate finite conjunction of the formulas described above,
we obtain a Σc

4 definition of the set of tuples of a specific shape, and also a
Πc

4 definition. ◻

Remarks on elements of length 2: Suppose d has length 2. Then ∅ is the
tuple mentioned by d and the atomic type of ∅ is t1, so d has the form r00,
where r0 ∈ A1. Note that d is the only element of L(G) that starts with r0.
If b < d < b′, then b has first term r and b′ has first term r′, where r < r0 < r′.
Since all Ai are dense in Q, essentially everything happens in the intervals
(b, d) and (d, b′).

5.2. INTERPRETING GRAPHS IN LINEAR ORDERINGS 123

Lemma 5.2.14. Suppose c < c∗ < c′ in L(G), where c∗ has length 2.

(1) For any e in (c,∞), there is an automorphism of (c,∞) taking e to
some e′ in the interval (c, c∗).

(2) For any e in (−∞, c′), there is an automorphism of (−∞, c′) taking e to
some e′ in the interval (c∗, c′).

Proof.
We prove (1). Note that c∗ has form r0, where r ∈ A1. The first term of c

is some q < r. Let c∗∗ be an element of length 2 greater than all in e, with
first term p. There is a permutation of Q, say f , such that

1. f preserves the ordering and membership in the Ai’s (i.e., f is an
automorphism of the structure (Q,<, (Ai)i∈ω),

2. f(q) = q and f(p) = r.

We define an automorphism g of (c,∞), taking each element xσ to f(x)σ—
we are changing just the first term. The fact that f preserves the ordering
and membership in Ai’s is needed to be sure that g has domain and range
(c,∞). ◻

If a < b in the ordering L(G), we may say that a lies to the left of b, or
that b lies to the right of a.

Lemma 5.2.15. Let b be a finite tuple in L(G), and let c be an element of
L(G).

(1) There is an automorphism of L(G) taking b to a tuple b
′
entirely to the

right of c, with elements of length 2 in between.

(2) There is also an automorphism taking b to a tuple b
′′
entirely to the left

of c, with elements of length 2 in between.

Proof.
We give the proof for (1). Suppose that c begins with r. Suppose the

first element of b begins with p. Let f be a permutation of Q that preserves
the ordering and membership in the Ai’s, and such that f(p) > r. We have
an automorphism g of L(G) such that g(xσ) = f(x)σ. By the choice of f
it follows that g has domain and range all of L(G). To see that there is an
element of length 2 between c and the first element of g(b), we note that
there is an element of A1 between r and f(p). ◻

124CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

5.2.2 The relations ∼γ

Below, we recall a family of equivalence relations, defined for pairs of tuples,
from the same structure, or from two different structures.

Definition 5.2.16. Let A and B be structures for a fixed finite relational
language. Let a and b be tuples of the same length, where a in in A and b is
in B.

(1) (A, a) ∼0 (B, b) if the tuples a and b satisfy the same atomic formulas
in their respective structures.

(2) For γ > 0, (A, a) ∼γ (B, b) if for all β < γ,

(a) for all c ∈ A, there exists d ∈ B such that (A, a, c) ∼β (B, b, d),

(b) for all d ∈ B, there exists c ∈ A such that (A, a, c) ∼β (B, b, d).

Note: We write A ∼γ B to indicate that (A,∅) ∼γ (B,∅).

Lemma 5.2.17. Let A be a computable structure for a finite relational
language. For any γ < ωCK1 and for any tuple a in A, we can effectively find a
Πc

2γ-formula ϕγa(x) such that A ⊧ ϕγa(b) iff a ∼γ b.

Proof.
We proceed by induction on γ. Let γ = 0. Then

ϕ0
a(x) = ⋀

ϕ(x)∈B
ϕ(x),

where B is the set of atomic formulas and negations of atomic formulas true
of a in A. This formula is finitary quantifier-free. Suppose γ > 0, where we
have the formulas ϕβa for all β < γ and all a. Then

ϕγa(x) = ⋀
β<γ

[⋀
c

(∃y)ϕβa,c(x, y) & ⋀
y

(∀y)⋁
c

ϕβa,c(x, y)]

This formula is Πc
2γ, as required. ◻

Lemma 5.2.18. Let L be a fixed finite relational language. For any com-
putable ordinal γ, and any tuples of variables x, y, of the same length,
we can effectively find a computable Σc

2γ-formula ϕγ(x, y) such that for any
L-structure A, and any tuples a and b from A, A ⊧ ϕγ(a, b) iff (A, a) ∼γ (A, b).

5.2. INTERPRETING GRAPHS IN LINEAR ORDERINGS 125

Proof.
Suppose that x and y have length m. Let γ = 0 and let At be the

computable set of all atomic formulas on the first m variables in the language
L. Then

ϕ0(x, y) = ⋀
ϕ∈At

(ϕ(x)↔ ϕ(y)),

which is finitary quantifier-free. Suppose we have determined the formulas
ϕβ(x, y) for all β < γ and all appropriate pairs of tuples of variables x, y.
Then

ϕγ(x, y) = ⋀
β<γ

[⋀
u,v

(∀u)(∃v)ϕβ(x,u, y, v) & ⋀
v,u

(∀v)(∃u)ϕβ(x,u, y, v)],

which is a Πc
2γ formula. ◻

The next lemma is well-known, and the proof is straightforward.

Lemma 5.2.19. Let A and B be structures for the same countable language,
and let a and b be tuples of the same length, in A and B,respectively. Then
for any countable ordinal γ, if (A, a) ∼γ (B, b), then the Σc

γ formulas true of
a in A are the same as the those true of b in B.

5.2.3 ∼γ-equivalence in linear orderings

In a linear orderings, the ∼γ-classes of a tuple a are determined by the ∼γ-
classes of the intervals with endpoints in a. Let A and B be linear orderings.
Let a = a1 < . . . < an be a tuple in A, and let b = b1 < . . . < bn be a tuple in
B. Let I0, . . . , In and J0, . . . , Jn be the intervals in A and B determined by a
and b; i.e., I0 is the interval (−∞, a1) in A, J0 is the interval (−∞, b1) in B,
for i < n, Ii is the interval (ai, ai+1) in A, Ji is the interval (bi, bi+1) in B, In
is the interval (an,∞) in A, and Jn is the interval (bn,∞) in B. The next
lemma is well-known, and the proof is straightforward.

Lemma 5.2.20. (A, a) ∼γ (B, b) iff for i ≤ n, Ii ∼γ Ji.

5.2.4 More on the orderings L(G)

We return to the orderings of form L(G). In the next subsection, we will
prove that there do not exist Lω1ω formulas that, for all G, interpret G in
L(G). Roughly speaking, the outline is as follows. We assume that there are

126CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

such formulas. The formulas are Σα, for some countable ordinal α. Moreover,
they are X-computable Σα for some X such that α < ωX1 . Taking G to be
the ordering ωX1 , we will produce tuples b, c, b

′
in L(G) representing elements

a, e, a′ of G such that b, c ∼γ c, b
′
, although in G, we have a < e and a′ < e.

This is a contradiction. The current subsection gives several lemmas about
the relations ∼γ on tuples in L(G), and about automorphisms of L(G). These
lemmas are what we need to produce the tuples b, c, b

′
.

To start off, we note that if a1, a2 ∼1 b1, b2, then the sizes of the intervals
(a1, a2) and (b1, b2) match. Moreover, if a ∼2 b, then a and b belong to
maximal discrete intervals of the same size.

Lemma 5.2.21. Let I = (b, b′), where b < b′, and let J = (c, c′), where c < c′.
Suppose b ∼γ c and b′ ∼γ c′, where some b∗ ∈ I and some c∗ ∈ J each have
length 2. Then I ∼γ J .

Proof.
Suppose β < γ. Take d in I. We want e in J such that

(I, d) ∼β (J, e). We consider the cases β = 0, β = 1, and β ≥ 2.

Case 1: Suppose β = 0. The fact that J contains an element of length 2
implies that it is an infinite interval. We choose e in this interval ordered in
the same way as d.

Case 2: Suppose β = 1. The tuple d partitions the interval I = (b, b′) into
sub-intervals I0, . . . , Im. We need e partitioning J into sub-intervals J0, . . . , Jm
of the same sizes. The first few intervals Ii may be finite. Since b ∼2 c, we can
match these intervals. Similarly, we can match the last few intervals, if these
are finite. For simplicity, we suppose that the intervals I0 and Im are both
infinite. The tuple d is automorphic to a tuple d

′
lying entirely to the right

of c, with first element infinitely far from c. Let d′ be infinitely far to the
right of the last term of d

′
. By Lemma 5.2.14, there is an automorphism of

the interval (c,∞) taking d
′
, d′ to some e, e′ in the interval (c, c′). We let the

Ji’s be the sub-intervals of J determined by e. These have the desired sizes.

Case 3: Suppose β ≥ 2. We may suppose that d = d1, b∗, d2. The intervals
(b,∞) and (c,∞) are ∼γ-equivalent. Therefore, we have e1, c∗∗ in (c,∞)
∼β-equivalent to d1, b∗ in (b,∞). Since β ≥ 2, we have that c∗∗ has length
2. Let p be the first term of c, let r be the first term of c∗, and let q be

5.2. INTERPRETING GRAPHS IN LINEAR ORDERINGS 127

the first term of c∗∗. Let f be a permutation of Q, preserving the order and
the Ai’s, fixing p and taking q to r. We have an automorphism g of (c,∞)
(or of L(G)) that takes xσ to f(x)σ. Let e′1 be g(e1). The sub-intervals of
I (or of (b,∞)) determined by d1, b∗ are ∼β equivalent to the sub-intervals
of (c,∞) determined by e1, c∗∗. These are isomorphic to the sub-intervals
determined by e′1, g(c∗∗). Thus, the sub-intervals of (b,∞) determined by
d1, b∗ are ∼β-equivalent to the sub-intervals of (c,∞) determined by e′1, c∗.

In a similar way, we get e′2 such that the sub-intervals of (c∗,∞) determined
by c∗, e′2 are ∼β-equivalent to those determined by b∗, d2 in (b∗,∞). We let
e be e′1, e

′
2. All together, the sub-intervals of (b, b′) determined by d are

∼β-equivalent to the corresponding sub-intervals of (c, c′) determined by e. ◻

Lemma 5.2.22. Let b1, b2, c1, c2 be increasing sequences in L(G), where
b1 ∼γ c1 and b2 ∼γ c2. Suppose further that there is an element of length 2
between the last element of b1 and the first element of b2, and there is an
element of length 2 between the last element of c1 and the first element of c2.
Then b1, b2 ∼γ c1, c2.

Proof.
Say that b1 = (b1, . . . , bk), b2 = (bk+1, . . . , bn), c1 = (c1, . . . , ck), and c2 =

(ck+1, . . . , cn). Let Ii be the intervals determined by b1, b2, and let Ji be the
intervals determined by c1, c2, for i ≤ n. The fact that b1 ∼γ c1 implies that
Ii ∼γ Ji for i < k. The fact that b2 ∼γ c2 implies that Ii ∼γ Ji for k < i ≤ n. It
remains to show that Ik ∼γ Jk. We have bk ∼γ ck and bk+1 ∼γ ck+1. We have
elements of length 2 in each of the intervals Ik and Jk. Applying the previous
lemma, we get the fact that Ik ∼γ Jk. Therefore, b1, b2 ∼γ c1, c2. ◻

Lemma 5.2.23. Suppose b, b
′
are tuples in L(G) of the same shape. Let a,

a′ be the full tuples from G mentioned by the bi’s, or the b′i’s. If a ∼γ a
′, then

b ∼γ b
′
.

Proof.
We proceed by induction on γ. For γ = 0, the statement is trivially true.

Supposing that the statement holds for β < γ, we show it for γ. Suppose
a ∼γ a′. We will have b ∼γ b

′
provided that for all β < γ,

(1) for any d, there is some d
′
such that b, d ∼β b

′
, d

′
, and

(2) for any d
′
, there is some d such that b, d ∼β b

′
, d

′
.

128CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

By symmetry, it is enough to prove (1). Say that c is the tuple of elements
of G mentioned in the di’s and not in a. Since a ∼γ a′ in G, there is a tuple
c′ such that a, c ∼β a′, c′. In L(G), we choose d

′
, so that the ordering and

shape of b
′
, d

′
matches that of b, d, and for each d′i, the tuple a′, c′ mentioned

in d′i corresponds to the one from a, c mentioned in di. Using the fact that b
′

and b have the same shape, we can see that such d
′
exist. By the induction

hypothesis, we have b, d ∼β b
′
d
′
. ◻

Definition 5.2.24. We say that A is a computable infinitary substructure
of B if A is a substructure of B and for all computable infinitary formulas
ϕ(x) and all a in A, B ⊧ ϕ(a) iff A ⊧ ϕ(a). (The definition is the same as
elementary substructure except that the formulas are not elementary (finitary)
first order.)

Lemma 5.2.25. Let G1 and G2 be directed graphs such that G1 is a com-
putable infinitary substructure of G2. Suppose also that G2 is computable,
so L(G2) is computable. Then L(G1) is a computable infinitary substructure
of L(G2).

Proof.
Note that L(G1) is a substructure of L(G2). The Tarski-Vaught test was

originally stated for elementary substructure, but it also works for computable
infinitary substructure. To show that L(G1) is a computable infinitary
substructure of L(G2), it is enough to show that for any computable infinitary
formula ψ(x,u), if L(G2) ⊧ ψ(b, d), where b is in L(G1), then L(G2) ⊧ ψ(b, d′)
for some d′ ∈ L(G1).

Say that ψ is a Πc
α formula. Suppose b mentions a from G1. The tuple

from G1 mentioned by d may include some elements from a, plus some further
elements c. By Lemma 5.2.17, we have a computable infinitary formula
ϕαa,c(x, y) defining in G2 the ∼α-class of a, c. By the Tarski-Vaught test, there
is some c′ in G1 such that G2 ⊧ ϕαa,c(a, c

′). Then in G2, a, c ∼α a, c′. Say
that u is the tuple in G2 mentioned by d. Each ui is in a, c. Let v be the
tuple in G1 such that if ui ∈ a, then vi = ui and if ui ∈ c, then vi is the
element of c′ corresponding to c. Thus, u ∼α v. We choose d′, mentioning the
tuple v, such that b, d and b, d′ have the same ordering and the same shape.
Then by Lemma 5.2.23, b, d ∼α b, d′. By Lemma 5.2.19, we conclude that
L(G2) ⊧ ψ(b, d′), as required. ◻

5.2. INTERPRETING GRAPHS IN LINEAR ORDERINGS 129

5.2.5 Proof of Theorem 5.2.7

Theorem 5.2.7 says that there are no Lω1ω-formulas that, for all directed
graphs G, define an interpretation of G in L(G). We introduce the ideas of
the proof in a warm-up result. Among the directed graphs are the linear
orderings. The Harrison ordering H [Har68] has order type ωCK1 (1+η). While
ωCK1 has no computable copy, H does have a computable copy. It is well
known that H and ωCK1 satisfy the same computable infinitary sentences. In
fact, they satisfy the same Πα sentences of Lω1ω for all computable ordinals
α.

Let I be the initial segment of H of order type ωCK1 . Thinking of H
as a directed graph, we can form the linear orderings L(H) and L(I). By
Proposition 5.1.14, just because H has a computable copy, it is effectively
interpreted in every structure B. Our warm-up result will say that there are
no computable infinitary formulas that define an interpretation of H in L(H)
and also define an interpretation of I in L(I).

Proposition 5.2.26. L(I) is a computable infinitary substructure of L(H).

Proof.
Since I and H satisfy the same computable infinitary sentences and every

element of I is defined by a computable infinitary formula, it follows that
I is a computable infinitary substructure of H. We apply Lemma 5.2.25 to
conclude that L(I) is a computable infinitary substructure of H. ◻

Proposition 5.2.27 (Warm-up). There do not exist computable infinitary
formulas that define an interpretation of H in L(H) and also define an
interpretation of I in L(I).

Proof.
Suppose there are computable infinitary formulas that define an interpre-

tation of H in L(H), and also define an interpretation of I in L(I). Say D,
∼, and < are the sets of tuples defined by these formulas in L(H). We note
that all elements of I are represented by tuples from D that are in L(I), and
all tuples from D that are in L(I) represent elements of I. We can translate
computable infinitary formulas describing H and its elements into computable
infinitary formulas about tuples in L(H), referring to the formulas that define
D, ∼, and < .

For each computable ordinal α, we have a formula ϕα(x) saying of an
element x in H that pred(x) = {y ∶ y < x} has order type α. Let ψα(x) be the

130CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

translation formula saying of a tuple x that it is inD and the set of predecessors
of the equivalence class of x has order type α. For each computable ordinal
α, there is a tuple in D satisfying ψα(x) (for an appropriate x). Since L(I)
is a computable infinitary substructure of L(H), some tuple from D in L(I)
also satisfies ψα(x). Moreover, each tuple from D in L(I) satisfies one of the
formulas ψα. Recall that the ordering H is computable, and so is L(H). We
define equivalence relations ≡γ on D.

Definition 5.2.28. For tuples a and b in D, let a ≡γ b iff

1. a and b have the same shape and

2. a ∼γ b.

Fact: For each computable ordinal γ and each a in D, the ≡γ-class of a is
defined by a computable infinitary formula.

We need one more lemma.

Lemma 5.2.29. For each computable ordinal γ, there is a ≡γ-class C such
that there are arbitrarily large computable ordinals α for which some b in C
satisfies ψα.

Proof.
In L(H), we have a tuple b in D not satisfying any of the formulas ψα for

computable ordinals α. Let C be the ≡γ-class of b. Since L(I) is a computable
infinitary substructure of L(H), and C is defined by a computable infinitary
formula, we must have tuples of L(I) belonging to C and satisfying ψα for
arbitrarily large computable ordinals α. ◻

Suppose that the formulas defining D, < , and ∼ are all Σc
γ. Since D

may have no fixed arity, we mean that there is a computable sequence of Σc
γ

formulas defining the sets of n-tuples in D, and similarly for < and ∼. By
Lemma 5.2.29, there is a set C ⊆D in which all tuples have the same shape
and are in the same ∼γ-class—in particular, the tuples in C all have the same
arity. We choose tuples b and c in L(I), both belonging to C, such that b
satisfies ψα and c satisfies ψβ, where α < β.

By Lemma 5.2.15, we may suppose that all elements of the tuple b lie to
the left of the <-first element of c, and the interval between the <-greatest
element of b and the <-first element of c contains an element of length 2.
Also, by the same lemma, we have a tuple b

′
, automorphic to b, such that all

5.2. INTERPRETING GRAPHS IN LINEAR ORDERINGS 131

elements of b
′
lie to the right of the <-greatest element of c, and the interval

between the <-greatest element of c and the <-first element of b
′
contains

an element of length 2. Since b satisfies ψα and c satisfies ψβ, we should
have L(I) ⊧ b < c. Since b

′
is automorphic to b, it should also satisfy ψα, so

we should have L(I) ⊧ b
′
< c. Applying Lemma 5.2.22, we get the fact that

b, c ∼γ c, b
′
. Therefore, since L(I) ⊧ b < c, and < is defined by a Σc

γ-formula,
we have L(I) ⊧ c < b

′
. This is the contradiction that we were expecting when

we set out to prove Proposition 5.2.27. ◻
We have proved Proposition 5.2.27, saying that there do not exist com-

putable infinitary formulas that define an interpretation both for the Harrison
ordering H in L(H) and for the well-ordered initial segment I in L(I). We
assumed that there were computable infinitary formulas, say Σc

γ, defining
both interpretations, and we arrived at a contradiction. We used H and
L(H) to arrive at a sequence of tuples bα in L(I), representing arbitrarily
large elements of I, and all having the same shape and satisfying the same
computable Σc

γ formulas. We then used automorphisms of L(I) to show that
our proposed interpretation failed. The next result says that, in fact, there
do not exist computable infinitary formulas that define an interpretation for
I in L(I). Of course, I is isomorphic to ωCK1 .

Proposition 5.2.30. There is no interpretation of ωCK1 in L(ωCK1) defined
by computable infinitary formulas.

Proof. Suppose we have an interpretation of ωCK1 in L(ωCK1), defined
by computable infinitary formulas. Say that the formulas that define the
appropriate D, < , and ∼ are Σc

γ. Our assumption gives the fact that for a
Harrison ordering with well-ordered initial segment I, these formulas interpret
I in L(I). However, the assumption does not say that they also interpret H
in L(H). Thus, we are not in a position to use the important Lemma 5.2.29.

The following lemma is simple enough that we omit the proof.

Lemma 5.2.31. Let A be a computable structure. If B satisfies the com-
putable infinitary sentences true in A, then the formulas ϕγ

d
that define the

∼γ-equivalence classes of all tuples in A also define the ∼γ-equivalence classes
of all tuples in B. Moreover, if B ⊧ ϕγ

d
(b), then the Σc

γ-formulas true of b in B
are the same as those true of d in A.

The next lemma gives the conclusion of Lemma 5.2.29. The proof involves
locating ωCK1 inside a larger ordering similar to the Harrison ordering.

132CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

Lemma 5.2.32. In L(ωCK1), there are tuples dα, corresponding to arbitrarily
large computable ordinals α, such that all dα are in D, all have the same
length and shape, all are ∼γ-equivalent, and dα satisfies ψα.

Proof. [Proof of lemma]
We use Barwise-Kreisel Compactness. Let Γ be a Π1

1 set of computable
infinitary sentences describing a structure

U = (U1 ∪U2, U1,<1, U2,<2, F, c)

such that

1. U1 and U2 are disjoint sets,

2. (U1,<1) is a linear ordering that satisfies the computable infinitary
sentences true in ωCK1 and H—since H is computable, this is Π1

1,

3. (U2,<2) satisfies the computable infinitary sentences true in L(ωCK1)—
this is Π1

1 since L(H) is computable and L(I) is a computable infinitary
substructure of L(H),

4. F is a function from DU2 to U1 that induces an isomorphism between
(DU2 , <)/∼U2 and (U1,<1),

5. c is a constant in U1 such that c >1 α for all computable ordinals α; i.e.,
there is a proper initial segment of <1-pred(c) of type α.

Every ∆1
1 subset of Γ is satisfied by taking copies of ωCK1 , L(ωCK1), with

an appropriate function F , and letting c be a sufficiently large computable
ordinal. Therefore, the whole set Γ has a model. Let b be an element of
DU2 such that F (b) = c. Let C be the set of tuples of U2 having the shape
of b and ∼γ-equivalent to b. Since (U2,<2) satisfies the same computable
infinitary sentences true in the computable structure L(H), by the lemma
above, the ∼γ-equivalence class of b is defined in (U2,<2) by a computable
infinitary formula. For each computable ordinal α, we have a computable
infinitary sentence χα saying that some tuple in C does not satisfy ψβ for
any β < α. The sentence χα is true in our model of Γ, witnessed by b such
that F (b) = c. Therefore, the sentence χα is true also in L(ωCK1), witnessed
by some b

′
. Since our formulas define an interpretation of ωCK1 in L(ωCK1),

the witness b
′
for χα in L(ωCK1) must satisfy ψγ for some γ ≥ α. ◻

5.2. INTERPRETING GRAPHS IN LINEAR ORDERINGS 133

Now, we can proceed as in the proof of Proposition 5.2.27. We are working
in L(ωCK1). We choose b, c, from the sequence of dα’s in the lemma, such that
b ∼γ c, where b satisfies ψα and c satisfies ψβ, for α < β. By Lemma 5.2.15, we
may suppose that the elements of b all lie to the left of the <-first element of c,
and the interval between the <-greatest element of b and the <-first element of
c contains an element of length 2. Since α < β, we should have L(ωCK1) ⊧ b < c.
We can take b

′
automorphic to b such that all elements of b

′
lie to the right of

the <-greatest element of c, and the interval between the <-greatest element
of c and the <-first element of b

′
contains an element of length 2. Clearly,

L(ωCK1) ⊧ b
′
< c since b

′
satisfies ψα(x). Applying Lemma 5.2.22 we get the

fact that b, c ∼γ c, b
′
. It follows that L(ωCK1) ⊧ c < b

′
, which is a contradiction.

◻
We are ready to complete the proof of Theorem 5.2.7, saying that there

is no tuple of Lω1ω-formulas that, for all directed graphs G, interprets G in
L(G).
Proof. [Proof of Theorem 5.2.7]

Suppose that we have such formulas. For some X, the formulas are X-
computable infinitary. Let G be a linear ordering of type ωX1 . Relativizing
Proposition 5.2.30, we have the fact that G is not interpreted in L(G) by any
X-computable formulas. ◻

The Friedman-Stanley embedding represents a uniform effective encoding
of directed graphs in linear orderings. We have seen that there is no uniform
interpretation of the input graph in the output linear ordering.

Conjecture 1. Let Φ be a Turing computable embedding of directed graphs
in linear orderings. There do not exist Lω1ω formulas that, for all directed
graphs G, define an interpretation of G in Φ(G).

134CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

5.3 Interpreting a field into the Heisenberg group

The Heisenberg group of a field F is the upper-triangular subgroup of GL3(F)
in which all matrices have 1’s along the diagonal and 0’s below it. Maltsev
showed that there are existential formulas with parameters, which, for every
field F , define F in its Heisenberg group H(F). In this section we will
show that there are existential formulas without parameters, which, for every
field F , interpret F in H(F). Observing what is used to obtain this result,
we will then formulate a general result on removing parameters from an
interpretation. The results from this section are joint with Alvir, Calvert,
Goodman, Harizanov, Knight, Morozov, Miller, and Weisshaar, and published
in [ACG+20].

Let remind Definition 5.1.4 of “Turing computable embedding,” [CCKM04],
based on the earlier notion of “Borel embedding” [FS89] (Definition 5.1.1).
Recall that the classes of structures have a fixed language, and are closed
under isomorphism.

Definition 5.3.1. For classes K and K ′, where K ≤tc K ′ via Θ, we say that
the structures in K are uniformly Medvedev reducible to their Θ-images in
K ′, A ∈K is uniformly Medvedev reducible to Θ(A) if there is a single Turing
operator Φ such that for all A ∈K, A ≤s Θ(A) via Φ.

Here is a uniform definition of the effective interpretation (see Definition
5.1.10), and a uniform definition of computable functor (see Definition 5.1.11.

Definition 5.3.2. Suppose K ≤tc K ′ via Θ.

(1) We say that the structures in K are uniformly effectively interpreted in
their Θ-images if there is a fixed collection of generalized computable
Σc

1 formulas (without parameters) (see Definition 2.5.9) such that, for
all A ∈K, define an interpretation of A in Θ(A).

(2) We say that Φ and Ψ form a uniform computable functor from the
structures Θ(A) to A if these Turing operators serve for all A ∈K.

There is a uniform version of Theorem 5.1.12.

Theorem 5.3.3. For classes K,K ′ with K ≤tc K ′ via Θ, the following are
equivalent:

5.3. INTERPRETING A FIELD INTO THE HEISENBERG GROUP 135

1. there are computable Σc
1 formulas (without parameters) which, for all

A ∈K, effectively interpret A in Θ(A),

2. there are uniform Turing operators Φ,Ψ that, for all A ∈ K, form a
computable functor from Θ(A) to A.

Maltsev defined a Turing computable embedding of fields in 2-step nilpo-
tent groups. The embedding takes each field F to its Heisenberg group
H(F). To show that the embedding preserves isomorphism, Maltsev gave
uniform existential formulas defining a copy of F in H(F). The definitions
involved a pair of parameters, whose orbit is defined by an existential (in fact,
quantifier-free) formula. In Section 5.3.1, we recall Maltsev’s definitions. In
Section 5.3.2, we describe a uniform computable functor that, for all F , takes
copies of H(F), with their isomorphisms, to copies of F , with corresponding
isomorphisms. By Theorem 5.3.3, it follows that there is a uniform effective
interpretation of F in H(F) with no parameters. In Section 5.3.3, we give
explicit finitary existential formulas that define such an interpretation. In
Section 5.3.4, we note that although F is effectively interpretable in H(F) and
H(F) is effectively interpretable in F , we do not, in general, have effective
bi-interpretability. In Section 5.3.5, we generalize what we did in passing from
Maltsev’s definition, with parameters, to the uniform effective interpretation,
with no parameters.

5.3.1 Defining F in H(F)

The content of the subsections 5.3.1, 5.3.2, 5.3.3, 5.3.4, and 5.3.5 are from
[ACG+20].

We recall first Maltsev’s embedding of fields in 2-step nilpotent groups,
and his formulas that define a copy of the field in the group.Recall that for a
field F , the Heisenberg group H(F) is the set of matrices of the form

h(a, b, c) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 a c
0 1 b
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

with entries in F . Note that h(0, 0, 0) is the identity matrix. We are interested
in non-commuting pairs in H(F). One such pair is (h(1, 0, 0), h(0, 1, 0)). For

136CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

u = h(u1, u2, u3) and v = h(v1, v2, v3), let

∆(u,v) = ∣
u1 v1

u2 v2
∣ .

For a group G, we write Z(G) for the center. For group elements x, y,
the commutator is [x, y] = x−1y−1xy. The following technical lemma provides
much of the information we need to show that F is defined, with parameters,
in H(F).

Lemma 5.3.4.

1. (a) For u and v, the commutator, [u, v], is h(0,0,∆(u,v)), and

(b) [u, v] = 1 iff ∆(u,v) = 0.

2. Let u = h(u1, u2, u3), and let v = h(v1, v2, v3). If [
u1

u2
] = [

0
0

], then

u ∈ Z(H(F)). If [
u1

u2
] /= [

0
0

], then [u, v] = 1 iff there exists α such

that [
v1

v2
] = α ⋅ [

u1

u2
].

3. Z(H(F)) consists of the elements of the form h(0,0, c).

4. If [u, v] /= 1, then x ∈ Z(H(F)) iff [x,u] = [x, v] = 1.

Proof.
For Part 1, (a) is proved by direct computation, and (b) follows from

(a). Parts 2 and 3 are easy consequences of Part 1. We prove Part 4.
Suppose [u, v] /= 1. If x ∈ Z(H(F)), then it commutes with both u and v.
We must show that if x commutes with both u and v, then x ∈ Z(H(F)).
Let u = h(u1, u2, u3), v = h(v1, v2, v3), and x = h(x1, x2, x3). By Part 2,

since [x,u] = 1, there exists α such that [
x1

x2
] = α [

u1

u2
]. Similarly, since

[x, v] = 1, there exists β such that [
x1

x2
] = β [

v1

v2
]. Since the vectors [

u1

u2
]

and [
v1

v2
], are linearly independent, this implies that α = β = 0. It follows

that x1 = x2 = 0, so x ∈ Z(H). ◻

5.3. INTERPRETING A FIELD INTO THE HEISENBERG GROUP 137

Corollary 5.3.5. If x ∈H(F) is fixed by all automorphisms of H(F), then
x = 1.

Proof. Write x = h(a, b, c). Lemma 5.3.4(3) shows a = b = 0, since all
conjugations fix x. But the automorphism of H(F) mapping h(x, y, z) to
h(y, x, xy − z), which interchanges h(1, 0, 0) with h(0, 1, 0), maps h(0, 0, c) to
h(0,0,−c), hence shows that c = 0 as well. ◻

The next lemma tells us how, for any non-commuting pair u, v in the
group (H(F),∗), we can define operations + and ⋅, and an isomorphism f
from F to (Z(H(F)),+, ⋅).

Lemma 5.3.6. Let u = h(u1, u2, u3) and v = h(v1, v2, v3) be a non-commuting
pair. Assume that α,β, γ ∈ F . Let x = h(0,0, α ⋅∆(u,v)), y = h(0,0, β ⋅∆(u,v)),
and z = h(0,0, γ ⋅∆(u,v)). Then

1. α + β = γ iff x ∗ y = z, where ∗ is the matrix multiplication.

2. α ⋅β = γ iff there exist x′ and y′ such that [x′, u] = [y′, v] = 1, [u, y′] = y,
[x′, v] = x, and z = [x′, y′].

Proof.
For Part 1, matrix multiplication yields the fact that

h(0,0, a) ∗ h(0,0, b) = h(0,0, a + b) .

Then α + β = γ iff

x ∗ y = h(0,0, α ⋅∆(u,v)) ∗ h(0,0, β ⋅∆(u,v)) = h(0,0, γ ⋅∆(u,v)) = z .

For Part 2, first suppose that α ⋅ β = γ. We take x′ = h(α ⋅ u1, α ⋅ u2,0), and
y′ = h(β ⋅ v1, β ⋅ v2,0). Then ∆(x′,u) = 0, so [x′, u] = h(0,0,0) = 1. Similarly,
[y′, v] = 1. Also, ∆(x′,v) = α ⋅∆(u,v), so [x′, v] = h(0, 0, α ⋅∆(u,v)) = x. Similarly,
∆(u,y′) = β ⋅∆(u,v), so [u, y′] = h(0,0, β ⋅∆(u,v)) = y. Finally, ∆(x′,y′) = α ⋅ β ⋅
∆(u,v) = γ ⋅∆(u,v), so [x′, y′] = h(0,0, γ ⋅∆(u,v)) = z.

Now, suppose we have x′ and y′ such that [x′, u] = [y′, v] = 1, [u, y′] = y,
[x′, v] = x, and [x′, y′] = z. Say that x′ = h(x′1, x′2, x′3) and y′ = h(y′1, y

′
2, y

′
3).

Since [x′, v] = x, ∆(x′,v) = α ⋅ ∆(u,v), so [
x′1
x′2

] = α [
u1

u2
]. Since [u, y′] = y,

∆(u,y′) = β ⋅ ∆(u,v), so [
y′1
y′2

] = β [
v1

v2
]. Combining these facts, we see

138CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

that ∆(x′,y′) = ∣
x′1 y′1
x′2 y′2

∣ = ∣
α ⋅ u1 β ⋅ v1

α ⋅ u2 β ⋅ v2
∣ = α ⋅ β ⋅ ∆(u,v). Since [x′, y′] = z,

∆(x′,y′) = γ ⋅ ∆(u,v). Since u and v do not commute, ∆(u,v) /= 0. Therefore,
α ⋅ β = γ. ◻

The main result of the subsection follows directly from Lemmas 5.3.4 and
5.3.6.

Theorem 5.3.7 (Maltsev, Morozov). For an arbitrary non-commuting pair
(u, v) in H(F), we get F(u,v) = (Z(H(F)),⊕,⊗(u,v)) where

1. x ∈ Z(H(F)) iff [x,u] = [x, v] = 1,

2. ⊕ is the group operation from H(F),

3. ⊗(u,v) is the set of triples (x, y, z) such that there exist x′, y′ with
[x′, u] = [y′, v] = 1, [x′, v] = x, [u, y′] = y, and [x′, y′] = z,

4. the function g(u,v) taking α ∈ F to h(0,0, α ⋅ ∆(u,v)) ∈ H(F) is an
isomorphism between F and F(u,v).

Note: From Part 4, it is clear that h(0, 0,∆(u,v)) is the multiplicative identity
in F(u,v)—we may write 1(u,v) for this element.

Proposition 5.3.8. There is a uniform Medvedev reduction Φ of F to H(F).

Proof.
Given G ≅ H(F), we search for a non-commuting pair (u, v) in G, and

then use Maltsev’s definitions to get a copy of F computable from G. ◻
It turns out that the Medvedev reduction Φ is half of a computable functor.

In the next subsection, we explain how to get the other half.

5.3.2 The computable functor

In the previous subsection, we saw that for any field F and any non-commuting
pair (u, v) in H(F), there is an isomorphic copy F(u,v) of F defined in H(F)
by finitary existential formulas with parameters (u, v). The defining formulas
are the same for all F . Hence, there is a uniform Turing operator Φ that, for all
fields F , takes copies of H(F) to copies of F . In this subsection, we describe
a companion operator Ψ so that Φ and Ψ together form a uniform computable
functor. For any field F , and any triple (G1, p,G2) such that G1 and G2

5.3. INTERPRETING A FIELD INTO THE HEISENBERG GROUP 139

are copies of H(F) and p is an isomorphism from G1 onto G2, the function
Ψ(G1, p,G2) must be an isomorphism from Φ(G1) onto Φ(G2), and, moreover,
the isomorphisms given by Ψ must preserve identity and composition. We
saw in the previous subsection that for any field F , and any non-commuting
pair (u, v) in H(F), the function g(u,v) taking α to h(0,0, α ⋅ ∆(u,v)) is an
isomorphism from F onto F(u,v). We use this g(u,v) below.

Lemma 5.3.9. For any F and any non-commuting pairs (u, v), (u′, v′) in
H(F), there is a natural isomorphism f(u,v),(u′,v′) from F(u,v) onto F(u′,v′).
Moreover, the family of isomorphisms f(u,v),(u′,v′) is functorial; i.e.,

1. for any non-commuting pair (u, v), the function f(u,v),(u,v) is the identity,

2. for any three non-commuting pairs (u, v), (u′, v′), and (u′′, v′′),

f(u,v),(u′′,v′′) = f(u′,v′),(u′′,v′′) ○ f(u,v),(u′,v′).

Proof.
We let f(u,v),(u′,v′) = g(u′,v′) ○g−1

(u,v). This is an isomorphism from F(u,v) onto
F(u′,v′). It is clear that f(u,v),(u,v) is the identity. Consider non-commuting pairs
(u, v), (u′, v′), and (u′′, v′′). We must show that f(u′,v′),(u′′,v′′) ○ f(u,v),(u′,v′) =
f(u,v),(u′′,v′′). We have:

f(u′,v′),(u′′,v′′) ○ f(u,v),(u′,v′) = g(u′′,v′′) ○ g
−1
(u′,v′) ○ g(u′,v′) ○ g

−1
(u,v) =

= g(u′′,v′′) ○ g
−1
(u,v) =

= f(u,v),(u′′,v′′).

◻
The next lemma says that there is a uniform existential definition of the

family of isomorphisms f(u,v),(u′,v′).

Lemma 5.3.10. There is a finitary existential formula ψ(u, v, u′, v′, x, y) that,
for any two non-commuting pairs (u, v) and (u′, v′), defines the isomorphism
f(u,v),(u′,v′) taking x ∈ F(u,v) to y ∈ F(u′,v′).

Proof.
Since the operation ⊗(u,v) and 1(u′,v′) are definable by ∃–formulas with

parameters u, v and u′, v′ respectively, it suffices to prove the equivalence

f(u,v),(u′,v′)(x) = y⇔ x⊗(u,v) 1(u′,v′) = y.

140CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

First assume that f(u,v),(u′,v′)(x) = y, i.e., y = g(u′,v′) ○ g
−1
(u,v)(x). Let α =

g−1
(u,v)(x), i.e., x = h(0,0, α ⋅ ∆(u,v)). It follows that y = h (0,0, α ⋅∆(u′,v′)).

Then

x⊗(u,v) 1(u′v′) = h (0,0, α ⋅∆(u,v))⊗(u,v) h (0,0,∆(u′,v′)) =

= h (0,0, α ⋅∆(u,v))⊗(u,v) h(0,0,
∆(u′,v′)

∆(u,v)
⋅∆(u,v)) =

= h(0,0, α ⋅
∆(u′,v′)

∆(u,v)
⋅∆(u,v)) =

= h (0,0, α ⋅∆(u′,v′)) = y.

Assume now that x⊗(u,v) 1(u′,v′) = y and let x = h (0,0, α ⋅∆(u,v)). Then

y = x⊗(u,v) 1(u′,v′) = h (0,0, α ⋅∆(u,v))⊗(u,v) h (0,0,∆(u′,v′)) =

= h (0,0, α ⋅∆(u′,v′)) = g(u′,v′) ○ g
−1
(u,v)(x) = f(u,v),(u′,v′)(x).

◻
We will use Lemmas 5.3.9 and 5.3.10 to prove the following.

Proposition 5.3.11. There is a uniform computable functor that, for all
fields F , takes H(F) to F .

Proof.
Let Φ be the uniform Medvedev reduction of F to H(F). Take copies

G1,G2 ofH(F) and take p such thatG1 ≅p G2. We describe q = Ψ(G1, p,G2) as
follows. Let (u, v) be the first non-commuting pair in G1, and let (u′, v′) be the
first non-commuting pair in G2. Now, p takes (u, v) to a non-commuting pair
(p(u), p(v)), and p maps F(u,v) isomorphically onto F(p(u),p(v)). The function
f(p(u),p(v)),(u′,v′) is an isomorphism from F(p(u),p(v)) onto F(u′,v′). We get an
isomorphism q from F(u,v) onto F(u′,v′) by composing p with f(p(u),p(v)),(u′,v′).
For x ∈ F(u,v), we let q(x) = f(p(u),p(v)),(u′,v′)(p(x)). Since f(p(u),p(v)),(u′,v′) is
defined by an existential formula, with parameters p(u), p(v), u′, v′, we can
apply a uniform effective procedure to compute q from (G1, p,G2).

If G1 = G2 and p is the identity, then (u, v) = (u′, v′), and by Lemma
5.3.9, f(u,v),(u′,v′) is the identity. Consider G1,G2,G3, all copies of G, with
functions p1, p2 such that G1 ≅p1 G2 and G2 ≅p2 G3. Then p3 = p2 ○ p1 is an
isomorphism from G1 onto G3. Let q1 = Ψ(G1, p1,G2), q2 = Ψ(G2, p2,G3),

5.3. INTERPRETING A FIELD INTO THE HEISENBERG GROUP 141

and q3 = Ψ(G1, p3,G3). We must show that q3 = q2 ○ q1. The idea is to
transfer everything to G3 and use Lemma 5.3.9. Let r1 be the result of
transferring q1 down to G3—r1 = f(p3(u),p3(v)),(p2(u),p2(v)). We have q1(x) = y
iff r1(p3(x)) = p2(y). Let r2 be the result of transferring q2 down to G3—
r2 = f(p2(u),p2(v)),(u,v). We have q2(y) = z iff r2(p2(y)) = z. We let r3 be the
result of transferring q3 down to G3—r3 = f(p3(u),p3(v)),(u,v). We have q3(x) = z
iff r3(p3(x)) = z. By Lemma 5.3.9, r3 = r2 ○ r1. If q1(x) = y and q2(y) = z,
then r1(p3(x)) = p2(y), and r2(p2(y)) = z. Then r3(p3(x)) = z, so q3(x) = z,
as required. ◻

Corollary 5.3.12. There is a uniform effective interpretation of F in H(F).

Proof. Apply the result from [HTMMM17]. ◻

The result from [HTMMM17] gives a uniform interpretation of F in
H(F), valid for all countable fields F , using computable Σc

1 formulas with no
parameters. The tuples from H(F) that represent elements of F may have
arbitrary arity. In the next subsection, we will do better.

We note here that the uniform interpretation of F in H(F) given in this
subsection allows one to transfer the computable-model-theoretic properties of
any graph G to a 2-step-nilpotent group, without introducing any constants.
This is not a new result: in [Mek81], Mekler gave a related coding of graphs
into 2-step-nilpotent groups, which, in concert with the completeness of graphs
for such properties (see [HKSS02]), appears to yield the same fact, although
Mekler’s coding had different goals than completeness. Then, in [HKSS02],
Hirschfeldt, Khoussainov, Shore, and Slinko used Maltsev’s interpretation
of an integral domain in its Heisenberg group with two parameters, along
with the completeness of integral domains, to re-establish it. More recently,
[MPSS18] demonstrated the completeness of fields, by coding graphs into
fields, From that result, along with Corollary 5.3.12 and the usual definition
of H(F) as a matrix group given by a set of triples from F , we achieve a
coding of graphs into fields, different from Mekler’s coding, with no constants
required.

5.3.3 Defining the interpretation directly

Our goal in this section is to give explicit existential formulas defining a uni-
form effective interpretation of a field in its Heisenberg group. We discovered
the formulas for this interpretation by examining the infinitary formulas used

142CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

in the interpretation in Corollary 5.3.12 and trimming them down to their
essence, which turned out to be finitary.

Theorem 5.3.13. There are finitary existential formulas that, uniformly for
every field F , define an effective interpretation of F in H(F), with elements
of F represented by triples of elements from H(F).

We offer intuition before giving the formal proof. The domain D of the
interpretation will consist of those triples (u, v, x) from H(F) with uv ≠ vu
and x in the center: for each single (u, v), we apply Maltsev’s definitions,
with u, v as parameters, to get F(u,v) ≅ F . We view the triples arranged as
follows:

F(u,v) F(u′,v′) F(u′′,v′′) ⋯

(u, v, x0)
(u, v, x1)
(u, v, x2)
(u, v, x3)

⋮

(u′, v′, x0)
(u′, v′, x1)
(u′, v′, x2)
(u′, v′, x3)

⋮

(u′′, v′′, x0)
(u′′, v′′, x1)
(u′′, v′′, x2)
(u′′, v′′, x3)

⋮

Here each column can be seen as F(u,v) for some non-commuting pair
(u, v). Now the system of isomorphisms from Lemma 5.3.9 will allow us to
identify each element in one column with a single element from each other
column, and modding out by this identification will yield a single copy of F .
Proof.

LetH be a group isomorphic toH(F). Recalling the natural isomorphisms
f(u,v),(u′,v′) defined in Lemma 5.3.9 for non-commuting pairs (u, v) and (u′, v′),
we define D ⊆H, a binary relation ∼ on D, and ternary relations ⊕, ⊙ (which
are binary operations) on D, as follows.

1. D is the set of triples (u, v, x) such that uv ≠ vu and xu = ux and
xv = vx. (Notice that, no matter which non-commuting pair (u, v) is
chosen, the set of corresponding elements x is precisely the center Z(H),
by Theorem 5.3.7.)

2. (u, v, x) ∼ (u′, v′, x′) holds if and only if the isomorphism f(u,v),(u′,v′)
from F(u,v) to F(u′,v′) maps x to x′.

5.3. INTERPRETING A FIELD INTO THE HEISENBERG GROUP 143

3. ⊕((u, v, x), (u′, v′, y′), (u′′, v′′, z′′)) holds if there exist y, z ∈H such that
(u, v, y) ∼ (u′, v′, y′) and (u, v, z) ∼ (u′′, v′′, z′′), and F(u,v) ⊧ x + y = z.

4. ⊙((u, v, x), (u′, v′, y′), (u′′, v′′, z′′)) holds if there exist y, z ∈H such that
(u, v, y) ∼ (u′, v′, y′) and (u, v, z) ∼ (u′′, v′′, z′′), and F(u,v) ⊧ x ⋅ y = z.

Lemma 5.3.10 yielded a finitary existential formula defining the relation
(u, v, x) ∼ (u′, v′, x′). Moreover, the field addition and multiplication were
defined in F(u,v) by finitary existential formulas using u and v, which were
parameters there but here are elements of the triples in D. Finally, we
must consider the negations of the relations. First, (u, v, x) /∼ (u′, v′, x′) if
and only if some y′ commuting with u′ and v′ satisfies (u, v, x) ∼ (u′, v′, y′)
and y′ ≠ x′ – that is, just if f(u,v),(u′,v′) maps x to some element different
from x′. Likewise, since + is a binary operation in F(u,v), the negation of
⊕((u, v, x), (u′, v′, y′), (u′′, v′′, z′′)) is defined by saying that some w′′ ≠ z′′ is
the sum:

∃w′′([w′′, u′′] = 1 = [w′′, v′′] & w′′ ≠ z′′ & ⊕((u, v, x), (u′, v′, y′), (u′′, v′′,w′′))),

which is also existential, and similarly for the negation of ⊙. Therefore, all of
these sets have finitary existential definitions in the language of groups, with
no parameters, as do the negations of ∼, ⊕, and ⊙. (In fact, the complement
of D is Σc

1 as well.)
The functoriality of the system of isomorphisms f(u,v),(u′,v′) (across all

pairs of pairs of noncommuting elements) ensures that ∼ will be an equivalence
relation. Lemma 5.3.9 showed that f(u,v),(u,v) is always the identity, giving
reflexivity. Transitivity follows from the functorial property in that same
lemma:

f(u,v),(u′′,v′′) = f(u′,v′),(u′′,v′′) ○ f(u,v),(u′,v′),

and with (u′′, v′′) = (u, v), this property also yields the symmetry of ∼.
The definitions of ⊕ and ⊙ essentially say to convert all three triples into

∼-equivalent triples with the same initial coordinates u and v, and then to
check whether the final coordinates satisfy Maltsev’s definitions of + and ⋅ in
the field F(u,v). Understood this way, they clearly respect the equivalence ∼.
Finally, by fixing any single noncommuting pair (u, v), we see that the set
{(u, v, x) ∶ x ∈ Z(H)} contains one element from each ∼-class and, under ⊕
and ⊙, is isomorphic to the field F(u,v) defined by Maltsev, which in turn is
isomorphic to the original field F . ◻

144CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

It should be noted that, although this interpretation of F in H(F) was
developed using computable functors on countable fields F , it is valid even
when F is uncountable (or finite). A full proof requires checking that the sys-
tem of isomorphisms f(u,v),(u′,v′) remains functorial and existentially definable
even in the uncountable case, but this is straightforward.

In Theorem 5.3.13, to eliminate parameters from Maltsev’s definition of
F in H(F), we gave an interpretation of F in H(F), rather than another
definition. (Recall that a definition is an interpretation in which the equiva-
lence relation on the domain is simply equality.) We now demonstrate the
impossibility of strengthening the theorem to give a parameter-free definition
of F in H(F).

Proposition 5.3.14. There is no parameter-free definition of any field F in
its Heisenberg group H(F) by finitary formulas.

Proof. Suppose that there were such a definition, and let D ⊆ (H(F))n be
its domain. By Corollary 5.3.5, the only (x1, . . . , xn) ∈ (H(F))n that is fixed
by all automorphisms of H(F) is the tuple where every xi is the identity
element of H(F). So, for every x ∈D except this identity tuple, there would
be an αx ∈ Aut(H(F)) that does not fix x. With equality of n-tuples as
the equivalence relation on D, αx yields an automorphism of the field F
(viewed as D under the definable addition and multiplication) that does not
fix x. However, both identity elements 0 and 1 in F must be fixed by every
automorphism of F . ◻

5.3.4 Question of bi-interpretability

If B is interpreted in A, we write BA for the copy of B given by the inter-
pretation of B in A. The structures A and B are effectively bi-interpretable
if there are uniformly relatively computable isomorphisms f from A onto
AB

A and g from B onto BAB . In general, the isomorphism f would map
each element of A to an equivalence class of equivalence classes of tuples in
A. We would represent f by a relation Rf that holds for a, a1, . . . , ar if f
maps a to the equivalence class of the tuple of equivalence classes of the ai’s.
Similarly, the isomorphism g would be represented by a relation Rg that holds
for b, b1, . . . , br if g maps b to the equivalence class of the tuple of equivalence
classes of the bi’s. Saying that f and g are uniformly relatively computable is
equivalent to saying that the relations Rf , Rg, have generalized computable
Σc

1 definitions without parameters.

5.3. INTERPRETING A FIELD INTO THE HEISENBERG GROUP 145

For a field F and its Heisenberg group H(F), when we define H(F) in F ,
the elements of H(F) are represented by triples from F , and we have finitary
formulas, quantifier-free or existential, that define the group operation (as a
relation). When we interpret F in H(F), the elements of F are represented
by triples from H(F), and we have finitary existential formulas that define the
field operations and their negations (as ternary relations). Thus, in FH(F)F

(the copy of F interpreted in the copy of H(F) that is defined in F), the
elements are equivalence classes of triples of triples. In H(F)F

H(F) (the copy
of H(F) defined in the copy of F that is interpreted in H(F)), the elements
are triples of equivalence classes of triples. So, an isomorphism f from F to
FH(F)F is represented by a 10-ary relation Rf on F , and an isomorphism g

from H(F) to H(F)F
H(F)—it is represented by a 10-ary relation Rg on H(F).

For a Turing computable embedding Θ of K in K ′ we have uniform
effective bi-interpretability if there are (generalized) computable Σc

1 formulas
with no parameters that, for all A ∈K and B = Θ(A), define isomorphisms
from A to ABA and from B to BAB . Montalbán asked the following very
natural question.

Question 5.3.15. Do we have uniform effective bi-interpretability of F and
H(F)?

The answer to this question is negative. In particular, Q and H(Q) are not
effectively bi-interpretable. One way to see this is to note that Q is rigid, while
H(Q) is not—in particular, for any non-commuting pair, u, v ∈H(Q), there
is a group automorphism that takes (u, v) to (v, u). The negative answer to
Question 5.3.15 then follows from [Mon, Lemma VI.26(4)], which states that
if A and B are effectively bi-interpretable, then their automorphism groups
are isomorphic.

Morozov’s result shows which half of effective bi-interpretability causes
the difficulties.

Proposition 5.3.16 (Morozov). There is a finitary existential formula that,
for all F , defines in F a specific isomorphism k from F to FH(F)F .

Proof.
In F , we have the copy of H(F), consisting of triples (a, b, c) (representing

h(a, b, c)), for a, b, c ∈ F . The group operation, derived from matrix multipli-
cation, is (a, b, c)∗ (a′, b′, c′) = (a+ a′, b+ b′, c+ c′ + ab′). The definitions of the
universe and the operation are quantifier-free, with no parameters. We have

146CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

seen how to interpret F in H(F) using finitary existential formulas with no
parameters. There is a natural isomorphism k from F onto FH(F)F obtained
as follows. In H(F), let u = h(1,0,0) and v = h(0,1,0). Then ∆(u,v) = 1. We
have an isomorphism mapping F to F(u,v) that takes α to h(0,0, α). We let
k(α) be the ∼-class of (u, v, h(0, 0, α)). The isomorphism k is defined in F by
an existential formula. The complement of k is defined by saying that k(α)
has some other value. ◻

The other half of what we would need for uniform effective bi-interpretability
is sometimes impossible, as remarked above in the case F = Q. We do not
know of any examples where F and H(F) are effectively bi-interpretable: the
obstacle for Q might hold in all cases.

Problem 5.3.17. For which fields F , if any, are the automorphism groups
of F and H(F) isomorphic?

Even if there are fields F such that Aut(F) ≅ Aut(H(F)), we suspect
that F and H(F) are not effectively bi-interpretable, simply because it is
difficult to see how one might give a computable Σc

1 formula in the language
of groups that defines a specific isomorphism from H(F) to H(F)F

H(F) .

5.3.5 Generalizing the method

Our first general definition and proposition follow closely the example of a
field and its Heisenberg group.

Definition 5.3.18. Let A be a structure for a computable relational language.
Assume that its basic relations are Ri, where Ri is ki-ary. We say that A
is effectively defined in B with parameters b if there exist D(b) ⊆ B<ω, and
±Ri(b) ⊆D(b)ki , defined by a uniformly computable sequence of generalized
computable Σc

1 formulas with parameters b.

Proposition 5.3.19. Suppose A is effectively defined in B with parameters b.
For c in the orbit of b, let Ac be the copy of A defined by the same formulas,
but with parameters c replacing b. Then the following conditions together
suffice to give an effective interpretation of A in B without parameters:

(1) The orbit of b is defined by a computable Σc
1 formula ϕ(u);

(2) There is a generalized computable Σc
1 formula ψ(u, v, x, y) such that for

all c, d in the orbit of b, the formula ψ(c, d, x, y) defines an isomorphism
fc,d from Ac onto Ad; and

5.3. INTERPRETING A FIELD INTO THE HEISENBERG GROUP 147

(3) The family of isomorphisms fc,d preserves identity and composition.

Proof.
We write D(b), ±Ri(b) for the set and relations that give a copy of A and

for the defining formulas (with parameters b). We obtain a parameter-free
interpretation of A in B as follows:

1. Let D consist of the tuples (c, x) such that c is in the orbit of b and x
is in D(c). This is defined by a generalized computable Σc

1 formula.

2. Let ∼ be the set of pairs ((c, x), (d, y)) in D2 such that fc,d(x) = y. This
is defined by a generalized computable Σc

1 formula. For pairs (c, x),
(d, y) from D, it follows that (c, x) /∼ (d, y) if and only if

(∃y′)((d, y′) ∈D & fc,d(x) = y
′ & y′ /= y).

Hence the negation of ∼ is also defined by a generalized computable Σc
1

formula.

3. We let R∗
i be the set of ki-tuples ((b1, x1), . . . , (bki , xki)) in Dki such that

for the tuple (y1, . . . , yki) with fbj ,b1(xj) = yj, we have (y1, . . . , yki) ∈

Ri(b1). This is defined by a generalized computable Σc
1 formula. The

complementary relation ¬R∗
i is the set of tuples ((b1, x1), . . . , (bki , xki))

such that for y1, . . . , yki as above, (y1, . . . , yki) ∈ ¬Ri(b1). This is also
defined by a generalized computable Σc

1 formula.

The verification is identical to that of Theorem 5.3.13. ◻

Corollary 5.3.20. In the situation of Proposition 5.3.19, if D(b) is contained
in Bn for some single n ∈ ω, then the ψ in item (2) and the formulas in
Definition 5.3.18 will simply be computable Σc

1 formulas (as opposed to
generalized computable Σc

1 formulas) and the interpretation of A in B without
parameters will also be by computable (as opposed to generalized) Σc

1 formulas.

The reader will have noticed that we only produced an interpretation
of A in B, even though we originally had a definition (with parameters) of
A in B. The specific example in Sections 5.3.2 and 5.3.3 suggests that this
may be the best that can be done in general. On the other hand, we may
extend Proposition 5.3.19 and remove parameters even in the case where A is
interpreted (as opposed to being defined) with parameters in B.

148CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

Definition 5.3.21 (Effective Interpretation with Parameters). We say that
A, with basic relations Ri, ki-ary, is effectively interpreted with parameters b
in B if there exist D ⊆ B<ω, ≡⊆D2, and R∗

i ⊆D
ki such that

1. (D, (R∗
i)i)/≡ ≅ A,

2. D, ± ≡, and ±R∗
i are defined by a computable sequence of generalized

computable Σc
1 formulas, with a fixed finite tuple of parameters b.

Again, in the case where D ⊆ Bn for some fixed n, the formulas defining
the effective interpretation are computable Σc

1 formulas of the usual kind,
with parameters b.

Proposition 5.3.22. Suppose that A (with basic relations Ri, ki-ary) has
an effective interpretation in B with parameters b. For c in the orbit of b,
let Ac be the copy of A obtained by replacing the parameters b by c in the
defining formulas, with domain Dc/≡c containing ≡c-classes [a]≡c . Then the
following conditions suffice for an effective interpretation of A in B (without
parameters):

(1) The orbit of b is defined by a computable Σc
1 formula ϕ(x);

(2) There is a relation F ⊆ B<ω, with a generalized computable Σc
1-definition,

such that for every c and d in the orbit of b, the set of pairs (x, y) ∈
Dc ×Dd with (c, d, x, y) ∈ F is invariant under ≡c on x and under ≡d on
y, and defines an isomorphism fc,d from Ac onto Ad; and

(3) The family of isomorphisms fc,d preserves identity and composition.

Proof. Let the new domain D consist of those tuples (c, x) with c in the
orbit of b and x in Dc. This is defined by a generalized computable Σc

1 formula.
Let the equivalence relation ∼ on D be the set of pairs ((c, x), (d, y)) ∈D2

such that fc,d([x]≡c) = [y]≡
d
. This is defined by a generalized computable Σc

1

formula. For (c, x), (d, y) ∈D, we have (c, x) /∼ (d, y) if and only if

(∃y′ ∈Dd) (fc,d([x]≡c) = [y′]≡
d

& y /≡d y
′).

Hence /∼ is also defined by a generalized computable Σc
1 formula.

Let R∗
i be the set of ki-tuples ((b1, x1), . . . , (bki , xki)) in Dki such that for

the tuple (y1, . . . , yki) with fbj ,b1(xj) = yj , we have (y1, . . . , yki) ∈ Ri(b1). This

5.3. INTERPRETING A FIELD INTO THE HEISENBERG GROUP 149

is defined by a generalized computable Σc
1-formula. The complementary rela-

tion ¬R∗
i is the set of tuples ((b1, x1), . . . , (bki , xki)) such that for y1, . . . , yki as

above, (y1, . . . , yki) ∈ ¬Ri(b1). This too is defined by a generalized computable
Σc

1 formula. Finally, as in the proofs of Theorem 5.3.13 and Proposition 5.3.19,
it is clear that this yields an interpretation of A in B without parameters. ◻

A relation R ⊆ B<ω may have a definition that is generalized computable
Σc
α for a computable ordinal α, or generalized X-computable Σα for an X-

computable ordinal α, or generalized Lω1ω, or generalized Σα for a countable
ordinal α. The definition has the form ⋁nϕn(xn), where the sequence of
disjuncts (each in Lω1ω, but of different arities n) is computable, or X-
computable, or just countable. We note that each generalized Lω1ω formula is
generalized X-computable Σα for an appropriately chosen X and α, and each
generalized Σα-formula is generalized X-computable Σα for an appropriately
chosen X.

As computable structure theorists, we have focused here on effective
interpretations. Nevertheless, we wish to point out that our results apply not
only to effective interpretations, but to all interpretations using generalized
Lω1ω formulas. The following theorem generalizes Proposition 5.3.22 and
considers every variation we can imagine.

Theorem 5.3.23. Let A be a relational structure with basic relations Ri

that are ki-ary. Suppose there is an interpretation of A in B by generalized
Lω1ω formulas, with parameters b from B. For c in the orbit of b, let Ac be
the copy of A obtained by the interpretation with parameters c replacing
b. Assume that there is a generalized Lω1ω-definable relation F defining, for
each c and d in the orbit of b, an isomorphism fc,d ∶ Ac → Ad as in Proposition
5.3.22, and that this family is closed under composition, with the identity
map as fc,c for all c.

Then there is an interpretation of A in B by Lω1ω formulas without
parameters. Moreover, the new interpretation satisfies all of the following.

• For each countable ordinal α, if the interpretation in (B, b) defines D, ≡,
and each Ri using Σα formulas from Lω1ω, and F and the orbit of b in B
are both defined by Σα formulas, then the parameter-free interpretation
also uses Σα formulas to define these sets.

• For each countable ordinal α, if the interpretation in (B, b) defines each
of D, ±≡, and ±Ri using Σα formulas, and F and the orbit of b in B
are both defined by Σα formulas, then the parameter-free interpretation

150CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

also uses Σα formulas to define its domain, its equivalence relation ∼,
the complement /∼, and its relations ±Ri. (Defining /∼ and ¬Ri this way
is required by the usual notion of effective Σα interpretation.)

• Let X ⊆ N. If the interpretation in (B, b) used X-computable formulas,
and F and the orbit of b in B are both defined byX-computable formulas,
then the parameter-free interpretation also uses X-computable formulas.

Of course, for every countable set of Lω1ω formulas, there is an X that
computes them all. If the signature of A is infinite, and the formulas for
the interpretation of A in (B, b) are computable uniformly in X, then
so are the formulas for the parameter-free interpretation of A in B.

(With X = ∅, X-computable formulas are simply computable formulas.)

• If the interpretation in (B, b) had domain contained in Bn for a single n,
so that the defining formulas for this interpretation and for F in B are
all in Lω1ω (as opposed to generalized Lω1ω), then the parameter-free
interpretation also uses (non-generalized) Lω1ω formulas, and its domain
is contained in Bn+∣b∣.

• If the interpretation in (B, b) used finitary formulas, and F and the orbit
of b in B are both defined by finitary formulas, then the parameter-free
interpretation also uses finitary formulas.

Proof. We obtain the parameter-free interpretation just as in the proof of
Proposition 5.3.22. Notice that, by a result of Scott in [Sco65], the orbit of
b must be definable by some Lω1ω formula. Checking the specific claims is
simply a matter of writing out the new formulas using the old ones. ◻

5.4 Interpreting ACF (0) - C in a special linear
group SL2(C)

Let C be an algebraically closed field of characteristic 0 - ACF (0). We
write SL2(C) for the group of 2 × 2 matrices over C with determinant 1.
Clearly, SL2(C) is defined in C without parameters. Each particular C has a
computable copy, and that is effectively interpreted in SL2(C). But, there are
infinitely many non-isomorphic C, differing in transcendence degree. We will
give finitary existential formulas that (for all C) define C in SL2(C), with a

5.4. INTERPRETINGACF (0) - C IN A SPECIAL LINEAR GROUP SL2(C)151

pair of parameters. Before defining the field as a whole, we look separately at
addition and multiplication. This is a work in progress together with Alvir,
Knight and Miller [AKMS].

Defining (C,+)

Let A be the set of matrices in SL2(C) of the form [
1 a
0 1

]. Note that on

A, matrix multiplication gives addition; that is,

[
1 a
0 1

] ∗ [
1 b
0 1

] = [
1 a + b
0 1

] .

We can define A using the parameter p = [
1 1
0 1

].

Claim 1: The matrices that commute with p have the forms [
1 b
0 1

],

[
−1 b
0 −1

].

Proof. [Proof of Claim 1]

We check that if x = [
a b
c d

] commutes with p, then c = 0 and a = d.

Assuming that x ∈ SL2(C), a = d = 1 or a = d = −1, while b can be anything.
◻

It is easy to check that I is the unique element of SL2(C) that is its own
square. Thus, we can define I by a quantifier-free formula. Now, I has many
square roots apart from ±I. However, these do not commute with p—the
unique square root of I that is not equal to I and commutes with p is −I.

Claim 2: x ∈ A iff x commutes with p and x has a square root that commutes
with p.
Proof. [Proof of Claim 2]

If x ∈ A, then x commutes with p, and x has a square root that commutes

with p. Suppose x commutes with p and is not in A—x = [
−1 b
0 −1

]. We

can see that nothing that commutes with p has square equal to x. ◻
Now, (C,+) ≅ (A,∗), so we have a copy of (C,+) defined in SL2(C) using
the parameter p.

152CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

5.4.1 Defining (C ∖ {0}, ⋅)

LetM be the set of matrices of form [
a 0
0 a−1]. OnM , matrix multiplication

gives multiplication; that is, [a 0
0 a−1]∗[

b 0
0 b−1] = [

ab 0
0 (ab)−1]. We can

define M using a parameter q = [
2 0
0 1

2

].

Claim 3: x ∈M iff x commutes with q.
Proof. [Proof of Claim 3]

It is clear that if x ∈M , then x ∗ q = q ∗ x. Suppose x commutes with q,

where x = [
a b
c d

]. Then b = 0, c = 0, and ad = 1, so x ∈M . ◻

We have (C ∖ {0}, ⋅) ≅ (M,∗), so (C ∖ {0}, ⋅) is defined in SL2(C) using
quantifier-free formulas with the parameter q.

5.4.2 Defining (C,+, ⋅)

To define the field (C,+, ⋅), we represent an element a ∈ C by a pair of matrices

(x, y), where x ∈ A and y ∈M . The most natural choice for x is [
1 a
0 1

]. If

a /= 0, then we let y = [
a 0
0 a−1], while if a = 0, then we let y = I. For a = 1,

we choose (p, I), and for a = 0, we choose (I, I)—the same second component.
Let T be the set of these pairs (x, y) chosen to represent elements of C.

Claim 4: (x, y) ∈ T iff either x = y = I (so (x, y) represents 0) or else x /= I,
x ∈ A, y ∈M , and there is some z such that z∗z = y, z ∈M , and z∗p∗z−1 = x.
(In the second case, (x, y) represents some a /= 0, and there are just two
possibilities for z, corresponding to the two possible square roots of a.)
Proof. [Proof of Claim 4]

First, suppose (x, y) ∈ T . If x = I, then y is also equal to I. Suppose x /= I.
For some a ∈ C ∖ {0},

x = [
1 a
0 1

] and y = [
a 0
0 a−1]. Clearly, x ∈ A and y ∈M . Let b2 = a and

let z = [
b 0
0 b−1]. We have z ∗ z = y, z ∈M , and z ∗ p ∗ z−1 = x. ◻

5.4. INTERPRETINGACF (0) - C IN A SPECIAL LINEAR GROUP SL2(C)153

For (x, y) ∈ T , we define addition and multiplication relations as follows:

1. (x, y)⊕ (x′, y′) = (u, v) if x ∗ x′ = u and (u, v) ∈ T ,

2. (x, y) ⊗ (x′, y′) = (u, v) if either at least one of (x, y), (x′, y′) is (I, I)
and (u, v) = (I, I), or else neither of (x, y), (x′, y′) is (I, I), and then
y ∗ y′ = v and (u, v) ∈ T .

We have established the following.

Proposition 5.4.1. The field C is defined in SL2(C) using finitary existential
formulas with parameters p and q. (The definition of T is existential, while
the definitions of the operations are quantifier-free.)

Question 5.4.2. Are there formulas that, for all algebraically closed fields
C of characteristic 0, define an effective interpretation of C in SL2(C)? Are
there existential formulas that serve?

Remarks. There are old model theoretic results, due to Poizat [Poi01], that
give uniform definability of a copy of C in SL2(C) using elementary first
order formulas without parameters. But we do not know the complexity of
the defining formulas. We have a formula ϕ(u, v), saying of the formulas D,
± ∼, ⊕, and ⊗ that give our interpretation of C in SL2(C) that they give
an field, not of characteristic 2, in which every element has a square root.
For any (u, v) satisfying this formula, we get an infinite field F(u,v). The
theory of SL2(C) is ω-stable. By an old result of Macintyre, F(u,v) must
be algebraically closed. Poizat’s results show that F(u,v) is isomorphic to C
and that there are unique definable isomorphisms between the fields F(u,v)
corresponding to pairs (u, v) that satisfy ϕ(u, v). These isomorphisms are
functorial. So, we have, not necessarily an effective interpretation without
parameters, but one that is defined by elementary first order formulas. We
do not know the complexity of the formulas.

154CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

Chapter 6

Cohesive powers

The inspiration for these investigations is Skolem’s 1934 construction of a
countable non-standard model of arithmetic [Sko34]. Skolem’s construction
can be described roughly as follows. For sets X,Y ⊆ N, write X ⊆∗ Y if X ∖Y
is finite. First, fix an infinite set C ⊆ N that is cohesive for the collection
of arithmetical sets: for every arithmetical A ⊆ N, either C ⊆∗ A or C ⊆∗ A.
Next, define an equivalence relation =C on the arithmetical functions f ∶N→ N
by f =C g if and only if C ⊆∗ {n ∶ f(n) = g(n)}. Then define a structure on the
=C-equivalence classes [f] by [f]+[g] = [f +g], [f]×[g] = [f ×g] (where f +g
and f × g are computed pointwise), and [f] < [g] ⇔ C ⊆∗ {n ∶ f(n) < g(n)}.
Using the arithmetical cohesiveness of C, one then shows that this structure
is elementarily equivalent to (N;+,×,<). The structure is countable because
there are only countably many arithmetical functions, and it has non-standard
elements, such as the element represented by the identity function.

Think of Skolem’s construction as a more effective analog of an ultrapower
construction. Instead of building a structure from all functions f ∶N → N,
Skolem builds a structure from only the arithmetical functions f . The
arithmetically cohesive set C plays the role of the ultrafilter. Feferman,
Scott, and Tennenbaum [FST59] investigate the question of whether Skolem’s
construction can be made more effective by assuming that C is only r-
cohesive (i.e., cohesive for the collection of computable sets) and by restricting
to computable functions f . They answer the question negatively by showing
that it is not even possible to obtain a model of Peano arithmetic in this
way. Lerman [Ler70] investigates the situation further and shows that if
one restricts to cohesive sets C (i.e., cohesive for the collection of c.e. sets)
that are co-c.e. and to computable functions f , then the first-order theory of

155

156 CHAPTER 6. COHESIVE POWERS

the structure obtained is exactly determined by the many-one degree of C.
Additional results in this direction appear in [Hir75, HW75].

Dimitrov [Dim09] generalizes the effective ultrapower construction to arbi-
trary computable structures. These cohesive powers of computable structures
are studied in [Dim08, DH16, DHMM14] in relation to the lattice of c.e. sub-
spaces, modulo finite dimension, of a fixed computable infinite dimensional
vector space over Q. Here, we investigate a question dual to the question
studied by Lerman. Lerman fixes a computable presentation of a computable
structure (indeed, all computable presentations of the standard model of
arithmetic are computably isomorphic) and studies the effect that the choice
of the cohesive set has on the resulting cohesive power. Instead of fixing a
computable presentation of a structure and varying the cohesive set, we fix
a computably presentable structure and a cohesive set, and then we vary
the structure’s computable presentation. We focus on linear orders, with
special emphasis on computable presentations of ω. We choose to work with
linear orders because they are a good source of non-computably categorical
structures and because the setting is simple enough to be able to completely
describe certain cohesive powers up to isomorphism.

The results from this chapter are a joint work with Dimitrov, Harizanov,
Morozov, Shafer, and Vatev, published in [DHM+19] and submitted for
publication [DHM+20].

Our main results are the following, where ω, ζ, and η denote the respective
order-types of the natural numbers, the integers, and the rationals.

• If C is cohesive and L is a computable copy of ω that is computably
isomorphic to the standard presentation of ω (i.e., L has a computable
successor function), then the cohesive power ΠCL has order-type ω + ζη.
(Corollary 6.4.6.)

• If C is co-c.e. and cohesive and L is a computable copy of ω, then
the finite condensation of the cohesive power ΠCL has order-type 1 +
η. (Theorem 6.4.4. See Definition 6.3.3 for the definition of finite
condensation.)

• If C is co-c.e. and cohesive, then there is a computable copy L of ω
where the cohesive power ΠCL has order-type ω + η. (Corollary 6.5.2.)

6.1. BASIC PROPERTIES 157

• More generally, if C is co-c.e. and cohesive and X ⊆ N ∖ {0} is either a
Σ0

2 set or a Π0
2 set, thought of as a set of finite order-types, then there is

a computable copy L of ω where the cohesive power ΠCL has order-type
ω + σ(X ∪ {ω + ζη + ω∗}). Here ω∗ denotes the reverse of ω, and σ
denotes the shuffle operation of Definition 6.6.1. Furthermore, if X is
finite and non-empty, then there is a computable copy L of ω where the
cohesive power ΠCL has order-type ω + σ(X). (Theorem 6.6.6.)

The above results provide many examples of pairs of isomorphic com-
putable linear orders with non-elementarily equivalent cohesive powers. We
also give examples of computable linear orders that are always isomorphic to
their cohesive powers and examples of pairs of non-elementarily equivalent
computable linear orders with isomorphic cohesive powers.

6.1 Basic properties

The content of this section is essentially from [DHM+20].
In this chapter N denotes the natural numbers, and ω denotes its order-

type when thought of as a linear order. The function ⟨⋅, ⋅⟩∶N × N → N
is the usual computable bijective pairing function, and π0 and π1 are the
associated projection functions. For X ⊆ N and n ∈ N, X↾n denotes the set
X ∩ {0,1, . . . , n − 1}. Often we consider expressions of the form lim n∈Cf(n),
lim supn∈C f(n), lim infn∈C f(n), etc., where f ∶N → N is some function and
C ⊆ N is an infinite set. For this, let n0 < n1 < n2 < ⋯ be the elements of
C listed in increasing order. Then lim n∈Cf(n) means lim i→∞f(ni), and
lim supn∈C f(n) and lim infn∈C f(n) are interpreted similarly. Notice that for
functions f ∶N→ N, lim n∈Cf(n) =∞ if and only if lim infn∈C f(n) =∞.

For a partial computable function ϕ, ϕ(n)↓ means that ϕ halts on input
n and produces an output, and ϕ(n)↑ means that ϕ does not halt on input
n. The notation ϕ ≃ ψ means that ϕ and ψ are equal partial functions: for
every n, either ϕ(n)↓ = ψ(n)↓ or both ϕ(n)↑ and ψ(n)↑. We also use the
≃ notation to define one partial computable function in terms of another.
As usual, ϕe,s(n) denotes the result (if any) of running ϕe on input n for s
computational steps.

Definition 6.1.1. An infinite set C ⊆ N is cohesive if for every c.e. set W ,
either C ⊆∗ W or C ⊆∗ W .

158 CHAPTER 6. COHESIVE POWERS

Notice that if C is cohesive and X is either c.e. or co-c.e., then C ∩X
being infinite implies that C ⊆∗ X. We use quantifiers ∀∞n and ∃∞n as
abbreviations for ‘for almost every n’ and ‘there are infinitely many n’. So
for example, (∀∞n ∈ C)(n ∈X) means C ⊆∗ X.

Definition 6.1.2 ([Dim09]). Let L be a computable language. Let A be
a computable L-structure with non-empty domain A ⊆ N. Let C ⊆ N be
cohesive. The cohesive power of A over C, denoted ΠCA, is the L-structure
B defined as follows.

• Let D = {ϕ ∶ ϕ∶N→ A is partial computable and C ⊆∗ dom(ϕ)}.

• For ϕ,ψ ∈D, let ϕ =C ψ denote C ⊆∗ {x ∶ ϕ(x)↓ = ψ(x)↓}. The relation
=C is an equivalence relation on D. Let [ϕ] denote the equivalence class
of ϕ ∈D with respect to =C .

• The domain of B is the set B = {[ϕ] ∶ ϕ ∈D}.

• Let R be an n-ary predicate symbol of L. For [ϕ0], . . . , [ϕn−1] ∈ B,
define RB([ϕ0], . . . , [ϕn−1]) by

RB([ϕ0], . . . , [ϕn−1]) ⇔ C ⊆∗ {x ∶ (∀i < n)ϕi(x)↓∧

RA(ϕ0(x), . . . , ϕn−1(x))}.

• Let f be an n-ary function symbol of L. For [ϕ0], . . . , [ϕn−1] ∈ B, let ψ
be the partial computable function defined by

ψ(x) ≃ fA(ϕ0(x), . . . , ϕn−1(x)),

and notice that C ⊆∗ dom(ψ) because C ⊆∗ dom(ϕi) for each i < n.
Define fB by fB([ϕ0], . . . , [ϕn−1]) = [ψ].

• Let c be a constant symbol of L. Let ψ be the total computable function
with constant value cA, and define cB = [ψ].

6.1. BASIC PROPERTIES 159

We often consider cohesive powers of computable structures by co-c.e.
cohesive sets. The co-c.e. cohesive sets are exactly the complements of the
maximal sets, which are the co-atoms of the lattice of c.e. sets modulo finite
difference. Such sets exist by a well-known theorem of Friedberg (see [Soa87]
Theorem X.3.3). Cohesive powers are intended to be effective analogs of
ultrapowers, so in light of this analogy, it makes sense to impose effectivity
on the cohesive set, which plays the role of the ultrafilter, as well as on the
base structure itself. Technically, it helps to be able to learn what numbers
are not in the cohesive set C when building a computable structure A so as
to influence ΠCA in a particular way. Cohesive powers by co-c.e. cohesive
sets also have the helpful property that every member of the cohesive power
has a total computable representative. Let A be a computable structure
with non-empty domain A, and fix an element a0 ∈ A. Suppose that C is
co-c.e. and cohesive, and let ϕ∶N→ A be a partial computable function with
C ⊆∗ dom(ϕ). Let N be such that (∀n > N)(n ∈ C → ϕ(n)↓). Define a total
computable f ∶N → A as follows. If n ≤ N , then output f(n) = a0. If n > N ,
then simultaneously run ϕ(n) and enumerate the complement C of C. Either
ϕ(n)↓, n ∈ C, or both. If ϕ(n) halts before n is enumerated into C, then
output f(n) = ϕ(n); and if n is enumerated into C before ϕ(n) halts, then
output f(n) = a0. This f is total and satisfies f =C ϕ.

A restricted form of Loś’s theorem holds for cohesive powers. If A is
a computable structure, C is a cohesive set, and Φ is a Π3 sentence, then
ΠCA ⊧ Φ implies A ⊧ Φ. In general, this version of Loś’s theorem for cohesive
powers is the best possible. In Sections 6.4, 6.5, and 6.6, we see several
examples of computable linear orders L where the Σ0

3 sentence “there is an
element with no immediate successor” is true of some cohesive power of L
but not true of L.

Theorem 6.1.3 ([Dim09]). Let A be a computable structure, and let C be
a cohesive set.

(1) Let t(v0, . . . , vn−1) be a term, where all variables are displayed. Let
[ϕ0], . . . , [ϕn−1] ∈ ∣ΠCA∣. Let ψ be the partial computable function

ψ(x) ≃ tA(ϕ0(x), . . . , ϕn−1(x)).

Then tΠCA([ϕ0], . . . , [ϕn−1]) = [ψ].

160 CHAPTER 6. COHESIVE POWERS

(2) Let Φ(v0, . . . , vn−1) be a Boolean combination of Σ0
1 and Π0

1 formulas,
with all free variables displayed. For any [ϕ0], . . . , [ϕn−1] ∈ ∣ΠCA∣,

ΠCA ⊧ Φ([ϕ0], . . . , [ϕn−1]) ⇔ C ⊆∗ l{x ∶ (∀i < n)ϕi(x)↓∧

A ⊧ Φ(ϕ0(x), . . . , ϕn−1(x))}.

(3) If Φ is a Π0
2 sentence or a Σ0

2 sentence, then ΠCA ⊧ Φ if and only if
A ⊧ Φ.

(4) If Φ is a Π3 sentence and ΠCA ⊧ Φ, then A ⊧ Φ.

As with structures and their ultrapowers, a computable structure A always
naturally embeds into its cohesive powers. For a ∈ A, let ψa be the total
computable function with constant value a. Then for any cohesive set C,
the map a ↦ [ψa] embeds A into ΠCA. This map is called the canonical
embedding of A into ΠCA. If A is finite and C is cohesive, then every partial
computable function ϕ∶N→ ∣A∣ with C ⊆∗ dom(ϕ) is eventually constant on C.
In this case, every element of ΠCA is in the range of the canonical embedding,
and therefore A ≅ ΠCA. If A is an infinite computable structure, then every
cohesive power ΠCA is countably infinite: infinite because A embeds into
ΠCA, and countable because the elements of ΠCA are represented by partial
computable functions. See [Dim09] for further details.

Computable structures that are computably isomorphic have isomorphic
cohesive powers. This fact essentially appears in [Dim09], but we include a
proof here for reference.

Theorem 6.1.4. Let A0 and A1 be computable L-structures that are com-
putably isomorphic, and let C be cohesive. Then ΠCA0 ≅ ΠCA1.

Proof. For i ∈ {0, 1}, let Bi = ΠCAi and denote elements of Bi by [ϕ]Bi . Let
f ∶ ∣A0∣→ ∣A1∣ be a computable isomorphism. Define a function F ∶ ∣B0∣→ ∣B1∣ by
F ([ϕ]B0) = [f ○ ϕ]B1 . If ϕ∶N→ ∣A0∣ is partial computable with C ⊆∗ dom(ϕ),
then f ○ϕ∶N→ ∣A1∣ is partial computable with C ⊆∗ dom(f ○ϕ). Furthermore,
if ϕ =C ψ, then f ○ ϕ =C f ○ ψ. Thus F is well-defined.

To see that F is injective, suppose that F ([ϕ]B0) = F ([ψ]B0). Then
[f ○ ϕ]B1 = [f ○ ψ]B1 , so f ○ ϕ =C f ○ ψ. The function f is a bijection, so
therefore also ϕ =C ψ. Thus [ϕ]B0 = [ψ]B0 .

6.1. BASIC PROPERTIES 161

To see that F is surjective, consider [ϕ]B1 . The function f ∶ ∣A0∣ → ∣A1∣
is a computable bijection between computable sets ∣A0∣ and ∣A1∣, so its
inverse f−1∶ ∣A1∣ → ∣A0∣ is also computable. The function f−1 ○ ϕ∶N → ∣A0∣
is thus partial computable with C ⊆∗ dom(f−1 ○ ϕ), and F ([f−1 ○ ϕ]B0) =
[f ○ f−1 ○ ϕ]B1 = [ϕ]B1 .

Let R be an n-ary relation symbol of L, and let [ϕ0], . . . , [ϕn−1] ∈ ∣B0∣.
The function f is an isomorphism, so for any x, if (∀i < n)ϕi(x)↓, then

RA0(ϕ0(x), . . . , ϕn−1(x)) ⇔ RA1(f(ϕ0(x)), . . . , f(ϕn−1(x))).

Therefore

C ⊆∗ {x ∶ (∀i < n)ϕi(x)↓ ∧ R
A0(ϕ0(x), . . . , ϕn−1(x))}

if and only if

C ⊆∗ {x ∶ (∀i < n)ϕi(x)↓ ∧ R
A1(f(ϕ0(x)), . . . , f(ϕn−1(x)))}.

Thus

RB0([ϕ0]B0 , . . . , [ϕn−1]B0) ⇔ RB1(F ([ϕ0]B0), . . . , F ([ϕn−1]B0)).

Let g be an n-ary function symbol of L, and let [ϕ0], . . . , [ϕn−1] ∈ ∣B0∣.
The function f is an isomorphism, so for any x, if (∀i < n)ϕi(x)↓, then

f(gA0(ϕ0(x), . . . , ϕn−1(x))) = g
A1(f(ϕ0(x)), . . . , f(ϕn−1(x))).

Let ψ and θ be the partial computable functions given by

ψ(x) ≃ gA0(ϕ0(x), . . . , ϕn−1(x))

θ(x) ≃ gA1(f(ϕ0(x)), . . . , f(ϕn−1(x))).

As C ⊆∗ dom(ϕi) for each i < n, we therefore have that f ○ ψ =C θ. Thus

F (gB0([ϕ0]B0 , . . . , [ϕn−1]B0)) = F ([ψ]B0) = [f ○ ψ]B1 = [θ]B1 =

gB1(F ([ϕ0]B0), . . . , F ([ϕn−1]B0)).

Finally, if c is a constant symbol of L and [ϕ]B0 = c
B0 , it is easy to check

that F ([ϕ]B0) = c
B1 . Therefore F ∶ ∣B0∣ → ∣B1∣ is an isomorphism witnessing

that B0 ≅ B1. ◻

162 CHAPTER 6. COHESIVE POWERS

Recall that a computable structure A is called computably categorical
if every computable structure that is isomorphic to A is isomorphic to A
via a computable isomorphism. It follows from Theorem 6.1.4 that if A
is a computably categorical computable structure and C is cohesive, then
ΠCA ≅ ΠCB whenever B is a computable structure isomorphic to A.

Corollary 6.1.5. Let A be a computably categorical computable structure,
let B be a computable structure isomorphic to A, and let C be cohesive. Then
ΠCA ≅ ΠCB.

In Theorem 6.1.4, it is essential that the two structures are isomorphic
via a computable isomorphism. In the next section we present a construction
with two isomorphic structures which cohesive powers are not isomorphic.
In Sections 6.4, 6.5, and 6.6, we see many examples of pairs of computable
linear orders that are isomorphic (but not computably isomorphic) to ω with
non-elementarily equivalent cohesive powers.

6.2 Non-Isomorphic Cohesive Powers of Isomor-
phic Structures

The content of this section is from [DHM+19].

Theorem 6.2.1. For every co-maximal set C ⊆ ω there exist two isomorphic
computable structures A and B such the cohesive powers ∏C A and ∏C B are
not isomorphic.

Proof. Note that it suffices to prove the theorem for an arbitrary co-maximal
set consisting of even numbers only. Indeed, if C is an arbitrary co-maximal
set, then C1 = {2s ∣ s ∈ C} is also a co-maximal set, and for any computable
structureM, we have ∏CM ≅∏C1

M. Then, ifM0 andM1 are isomorphic
computable structures such that ∏C1

M0 ≇∏C1
M1, then ∏CM0 ≇∏CM1.

Let S = {2s ∣ s ∈ ω}. Let A ⊆ S be such that A1 = S ∖A is infinite and c.e.
For every such A we will define a computable structure MA with a single
ternary relation.

Let F = {4s+1 ∣ s ∈ ω} and B = {4s+3 ∣ s ∈ ω}. Fix a computable bijection
f from the set {⟨i, j⟩ ∈ S ∣ i < j} onto F . Let also b be a computable bijection
from the set {⟨j, i⟩ ∈ S ∣ i < j ∧ (i ∈ A1 ∨ j ∈ A1)} onto B. For the function

6.2. NON-ISOMORPHIC COHESIVE POWERS OF ISOMORPHIC STRUCTURES163

f , we write fij instead of f(i, j) and similarly for the function b. Define a
ternary relation P as follows:

P = {(x, fxy, y) ∣ x, y ∈ S ∧ x < y} ∪

{(y, byx, x) ∣ x, y ∈ S ∧ x < y ∧ (x ∈ A1 ∨ y ∈ A1)}.

Finally, let MA = (ω;P). Informally, we can view the triples x,w, y with
the property P (x,w, y) as labelled arrows (e.g., x w

Ð→ y). We start with a

structure consisting of the set S ∪ F with arrows i
fij
Ð→ j, that connect i with

j for all i, j ∈ S such that i < j. These arrows can be viewed as a way of
redefining the natural ordering < on S. Elements of S can be thought of as
“stem elements” and elements of F can be thought of as “forward witnesses.”
Next, we start enumerating the c.e. set A1 = S ∖A. At every stage a new
element k is enumerated into A1, we add new arrows together with appropriate
elements from B, the “backward witnesses,” which intend to exclude k from
the initial ordering on S. More precisely, we add arrows k

bki
Ð→ i for all i, k

with i < k, and arrows j
bjk
Ð→ k, for each j, k with j > k. Eventually, exactly

the elements of A1 will be excluded from the ordering, and the final ordering
will be an ordering on the set A.

In the resulting structure, every element x ∈ A1 is connected with every
element y ∈ S such that x ≠ y with exactly two arrows: x w

Ð→ y and y w1
Ð→ x.

If x, y ∈ A are such that x ≠ y then they are connected with arrows of the
type x w

Ð→ y exactly when x < y. In other words, the formula

Φ(x, y) = ∃wP (x,w, y) ∧ ¬∃w1P (y,w1, x)

will be satisfied by exactly those x, y ∈ A such that x < y. The formula Φ will
not be satisfied by any pair (x, y) for which at least one of x or y has been
excluded.

The following properties of the structure MA follow immediately from
the definition above.

(1) For every w there is at most one pair x, y such that P (x,w, y).
(2) If x ∈ S ∖A, then for any y ∈ S, y /= x there is a unique w1 such that

P (x,w1, y) and a unique w2 such that P (y,w2, x).
(3) If x, y ∈ A, then x < y⇔ ∃wP (x,w, y).
(4)MA is computable.
To prove (4) note that the relation P is computable because

P (x, z, y)⇔ x, y ∈ S ∧ [(x < y ∧ z = fxy) ∨ (x > y ∧ z ∈ B ∧ b−1(z) = (x, y))] .

164 CHAPTER 6. COHESIVE POWERS

(5) Let D, E ⊂ S be infinite and such that S ∖D and S ∖E are infinite
and c.e. ThenMD ≅ME.

Since D and E are infinite, the orders (D,<) and (E,<), where < is the
natural order, are isomorphic to N. The isomorphism between these orders,
extended by any bijection between S ∖D and S ∖E, has a unique natural
extension to a map from the domain ofMD to the domain ofME. That is,
the arrows in MD (the elements of F and B) can be uniquely mapped to
corresponding arrows inME.

To continue with the proof, we let

Θ(x) = (∃t) [Φ(x, t) ∨Φ(t, x)] .

The formula Θ(x) defines the set A inMA.
For any structureM= (M,P) in the language with one ternary predicate

symbol we will use the following notation:
LM = {x ∈M ∣M ⊧ Θ(x)}, and <LM= {(x, y) ∈M ×M ∣M ⊧ Φ(x, y)} .
Fix A ⊆ S such that S ∖A is infinite and c.e.
It follows from the discussion above that the formula Φ(x, y) defines in

MA the restriction of the natural order < to A. Clearly, (LMA
,<LMA

) has
order type ω.

LetM♯
A = ∏CMA. For partial computable functions f and g such that

[f] , [g] ∈ dom(M♯
A) we have:

(i)M♯
A ⊧ Φ([f] , [g])⇔ C ⊆∗ {i∣ (f(i) ∈ A) ∧ (g(i) ∈ A) ∧ (f(i) < g(i))}

(ii) LM♯
A
= {[f] ∈M♯

A∣ f(C) ⊆∗ A} and (LM♯
A
,<LM♯

A

) is a linear order.
Note that (i) follows from Theorem 6.1.3, part (2), since Φ(x, y) is a

Boolean combination of Σ0
1 and Π0

1 formulas.
For the proof of (ii) notice that for any [f] ∈M♯

A we have either C ⊆∗

{i∣f(i) ∈ A} or C ⊆∗ {i∣f(i) ∈ ω ∖A} because C is cohesive and ω ∖A is c.e.
Since

[f] ∈ LM♯
A
⇔ (∃x) [Φ([f] , x) ∨Φ(x, [f])] ,

the equivalence in part (i) implies that LM♯
A
= {[f] ∈M♯

A∣ f(C) ⊆∗ A}. It is
easy to show that the relation <LM♯

A

is a linear order on LM♯
A
.

For any a ∈ A let fa(i) = a for all i ∈ ω. We will call the element [fa] in
M♯

A a constant inM♯
A.

(6) The set of constants {[fa] ∣a ∈ A} in the structureM♯
A forms an initial

segment of (LM♯
A
,<LM♯

A

) of order type ω.

6.2. NON-ISOMORPHIC COHESIVE POWERS OF ISOMORPHIC STRUCTURES165

Clearly, if a0, a1 ∈ A, then Φ([fa0] , [fa1]) if and only if a0 < a1. Therefore,
{[fa] ∣a ∈ A} is an ordered set of type ω. It remains to check that {[fa] ∣a ∈ A}
is an initial segment. Suppose [f] ∈ M♯

A, and a ∈ A are such that M♯
A ⊧

Φ([f] , [fa]). Then

C ⊆∗ {i∣MA ⊧ Φ(f(i), a)} = {i∣f(i) ∈ A ∧ f(i) < a} = ⋃
k∈A∧k<a

{i∣f(i) = k}.

The last expression is a union of a finite family of mutually disjoint c.e. sets.
Since C is cohesive, there exists a k ∈ A such that C ⊆∗ {i∣f(i) = k}, which
means that [f] = [fk] is a constant.

We now define the following Σ0
3 sentence

Ψ = (∃x) [Θ(x) ∧ (∀y) [Θ(y)⇒ Φ(y, x)]] .

The intended interpretation of Ψ is that when Φ(x, t) defines a linear order
(LM,<LM) , then the order has a greatest element. Note thatMA ⊧ ¬Ψ. This
is because (LMA

,<LMA
) has order type ω and hence has no greatest element.

Before we continue with the proof we recall Proposition 2.1 from [Ler70].

Proposition 6.2.2. (Lerman [Ler70]) Let R be a co-r-maximal set, and let f
be a computable function such that f(R) ∩R is infinite. Then the restriction
f ↾ R differs from the identity function only finitely.

We now fix a co-maximal (hence co-r-maximal) set C ⊆ S and an infinite
co-infinite computable set D ⊆ S. By property (5) above, we haveMC ≅MD.
LetM♯

C =∏CMC andM♯
D =∏CMD.

It is not hard to show that, since C is co-maximal, for every partial
computable function ϕ for which C ⊆∗ dom(ϕ), there is a computable function
fϕ such that [ϕ] = [fϕ] (see [DHMM14]).

To finish the proof we will establish the following facts:
(7)M♯

C ⊧ Ψ
(8)M♯

D ⊧ ¬Ψ
To prove (7) recall that LM♯

C
= {[f] ∈M♯

C ∣ f(C) ⊆∗ C}. By Proposition
6.2.2 if [f] ∈M♯

C is such that f(C) ⊆∗ C and f(C) is infinite, then [f] = [id] .
If f(C) is finite, then f is eventually equivalent to a constant, because C
is cohesive. Therefore, LM♯

C
= {[fc] ∣c ∈ C} ∪ {[id]}. It is easy to see that if

c ∈ C, then Φ([fc] , [id]). Thus, (LM♯
C
,<LM♯

C

) has order type ω + 1 with the

greatest element [id]. Therefore,M♯
C ⊧ Ψ.

166 CHAPTER 6. COHESIVE POWERS

To prove (8), let D = {d0 < d1 < ⋯}. The function g defined as g(di) =
di+1 is computable. Suppose thatM♯

D ⊧ Ψ and let [f] be the greatest element
in (LM♯

D
,<LM♯

D

). Since [f] <LM♯
D

[g ○ f] , it follows thatM∗
D ⊧ ¬Ψ.

In conclusion, we defined computable isomorphic structuresMC andMD

such that ∏CMC and ∏CMD are not even elementary equivalent. The
structureMC also provides a sharp bound for the fundamental theorem of
cohesive powers. Namely, for the Σ0

3 sentence Ψ,MC ⊧ ¬Ψ but ∏CMC ⊧ Ψ.
◻

6.3 Linear orders and their cohesive powers
The content in this section, Section 6.4, Section 6.5 and Section 6.6 is from
[DHM+20].

We investigate the cohesive powers of computable linear orders, with
special attention to computable linear orders of type ω. A linear order
L = (L,≺) consists of a non-empty set L equipped with a binary relation ≺
satisfying the following axioms.

• ∀x∀y (x ≺ y → y ⊀ x)

• ∀x∀y∀z [(x ≺ y ∧ y ≺ z) → x ≺ z]

• ∀x∀y (x ≺ y ∨ x = y ∨ y ≺ x)

Additionally, a linear order L is dense if ∀x∀y∃z (x ≺ y → x ≺ z ≺ y) and has
no endpoints if ∀x∃y∃z (y ≺ x ≺ z). Rosenstein’s book [Ros82] is an excellent
reference for linear orders.

For a linear order L = (L,≺), we use the usual interval notation (a, b)L =
{x ∈ L ∶ a ≺ x ≺ b} and [a, b]L = {x ∈ L ∶ a ⪯ x ⪯ b} to denote open and closed
intervals of L. Sometimes it is convenient to allow b ⪯ a in this notation,
in which case, for example, (a, b)L = ∅. The notation ∣(a, b)L∣ denotes the
cardinality of the interval (a, b)L. The notations min≺{a, b} and max≺{a, b}
denote the minimum and maximum of a and b with respect to ≺.

As is customary, ω denotes the order-type of (N,<), ζ denotes the order-
type of (Z,<), and η denotes the order-type of (Q,<). That is, ω, ζ, and η
denote the respective order-types of the natural numbers, the integers, and the
rationals, each with their usual order. We refer to (N,<), (Z,<), and (Q,<)
as the standard presentations of ω, ζ, and η, respectively. Recall that every

6.3. LINEAR ORDERS AND THEIR COHESIVE POWERS 167

countable dense linear order without endpoints has order-type η (see [Ros82]
Theorem 2.8). Furthermore, every computable countable dense linear order
without endpoints is computably isomorphic to Q (see [Ros82] Exercise 16.4).

To help reason about order-types, we use the sum, product, and reverse of
linear orders as well as condensations of linear orders.

Definition 6.3.1. Let L0 = (L0,≺L0) and L1 = (L0,≺L1) be linear orders.

• The sum L0 + L1 of L0 and L1 is the linear order S = (S,≺S), where
S = ({0} ×L0) ∪ ({1} ×L1) and

(i, x) ≺S (j, y) if and only if (i < j) ∨ (i = j ∧ x ≺Li y).

• The product L0L1 of L0 and L1 is the linear order P = (P,≺P), where
P = L1 ×L0 and

(x, a) ≺P (y, b) if and only if (x ≺L1 y) ∨ (x = y ∧ a ≺L0 b).

Note that, by (fairly entrenched) convention, L0L1 is given by the
product order on L1 ×L0, not on L0 ×L1.

• The reverse L∗0 of L0 is the linear order R = (R,≺R), where R = L0 and
x ≺R y if and only if y ≺L0 x. We warn the reader that the ∗ in the
notation L∗0 is unrelated to the ∗ in the notation X ⊆∗ Y .

If L0 and L1 are computable linear orders, then one may use the pairing
function ⟨⋅, ⋅⟩ to compute copies of L0 + L1 and L0L1. Clearly, if L is a
computable linear order, then so is L∗.

Definition 6.3.2. Let L = (L,≺L) be a linear order. A condensation of L is
any linear orderM = (M,≺M) obtained by partitioning L into a collection
of non-empty intervals M and, for intervals I, J ∈M , defining I ≺M J if and
only if (∀a ∈ I)(∀b ∈ J)(a ≺L b).

The most important condensation is the finite condensation.

Definition 6.3.3. Let L = (L,≺L) be a linear order. For x ∈ L, let cF(x)
denote the set of y ∈ L for which there are only finitely many elements between
x and y:

cF(x) = {y ∈ L ∶ the interval [min≺L{x, y},max≺L{x, y}]L in L is finite}.

168 CHAPTER 6. COHESIVE POWERS

The set cF(x) is always a non-empty interval, as x ∈ cF(x). The finite
condensation cF(L) of L is the condensation obtained from the partition
{cF(x) ∶ x ∈ L}.

For example, cF(ω) ≅ 1, cF(ζ) ≅ 1, cF(η) ≅ η, and cF(ω + ζη) ≅ 1 + η.
Notice that for an element x of a linear order L, the order-type of cF(x) is
always either finite, ω, ω∗, or ζ.

We often refer to the intervals that comprise a condensation of a linear
order L as blocks. For the finite condensation of L, a block is a maximal
interval I such that for any two elements of I, there are only finitely many
elements of L between them. For elements a and b of L, we write a ⋞L b if the
interval (a, b)L (equivalently, the interval [a, b]L) in L is infinite. For a ≺L b,
we have that a ⋞L b if and only if a and b are in different blocks. See [Ros82]
Chapter 4 for more on condensations.

It is straightforward to directly verify that if L is a computable linear
order and C is cohesive, then ΠCL is again a linear order. Furthermore, one
may verify that if L is a computable dense linear order without endpoints,
then ΠCL is again a dense linear order without endpoints. These two facts
also follow from Theorem 6.1.3 because linear orders are described by Π0

1

sentences, and dense linear orders without endpoints are described by Π0
2

sentences.
The case of Q = (Q,<) is curious and deserves a digression. We have

seen that if A is a finite structure, then A ≅ ΠCA for every cohesive set
C. For Q, ΠCQ is a countable dense linear order without endpoints, and
hence isomorphic to Q, for every cohesive set C. Thus Q is an example of an
infinite computable structure with Q ≅ ΠCQ for every cohesive set C. That
Q is isomorphic to all of its cohesive powers is no accident. By combining
Theorem 6.1.3 with the theory of Fräıssé limits (see [Hod93] Chapter 6, for
example), we see that a uniformly locally finite ultrahomogeneous computable
structure for a finite language is always isomorphic to all of its cohesive powers.
Recall that a structure is locally finite if every finitely-generated substructure
is finite and is uniformly locally finite if there is a function f ∶N → N such
that every substructure generated by at most n elements has cardinality at
most f(n). Notice that every structure for a finite relational language is
uniformly locally finite. Also recall that a structure is ultrahomogeneous if
every isomorphism between two finitely-generated substructures extends to
an automorphism of the structure.

6.3. LINEAR ORDERS AND THEIR COHESIVE POWERS 169

Proposition 6.3.4. Let A be an infinite uniformly locally finite ultrahomo-
geneous computable structure for a finite language, and let C be cohesive.
Then A ≅ ΠCA.

Proof. The structure A is ultrahomogeneous, so it is the Fräıssé limit of
its age (i.e., the class of all finitely-generated substructures embeddable into
A). By [Hod93] Theorem 6.4.1 and its proof, the first-order theory of A is
ℵ0-categorical and is axiomatized by a set T of Π0

2 sentences. Thus if B is any
countable model of T , then A ≅ B. We have that ΠCA ⊧ T by Theorem 6.1.3,
so A ≅ ΠCA. ◻

Proposition 6.3.4 implies that if a uniformly locally finite computable
structure for a finite language is a Fräıssé limit, then it is isomorphic to all of
its cohesive powers. Thus computable presentations of the Rado graph and
the countable atomless Boolean algebra are additional examples of computable
structures that are isomorphic to all of their cohesive powers. Examples of
this phenomenon that cannot be attributed to ultrahomogeneity appear in
Sections 6.4 and 6.5.

Returning to linear orders, we recall the following well-known lemma
stating that a strictly order-preserving surjection from one linear order onto
another is necessarily an isomorphism.

Lemma 6.3.5. Let L = (L,≺L) and M = (M,≺M) be linear orders. If
f ∶L → M is surjective and satisfies (∀x, y ∈ L)[x ≺L y → f(x) ≺M f(y)],
then f is an isomorphism.

Proof. Such an f is injective. If x ≠ y, then either x ≺L y or y ≺L x, so
either f(x) ≺M f(y) or f(y) ≺M f(x). In either case, f(x) ≠ f(y). Similarly,
if x ⊀L y, then either x = y, in which case f(x) = f(y); or y ≺L x, in which
case f(y) ≺M f(x). In either case, f(x) ⊀M f(y). ◻

Cohesive powers commute with sums, products, and reverses.

Theorem 6.3.6. Let L0 = (L0,≺L0) and L1 = (L1,≺L1) be computable linear
orders, and let C be cohesive. Then

(1) ΠC(L0 +L1) ≅ ΠCL0 +ΠCL1,

(2) ΠC(L0L1) ≅ (ΠCL0)(ΠCL1), and

(3) ΠC(L∗0) ≅ (ΠCL0)∗.

170 CHAPTER 6. COHESIVE POWERS

Proof. For i ∈ {0,1}, let Bi = ΠCLi and denote elements of Bi by [ϕ]Bi .
For (1), let D = ΠC(L0 + L1) and denote elements of D by [ϕ]D. Define

an isomorphism F ∶ ∣D∣→ ∣B0 + B1∣ by

F ([ϕ]D) =

⎧⎪⎪
⎨
⎪⎪⎩

(0, [π1 ○ ϕ]B0) if (∀∞n ∈ C)(ϕ(n) ∈ {0} ×L0)

(1, [π1 ○ ϕ]B1) if (∀∞n ∈ C)(ϕ(n) ∈ {1} ×L1).

The function F is well-defined because for any [ϕ]D, exactly one of the
two options occurs by cohesiveness. To check that F is an isomorphism, it
suffices to check that F is surjective and order-preserving. For surjectivity,
consider an (i, [ψ]Bi) ∈ ∣B0 + B1∣. Let ϕ be the partial computable function
where ∀n[ϕ(n) ≃ ⟨i, ψ(n)⟩]. Then (∀∞n ∈ C)(ϕ(n) ∈ {i} ×Li), so [ϕ]D ∈ ∣D∣
and F ([ϕ]D) = (i, [ψ]Bi). For order-preserving, suppose that [ϕ]D and [ψ]D
are members of D with [ϕ]D ≺D [ψ]D. By cohesiveness, either (∀∞n ∈
C)[π0(ϕ(n)) < π0(ψ(n))] or (∀∞n ∈ C)[π0(ϕ(n)) = π0(ψ(n))]. In the first
case, it must be that

F ([ϕ]D) = (0, [π1 ○ ϕ]B0) ≺B0+B1 (1, [π1 ○ ψ]B1) = F ([ψ]D),

as desired. In the second case, let i ∈ {0, 1} be such that (∀∞n ∈ C)[π0(ϕ(n)) =
π0(ψ(n)) = i]. Then it must be that

(∀∞n ∈ C)[π1(ϕ(n)) ∈ Li ∧ π1(ψ(n)) ∈ Li ∧ π1(ϕ(n)) ≺Li π1(ψ(n))],

so

F ([ϕ]D) = (i, [π1 ○ ϕ]Bi) ≺B0+B1 (i, [π1 ○ ψ]Bi) = F ([ψ]D),

as desired.
For (2), let D = ΠC(L0L1) and again denote elements of D by [ϕ]D. For

such a [ϕ]D, we have that (∀∞n ∈ C)(ϕ(n) ∈ L1×L0). Define an isomorphism
F ∶ ∣D∣→ ∣B0B1∣ by

F ([ϕ]D) = ([π0 ○ ϕ]B1 , [π1 ○ ϕ]B0) ∈ ∣B1∣ × ∣B0∣.

To show that F is an isomorphism, again it suffices to show that F is surjective
and order-preserving. For surjectivity, consider a ([ψ1]B1 , [ψ0]B0) ∈ ∣B1∣ × ∣B0∣.
Let ϕ be the partial computable function where ∀n[ϕ(n) ≃ ⟨ψ1(n), ψ0(n)⟩].
Then (∀∞n ∈ C)(ϕ(n) ∈ L1×L0), so [ϕ]D ∈ ∣D∣ and F ([ϕ]D) = ([ψ1]B1 , [ψ0]B0).
For order-preserving, suppose that [ϕ]D and [ψ]D are members of D with
[ϕ]D ≺D [ψ]D. Then (∀∞n ∈ C)(ϕ(n) ≺L0L1 ψ(n)). By cohesiveness, either

6.3. LINEAR ORDERS AND THEIR COHESIVE POWERS 171

• (∀∞n ∈ C)[π0(ϕ(n)) ≺L1 π0(ψ(n))] or

• (∀∞n ∈ C)[π0(ϕ(n)) = π0(ψ(n)) ∧ π1(ϕ(n)) ≺L0 π1(ψ(n))].

In the first case, [π0 ○ ϕ]B1 ≺B1 [π0 ○ ψ]B1 . In the second case, [π0 ○ ϕ]B1 =
[π0 ○ ψ]B1 and [π1 ○ ϕ]B0 ≺B0 [π1 ○ ψ]B0 . Thus in either case,

F ([ϕ]D) = ([π0 ○ ϕ]B1 , [π1 ○ ϕ]B0) ≺B0B1 ([π0 ○ ψ]B1 , [π1 ○ ψ]B0) = F ([ψ]D),

as desired.
For (3) let D = ΠC(L∗0) and again denote elements of D by [ϕ]D. Notice

that ∣L∗0 ∣ = ∣L0∣ = L0, and therefore that ∣D∣ = ∣B∗0 ∣. Thus the function F ∶ ∣D∣→
∣B∗0 ∣ given by F ([ϕ]D) = [ϕ]B∗0 is well-defined and surjective. The function
F is also order-preserving. If [ϕ]D ≺D [ψ]D, then (∀∞n ∈ C)[ϕ(n) ≺L∗0 ψ(n)].
So (∀∞n ∈ C)[ψ(n) ≺L0 ϕ(n)]. So [ψ]B0 ≺B0 [ϕ]B0 . So [ϕ]B∗0 ≺B∗0 [ψ]B∗0 . Thus
F is an isomorphism. ◻

Sections 6.4, 6.5, and 6.6 concern calculating the order-types of cohesive
powers of computable copies of ω. To do this, we must be able to determine
when one element of a cohesive power is an immediate successor or immediate
predecessor of another, and we must be able to determine when two elements
of a cohesive power are in different blocks of its finite condensation.

In a cohesive power ΠCL of a computable linear order L, [ϕ] is the
immediate successor of [ψ] if and only if ϕ(n) is the immediate successor of
ψ(n) for almost every n ∈ C. Therefore also [ψ] is the immediate predecessor
of [ϕ] if and only if ψ(n) is the immediate predecessor of ϕ(n) for almost
every n ∈ C.

Lemma 6.3.7. Let L be a computable linear order, let C be cohesive, and
let [ψ] and [ϕ] be elements of ΠCL. Then the following are equivalent.

(1) [ϕ] is the ≺ΠCL-immediate successor of [ψ].

(2) (∀∞n ∈ C)(ϕ(n) is the ≺L-immediate successor of ψ(n)).

(3) (∃∞n ∈ C)(ϕ(n) is the ≺L-immediate successor of ψ(n)).

Proof. Supposing ϕ(n)↓ and ψ(n)↓, that ϕ(n) is the ≺L-immediate successor
of ψ(n) is a Π0

1 property of ϕ(n) and ψ(n). Thus by cohesiveness (and the
fact that C ⊆∗ dom(ϕ) ∩ dom(ψ)), it holds that ϕ(n) is the ≺L-immediate

172 CHAPTER 6. COHESIVE POWERS

successor of ψ(n) for infinitely many n ∈ C if and only if it holds for almost
every n ∈ C. Therefore (2) and (3) are equivalent.

For (3) ⇒ (1), suppose that [ϕ] is not the ≺ΠCL-immediate successor of
[ψ]. If [ϕ] ⪯ΠCL [ψ], then (∀∞n ∈ C)(ϕ(n) ⪯L ψ(n)), so for almost every
n ∈ C, ϕ(n) is the not the ≺L-immediate successor of ψ(n). If [ψ] ≺ΠCL [ϕ],
then there is a [θ] with [ψ] ≺ΠCL [θ] ≺ΠCL [ϕ]. Therefore (∀∞n ∈ C)(ψ(n) ≺L
θ(n) ≺L ϕ(n)), so again for almost every n ∈ C, ϕ(n) is the not the ≺L-
immediate successor of ψ(n).

For (1) ⇒ (3), suppose that for almost every n ∈ C, ϕ(n) is the not
the ≺L-immediate successor of ψ(n). If [ϕ] ⪯ΠCL [ψ], then [ϕ] is not the
≺ΠCL-immediate successor of [ψ], so we may assume that [ψ] ≺ΠCL [ϕ]. Thus
(∀∞n ∈ C)(ψ(n) ≺L ϕ(n)). Let θ be the partial computable function which
on input n, searches for an x with ψ(n) ≺L x ≺L ϕ(n) and outputs the first
such x found. For almost every n ∈ C, ψ(n) ≺L ϕ(n) but ϕ(n) is not the
≺L-immediate successor of ψ(n). For such n, θ(n) is defined and satisfies
ψ(n) ≺L θ(n) ≺L ϕ(n). Therefore (∀∞n ∈ C)(ψ(n) ≺L θ(n) ≺L ϕ(n)), so
[ψ] ≺ΠCL [θ] ≺ΠCL [ϕ]. Thus [ϕ] is not the ≺ΠCL-immediate successor of [ψ].
◻

Lemma 6.3.8. Let L be a computable linear order, let C be cohesive, and
let [ψ] and [ϕ] be elements of ΠCL. Then the following are equivalent.

(1) [ψ] ⋞ΠCL [ϕ].

(2) lim n∈C ∣(ψ(n), ϕ(n))L∣ =∞.

(3) lim supn∈C ∣(ψ(n), ϕ(n))L∣ =∞.

Proof. Let [ϕ], [ψ] ∈ ∣ΠCL∣. For (1) ⇒ (2), suppose that [ψ] ⋞ΠCL [ϕ].
Given k, let [θ0], . . . , [θk−1] ∈ ∣ΠCL∣ be such that

[ψ] ≺ΠCL [θ0] ≺ΠCL ⋯ ≺ΠCL [θk−1] ≺ΠCL [ϕ].

Then

(∀∞n ∈ C)[ψ(n) ≺L θ0(n) ≺L ⋯ ≺L θk−1(n) ≺L ϕ(n)].

Thus for almost every n ∈ C, we have that ∣(ψ(n), ϕ(n))L∣ ≥ k.
So, lim n∈C ∣(ψ(n), ϕ(n))L∣ =∞.

6.3. LINEAR ORDERS AND THEIR COHESIVE POWERS 173

The implication (2) ⇒ (3) is immediate. For (3) ⇒ (1), suppose that
lim supn∈C ∣(ψ(n), ϕ(n))L∣ = ∞. Given k, let [θ0], . . . , [θk−1] ∈ ∣ΠCL∣. We
show that there is a [θ̂] with [ψ] ≺ΠCL [θ̂] ≺ΠCL [ϕ] that is different from
[θi] for each i < k. It follows that the interval ([ψ], [ϕ])ΠCL of ΠCL is
infinite, so [ψ] ⋞ΠCL [ϕ]. To compute θ̂(n), first wait for ψ(n), ϕ(n), and
the θi(n) for i < k to halt. Once these computations halt, search for an
x ∈ L with ψ(n) ≺L x ≺L ϕ(n) such that x ≠ θi(n) for all i < k. If there is
such an x, let θ̂(x) be the first such x found. If n ∈ C is sufficiently large
and ∣(ψ(n), ϕ(n))L∣ > k, then ψ(n)↓, ϕ(n)↓, and (∀i < k)θi(n)↓, and such
an x is found. Therefore there are infinitely many n ∈ C with n in the
domains of ψ, ϕ, θ̂, and the θi for i < k such that ψ(n) ≺L θ̂(n) ≺L ϕ(n) and
(∀i < k)(θ̂(n) ≠ θi(n)). By cohesiveness, this in fact occurs for almost every
n ∈ C. Thus [ψ] ≺ΠCL [θ̂] ≺ΠCL [ϕ], but (∀i < k)([θ̂] ≠ [θi]). ◻

The finite condensation of a computable linear order by a co-c.e. cohesive
set is always dense.

Theorem 6.3.9. Let L = (L,≺L) be a computable linear order, and let C be
co-c.e. and cohesive. Then cF(ΠCL) is dense.

Proof. Let [ϕ] and [ψ] be elements of ΠCL with [ψ] ⋞ΠCL [ϕ]. We
partially compute a function θ∶N→ L so that [θ] is an element of ΠCL with
[ψ] ⋞ΠCL [θ] ⋞ΠCL [ϕ].

By Lemma 6.3.8, [ψ] ⋞ΠCL [ϕ] means that lim supn∈C ∣(ψ(n), ϕ(n))L∣ =
∞. We define θ by enumerating graph(θ) = {⟨n,x⟩ ∶ θ(n) = x}. The goal
is to arrange ∣C ∩ dom(θ)∣ = ∞ (so that C ⊆∗ dom(θ) by cohesiveness),
lim supn∈C ∣(ψ(n), θ(n))L∣ = ∞, and lim supn∈C ∣(θ(n), ϕ(n))L∣ = ∞. It then
follows that [ψ] ⋞ΠCL [θ] ⋞ΠCL [ϕ].

LetW denote the c.e. set C, and let (Ws)s∈N be an increasing enumeration
of W . Say that n covers k at a stage s of our enumeration of graph(θ) if

• n ∉Ws,

• we have already enumerated θ(n) = x for some x,

• ϕ(n)↓ and ψ(n)↓ within s steps each,

• ∣(ψ(n), x)L ∩ {0, . . . , s}∣ ≥ k, and

• ∣(x,ϕ(n))L ∩ {0, . . . , s}∣ ≥ k.

174 CHAPTER 6. COHESIVE POWERS

If there is an n that covers k at stage s, then also say that k is covered
at stage s. Enumerate graph(θ) as follows. Start at stage s = 0. At stage
s, let `0,s be the <-least number that is not covered at stage s. If s > 0, let
Xs =Ws ∖Ws−1. Let `1,s be <-least (if there is such a number) such that there
is an n ∈Xs that covered `1,s at stage s − 1, but no m < n covers `1,s at stage
s. If `1,s is defined, let ks = min<{`0,s, `1,s}. Otherwise, let ks = `0,s. Then
check if there are n,x ≤ s such that:

(i) n ∉Ws,

(ii) θ(n) is not yet defined,

(iii) ϕ(n)↓ and ψ(n)↓ within s steps each,

(iv) ∣(ψ(n), x)L ∩ {0, . . . , s}∣ ≥ ks, and

(v) ∣(x,ϕ(n))L ∩ {0, . . . , s}∣ ≥ ks.

If there are such an n and x, choose the <-least such n and the <-least
corresponding x, and enumerate θ(n) = x. Now n covers ks at stage s. Go to
stage s + 1. If there are no such n and x, then do nothing and go to stage
s + 1. This completes the construction of θ.

If n covers k at some stage s, there could be a later stage t > s at which
n does not cover k because n ∈ Wt. However, if n ∈ C, then n ∉ Wt for
every t, so k stays covered by n forever. We show, by induction on k, that
every k is eventually covered by an n ∈ C. From this, ∣C ∩ dom(θ)∣ = ∞,
lim supn∈C ∣(ψ(n), θ(n))L∣ = ∞, and lim supn∈C ∣(θ(n), ϕ(n))L∣ = ∞ readily
follow, as desired.

Let s0 be a stage by which all ` < k have been covered by members of
C. Let c be the <-maximum member of C covering an ` < k at stage s0,
and let s1 > s0 be a stage such that Ws1↾c =W ↾c. Then ks ≥ k at all stages
s > s1. By assumption, lim supn∈C ∣(ψ(n), ϕ(n))L∣ = ∞. So let n0 be the <-
least n0 ∈ C with n0 ∉ dom(θ) at stage s1 and ∣(ψ(n0), ϕ(n0))L∣ ≥ 2k+1. If n0

ever appears in dom(θ), it is to cover some j ≥ k, in which case n0 also covers
k. Let s2 > max<{n0, s1} be large enough so that Ws2↾n0 = W ↾n0, ϕ(n0)↓
and ψ(n0)↓ within s2 steps, and ∣(ψ(n0), ϕ(n0))L ∩ {0, . . . , s2}∣ ≥ 2k + 1.

Consider stage s2. If k is not covered at stage s2, then it must be that
θ(n0) is not defined at stage s2. In this case, ks2 = k, and n0 is <-least for
which there is an x ≤ s2 such that (i)–(v) hold. So θ(n0) is defined to cover k
at stage s2.

6.4. COHESIVE POWERS OF COMPUTABLE COPIES OF ω 175

Now suppose instead that k is covered at stage s2. In this case, let m be
<-least such that there is a stage s3 ≥ s2 at which m covers k. If m ∈ C, then
this is as desired. Otherwise, m ∈W , in which case there is a <-least s > s3

with m ∈Ws. The number m covers k at stage s − 1, but by choice of m, no
a < m covers k at stage s. Thus `1,s = k, so ks = k. If n0 ∈ dom(θ) at stage
s, then n0 must already cover k, as noted above. If n0 ∉ dom(θ) at stage s,
then n0 is <-least for which there is an x ≤ s such that (i)–(v) hold. So θ(n0)
is defined to cover k at stage s. ◻

6.4 Cohesive powers of computable copies of ω

We investigate the cohesive powers of computable linear orders of type ω.
Observe that an infinite linear order has type ω if and only if every element has
only finitely many predecessors. We rely on this characterization throughout.
Though not part of the language of linear orders, every linear order L of
type ω has an associated successor function SL∶ ∣L∣ → ∣L∣ given by SL(x) =
the ≺L-immediate successor of x. For the standard presentation of ω, the
successor function is of course given by the computable function S(x) = x + 1.
It is straightforward to check that a computable copy L of ω is computably
isomorphic to the standard presentation if and only if SL is computable.

We show that every cohesive power of the standard presentation of ω has
order-type ω + ζη (Theorem 6.4.5). This is to be expected because ω + ζη is
familiar as the order-type of every countable non-standard model of Peano
arithmetic (see [Kay91] Theorem 6.4). Therefore, by Theorem 6.1.4, every
cohesive power of every computable copy of ω that is computably isomorphic
to the standard presentation has order-type ω + ζη; or, equivalently, every
cohesive power of every computable copy of ω with a computable successor
function has order-type ω + ζη. However, being computably isomorphic to the
standard presentation (equivalently, having a computable successor function)
is not a characterization of the computable copies of ω having cohesive powers
of order-type ω + ζη. We show that there is a computable copy of ω that is
not computably isomorphic to the standard presentation, yet still has every
cohesive power isomorphic to ω + ζη (Theorem 6.4.8). Thus to compute a
copy of ω having a cohesive power not of type ω + ζη, one must do more than
simply arrange for the successor function to be non-computable. We show
that for every cohesive set C, there is a computable copy L of ω such that
the cohesive power ΠCL does not have order-type ω + ζη (Theorem 6.4.9).

176 CHAPTER 6. COHESIVE POWERS

However, we also show that whenever L is a computable copy of ω and C is
a co-c.e. cohesive set, the finite condensation cF(ΠCL) of the cohesive power
ΠCL always has order-type 1 + η (Theorem 6.4.4).

First, a cohesive power of a computable copy of ω always has an initial
segment of order-type ω.

Lemma 6.4.1. Let L = (L,≺L) be a computable copy of ω, and let C be
cohesive. Then the image of the canonical embedding of L into ΠCL is an
initial segment of ΠCL of order-type ω.

Proof. The linear order L has type ω, so its image in ΠCL under the
canonical embedding also has type ω. We show that this image is an initial
segment of ΠCL. Consider [ϕ] ∈ ∣ΠCL∣, and suppose that [ϕ] ≺ΠCL [ψ] for a
[ψ] in the image of the canonical embedding. We may assume that ψ is the
constant function with value a for some a ∈ L. Then (∀∞n ∈ C)(ϕ(n) ≺L a).
As L ≅ ω, there are only finitely many elements b0, . . . , bk−1 of L that are
≺L-below a. Thus (∀∞n ∈ C)(ϕ(n) ∈ {b0, . . . , bk−1}). By the cohesiveness
of C, there is exactly one bi for which (∀∞n ∈ C)(ϕ(n) = bi). Therefore
[ϕ] = [the constant function with value bi], so [ϕ] is also in the image of the
canonical embedding. Thus the image of the canonical embedding is an initial
segment of ΠCL of order-type ω. ◻

Let L = (L,≺L) be a computable copy of ω, let C be cohesive, and let
ϕ∶N → L be any total computable bijection. Then [ϕ] is not in the image
of the canonical embedding of L into ΠCL, so it must be ≺ΠCL-above every
element in the image of the canonical embedding. Thus ΠCL is of the form
ω +M for some non-empty linear orderM. By analogy with the terminology
for models of Peano arithmetic, we call the elements of the ω-part of ΠCL
(i.e., the image of the canonical embedding) standard and the elements of the
M-part of ΠCL non-standard.

Lemma 6.4.2. Let L = (L,≺L) be a computable copy of ω, let C be cohesive,
and let [ϕ] be an element of ΠCL. Then [ϕ] is non-standard if and only if
lim infn∈C ϕ(n) =∞ (equivalently, lim n∈Cϕ(n) =∞).

Proof. If [ϕ] is standard, then ϕ is eventually constant on C, so
lim infn∈C ϕ(n) is finite. Conversely, suppose that lim infn∈C ϕ(n) = k is finite.
Then (∃∞n ∈ C)(ϕ(n) = k). By cohesiveness, it must therefore be that
(∀∞n ∈ C)(ϕ(n) = k). That is, ϕ is eventually constant on C, so [ϕ] is
standard. ◻

6.4. COHESIVE POWERS OF COMPUTABLE COPIES OF ω 177

Lemma 6.4.3. Let L = (L,≺L) be a computable copy of ω, let C be cohesive,
and let [ϕ] be a non-standard element of ΠCL. Then there are non-standard
elements [ψ−] and [ψ+] of ΠCL with [ψ−] ⋞ΠCL [ϕ] ⋞ΠCL [ψ+].

Proof. Fix any x0 ∈ L, and define a computable sequence x0 ≺L x1 ≺L
x2 ≺L ⋯ by letting xi+1 be the <-least number with xi ≺L xi+1. Such an xi+1

always exists because L has no ≺L-maximum element. Furthermore, notice
that x0 ≺L x1 ≺L x2 ≺L ⋯ is cofinal in L because L ≅ ω.

Consider a non-standard [ϕ] ∈ ∣ΠCL∣. Define partial computable functions
ψ−, ψ+∶N→ L by

ψ−(n) ≃

⎧⎪⎪
⎨
⎪⎪⎩

xi if x2i ⪯L ϕ(n) ≺L x2i+2

↑ if ϕ(n)↑

ψ+(n) ≃

⎧⎪⎪
⎨
⎪⎪⎩

x2i if xi ⪯L ϕ(n) ≺L xi+1

↑ if ϕ(n)↑.

The element [ϕ] is non-standard, so (∀i)(∀∞n ∈ C)(x2i ⪯L ϕ(n)). Thus
(∀i)(∀∞n ∈ C)(xi ⪯L ψ−(n)), so [ψ−] is non-standard as well. Moreover, if
x2i ⪯L ϕ(n) ≺L x2i+2, then ψ−(n) = xi, and therefore ∣(ψ−(n), ϕ(n))L∣ ≥ i−1 be-
cause xi+1, . . . , x2i−1 ∈ (ψ−(n), ϕ(n))L. Therefore lim supn∈C ∣(ψ−(n), ϕ(n))L∣ =
∞, so [ψ−] ⋞ΠCL [ϕ] by Lemma 6.3.8. Similar reasoning shows that [ϕ] ⋞ΠCL
[ψ+]. Thus [ψ−] ⋞ΠCL [ϕ] ⋞ΠCL [ψ+]. ◻

Lemmas 6.4.1 and 6.4.3 imply that if L is a computable copy of ω and C
is cohesive, then cF(ΠCL) ≅ 1 +M for some infinite linear orderM. We call
the block corresponding to 1 the standard block and the blocks corresponding
toM non-standard blocks. If we further assume that C is co-c.e., then we
obtain that cF(ΠCL) ≅ 1 + η.

Theorem 6.4.4. Let L be a computable copy of ω, and let C be co-c.e. and
cohesive. Then cF(ΠCL) has order-type 1 + η.

Proof. By Lemma 6.4.1, the standard elements of ΠCL form an initial
block. By Theorem 6.3.9 and Lemma 6.4.3, the non-standard blocks of ΠCL
form a countable dense linear order without endpoints. Thus cF(ΠCL) ≅ 1+η.
◻

Thinking in terms of blocks, showing that a linear orderM has type ω+ζη
amounts to showing thatM consists of an initial block of type ω followed by
densely (without endpoints) ordered blocks of type ζ.

178 CHAPTER 6. COHESIVE POWERS

Theorem 6.4.5. Let N denote the standard presentation of ω, and let C be
cohesive. Then ΠCN has order-type ω + ζη.

Proof. By Lemma 6.4.1, ΠCN has an initial segment of order-type ω. To
show that the non-standard blocks each have order-type ζ, it suffices to show
that every element of ΠCN has an <ΠCN-immediate successor and that every
element of ΠCN except the first element has an <ΠCN-immediate predecessor.

Let [ϕ] ∈ ∣ΠCN∣. Define partial computable functions θ and ψ by θ(n) ≃
ϕ(n) + 1 and ψ(n) ≃ ϕ(n) ⊖ 1, where ⊖ denotes truncated subtraction (so
0⊖ 1 = 0). Then [θ] is the <ΠCN-immediate successor of [ϕ] by Lemma 6.3.7.
Similarly, if [ϕ] is not the least element of ΠCN (i.e., if (∀∞n ∈ C)(ϕ(n) ≠ 0)),
then [ψ] is the <ΠCN-immediate predecessor of [ϕ].

By Lemma 6.4.3, there is neither a least nor a greatest non-standard
block of ΠCN. We cannot use Theorem 6.3.9 to conclude that the non-
standard blocks are densely ordered because we do not assume that C
is co-c.e. So suppose [ϕ] and [ψ] are such that [ψ] ≪ΠCN [ϕ]. Then
lim n∈C ∣(ψ(n), ϕ(n))∣ = ∞ by Lemma 6.3.8. Define a partial computable
function θ by θ(n) ≃ ⌊(ϕ(n) + ψ(n))/2⌋. Then lim n∈C ∣(ψ(n), θ(n))∣ = ∞
and lim n∈C ∣(θ(n), ϕ(n))∣ = ∞, so [ψ] ≪ΠCN [θ] ≪ΠCN [ϕ]. Thus the non-
standard blocks of ΠCN form a dense linear order without endpoints. This
completes the proof that ΠCN ≅ ω + ζη. ◻

Corollary 6.4.6. Let L be a computable copy of ω with a computable
successor function, and let C be cohesive. Then ΠCL has order-type ω + ζη.

Proof. If L is a computable copy of ω with a computable successor function,
then L is computably isomorphic to the standard presentation N of ω. Thus
ΠCL ≅ ΠCN ≅ ω + ζη by Theorems 6.1.4 and 6.4.5. ◻

We can calculate the order-types of the cohesive powers of many other com-
putable presentations of linear orders by combining Theorems 6.1.4, 6.3.6, 6.4.5,
and the fact that ΠCQ ≅ η.

Example 6.4.7. Let C be a cohesive set. Let N, Z, and Q denote the
standard presentations of ω, ζ, and η.

(1) ΠCN∗ ≅ ζη + ω∗: This is because

ΠCN∗ ≅ (ΠCN)∗ ≅ (ω + ζη)∗ ≅ ζη + ω∗.

6.4. COHESIVE POWERS OF COMPUTABLE COPIES OF ω 179

(2) ΠCZ ≅ ζη. This is because Z is computably isomorphic to N∗ +N, so

ΠCZ ≅ ΠC(N∗ +N) ≅ ΠC(N)∗ +ΠC(N) ≅ (ζη + ω∗) + (ω + ζη)

≅ ζη + ζ + ζη ≅ ζη.

(3) ΠC(ZQ) ≅ ζη. This is because

ΠC(ZQ) ≅ (ΠCZ)(ΠCQ) ≅ (ζη)η ≅ ζη.

(4) ΠC(N +ZQ) ≅ ω + ζη. This is because

ΠC(N + ZQ) ≅ ΠC(N) + ΠC(ZQ) ≅ (ω + ζη) + ζη ≅ ω + ζη.

Recall that, by Proposition 6.3.4, an ultrahomogeneous computable struc-
ture for a finite relational language, like the computable linear order Q,
is isomorphic to each of its cohesive powers. Notice, however, that the
computable linear orders ZQ and N + ZQ are not ultrahomogeneous, yet
nevertheless are isomorphic to each of their respective cohesive powers. Thus
it is also possible for a non-ultrahomogeneous computable structure to be
isomorphic to each of its cohesive powers.

Notice also that ΠCN and ΠC(N + ZQ) both have order-type ω + ζη.
Similarly, ΠCZ and ΠC(ZQ) both have order-type ζη. Thus it is possible
for non-isomorphic linear orders to have isomorphic cohesive powers. In
Section 6.5, we give an example of a pair of non-elementarily equivalent linear
orders with isomorphic cohesive powers.

Now we give an example of a computable copy of ω that is not computably
isomorphic to the standard presentation, yet still has all its cohesive powers
isomorphic to ω + ζη.

Theorem 6.4.8. There is a computable copy L of ω such that

• L is not computably isomorphic to the standard presentation of ω, yet

• for every cohesive set C, the cohesive power ΠCL has order-type ω + ζη.

180 CHAPTER 6. COHESIVE POWERS

Proof. We use a classic example of a computable copy of ω with a non-
computable successor function. Fix any non-computable c.e. set A, and let
f ∶N → A be a computable bijection. Let L = (N,≺L) be the linear order
obtained by ordering the even numbers according to their natural order and
by setting 2a ≺L 2k + 1 ≺L 2a + 2 if and only if f(k) = a. Specifically, define

2c ≺L 2d ⇔ 2c < 2d

2c ≺L 2k + 1 ⇔ c ≤ f(k)

2k + 1 ≺L 2c ⇔ f(k) < c

2k + 1 ≺L 2` + 1 ⇔ f(k) < f(`).

Then L is a computable linear order of type ω. Let SL denote the successor
function of L. Then A ≤T SL (in fact, A ≡T SL) because a ∈ A if and only
if SL(2a) ≠ 2a + 2. Thus SL is not computable, so L is not computably
isomorphic to the standard presentation of ω.

Let C be cohesive. We show that ΠCL ≅ ω + ζη. As in the proof of
Theorem 6.4.5, it suffices to establish the following.

(a) Every element of ΠCL has a ≺ΠCL-immediate successor.

(b) Every element of ΠCL that is not the ≺ΠCL-least element has a ≺ΠCL-
immediate predecessor.

(c) If [ψ], [ϕ] ∈ ∣ΠCL∣ satisfy [ψ] ⋞ΠCL [ϕ], then there is a [θ] ∈ ∣ΠCL∣ with
[ψ] ⋞ΠCL [θ] ⋞ΠCL [ϕ].

For (a), consider a [ψ] ∈ ∣ΠCL∣. We define a partial computable ϕ such
that ϕ(n) is the ≺L-immediate successor of ψ(n) for almost every n ∈ C. Then
[ϕ] is the ≺ΠCL-immediate successor of [ψ] by Lemma 6.3.7. To define ϕ,
observe that by the cohesiveness of C, exactly one of the following three cases
occurs.

(i) (∀∞n ∈ C)(ψ(n) is odd)

(ii) (∀∞n ∈ C)(ψ(n) = 2a, where a ∈ A)

(iii) (∀∞n ∈ C)(ψ(n) = 2a, where a ∉ A)

6.4. COHESIVE POWERS OF COMPUTABLE COPIES OF ω 181

We cannot effectively decide which case occurs, but in each case we can
non-uniformly define a ϕ such that [ϕ] is the ≺ΠCL-immediate successor of
[ψ].

If case (i) occurs, define

ϕ(n) ≃

⎧⎪⎪
⎨
⎪⎪⎩

2a + 2 if ψ(n) = 2k + 1 and f(k) = a
↑ otherwise.

If case (ii) occurs, define

ϕ(n) ≃

⎧⎪⎪
⎨
⎪⎪⎩

2k + 1 if ψ(n) = 2a, a ∈ A, and f(k) = a
↑ otherwise.

If case (iii) occurs, define

ϕ(n) ≃

⎧⎪⎪
⎨
⎪⎪⎩

2a + 2 if ψ(n) = 2a

↑ otherwise.

In each case, ϕ(n) is the ≺L-immediate successor of ψ(n) for almost every
n ∈ C. Thus in each case, [ϕ] is the ≺ΠCL-immediate successor of [ψ]. This
completes the proof of (a). The proof of (b) is analogous.

For (c), recall that for [ψ], [ϕ] ∈ ∣ΠCL∣,

[ψ] ⋞ΠCL [ϕ] ⇔ lim n∈C ∣(ψ(n), ϕ(n))L∣ =∞,

by Lemma 6.3.8. Notice that for even numbers 2a and 2b, 2a ≺L 2b if and
only if 2a < 2b. So if 2a ≺L 2b, then ∣(2a,2b)L∣ ≥ b − a − 1. Therefore, if
[ψ], [ϕ] ∈ ∣ΠCL∣ are such that ψ(n) and ϕ(n) are even for almost every n ∈ C,
then

lim n∈C ∣(ψ(n), ϕ(n))L∣ =∞ ⇔ lim n∈C(ϕ(n) − ψ(n)) =∞.

Furthermore, observe that if [ψ] ∈ ∣ΠCL∣, then by the cohesiveness of C,
either (∀∞n ∈ C)(ψ(n) is even) or (∀∞n ∈ C)(ψ(n) is odd). In the case

182 CHAPTER 6. COHESIVE POWERS

where (∀∞n ∈ C)(ψ(n) is odd), the ≺ΠCL-immediate successor [ϕ] of [ψ]
from case (i) above satisfies (∀∞n ∈ C)(ϕ(n) is even).

Now, suppose [ψ], [ϕ] ∈ ∣ΠCL∣ satisfy [ψ] ⋞ΠCL [ϕ]. We may assume
that (∀∞n ∈ C)(ψ(n) is even) and that (∀∞n ∈ C)(ϕ(n) is even) by replac-
ing [ψ] and/or [ϕ] by their ≺ΠCL-immediate successors as necessary. Thus
lim n∈C(ϕ(n) − ψ(n)) =∞. Define a partial computable function θ by

θ(n) ≃

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⌊ψ(n)+ϕ(n)2 ⌋ if ⌊ψ(n)+ϕ(n)2 ⌋ is even

⌊ψ(n)+ϕ(n)2 ⌋ + 1 if ⌊ψ(n)+ϕ(n)2 ⌋ is odd.

Then (∀∞n ∈ C)(θ(n) is even), lim n∈C(θ(n)−ψ(n)) =∞, and lim n∈C(ϕ(n)−
θ(n)) =∞. Therefore lim n∈C ∣(ψ(n), θ(n))L∣ =∞ and lim n∈C ∣(θ(n), ϕ(n))L∣ =
∞, so [ψ] ⋞ΠCL [θ] ⋞ΠCL [ϕ]. This completes the proof of (c) and thus the
proof that ΠCL ≅ ω + ζη. ◻

Lastly, we show that for every cohesive set C, there is a computable copy
L of ω such that ΠCL is not isomorphic, indeed, not elementarily equivalent,
to ω + ζη. The strategy is to arrange for the element [id] of ΠCL represented
by the identity function id∶N → N to have no ≺ΠCL-immediate successor.
This exhibits an elementary difference between ΠCL and ω + ζη because
every element of ω + ζη has an immediate successor. This also shows that
Theorem 6.1.3 part (4) is tight: “there is an element with no immediate
successor” is a Σ0

3 sentence that is true of ΠCL but not of L.

Theorem 6.4.9. Let C be any cohesive set. Then there is a computable
copy L of ω for which ΠCL is not elementarily equivalent (and hence not
isomorphic) to ω + ζη.

Proof. Let (ϕe)e∈N denote the usual effective list of all partial computable
functions, and recall that ϕe,s(n) denotes the result of running ϕe on input n
for s computational steps. We compute a linear order L = (N,≺L) of type ω
such that for every ϕe:

(∀∞n ∈ C)[ϕe(n)↓ ⇒ (ϕe(n) is not the ≺L-immediate successor of n)].
(∗)

By Lemma 6.3.7, achieving (∗) for ϕe ensures that [ϕe] is not the ≺ΠCL-
immediate successor of [id] in ΠCL. Therefore, achieving (∗) for every ϕe
ensures that [id] has no ≺ΠCL-immediate successor in ΠCL. Thus ΠCL is

6.4. COHESIVE POWERS OF COMPUTABLE COPIES OF ω 183

not elementarily equivalent to ω + ζη because every element of ω + ζη has an
immediate successor, which is a Π3 property.

Fix an infinite computable set R ⊆ C. Such an R may be obtained, for
example, by partitioning N into the even numbers R0 and the odd numbers
R1. By cohesiveness, C ⊆∗ Ri for either i = 0 or i = 1, in which case R1−i ⊆∗ C.
Thus we may take R to be an appropriate tail of R1−i.

Define ≺L in stages. By the end of stage s, ≺L will have been defined on
Xs ×Xs for some finite Xs ⊇ {0, 1, . . . , s}. At stage 0, set X0 = {0} and define
0 ⊀L 0. At stage s > 0, start with Xs =Xs−1, and update Xs and ≺L according
to the following procedure.

(1) If ≺L has not yet been defined on s (i.e., if s ∉Xs), then update Xs to
Xs ∪ {s} and extend ≺L to make s the ≺L-greatest element of Xs.

(2) Consider each ⟨e, n⟩ < s in order. For each ⟨e, n⟩ < s, if

(a) ϕe,s(n)↓ ∈Xs,

(b) ϕe(n) is currently the ≺L-immediate successor of n in Xs,

(c) n ∉ R, and

(d) n is not ⪯L-below any of 0,1, . . . , e,

then let m be the <-least element of R ∖Xs, update Xs to Xs ∪ {m},
and extend ≺L so that n ≺L m ≺L ϕe(n).

This completes the construction.
We claim that for every k, there are only finitely many elements ≺L-below

k. It follows that L has order-type ω. Say that ϕe acts for n and adds m
when ≺L is defined on an m ∈ R to make n ≺L m ≺L ϕe(n) as in (2). Let
s0 be a stage with k ∈ Xs0 . Suppose at some stage s > s0, an m is added
to Xs and m ≺L k is defined. This can only be due to a ϕe acting for an
n ∉ R and adding m at stage s. Thus at stage s, it must be that n ≺L k
because n ≺L m ≺L k. Therefore it must also be that e < k, for otherwise k
would be among 0, 1, . . . , e, and condition (d) would prevent the action of ϕe.
Furthermore, m is chosen from R, so only elements of R are added ≺L-below k
after stage s0. All together, this means that an m can only be added ≺L-below
k after stage s0 when a ϕe with e < k acts for an n ≺L k with n ∉ R. Each ϕe

184 CHAPTER 6. COHESIVE POWERS

acts at most once for each n, and no new n ∉ R appear ≺L-below k after stage
s0. Thus after stage s0, only finitely many m are ever added ≺L-below k.

Finally, we claim that (∗) is satisfied for every ϕe. Given e, let ` be
the ≺L-maximum element of {0,1, . . . , e}. Observe that almost every n ∈ N
satisfies n ≻L ` because L ≅ ω. So suppose that n ≻L ` and n ∈ C. If ϕe(n)↓,
let s be large enough so that ⟨e, n⟩ < s, ϕe,s(n)↓, n ∈ Xs, and ϕe(n) ∈ Xs.
Then either ϕe(n) is already not the ≺L-immediate successor of n at stage
s + 1, or at stage s + 1 the conditions of (2) are satisfied for ⟨e, n⟩, and an m
is added such that n ≺L m ≺L ϕe(n). This completes the proof. ◻

Corollary 6.4.10. Theorem 6.1.3 item (4) is tight in general: There is a
cohesive set C, a computable linear order L, and a Σ0

3 sentence Φ such that
ΠCL ⊧ Φ, but L /⊧ Φ.

Proof. Let C be any cohesive set, and let L be a computable copy of ω
as in Theorem 6.4.9 for C. Let Φ be a Σ0

3 sentence in the language of linear
orders expressing that there is an element with no immediate successor. Then
ΠCL ⊧ Φ, but L /⊧ Φ. ◻

Corollary 6.4.10 may also be deduced from Lerman’s proof of Feferman,
Scott, and Tennenbaum’s theorem that no cohesive power of the standard
model of arithmetic is a model of Peano arithmetic (see [Ler70] Theorem 2.1).
Lerman gives a somewhat technical example of a Σ0

3 sentence Φ invoking
Kleene’s T predicate that fails in the standard model of arithmetic but is
true in every cohesive power. Our proof of Corollary 6.4.10 is more satisfying
because it witnesses the optimality of Theorem 6.1.3 item (4) with a natural
Σ0

3 sentence in the simple language of linear orders.
In the next section, we enhance the construction of Theorem 6.4.9 in order

to compute a copy L of ω with ΠCL ≅ ω + η for a given co-c.e. cohesive set C.

6.5 A cohesive power of order-type ω + η
Given a co-c.e. cohesive set, we compute a copy L of ω for which ΠCL
has order-type ω + η. In order to help shuffle various linear orders into
cohesive powers in Section 6.6, we in fact compute a linear order L = (N,≺L)
along with a coloring function F ∶N → N that colors the elements of L with
countably many colors. The coloring F induces a coloring F̂ of ΠCL in
the following way. Colors of elements of ΠCL are represented by partial
computable functions δ∶N → N with C ⊆∗ dom(δ). As in Definition 6.1.2,

6.5. A COHESIVE POWER OF ORDER-TYPE ω + η 185

write δ0 =C δ1 if (∀∞n ∈ C)(δ0(n)↓ = δ1(n)↓), and write JδK instead of [δ] for
the =C-equivalence class of δ when thinking in terms of colors. Then F̂ is
given by F̂ ([ϕ]) = JF ○ ϕK. So, for example, elements [ϕ] and [ψ] of ΠCL
have the same F̂ -color if and only if ϕ(n) and ψ(n) have the same F -color
for almost every n ∈ C.

Call a color JδK a solid color if there is an x ∈ N such that (∀∞n ∈ C)(δ(n) =
x). Otherwise, call JδK a striped color. Observe that if JδK is striped, then
lim n∈Cδ(n) =∞. We compute L and F so that ΠCL ≅ ω + η and every solid
color occurs densely in the η-part. Between any two distinct elements of the
η-part there is also an element with a striped color, but we do not ask for
every striped color to occur densely. In Section 6.6, we show that replacing
each point of L by some finite linear order depending on its color has the
effect of shuffling these finite orders into the non-standard part of ΠCL.

Theorem 6.5.1. Let C be a co-c.e. cohesive set. Then there is a computable
copy L = (N,≺L) of ω and a computable coloring F ∶N → N of L with the
following property. Let [ϕ] and [ψ] be any two non-standard elements of
ΠCL with [ψ] ≺ΠCL [ϕ]. Then for every solid color JδK, there is a [θ] in ΠCL
with [ψ] ≺ΠCL [θ] ≺ΠCL [ϕ] and F̂ ([θ]) = JδK. Also, there is a [θ] in ΠCL
with [ψ] ≺ΠCL [θ] ≺ΠCL [ϕ], where F̂ ([θ]) is a striped color.

Proof. We are working with a co-c.e. cohesive set, so recall that in
this situation every element [ϕ] of ΠCL has a total representative by the
discussion following Definition 6.1.2. Recall also that an element [ϕ] of ΠCL
is non-standard if and only if lim n∈Cϕ(n) =∞ by Lemma 6.4.2.

The goal of the construction of L is to arrange, for every pair of total
computable functions ϕ and ψ with lim n∈Cϕ(n) = lim n∈Cψ(n) =∞, that

(∀∞n ∈ C)(ψ(n)↓ ≺L ϕ(n)↓ ⇒

(∀d ≤ max<{ϕ(n), ψ(n)})(∃k)[(ψ(n) ≺L k ≺L ϕ(n)) ∧ (F (k) = d)]). (∗)

Suppose we achieve (∗) for ϕ and ψ, where lim n∈Cϕ(n) = lim n∈Cψ(n) =∞
and (∀∞n ∈ C)(ϕ(n)↓ ≺L ψ(n)↓). Fix any color d, and let δ be the constant
function with value d. Partially compute a function θ(n) by searching for a k
with ψ(n) ≺L k ≺L ϕ(n) and F (k) = d. If there is such a k, let θ(n) be the first
such k. Property (∗) and the assumption lim n∈Cϕ(n) = lim n∈Cψ(n) = ∞
ensure that there is such a k for almost every n ∈ C. Therefore C ⊆∗ dom(θ),
[ψ] ≺ΠCL [θ] ≺ΠCL [ϕ], and F̂ ([θ]) = JδK. Likewise, we could instead define
θ(n) to search for a k with ψ(n) ≺L k ≺L ϕ(n) and F (k) = ϕ(n) and let θ(n)

186 CHAPTER 6. COHESIVE POWERS

be the first (if any) such k found. In this case we would have [ψ] ≺ΠCL [θ] ≺ΠCL
[ϕ] and F̂ ([θ]) = JϕK, which is a striped color because lim n∈Cϕ(n) =∞. Thus
achieving (∗) suffices to prove the theorem, provided we also arrange L ≅ ω.

LetW denote the c.e. set C, and let (Ws)s∈N be an increasing enumeration
of W . Let (Ai,0,Ai,1)i∈N be a uniformly computable sequence of pairs of sets
such that

• for each i, Ai,0 and Ai,1 partition N into two pieces (i.e., Ai,1 = Ai,0) and

• (∀n)(∀σ ∈ {0,1}n)(⋂i<nAi,σ(i) is infinite).

This can be accomplished by partitioning N into successive pieces of size 2i,
letting Ai,0 consist of every other piece, and letting Ai,1 = Ai,0.

In this proof, denote the projection functions associated to the pairing
function ⟨⋅, ⋅⟩ by ` and r, for left and right, instead of by π0 and π1. So
`(⟨x, y⟩) = x and r(⟨x, y⟩) = y.

The tension in the construction is between achieving (∗) and ensuring
that for every z, there are only finitely many x with x ≺L z. Think of
a p ∈ N as coding a pair (ϕ`(p), ϕr(p)) of partial computable functions for
which we would like to achieve (∗), with ϕ`(p) playing the role of ψ and
ϕr(p) playing the role of ϕ. We assign the partition (A2p,0,A2p,1) to ϕ`(p)
and the partition (A2p+1,0,A2p+1,1) to ϕr(p). The sets {n ∶ ϕ`(p)(n) ∈ A2p,0}
and {n ∶ ϕ`(p)(n) ∈ A2p,1} are both c.e., so if C ⊆∗ dom(ϕ`(p)), then either
(∀∞n ∈ C)(ϕ`(p)(n) ∈ A2p,0) or (∀∞n ∈ C)(ϕ`(p)(n) ∈ A2p,1); and similarly
for ϕr(p) and (A2p+1,0,A2p+1,1). As the construction proceeds, we eventually
stabilize on a correct guess for which of (∀∞n ∈ C)(ϕ`(p)(n) ∈ A2p,0) or (∀∞n ∈
C)(ϕ`(p)(n) ∈ A2p,1) occurs, and similarly for ϕr(p) and (A2p+1,0,A2p+1,1).
Suppose we want to choose an element k to help satisfy (∗) for ϕ`(q) and
ϕr(q) for some q > p. If we have guessed that (∀∞n ∈ C)(ϕ`(p)(n) ∈ A2p,0) and
(∀∞n ∈ C)(ϕr(p)(n) ∈ A2p+1,0), then we choose k from A2p,1 ∩A2p+1,1. That is,
we choose a k that we guess does not appear in ϕ`(p)(C) or ϕr(p)(C). If we
are correct about the guess, then k is a safe element for ϕ`(q) and ϕr(q) to use
because its placement with respect to ≺L will not incite a reaction from ϕ`(p)
and ϕr(p).

Define ≺L and F in stages. By the end of stage s, ≺L will have been
defined on Xs × Xs and F will have been defined on Xs for some finite
Xs ⊇ {0,1, . . . , s}.

At stage 0, set X0 = {0} with 0 ⊀L 0 and F (0) = 0. At stage s > 0, initially
set Xs = Xs−1. If s ∉ Xs, then add s to Xs, define it to be the ≺L-maximum

6.5. A COHESIVE POWER OF ORDER-TYPE ω + η 187

element of Xs, and define F (s) = 0. Then proceed as follows.
Consider each pair ⟨p,N⟩ < s in order. Think of ⟨p,N⟩ as coding a pair

(ϕ`(p), ϕr(p)) of partial computable functions as described above and a guess
N of a threshold by which the cohesive behavior of ϕ`(p) and ϕr(p) with
respect to the partitions (A2p,0,A2p,1) and (A2p+1,0,A2p+1,1) begins. The pair
⟨p,N⟩ demands action if there is an (a, b, n) ∈ {0, 1}×{0, 1}×{N,N +1, . . . , s}
meeting the following conditions.

(1) For all m ≤ n, ϕ`(p),s(m)↓ and ϕr(p),s(m)↓.

(2) Both ϕ`(p)(n) ∈ A2p,a and ϕr(p)(n) ∈ A2p+1,b.

(3) For all m with N ≤m ≤ n,

• ϕ`(p)(m) ∈ A2p,1−a → m ∈Ws, and

• ϕr(p)(m) ∈ A2p+1,1−b → m ∈Ws.

(4) We have that ϕ`(p)(n), ϕr(p)(n) ∈ Xs and ϕ`(p)(n) ≺L ϕr(p)(n), but
currently there is a d ≤ max<{ϕ`(p)(n), ϕr(p)(n)} for which there is no
k ∈Xs with ϕ`(p)(n) ≺L k ≺L ϕr(p)(n) and F (k) = d.

(5) The element ϕ`(p)(n) is not ⪯L-below any of 0,1, . . . , ⟨p,N⟩.

If ⟨p,N⟩ demands action, let (ap, bp, n) ∈ {0, 1} × {0, 1} × {N,N + 1, . . . , s}
be the lexicographically least witness to this, call (ap, bp, n) the action witness
for ⟨p,N⟩, call the first two coordinates (ap, bp) of the action witness the
action sides for ⟨p,N⟩, and call the last coordinate n of the action witness
the action input for ⟨p,N⟩.

Let r be the <-greatest number for which there is anM with ⟨r,M⟩ ≤ ⟨p,N⟩.
For each q ≤ r, let (aq, bq) be the most recently used action sides by any pair of
the form ⟨q,M⟩ with ⟨q,M⟩ ≤ ⟨p,N⟩. If no ⟨q,M⟩ ≤ ⟨p,N⟩ has yet demanded
action, then let (aq, bq) = (0,0). Let c = max<{ϕ`(p)(n), ϕr(p)(n)}, and let
k0 < k1 < ⋯ < kc be the c + 1 least members of

⋂
q≤r

(A2q,1−aq ∩A2q+1,1−bq) ∖Xs, (⋆)

188 CHAPTER 6. COHESIVE POWERS

which exist because the intersection is infinite and Xs is finite. Add k0, . . . , kc
to Xs. Let x ∈ Xs be the current ≺L-greatest element of the interval
(ϕ`(p)(n), ϕr(p)(n))L (or x = ϕ`(p)(n) if the interval is empty), and set

ϕ`(p)(n) ⪯L x ≺L k0 ≺L ⋯ ≺L kc ≺L ϕr(p)(n).

Also set F (ki) = i for each i ≤ c, and say that ⟨p,N⟩ has acted and added k’s.
This completes the construction.

The constructed L is a computable linear order. We show that L ≅ ω by
showing that for each z, there are only finitely many elements ≺L-below z. So
fix z. Note that z appears in Xs at stage s = z at the latest.

Consider the actions of ⟨p,N⟩. If ⟨p,N⟩ ≥ z and ⟨p,N⟩ acts at stage s > z
with action input n, then, by condition (5), it must be that z ≺L ϕ`(p)(n) ≺L
ϕr(p)(n). In this case, the action adds elements to Xs and places them ≺L-
between ϕ`(p)(n) and ϕr(p)(n) and hence places them ≺L-above z. Therefore,
only the actions of ⟨p,N⟩ with ⟨p,N⟩ < z can add elements ≺L-below z at
stages s > z.

We show that each ⟨p,N⟩ < z only ever acts to add finitely many elements
k ≺L z. It follows that there are only finitely many elements ≺L-below z
because the ⟨p,N⟩ ≥ z add no elements ≺L-below z after stage z, and each
⟨p,N⟩ < z adds only finitely many elements ≺L-below z. So let ⟨p,N⟩ < z, and
assume inductively that there is a stage s0 > z such that no pair ⟨q,M⟩ < ⟨p,N⟩
acts to add elements k ≺L z after stage s0.

Notice that a given n can be the action input for ⟨p,N⟩ at most once.
If ⟨p,N⟩ demands action with action input n at stage s, it adds elements
of every color ≤ max<{ϕ`(p)(n), ϕr(p)(n)} to Xs and places them ≺L-between
ϕ`(p)(n) and ϕr(p)(n). Thus condition (4) is never again satisfied for ⟨p,N⟩
with action input n at any stage t > s.

Suppose that either ϕ`(p)(m)↑ or ϕr(p)(m)↑ for some m. Then no n ≥m
can be an action input for ⟨p,N⟩ because condition (1) always fails when
n ≥ m. Thus only finitely many numbers n can be action inputs for ⟨p,N⟩.
Because each of these n can be an action input for ⟨p,N⟩ at most once, the
pair ⟨p,N⟩ demands action only finitely many times. Thus in this case, ⟨p,N⟩
adds only finitely many elements ≺L-below z.

We now focus on the case in which both ϕ`(p) and ϕr(p) are total. By
cohesiveness, let (a, b) ∈ {0,1} × {0,1} be such that (∀∞n ∈ C)(ϕ`(p)(n) ∈
A2p,a) and (∀∞n ∈ C)(ϕr(p)(n) ∈ A2p+1,b). Now consider all pairs ⟨p,M⟩ < z
with this fixed p.

6.5. A COHESIVE POWER OF ORDER-TYPE ω + η 189

Claim 1. There is a stage s1 ≥ s0 such that for every M with ⟨p,M⟩ < z,
whenever ⟨p,M⟩ demands action at a stage s ≥ s1, it always has action sides
(a, b).

Proof. [Proof of Claim 1] There are only finitely many ⟨p,M⟩ < z, so it
suffices to show that each ⟨p,M⟩ < z either eventually stops demanding action
or eventually always has action sides (a, b) when it does demand action.

First suppose that there is a number m0 ≥M with m0 ∈ C, but ϕ`(p)(m0) ∈
A2p,1−a. Letm1 ≥M be such that ϕ`(p)(m1) ∈ A2p,a. Then no n ≥ max<{m0,m1}
can be the action input for ⟨p,M⟩ at any stage s large enough so that
ϕ`(p),s(m0)↓ and ϕ`(p),s(m1)↓ because condition (3) always fails at these
stages. Thus there is a stage after which only numbers n < max<{m0,m1}
can be the action input for ⟨p,M⟩. Each n < max<{m0,m1} can be the action
input for ⟨p,M⟩ at most once, so in this case ⟨p,M⟩ demands action only
finitely many times. Similarly, if instead there is a number m0 ≥M such that
m0 ∈ C, but ϕr(p)(m0) ∈ A2p+1,1−b, then ⟨p,M⟩ demands action only finitely
many times.

Now suppose that ϕ`(p)(n) ∈ A2p,a and ϕr(p)(n) ∈ A2p+1,b whenever n ∈ C
and n ≥M . Let n0 be the <-least member of C with n0 ≥M . Then whenever
⟨p,M⟩ demands action and the action witness (ap, bp, n) has n ≥ n0, it must
be that (ap, bp) = (a, b) because otherwise condition (3) would fail. Each
n < n0 can be the action input for ⟨p,M⟩ at most once, which means that
there is a stage s ≥ s0 such that whenever ⟨p,M⟩ demands action at a later
stage t ≥ s, it always has action sides (a, b). ◻

Assume that ⟨p,N⟩ demands action infinitely often because otherwise we
can immediately conclude that it adds only finitely many elements ≺L-below
z. Let s1 be as in Claim 1, let t > s1 be a stage at which ⟨p,N⟩ demands
action, and let s2 = t + 1. Then ⟨p,N⟩ has action sides (a, b) at stage t < s2,
and whenever some ⟨p,M⟩ < z demands action at a stage s ≥ s2 > s1, it also
has action sides (a, b). Thus at every stage s ≥ s2, the most recently used
action sides by a ⟨p,M⟩ < z is always (a, b).

Claim 2. Suppose that an element k is added to Xs and k ≺L z is defined at
some stage s ≥ s2. Then k ∈ A2p,1−a ∩A2p+1,1−b.

Proof. [Proof of Claim 2] We already know that if ⟨q,M⟩ ≥ z, then ⟨q,M⟩
does not add elements k ≺L z after stage s2. Thus we need only consider
pairs ⟨q,M⟩ < z. For these pairs, we have assumed inductively that if
⟨q,M⟩ < ⟨p,N⟩, then ⟨q,M⟩ does not add elements k ≺L z after stage s2.

190 CHAPTER 6. COHESIVE POWERS

Thus we need only consider pairs ⟨q,M⟩ with ⟨p,N⟩ ≤ ⟨q,M⟩ < z. Suppose
such a ⟨q,M⟩ acts after stage s2. When ⟨q,M⟩ chooses the k’s to add, it
uses an r ≥ p in the intersection (⋆) because ⟨p,N⟩ ≤ ⟨q,M⟩. The action of
pair ⟨q,M⟩ must use (ap, bp) = (a, b). This is because after stage s2, (a, b) is
always the most recently used action sides by the pairs of the form ⟨p,K⟩
with ⟨p,K⟩ < z. Because ⟨p,N⟩ ≤ ⟨q,M⟩ < z, it is thus also the case that
(a, b) is always the most recently used action sides by the pairs of the form
⟨p,K⟩ ≤ ⟨q,M⟩ at every stage after s2. Thus when ⟨q,M⟩ acts at some stage
s ≥ s2, it uses (ap, bp) = (a, b), and therefore the k’s it adds to Xs are chosen
from A2p,1−a ∩A2p+1,1−b, as claimed. ◻

We are finally prepared to show that ⟨p,N⟩ adds only finitely many
elements k ≺L z. Suppose that ⟨p,N⟩ acts at some stage s ≥ s2, adds an
element k to Xs, and defines k ≺L z. Then at stage s, the action witness
for ⟨p,N⟩ must be (a, b, n) for some n, where ϕ`(p)(n) = x for some x ∈ A2p,a,
ϕr(p)(n) = y for some y ∈ A2p+1,b, and x ≺L y ⪯L z. The action then places k’s
of each color d ≤ max<{x, y} in the interval (x, y)L. If ⟨p,N⟩ acts again at
some later stage t > s with some action input m, then again ϕ`(p)(m) ∈ A2p,a

and ϕr(p)(m) ∈ A2p+1,b. However, it cannot again be that ϕ`(p)(m) = x and
ϕr(p)(m) = y because condition (4) would fail in this situation. Thus when
adding a number k ≺L z, the action input n used by ⟨p,N⟩ specifies a pair
(x, y) = (ϕ`(p)(n), ϕr(p)(n)) ∈ A2p,a ×A2p+1,b with x ≺L y ⪯L z, and each such
pair can be specified by ⟨p,N⟩ at most once. By Claim 2, every element
added ≺L-below z after stage s2 is in A2p,1−a ∩A2p+1,1−b. Therefore there are
only finitely many pairs (x, y) ∈ A2p,a ×A2p+1,b with x ≺L y ⪯L z, and therefore
⟨p,N⟩ can only add finitely many elements k ≺L z. This completes the proof
that L ≅ ω.

Let ϕ and ψ be total computable functions with lim n∈Cϕ(n) =
lim n∈Cψ(n) = ∞. We complete the proof by showing that (∗) is satisfied
for ϕ and ψ. Assume that (∀∞n ∈ C)(ψ(n) ≺L ϕ(n)), for otherwise (∗)
vacuously holds. Let p be such that ϕ`(p) = ψ and ϕr(p) = ϕ. By cohesiveness,
let (a, b) ∈ {0,1} × {0,1} and N ∈ N be such that, for all n ∈ C with n > N ,
ϕ`(p)(n) ∈ A2p,a and ϕr(p)(n) ∈ A2p+1,b. Let n0 ≥ N be large enough so that
for all n ∈ C with n ≥ n0, ϕ`(p)(n) is not ⪯L-below any of 0,1, . . . , ⟨p,N⟩.
To choose n0, notice that the set Z of elements that are ⪯L-below any of
0, 1, . . . , ⟨p,N⟩ is finite because L ≅ ω. Then (∀∞n ∈ C)(ϕ`(p)(n) ∉ Z) because
lim n∈Cϕ`(p)(n) =∞.

Suppose that n ∈ C and n ≥ n0, and furthermore suppose for a contradiction
that there is a d < max<{ϕ`(p)(n), ϕr(p)(n)} such that there is no k with

6.5. A COHESIVE POWER OF ORDER-TYPE ω + η 191

ϕ`(p)(n) ≺L k ≺L ϕr(p)(n) and F (k) = d. Then conditions(1)–(5) are satisfied
by (a, b, n) at all sufficiently large stages s. Condition (3) is satisfied because
ϕ`(p) and ϕr(p) are total. Condition (1) is satisfied because n ≥ N and n ∈ C.
Condition (2) is satisfied by the choice of N . Condition (4) is satisfied by the
assumption that there is no k with ϕ`(p)(n) ≺L k ≺L ϕr(p)(n) and F (k) = d
and hence there is no such k at every stage s in which both ϕ`(p)(n) and
ϕr(p)(n) are present in Xs. Condition (5) is satisfied by the choice of n0. Each
m < n can be the action input for ⟨p,N⟩ at most once, and, at sufficiently
large stages, (a, b) is the only possible action sides for ⟨p,N⟩. Thus at some
stage the pair ⟨p,N⟩ eventually demands action with action witness (a, b, n).
The action of ⟨p,N⟩ defines ϕ`(p)(n) ≺L k ≺L ϕr(p)(n) and F (k) = d for some
k, which contradicts that there is no such k. This shows that (∗) holds for
ϕ = ϕr(p) and ψ = ϕ`(p), which completes the proof. ◻

Let C be a co-c.e. cohesive set. The linear order L from Theorem 6.5.1 is
an example of a computable copy of ω with ΠCL ≅ ω + η.

Corollary 6.5.2. Let C be a co-c.e. cohesive set. Then there is a computable
copy L of ω where the cohesive power ΠCL has order-type ω + η.

Proof. Let C be co-c.e. and cohesive. Let L be the computable copy
of ω from Theorem 6.5.1 for C. The cohesive power ΠCL has an initial
segment of order-type ω by Lemma 6.4.1. There is neither a least nor greatest
non-standard element of ΠCL by Lemma 6.4.3. Theorem 6.5.1 implies that
the non-standard elements of ΠCL are dense. So ΠCL consists of a standard
part of order-type ω and a non-standard part that forms a countable dense
linear order without endpoints. So ΠCL ≅ ω + η. ◻

Example 6.5.3. Let C be a co-c.e. cohesive set, and let L be a computable
copy of ω with ΠCL ≅ ω + η as in Corollary 6.5.2.

(1) There is a countable collection of computable copies of ω whose cohesive
powers over C are pairwise non-elementarily equivalent. Let k ≥ 1, and
let k denote the k-element linear order 0 < 1 < ⋯ < k − 1 as well as
its order-type. Then kL has order-type ω because L has order-type
ω, and ΠCk ≅ k by the discussion following Theorem 6.1.3. Using
Theorem 6.3.6, we calculate

ΠC(kL) ≅ (ΠCk)(ΠCL) ≅ k(ω + η) ≅ ω + kη.

192 CHAPTER 6. COHESIVE POWERS

The linear orders ω+kη for k ≥ 1 are pairwise non-elementarily equivalent.
The sentence “there are x0 ≺ ⋯ ≺ xk−1 such that every other y satisfies
either y ≺ x0 or xk−1 ≺ y; if y ≺ x0, then there is a z with y ≺ z ≺ x0; and
if xk−1 ≺ y, then there is a z with y ≺ z ≺ xk−1” expressing that there is
a maximal block of size k is true of ω + kη, but not of ω +mη if m ≠ k.
Thus 1L, 2L, . . . is a sequence of computable copies of ω whose cohesive
powers ΠC(kL) are pairwise non-elementarily equivalent.

(2) It is possible for non-elementarily equivalent computable linear orders
to have isomorphic cohesive powers. Consider the computable linear
orders L and L +Q. They are not elementarily equivalent because the
sentence “every element has an immediate successor” is true of L but
not of L+Q. However, using Theorem 6.3.6 and the fact that ΠCQ ≅ η,
we calculate

ΠC(L +Q) ≅ ΠCL +ΠCQ ≅ (ω + η) + η ≅ ω + η ≅ ΠCL.

Thus the cohesive powers ΠCL and ΠC(L + Q) of L and L + Q are
isomorphic.

6.6 Shuffling finite linear orders
The shuffle σ(X) of an at-most-countable non-empty collection X of order-
types is obtained by densely coloring Q with ∣X ∣-many colors, assigning each
order-type in X a distinct color, and replacing each q ∈ Q by a copy of the
linear order whose type corresponds to the color of q.

Definition 6.6.1. Let X be a non-empty collection of linear orders with
∣X ∣ ≤ ℵ0, let (Li)i<∣X ∣ be a list of the elements of X, and write Li = (Li,≺Li)
for each i < ∣X ∣. Let F ∶Q→ ∣X ∣ be a coloring of Q in which each color occurs
densely. Define a linear order S = (S,≺S) by replacing each q ∈ Q by a copy
of LF (q). Formally, let S = {(q, `) ∶ q ∈ Q ∧ ` ∈ LF (q)} and

(p, `) ≺S (q, r) if and only if (p < q) ∨ (p = q ∧ ` ≺LF (p) r).

Because every color occurs densely, the order-type of S does not depend on
the particular choice of F or on the order in which X is enumerated. For this
reason, S is called the shuffle of X and is denoted σ(X). We typically think
of X as a collection of order-types instead of as a collection of concrete linear
orders.

6.6. SHUFFLING FINITE LINEAR ORDERS 193

Let C be co-c.e. and cohesive, let L be the linear order from Corollary 6.5.2
for C, and consider the linear order 2L from Example 6.5.3 item (1). We can
think of 2L as being obtained from L by replacing each element of L by a
copy of 2. This operation of replacing each element by a copy of 2 is reflected
in the cohesive power, and we have that ΠC(2L) ≅ ω + 2η.

Let us now consider this same L = (L,≺L) along with its coloring F ∶L→ N
from Theorem 6.5.1. Collapse F into a coloring G∶L→ {0, 1}, where G(x) = 0
if F (x) = 0 and G(x) = 1 if F (x) ≥ 1. Then the coloring Ĝ of ΠCL induced
by G uses exactly two colors: J0K represented by the constant function with
value 0, and J1K represented by the constant function with value 1. Both of
these colors occur densely in the non-standard part of ΠCL. Compute a linear
orderM by starting with L, replacing each x ∈ L with G(x) = 0 by a copy of
2, and replacing each x ∈ L with G(x) = 1 by a copy of 3. The cohesive power
ΠCM reflects this construction, and we get the linear order obtained from
ΠCL by replacing each point of Ĝ-color J0K by a copy of 2 and replacing each
point of Ĝ-color J1K by a copy of 3. Thus we have a computable copyM of
ω with ΠCM ≅ ω + σ({2,3}). Using this strategy, we can shuffle any finite
collection of finite linear orders into a cohesive power of a computable copy
of ω.
Theorem 6.6.2. Let k0, . . . , kN be non-zero natural numbers. Let C be a
co-c.e. cohesive set. Then there is a computable copy M of ω where the
cohesive power ΠCM has order-type ω + σ({k0, . . . , kN}).
Proof. Let L = (L,≺L) be the linear order from Theorem 6.5.1 for C, along
with its coloring F ∶L→ N. Collapse F into a coloring G∶L→ {0, 1, . . . ,N} by
setting G(x) = F (x) if F (x) < N and G(x) = N if F (x) ≥ N . Consider the
induced coloring Ĝ on the cohesive power ΠCL. For any partial computable
ϕ, G ○ϕ only takes values a ≤ N . Thus by cohesiveness, if C ⊆∗ dom(ϕ), then
G ○ ϕ is eventually constant on C. Therefore JG ○ ϕK = JaK (i.e., the color
represented by the constant function with value a) for some a ≤ N . So Ĝ
colors ΠCL with colors J0K, J1K, . . . , JNK, and each color occurs densely in the
non-standard part of ΠCL.

LetM = (M,≺M) be the computable linear order obtained by replacing
each x ∈ L by a copy of kG(x). Formally, we define

M = {⟨x, i⟩ ∶ x ∈ L ∧ i < kG(x)}

and

⟨x, i⟩ ≺M ⟨y, j⟩ if and only if (x ≺L y) ∨ (x = y ∧ i < j).

194 CHAPTER 6. COHESIVE POWERS

It is straightforward to check thatM ≅ ω, asM is infinite and every element
has only finitely many ≺M-predecessors.

To calculate the order-type of ΠCM, we consider what we call the projec-
tion condensation of ΠCM. For a [ϕ] ∈ ∣ΠCM∣, let

cπ([ϕ]) = {[ψ] ∈ ∣ΠCM∣ ∶ π0 ○ ψ =C π0 ○ ϕ}.

If cπ([ϕ]) and cπ([ψ]) are distinct, then they are disjoint because =C is an
equivalence relation. To see that cπ([ϕ]) is an interval of ΠCM, suppose
that [ψ0] and [ψ1] are in cπ([ϕ]) and that [ψ0] ≺ΠCM [θ] ≺ΠCM [ψ1]. Then
(∀∞n ∈ C)[π0(ψ0(n)) ⪯L π0(θ(n)) ⪯L π0(ψ1(n))]. However, [ψ0], [ψ1] ∈
cπ([ϕ]) means that (∀∞n ∈ C)[π0(ψ0(n)) = π0(ϕ(n)) = π0(ψ1(n))]. Thus it
must also be that (∀∞n ∈ C)[π0(θ(n)) = π0(ϕ(n))], so [θ] ∈ cπ([ϕ]). The
projection condensation cπ(ΠCM) of ΠCM is the condensation obtained
from the partition {cπ([ϕ]) ∶ [ϕ] ∈ ∣ΠCM∣}.

Observe that the map cπ([ϕ]M)↦ [π0 ○ ϕ]L is an isomorphism between
cπ(ΠCM) and ΠCL, where we now write [⋅]M and [⋅]L to distinguish between
members of ΠCM and of ΠCL. Thus we can think of Ĝ as coloring cπ(ΠCM)
by Ĝ(cπ([ϕ]M)) = Ĝ([π0 ○ ϕ]L) = JG ○ π0 ○ ϕK. Call an element cπ([ϕ]M)
of cπ(ΠCM) non-standard if the corresponding [π0 ○ϕ]L is a non-standard
element of ΠCL. Then the non-standard elements of cπ(ΠCM) form a
linear order of type η colored by Ĝ, and every color occurs densely. To
finish the proof, it suffices to show that if cπ([ϕ]M) has color JaK, then
its order-type is ka. It follows that the non-standard elements of ΠCM
have order-type σ({k0, . . . , kN}) and therefore that ΠCM has the desired
order-type ω + σ({k0, . . . , kN}).

Consider some cπ([ϕ]M), and suppose that Ĝ(cπ([ϕ]M)) = Ĝ([π0○ϕ]L) =
JaK. Let n0 be such that G(π0(ϕ(n))) = a for all n ∈ C with n ≥ n0. Then
⟨π0(ϕ(n)), i⟩ ∈ M whenever n ≥ n0 and i < ka. Define partial computable
functions ψi for i < ka by ψi(n) = ⟨π0(ϕ(n)), i⟩ if n ≥ n0 and ψi(n)↑ if n < n0.
Then [ψi]M ∈ cπ([ϕ]M) for each i < ka, and

[ψ0]M ≺ΠCM [ψ1]M ≺ΠCM ⋯ ≺ΠCM [ψka−1]M.

Thus to show that cπ([ϕ]M) has order-type ka, we need only show that if
[θ]M ∈ cπ([ϕ]M), then [θ]M = [ψi]M for some i < ka.

So suppose that [θ]M ∈ cπ([ϕ]M), and let n1 > n0 be such that π0(θ(n)) =
π0(ϕ(n)) for all n ∈ C with n ≥ n1. Then also G(π0(θ(n))) = a for all n ∈ C
with n ≥ n1. Thus by the definition of M , it must be that π1(θ(n)) < ka for

6.6. SHUFFLING FINITE LINEAR ORDERS 195

all n ∈ C with n ≥ n1. By cohesiveness, there is therefore an i < ka such that
(∀∞n ∈ C)(π1(θ(n)) = i). So [θ]M = [ψi]M, which completes the proof. ◻

For the remainder of this section, let α denote the order-type ω + ζη + ω∗.
Ultimately, we want to use the method of Theorem 6.6.2 to show that if
X ⊆ N ∖ {0} is either Σ0

2 or Π0
2, then, thinking of X as a set of finite order-

types, there is a cohesive power of ω with order-type ω + σ(X ∪ {α}). We
first consider the particular case X = N ∖ {0} to illustrate how α naturally
appears when shuffling infinitely many finite order-types.

Theorem 6.6.3. Let X be the set of all finite non-zero order-types. Let C
be a co-c.e. cohesive set. Then there is a computable copyM of ω where the
cohesive power ΠCM has order-type ω + σ(X ∪ {α}).

Proof. Let L = (L,≺L) be the linear order from Theorem 6.5.1 for C, along
with its coloring F ∶L→ N. LetM = (M,≺M) be the computable linear order
obtained by replacing each x ∈ L by a copy of x + 1 if F (x) = 0 and by a copy
of F (x) if F (x) > 0. Formally, define

M = {⟨x, i⟩ ∶ x ∈ L ∧ [(F (x) = 0 ∧ i ≤ x) ∨ (F (x) > 0 ∧ i < F (x))]}

and

⟨x, i⟩ ≺M ⟨y, j⟩ if and only if (x ≺L y) ∨ (x = y ∧ i < j).

ThenM is a computable linear order of type ω.
As in the proof of Theorem 6.6.2, consider the projection condensation

cπ(ΠCM) of ΠCM as colored by F̂ . By Theorem 6.5.1, the non-standard
elements of cπ(ΠCM) form a linear order of type η in which the solid F̂ -colors
occur densely. Furthermore, between any two distinct non-standard elements
of cπ(ΠCM) there is a non-standard element with a striped color. As in
the proof of Theorem 6.6.2, if cπ([χ]M) has solid color JkK for some k > 0,
then its order-type is k. We show that if a non-standard cπ([χ]M) has either
solid color J0K or a striped color, then its order-type is α. It follows that the
non-standard elements of ΠCM have order-type σ(X ∪ {α}), so ΠCM has
the desired order-type ω+σ(X ∪{α}). We give the proof for the striped color
case and then indicate the small modification that is needed for the color J0K
case.

Suppose that cπ([χ]M) has striped color JδK. To show that cπ([χ]M) has
order-type α ≅ ω + ζη + ω∗, it suffices to show the following for the interval
cπ([χ]M) of ΠCM.

196 CHAPTER 6. COHESIVE POWERS

(1) There is a ≺ΠCM-least element [λ]M.

(2) There is a ≺ΠCM-greatest element [ρ]M.

(3) If [ϕ]M is not ≺ΠCM-greatest, then it has an ≺ΠCM-immediate successor.

(4) If [ϕ]M is not ≺ΠCM-least, then it has an ≺ΠCM-immediate predecessor.

(5) We have that [λ]M ⋞ΠCM [ρ]M.

(6) If [ψ]M ⋞ΠCM [ϕ]M, then there is a [θ]M with [ψ]M ⋞ΠCM [θ]M ⋞ΠCM
[ϕ]M.

Claim 1. cπ([χ]M) has a ≺ΠCM-least element [λ]M and a ≺ΠCM-greatest
element [ρ]M.

Proof. [Proof of Claim 1] Define partial computable functions λ and ρ to
make π1(λ(n)) as small as possible and π1(ρ(n)) as large as possible while
respecting π0(λ(n)) ≃ π0(ρ(n)) ≃ π0(χ(n)) for every n:

λ(n) ≃ ⟨π0(χ(n)),0⟩

ρ(n) ≃

⎧⎪⎪
⎨
⎪⎪⎩

⟨π0(χ(n)), π0(χ(n))⟩ if F (π0(χ(n))) = 0

⟨π0(χ(n)), F (π0(χ(n))) − 1⟩ if F (π0(χ(n))) > 0.

If [θ]M ∈ cπ([χ]M), then, for almost every n ∈ C, we have that:

• π0(θ(n)) = π0(χ(n)),

• π1(θ(n)) ≥ 0,

• F (π0(χ(n))) = 0 → π1(θ(n)) ≤ π0(χ(n)), and

• F (π0(χ(n))) > 0 → π1(θ(n)) ≤ F (π0(χ(n))) − 1.

Therefore [λ]M ⪯ΠCM [θ]M ⪯ΠCM [ρ]M, which means that [λ]M is ≺ΠCM-
least and [ρ]M is ≺ΠCM-greatest. ◻

Claim 2. If [ϕ]M is not ≺ΠCM-greatest, then it has an ≺ΠCM-immediate
successor; and if [ϕ]M is not ≺ΠCM-least, then it has an ≺ΠCM-immediate
predecessor.

6.6. SHUFFLING FINITE LINEAR ORDERS 197

Proof. [Proof of Claim 2] Suppose that [ϕ]M ∈ cπ([χ]M) is not the ≺ΠCM-
greatest element [ρ]M from Claim 1. Then for almost every n ∈ C, we have
that F (π0(ϕ(n))) = 0 → π1(ϕ(n)) < π0(ϕ(n)) and that F (π0(ϕ(n))) > 0 →
π1(ϕ(n)) < F (π0(ϕ(n))) − 1. Thus define a partial computable θ by

θ(n) ≃

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⟨π0(ϕ(n)), π1(ϕ(n)) + 1⟩ if F (π0(ϕ(n))) = 0 ∧ π1(ϕ(n)) < π0(ϕ(n))

or F (π0(ϕ(n))) > 0 ∧ π1(ϕ(n)) < F (π0(ϕ(n))) − 1

↑ otherwise.

Then [θ]M ∈ cπ([χ]M) is the ≺ΠCM-immediate successor of [ϕ]M by Lemma 6.3.7.
Similarly, if [ϕ]M ∈ cπ([χ]M) is not the ≺ΠCM-least element [λ]M, then

π1(ϕ(n)) > 0 for almost every n ∈ C. In this case, define a partial computable
ψ by ψ(n) ≃ ⟨π0(ϕ(n)), π1(ϕ(n))⊖ 1⟩. Then [ψ]M ∈ cπ([χ]M) is the ≺ΠCM-
immediate predecessor of [ϕ]M. ◻

Claim 3. [λ]M ⋞ΠCM [ρ]M.

Proof. [Proof of Claim 3] The color JδK = F̂ (cπ([χ]M)) = JF ○ π0 ○ χK is
striped, so lim n∈CF (π0(χ(n))) =∞. Therefore lim n∈Cπ1(ρ(n)) =∞ as well,
so lim n∈C ∣(λ(n), ρ(n))M∣ =∞. Therefore [λ]M ⋞ΠCM [ρ]M by Lemma 6.3.8.
◻

Claim 4. If [ψ]M ⋞ΠCM [ϕ]M, then there is a [θ]M with [ψ]M ⋞ΠCM
[θ]M ⋞ΠCM [ϕ]M.

Proof. [Proof of Claim 4] Suppose that [ψ]M and [ϕ]M are members of
cπ([χ]M) with [ψ]M ⋞ΠCM [ϕ]M. Then lim n∈C ∣(ψ(n), ϕ(n))M∣ = ∞ by
Lemma 6.3.8. As π0 ○ ϕ =C π0 ○ ψ =C π0 ○ χ, it must therefore be that
lim n∈C ∣π1(ϕ(n)) − π1(ψ(n))∣ =∞. Define a partial computable θ by

θ(n) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⟨π0(χ(n)), ⌊
π1(ψ(n))+π1(ϕ(n))

2 ⌋⟩ if π0(ϕ(n)) = π0(ψ(n)) = π0(χ(n))

↑ otherwise.

Then π0 ○ θ =C π0 ○ χ as well, and also lim n∈C ∣π1(ϕ(n)) − π1(θ(n))∣ =∞ and
lim n∈C ∣π1(θ(n)) − π1(ψ(n))∣ =∞. Therefore [ψ]M ⋞ΠCM [θ]M ⋞ΠCM [ϕ]M.
◻

198 CHAPTER 6. COHESIVE POWERS

Claims 1–4 show that cπ([χ]M) satisfies items (1)–(6). Therefore cπ([χ]M)
has order-type α.

If instead cπ([χ]M) is a non-standard element of solid color J0K, then
essentially the same argument shows that cπ([χ]M) satisfies (1)–(6) and
thus has order-type α. The only adjustment needed is to showing that
lim n∈Cπ1(ρ(n)) = ∞ in Claim 3. This time we have that (∀∞n ∈ C)
[F (π0(χ(n))) = 0], so (∀∞n ∈ C)[π1(ρ(n)) = π0(χ(n))]. However, cπ([χ]M)
is non-standard, which means that lim n∈Cπ0(χ(n)) =∞. So lim n∈Cπ1(ρ(n))
=∞, and Claim 3 holds in this case as well. This completes the proof. ◻

In the proof of Theorem 6.6.3, it was not necessary to use color J0K to shuffle
copies of α into ΠCM because the striped colors shuffle in α automatically.
However, suppose instead that k0, . . . , kN−1 is a (possibly empty) finite list
of non-zero natural numbers, and we want to obtain a cohesive power with
order-type ω + σ({k0, . . . , kN−1, α}). To do this, let C be co-c.e. and cohesive,
and let L and F be as in Theorem 6.5.1 for C. Collapse F to N + 1 colors
{0, 1, . . . ,N} as in Theorem 6.6.2. ComputeM by replacing points x of L of
color 0 by copies of x + 1 as in Theorem 6.6.3, and by replacing points x of L
of color a with 1 ≤ a ≤ N by copies of ka−1 as in Theorem 6.6.2. Then ΠCM
has order-type ω + σ({k0, . . . , kN−1, α}).

Finally, to shuffle Σ0
2 or Π0

2 sets of finite order-types into cohesive powers
of ω, it is convenient to work with linear orders whose domains are c.e.
To this end, let a partial computable structure for a computable language L
consist of a non-empty c.e. domain A along with uniformly partial computable
interpretations of the symbols of L. For example, a partial computable linear
order (L,≺) consists of a non-empty c.e. set L and a partial computable
ϕ∶L ×L → {0,1} computing the characteristic function of the ≺-relation on
L ×L.

Cohesive powers of partial computable structures may be defined exactly
as in Definition 6.1.2, the only difference being that the domain A of the
partial computable structure A is now c.e. instead of computable. Suppose
that A is a partial computable structure with infinite c.e. domain A, and let
f ∶N→ A be a one-to-one computable enumeration of A. As usual, we can pull
back f to define a computable structure B with domain N that is isomorphic
to A via f . For each n-ary relation symbol R, define RB(x0, . . . , xn−1) to hold
if and only if RA(f(x0), . . . , f(xn−1)) holds. For each n-ary function symbol g,
define gB(x0, . . . , xn−1) to be f−1(gA(f(x0), . . . , f(xn−1))). For each constant
symbol c, define cB = f−1(cA). Furthermore, if C is any cohesive set, then
ΠCA ≅ ΠCB. This is proved exactly as in Theorem 6.1.4, with B playing

6.6. SHUFFLING FINITE LINEAR ORDERS 199

the role of A0, A playing the role of A1, and f being the f enumerating the
domain of A = A1 as discussed above. The only difference is that now f−1

is partial computable instead of computable, but this is inessential because
all that matters is that f−1 has domain A. Therefore, if we wish to show
that there is a computable copy of ω having a cohesive power of a certain
order-type, it suffices to show that there is a partial computable copy of ω
having a cohesive power of the desired order-type.

Theorem 6.6.4. Let X ⊆ N ∖ {0} be a Π0
2 set, thought of as a set of finite

order-types. Let C be a co-c.e. cohesive set. Then there is a computable copy
M of ω where the cohesive power ΠCM has order-type ω + σ(X ∪ {α}).

Proof. Assume that X ≠ ∅, as otherwise we can compute a copyM of ω
with ΠCM ≅ ω +σ({α}) by combining the proofs of Theorems 6.6.2 and 6.6.3
in the way described above. Let R be a computable predicate for which
X = {k ∶ ∀a∃bR(k, a, b)}. Let k0 > 0 be the <-least element of X. Let
L = (L,≺L) be the linear order from Theorem 6.5.1 for C, along with its
coloring F ∶L → N. By the above discussion, it suffices to produce a partial
computable copyM of ω with ΠCM ≅ ω + σ(X ∪ {α}). We defineM from
L as follows. If x ∈ L has F (x) < k0, then replace x by a copy of x + 1 as
is done with color 0 in the proof of Theorem 6.6.3. If x ∈ L has F (x) ≥ k0,
then first replace x by a copy of k0. Then for each a ≤ x, search for a b such
that R(F (x), a, b). If (∀a ≤ x)(∃b)R(F (x), a, b), then add further elements
to replace x by a copy of F (x) instead of by a copy of k0. The ultimate
effect of this procedure is that if F (x) ∈X, then we shuffle F (x) into ΠCM;
whereas if F (x) ∉X, then we shuffle k0 into ΠCM. Formally, define

M = {⟨x, i⟩ ∶ x ∈ L ∧ F (x) < k0 ∧ i ≤ x}

∪ {⟨x, i⟩ ∶ x ∈ L ∧ i < k0 ≤ F (x)}

∪ {⟨x, i⟩ ∶ x ∈ L ∧ (∀a ≤ x)(∃b)R(F (x), a, b) ∧ k0 ≤ i < F (x)}.

and

⟨x, i⟩ ≺M ⟨y, j⟩ if and only if (x ≺L y) ∨ (x = y ∧ i < j),

where ≺M is restricted to M ×M . ThenM is a partial computable copy of ω.
We need to show that ΠCM ≅ ω + σ(X ∪ {α}).

As in the proofs of Theorems 6.6.2 and 6.6.3, consider the projection
condensation cπ(ΠCM) of ΠCM as colored by F̂ . Suppose that cπ([χ]M) is
non-standard.

200 CHAPTER 6. COHESIVE POWERS

If cπ([χ]M) has solid color JkK for some k < k0, then cπ([χ]M) has
order-type α by the same argument as in the color J0K case of the proof of
Theorem 6.6.3.

Suppose that cπ([χ]M) has solid color JkK for some k ≥ k0 with k ∈ X.
Then (∀∞n ∈ C)[F (π0(χ(n))) = k] and ∀a∃bR(k, a, b). Thus for almost
every n ∈ C, the elements of M of the form ⟨π0(χ(n)), i⟩ are exactly
⟨π0(χ(n)),0⟩, . . . , ⟨π0(χ(n)), k − 1⟩. So cπ([χ]M) has order-type k by the
same argument as in the proof of Theorem 6.6.2.

Suppose that cπ([χ]M) has solid color JkK for some k ≥ k0 with k ∉
X. Then (∀∞n ∈ C)[F (π0(χ(n))) = k], but ∃a∀b¬R(k, a, b). Thus for
almost every n ∈ C, the elements of M of the form ⟨π0(χ(n)), i⟩ are exactly
⟨π0(χ(n)),0⟩, . . . , ⟨π0(χ(n)), k0 − 1⟩. So cπ([χ]M) has order-type k0 by the
same argument as in the proof of Theorem 6.6.2.

Finally, suppose that cπ([χ]M) has striped color JδK = JF ○ π0 ○ χK. Then
lim n∈CF (π0(χ(n))) =∞. There are two cases, depending on how the cohe-
siveness of C falls with respect to the c.e. set

S = {n ∶ (∀a ≤ π0(χ(n)))(∃b)R(F (π0(χ(n))), a, b)}.

If C ⊆∗ S, then for almost every n ∈ C, the elements of M of the form
⟨π0(χ(n)), i⟩ are exactly ⟨π0(χ(n)),0⟩, . . . , ⟨π0(χ(n)), F (π0(χ(n))) − 1⟩. So
cπ([χ]M) has order-type α by the same argument as in the striped JδK case
in the proof of Theorem 6.6.3.

If C ⊆∗ S, then for almost every n ∈ C, the elements of M of the form
⟨π0(χ(n)), i⟩ are exactly ⟨π0(χ(n)),0⟩, . . . , ⟨π0(χ(n)), k0 − 1⟩. So cπ([χ]M)
has order-type k0 by the same argument as in the proof of Theorem 6.6.2.

The non-standard elements of cπ(ΠCM) form a linear order of type η in
which the solid F̂ -colors occur densely. We have seen that the order-type of a
non-standard cπ([χ]M) is:

• α if cπ([χ]M) has solid color JkK with k < k0, which includes 0 because
k0 > 0;

• k if cπ([χ]M) has solid color JkK with k ≥ k0 and k ∈X;

• k0 if cπ([χ]M) has solid color JkK with k ≥ k0 and k ∉X;

• either α or k0 if cπ([χ]M) has a striped color.

Recalling that k0 is the <-least element of X, we therefore have that ΠCM ≅
ω + σ(X ∪ {α}). ◻

6.6. SHUFFLING FINITE LINEAR ORDERS 201

Theorem 6.6.5. Let X ⊆ N ∖ {0} be a Σ0
2 set, thought of as a set of finite

order-types. Let C be a co-c.e. cohesive set. Then there is a computable copy
M of ω where the cohesive power ΠCM has order-type ω + σ(X ∪ {α}).

Proof. The proof is similar to that of Theorem 6.6.4. In the proof of
Theorem 6.6.4, we arrange M to shuffle k into ΠCM when a Π0

2 property
holds of k and to shuffle a fixed k0 into ΠCM when a Π0

2 property fails of k.
In this proof, we want to shuffle k into ΠCM when a Π0

2 property fails of k
and to shuffle α into ΠCM when a Π0

2 property holds of k.
Let X ⊆ N ∖ {0} be Σ0

2. Let R be a computable predicate for which X =
{k ∶ ∀a∃bR(k, a, b)}. Let L = (L,≺L) be the linear order from Theorem 6.5.1
for C, along with its coloring F ∶L→ N. Again, it suffices to produce a partial
computable copyM of ω with ΠCM ≅ ω +σ(X ∪ {α}). We defineM from L
as follows. If x ∈ L has F (x) = 0, then replace x by a copy of x + 1 as is done
in the proof of Theorem 6.6.3. If x ∈ L has F (x) > 0, then first replace x by a
copy of F (x). Then for each a ≤ x, search for a b such that R(F (x), a, b). If
x ≥ F (x) and (∀a ≤ x)(∃b)R(F (x), a, b), then add further elements to replace
x by a copy of x + 1 instead of a copy of F (x). Formally, define

M = {⟨x, i⟩ ∶ x ∈ L ∧ F (x) = 0 ∧ i ≤ x}

∪ {⟨x, i⟩ ∶ x ∈ L ∧ F (x) > 0 ∧ i < F (x)}

∪ {⟨x, i⟩ ∶ x ∈ L ∧ F (x) > 0 ∧ (∀a ≤ x)(∃b)R(F (x), a, b) ∧ i ≤ x}.

and

⟨x, i⟩ ≺M ⟨y, j⟩ if and only if (x ≺L y) ∨ (x = y ∧ i < j),

where ≺M is restricted to M ×M . ThenM is a partial computable copy of ω.
We need to show that ΠCM ≅ ω + σ(X ∪ {α}).

As in the previous proofs, consider the projection condensation cπ(ΠCM)
of ΠCM as colored by F̂ . Suppose that cπ([χ]M) is non-standard.

If cπ([χ]M) has solid color J0K, then cπ([χ]M) has order-type α by the
same argument as in the color J0K case of the proof of Theorem 6.6.3.

Suppose that cπ([χ]M) has solid color JkK for some k > 0 with k ∈
X. Then (∀∞n ∈ C)[F (π0(χ(n))) = k], but ∃a∀b¬R(k, a, b). Thus for
almost every n ∈ C, the elements of M of the form ⟨π0(χ(n)), i⟩ are exactly
⟨π0(χ(n)),0⟩, . . . , ⟨π0(χ(n)), k − 1⟩. So cπ([χ]M) has order-type k by the
same argument as in the proof of Theorem 6.6.2.

202 CHAPTER 6. COHESIVE POWERS

Suppose that cπ([χ]M) has solid color JkK for some k > 0 with k ∉ X.
Then (∀∞n ∈ C)[F (π0(χ(n))) = k] and ∀a∃bR(k, a, b). Thus for almost
every n ∈ C, the elements of M of the form ⟨π0(χ(n)), i⟩ are exactly
⟨π0(χ(n)),0⟩, . . . , ⟨π0(χ(n)), π0(χ(n))⟩. So cπ([χ]M) has order-type α by
the same argument as in the color J0K case of the proof of Theorem 6.6.3.

Finally, suppose that cπ([χ]M) has striped color JδK = JF ○ π0 ○ χK. Then
lim n∈CF (π0(χ(n))) =∞. There are two cases, depending on how the cohe-
siveness of C falls with respect to the c.e. set

S = {n ∶ F (π0(χ(n))) ≤ π0(χ(n)) ∧ (∀a ≤ π0(χ(n)))(∃b)R(F (π0(χ(n))), a, b)}.

We show that cπ([χ]M) has order-type α in both cases.
If C ⊆∗ S, then for almost every n ∈ C, the elements of M of the

form ⟨π0(χ(n)), i⟩ are exactly ⟨π0(χ(n)),0⟩, . . . , ⟨π0(χ(n)), π0(χ(n))⟩. So
cπ([χ]M) has order-type α by the same argument as in the color J0K case of
the proof of Theorem 6.6.3.

If C ⊆∗ S, then for almost every n ∈ C, the elements of M of the form
⟨π0(χ(n)), i⟩ are exactly ⟨π0(χ(n)),0⟩, . . . , ⟨π0(χ(n)), F (π0(χ(n))) − 1⟩. So
cπ([χ]M) has order-type α by the same argument as in the striped JδK case
in the proof of Theorem 6.6.3.

The non-standard elements of cπ(ΠCM) form a linear order of type η in
which the solid F̂ -colors occur densely. We have seen that the order-type of a
non-standard cπ([χ]M) is:

• α if cπ([χ]M) has solid color J0K;

• k if cπ([χ]M) has solid color JkK with k ∈X;

• α if cπ([χ]M) has solid color JkK with k > 0 and k ∉X;

• α if cπ([χ]M) has a striped color.

We therefore have that ΠCM ≅ ω + σ(X ∪ {α}). ◻
We combine the results of this section into a single statement.

Theorem 6.6.6. Let X ⊆ N ∖ {0} be either a Σ0
2 set or a Π0

2 set, thought of
as a set of finite order-types. Let C be a co-c.e. cohesive set. Then there is
a computable copyM of ω where the cohesive power ΠCM has order-type
ω + σ(X ∪ {α}). Moreover, if X is finite and non-empty, then there is also
a computable copyM of ω where the cohesive power ΠCM has order-type
ω + σ(X).

Chapter 7

On Cototality and the Skip
Operator

In this chapter we will present the notions of cototality and skip operator in
the enumeration degrees. The degree structures as DT and De with ≤, ⊕ and
jump operator are also abstract structures. Here we will consider a subclass
of the enumeration degrees De called cototal degrees. We started this project
in 2015 together with Hristo Ganchev, Steffen Lempp, Jouseph Miller, and
Mariya Soskova in Sofia, after the CiE 2015 in Bucharest, when Joseph Miller
and Steffen Lempp from University of Madison, Wisconsin, visited Sofia. In
2016 Uri Andrews and Rutger Kuyper from the same university also joined
the project and we will present in this chapter the results from the paper
[AGK+19], in the journal Transaction of the American Mathematical Society.
The content of his chapter is almost from [AGK+19], with a small exception
in Subsections 7.4.2 and 7.5.1.

A set A ⊆ N is cototal if it is enumeration reducible to its complement, A.
The skip of A is the uniform upper bound of the complements of all sets
enumeration reducible to A. These are closely connected: A has cototal degree
if and only if it is enumeration reducible to its skip. We study cototality and
related properties, using the skip operator as a tool in our investigation. We
give many examples of classes of enumeration degrees that either guarantee
or prohibit cototality. We also study the skip for its own sake, noting that
it has many of the nice properties of the Turing jump, even though the skip
of A is not always above A (i.e., not all degrees are cototal). In fact, there is
a set that is its own double skip.

For an arbitrary set A ⊆ N, the enumeration degree of A and the enu-

203

204 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

meration degree of A, the complement of A, need not be comparable. By
requiring that they are comparable, we can isolate two interesting subclasses
of the enumeration degrees. The first was introduced at the same time as the
enumeration degrees themselves. We call a set A ⊆ N total if A ≤e A, and we
call an enumeration degree total if it contains a total set. Note that A is total
if and only if A ≡e A⊕A, where ⊕ denotes the effective disjoint union of sets.
Since every set of the form A⊕A is total, the total degrees are exactly the
degrees of sets A⊕A for some A ⊆ N. We know that the map ι ∶ A↦ A⊕A
induces an order-preserving isomorphism between the Turing degrees and
the total enumeration degrees. The name “total” is due to the fact that an
enumeration degree is total if and only if it contains the graph of a total
function. In particular, if A is a total set, then de(A) contains the graph of
the characteristic function of A.

It is important to note that total degrees1 always contain nontotal sets
as well. For example, all c.e. sets have total degree because they are all
enumeration equivalent to the empty set, but only computable c.e. sets are
total.

7.1 Cototality
What happens if we reverse the relationship between A and A? Call a set
A ⊆ N cototal if A ≤e A, and call an enumeration degree cototal if it contains
a cototal set. While we are the first to isolate this property under this name,
both the property and the name have appeared in the literature. The name
was essentially first used, as far as we are aware, in an abstract of A.V.
Pankratov from 2000 [Pan00]. Pankratov used “’кототальное’ (Russian for
“cototal”) to refer to what we call the graph-cototal degrees, which turns
out to be a proper subclass of the cototal degrees: For any total function
f ∶N→ N, let Gf = {⟨n,m⟩∶ f(n) =m} be the graph of f . It is easy to see that
Gf ≤e Gf , so Gf is a cototal set. If an enumeration degree contains a set of
the form Gf , then we call it graph-cototal.

The graph-cototal sets and degrees were further studied by Solon, Pankra-
tov’s advisor. In [Sol06], he used “co-total” to refer to what we call “graph-
cototal”. However, in the Russian version [Sol05] of the same paper, Solon
used “кототальное” for a different property: Call a degree a weakly cototal if
it contains a set A such that A has total enumeration degree. It is clear that

1We will sometimes use the term degree to refer to an enumeration degree.

7.1. COTOTALITY 205

every cototal degree is weakly cototal, since if A ≤e A, then A is a total set.
So we have

graph-cototal Ô⇒ cototal Ô⇒ weakly cototal.

We show that these three properties are distinct. The harder separation
is given in Section 7.6, where we use an infinite-injury argument relative
to 0′ to construct a cototal degree that is not graph-cototal. In Section 7.5,
we give examples of weakly cototal degrees that are not cototal, as well as
enumeration degrees that are not weakly cototal. Of these properties, we
believe that there is a strong case that cototal is the most fundamental.

Our study of cototality was motivated by two examples of cototal sets
that were pointed out to us by Jeandel [Jea15]. He showed that the set of
non-identity words in a finitely generated simple group is cototal (see also
Thomas and Williams [TW16]). Jeandel also gave an example from symbolic
dynamics: The set of words that appear in a minimal subshift is cototal. This
is particularly interesting because the Turing degrees of elements of a minimal
subshift are exactly the degrees that enumerate the set of words that appear
in the subshift, so understanding the enumeration degree of this set is closely
related to understanding the Turing degree spectrum of the subshift.

In Section 7.3, we explain Jeandel’s examples in more detail, and we give
several other examples of cototal sets and degrees. We show that every Σ0

2-set
is cototal, in fact, graph-cototal. We show that the complement of a maximal
independent subset of a computable graph is cototal, and that every cototal
degree contains the complement of a maximal independent subset of ω<ω.
Ethan McCarthy proved that the same is true of complements of maximal
antichains in ω<ω. We show that joins of nontrivial K-pairs are cototal, and
that the natural embedding of the continuous degrees into the enumeration
degrees maps into the cototal degrees. Finally, we note that Harris [Har10]
proved that sets with a good approximation have cototal degree.

The earliest reference to a cototality notion seems to be in Case’s disserta-
tion [Cas69, p. 14] from 1969; he wrote “The author does not know if there are
sets A such that A lies in a total partial degree and A lies in a non-total partial
degree, but he conjectures that there are no such sets.” In our language,
Case is conjecturing that if A has weakly cototal degree, then it has total
degree. The same question also appears in the journal version [Cas71, p. 426].
Gutteridge [Gut71, Chapter II] disproved this conjecture by constructing a
quasiminimal graph-cototal degree. Recall that an enumeration degree a is
quasiminimal if it is nonzero and the only total degree below a is 0e = de(∅);

206 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

in particular, quasiminimal degrees are nontotal. At least two other inde-
pendent constructions of nontotal cototal degrees appear in the literature:
Sanchis [San78], apparently unaware of Case’s conjecture, gave an explicit
construction of a cototal set that is not total. Aware of Case’s conjecture but
not Gutteridge’s example, Sorbi [Sor88] constructed a quasiminimal cototal
degree. Neither of these constructions explicitly produce a graph-cototal
degree.

In the abstract mentioned above, Pankratov [Pan00] claimed that there
is a graph-cototal Σ0

2-enumeration degree that forms a minimal pair with
every incomplete Π0

1-enumeration degree.2 The graph-cototal degrees were
studied more extensively by Solon [Sol05, Sol06].3 He proved that every
total enumeration degree above K contains the graph Gf of a total function
f ∶N→ N such that Gf is quasiminimal. He also showed that for every total
enumeration degree b, there is a graph-cototal enumeration degree a that is
quasiminimal over b. Finally, Solon proved that for every total enumeration
degree b above K, there is a graph-cototal quasiminimal enumeration degree a
such that a′ = b (see below for more about the enumeration jump). This
strengthens a result of McEvoy [McE85], who proved that the quasiminimal
enumeration degrees have all possible enumeration jumps. Note that all
three of Solon’s results can also be seen as generalizations of Gutteridge’s
construction of a quasiminimal graph-cototal degree.

7.2 The skip

Cototality is closely related to the other main subject: the skip operator.
Let {Γe}e∈ω be an effective list of all enumeration operators and let KA =

⊕e∈ω Γe(A) = {⟨e, x⟩ ∣ x ∈ Γe(A)}. Note that KA ≡e A. We define the skip
of A to be A◊ = KA. It is easy to see that the skip is degree invariant, so
it induces an operator on enumeration degrees. We use a◊ to denote the
skip of a. Note that the complements of elements of de(A) are enumeration
reducible to A◊; indeed, they are columns of A◊. In other words, de(A◊) is
the maximum possible degree of the complement of an element of de(A). One

2This result does not appear to be published and we do not know the proof that
Pankratov had in mind, but note that graph-cototality is free because every Σ0

2-enumeration
degree is graph-cototal.

3We note here a slight confusion in Solon’s papers between cototal sets and cototal
degrees, which does not, however, affect his main results.

7.2. THE SKIP 207

consequence of this characterization is the connection between the skip and
cototality:

Proposition 7.2.1. A set A ⊆ N has cototal degree if and only if A ≤e A◊.

Proof. If A has cototal degree, then there is B ≡e A such that B ≤e B.
So A ≡e B ≤e B ≤e A◊. For the other direction, assume that A ≤e A◊. So
KA ≡e A ≤e A◊ =KA, hence A has cototal degree. ◻ This connection is quite
useful; the separations we prove in Section 7.5 rely on our study of the skip
operator in Section 7.4.

In some ways, the skip is analogous to the jump operator in the Turing
degrees. For example, a standard diagonalization argument shows that
A◊ ≰e A. In Proposition 7.4.1, we restate the well-known fact that A ≤e B
if and only if A◊ ≤1 B◊, mirroring the jump in the Turing degrees. Finally,
in Theorem 7.4.3, we prove a skip inversion theorem analogous to Friedberg
jump inversion: If S ≥e K, then there is a set A such that A◊ ≡e S.

The biggest difference between the skip and the Turing jump is that it is
not always the case that A ≤e A◊ (because not all enumeration degrees are
cototal). In fact, as we will see in Section 7.4.2, there is a skip 2-cycle, i.e.,
a set A ⊆ N such that A = A◊◊. If we modify the skip to ensure that it is
increasing in the enumeration degrees, then we recover the definition of the
enumeration jump as introduced by Cooper4 [Coo84].

The enumeration jump of a set A ⊆ N is A′
e = KA ⊕KA ≡e A ⊕A◊. (We

will also use A′ to denote A′
e). So A has cototal degree if and only if A′

e ≡e A◊.
Of course, the enumeration jump is degree invariant and induces an operator
on the enumeration degrees; we use a′ for the jump of a. The definition of
the enumeration jump ensures that A <e A′

e, as we expect from a jump. On
the other hand, we lose two of the properties that the skip shares with the
Turing jump. The enumeration jump is always total, so it cannot possibly
map onto all enumeration degrees above 0′e. However, by Friedberg jump
inversion, it does map onto the total degrees above 0′e. We will also see, in
Proposition 7.4.20, that A′

e ≤1 B′
e does not necessarily imply that A ≤e B.

So neither the skip nor the enumeration jump is the perfect analogue of the
Turing jump; we believe that both have a role in the study of the enumeration
degrees.

4Cooper [Coo84] thanks his student McEvoy for helping provide the correct definition of
the enumeration jump operator. Sorbi recalled (in private communication) that Cooper’s
original “incorrect” definition was actually our definition of the skip operator.

208 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

7.3 Examples of cototal sets and degrees

7.3.1 Total degrees

For any set A ⊆ N, the set A ⊕A is clearly cototal. Therefore, every total
degree is cototal.

7.3.2 The complement of the graph of a total function

As we have noted, if f ∶N → N is total, then Gf , the complement of the
graph of f , is a cototal set. This is because ⟨n,m⟩ ∈ Gf if and only if there
is m′ ≠ m such that ⟨n,m′⟩ ∈ Gf . The class of graph-cototal enumeration
degrees turns out to lie strictly between the total degrees and the cototal
degrees. The hard part will be showing that there is a cototal degree that
is not graph-cototal. We will do that in Section 7.6. To see that every
total degree is graph-cototal, recall that each total degree contains the graph
of the characteristic function χA of some total set A; it also contains the
complement of the graph of χA. We already saw that GχA ≤e GχA . But now
since ⟨n,m⟩ ∈ GχA if and only if m ∈ {0, 1} and ⟨n, 1−m⟩ ∈ GχA , we have that
GχA ≡e GχA . The next result implies that there are nontotal graph-cototal
degrees.

Proposition 7.3.1. Every enumeration degree a ≤ 0′e is graph-cototal.

Proof. The enumeration degrees below 0′e consist entirely of Σ0
2-sets. So, fix

an enumeration degree a ≤ 0′e and a Σ0
2-set A ∈ a. We must show that there

is a set G ≡e A that is the complement of the graph G of a total function.
We can think of G as an infinite table such that each column contains all but
one element.

Fix a Σ0
2-approximation {As}s<ω to the set A. This is a uniformly com-

putable sequence of finite sets such that a ∈ A if and only if a ∈ As for all but
finitely many s. So, to every a ∈ A we can associate the first stage sa such
that a ∈ As for every s ≥ sa. We may assume that A0 = ∅. Consider the set

U = {⟨a, s⟩ ∣ s ≠ sa} = {⟨a, s⟩ ∣ a ∈ As−1 ∨ (∃t ≥ s)[a ∉ At]}.

Note that U is a c.e. table such that the a-th column of U contains all natural
numbers if a ∉ A and all but one natural number if a ∈ A. We combine U
and A to define the set G:

⟨a,m⟩ ∈ G if and only if m = 0 & a ∈ A ∨m > 0 & ⟨a,m − 1⟩ ∈ U.

7.3. EXAMPLES OF COTOTAL SETS AND DEGREES 209

The set G is clearly in the degree a and is the complement of the graph of
the total function g ∶ N → N such that g(a) = sa + 1 if a ∈ A and g(a) = 0 if
a ∉ A. ◻

It is worth pointing out that the argument above cannot be extended to
further levels of the arithmetical hierarchy. In Section 7.5, we will show that
there are Π0

2-sets that do not even have cototal enumeration degree. Another
way to see this is to use a theorem of Badillo and Harris [BH12] proving the
existence of a Π0

2-enumeration degree that contains only properly Π0
2-sets.

Such a degree must have skip equal to 0′e and hence cannot be cototal. On
the other hand, it is easy to see that every Π0

2-set has weakly cototal degree.
This is because every set A is enumeration equivalent to A⊕K, where K is
the halting set. So, if A is Π0

2 then A⊕K = A⊕K ≡e K ∈ 0′e. As for higher
levels of the arithmetical hierarchy, we will see in Section 7.5 that there are
∆0

3-sets that are not even weakly cototal.
Let G be the complement of the graph G of a total function. Notice

that the reduction Γ witnessing that G ≤e G described above has the fol-
lowing interesting feature: If x ∈ G, then there is a unique axiom in Γ that
enumerates x into Γ(G). We say that G reduces to G via a unique axiom
reduction. We will next see that this property characterizes the graph-cototal
enumeration degrees among all cototal enumeration degrees.

Proposition 7.3.2 (Unique Axiom Characterization). An enumeration de-
gree a is graph-cototal if and only if it contains a cototal set A that reduces
to A via a unique axiom reduction.

Proof. We have already seen that graph-cototal degrees have this property.
For the reverse direction, let a be an enumeration degree and let A ∈ a be a
cototal set that reduces to A via a unique axiom reduction Γ. We will, in this
case as well, construct an infinite table G, the first row of which will contain
only elements in columns corresponding to members of A. For the remaining
rows, we will use the c.e. set Γ. Note that if ⟨a,D⟩ ∈ Γ and a ∉ A, then D
must contain an element of A, and if a ∈ A, then there is a unique axiom
⟨a,D⟩ such that D ∩A = ∅. Intuitively, the idea is to assign the axioms of Γ
to the remaining undecided elements in each column and enumerate into G
an element in the a-th column unless it corresponds to the unique correct
axiom for a. We formalize this idea below.

Fix a computable function s that lists Γ without repetitions. Without
loss of generality, we may assume that Γ is infinite, as a finite unique axiom

210 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

reduction can enumerate only a finite set and we already know that 0e is
graph-cototal. We define the set G as follows:

⟨a,m⟩ ∈ G if and only if [m = 0 & a ∈ A]

or

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m > 0 &

⎡
⎢
⎢
⎢
⎢
⎣

s(m − 1) is not an axiom for a

or (s(m − 1) = ⟨a,D⟩ & D ∩A ≠ ∅)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The set G is clearly in the degree a and is the complement of the graph of
the total function g∶N→ N such that g(a) = d + 1, where d codes the unique
correct axiom for a if a ∈ A, and g(a) = 0 if a ∉ A. ◻

We can make this characterization even tighter by noting that the reduc-
tion Γ used to witness that G ≤e G is furthermore a singleton operator : every
axiom in Γ is of the form ⟨a,{b}⟩ where a ≠ b.

We will therefore be interested in finding examples of cototal enumeration
degrees that do not satisfy the Unique Axiom Characterization, as we would
like to separate the cototal degrees from the graph-cototal degrees. The next
example, which comes from graph theory, is motivated by this desire.

7.3.3 Complements of maximal independent sets

Recall that an (undirected) graph is a pair G = (V,E), where V is a set of
vertices and E is a set of unordered pairs of vertices, called the edge relation.

Definition 7.3.3. An independent set for a graph G = (V,E) is a set of
vertices S ⊆ V such that no pair of distinct vertices in S is connected by an
edge. An independent set is maximal if it has no proper independent superset.

In other words, an independent set S is maximal if and only if every
vertex v ∈ V is either in S or is connected by an edge to an element of S.
The maximal independent sets for the graph of the cube are illustrated in the
figure below, courtesy of David Eppstein and Wikipedia.

Consider an infinite graph G = (N,E) with a computable edge relation.
For example, we can think of the tree ω<ω as a computable graph on the

7.3. EXAMPLES OF COTOTAL SETS AND DEGREES 211

Figure 7.1: Maximal independent sets for the cube

natural numbers by fixing an effective coding of the finite sequences of natural
numbers and putting an edge between any non-root node and its immediate
predecessor. If S is a maximal independent set for G, then S can enumerate
its complement:

S = {v ∣ (∃u ∈ S)[{u, v} ∈ E]}.

It follows that complements of maximal independent sets in computable
graphs on N are cototal. Our main reason for considering this example is that,
in general, this reduction does not have the unique axiom property. This is
well illustrated by Figure 7.1: the maximal independent set in the middle of
the first row, for example, would enumerate each element of its complement
with three distinct correct axioms. Hence we might hope that complements of
maximal independent sets allow us to move beyond the graph-cototal degrees.
They do, and in fact, they are universal for the cototal enumeration degrees.

Theorem 7.3.4. Every cototal degree contains the complement of a maximal
independent set for ω<ω.

Proof. Fix a cototal set A and let A = Γ(A). We will build a set G ⊆ ω<ω

which will be the complement of a maximal independent set for ω<ω. In this
case, we will again assume that A is not c.e. and so Γ is an infinite c.e. set,
as there are easy examples of computable maximal independent sets, e.g.,
the set of all odd-length strings in ω<ω. So let g be a computable listing of Γ
without repetitions. We will further assume that no axiom in Γ is of the form
⟨a,∅⟩. We can easily replace Γ with an operator that fits this description by
replacing every such axiom by ⟨a,{b0}⟩, where b0 is some fixed member of A.
We will also fix a number a0 ∈ A.

212 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

To every node σ ∈ ω<ω other than the root ⟨⟩, we will computably assign
a finite set Dσ. The set G will then be defined as

G = {σ ∣Dσ ∩A ≠ ∅} ∪ {⟨⟩}.

The assignment is defined by induction:

1. If σ = n is a length-1 string then Dσ = {n}.

2. If σ = τn. Then we have two cases:

(a) If g(n) is not an axiom for any member of Dτ then we let Dσ = {a0}.

(b) If g(n) = ⟨a,D⟩ is an axiom for a ∈Dτ then we let Dσ =D.

From the definition, it follows that G ≤e A, and from part 1 in particular,
that also A ≤e G, as n ∈ G if and only if {n} ∩A ≠ ∅ if and only if n ∈ A. It
remains to be shown that G is a maximal independent set.

Fix τ, σ ∈ ω<ω such that σ = τn. We must show that either σ ∈ G or τ ∈ G
to ensure that G is independent. If τ ∉ G then τ ≠ ⟨⟩ and Dτ ⊆ A. If g(n) is
not an axiom for any element in Dτ , then Dσ = {a0} ⊆ A and hence σ ∈ G.
Otherwise g(n) = ⟨a,Dσ⟩ and a ∉ A. As A = Γ(A) it must be that Dσ ⊈ A
and so Dσ ∩A ≠ ∅, hence σ ∈ G.

Finally, we must show that every τ ∈ G has a neighbor σ in G to ensure
that G is maximal. If τ = ⟨⟩, then σ can be chosen as any of its length-1
neighbors corresponding to elements b ∈ A. Suppose that τ ≠ ⟨⟩ and let
a ∈Dτ ∩A. Then a ∈ Γ(A) and hence there is an axiom ⟨a,D⟩ ∈ Γ such that
D ⊆ A. Fix n such that ⟨a,D⟩ = g(n). We assign the set D to the string
σ = τn; it follows that σ ∉ G. ◻

Note, that the proof above holds even if we restrict ourselves to singleton
degrees, the degree structure induced by restricting reductions to singleton
operators. The singleton degree of a set that is cototal with respect to
singleton reduction contains the complement of a maximal independent set
for ω<ω.

7.3.4 Complements of maximal antichains in ω<ω

A closely related example comes from simply considering maximal antichains
in ω<ω. In this case, the partial ordering on finite sequences of natural numbers
is defined by σ ≤ τ if and only if σ ⪯ τ . An antichain is a subset of ω<ω such

7.3. EXAMPLES OF COTOTAL SETS AND DEGREES 213

that no two elements in it are comparable, and an antichain is maximal if it
cannot be extended to a proper superset that is also an antichain. Examples
of computable maximal antichains are easy to come up with: For any fixed n,
the set of all elements of ω<ω of length n is a maximal antichain.

If S is a maximal antichain, then S ≤e S as σ ∈ S if an only if there
is some τ ∈ S that is comparable with σ. As in the example above, this
reduction does not have the unique axiom property. Consider for example
the maximal antichain of all strings of length n. Then every string of length
m < n has infinitely many reasons to be enumerated into the complement of
this maximal antichain. Ethan McCarthy has shown that complements of
maximal antichains are also universal for the cototal enumeration degrees.

Theorem 7.3.5 (McCarthy [McC18]). Every cototal degree contains the
complement of a maximal antichain in ω<ω.

7.3.5 The set of words that appear in a minimal subshift

We will next give a more detailed account of our motivating examples, intro-
duced by Jeandel [Jea15]. The first one requires us to recall some definitions
from symbolic dynamics.

Definition 7.3.6. Let X ⊆ 2ω be closed in the usual topology on Cantor
space.

1. X is a subshift if X is closed under the shift operation, which removes
the first bit in a binary sequence, i.e., aα ∈X implies α ∈X.

2. If X is a subshift then the language of X is the set

LX = {σ ∈ 2<ω ∶ (∃α ∈X)[σ is a subword of α]}.

The set LX is called the set of forbidden words.

3. A subshift X is minimal if it has no nonempty proper subset that is also
a subshift. This is equivalent to saying that every σ ∈ LX is a subword
of every α ∈X.

Jeandel discovered an interesting relationship between the enumeration
degree of the language of a minimal subshift and the Turing degrees of the
elements of the subshift: The Turing degrees of elements in X are exactly the

214 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

Turing degrees that enumerate LX . This fact is particularly interesting if one
takes into account Selman’s characterization of enumeration reducibility. For
an arbitrary set A, let EA denote the set of all Turing degrees whose elements
compute enumerations of A. Selman [Sel71] proved that A ≤e B if and only if
EB ⊆ EA. Thus, the enumeration degree of the set LX can be characterized by
ELX , which turns out to be exactly the set of Turing degrees that compute
elements of the minimal subshift X. It is then natural to ask what additional
properties an enumeration degree must have in order to be the enumeration
degree of the language of a minimal subshift. The following theorem shows
that it must be cototal.

Theorem 7.3.7 (Jeandel [Jea15]). LX ≤e LX .

Ethan McCarthy has very recently shown that, in fact, cototality precisely
characterizes the enumeration degrees of languages of minimal subshifts.

Theorem 7.3.8 (McCarthy [McC18]). If A is cototal, then A ≡e LX for some
minimal subshift X.

7.3.6 The non-identity words in a finitely generated sim-
ple group

The second example from Jeandel [Jea15] is related to group theory.

Definition 7.3.9. Let G be a group.

1. G is finitely generated if there are finitely many elements in G, called
generators, such that every element in G can be expressed as a product
of these generators. (For convenience, we will assume that the set of
generators is closed under inverses.)

2. G is simple if its only normal subgroups are G and the trivial group.

3. The set of identity words of G is the set WG of all words (i.e., finite
sequences of generators) that represent the identity element.

4. A presentation of G is a pair ⟨F ∣ R⟩ such that F is a set of generators
and WG is the normal closure of R ⊂WG.

7.3. EXAMPLES OF COTOTAL SETS AND DEGREES 215

The word problem for a group G is the problem of deciding the set WG.
Kuznetsov [Kuz58] showed that if G is a finitely generated simple group with
a presentation ⟨F ∣ R⟩ such that R is computable, then it has a decidable word
problem. Jeandel considered the collection of all finitely generated simple
groups without restricting the complexity of their presentation. He showed
that the set of non-identity words in a finitely generated simple group is cototal.
This was also independently observed by Thomas and Williams [TW16].

Theorem 7.3.10 (Jeandel [Jea15]; Thomas and Williams [TW16]). If G is
a finitely generated simple group then WG ≤e WG.

This generalizes Kuznetsov’s result, as if a group G = ⟨F ∣ R⟩ has a
computable set of relations R, then WG is automatically c.e. The fact that
WG ≤e WG shows that WG is also c.e. and hence WG is computable.

7.3.7 Joins of nontrivial K-pairs
Our next example relates to a class of pairs of enumeration degrees that have
been recently shown to play an important role when it comes to the first-order
definability of relations on De.

Definition 7.3.11. A pairs of sets {A,B} form a K-pair if there is a c.e.
set W such that A ×B ⊆W and A ×B ⊆W . A K-pair is nontrivial if neither
of its components is c.e.

K-pairs were introduced by Kalimullin [Kal03]. He showed that they are
first-order definable in the structure of the enumeration degrees and used
them to give a first-order definition of the enumeration jump. Cai, Ganchev,
Lempp, Miller, and M. Soskova [CGL+16] used K-pairs to define the class of
total enumeration degrees. It is therefore reasonable to always keep an eye
on the class of K-pairs as it might hold the key to the first-order definability
of relations that we are considering here as well: cototal enumeration degrees
and the skip operator. In the next section, K-pairs will give us a wide variety
of examples of sets that do not have cototal degree. When one considers the
join A⊕B, however, of a nontrivial K-pair {A,B}, one always gets a cototal
set. To see this, we will need to review an important property of K-pairs.

Proposition 7.3.12 (Kalimullin [Kal03]). If {A,B} is a nontrivial K-pair
then

216 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

• A ≤e B and B ≤e A;

• B ≤e A⊕K and A ≤e B ⊕K.

It follows from the first part that if {A,B} forms a nontrivial K-pair, then
A⊕B ≤e B ⊕A ≡e A⊕B.

We would like to point out that this example generalizes the fact that
every total degree is cototal, as by Cai, Ganchev, Lempp, Miller, and
M. Soskova [CGL+16], the total degrees are exactly the ones that contain the
join of a particular kind of a K-pair. The joins of nontrivial K-pairs therefore
form a first-order definable class of cototal enumeration degrees that contains
the total enumeration degrees. Unfortunately, they do not contain all cototal
degrees. Ahmad [Ahm89] showed that there are nonsplitting Σ0

2-enumeration
degrees, i.e. degrees that are not the least upper bound of any pair of strictly
smaller degrees. So, even though, as we have already seen, all Σ0

2-enumeration
degrees are cototal, the nonsplitting ones cannot be joins of nontrivial K-pairs.

7.3.8 Continuous degrees

Motivated by a question of Pour-El and Lempp from computable analysis,
Miller [Mil04] introduced a degree structure that captures the complexity
of elements of computable metric spaces, such as C[0,1] and [0,1]ω. This
structure naturally embeds into the enumeration degrees, and the range of
this embedding is strictly between the class of total enumeration degrees and
the class of all enumeration degrees.

As an example, consider the metric space C[0,1] of continuous functions
on the unit interval with the standard metric

d(f, g) = max
x∈[0,1]

∣f(x) − g(x)∣.

A computable presentation of a metric space M consists of a fixed dense
sequence QM = {qn}n<ω on which the metric is computable as a function on
indices. For a computable presentation of C[0,1] we can fix, for example,
a reasonable enumeration of the polygonal functions having segments with
rational endpoints. A name nf for a continuous function f is a code (say, as
an element of ωω) that gives a way to approximate f . Specifically, a name nf
should code a function taking a rational number ε > 0 and producing an
index nf(ε) such that d(f, qnf (ε)) < ε. For f, g ∈ C[0,1], we say that f is
reducible to g if every name for g computes a name for f . In the same way, we

7.3. EXAMPLES OF COTOTAL SETS AND DEGREES 217

can compare the complexity of elements from arbitrary metric spaces. This
reducibility induces a degree structure, the continuous degrees. It turns out
that every continuous degree contains an element of C[0,1].

In order to understand the embedding of the continuous degrees into the
enumeration degrees, it is easier to focus on another computable metric space:
The Hilbert cube is [0,1]ω along with the metric

d(α,β) = ∑
n∈ω

2−n∣α(n) − β(n)∣.

A dense set witnessing that [0, 1]ω is computable is, for example, a reasonable
enumeration of the rational sequences with finite support. As was the case
with C[0,1], every continuous degree contains an element of [0,1]ω.

Miller gave a way to assign to a sequence α ∈ [0,1]ω a set Aα such that
EAα (defined in Section 7.3.5) is the set of all Turing degrees that compute
names of α. This induces an embedding of the continuous degrees into the
enumeration degrees.

Definition 7.3.13 (Miller [Mil04]). For α ∈ [0,1]ω, let

Aα =⊕
i<ω

({q ∈ Q ∣ q <Q α(i)}⊕ {q ∈ Q ∣ q >Q α(i)}).

It is not hard to see that Aα has the desired property: Computing a name
for α is exactly as hard as enumerating Aα. We say that the enumeration
degree of Aα is continuous. By showing that there is a nontotal continuous
enumeration degree, Miller proved that there are continuous functions that do
not have a name of least Turing degree, which answered Pour-El and Lempp’s
question.

Note that if α does not have any rational entries, then Aα is a total set.
If, on the other hand, α does have rational entries, then every component
of Aα is nonuniformly equivalent to a total set. The existence of nontotal
continuous enumeration degrees shows that this nonuniformity is significant.
We are nevertheless able to show that all continuous degrees are cototal.

Proposition 7.3.14. Every continuous degree is cototal.

Proof. Let α ∈ [0,1]ω and Aα = ⊕i<ω({q ∈ Q ∣ q <Q α(i)} ⊕ {q ∈ Q ∣ q >Q
α(i)}). By rearranging the odd and even elements in every column of Aα, we
obtain the set Bα ≡e Aα defined by

Bα =⊕
i<ω

({q ∈ Q ∣ q ≤Q α(i)}⊕ {q ∈ Q ∣ q ≥Q α(i)}).

218 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

It is now easy to see that q is a member of the i-th even column of Aα if
and only if there is an r >Q q such that r is in the i-th even column of Bα.
Similarly, q is a member of the i-th odd column of Aα if and only if there
is an r <Q q such that r is in the i-th odd column of Bα. It follows that
Aα ≤e Bα ≡e Aα. ◻

7.3.9 Sets with good approximations have cototal de-
gree

Lachlan and Shore [LS92] introduced the following general notion of an
approximation to a set.

Definition 7.3.15. Let A be a set of natural numbers. A uniformly com-
putable sequence of finite sets {As}s<ω (given by canonical indices) is a good
approximation to A if

• for every n, there is a stage s such that A ↾ n ⊆ As ⊆ A; and

• for every n, there is a stage s such that for every t > s, if At ⊆ A then
A ↾ n ⊆ At.

This definition can be seen as a generalization of Cooper’s notion of a
Σ0

2-approximation with infinitely many thin stages, used to show the density of
the Σ0

2-enumeration degrees [Coo84]. Lachlan and Shore [LS92] introduced the
hierarchy of the n-c.e.a. sets. A set is 1-c.e.a. if it is c.e., and (n+1)-c.e.a. if it is
the join of an n-c.e.a. set X and a set Y c.e. in X. It is not difficult to see that
the enumeration degrees of the 2-c.e.a. sets are exactly the Σ0

2-enumeration
degrees. Lachlan and Shore proved that every set that is n-c.e.a. has a good
approximation and then showed that the enumeration degrees of the n-c.e.a.
sets are dense. Harris [Har10] proved that sets that have good approximations
always have cototal enumeration degrees. We outline his proof below for
completeness.

Proposition 7.3.16 (Harris [Har10, Proposition 4.1]). If A has a good
approximation, then KA ≤e KA.

Proof.
Let {As}s<ω be a good approximation to A. Consider the set C defined by

C = {⟨x, s⟩ ∣ (∃t > s)[At ⊆ A & x ∉ At]}.

7.4. THE SKIP 219

It follows from the definition that C ≤e A. Using the fact that KA =

⊕e<ω Γe(A) is a uniform upper bound of the set of complements of all sets
that are enumeration reducible to A, we obtain that C ≤e KA. Now, let us
take a closer look at C:

C = {⟨x, s⟩ ∣ (∀t > s)[At ⊆ A→ x ∈ At]}.

Using the second property of good approximations, notice that x ∈ A if and
only if there is a stage s such that ⟨x, s⟩ ∈ C. It follows that A ≤e C. This
now gives us that KA ≡e A ≤e C ≤e KA. ◻

In particular, we obtain that the enumeration degrees of n-c.e.a. sets are
cototal.

7.4 The skip
In the previous section, we saw many examples of cototal sets and enumeration
degrees. In this section, we study the skip operator, in part to provide a wide
variety of examples of degrees that are not cototal. Recall that the skip of a
set A ⊆ N is A◊ = KA. As we saw in the introduction, the skip gives us an
easy way to determine whether or not a degree is cototal. For the reader’s
convenience, we restate that result:

Proposition 7.2.1. A set A ⊆ N has cototal degree if and only if A ≤e A◊.

In addition to being a tool in our study of cototality, the skip is a natural
operator in its own right. As we discussed in the introduction, the enumeration
jump fails to have some of the nice properties of the Turing jump. For example,
it is well-known that A ≤T B if and only if KA ≤1 KB, where KA denotes the
halting set relative to A. The analogous property does not hold, in general, for
the enumeration jump. It is true that A ≤e B implies KA ⊕KA ≤1 KB ⊕KB,
but the reverse implication can fail; we will see in Proposition 7.4.20. The
skip, on the other hand, gives us an embedding of the enumeration degrees
into the 1-degrees.

Proposition 7.4.1. A ≤e B if and only if A◊ ≤1 B◊.

Proof. If A ≤e B, then KA ≤e B and hence KA is a fixed column of
KB = ⊕e<ω Γe(B), where {Γe}e∈ω is the standard listing of all enumeration
operators. It follows that KA is a fixed column in KB and hence KA ≤1 KB.

If KA ≤1 KB then KA ≤1 KB and hence A ≡e KA ≤e KB ≡e B. ◻
This shows that we can define the skip operator on degrees.

220 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

Definition 7.4.2. The skip of the enumeration degree a is a◊ = de(A◊) for
any member A ∈ a.

7.4.1 Skip inversion

It follows from Proposition 7.2.1 that an enumeration degree a is cototal if
and only if a ≤ a◊, if and only if a◊ = a′. The definition of the enumeration
jump operator restricts its range to the total enumeration degrees and by
monotonicity to the total enumeration degrees in the cone above 0′e. By
transferring the Friedberg Jump Inversion Theorem through the standard
embedding into the enumeration degrees, we see that every total enumeration
degree above 0′e is in the range of the jump operator. The range of the skip
operator is also restricted by monotonicity to enumeration degrees above
0◊e = 0′e. We show that this is the only restriction on the range of the skip
operator, thereby providing a further analogy between the skip and the Turing
jump. Recall that K, the complement of the halting set, is a representative
of the degree 0′e.

Theorem 7.4.3. For any set S ≥e K, there is a set A such that A◊ ≡e S. (In
fact, we also have S ≡e A ≡e A⊕K and S ≤e A⊕K.)

Proof. Given a set S ≥e K, we build a set A such that S ≡e A ≤e A◊ ≤e A⊕K.
For a set X ⊆ N and a natural number e, let X[e] = {⟨e, x⟩∶x ∈ N} ∩X. We
will build A meeting two types of requirements:

Re∶ e ∈ S ⇐⇒ A[e] ≠ N[e],

Pe∶ “force e into KA subject to higher-priority restraints” .

The Re-requirements ensure that S ≤e A, as e ∈ S if and only if there is an
x ∈ N such that ⟨e, x⟩ ∈ A. The basic strategy for Re is quite simple: If e ∉ S
then enumerate all of N[e] into A. Otherwise, withhold one number ae ∈ N[e]

from A and enumerate N[e] ∖ {ae} into A.
The Pe-requirements will let us prove that A◊ can be enumerated from K

and S. The basic strategy for Pe is to try to force e into KA by adding a
finite set to the current version of A so that e ∉KA can only be caused by the
finitely many numbers ai that higher priority R-requirements use for coding
the values of S. We will use the 1-equivalent form of the set KA, namely,
{e ∣ e ∈ Γe(A)}, where {Γe}e∈ω is our fixed listing of all enumeration operators.

We now proceed in stages as follows:

7.4. THE SKIP 221

Stage 0: Set ae = ⟨e,0⟩ for all e ∈ ω, and set A0 = ∅.
Stage s = e + 1: For each subset D ⊆ {i∶ i < e}, check if there are a finite

subset FD ⊆ N∖{ai∶0 ≤ i < e} and a stage t such that e ∈ Γe,t(FD ∪{ai∶ i ∈D}).
If so, take FD from the least such pair; otherwise, set FD = ∅. Set

F =⋃
D⊆{i∶i<e}

FD and

G = {z ∣ z is the least member of N[i] ∖ (As ∪ F ∪ {ai}) for some i < e}.

Enumerate F ∪G into As+1. For each j ≥ e with aj ∈ F , we reset aj ∈ ω[j]

to be a fresh number outside F .
Denote the resulting set after ω many stages by Aω. Finally, let

A = Aω ∪ {ae∶ e ∉ S}.

In order to make the proof more compact, we introduce the following
definition and prove a lemma about it:

Definition 7.4.4. For sets A,B ⊆ N, we say A ≤ e′ B if there is a “K-c.e.
enumeration operator reducing A to B”, i.e., a K-c.e. set Φ such that for all x,
x ∈ A if and only if there is a finite set F ⊆ B (given by a canonical index)
with ⟨x,F ⟩ ∈ Φ.

Lemma 7.4.5. For any sets A,B ⊆ N, we have A ≤ e′ B if and only if
A ≤e B ⊕K.

Proof. If A ≤ e′ B via a K-c.e. operator Φ = WK , say, then each axiom
⟨x,F ⟩ ∈ Φ can be rewritten into axioms ⟨x,F,P,N⟩ where ⟨x,F ⟩ ∈ WK via
computations requiring P ⊆ K and N ⊆ K, and these axioms ⟨x,F,P,N⟩
can be combined into a single c.e. enumeration operator Ψ witnessing A ≤e

B ⊕K ⊕K ≡e B ⊕K.
Conversely, suppose A ≤e B ⊕K ⊕K(≡e B ⊕K) via a c.e. enumeration op-

erator Ψ, then we can define a K-c.e. enumeration operator Φ by enumerating
⟨x,F ⟩ into Φ for any ⟨x,F ⊕ P ⊕N⟩ ∈ Ψ with P ⊆K and N ⊆K. ◻

From the construction and the definition of A, it is now clear that all
Re-requirements are satisfied, and so K ≤e S ≤e A ≤e A◊.

We next observe that
{ae}e∈ω ≤T K. (7.4.1)

Using (7.4.1) and that e ∈ S if and only if ae ∉ A, it is now clear that both
S ≤ e′ A and A ≤ e′ S, and so by Lemma 7.4.5, we have both S ≤e A⊕K and

222 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

A ≤e S ⊕K ≡e S. The last inequality combined with the already established
S ≤e A gives us that A ≡e S.

Finally, using (7.4.1) and the action of the Pe-requirements, we also have
A◊ ≤ e′ A. This is because K can figure out for which D we found an FD at
stage s = e+ 1 such that e ∈ Γe(FD ∪ {ai∶ i ∈D}). Then e ∈ A◊ if and only if A
intersects {ai∶ i ∈ D} for every such D. So again by Lemma 7.4.5, we have
that A◊ ≤e A⊕K ≡e S. ◻

Notice that the proof of Theorem 7.4.3 directly gives us the following
result.

Theorem 7.4.6. Let n ≥ 2. For any Π0
n-set S ≥e K, there is a Σ0

n-set A such
that A◊ ≡e S. Furthermore, for any Σ0

n-set S ≥e K, there is a Π0
n-set A such

that A◊ ≡e S.

Proof. This follows directly from the proof of Theorem 7.4.3, noting
that A as built there is equal to Aω ∪ {⟨e, k⟩∶ e ∉ S}, that Aω is ∆0

2, and that
{⟨e, k⟩∶ e ∉ S} is of the same complexity as the complement of S. ◻

Definition 7.4.7. An enumeration degree a is quasiminimal if it is nonzero
and the only total enumeration degree bounded by a is 0e.

McEvoy [McE85] proved that the enumeration jump restricted to the
quasiminimal degrees has the same range as the unrestricted jump operator.
We show that the skip has the same property. Actually, we prove with Soskov
[SS13] the same property for the degree spectrum: every element of the jump
spectrum is a jump of a quasi minimal degree with respect to the spectrum
and co-spectrum.

Corollary 7.4.8. For any set S ≥e K, there is a set A of quasiminimal degree
such that A◊ ≡e S.

Proof. We modify the construction in Theorem 7.4.3 slightly. We add
additional requirements Qe that ensure that A is quasiminimal:

Re∶ e ∈ S ⇐⇒ A[e] ≠ N[e],

Pe∶ “force e into KA subject to higher-priority restraints”,

Qe∶Γe(A) =X ⊕X ⇒X is computable.

At stage s = e + 1, after we have defined the set F and G for the sake of
the requirement Pe, we will handle the requirement Qe. The procedure is

7.4. THE SKIP 223

similar. For any subset D ⊆ {i∶ i < e}, check if there are a finite subset
ED ⊆ N ∖ {ai∶0 ≤ i < e}, a number x, and a stage t such that {2x,2x + 1} ⊆
Γe,t({ai∶ i ∈D} ∪ED); for any such D, choose the set ED from the least such
triple; if there is no such triple, set ED = ∅. Set

E =⋃
D⊆{i∶i<e}

ED.

Enumerate F ∪G∪E into As+1 and then redefine the values of aj appropriately:
If j ≥ e and aj ∈ F ∪E, we reset aj ∈ N[j] to be a fresh number outside F ∪E.

If Γe(A) turns out to be a total set X ⊕X, then we can compute X: Let
A∗ = (N[<e] ∩A) ∪N[≥e]. As every column of A is finitely different from N, it
follows that A∗ is a computable set and A ⊆ A∗. Now, x ∈ X if and only if
2x ∈ Γe(A∗) and x ∉X if and only if 2x + 1 ∈ Γe(A∗). ◻

7.4.2 Further properties of the skip operator and exam-
ples

We will now investigate the possible behavior of the iterated skip operator.

Definition 7.4.9. Fix A ⊆ N. We inductively define A⟨n⟩, the n-th skip of A.

• A⟨0⟩ = A,

• A⟨n+1⟩ = (A⟨n⟩)◊.

The n-th skip of de(A) is de(A)⟨n⟩ = de(A⟨n⟩).

If a is a cototal enumeration degree, then every iteration of the skip of a
agrees with the corresponding iteration of the jump of a, i.e., for all n < ω,
we have that a⟨n⟩ = a(n). Theorem 7.4.3 proves that there are non-cototal
enumeration degrees, e.g., the skip invert of a nontotal enumeration degree.
It is natural to ask what we can say in general about the sequence {a⟨n⟩}n∈ω.
One immediate observation is that even though the skip of A need not be
above A, its double skip always is: For any set A, we know that A ≤1 A◊.
Applying this twice, we have A ≤1 A◊ ≤1 A◊◊, so a fortiori A ≤e A◊◊. It follows
that a⟨n⟩ ≤ a⟨n+2⟩ for all n. In addition, by monotonicity, we have that for
every n, 0(n)

e ≤ a⟨n⟩. If a⟨n⟩ is not cototal for every natural number n, then
we have a form of zig-zag behavior of the skip, illustrated in Figure 7.2. We
will search for examples of degrees whose skips have this general behavior.

224 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

0e

a

0′e

a◊

0′′e

a◊◊

0′′′e

a⟨3⟩⋮

a

a◊

a◊◊

a⟨3⟩

Figure 7.2: Iterated skips of a degree: the zig-zag

Skips of generic sets

We will start by investigating the skip for the class of enumeration degrees
of 1-generic sets. Definition 2.3.8 defines a relativized form of 1-genericity,
suitable for the context of the enumeration degrees. Let me remind that
we use the notation “relative to ⟨X⟩” to denote “relative to the enumeration
degree of X”.

The set G is 1-generic relative to ⟨X⟩ if and only if for every S ⊆ 2<ω such
that S ≤e X:

(∃σ ⊆ G)[σ ∈ S ∨ (∀τ ⊇ σ)[τ ∉ S]].

If X = ∅, then we call G simply 1-generic and if X =K, then G is 2-generic.
From (Definition 2.3.10) we know that the degree a is a strong quasiminimal

cover of b if b < a and every total enumeration degree x bounded by a is
below b.

We proved in Proposition 2.3.11 the following properties of 1-generic
relative to ⟨X⟩ set G:

1. de(G⊕X) is a strong quasiminimal cover of de(X).

2. G is 1-generic relative to ⟨X⟩.

We know from Corollary 2.2.8 that the Turing jump of a 1-generic set has
a nice characterization: KG ≡T G⊕K, or, in other words, G is generalized low.
This property relativizes: If G is 1-generic relative X, then KG⊕X ≡T G⊕KX .
A similar property is true of the skip of a 1-generic set G relative to ⟨X⟩.

7.4. THE SKIP 225

Proposition 7.4.10. If G is 1-generic relative to ⟨X⟩, then (G ⊕X)◊ ≡e

G⊕X◊.

Proof. Note that we always have G ⊕X◊ ≤e (G ⊕X)◊, no matter what
the sets G and X are, simply from the monotonicity of the skip operator.
The nontrivial reduction is the reverse one. Suppose ⟨e, x⟩ ∈ (G⊕X)◊, i.e.,
x ∉ Γe(G⊕X). Consider the set

De,x = {σ ∈ 2<ω ∣ x ∈ Γe(σ ⊕X)}.

This set is enumeration reducible to X uniformly in e and x, and so there
must be a finite part σ ⊆ G such that no extension of σ is in De,x. The set

Ee,x = {σ ∣ (∃τ ⊇ σ)[τ ∈De,x]}

is also uniformly enumeration reducible to X, and so its complement is
uniformly enumeration reducible to X◊. We claim that:

⟨e, x⟩ ∈ (G⊕X)◊ if and only if (∃σ)[{n ∣ σ(n) = 0} ⊆ G & σ ∈ Ee,x].

The implication from left to right has already been established: If ⟨e, x⟩ ∈
(G⊕X)◊, then the initial segment of G with no extension in De,x witnesses
that the statement on the right is true. So let ⟨e, x⟩ be such that there is
a σ with {n ∣ σ(n) = 0} ⊆ G and such that σ ∈ Ee,x. Towards a contradiction,
suppose that ⟨e, x⟩ ∉ (G⊕X)◊, i.e., x ∈ Γe(G⊕X). Let τ ≺ G be such that
x ∈ Γe(τ ⊕X) and define σ∗ of length max(∣σ∣, ∣τ ∣) as follows

σ∗(n) = {
σ(n) if n < ∣σ∣,
τ(n) if ∣σ∣ ≤ n < ∣τ ∣.

Then σ∗ is an extension of σ. Furthermore, if τ(n) = 1 then σ∗(n) = 1. Indeed,
this is obvious for n ≥ ∣σ∣, and for n < ∣σ∣, this follows from the fact that
{n ∣ σ(n) = 0} ⊆ G and τ ⊆ G. Thus σ∗ ∈De,x, contradicting our assumption
that σ has no extension in De,x. ◻

Now, we can easily give an example of a set G whose iterated skips form
a zig-zag. Consider G to be a set that is arithmetically generic, i.e., G is
1-generic relative to ⟨∅(n)⟩ for every natural number n. Note that G has the
same property. Then by induction using the characterization above we can
show that for all n < ω:

• If n is odd then G⟨n⟩ ≡e G⊕∅(n) and (G)⟨n⟩ ≡e G⊕∅(n).

226 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

• If n is even then G⟨n⟩ ≡e G⊕∅(n) and (G)⟨n⟩ ≡e G⊕∅(n).

Furthermore, all iterates of the skip for both setsG andG are not total, as their
degrees are quasiminimal covers of the corresponding iterate of the jump of 0e.
It follows that they also do not have cototal degree, as by Proposition 7.2.1
sets H of cototal degree have total skips: KH ≡e H ≤e H◊ =KH . This gives an
example of a double zig-zag as in Figure 7.3. It is worth noting that only the
reductions implied by the diagram occur. For example, G ≰e G⟨3⟩; otherwise
G⟨3⟩ ≡e G⊕G⟨3⟩ ≡e G⊕G⊕∅⟨3⟩ would be total.

0e

g g

0′e

g◊g◊

0′′e

g◊◊ g◊◊

0′′′e

g⟨3⟩g⟨3⟩ ⋮

g

g◊

g◊◊

g⟨3⟩

g

g◊

g◊◊

g⟨3⟩

Figure 7.3: The iterated skips of the degrees of an arithmetically generic set
and its complement: double zig-zag

Skips of nontrivial K-pairs.

Kalimullin [Kal03] relativized the notion of a K-pair in a way similar to how
we relativized the notion of 1-genericity.

Definition 7.4.11. A pair of sets of natural numbers {A,B} forms a K-pair
relative to ⟨X⟩ if there is a set W ≤e X such that A ×B ⊆W and A ×B ⊆W .
The pair {A,B} is a nontrivial K-pair relative to ⟨X⟩ if, in addition, A ≰e X
and B ≰e X.

Note that if {A,B} forms a nontrivial K-pair, then {A,B} forms a non-
trivial K-pair relative to every ⟨X⟩ such that A,B ≰e X. We summarize some
properties of relativized K-pairs below.

7.4. THE SKIP 227

Proposition 7.4.12 (Kalimullin [Kal03]). Let A,B,X ⊆ N and suppose that
{A,B} forms a nontrivial K-pair relative to ⟨X⟩.

1. If C ≤e B then {A,C} forms a K-pair relative to ⟨X⟩.

2. A ≤e B ⊕X.

3. A ≤e B ⊕X◊.

4. de(A⊕X) and de(B ⊕X) are strong quasiminimal covers of de(X).

5. For every Z ⊆ N, the degrees de(A⊕X ⊕Z) and de(B ⊕X ⊕Z) have a
greatest lower bound, and it is de(X ⊕Z).

Note that items (1), (2) and (3) are symmetrically true if we swap A
and B.

The skip of a nontrivial K-pair relative to ⟨X⟩ has the following properties:

Proposition 7.4.13. If {A,B} forms a nontrivial K-pair relative to ⟨X⟩,
then

(A⊕X)◊ ≤e B ⊕X◊ and (B ⊕X)◊ ≤e A⊕X◊.

The oracle set X is of cototal degree if and only if for every nontrivial K-pair
{A,B} relative to ⟨X⟩,

(A⊕X)◊ ≡e B ⊕X◊ and (B ⊕X)◊ ≡e A⊕X◊.

Proof. If {A,B} forms a nontrivial K-pair relative to ⟨X⟩, then {A⊕X,B}
also forms a nontrivial K-pair relative to ⟨X⟩: Replace the witnessing set W
by

W ∗ = {⟨2a, b⟩ ∣ ⟨a, b⟩ ∈W} ∪ {⟨2a + 1, b⟩ ∣ a ∈X}.

As KA⊕X ≡e A ⊕ X, it follows that {KA⊕X ,B} forms a nontrivial K-pair
relative to ⟨X⟩, and so

(A⊕X)◊ =KA⊕X ≤e B ⊕X◊.

On the other hand, if X is of cototal degree, then using the monotonicity of
the skip operator we get that B ≤e A⊕X ≤e A◊⊕X◊ ≤e (A⊕X)◊, and hence
B ⊕X◊ ≤e (A⊕X)◊.

Finally, consider the oracle set X and let {A,B} be a nontrivial (unrela-
tivized) K-pair such that A,B ≰e X. Note that both {A,B} and {A⊕X,B ⊕

228 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

X} are nontrivial K-pairs relative to ⟨X⟩. If the characterization of the skip
operator holds for both pairs, then we have that

(A⊕X)◊ ≡e B ⊕X◊ ≡e B ⊕X ⊕X◊, and
(B ⊕X)◊ ≡e A⊕X◊ ≡e A⊕X ⊕X◊.

Now, using the last property from Proposition 7.4.12, we have that

de(X
◊) = de(A⊕X◊) ∧ de(B ⊕X◊) =

de(A⊕X ⊕X◊) ∧ de(B ⊕X ⊕X◊) = de(X ⊕X◊).

It follows that X is of cototal degree. ◻

If {A,B} is a nontrivial K-pair and both A and B are not arithmetical,
then {A,B} is a nontrivial K-pair relative to ⟨∅(n)⟩ for every natural num-
ber n. As every set ∅(n) is of (co)total enumeration degree, it follows by
Proposition 7.4.13 that the iterated skips of A and B also form a double
zigzag: For all n < ω,

• if n is odd then A⟨n⟩ ≡e B ⊕∅(n) and B⟨n⟩ ≡e A⊕∅(n), and

• if n is even then A⟨n⟩ ≡e A⊕∅(n) and B⟨n⟩ ≡e B ⊕∅(n).

Furthermore, by Proposition 7.4.12, for every natural number n, {de(A)⟨n⟩,

de(B)⟨n⟩} forms a minimal pair of quasiminimal degrees above 0
(n)
e .

A pair of enumeration degrees {a,b} forms a K-pair (relative to x) if there
are representatives A ∈ a and B ∈ b that form a K-pair (relative to x). We
will use the characterization of the skips of K-pairs along with the following
theorem of Ganchev and Sorbi [GS16] to give an example of degrees whose
iterated skips behave quite differently.

Theorem 7.4.14 (Ganchev, Sorbi [GS16]). For every enumeration degree
x > 0e, there is a degree a ≤ x such that a is half of a nontrivial K-pair and
such that a′ = x′.

One of the main ingredients in the proof of the theorem above is the
following observation, which follows easily from Proposition 7.4.13. If {A,B}
forms a nontrivial K-pair, then A and B have equivalent enumeration jumps:

A′
e ≡e A⊕A◊ ≡e A⊕B ⊕∅′ ≡e B ⊕B◊ ≡e A

′
e.

7.4. THE SKIP 229

Now consider a nonzero enumeration degree x ≤e 0′e, and let a ≤ x be half
of a nontrivial K-pair such that a′ = x′. Let b be such that {a,b} forms a
nontrivial K-pair. Then b◊ = a ∨ 0′e = 0′e and b′ = a′ = x′. In particular, if
we take x to be high, i.e., such that x′ = 0′′e , then we have an example of an
enumeration degree such that all iterations of its skip are total enumeration
degrees, but mismatch its iterations of the jump by one iteration:

b◊ < b′ = b◊◊ < b′′ = b⟨3⟩ < ⋅ ⋅ ⋅ < b(n) = b⟨n+1⟩ < ⋯.

If we take x to be an intermediate degree, i.e., a degree such that for all n,
0
(n)
e < x(n) < 0

(n+1)
e then we get the following:

b◊ < b′ < b◊◊ < b′′ < b⟨3⟩ < ⋅ ⋅ ⋅ < b(n) < b⟨n+1⟩ < ⋯.

We end this discussion with some thoughts about the definability of the
skip operator. Kalimullin [Kal03] proved that the relation “{a,b} forms a
K-pair relative to x” is first-order definable with parameter x. Using this
result, he showed that the enumeration jump operator is first-order definable.
Combining these results with the characterization of the skip operator for
nontrivial K-pairs, we immediately obtain the following result.

Corollary 7.4.15. The relation

SK = {(a,a◊) ∣ a is half of a nontrivial K-pair }

is first-order definable in De.

Proof. If a is half of a nontrivial pair, then a◊ = 0′e ∨ b where b is some
nonzero degree that forms a K-pair with a. ◻

It remains an open question whether or not the skip operator is first-order
definable in De.

A skip 2-cycle

As seen above, the skip can exhibit a form of zig-zag behavior. We now show
that there is another extreme case that could occur: The double skip a◊◊ of
an enumeration degree a could be equal to a itself. Perhaps surprisingly, this
degree is not constructed in a way that is common in computability theory.
Instead, we use the following theorem due to Knaster and Tarski.

230 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

Theorem 7.4.16 (Knaster–Tarski Fixed Point Theorem). Let L be a com-
plete lattice and let f ∶L→ L be monotone, i.e., for all x, y ∈ L, we have that
x ≤ y implies that f(x) ≤ f(y). Then f has a fixed point. In fact, the fixed
points of f form a complete lattice.

We apply the Knaster–Tarski theorem to a function on 2ω, which we view
as the power set lattice of N, ordered by subset inclusion.

Theorem 7.4.17. There is a set A such that A◊◊ = A.

Proof. Let f ∶2ω → 2ω be the double skip operator, i.e., f(A) = A◊◊.
Note that if A ⊆ B, then KA ⊆ KB, so A◊ ⊇ B◊. Applied twice, we obtain
A◊◊ ⊆ B◊◊, so f is monotone. Hence, by the Knaster–Tarski Fixed Point
Theorem, there is an A such that A◊◊ = A. ◻

Note that we do not just have that A and A◊◊ are enumeration equivalent,
but they are equal as sets. However, we will mainly be interested in the
fact that the enumeration degree a of A satisfies a◊◊ = a. If we have such a
degree a, then we will say that a and a◊ form a skip 2-cycle.

As we show next, skip 2-cycles are computationally very complicated;
namely, they compute all hyperarithmetic sets.

Proposition 7.4.18. Let a and a◊ form a skip 2-cycle. Then a ≥ b for every
total hyperarithmetic degree b.

Proof. Let A be a set of degree a. We build an enumeration operator Φ
such that Φ(A,p) = H(p)⊕H(p) for every ordinal notation p, where H(p)
we defined in Chapter 2 (see also [Sac90, Chapter 2]). By the Recursion
Theorem, we may assume that we know an index for Φ. We let Φ(A,1) =

H(1)⊕H(1) = ∅⊕N.
Now assume that ∣p∣ is a successor, say, p = 2q and so ∣p∣ = ∣q∣ + 1. Note

that if C ≥e D ⊕D, then C◊ ≥e KD ⊕KD uniformly in an index for the first
reduction. Furthermore, we inductively assume that Φ(A, q) =H(q)⊕H(q).
Combining these facts,

A ≡e A
◊◊ ≥e H(22q)⊕H(22q) ≥e H(p)⊕H(p)

uniformly, so let Φ(A,p) =H(p)⊕H(p).
Finally, assume that ∣p∣ is a limit ordinal, say, p = 3 ⋅ 5e and so ∣p∣ is

the limit of ∣q0∣, ∣q1∣, . . . , where qi = ϕe(i). Using the inductive assumption

7.5. SEPARATING COTOTALITY PROPERTIES 231

that Φ(A, qi) = H(qi) ⊕ H(qi), we can set Φ(A,p) = H(p) ⊕ H(p), where
H(p) =⊕i∈ωH(qi). ◻

Given the fact that we have shown the existence of a skip 2-cycle, it is
only natural to consider whether (proper) skip n-cycles exist for any other
natural number n ≥ 1. This turns out to be false.

Proposition 7.4.19. Let n ∈ ω be nonzero such that a⟨n⟩ = a. Then a◊◊ = a.

Proof. First, observe that a⟨2n⟩ = a⟨n⟩ = a, so without loss of generality we
may assume that n is even. By monotonicity of the double skip, we then have
that

a ≤ a⟨2⟩ ≤ ⋅ ⋅ ⋅ ≤ a⟨n−2⟩ ≤ a⟨n⟩ = a,

so
a = a⟨2⟩ = ⋅ ⋅ ⋅ = a⟨n−2⟩ = a⟨n⟩.

◻
The set A we obtained in Theorem 7.4.17 allows us to give the example

of a pair of sets A and B that illustrate the flaw in the enumeration jump
mentioned in the last paragraph of Section 7.2.

Proposition 7.4.20. A′
e ≡1 B′

e does not necessarily imply A ≡e B.

Proof. Let A be the set we obtained in Theorem 7.4.17, and let B = A◊ =KA,
so A = B◊. Then KA = B ≤1 KB since B is a column of KB, and similarly,
KB = A ≤1 KA. It follows that

KA ⊕KA ≤1 KB ⊕B ≤1 KB ⊕KB ≡1 KB ⊕KB,

and similarly
KB ⊕KB ≤1 KA ⊕A ≤1 KA ⊕KA.

Thus A′
e = KA ⊕KA ≡1 KB ⊕KB = B′

e, but clearly A is not enumeration
equivalent to B. ◻

7.5 Separating cototality properties

7.5.1 Degrees that are not weakly cototal

Let us begin by showing that the weakest cototality property we introduced,
aptly named weakly cototal, is nontrivial, i.e., that there are degrees that are
not weakly cototal. We will present three different examples in this section.
First, we note that sufficiently generic sets are not weakly cototal.

232 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

Proposition 7.5.1. If a is a 2-generic enumeration degree, then a is not
weakly cototal.

Proof. Let G be 2-generic and let A ≡e G. Towards a contradiction, let
us assume that A has total enumeration degree. Then by Proposition 7.4.10
with X = ∅, we have that

G⊕K ≡e G
◊ ≥e A.

By Proposition 2.3.11(2) withX =K, G is 2-generic, so by Proposition 2.3.11(1)
with X = K and the totality of de(A), we obtain that A ≤e K. It follows
that G⊕K ≡e A⊕K ≥e A⊕K, and so de(G⊕K) is total. This contradicts
Proposition 2.3.11(1), that de(G⊕K) is a quasiminimal cover for de(K) and
so cannot be a total enumeration degree. ◻

Next, we show that we can also get such examples using K-pairs.

Proposition 7.5.2. Let a,b /≤e 0′e form a nontrivial K-pair. Then a is not
weakly cototal.

Proof. Let {A,B} form a nontrivial K-pair with A,B ≰e K. It follows that
{A,B} forms a nontrivial K-pair relative to ⟨K⟩, and so by Proposition 7.4.12,
the degree of B ⊕K is a strong quasiminimal cover of 0′e. Towards a con-
tradiction, suppose that A has weakly cototal degree. As K-pairs are closed
with respect to enumeration equivalence, we may assume that A is of total
enumeration degree. By the same Proposition 7.4.12, we have, on the one
hand, that A ≤e B ⊕K and so A ≤e K, and on the other hand, that B ≤e A.
It follows that B ≤e K, contradicting our choice of B. ◻

For our final example of a degree that is not weakly cototal, recall from
Theorem 7.4.17 that there is a degree a such that a◊◊ = a. Such a degree is
not weakly cototal.

Proposition 7.5.3. Let a be such that a◊◊ = a. Then a is not weakly cototal.

Proof. Towards a contradiction, assume that A in the degree a is such
that A has total enumeration degree. Then A◊ ≥e A implies that

A◊◊ ≥e (A)
◊
≥e A,

so de(A) is the skip of the total degree de(A) and hence total. But then
A◊◊ >e A, which is a contradiction. ◻

7.5. SEPARATING COTOTALITY PROPERTIES 233

7.5.2 Weakly cototal degrees that are not cototal

We will prove the next separation using the skip inversion we proved in
Theorem 7.4.3 above.

Proposition 7.5.4. There is a degree a that is weakly cototal, but not
cototal.

Proof. Let B ≥e K be any total set, and let S = KB. Then note that
S ≡e B, so the degree of S is total, but S is not total as a set. Now apply
Theorem 7.4.3 to obtain an A such that A◊ ≡e S and S ≤e A⊕K.

Then A is weakly cototal since A ≡e KA and KA = A◊ ≡e S, which has
total degree. Let a be the degree of A. We claim that a is not cototal. By
Proposition 7.2.1, it suffices to show that A /≤e A◊. Towards a contradiction,
assume that A ≤e A◊. Since A◊ ≥e K always holds, we now see that

S ≡e A
◊ ≥e A⊕K ≥e S

so S would be a total set, which is a contradiction. ◻
The proof above combined with Theorem 7.4.6 yields the promised Π0

2

degree that is not cototal. Of course, as noted earlier, such a degree can be
obtained using a theorem of Badillo and Harris [BH12] proving the existence
of a Π0

2-enumeration degree that contains only properly Π0
2-sets. As all

Π0
2 enumeration degrees are weakly cototal, this gives us a more concrete

separation result.
An alternative way to separate the weakly cototal degrees from the cototal

degrees is given by the following proposition.

Proposition 7.5.5. If b /≤ 0′e but forms a nontrivial K-pair with a ≤ 0′e,
then b forms a minimal pair with b◊.

Proof. Towards a contradiction, assume there is a nonzero degree c such
that c ≤ b and c ≤ b◊. The fact that c ≤ b gives us that a and c form
a K-pair by Proposition 7.4.12(1). Using this, Proposition 7.4.12(2), and
Proposition 7.4.13 twice, we have

b ≤ a◊ = c⊕ 0′e ≤ b◊ = a⊕ 0′e = 0′e.

So b ≤ 0′e, which is a contradiction. ◻

Corollary 7.5.6. If b is as in the previous proposition, then b is weakly
cototal, but not cototal.

234 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

Proof. By the previous proposition combined with Proposition 7.2.1, b
is not cototal. On the other hand, from Proposition 7.4.13 we know that
B◊ ≡e A⊕K ≡e K, since A ≤e K. Also as K has total degree, as in the proof
of Proposition 7.5.4, this implies that B is weakly cototal. ◻

The only separation left to prove is the separation of the cototal degrees
from the graph-cototal degrees. We will prove this result in the next section.

7.6 There is a cototal degree that is not graph-
cototal

Theorem 7.6.1. There is a cototal enumeration degree that is not graph-
cototal.

Proof.
We fix the undirected graph G = (ω<ω,E), where the edge relation is given

by E(a, b) if and only if a− = b or a = b− (i.e., a is an immediate successor
of b or the immediate predecessor of b). We will build the complement of
a maximal independent set for the graph G. Recall that this is a subset
A ⊆ ω<ω with the property that every element a ∈ ω<ω is either outside A or
is connected by an edge to an element outside A, but not both.

Our other condition on the set A will be that it is not enumeration
equivalent to a graph-cototal set. We construct A as such using a construction
in the framework of a 0′′′-priority construction over 0′. We start by listing
an infinite sequence of requirements that collectively ensure that we meet our
goal. We then make use of a tree of strategies. Strategies on the tree inherit
the standard ordering of nodes: We use α ⪯ β to denote that α is a prefix of
β and α <L β to denote that α is to the left of β in the tree. Every strategy
is assigned one of the requirements. At every stage we build a finite path
through this tree, activating strategies along it and injuring all strategies to
the right of it. Activated strategies perform actions towards satisfaction of
their requirements. Injured strategies are initialized—they must start over as
if they were never activated before. The intention is that there will be a true
path, a leftmost infinite path of nodes visited at infinitely many stages, such
that every strategy along this path succeeds in satisfying the requirement
that is assigned to it. We refer the reader to Soare [Soa87] for a more detailed
introduction to priority arguments and the tree method. We warn the reader
that our argument differs from standard infinite-injury arguments in a couple

7.6. THERE IS A COTOTAL DEGREE THAT IS NOT GRAPH-COTOTAL235

of ways: There will be some strategies α which intentionally injure other
strategies β with α ≺ β, and this will cause injury along the true path. Also,
we will have strategies β which cause strategies α ≺ β to revert to a previous
state in α’s construction, though for every α each state in α’s construction
will only be susceptible to reversion by finitely many β ≻ α. Finally, we will
make use of the notion of moment to refer to substages in the construction.
We assume that actions that strategies make, such as injury and initialization,
have immediate effect during moments in the construction, rather than at
the end of a stage.

At every moment in the construction, we will say some strategies restrain
elements in A and some restrain elements out of A. When we refer to the
set A at any given moment in the dynamic construction, we mean

ω<ω ∖ {a∶ some strategy β currently restrains a out of A}.

Our set A ⊆ ω<ω now needs to satisfy the following requirements, for all
a ∈ ω<ω and all enumeration operators Φ and Ψ.

Requirements:

global∶(∀x, y ∈ ω<ω ∖A)[¬ xEy]

Na∶a ∉ A or (∃x)[xEa ∧ x ∉ A]

RΦ,Ψ∶A = Ψ(Φ(A)) Ô⇒ Φ(A) ≠ Gf for any total function f ∶N→ N

Clearly, our global requirement and the Na-requirements and RΦ,Ψ-require-
ments will ensure that A is of cototal (see Section 7.3.3) but not of graph-
cototal enumeration degree.

Construction:

We define a priority tree as follows: Each Na-strategy has only one outcome, d.
Each RΦ,Ψ-strategy has infinitely many possible outcomes: stop <∞ < ⋯ <
wait1 < wait0. We assign all nodes on a given level of the tree to the same
requirement, and every non-global requirement is associated to some level.
Finally, if the last coordinate in a ∈ ω<ω is k, then we ensure that the
Na-strategy does not appear in the first k levels of the tree.

The main difficulty in this construction is in performing the strategy for
an RΦ,Ψ-requirement while allowing lower-priority requirements to succeed.

236 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

As we will see, one R-requirement may restrain infinitely many elements
into A, while lower-priority requirements may need to extract some of these
elements from A.

Let us describe the RΦ,Ψ-strategy for a node α on the priority tree. The
strategy has parameters xα, F n

α , Hn
α , ynα, znα, and Dn

α, whose meaning we
now explain. The goal of the strategy is to ensure that some column of
Φ(A) is either complete or misses two elements and thus Φ(A) cannot be the
complement of the graph of a total function. The parameter x is the column
that the strategy uses. The superscript n on the parameters F , H, y, z,
and D refers to the values of these parameters under the assumption that the
true outcome of α is the outcome waitn. The parameter F is a set that the
strategy restrains in A, i.e., the strategy makes sure that no lower-priority
strategy removes any element of F from A. The set H ∪D is a finite set that,
if we remove it from A and all higher-priority restraints remain, will cause
the element ⟨x, y⟩ (for our parameter y) to be removed from Φ(A). The set
H ∪D is partitioned into two pieces as the two pieces will relate to other
strategies in different ways. The set H is comprised of elements that at some
prior stage were restrained out of A by strategies below some outcome waitm
of α (except when α is activated for the first time after initialization, when
H contains a single fresh element), and D is comprised of elements that at
some prior stage were restrained out of A by a strategy below the outcome ∞
of α. We only extract the set H ∪D if we see some other number w such that
we can also ensure that ⟨x,w⟩ ∉ Φ(A). The number z is the least number
other than y for which we currently do not know that ⟨x, z⟩ ∈ Φ(A). We try
to ensure that z increases infinitely often, thus making the entire column
contained in Φ(A), ensuring that Φ(A) cannot be the complement of the
graph of a total function. The general idea is that if it ever happens that
we cannot increase z, i.e., we cannot put ⟨x, z⟩ into Φ(A), then by removing
H ∪D from A, we can ensure that two elements are missing from the x-th
column of Φ(A). In this case, as before, Φ(A) is not the complement of the
graph of a total function.

Step −1: When first activated (or after initialization) the strategy starts
from Step −1. Pick a large a0 with a−0 , a0 ∈ A and a0̂m ∈ A for all m. (Here
by large we mean that neither the string a0, nor any of its components have
been mentioned in the construction so far.) Check, using oracle 0′, if there
are finite sets F and G (given by canonical indices) such that

a0 ∈ Ψ(G) and G ⊆ Φ(F) and F ⊆∼ A, (7.6.1)

7.6. THERE IS A COTOTAL DEGREE THAT IS NOT GRAPH-COTOTAL237

where ∼ A is the set of those a for which there is no strategy γ ⪯ α, γ <L α, or
γ ⪰ α̂∞ that currently restrains a out of A. If no such F and G exist, then
the RΦ,Ψ-requirement is trivially satisfied since a0 ∈ A but a0 ∉ Ψ(Φ(A)). In
this case, place a restraint keeping a0 ∈ A, place a restraint b ∉ A for any b
for which some strategy γ ⪰ α̂∞ is currently restraining b ∉ A, and take
outcome stop. As long as it is not initialized, the strategy will never act
again and when visited from now on will take outcome stop. If we can find
such F and G with a0 ∉ F , then we again take the outcome stop and satisfy
the RΦ,Ψ-requirement by restraining a0 out of A while ensuring F ⊆ A and
thus a0 ∈ Ψ(Φ(A)) by restraining F in A. Otherwise, possibly enlarge the
finite set F so as to maximize ∣G∩Φ(F ∖ {a0})∣ for this fixed G. Fix any pair
⟨x, y0⟩ ∈ G ∖Φ(F ∖ {a0}) (which is a nonempty set by our assumption) such
that for this fixed x, we have that y0 is least such that ⟨x, y0⟩ ∈ G∖Φ(F ∖{a0}).
Fix x from now on as the parameter x. Let s be the current stage. (Note, that
we may assume that y0 < s by speeding up the construction if necessary.) Let
F 0 = F ∖ {a0} and let H0 = {a0}, let D0 be the set of all elements restrained
out by some strategy extending α̂∞, and let z0 be the least number z other
than y0 that is ≤ s such that ⟨x, z⟩ ∉ Φ(F 0), if such a number exists; let z0

be s otherwise. We define F i = F 0, H i =H0, Di =D0, zi = z0 for all i ≤ s. Go
to Step s. (This is to ensure that if α is initialized infinitely often, then it
visits each outcome waitn only finitely often. We will design the construction
so that from now on, α cannot be reverted to Step i for i < s.) We take
outcome ∞.

Regardless of which outcome we took, we initialize all nodes that are
strictly to the right of the outcome we took.

Step n: Being in Step n means that n is largest such that F n, Hn, Dn, yn,
and zn are defined. We say a node β is on the n-subtree if the length of β is
strictly less than n and for all γ ⪯ β, γ̂waitk ⪯ βimplies that k < n. Note that
the n-subtree is finite for every n. If β ⪰ α̂∞ and β is not on the n-subtree
and (when last visited) β did not take outcome stop, then we initialize β.
(Strategies β ⪰ α̂∞ can revert α to a previous step. This action ensures
that only finitely many strategies can revert α to a step smaller than n.)

Let W be the set of elements restrained out of A by some strategy γ, such
that γ ⪯ α or γ <L α. Let B∞ be the set of elements restrained out of A by
nodes extending α̂∞ and let Bn be the set of elements restrained out of A
by nodes extending α̂waitn along with the elements that are in Hk

β ∪D
k
β for

some k and some β ⪰ α̂waitn.

238 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

Let us say that a set Y ⊆ ω<ω is consistent if it does not contain any pair
of elements which are connected to each other. For example, it will follow
inductively that W ∪ B∞ is consistent. Furthermore, since Bn consists of
elements that are introduced in the construction after W and B∞ are defined,
it will follow that if Y ⊆ Bn is consistent then so is W ∪ B∞ ∪ Y . Using
oracle 0′, we check if ⟨x, zn⟩ ∈ Φ(N ∖ (W ∪B∞ ∪ Y)) for all consistent subsets
Y ⊆ Bn. If so, then we let X0 be a finite set such that X0 is disjoint from
W ∪B∞ ∪Bn and ⟨x, zn⟩ ∈ Φ(X0 ∪ (Bn ∖Y)) for every consistent Y ⊆ Bn. We
then redefine F n to be F n ∪X0, redefine zn to be the least number z other
than yn which is ≤ s (where s is the current stage) such that ⟨x, z⟩ ∉ Φ(F n),
if such a number exists, and let zn be s otherwise. Leave all other parameters
the same, and take outcome waitn.

If ⟨x, zn⟩ ∉ Φ(N ∖ (W ∪B∞ ∪ Y)) for some consistent set Y ⊆ Bn, then fix
any such set Y . We now check whether ⟨x, zn⟩ ∈ Φ(N ∖ (W ∪ B∞)). If so,
then we let X1 be some set disjoint from W ∪B∞ such that ⟨x, zn⟩ ∈ Φ(X1).
Define Hn+1 = Y , Dn+1 = B∞, yn+1 = zn, define F n+1 = F n ∪ (X1 ∖ Y) ∪Hn,
and let zn+1 be the least number z other than yn+1 that is ≤ s (where s is
the current stage) such that ⟨x, z⟩ ∉ Φ(F n+1), if such a number exists, and
let zn+1 be s otherwise. (This means that next time α is visited, it will be in
Step n + 1, unless it is reverted back to a Step ≤ n.) We take outcome ∞.

If ⟨x, zn⟩ ∉ Φ(N ∖ (W ∪B∞)), then we place a negative restraint so that
(Hn ∪ Dn ∪ B∞) ∩ A = ∅. For each γ such that γ̂∞ ⪯ α and such that
(Hn ∪Dn ∪B∞) ∩ F k

γ ≠ ∅ or such that Hn ∪Dn ∪B∞ contains an element
a that is the predecessor of an element b ∈ Hk

γ ∪D
k
γ (i.e., b = âm for some

m), we undefine all of γ’s parameters with superscript ≥ k. Note that γ now
reverts to being in a smaller step, say Step `; we say we have reverted γ
to Step `. (This action is necessary to ensure that there are no conflicting
restraints on a and that the set Hk

γ ∪D
k
γ ∪B

γ
∞ is consistent, should γ later on

need to restrain it out of A. It will follow from the proof that we need not
worry about the possibility of a being the successor of an element b ∈Hk

γ ∪D
k
γ .

We also point out that if α ⪰ β̂waitk, then we do not need to revert β to
a previous step as all of β’s parameters that can potentially be restrained
out of A are defined before α was accessible.) We also initialize all strategies
below γ̂∞ which are not on the `-subtree except for α and which (when
last visited) did not take outcome stop. We undefine all of α’s parameters
(since α will not be reverted back to any Step k, unless it is initialized) and
take the outcome stop; unless initialized, we will forever take the outcome
stop from now on with no further action.

7.6. THERE IS A COTOTAL DEGREE THAT IS NOT GRAPH-COTOTAL239

Regardless of which outcome we took, we initialize all nodes which are
strictly to the right of the outcome we took.

The behavior of anNa-strategy β is simple: First it tries to assess whether a
will end up an element of A or not. If a is not mentioned by any strategy
of higher priority, then β safely assumes that a ∈ A. If a ∈ (Dn

α ∪H
n
α) ∩ A

and β ⪰ α̂waitn, then β can assume that a will remain in A (unless β is
initialized). If a ∈Hn

α for a node α with α̂∞ ⪯ β that is in Step n (i.e., n is
largest so that Hn

α is defined), then end the stage. (Here β believes that a
will not remain in Hn

α and so simply waits.) Otherwise, if a ∈Dn
α for a node α

with α̂∞ ⪯ β that is in Step n, or if a /∈ A, then do nothing and take the
outcome d. (It will follow from the construction that if β is on the true path
and a ∈Dn

α for a node α with α̂∞ ⪯ β at infinitely many stages at which β
is visited, then a /∈ A.) If a ∈ A, then we pick a fresh number m and place
a restraint to prevent âm from being in A. In that case, if any γ ⪰ β is
an RΦ,Ψ-strategy that (when last visited) did not take outcome stop, then
initialize γ. We do this to ensure that the global requirement is met, i.e., no
strategy can restrain a out of A unless it initializes β.

Verification:

We now show that our construction ensures the satisfaction of all requirements.

Lemma 7.6.2. If α is a strategy that is reverted to Step n, it is because a
node β ⪰ α̂∞ that is on the (n + 1)-subtree takes the outcome stop.

Proof. If α was in Step −1 when the parameters F n+1
α , Hn+1

α , and Dn+1
α were

last modified before the current stage then all strategies extending α̂∞ that
had not yet stopped were in their initial state. Otherwise, at the moment
when F n+1

α was last modified before the current moment, α was in Step at
most n+ 1. At the moment when Hn+1

α and Dn+1
α were defined, α was at most

in Step n. In any case, all strategies extending α̂∞ that were not on the
(n + 1)-subtree and had not yet taken outcome stop were initialized or in
initial state. We claim that if β ⪰ α̂∞ is not on the (n + 1)-subtree, then
(unless α is initialized) at no later stage will β have (Hk

β ∪D
k
β ∪B∞)∩F n+1

α ≠ ∅

or will Hk
β ∪D

k
β ∪B∞ contain a predecessor of an element in Hn+1

α ∪Dn+1
α . We

prove this by induction on moments of the construction. At no later stage
will an Nc-strategy place a restraint that takes an element out of A that
is in F n+1

α or that is the predecessor of an element in Hn+1
α ∪Dn+1

α . This is

240 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

because the Nc-strategy extracts an element of the form ĉm where m is new,
so it could not have appeared in F n+1

α or be a predecessor of an element in
Hn+1
α ∪Dn+1

α . The same is true for RΦ,Ψ-strategies that extract a new element
because they take the outcome stop in Step −1, because this is also a new
element. Now, any Hk

β or Dk
β is formed from elements that are in H`

γ ∪D
`
γ

for γ ≻ β, from elements restrained out by Nc-strategies extending β, or from
some {a0} introduced by an RΦ,Ψ-strategy in Step −1 extending β (or equal
to β if β is in Step −1). So, by induction, no H`

γ ∪D
`
γ can contain an element

in F n+1
α or an element that is the predecessor of an element in Hn+1

α ∪Dn+1
α ,

thus neither can Hk
β ∪D

k
β. ◻

Lemma 7.6.3. If α is along the true path and is an RΦ,Ψ-strategy, and n ∈ ω,
then there are only finitely many stages at which α is reverted to Step n.

Proof. We prove the result by simultaneous induction on n for all strategies
combined. Suppose towards a contradiction that some strategy α on the true
path is reverted to Step n infinitely often. Since there are only finitely many
elements in the (n + 1)-subtree below α̂∞, there must be some β doing this
infinitely often. In particular, α is on the (n+1)-subtree. Suppose in addition
that α is the longest strategy on the true path and in the (n+ 1)-subtree that
is reverted to Step n infinitely often.

Every time β reverts α to Step n, it must take the outcome stop. To be
initialized infinitely often after taking outcome stop, it must be that we visit
a node left of β infinitely often, as this is the only way in which we initialize
stopped strategies. Since α is on the true path, there must be some shortest
γ ⪰ α along the true path which takes an outcome left of β infinitely often.

Case 1: γ is an R-strategy and β is below the outcome waitk of γ for some
k < n+1 (as β is on the (n+1)-subtree). It follows that α ≠ γ, because β ⪰ α̂∞.
Then to visit β again, γ must be reverted to a step ≤ n infinitely often. By
our choice of α and by the induction hypothesis, this is impossible.

Case 2: γ is an R-strategy and β is below the outcome ∞ of γ. Then γ
infinitely often visits the outcome stop, but is initialized. Since we initialize a
strategy that has taken outcome stop only by visiting a node to the left of it,
this contradicts our choice of γ as a strategy on the true path.

Case 3: γ is an R-strategy and β is below the outcome stop of γ. Then γ
cannot take an outcome left of the outcome stop.

Case 4: γ is an N -strategy. This is impossible because N -strategies only
have one outcome. ◻

7.6. THERE IS A COTOTAL DEGREE THAT IS NOT GRAPH-COTOTAL241

Lemma 7.6.4. Every strategy along the true path is initialized only finitely
often.

Proof. For α to be initialized, either some node to its left is visited, or it is
not in the k-subtree and some node β̂∞ ⪯ α is in Step k, or some N -node
above it places a restraint. The first case happens only finitely often, since α
is along the true path. The second case happens only finitely often since,
if α is on the `-subtree for the least number l, and along the true path, then
each β with β̂∞ ⪯ α eventually is not reverted to a step < `. The last case
can only happen finitely often since, by the inductive hypothesis, every node
β ≺ α is initialized only finitely often. ◻

Lemma 7.6.5. For each node α, if Hk
α becomes defined at stage s, then for

every a ∈Hk+1
α , the last number in the string a is > k, s.

Proof. For Hk
α to become defined at stage s, this requires α to take

outcome ∞ at stage s. Thus every strategy below α̂waitk is initialized.
Since before an element can enter Hk+1

α , it must first be in H`
β ∪D

`
β for some

β ⪰ α̂waitk and some ` ∈ ω, be restrained out of A by some N -strategy
extending α̂waitk, or be in some {a0} introduced by an RΦ,Ψ-strategy β
in Step −1 with β ⪰ α̂waitk, we see that it must be introduced by such a
strategy at a stage ≥ s. Furthermore, the number k has been mentioned. So,
when β restrains an element a out of A, its last number is new, thus greater
than k and s. ◻

We will say that a node is active at the current moment m if it has been
visited at a moment n ≤m and has not been initialized at any moment in the
interval [n,m].

Lemma 7.6.6. If α is an R-strategy that first takes the outcome stop (since
its last initialization) at stage s, then there is no active node below α̂stop
at the beginning of stage s.

Proof. The statement is clearly true if this is the first time when α takes
outcome stop. Suppose that this is not the case and consider the stage s
at which α last took the outcome stop. Let t > s be the first time that α
was initialized after stage s. Then this initialization must be the result of
visiting a node to the left of α, since this is the only way we initialize stopped
strategies. Thus any γ ⪰ α̂stop would also be initialized. ◻

The following lemma ensures that at no stage of the construction do we
take any contradictory actions.

242 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

Lemma 7.6.7. At every moment of the construction, the following hold:

1. No two different strategies place conflicting restraints on a string (i.e.,
it is impossible that one restrains it in A and the other restrains it
out of A, where being restrained into A means being restrained in by
Step −1 or being in the current set F).

2. It is not the case that any Hn
α contains an element that is restrained

out of A.

3. If a ∈ Dn
α, and either a is restrained out of A by β or a ∈ Hk

β , then
α̂stop <L β. (So, if α ever restrains a out of A, then β is initialized.)

4. If a ∈ Hn
α ∪D

n
α and a is restrained in A by β, and α /= β, then either

α̂stop <L β or β̂∞ ⪯ α. (So, if α restrains a out of A, then β is
initialized or reverted to a smaller step.)

5. If a ∈ Dn
α and a ∈ Dm

β for α ≠ β, then α ⪰ β̂∞ or β ⪰ α̂∞. (So,
Dn
α ⊆D

n
β or Dn

β ⊆D
n
α.)

6. If (n,α) /= (m,β), then Hn
α ∩H

m
β = ∅.

7. It is not the case that two different strategies restrain a out of A at the
same time.

Proof. We will show that all statements hold at all times. Consider the
first moment when one of the claims fails, and suppose that it is (1). Let α
restrain a into A, while β restrains a out of A.

Case 1: α placed its restraint first. Then β places its negative restraint in
one of two ways: Either β is an Nc-strategy for some c, or β is anRΦ,Ψ-strategy
which takes the outcome stop. In the first case, the Nc-strategy restrains
an element of the form ĉm where m is fresh, in particular ensuring that
ĉm is not already restrained in A. In the second case, the only new element
restrained out by β in Step −1 is a fresh element a0 which cannot happen for
the same reason, or β restrains out elements in Hn

β ∪D
n
β ∪B∞ (where β is in

Step n). But a cannot be in B∞, as otherwise, at the previous moment, we
would have restrained a both in and out of A. If a is in Hn

β ∪D
n
β , then this

must have happened at a previous moment. So by the inductive hypothesis,
by (4), either β̂stop <L α or β ⪰ α̂∞. In the former case, we have that α is
initialized as β decides to restrain a out of A, thus there is no conflict. In

7.6. THERE IS A COTOTAL DEGREE THAT IS NOT GRAPH-COTOTAL243

the second case, α is reverted to a previous Step k at which a ∉ F k
α , again

showing there is no conflict.
Case 2: β placed its restraint first. Then α is an RΦ,Ψ-strategy that adds a

to F , while β already restrains a out of A. We have three cases where this
can happen. First, if α is in Step −1, then by the definition of F 0 it can
only be that β ⪰ α̂waitk for some k ∈ ω. (Note that this is nontrivially
possible, because it could be that α was initialized for not being on some
subtree, while β is left active, as it had already reached its outcome stop.)
However, then β is initialized, because α has outcome stop or ∞, both to the
left of waitk, so there is no conflict. Otherwise, either α remains in Step n
and increases F by including X0, or α moves to Step n+1 and defines F n+1 to
be F n ∪ (X1 ∖Y)∪Hn. In the former case, since X0 is explicitly chosen to be
comprised of elements that are not restrained out of A by any strategy at all,
we see that a cannot be added to F n at this moment. In the latter case, Hn is
disjoint from anything restrained out of A by (2) (and our assumption of this
being the first moment when any of the conditions is violated). Suppose we
then have a ∈X1 ∖Y . Then it is either in X1 ∖Bn and thus not restrained out
of A by any strategy, or it is in Bn. If it is in Bn, then it is either in Hk

γ or Dk
γ

for some γ extending α̂waitn or is restrained out of A by such a γ. In the
first case, this contradicts (2). In the second case, we would have γ̂stop <L β
by (3), thus α̂∞ <L β and β is initialized when α places a into F n+1

α . In
the third case, either a is restrained out of A by two different strategies at
a previous moment, contradicting (7), or γ = β and β is initialized when α
takes outcome ∞.

Suppose the first moment where any of the claims fails is one where (2)
fails, i.e., a appears both in Hn

α and is restrained out of A by a node β.
Case 1: α placed a into Hn

α first. Then β places its negative restraint in one
of two ways: Either β is an Nc-strategy for some c, or β is an RΦ,Ψ-strategy
that takes the outcome stop. In the first case, the Nc-strategy restrains an
element of the form ĉm where m is fresh, in particular ensuring that ĉm is
not already in Hn

α . In the second case, the only new element restrained out
in Step −1 is a fresh element, which we have just mentioned does not cause a
conflict, or we have a ∈Hm

β ∪Dm
β ∪B∞ where β is in Step m, and β takes the

outcome stop. If a ∈ B∞, then a was previously restrained out of A, which is
a contradiction. If a ∈ Hm

β , then we would have Hm
β ∩Hn

α ≠ ∅ at a previous
moment, contradicting (6). If a ∈Dm

β , then by (3), β̂stop <L α, and so α is
initialized when β restrains a out of A; thus there is no conflict.

Case 2: β restrains a out of A first and α places a into Hn
α at the current

244 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

moment. If α is in Step −1 then H0 contains only one element, chosen as a
fresh number by α and hence not restrained by β. It follows that α is in Step
n − 1 ≥ 0 and a must have either been restrained out of A by some strategy
γ ⪰ α̂waitn−1 or must have been in Hk

γ ∪D
k
γ for some γ ⪰ α̂waitn−1. It

would violate (2) for a to be in Hk
γ at the previous moment, and if a ∈Dk

γ at
the previous moment, then by (3), we would have γ̂stop <L β, so α̂∞ <L β
and β is initialized when a is added into Hn

α . So suppose γ restrains a out
of A. When we redefine Hn

α = Y (for some Y ⊆ Bn), we take the outcome
α̂∞, thus injuring this γ. Thus if β = γ, then we have that β has relinquished
its restraint, and if β ≠ γ, then at the previous moment, β and γ restrained
the same element out of A, violating (7) at the previous moment.

Suppose the first moment where any of the claims fails is one where (3)
fails, i.e., suppose a ∈ Dn

α and a is restrained out of A by β or is contained
in Hk

β while α̂stop /<L β.
Case 1: α places a into Dn

α first. Suppose a is restrained out of A by β.
Again, this cannot happen if β is an N -strategy. Suppose β is an R-strategy
that takes the outcome stop in Step −1. Then the only new element restrained
out is fresh, so a must have already been restrained out of A by some γ ⪰ β̂∞.
Then (c) applied at a previous moment implies that α̂stop <L γ, so either
α̂stop <L β or β ⪯ α. Furthermore, α cannot be below β̂stop, because the
last time β was initialized, so were all non-stopped R-strategies below it, and
hence Dn

α for such an α is empty. So, if β ≺ α, then when β takes the outcome
stop, α is initialized. If α = β, then Dn

α becomes undefined when β takes the
outcome stop. In both cases there is no conflict.

Now, suppose we have a ∈ Hk ∪Dk ∪B∞ for β. If a ∈ Hk, we have that
α̂stop <L β, by (3) at the previous moment. If a ∈ Dk, then by (5) at the
previous moment, either α ⪰ β̂∞ or β ⪰ α̂∞. In the first case, when β
restrains a out of A, it takes the outcome stop, injuring α, while in the
second case, α̂stop <L β. If a ∈ B∞, then at the previous moment, we had a
restrained out of A by some γ ⪰ β̂∞. Thus α̂stop <L γ, by (3) at the
previous moment. Either α̂stop <L β or β̂∞ ⪯ α (noting that, if α = β,
we would undefine Dn

α when β takes the outcome stop and that, as before,
α ⪰ β̂stop is not possible). In the latter case, when β restrains a out of A,
it takes the outcome stop, injuring α.

Now, suppose α places a into Dn
α first and at the current moment a enters

Hk
β . It cannot be that β is in Step −1 as the only element that enters H0 is a

fresh number, hence different from a. It follows that β is in step k − 1 ≥ 0 and
at the previous moment, a was either in H`

γ ∪D
`
γ for some γ ⪰ β̂waitk−1 or

7.6. THERE IS A COTOTAL DEGREE THAT IS NOT GRAPH-COTOTAL245

was restrained out of A by some γ ⪰ β̂waitk−1. If it was in H`
γ or restrained

out of A by γ, then by (3) at the previous moment, α̂stop <L γ. Thus either
α̂stop <L β, β̂waitk−1 ⪯ α, or α = β. Note that β̂∞ ⪯ α is not a possible
case, because all elements in Hk

β have been introduced into the construction
by strategies extending outcome waitk−1 after α placed a ∈Dn

α. In the second
case, when β adds a to Hk, it initializes α, avoiding conflict. If α = β and
n < k, then a must have been introduced by some strategy δ ⪰ α which is an
N -strategy or an R-strategy which took the outcome stop at Step −1 at some
stage after a entered Dn

α, which contradicts freshness. If α = β and n = k,
then both events really happen at the same time, and by definition of Dn

α, a
was restrained out at the previous moment by a strategy δ ⪰ α̂∞, which
cannot be true by (2). Lastly, suppose a was in D`

γ for γ ⪰ β̂waitk−1. Then
by (5) (at the previous moment), α ⪰ γ̂∞ or γ ⪰ α̂∞. If α ⪰ β̂waitk−1,
then when β takes the outcome ∞ to place a into Hk

β , α is initialized. So, we
may suppose rather that α̂∞ ⪯ β ⪯ γ. Thus α̂stop <L β.

Case 2: β restrains a out of A or places a into Hk
β first. If α = β these

events really occur at the same time, and we already discussed this situation
in the previous case. So, let us assume α /= β. When a joins Dn

α, Dn
α is defined

to be the set of elements restrained out of A by nodes extending α̂∞. Thus
at the previous moment, β restrains a out of A, and hence β is below α̂∞
by (7) or a was in Hk

β , and it was restrained out of A by some node γ ⪰ α̂∞,
contradicting (2). It follows that α̂stop <L β.

Consider the first moment when one of the claims fails, and suppose that
it is (4). Let a ∈Hn

α ∪D
n
α be such that a is restrained in A by some node β.

Case 1: a is placed into Hn
α ∪D

n
α first. Then β cannot be left of α, as

otherwise α would be initialized. Furthermore, α cannot currently be in
the outcome stop, otherwise Hn

α would be undefined. Thus, α̂stop <L β or
β ⪯ α. If β̂waitm ⪯ α, then it must be that β is in step m and expands the
definition by adding X0 to Fm. Indeed, if β is in Step −1 it has outcome
stop or ∞, initializing α; if β is in Step k < m then β was reverted to a
smaller step l ≤ k after α placed a in Hn

α ∪D
n
α by a strategy γ ⪰ β̂∞ and

at that moment α must have been initialized; if β is in Step k > m or if β
is in Step m and defines Fm+1 then it will have outcome to the left of α at
this moment and so initialize α. The set X0 added to Fm is disjoint from
Hn
α ∪D

n
α for any α ⪰ β̂waitm, so a is not in X0. The strategy α cannot be

below β’s outcome stop, as β cannot restrain any elements in A after α was
first accessible unless it is initialized and then α would be initialized as well.
Thus, the only possibility left is β̂∞ ⪯ α, as desired.

246 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

Case 2: a is restrained in A by β first. For a to enter Hn
α ∪D

n
α, it must

have already been either restrained out of A by some strategy below α,
or α is in Step −1 and a = a0, or it must have been in Hk

γ ∪D
k
γ for some γ

below α̂waitn. In the first case, this contradicts (1). The second case
contradicts the freshness of a0. So suppose a was in Hk

γ ∪D
k
γ , and we have

either γ̂stop <L β or γ ⪰ β̂∞ by (4) at a previous moment. In the first
case, we then also have α̂stop <L β. In the second case, either α ⪰ β̂∞ or
α̂waitn ⪯ β̂∞ ⪯ γ. In the former case, we have what the claim allows, and
in the latter case, again α̂stop <L β.

Consider the first moment when one of the claims fails, and suppose that
it is (5). Let a ∈ Dn

α ∩D
m
β for α ≠ β. For a to be in Dn

α, some strategy γ1

below α̂∞ that is an N -strategy or R-strategy in Step −1 must have at some
point proposed a into the construction. Similarly, for a to be in Dm

β , some
strategy γ2 below β̂∞ that is an N -strategy or R-strategy in Step −1 must
have, at some point proposed a in the construction. Now, since in both cases
the strategy proposes a fresh element, it is impossible that γ1 ≠ γ2. Thus
γ = γ1 = γ2 is below both α̂∞ and β̂∞, showing that either α ⪰ β̂∞ or
β ⪰ α̂∞.

Consider the first moment when one of the claims fails, and suppose that
it is (6). Let a ∈Hn

α ∩H
m
β . Without loss of generality, Hm

β is the one defined at
this moment. Again, it cannot be that β is in Step −1 by freshness of a0, so β
is in Step m−1 ≥ 0. Then some strategy γ below β̂waitm−1 either previously
had a ∈ Hk

γ ∪D
k
γ , or was previously restraining a out of A. If a was in Hk

γ

or γ was restraining a out of A, we would already contradict (6) or (2), unless
(n,α) = (k, γ). However, if α = γ, then we have that α ⪰ β̂waitm−1, and
hence when β defines Hm

β and takes the outcome ∞, it initializes α. Finally,
assume a ∈ Dk

γ . Then, by (3), γ̂stop <L α. But β̂∞ <L γ̂stop <L α, so
again, when β defines Hm

β and takes the outcome ∞, it initializes α.
Consider the first moment when one of the claims fails, and suppose that

it is (7). Let α and β both restrain a out of A, and let us assume that α
places its restraint first.

Case 1: β is an Nb-strategy. Then since β restrains an element out of A of
the form b̂m where m is fresh, it cannot restrain a out of A if it is already
restrained out of A.

Case 2: β is an RΦ,Ψ-strategy. Suppose a is restrained out of A by β in
Step −1. Then since a is not fresh, it must have been restrained out of A by
some γ ⪰ β̂∞ not below the outcome stop. By (7) at the previous moment,
γ = α. Thus, when β takes the outcome stop, α is initialized, so there is no

7.6. THERE IS A COTOTAL DEGREE THAT IS NOT GRAPH-COTOTAL247

conflict. Thus, at the previous moment, a ∈ Hn
β ∪D

n
β ∪B∞. If a ∈ Dn

β , then
by (3) at the previous moment, we have β̂stop <L α. Thus, when β takes
the outcome stop, it initializes α, showing that there is no conflict. It is
impossible that a ∈ Hn

β by (2) at the previous moment. If a is in B∞, then
some strategy γ below β̂∞ restrains a out of A. By (7) at the previous
moment, we have that α = γ ⪰ β̂∞. So again, when β takes the outcome
stop, α is initialized, showing that there is no conflict. ◻

Lemma 7.6.8. The set A is ∆0
2(0

′). That is, for every a, there is a stage t
such that a ∈ A at every moment after stage t or a ∉ A at every moment after
stage t.

Proof. Every restraint of a number a being out of A begins with the
introduction of a by an N -strategy or an R-strategy in Step −1. If this never
happens for a, then we have a ∈ A at every moment of the construction.

Suppose some γ introduces a. If γ is never subsequently initialized and it
restrains a out of A, then a ∉ A for every moment after this restraint is placed.
If γ is an R-strategy and a ∈H0, but γ is never subsequently initialized and
never restrains a out of A, then by Lemma 7.6.7(2) no other strategy does
either, so a ∈ A at every moment after a is introduced.

Otherwise, let s be a stage such that γ has introduced a and is initialized
before stage s. After γ introduces a, no N -strategy or R-strategy in Step −1
can re-introduce a by freshness. At stage t ≥ s, a may be in Hn

β ∪D
n
β for some

β ⪯ γ and some n ∈ ω. Let Zt be the set of such β. Furthermore, let Ut be the
set of β ⪯ γ that restrain a out at stage t. It follows by Lemma 7.6.7(7) that at
all times, Ut contains at most one element. If at stage t ≥ s, the set Ut = {βt},
then by Lemma 7.6.7(2) and (3), Zt contains only strategies α that would
initialize βt if they had outcome stop, in particular, only strategies above βt
(as all strategies in Zt ∪Ut are initial segments of γ, hence comparable). If at
a stage t ≥ s, a enters Hn

α ∪D
n
α for α ∉ Zt−1 then it does so in one of two ways:

by joining Hn
α if there is a β ∈ Zt−1 ∪Ut−1 such that α̂waitn−1 ⪯ β, in which

case this β is initialized and hence leaves Zt ∪Ut, or by joining Dn
α if there is

a β ∈ Ut−1 with β ⪰ α̂∞. In both cases, the minimum priority of strategies
in Zt−1 ∪Ut−1 does not decrease, while Zt ∪Ut only contains nodes that are
(possibly non-proper) initial segments of nodes in Zt−1 ∪ Ut−1. If at stage t,
the strategy β enters Ut, then it must be that β takes the outcome stop and
β ∈ Zt−1.

As we argued above, at every stage t we have that Zt ∪Ut only contains
nodes that are initial segments of nodes in Zt−1∪Ut−1. So, there are only finitely

248 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

many possibilities for Ut. Furthermore, it also follows from our argument
above that, if the strategy that restrains a out of A changes between stages
t1 and t2, then the strategy restraining a out at the later stage t2 has higher
priority than the strategy restraining a out at stage t1. Therefore, let t > s
be a stage at which Ur = Ut for all r > t. If Ur is empty, then a ∈ A at every
moment after t, and if it is not, then a ∉ A at every moment after t. ◻

Lemma 7.6.9. If β is an Na-strategy along the true path, then β ensures
that Na is satisfied.

Proof. Let β be an Na-strategy along the true path. By Lemma 7.6.4, let s
be a stage at which β is visited and such that no γ ⪯ β is ever initialized at
a stage t ≥ s. Furthermore, by Lemma 7.6.3, we can suppose that s is large
enough such that, if α̂∞ ⪯ β, then α will never be in Step k for k ≤ a(∣a∣−1).
Then it follows from Lemma 7.6.5 that at any stage t ≥ s, a ∉ H`

α for any
node α such that α̂∞ ⪯ β with α in Step `. If, at some stage t > s when β
is visited, we have both a ∉ D`

α for all nodes α such that α̂∞ ⪯ β with α
in Step `, and a ∈ A, then β will place a permanent restraint, ensuring that
âm ∉ A for some fresh m. Otherwise, at any stage t > s we have a ∉ A or
a ∈D`

α for some node α as in the previous sentence, in which case at the last
stage r < t when we visited α, we defined D`

α to only contain elements that
are restrained out at that moment. Thus, if β fails to place a permanent
restraint, then a ∉ A at infinitely many moments when β is visited; thus a ∉ A
follows by Lemma 7.6.8. ◻

Lemma 7.6.10. Let a be a string restrained out of A at stage t. Then all
successors of a that are introduced by stage t can never again be restrained
out of A.

Proof. Towards a contradiction, suppose that some successor b of a that
was already introduced at stage t is restrained out of A at some later stage
s > t. When we introduce a number, we always select it as a new number.
It follows that a cannot be introduced after b and that no R-strategy can
introduce b, so b is introduced by an Na-strategy δ after a is introduced and at
a stage r < t when a is in A. Since a has been introduced and will eventually
be restrained out of A and since δ initialized all lower priority strategies at
stage r, the element a must be hiding in Hn

γ ∪D
n
γ for some strategy γ of

higher priority than δ. At stage t, the string a is restrained out of A by some
R-strategy β ⪯ γ that takes the outcome stop. At this stage, the strategy δ

7.6. THERE IS A COTOTAL DEGREE THAT IS NOT GRAPH-COTOTAL249

is initialized, so the only way in which b can be restrained out of A at stage
s > t is if it, in turn, is hiding at stage t in Hk

α ∪D
k
α for some R-strategy α of

higher priority than β. Note that strategies of lower priority than β are either
in initial state or initialized at stage t. Furthermore, as β is not initialized at
any stage in the interval (r, t] (or else every possible strategy that could be
keeping a as part of its parameters, such as γ, would also be initialized) and α
was visited at a stage q in that interval (when it defined Hk

α ∪D
k
α), β must

be an extension of α. If β ⪰ α̂∞, then at stage t the strategy β reverts α
to a previous Step l such that H l

α ∪D
l
α does not contain any successors of a.

Otherwise, β ⪰ α̂waiti, for some i. But then at the stage q < t at which b
entered Hk

α ∪D
k
α the strategy α had outcome ∞, initializing β, γ and all other

strategies that could be protecting a, so a could not be restrained out of A at
stage t. This gives us the desired contradiction. ◻

Lemma 7.6.11. At no moment are there any two strings that are edge-
related and both restrained out of A. Furthermore, if α is an RΦ,Ψ-strategy
that is currently in Step n ≥ 0, then at any moment we have that, if a, b ∈
B∞∪Hn

α∪D
n
α∪Bn and a and b are edge-related, then a, b ∉ B∞ and a ∉Hn

α∪D
n
α

or b ∉Hn
α ∪D

n
α.

Proof. We prove these two facts simultaneously by induction on moments.
Let us first consider the first claim. Suppose towards a contradiction that
two strings a and b are edge-related and both restrained out of A. Let α
restrain a and β restrain b out of A, and suppose α places its restraint first
(or α = β thus α and β place their restraint simultaneously).

Case 1: β is an Nc-strategy. Then β restrains an element out of the form
ĉm where m is fresh. Thus, it is impossible that a is a successor of ĉm. So,
the only possibility is that a = c, but then β would not restrain any element
out of A at all, since c ∉ A when β is visited.

Case 2: β is anRΦ,Ψ-strategy that takes the outcome stop. If β restrains b =
a0 out in Step −1, then a and b are not edge-related by construction. If β
restrains b out of A, because b is restrained by some strategy γ ⪰ β̂∞, then
the claim follows inductively as a and b would both be restrained out of A at
a previous moment. So, we can assume that β is in Step n ≥ 0 and, at the
previous moment, a was restrained out of A by α and b was either in Hn

β , D
n
β

or B∞. If α = β, then a and b were restrained out at the same time, since an
RΦ,Ψ-strategy only places a negative restraint when it takes the outcome stop.
Thus from the second claim at the previous moment it now follows that a
and b are not edge-related.

250 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

Next, let us assume that α /= β. It follows by the inductive hypothesis
that b ∉ B∞. Suppose b ∈ Dn

β ∪H
n
β . Then since α is not initialized by β

taking outcome stop, we can conclude that either α ≺ β or α <L β. Either
way, α has not acted since β and all R-strategies below β that have not yet
stopped were initialized. (If α is an N -strategy, then when it acted, it would
have initialized β unless it had already stopped, in which case it must have
been initialized since then in order to stop again. If α is an R-strategy, then
it places a negative restraint by taking the outcome stop, so β was either
initialized then for being right of the outcome stop or is below the outcome
stop and was first visited then.) Consider the moment t at which α acted to
take a out of A. At that moment, no R-strategy below β had any parameters,
unless already in outcome stop. Thus, for b to be in Dn

β ∪H
n
β now and not

out of A at stage t (which is excluded by our inductive hypothesis), it was, at
some stage r > t, restrained out of A by an N -strategy or introduced by an
R-strategy in Step −1 below β. The second case cannot happen, because we
explicitly pick a b which is not connected to a. Thus, at some stage, we had
an N -strategy restraining an element that is edge-related to an element not
in A, which is impossible by Case 1.

Next, let us consider the second claim. Assume that a, b ∈ Zα = B∞ ∪Hn
α ∪

Dn
α ∪Bn and that a and b are edge-related. Let us assume that a entered Zα

first, and that b just entered Zα. We now have several cases.
First, if b enters Hn

α ∪D
n
α, then the strategy α is currently moving from

Step n − 1 to Step n, b is a member of B∞ ∪Bn−1 at the previous moment,
and Bn is empty. In particular, Zα at the current moment contains only
elements from B∞ ∪Bn−1, as Dn

α = B∞ and Hn
α ⊆ Bn−1. Since a ∈ Zα at the

current moment, it follows that a ∈ B∞ ∪Bn−1 at the previous moment as well.
Thus, by the induction hypothesis, a, b ∈ Bn−1, and therefore by construction,
we can only have that a, b ∈ Hn

α . However, we explicitly defined Hn
α as a

consistent subset of Bn−1, hence not containing any edge-related elements.
Next, if b enters B∞, it means that at the previous stage s− < s when α was

visited, we took the outcome ∞ and some strategy extending this outcome
restrained b out of A. It follows that currently Bn = ∅ once again. It cannot
be that a ∈ B∞, by the first claim at the current moment, which we have
just proven. So a ∈Hn

α ∪D
n
α from stage s− onwards until the current moment

at stage s. It follows that at stage s−, no Na-strategy β ⪰ α̂∞ acts, and
hence b cannot have been restrained out for this reason. Suppose that b is
restrained out by an R-strategy β ⪰ α̂∞ taking outcome stop at stage s−.
If a is the successor of b, then β would revert the strategy α to a Step l such

7.6. THERE IS A COTOTAL DEGREE THAT IS NOT GRAPH-COTOTAL251

that a ∉ H l
α ∪D

l
α and so a ∉ Zα at the current moment. It follows that b is

the successor of a and b was introduced by an Na-strategy δ extending β at
an earlier stage r < s when a was already introduced but not restrained out
of A. At stage r, the strategy α was in a previous step k < n. (Otherwise
the Na-strategy δ would not impose a restraint on b at stage r.) This means
that a ∈Dn

α, as the elements of Hn
α are introduced after stage r by strategies

extending α̂waitn−1 and all these strategies are initialized at stage r (as
δ ⪰ α̂∞ and so α took outcome ∞ at stage r). In order for a to enter Dn

α, it
must be restrained out of A when Dn

α is defined at stage t such that r < t < s.
But then by Lemma 7.6.10 it follows that b cannot be restrained out of A at
stage s.

Finally, let us assume b enters Bn. Then it has to be introduced by some
node β ⪰ α̂waitn, since otherwise it was already in Bn at the previous
moment. Now, by freshness, the only reason it can be connected to a is if
b− = a and a is currently not restrained out. Thus, a ∉ B∞. ◻

Lemma 7.6.12. Let α be an RΦ,Ψ-strategy along the true path. For all n ∈ ω
and at any moment, for all w < znα, either w = ynα or ⟨x,w⟩ ∈ Φ(F n

α).

Proof. Note that this is true when we first enter Step 0, since z0 is selected
as the least z other than y0 such that ⟨x, z⟩ ∉ Φ(F 0

α). This statement is
preserved when we revert back to a previous step (since it holds for the
previous step). This statement is also preserved when we stay in the same
step and increase F and z: We have one new value of w to consider, the old
value of z. But we add X0 to F to ensure that ⟨x,w⟩ ∈ Φ(F). Similarly, this
statement is preserved when we move to a new step; this is guaranteed by
the choice of yn+1, zn+1, and the inclusion of Hn in F n+1. ◻

Lemma 7.6.13. If α is an RΦ,Ψ-strategy along the true path, then α ensures
that RΦ,Ψ is satisfied.

Proof. Let s be large enough so that α is never initialized after stage s and
let s be least with that property. After stage s, at the first time at which α
is visited, if it fails to find sets F and G in Step −1, then it places a finite
restraint a0 ∈ A and it restrains out of A elements that were already restrained
out of A by nodes below α that are not below the outcome stop of α, which
are never injured. Note that strategies below the outcome stop of α are in
their initial state and so any node ⪯ α or <L α that is currently restraining
an element out of A will permanently do so, since the only way to injure

252 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

this node is to visit some node to its left, which would injure α again as well.
Thus the true set A is a subset of the set A that α looks at when it sees that
a0 ∉ Ψ(Φ(A)). Thus a0 ∈ A ∖Ψ(Φ(A)), and the requirement is satisfied. If it
finds sets F and G with a0 ∉ F , then again, it places a finite restraint a0 ∉ A,
F ⊆ A, and the requirement is permanently satisfied since a0 ∈ Ψ(Φ(A)) ∖A.

Now, suppose that the true outcome of α is waitn for some n. By
Lemma 7.6.3 we can also assume that s is large enough such that α is
in Step n at stage s and after stage s, α is never reverted to any Step k with
k ≤ n. It follows that α has outcome waitn at every stage after stage s. (Note
that if α has any other outcome after stage s, it must either be initialized or be
reverted to a Step k ≤ n in order to get to outcome waitn again). Thus, in the
algorithm, we always have ⟨x, zn⟩ ∈ Φ(N∖ (W ∪B∞ ∪Y)) for every consistent
set Y ⊆ Bn. (Note that we define B∞ and Bn at the moment when zn is
first defined.) In particular, this is true for Y = (N ∖ A) ∩ Bn because Y
is consistent by Lemma 7.6.11 (using Lemma 7.6.8 for the definition of A).
Furthermore, the algorithm then replaces F n by F n ∪X0, which ensures that
⟨x, zn⟩ ∈ Φ(X0 ∪ (Bn ∖ Y)) ⊆ Φ(A). Thus, for all z ≠ yn (which never changes
after stage s), we have that ⟨x, z⟩ ∈ Φ(A). Next, by Lemma 7.6.7(2), we see
that no element of Hn (which never changes after stage s) is ever restrained
out of A by any strategy, thus F n ∪Hn ⊆ A, so ⟨x, yn⟩ ∈ Φ(A), showing that
the entire x-th column is contained in Φ(A), so RΦ,Ψ is satisfied.

Next, suppose that the true outcome of α is ∞. Fix any k ∈ ω; we argue
that {⟨x, z⟩ ∣ z ∈ [0, k]} ⊆ Φ(A)[x]. Assume s is large enough so that α has
been visited by stage s after its final initialization. Let t > s be a stage at
which α̂∞ is visited and which is large enough so that α is never reverted
to Step n for n ≤ k + s + 1 after stage t. Then, since every time the step is
increased, y is increased as well, it follows that at every stage after t, if α is
in Step n, then zn > yn ≥ n − s. By Lemma 7.6.12, and since at every future
stage, α restrains F n

α into A, we see that [0, k] ⊆ Φ(A)[x]. Since this holds
for every k, we have that every element of the x-th column is contained in
Φ(A), thus RΦ,Ψ is satisfied.

Finally, suppose that the true outcome of α is stop and it is achieved
via Step n. Let t ≥ s be a stage at which α takes outcome stop and no
higher-priority strategy is ever initialized after stage t. Then α places a
restraint keeping Hn ∪ Dn ∪ B∞ out of A which is never lifted. Since no
higher-priority strategy is initialized, every element of W is permanently
restrained out of A and W has remained the same since α’s last initialization.
Thus A ⊆ N∖(W ∪B∞). This outcome means that ⟨x, zn⟩ ∉ Φ(N∖(W ∪B∞)),

7.7. OPEN QUESTIONS 253

thus ⟨x, zn⟩ ∉ Φ(A). Furthermore, since Hn ∪Dn is restrained out of A, we
have ⟨x, yn⟩ ∉ Φ(A). Thus, RΦ,Ψ is satisfied. ◻

This completes the proof of the theorem. ◻

7.7 Open questions
In this section, we collect the open questions arising from this chapter, some
of which have already been asked.

7.7.1 Definability

As mentioned above, Kalimullin [Kal03] showed that the enumeration jump
is first-order definable. Is this also true for the skip?

Question 7.7.1. Is the skip first-order definable in the enumeration degrees?

Furthermore, we have discussed several cototality notions here. Which of
these are definable?

Question 7.7.2. Which cototality notions are first-order definable in the
enumeration degrees?

Note that a positive answer to the first question would imply, by Proposi-
tion 7.2.1, that the cototal degrees are definable.

7.7.2 Arithmetical zigzag

In Section 7.4.2, we have shown that the skip can exhibit a form of zigzag
behavior : There are degrees a such that none of the finite skips of a are total.
However, the examples constructed there are not arithmetical. We suspect
that this is not a coincidence.

Conjecture 2. If a is an arithmetical enumeration degree, then a⟨n⟩ is total
for some n ∈ ω.

7.7.3 Graph-cototal degrees

Theorem 7.6.1 constructed a cototal ∆0
3-degree that is not graph-cototal. On

the other hand, Proposition 7.3.1 proves that every Σ0
2-degree is graph-cototal.

This leaves the following open:

254 CHAPTER 7. ON COTOTALITY AND THE SKIP OPERATOR

Question 7.7.3. Is every Π0
2 cototal enumeration degree graph-cototal?

We do not know of a simpler proof of the existence of a cototal enumeration
degree that is not graph-cototal. A more informative separation result would
be derived from a positive answer to the following question:

Question 7.7.4. Is there a continuous enumeration degree that is not graph-
cototal?

7.7.4 Skip cototality

Let us say that a degree a is skip cototal if a◊ is total. Notice that every
skip cototal degree a is weakly cototal, and that every cototal degree is
skip cototal. Furthermore, note that in the proofs of Proposition 7.5.4 and
Corollary 7.5.6, we in fact constructed a degree a that is skip cototal but not
cototal. Even the alternative example of a weakly cototal degree given by
Badillo and Harris [BH12]—the degree that is entirely composed of properly
Π0

2-sets—is also a skip cototal degree.

Conjecture 3. Every weakly cototal degree a is skip cototal.

As mentioned above, every Π0
2-degree is weakly cototal. Therefore, a proof

of our conjecture would in particular imply that the skip of every Π0
2-degree

is total, which is also open.

Chapter 8

Bibliography

[ACG+20] R. Alvir, W. Calvert, G. Goodman, V. Harizanov, J. Knight,
A. Morozov, R. Miller, A. Soskova, and R. Weisshaar. Inter-
preting a field in its Heisenberg group. Journal of Symbolic
Logic, December 2020. Accepted.

[AGK+19] Uri Andrews, Hristo A. Ganchev, Rutger Kuyper, Steffen
Lempp, Joseph S. Miller, Alexandra A. Soskova, and Mariya I.
Soskova. On cototality and the skip operator in the enumer-
ation degrees. Trans. Amer. Math. Soc., 372(3):1631–1670,
2019.

[Ahm89] Seema Ahmad. Some results on the structure of the Σ2 enu-
meration degrees. PhD thesis, Simon Fraser University, 1989.

[AK00] C. J. Ash and J. Knight. Computable structures and the hyper-
arithmetical hierarchy, volume 144 of Studies in Logic and the
Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam, 2000.

[AKMS] R Alvir, J. Knight, R. Miller, and A Soskova. Interpreting an
algebraic closed field C into SL2(C). draft.

[AKMS89] Chris Ash, Julia Knight, Mark Manasse, and Theodore Slaman.
Generic copies of countable structures. Ann. Pure Appl. Logic,
42(3):195–205, 1989.

255

256 CHAPTER 8. BIBLIOGRAPHY

[Bal02] Vessela Baleva. The jump operation for structure degrees. PhD
thesis, Sofia University St. Kliment Ohridski, (Bulgarian), 2002.

[Bal06] V. Baleva. The jump operation for structure degrees. Arch.
Math. Logic, 45(3):249–265, 2006.

[BH12] Liliana Badillo and Charles M. Harris. An application of
1-genericity in the Π0

2 enumeration degrees. In Theory and
applications of models of computation, volume 7287 of Lecture
Notes in Comput. Sci., pages 604–620. Springer, Heidelberg,
2012.

[Cas69] John W. Case. Enumeration reducibility and partial degrees.
Ph.D. Dissertation, University of Illinois at Urbana-Champaign,
1969.

[Cas71] John W. Case. Enumeration reducibility and partial degrees.
Ann. Math. Logic, 2(4):419–439, 1970/1971.

[CCKM04] U. Calvert, D. Cummins, Julia F. Knight, and S. Miller. Com-
pering classes of finite structures. Algebra and Logic, 43(6):374–
392, 2004.

[CDS00] Richard J. Coles, Rod G. Downey, and Theodore A. Slaman.
Every set has a least jump enumeration. J. London Math. Soc.
(2), 62(3):641–649, 2000.

[CFH+18] W. Calvert, A. Frolov, V. Harizanov, J. Knight, C. McCoy,
A. Soskova, and S. Vatev. Strong jump inversion. J. Logic
Comput., 28(7):1499–1522, 2018.

[CG01] Riccardo Camerlo and Su Gao. The completeness of the isomor-
phism relation for countable Boolean algebras. Trans. Amer.
Math. Soc., 353(2):491–518, 2001.

[CGL+16] Mingzhong Cai, Hristo A. Ganchev, Steffen Lempp, Joseph S.
Miller, and Mariya I. Soskova. Defining totality in the enumer-
ation degrees. J. Amer. Math. Soc., 29(4):1051–1067, 2016.

[Chi90] John Chisholm. Effective model theory vs. recursive model
theory. J. Symbolic Logic, 55(3):1168–1191, 1990.

257

[Coo84] S. B. Cooper. Partial degrees and the density problem. II. The
enumeration degrees of the Σ2 sets are dense. J. Symbolic Logic,
49(2):503–513, 1984.

[Coo90] S. Barry Cooper. Enumeration reducibility, nondeterministic
computations and relative computability of partial functions.
In Recursion theory week (Oberwolfach, 1989), volume 1432 of
Lecture Notes in Math., pages 57–110. Springer, Berlin, 1990.

[Coo04] S. Barry Cooper. Computability theory. Chapman & Hall/CRC,
Boca Raton, FL, 2004.

[Cop88] Kate Copestake. 1-genericity in the enumeration degrees. J.
Symbolic Logic, 53(3):878–887, 1988.

[DH16] R. D. Dimitrov and V. Harizanov. Orbits of maximal vector
spaces. Algebra and Logic, 54(6):440–477, 2016.

[DHM+19] Rumen Dimitrov, Valentina Harizanov, Andrey Morozov, Paul
Shafer, Alexandra Soskova, and Stefan Vatev. Cohesive powers
of linear orders. In Florin Manea, Barnaby Martin, Daniël
Paulusma, and Giuseppe Primiero, editors, Computing with
Foresight and Industry, pages 168–180, Cham, 2019. Springer
International Publishing.

[DHM+20] R. Dimitrov, V. Harizanov, A. Morozov, P. Shafer, A. Soskova,
and S. Vatev. On cohesive powers of linear orders. Submitted.,
2020.

[DHMM14] Rumen Dimitrov, Valentina Harizanov, Russell Miller, and
K. J. Mourad. Isomorphisms on non-standard fields and Ash’s
conjecture. In Language, life, limits, volume 8493 of Lecture
Notes in Comput. Sci., pages 143–152. Springer, Cham, 2014.

[Dim08] Rumen Dimitrov. A class of Σ0
3 modular lattices embeddable as

principal filters in L∗(V∞). Arch. Math. Logic, 47(2):111–132,
2008.

[Dim09] Rumen Dimitrov. Cohesive powers of computable structures.
Annuaire Univ. Sofia Fac. Math. Inform., 99:193–201, 2009.

258 CHAPTER 8. BIBLIOGRAPHY

[DJ94] Rod Downey and Carl G. Jockusch. Every low Boolean algebra
is isomorphic to a recursive one. Proc. Amer. Math. Soc.,
122(3):871–880, 1994.

[DK92] Rodney Downey and Julia F. Knight. Orderings with αth jump
degree 0(α). Proc. Amer. Math. Soc., 114(2):545–552, 1992.

[Dow97] Rodney G. Downey. On presentations of algebraic structures. In
Complexity, logic, and recursion theory, volume 187 of Lecture
Notes in Pure and Appl. Math., pages 157–205. Dekker, New
York, 1997.

[EPS11] Yuri L. Ershov, Vadim G. Puzarenko, and Alexey I. Stukachev.
HF-computability. In Computability in context, pages 169–242.
Imp. Coll. Press, London, 2011.

[Ers85] Yu. L. Ershov. Σ-definability in admissible sets. Dokl. Akad.
Nauk SSSR, 285(4):792–795 (Russian), 1985.

[FR59] Richard M. Friedberg and Hartley Rogers, Jr. Reducibility and
completeness for sets of integers. Z. Math. Logik Grundlagen
Math., 5:117–125, 1959.

[Fri57] Richard Friedberg. A criterion for completeness of degrees of
unsolvability. J. Symbolic Logic, 22(2):159–160, 1957.

[Fro06] A. N. Frolov. ∆0
2-copies of linear orderings. Algebra and Logic,

45(3):201–209, 2006.

[Fro10] A. N. Frolov. Linear orderings of low degree. Siberian Math.
J., 51(5):913–925, 2010.

[Fro12] Andrey N. Frolov. Low linear orderings. J. Logic Comput.,
22(4):745–754, 2012.

[FS89] Harvey Friedman and Lee Stanley. A Borel reducibility theory
for classes of countable structures. J. Symbolic Logic, 54(3):894–
914, 1989.

[FST59] S. Feferman, D. S. Scott, and S. Tennenbaum. Models of
arithmetic through function rings. Notices Amer. Math. Soc,
173(6), 1959.

259

[GHK+05] Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles
McCoy, Russell Miller, and Reed Solomon. Enumerations
in computable structure theory. Ann. Pure Appl. Logic,
136(3):219–246, 2005.

[GK02] S. S. Goncharov and B. Kh. Khusainov. Complexity of categor-
ical theories with computable models. Dokl. Ros. Akad. Nauk,
385(3):299–301 (Russian), 2002.

[GMS13] Noam Greenberg, Antonio Montalbán, and Theodore A. Sla-
man. Relative to any non-hyperarithmetic set. J. Math. Log.,
13(1):1250007, 26, 2013.

[GS12] Hristo A. Ganchev and Mariya I. Soskova. Interpreting true
arithmetic in the local structure of the enumeration degrees. J.
Symbolic Logic, 77(4):1184–1194, 2012.

[GS15] Hristo A. Ganchev and Mariya I. Soskova. Definability via
Kalimullin pairs in the structure of the enumeration degrees.
Trans. Amer. Math. Soc., 367:4873–4893, 2015.

[GS16] Hristo Ganchev and Andrea Sorbi. Initial segments of the Σ0
2

enumeration degrees. J. Symb. Log., 81(1):316–325, 2016.

[GS18] Hristo A. Ganchev and Mariya I. Soskova. The jump hierarchy
in the enumeration degrees. Computability, 7(2-3):179–188,
2018.

[Gut71] Lance Gutteridge. Some results on enumeration reducibility.
Ph.D. Dissertation, Simon Fraser University, 1971.

[Har68] Joseph Harrison. Recursive pseudo-well-orderings. Trans. Amer.
Math. Soc., 131:526–543, 1968.

[Har10] Charles M. Harris. Goodness in the enumeration and singleton
degrees. Arch. Math. Logic, 49(6):673–691, 2010.

[Hir75] J. Hirschfeld. Models of arithmetic and recursive functions.
Israel J. Math., 20(2):111–126, 1975.

260 CHAPTER 8. BIBLIOGRAPHY

[HK96] Greg Hjorth and Alexander S. Kechris. Borel equivalence
relations and classifications of countable models. Ann. Pure
Appl. Logic, 82(3):221–272, 1996.

[HKSS02] Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore,
and Arkadii M. Slinko. Degree spectra and computable dimen-
sions in algebraic structures. Ann. Pure Appl. Logic, 115(1-
3):71–113, 2002.

[HM07] Valentina S. Harizanov and Russell G. Miller. Spectra of
structures and relations. J. Symbolic Logic, 72(1):324–348,
2007.

[HM12] Kenneth Harris and Antonio Montalbán. On the n-back-and-
forth types of Boolean algebras. Trans. Amer. Math. Soc.,
364(2):827–866, 2012.

[Hod93] Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press,
Cambridge, 1993.

[HT20] Matthew Harrison-Trainor. The tree of tuples of a structure.
The Journal of Symbolic Logic, 1-27. doi:10.1017/jsl.2019.92,
2020.

[HTMM18] Matthew Harrison-Trainor, Russell Miller, and Antonio Mon-
talbán. Borel functors and infinitary interpretations. J. Symb.
Log., 83(4):1434–1456, 2018.

[HTMMM17] Matthew Harrison-Trainor, Alexander Melnikov, Russell Miller,
and Antonio Montalbán. Computable functors and effective
interpretability. J. Symb. Log., 82(1):77–97, 2017.

[HW75] Joram Hirschfeld and William H. Wheeler. Forcing, arith-
metic, division rings. Lecture Notes in Mathematics, Vol. 454.
Springer-Verlag, Berlin-New York, 1975.

[Jea15] Emmanuel Jeandel. Enumeration in closure spaces with appli-
cations to algebra. CoRR, abs/1505.07578, 2015.

261

[JS91] Carl G. Jockusch, Jr. and Robert I. Soare. Degrees of order-
ings not isomorphic to recursive linear orderings. Ann. Pure
Appl. Logic, 52(1-2):39–64, 1991. International Symposium on
Mathematical Logic and its Applications (Nagoya, 1988).

[Kal03] Iskander Sh. Kalimullin. Definability of the jump operator in
the enumeration degrees. J. Math. Log., 3(2):257–267, 2003.

[Kal09a] I. Sh. Kalimullin. Relations between algebraic reducibilities of
algebraic systems. Izv. Vyssh. Uchebn. Zaved. Mat., 6:71–72
(Russian), 2009.

[Kal09b] Iskander Kalimullin. Enumeration degrees and enumerability
of families. J. Logic Comput., 19(1):151–158, 2009.

[Kal12] Iskander Kalimullin. Algorithmic reducibilities of algebraic
structures. J. Logic Comput., 22(4):831–843, 2012.

[Kap69] Irving Kaplansky. Infinite abelian groups. Revised edition. The
University of Michigan Press, Ann Arbor, Mich., 1969.

[Kay91] Richard Kaye. Models of Peano arithmetic, volume 15 of Oxford
Logic Guides. The Clarendon Press, Oxford University Press,
New York, 1991. Oxford Science Publications.

[Kei71] H. Jerome Keisler. Model theory for infinitary logic. Logic with
countable conjunctions and finite quantifiers. North-Holland
Publishing Co., Amsterdam-London, 1971. Studies in Logic
and the Foundations of Mathematics, Vol. 62.

[Kle38] Stephen Cole Kleene. On notation for ordinal numbers. J.
Symbolic Logic, 3:150–155, 1938.

[KMVB07] Julia F. Knight, Sara Miller, and M. Vanden Boom. Turing
computable embeddings. J. Symbolic Logic, 72(3):901–918,
2007.

[Kni86] Julia F. Knight. Degrees coded in jumps of orderings. J.
Symbolic Logic, 51(4):1034–1042, 1986.

[Kni94] Julia F. Knight. Nonarithmetical ℵ0-categorical theories with
recursive models. J. Symbolic Logic, 59(1):106–112, 1994.

262 CHAPTER 8. BIBLIOGRAPHY

[Kni98] J. F. Knight. Degrees of models. In Handbook of recursive
mathematics, Vol. 1, volume 138 of Stud. Logic Found. Math.,
pages 289–309. North-Holland, Amsterdam, 1998.

[KP54] S. C. Kleene and Emil L. Post. The upper semi-lattice of degrees
of recursive unsolvability. Ann. of Math. (2), 59:379–407, 1954.

[KS00] Julia F. Knight and Michael Stob. Computable Boolean alge-
bras. J. Symbolic Logic, 65(4):1605–1623, 2000.

[KSV19] Julia F. Knight, Alexandra A. Soskova, and Stefan V. Vatev.
Coding in graphs and linear orderings. Journal of Symbolic
Logic, 85(2):673–690, 2019.

[Kuz58] Alexander V. Kuznetsov. Algorithms as operations in alge-
braic systems. Uspekhi Matematicheskikh Nauk, 14:240–241
(Russian), 1958.

[Lav63] I. A. Lavrov. Effective inseparability of the set of identically true
formulae and finitely refutable formulae for certain elementary
theories. Algebra i Logika, 2(1):5–18 (Russian), 1963.

[LE65] E. G. K. Lopez-Escobar. An interpolation theorem for denu-
merably long formulas. Fund. Math., 57:253–272, 1965.

[Ler70] Manuel Lerman. Recursive functions modulo CO − r-maximal
sets. Trans. Amer. Math. Soc., 148:429–444, 1970.

[Ler83] Manuel Lerman. Degrees of unsolvability. Perspectives in
Mathematical Logic. Springer-Verlag, Berlin, 1983. Local and
global theory.

[LS79] Manuel Lerman and James H. Schmerl. Theories with recursive
models. J. Symbolic Logic, 44(1):59–76, 1979.

[LS92] Alistair H. Lachlan and Richard A. Shore. The n-rea enumer-
ation degrees are dense. Arch. Math. Logic, 31(4):277–285,
1992.

[Mal60] A. I. Mal’tsev. Some correspondences between rings and groups.
Mat. Sb. (N.S.), 50 (92):257–266 (Russian), 1960.

263

[Mar89] David Marker. Non Σn axiomatizable almost strongly minimal
theories. J. Symbolic Logic, 54(3):921–927, 1989.

[Mar02] David Marker. Model theory: An introduction, volume 217 of
Graduate Texts in Mathematics. Springer-Verlag, New York,
2002.

[Mat93] Yuri V. Matiyasevich. Hilbert’s tenth problem. Foundations of
Computing Series. MIT Press, Cambridge, MA, 1993. Trans-
lated from the 1993 Russian original by the author, with a
foreword by Martin Davis.

[McC18] Ethan McCarthy. Cototal enumeration degrees and their ap-
plications to effective mathematics. Proc. Amer. Math. Soc.,
146(8):3541–3552, 2018.

[McE85] Kevin McEvoy. Jumps of quasi-minimal enumeration degrees.
J. Symbolic Logic, 50:839–848, 1985.

[Med55] Yu. T. Medvedev. Degrees of difficulty of the mass problem.
Dokl. Akad. Nauk SSSR (N.S.), 104:501–504 (Russian), 1955.

[Mek81] Alan H. Mekler. Stability of nilpotent groups of class 2 and
prime exponent. J. Symbolic Logic, 46(4):781–788, 1981.

[Mil78] Terrence S. Millar. Foundations of recursive model theory. Ann.
Math. Logic, 13(1):45–72, 1978.

[Mil04] Joseph S. Miller. Degrees of unsolvability of continuous func-
tions. J. Symbolic Logic, 69(2):555–584, 2004.

[MK08] Andrei S. Morozov and Margarita V. Korovina. On Σ-
definability without equality over the real numbers. Math.
Log. Q., 54(5):535–544, 2008.

[MM17] David Marker and Russell Miller. Turing degree spectra of
differentially closed fields. J. Symb. Log., 82(1):1–25, 2017.

[Mon] Antonio Montalbán. Computable structure theory: Within
the arithmetic. To appear in ASL book series Perspectives in
Logic.

264 CHAPTER 8. BIBLIOGRAPHY

[Mon09] Antonio Montalbán. Notes on the jump of a structure. In
Mathematical theory and computational practice, volume 5635
of Lecture Notes in Comput. Sci., pages 372–378. Springer,
Berlin, 2009.

[Mon12] Antonio Montalbán. Rice sequences of relations. Philos. Trans.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370(1971):3464–
3487, 2012.

[Mon14] Antonio Montalbán. Computability theoretic classifications
for classes of structures. In Proceedings of the International
Congress of Mathematicians—Seoul 2014. Vol. II, pages 79–101.
Kyung Moon Sa, Seoul, 2014.

[Mor76] Michael Morley. Decidable models. Israel J. Math., 25(3-4):233–
240, 1976.

[Mor04] A. S. Morozov. On the relation of Σ-reducibility between
admissible sets. Sibirsk. Mat. Zh., 45(3):634–652 (Russian),
2004.

[Mos69] Yiannis N. Moschovakis. Abstract first order computability I.
Trans. Amer. Math. Soc., 138:427–464, 1969.

[MPSS18] Russell Miller, Bjorn Poonen, Hans Schoutens, and Alexandra
Shlapentokh. A computable functor from graphs to fields. J.
Symb. Log., 83(1):326–348, 2018.

[Muc16] Albert A. Muchnik. Strong and weak reducibility of algorithmic
problems. Computability, 5(1):49–59, 2016. English translation
by Sankha S. Basu and Stephen G. Simpson from Sibirsk. Mat.
Ž. 4:1328–1341, 1963.

[Myh61] John Myhill. Note on degrees of partial functions. Proc. Amer.
Math. Soc., 12:519–521, 1961.

[Nie96] A. Nies. Undecidable fragments of elementary theories. Algebra
Universalis, 35(1):8–33, 1996.

[NSS96] André Nies, Richard A. Shore, and Theodore A. Slaman. De-
finability in the recursively enumerable degrees. Bull. Symbolic
Logic, 2(4):392–404, 1996.

265

[Odi99] P. G. Odifreddi. Classical recursion theory. Vol. II, volume
143 of Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Co., Amsterdam, 1999.

[Pan00] Andrey V. Pankratov. Some properties of e-degrees of coto-
tal sets. In International conference “Logic and applications”,
Proceedings, Novosibirsk, (Russian) 2000.

[Plo72] G.D. Plotkin. A set-theoretical definition of application. Mem-
orandum MIP-R-95, School of Artificial Intelligence, University
of Edinburgh, 1972.

[Poi01] Bruno Poizat. Stable groups, volume 87 ofMathematical Surveys
and Monographs. American Mathematical Society, Providence,
RI, 2001. Translated from the 1987 French original by Moses
Gabriel Klein.

[Puz09] V. G. Puzarenko. On a certain reducibility on admissible sets.
Sibirsk. Mat. Zh., 50(2):415–429 (Russian), 2009.

[Ric81] Linda Jean Richter. Degrees of structures. J. Symbolic Logic,
46(4):723–731, 1981.

[Rog67a] H. Rogers, Jr. Some problems of definability in recursive
function theory. In Sets, Models and Recursion Theory (Proc.
Summer School Math. Logic and Tenth Logic Colloq., Leicester,
1965), pages 183–201. North-Holland, Amsterdam, 1967.

[Rog67b] Hartley Rogers, Jr. Theory of recursive functions and effective
computability. McGraw-Hill Book Company, New York, 1967.

[Ros82] Joseph G. Rosenstein. Linear orderings, volume 98 of Pure and
Applied Mathematics. Academic Press, Inc. [Harcourt Brace
Jovanovich, Publishers], New York-London, 1982.

[Roz78] Mikhael G. Rozinas. The semi-lattice of e-degrees. In Recursive
functions, pages 71–84 (Russian), Ivanovo, 1978. Ivano. Gos.
Univ.

[Sac90] Gerald E. Sacks. Higher recursion theory. Perspectives in
Mathematical Logic. Springer-Verlag, Berlin, 1990.

266 CHAPTER 8. BIBLIOGRAPHY

[Sac10] Gerald E. Sacks. Saturated model theory. World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ, second edition,
2010.

[San78] Luis E. Sanchis. Hyperenumeration reducibility. Notre Dame
J. Formal Logic, 19(3):405–415, 1978.

[Sco65] Dana Scott. Logic with denumerably long formulas and finite
strings of quantifiers. In Theory of Models (Proc. 1963 Internat.
Sympos. Berkeley), pages 329–341. North-Holland, Amsterdam,
1965.

[Sel71] Alan L. Selman. Arithmetical reducibilities I. Z. Math. Logik
Grundlag. Math., 17:335–350, 1971.

[Sho14] Richard A. Shore. Biinterpretability up to double jump in
the degrees below 0′. Proc. Amer. Math. Soc., 142(1):351–360,
2014.

[Sko34] Th Skolem. Über die Nicht-charakterisierbarkeit der Zahlen-
reihe mittels endlich oder abzählbar unendlich vieler Aussagen
mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae,
23(1):150–161. (German), 1934.

[Sla98] Theodore A. Slaman. Relative to any nonrecursive set. Proc.
Amer. Math. Soc., 126(7):2117–2122, 1998.

[Soa74] Robert I. Soare. Automorphisms of the lattice of recursively
enumerable sets. I. Maximal sets. Ann. of Math. (2), 100:80–
120, 1974.

[Soa87] Robert I. Soare. Recursively enumerable sets and degrees. Per-
spectives in Mathematical Logic. Springer-Verlag, Berlin, 1987.
A study of computable functions and computably generated
sets.

[Soa16] Robert I. Soare. Turing computability. Theory and Applications
of Computability. Springer-Verlag, Berlin, 2016. Theory and
applications.

267

[Sol05] Boris Ya. Solon. Total and co-total enumeration degrees. Izv.
Vyssh. Uchebn. Zaved. Mat., 9:60–68 (Russian), 2005.

[Sol06] Boris Ya. Solon. Co-total enumeration degrees. In Arnold
Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker,
editors, CiE, volume 3988 of Lecture Notes in Computer Science,
pages 538–545. Springer, 2006.

[Sor88] Andrea Sorbi. On quasiminimal e-degrees and total e-degrees.
Proc. Amer. Math. Soc., 102(4):1005–1008, 1988.

[Sos00] I. N. Soskov. A jump inversion theorem for the enumeration
jump. Arch. Math. Logic, 39(6):417–437, 2000.

[Sos04] Ivan N. Soskov. Degree spectra and co-spectra of structures.
Annuaire Univ. Sofia Fac. Math. Inform., 96:45–68, 2004.

[Sos05a] Alexandra Soskova. Properties of co-spectra of joint spectra of
structures. Annuaire Univ. Sofia Fac. Math. Inform., 97:23–40,
2005.

[Sos05b] Alexandra A. Soskova. Minimal pairs and quasi-minimal de-
grees for the joint spectra of structures. In S. Barry Cooper,
Benedikt Löwe, and Leen Torenvliet, editors, New Compu-
tational Paradigms, pages 451–460, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[Sos06] Alexandra A. Soskova. Relativized degree spectra. In Arnold
Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker,
editors, Logical Approaches to Computational Barriers, pages
546–555, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[Sos07a] Alexandra A. Soskova. A jump inversion theorem for the degree
spectra. In S. Barry Cooper, Benedikt Löwe, and Andrea Sorbi,
editors, Computation and Logic in the Real World, volume 4497
of Lecture Notes in Computer Science, pages 716–726. Springer
Berlin Heidelberg, 2007.

[Sos07b] Alexandra A. Soskova. Relativized degree spectra. J. Logic
Comput., 17(6):1215–1233, 2007.

268 CHAPTER 8. BIBLIOGRAPHY

[Sos13a] Ivan N. Soskov. Effective properties of Marker’s extensions. J.
Logic Comput., 23(6):1335–1367, 2013.

[Sos13b] Ivan N. Soskov. A note on ω-jump inversion of degree spectra
of structures. In Paola Bonizzoni, Vasco Brattka, and Benedikt
Löwe, editors, The Nature of Computation. Logic, Algorithms,
Applications—9th Conference on Computability in Europe, CiE
2013, Milan, Italy, July 1–5, 2013. Proceedings, volume 7921 of
Lecture Notes in Computer Science, pages 365–370. Springer,
2013.

[SS99] Richard A. Shore and Theodore A. Slaman. Defining the Turing
jump. Math. Res. Lett., 6:711–722, 1999.

[SS04] Alexandra Soskova and Ivan Soskov. Co-spectra of joint spectra
of structures. Annuaire Univ. Sofia Fac. Math. Inform., 96:35–
44, 2004.

[SS07] Alexandra A. Soskova and Ivan N. Soskov. Jump spectra of
abstract structures. In Proceeding of the 6th Panhellenic Logic
Symposium, Volos, Greece, pages 113–117, 2007.

[SS09a] Alexandra A. Soskova and Ivan N. Soskov. A jump inversion
theorem for the degree spectra. J. Logic Comput., 19(1):199–
215, 2009.

[SS09b] Alexandra A. Soskova and Ivan N. Soskov. Some applications
of the jump inversion theorem. In C. Drossos, P. Peppas, and
C. Tsinakis, editors, Proceedings of the 7th Panhellenic Logic
Symposium, pages 157–161, 2009.

[SS12] Mariya I. Soskova and Ivan N. Soskov. Embedding count-
able partial orderings in the enumeration degrees and the
ω-enumeration degrees. J. Logic Comput., 22(4):927–952, 2012.

[SS13] Alexandra A. Soskova and Ivan N. Soskov. Quasi-minimal
degrees for degree spectra. J. Logic Comput., 23(6):1319–1334,
2013.

[SS17] Alexandra A. Soskova and Mariya I. Soskova. Enumeration
reducibility and computable structure theory. In Adam Day,

269

Michael Fellows, Noam Greenberg, Bakhadyr Khoussainov,
Alexander Melnikov, and Frances Rosamond, editors, Com-
putability and Complexity: Essays Dedicated to Rodney G.
Downey on the Occasion of His 60th Birthday, pages 271–301.
Springer International Publishing, Cham, 2017.

[SS18] Theodore A. Slaman and Mariya I. Soskova. The ∆0
2 Turing

degrees: automorphisms and definability. Trans. Amer. Math.
Soc., 370(2):1351–1375, 2018.

[Stu09] A. I. Stukachev. A jump inversion theorem for semilattices of
Σ-degrees. Sib. Èlektron. Mat. Izv., 6:182–190 (Russian), 2009.

[Stu10] A. I. Stukachev. A jump inversion theorem for the semilattices
of Sigma-degrees [translation of [Stu09]]. Siberian Adv. Math.,
20(1):68–74, 2010.

[Stu13] Alexey Stukachev. Effective model theory: an approach via
Σ-definability. In Effective mathematics of the uncountable,
volume 41 of Lect. Notes Log., pages 164–197. Assoc. Symbol.
Logic, La Jolla, CA, 2013.

[SW86] Theodore A. Slaman and W. Hugh Woodin. Definability in
the Turing degrees. Illinois J. Math., 30(2):320–334, 1986.

[SW05] Theodore A. Slaman and W. Hugh Woodin. Definability in
degree structures. Preprint, 2005.

[Tur37] A. M. Turing. On Computable Numbers, with an Application
to the Entscheidungsproblem. A Correction. Proc. London
Math. Soc., S2-43(6):544–546, 1937.

[Tur39] A. M. Turing. Systems of Logic Based on Ordinals. Proc.
London Math. Soc. (2), 45(3):161–228, 1939.

[TW16] Simon Thomas and Jay Williams. The bi-embeddability re-
lation for finitely generated groups II. Arch. Math. Logic,
55(3-4):385–396, 2016.

[Usp55] V. A. Uspenskĭı. On computable operations. Dokl. Akad. Nauk
SSSR (N.S.), 103:773–776 (Russian), 1955.

270 CHAPTER 8. BIBLIOGRAPHY

[Vat13] Stefan Vatev. Another jump inversion theorem for structures.
In Paola Bonizzoni, Vasco Brattka, and Benedikt Löwe, editors,
The Nature of Computation. Logic, Algorithms, Applications,
pages 414–423, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

[Vat14] Stefan V. Vatev. Effective properties of structures in the hyper-
arithmetical hierarchy. PhD thesis, Sofia University St. Kliment
Ohridski, 2014.

[Vat15] Stefan V. Vatev. On the notion of jump structure. God. Sofĭı.
Univ. “Sv. Kliment Okhridski." Fac. Mat. Inform., 102:171–206,
2015.

[Vau55] Robert L. Vaught. Topics in the theory or arithmetical classes
and Boolean algebras. PhD thesis, University of California,
Berkeley, 1955.

[Weh98] Stephan Wehner. Enumerations, countable structures and
Turing degrees. Proc. Amer. Math. Soc., 126(7):2131–2139,
1998.

	Introduction
	Preliminaries
	Turing reducibility
	Genericity and forcing
	Enumeration reducibility
	Degree spectra
	Definability in a structure
	Relatively intrinsically 0 relations
	Computable infinitary formulas

	Jump of a structure
	Jump of a structure
	Every Jump Spectrum is Spectrum
	Jump inversion theorem
	Marker's Extensions
	Join of Two Structures
	Representation of 20(D) Sets
	The Jump Inversion theorem

	Some Applications

	Strong jump inversion
	Canonical jump and strong jump inversion
	General result
	Examples
	Linear orderings
	Boolean algebras
	Trees
	Models of a theory with few B1-types
	Differentially closed fields

	Effective embeddings and interpretations
	Coding and decoding in linear ordering
	Borel embeddings
	Turing computable embeddings
	Medvedev reductions
	Sample embedding
	Effective interpretations and computable functors
	Interpretations by more general formulas

	Interpreting graphs in linear orderings
	Turing computable embedding of graphs in linear orderings
	The relations
	-equivalence in linear orderings
	More on the orderings L(G)
	Proof of Theorem 5.2.7

	Interpreting a field into the Heisenberg group
	Defining F in H(F)
	The computable functor
	Defining the interpretation directly
	Question of bi-interpretability
	Generalizing the method

	Interpreting ACF(0) - C in a special linear group SL2(C)
	Defining (C {0},)
	Defining (C,+,)

	Cohesive powers
	Basic properties
	Non-Isomorphic Cohesive Powers of Isomorphic Structures
	Linear orders and their cohesive powers
	Cohesive powers of computable copies of
	A cohesive power of order-type +
	Shuffling finite linear orders

	On Cototality and the Skip Operator
	Cototality
	The skip
	Examples of cototal sets and degrees
	Total degrees
	The complement of the graph of a total function
	Complements of maximal independent sets
	Complements of maximal antichains
	The set of words that appear in a minimal subshift
	The non-identity words in a finitely generated simple group
	Joins of nontrivial K-pairs
	Continuous degrees
	Sets with good approximations have cototal degree

	The skip
	Skip inversion
	Further properties of the skip operator and examples

	Separating cototality properties
	Degrees that are not weakly cototal
	Weakly cototal degrees that are not cototal

	There is a cototal degree that is not graph-cototal
	Open questions
	Definability
	Arithmetical zigzag
	Graph-cototal degrees
	Skip cototality

	Bibliography

