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CHAPTER 1

Introduction

1.1 Short history of branching processes

Branching processes are a class of stochastic processes that capture some
of the fundamental aspects of division and propagation observed in na-
ture. Branching processes model the evolution of a population of objects
(these objects can correspond to real-world elementary particles, photons,
electrons, atoms, molecules, cells, viruses, bacteria, animals, people, in-
formation, finances, and other entities) through time and study various
characteristics of this evolution. It comes as no surprise that the areas
of application of branching processes are diverse and numerous - physics,
chemistry, biology, demography, ecology, economy, etc. This diversity of
contexts stimulates the development of various kinds of branching pro-
cesses, adapted towards answering particular questions of interest found
within these contexts. Indeed, there are branching processes in discrete-
time and continuous-time, with one or multiple types of objects, branching
processes with random immigration, branching diffusion processes, spatial
branching processes, controlled branching processes, and others. For ex-
amples of these processes, the interested reader is invited to scroll through
the references within the dissertation.

The study of branching processes begins around the middle of the 19th
century with the question of explaining the disappearance of aristocratic
family lines in Europe. In 1845, the French mathematician and statistician
Bienaymé first studied the process of extinction of the French noble fam-
ilies, [83], and created the first branching process model (for many more
historical facts about Bienaymé and his contributions to mathematics, the
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8 Chapter 1. Introduction

interested reader is referred to [84]). Unfortunately, as Bienaymé left no
students, his name, as well as his results, gradually faded into obscurity.

A few decades later, in 1873, concerns regarding the extinction of no-
ble family names reappeared among the scientific community, as Francis
Galton formulated Problem 4001 in Educational Times:

“...PROBLEM 4001: A large nation, of whom we will only concern our-
selves with adult males, N in number, and who each bear separate surnames
colonise a district. Their law of population is such that, in each generation,
a0 per cent of the adult males have no male children who reach adult life; a1

have one such male child; a2 have two; and so on up to a5 who have five.
Find (1) what proportion of their surnames will have become extinct after r
generations; and (2) how many instances there will be of the surname being
held by m persons...”

Upon receiving only one solution to the problem that “...was from a
correspondent who wholly failed to perceive its intricacy, and his results were
totally erroneous...” (see [85]), Galton invited H. W. Watson to work on
Problem 4001. One year later, in 1874, Galton and Watson published their
famous work on [85] that is considered by many to mark the beginning of

Figure 1.1: The title of the article of Galton and Watson [85].

branching process theory.
Within [85], Watson determined the extinction probability as a fixed

point of the reproduction generation function f . He observed that 1 is
always such a fixed point, f(1) = 1, and from this he and Galton concluded
that “...All the surnames, therefore, tend to extinction in an indefinite time,
and this result might have been anticipated generally, for a surname lost can
never be recovered, and there is an additional chance of loss in every successive
generation. This result must not be confounded with that of the extinction
of the male population; for in every binomial case where q is greater than 2
we have t1 + 2t2 + · · ·+ qtq > 1, and, therefore an indefinite increase of male
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population...”. This conclusion, however, is false as it is now known that
it is always the smallest root within [0, 1] of the fixed point equation that
gives the correct answer. It took more that 50 years for the correct solution
to be published by the Danish mathematician J. F. Steffensen within [88] in
1930. It took 40 more years for Heyde and Seneta to first note in 1972 that
Bienaymé already had the correct statement of the Criticality Theorem
back in 1845 (see [84]). For more interesting details about the early years
of branching process theory, see [86], [87].

After World War II, branching processes and their applications in physics
became intensely researched, leading to the rapid development of the field.
In the Soviet Union, the work of A. N. Kolmogorov and two of his students,
B. A. Sevastyanov and N. Dmitriev, paved the way for branching processes
with the seminal papers of [89] and [90]. Indeed, the term branching pro-
cess itself is considered to have been coined by A. N. Kolmogorov and
N. A. Dmitriev in their work [89] from 1947. Historically, the legacy of
B. A. Sevastyanov is one of the most prominent ones within the field (at
least with respect to the Soviet sphere of influence), see, e.g., monograph
[8] and the references therein. According to [91], as early as his disserta-
tion, Sevastyanov was already laying the foundation of modern branching
process theory. At the time, the last two chapters of his dissertation were
declared as classified and for five years (see [91]) he was not allowed to keep
them, publish them, or discuss them with anyone but his supervisor, Kol-
mogorov. Developing the results of his dissertation, Sevastyanov eventually
obtained fundamental results in almost all principal directions in the the-
ory of branching processes: branching processes with immigration, general
branching processes with arbitrary distribution of particle lifetimes, tran-
sition phenomena in branching processes, diffusion branching processes,
controlled branching processes, and regularity conditions. Sevastyanov’s
monograph Branching Processes [8], published in 1971, accumulates the
majority of the results of the theory of branching processes at the time. It
was translated later on into Japanese and German.

We will also shed a bit more light on the historically more obscure
person and work, at least for the time being, of Nikolai Aleksandrovich
Dmitriev (see [92] for more interesting details). His grandfather Kostadin
Popdimitrov Hadjikostov was a member of the regiment of Hristo Botev
during the time of the April uprising in Bulgaria in 1876. Dmitriev showed
his mathematical talent very early at the age 14 by winning one of the first
mathematical olympiads in the USSR. He was later a Ph. D. student of
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Figure 1.2: B. A. Sevastyanov

A. N. Kolmogorov in Steklov Mathematical Institute. Dmitriev played an
important role in the creation of the atomic and hydrogen bombs, devel-
oping the theory of incomplete atomic explosion. He applied the theory
of branching processes for modeling chain reactions with nuclear degrada-
tion, such as conditions under which energy release will decrease critically
and degenerate ([93]). Due to the nature of his research, N. A. Dmitriev
worked most of his life in secret scientific organizations within the Soviet
Union. After his joint publication with Kolmogorov of the seminal paper
[89], the name of Dmitriev disappears from the public scene, although it
is now known that he has over 80 classified papers. Reportedly, N. A.
Dmitriev had very high authority among his colleagues. In an instance
when A. N. Kolmogorov was asked to assist in the the process of installing
an electronic computer, he joked: “You do not need this computer. You
have Kolya”. Dmitriev also significantly contributed for the creation and
development of impulse nuclear reactors, which are still being used.

Meanwhile in the west, mainly in the USA, the theory of branching pro-
cesses advanced perhaps most notably due to the work of T. Harris (see
monograph [58], published 1963) on electron-photon cascades and Galton-
Watson processes with continuous type space (energy). In 1948, Bellman
and Harris [94] considered branching processes with time structure and
called their result an age-dependent branching process. Such processes
are generally not Markovian and can model populations where individuals
can have variable lifespans, but split into a random number of children at
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Figure 1.3: N. A. Dmitriev

death, independently of age. Sevastyanov introduced truly age-dependent
branching processes, where, the reproduction probabilities are possibly af-
fected by the mother’s age at splitting (see, e.g. [8]). Crump, Mode, and
Jagers in [95], [96], [34] (1968 - 1969) introduced general branching process
where members of the population can give birth repeatedly, in streams of
events modeled by a point process. Another monograph of note is [57] from
Athreya and Ney (1972).

In time, the areas of research and application of branching processes
gradually shift more towards biology, demography, genetics, and related
contexts - see [11], [59], [19], [105], [14], [13], [10], [61], [62], [64], [65], [63],
[66], [20], [100], [104], [36] among many others. The immediate predecessors
of this dissertation, [1] - [7], are also styled in the setting of biological
populations escaping extinction, with the focus of [1] - [7] being on cancer
modeling (see also [104]). In recent years controlled branching processes
also enjoy notable development (see [115], [124], [181], [182], [120], [121]).

In Bulgaria, questions related to branching process theory were first
considered in the textbooks of Obreshkov [97] and Obretenov [98] in 1963
and 1974 respectively. From then onward, Bulgarian authors have con-
tributed much to the field, developing various areas of the theory and
applications, see [19], [22], [23], [37], [18], [26], [24], [39], [183], [25], [32],
[18], [26], [24], [39], [32], [12], [107], [139], [140], [141], [142], [143], [144],
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[145], [48], [53], [54], [55], [56], [193], [194], [195], [149], [150], [151], [152],
[153], [50], [51], [129], [1], [2], [100], among many others. It should come
as no surprise that first The World Congress on Branching Processes was
organized in Varna in 1993 by Bulgarian scientists with chairman of the or-
ganizing committee N. Yanev, the results of which were published in [101].
We also note the publishing of the textbook on branching processes by M.
Slavtchova-Bojkova & N. Yanev [9] in 2018.

1.2 Review of branching process literature

There is an abundance of literature within the field of branching processes
and their application in various areas.

We begin our review with the book from Haccou, Jagers, and Vatutin,
[10], devoted to biological applications of branching processes. The book
considers discrete-time branching processes and branching in continuous
time. The discussed mathematical results are applied to models of large
populations, development of populations and their extinction. Two mono-
graphs on the application of branching processes to biological problems
are the books of Mode [60] (applications in demography), [33] (applica-
tions in epidemiology). The classic book of Jagers [11] provides much
information about the stochastic models of populations. The last chap-
ters of the book are devoted to application of branching process theory
to problems in demography (growth of population, age of childbearing,
length of generations), cell kinetics (estimation of cell death, cycle time
distribution, etc.). Another monograph related to biology is [21]. There,
the theory of branching processes is applied to the problem of receptor
clustering in transmembrane signaling. In addition to that, branching pro-
cess theory is applied to the phenomenon of antigen-antibody interactions
and to aggregate size distributions on cell surface. For more examples
of application of branching stochastic processes as models of population
dynamics of particles having different nature (from elementary particles
to cells, microorganisms, plants, animals, information, individuals, etc.)
see [19], [35], [111], [112], [22], [23], [37]. The book of Kimmel and Axel-
rod [14] presents applications of branching processes theory in the areas
of molecular biology, cellular biology, human evolution and medicine. An-
other book devoted to biological application of branching processes is [104].
There, Durrett uses multi-type branching processes to model cancer. The
results on the branching processes are applied to model metastasis, ovar-
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ian cancer, and tumor heterogeneity. The monograph of [105] presents
the application of single-type branching processes to a particular area of
mathematical genetics: neutral evolution. There are numerous interesting
articles articles discussing application of branching processes in biology
and other fields of science and practice. In [22] there is an application
of a Bellman-Harris process to biological systems with cells proliferation.
This research was continued in [18], [26], [24], [39], [183], [25], [32], [12].
Interesting applications in epidemiology can be seen in [27], [28], [29], [30],
[31], [198]. Many other discussions can easily be found: cancer modeling
[40], populations escaping extinction [61], [62], [64], [65], [63], [5], [7], sand
avalanches [184], biodiversity [185], analysis of heights of trees [186], evolu-
tionary rescue [188], population dynamics [187], information cascades [189],
quantum electronics [190], polymer degradation [191], etc. Several topics
connected to multi-type branching processes are: epidemiological risk es-
timation [172], disease outbreak [173], genetics [15], mast cells modelling
[16], polynucleotide evolution [174], forest fires [175], population dynamics
[38], models of transposable elements in haploid populations [17], diffusion
[176], spreading dynamics of populations [177], queuing [170], optimiza-
tion [77], identification of multi-type branching processes [171]. Results
on the behaviour of the multi-type branching processes in the supercritical
case can be found in [57], [165], [166], [167], [168], [169]. For application
of branching processes in economics, we mention the Epps model and its
generalizations [192], [193], [194], [195], as well as interest rate modeling
[196].

A contemporary book devoted to classical and modern branching pro-
cesses is [106]. Some of the topics covered within are: (i) Tree structures
and branching processes; (ii) Branching random walks; (iii) Measure valued
branching processes; (iv) Branching with dependence; (v) Large deviations
in processes; (vi) Classical branching processes. This book also enjoys Bul-
garian contribution [107]. Other books which are more orientated to the
mathematical aspects of the theory of branching processes are [108], [35],
[57].

An application of the theory of branching processes in physics in pre-
sented in the book [110]. The mathematical tools used in describing
branching processes are used to derive a large number of properties of neu-
tron distribution in multiplying systems with or without an external source.
Then, the theory is applied to the description of the neutron fluctuations
in nuclear reactor cores as well as in small samples of fissile material.



14 Chapter 1. Introduction

In the monograph [109], the authors discuss branching processes in
varying and random environments. Within branching processes in ran-
dom environment model, an additional environmental stochasticity is in-
corporated and consequently the conditions for reproduction may vary in
a random fashion from one generation to the next. Single and multi-type
BPREs are discussed. Various authors have studied the probability for
extinction for branching processes in random environments. One result is
that if the random environmental sequence of the process is stationary and
ergodic then the probability for extinction has values 0 or 1 [178], [179],
[180].

Another interesting class of branching processes are the regenerative
branching processes [46], [47]. These processes are Bienaymé-Galton-Watson
(BGW) processes with state-dependent immigration. Processes of this type
allow immigration of new particles only in state zero, which means that
the population regenerates when it becomes extinct. The state zero is no
longer an absorbing state and becomes a reflecting barrier instead. The
process evolution consists of a sequence of cycles which are independent
and stochastically equivalent. The model is generalized for Bellman-Harris
processes [48], [49], [50], [51]. The case of non-homogeneous migration was
studied in, [53], [54], [55], [56].

Limiting distributions for BGW processes with an increasing random
number of ancestors are studied in [139], [140], [141], [142], [143], [144],
[145].

The problem of extreme values arising in branching processes has nu-
merous practical applications. Selected results on the study of extremes
in branching processes are reviewed in [158]. The maximum family size of
BGW processes is studied in [159], [160]. Maxima related to the offspring
size for different classes of branching processes are discussed in [161], [162],
[163], [164].

Branching processes can also be considered in the context of spatial evo-
lution. For example, particles born in a given generation can be distributed
in Rd space according to a given locally-bounded random measure, inde-
pendently of the position of the mother-particle [154]. Results (in German)
for such a setting can be seen in [155], [156], [157].

Another class of branching processes of note is the class of branching
processes with diffusion [149], [150], [151], [152], [153].

There are numerous studies on statistical problems connected to branch-
ing processes [41], [42], [43], [44], [138], [45]. For example [43] discusses
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problems of statistical inference that occur when the standard assumption
of independent observations is relaxed. There is much literature on the
statistical problem of estimating the mean m and other parameters of a
supercritical branching process with and without immigration. Selected
references are [43], [113], [114]. Other papers on various topics relates to
branching process estimation are [134], [135], [136], [137], [146], [147], [148].

Age-dependent branching processes are studied in [8], [50], [51]. Such
processes have also been studied in the context of regeneration [126], [127].
Processes with two types of immigration are investigated in [129], [130],
[131]. Sevastyanov branching processes with general immigration are con-
sidered in [132], [133]. There, asymptotic results are obtained for the mo-
ments of the process and the limiting distributions in all three cases: sub-
critical, critical, and supercritical.

Controlled branching processes (CBPs) are integer-valued discrete-time
Markov processes where the population size in every generation can be ran-
domly regulated before reproduction by emigration of part of the popula-
tion, or after reproduction by immigration of individuals. Migration can
be non-homogeneous [123], [124], [125]. Controlled branching processes
with random migration can be seen in [119]. Controlled branching pro-
cesses with multi-type random control functions are investigated in [181],
[182]. Results on the asymptotic behavior of the probability of extinc-
tion are present in [117], [118]. Random control functions can be seen in
[116]. A contemporary monograph on controlled branching processes is
[120]. Recently, continuous-time controlled branching processes have been
introduced in [121].

We conclude with quick notes about the evolution of the research pre-
ceding this dissertation ([1] - [7]):

1. In [1] (2016), M. Slavtchova-Bojkova considers a multi-type Bellman-
Harris decomposable branching process consisting of two particle
types, Type 0 is supercritical and Type 1 is subcritical. The basic
functional equation is obtained. The paper then proceeds to study
the probability generating function for the random variable describ-
ing the number of mutations towards the supercritical Type 0, the
probability of extinction of the process, the time to escaping extinc-
tion, and the immediate risk of escaping extinction.

2. In [2] (2017), M. Slavtchova-Bojkova, P. Trayanov, and S. Dimitrov
expand the context of [1], obtain new results, and introduce a numer-
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ical scheme for calculating the integral equations derived. Further, a
simulation study is done.

3. In [3] (2017), K. Vitanov and M. Slavtchova-Bojkova introduce a
more general model. That is the multi-type Bellman-Harris de-
composable branching process with an arbitrary number of subcriti-
cal types that can produce mutants towards the single supercritical
Type, Type 0. No backward mutation from Type 0 is allowed. The
basic functional equations are obtained and the p.g.f.s for the random
variables describing the number of mutations towards the supercrit-
ical Type 0 are studied.

4. In [5] (2019) M. Slavtchova-Bojkova and K. Vitanov expand the re-
sults from [3] by adding results for the probabilities of extinction of
the process, the time until occurrence of the first mutant towards
Type 0 that initiates a non-extinction process, and the immediate
risk of escaping extinction.

5. In [6] (2019) K. Vitanov and M. Slavtchova-Bojkova expand the nu-
merical scheme from [2] for the integral equations obtained for the
p.g.f.s of the random variables describing the number of mutations
towards the supercritical Type 0 found in [3] and the equations for
the probabilities of extinction found and [5].

6. In [7] (2022) the model is further expanded with the introduction of
two classes of particle types We and W0 where particles with types
from We can produce mutants with types from W0, however particles
with types from W0 cannot have offspring with types from We. The
model from [5] is a particular case in that regard, with W0 consisting
only of Type 0. A further extension is the introduction of depen-
dence of particle reproduction from particle age, i.e., the branching
processes considered are no longer multi-type Bellman-Harris, but
multi-type Sevastyanov. Within [7], systems of integral equations
for the p.g.f.s of the process are obtained, followed by results for
the probabilities of extinction of the process, the p.g.f.s for particle
production from We towards W0, the time until occurrence of the
first mutant from We towards W0, and the immediate risk of escap-
ing extinction. A numerical scheme, extending the one from [6], for
computing all obtained system of equations is provided as well.
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1.3 Notes on multi-type Sevastyanov branch-
ing processes

We present some of the work within the classical monograph of B. A. Sev-
astyanov, [8], that is of immediate interest for our investigation of the novel
Multi–type Sevastyanov Branching Processes through probabilities of Mu-
tation between types (MSBPM) that we define in Chapter 2. Within this
Section, we follow Chapter VIII of [8] and use (most of) the notation from
there. As [8] is written in Russian, our translation below has some minor
adaptations. In addition to that, we have taken the liberty of modestly
reordering parts of the exposition, without losing content. Note that we
also use bold when denoting vectors.

1.3.1 Classical definition of the multi-type Sevastyanov

branching process

We consider n types of particles : T1, T2, . . . , Tn. This system of particles
is under the following assumptions:

1. We assume the process starts at t = 0 with one particle of type Ti of
age 0.

2. Each particle of the type Ti has random lifespan τ i with probability
distribution P{τ i ≤ t} = Gi(t) where Gi(−0) = 0 and Gi(+0) < 1.

3. At the end of its life, each particle converts to a set (this set can
contain 0 or more particles) consisting of α1 particles of type T1, . . . ,
αn particles of type Tn, and these particles have age 0 at the moment
of conversion.

4. piααα(u) is the conditional probability that a type Ti particle converts
into ααα particles, ααα = (α1, . . . , αn)

> ∈ Nn (the conditions being that
the particle has age u at the time of conversion and that the conver-
sion actually happens).

5. Each of the new particles evolves as described above.

6. The evolution of a particle of the type Ti is determined by the
joint distribution of its lifespan τ i and of the vector quantity vvvi =
(vi1, . . . , v

i
n)
> which describes the offspring of the particle. The joint
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distribution is given by

(1.1) P{τ i ∈ B,vvvi = ααα} =

∫
B

pppiααα(u)dGi(u).

In (1.1) ααα ∈ Nn and B is a Borel set on the straight line.

7. If some generation is empty (no particles there) then all following
generations are empty (the process has become extinct/degenerate).

8. The basic assumption for the process is that the particles have in-
dependent evolution: the evolution of a particle within a generation
is independent form the evolution of other particles within the same
generation and the conditional distribution of the evolution of all
particles of a generation depends only on the composition of this
generation, not on given evolution of previous generations. If the
composition of the generation is βββ = (β1, . . . , βn)

> then the distribu-
tion of the evolution of all particles of this generation is the set of
the independent distributions P{τ i ∈ B,vvvi = ααα} given by (1.1).

We introduce probability generating functions (p.g.f.s)

(1.2) hi(u;sss) =
∑
ααα

piααα(u)sssααα.

We can organize hi(u;sss) per each type into the vector:

(1.3) hhh(u;sss) =
(
h1(u;sss), . . . , hn(u;sss)

)>
We further introduce p.g.fs

(1.4) F i(t;sss) =
∑
ααα

P{µµµi(t) = ααα}sssααα, i = 1, . . . , n,

where µµµi(t) =
(
µi1(t), . . . , µ

i
n(t)
)>

means that there are µij(t) particles of the
type Tj at moment t. The superscript i indicates that we are considering
a process that started at 0 with one particle of type Ti with age 0. We can
organize F i(t;sss) per each type into the vector:

(1.5) FFF (t;sss) =
(
F 1(t;sss), . . . , F n(t;sss)

)>
.
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We assume that the probabilities piααα(u) are measurable with respect
to u and satisfy the condition

∑
ααα∈Nn

piααα(u) = 1. Then, hi(u;sss) are mea-

surable with respect to u and are generation functions with respect to
sss = (s1, . . . , sn)>.

1.3.2 System of integral equations for the probability

generating functions of the process

We present without proof:

Theorem 1.1. The generating functions F i(t;sss) satisfy the following
system of non-linear integral equations

(1.6) F i(t;sss) =

t∫
0

hi
(
u;FFF (t− u;sss)

)
dGi(u) + si

(
1−Gi(t)

)
, i = 1, . . . , n,

where t ≥ 0 and |sss| ≤ 1.

Let ST , 0 < T < ∞ be the complete metric space of vector func-

tions g(t;sss) =
(
g1(t;sss), . . . , gn(t;sss)

)>
, sss = (s1, . . . , sn)>, with components

gi(t;sss) defined in 0 ≤ t ≤ T with |sss| ≤ 1 and measurable with respect to
t. Let g(t;sss) represent multidimensional probability generating functions
with respect to sss. Further, denote

(1.7) aij(u) = hij(u; 111) =
∂hi(u;sss)

∂sj
|sss=111, Ai

j =

∞∫
0

aij(u)dGi(u)

Then the following theorem is in effect:

Theorem 1.2. If Gi(0) = 0, i = 1, . . . , n, and Ai
j, i, j = 1, . . . , n, are

finite, then the system of integral equations (1.6) has, at |sss| ≤ 1, a unique
solution F (t;sss), which for 0 ≤ t ≤ T , belongs to ST for all T > 0.

1.3.3 Probabilities of extinction

We can set sss = 000 in the generating functions F i(t;sss) from (1.4) and by
doing so obtain the probabilities P i(t) = F i(t; 000) for the event that at the
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moment of time t there are no particles within the process. We can define
probabilities P i for degeneration (extinction) of the process as

(1.8) P i = lim
t→∞

P i(t), PPP = (P 1, . . . , P n)>.

We say that the process eventually degenerates (becomes extinct) if all
P i = 1.

where hhh(s) =
(
h1(sss), . . . , hn(sss)

)>
and

(1.9) hi(sss) =

∞∫
0

hi(u;sss)dGi(u).

Theorem 1.3. The probabilities for extinction P i satisfy the system of
equations

(1.10) sss = hhh(sss),

and are equal to the coordinates of the root of (1.10) which is closest to the
origin and is in within the cube 000 ≤ sss ≤ 111.

Before proceeding further, we note that we have given the Perron-
Frobenius theorem as Theorem 4 as well as the definition of a Perron root
via Definition 2 within the Appendix. These elements can also be found
in Section 5 of Chapter IV within [8] in Russian.

Theorem 1.4. Assume that each particle type has non-zero probability
for producing 0 in its offspring. The process degenerates if and only if the
Perron root R of the matrix || Ai

j || is not larger than 1.

Remark 1.1. Within the original Theorem 2 from page 238 in [8], there
is no assumptions that each particle can have an empty offspring with non-
zero probability. If the assumption is dropped, then we can have classes of
particle types that have probabilities of extinction 0 (those are the “final
classes” mentioned within the original Theorem 2, final classes are defined
on page 137 of [8]) which is a case that we are not interested in within the
dissertation.

The Perron root R determines the criticality of the process:

Definition 1.1. We say that the process is subcritical if R < 1, is critical
if R = 1, and is supercritical if R > 1.



1.4. A remark on the use of “particles” and “mutation” within the dissertation 21

1.4 A remark on the use of “particles” and
“mutation” within the dissertation

As already noted, branching process models can be applied in many, vastly
different, contexts. Hence, when devising general models (such as the mod-
els from Chapter 2), it makes sense to choose the key terms used carefully.

Throughout the dissertation, we will refer to the objects being modeled
through branching processes as particles. We prefer to use “particles” in-
stead of “objects”, because “objects” is a too general term that may tempt
us to include in it entities that are not suitable for modeling via branching
processes. Although we could use “cells” instead of “particles”, the term
“cells” fixates our attention too much on biological contexts. “Cells” is
beneficial, for example, when modeling cancer evolution and escape from
extinction, however the repeated use of “cells” may conceal the fact that
branching process used for modeling could be applicable outside of biology.
We find the term “particle” as having an appropriate balance. Indeed, we
can interpret “cells” as biological “particles”. “Particles” ensures that we
will think carefully before trying to apply our branching process models to
entities such as animals and humans, which may not necessarily conform in
their behavior to the propagation assumptions of the model. With respect
to “objects”, “particles” allows us to have a more clear perception of what
we are attempting to model.

We will also be using the term mutation in order to indicate that a
particle within the offspring of a type i particle is of type j, i 6= j. Un-
fortunately “mutation” draws us again closer to biological contexts, how-
ever alternatives such as “alteration”, “modification”, “transformation”,
introduce more confusion than clarity. Further, unlike “mutation”, the al-
ternatives are not in line with the already biology-compatible terminology
commonly used within branching processes (e.g., the usage of terms such
as “offspring”, “progeny”, “mother”/“daughter” particle, are common).
We will be using “mutation” rather loosely. As an example, consider an
animal population (our “particles” will be individual animals - the use of
“particles” encourages us to be careful about what we are trying to model)
spread across multiple geographical locations, with conditions in these lo-
cations influencing the reproductive capabilities of animals, thus inducing
types. Within this dummy example, we will consider as “mutation” the re-
location of the offspring of an animal, upon its creation, from one location
to another.
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1.5 Notes on stochastic sequential decision
problems

Within Chapter 3 of the dissertation, we will be investigating stochastic
sequential decision problems in the context of systems with underlying
branching process dynamics. Here, we give an informal description of what
a “sequential decision problem” is.

Description 1.1. Assume that there is a dynamic system with which
we can interact. We observe the system at specified moments in time,
called decision epochs. We will denote the set of decision epochs with t̂T ,
t̂T = {0 = t0, t1, t2, . . . , tT = T̂}, the distance between two neighboring
decision epochs can vary but cannot be 0 or ∞. At each decision epoch
ti ∈ t̂T , except at tT = T̂ , we make a decision (interaction with the sys-
tem) that affects how the system evolves from t onward. Upon making a

decision, we collect rewards (or incur costs), with the exception of tT = T̂
where we only collect predefined rewards (or incur predefined costs). A
sequential decision problem is a problem of choosing such decisions so that
the cumulative expected reward, after collecting the rewards at tT = T̂ , is
maximized (or the cumulative expected cost is minimized). The problem
can be deterministic or stochastic.

The informal Description 1.1 serves the needs of this dissertation well,
however, slight variations of the concept can exists in different mathemat-
ical communities. We formalize the idea in Definition 3.2 within Chapter
3.

Evidently, the benefit of solving a sequential problem is obtaining the
“best” course of action to be applied at the current moment. This course
of action, however, is “best” only in the context of the, also contained in
the solution, “best” courses of action at future decision epochs. Thus, the
overarching benefit of solving sequential decision problems is directly con-
nected to the adequacy of our understanding of the dynamics of the system
we are trying to model. In the case of us having a poor understanding,
solutions obtained from sequential decision problems can prove to be worse
compared to the strategy of taking the immediately best course of action at
each decision epoch without regard of possible consequences in the future.

The real world is abundant with decision related situations that can be
cast as sequential decision problems. Sequential decision problems can be
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easily found in industry, management, finance, and government planning,
among various possible contexts. We list some concrete examples:

1. Dynamic assignment - consider a limited resource such as engineers
or programmers with different qualifications as well as a series of
possible tasks that need to be completed with varying priority. How
should our limited resources be distributed in time given the currently
pending tasks and our expectations for the occurrence of future tasks?

2. Storage problems - how much stock should we buy at today’s prices
so that we can meet random demand in the coming days, should we
delay a part of our purchase for another day, when the conditions are
possibly better, or should we stockpile additional reserves today?

3. Finance - how do we rebalance our portfolio today, considering pos-
sible further rebalancing and anticipating information at predefined
future moments, so that we maximize the chance of it achieving a
desired goal at the end of a desire time period?

4. Government policy - How the government should plan subsidizing
agricultural production each year, given observed weather patterns
and anticipating global market prices?

Mathematically approaching the topic of optimization in a stochastic
setting is a complicated matter and over the years a myriad of mathemati-
cal communities have evolved, providing various perspectives and solution
methods. [82] (page 10), as well as [80] and [81], identify at least 15 distinct
communities that deal with some variant of deterministic or stochastic se-
quential decision problems. We list these communities below.

1. Derivative-based stochastic search

2. Derivative-free stochastic search

3. Decision trees

4. Markov decision processes

5. Optimal control

6. Approximate dynamic programming

7. Reinforcement learning

8. Optimal stopping

9. Stochastic programming
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10. Multi-armed bandit problem

11. Simulation optimization

12. Active learning

13. Chance constrained programming

14. Model predictive control

15. Robust optimization

Unfortunately, these communities are not unified in their approach to
solving sequential decision problems. According to [82] (page 8), the 15
communities listed use “roughly eight notational systems” and also “...The
fragmentation of the communities (and their differing notational systems) dis-
guises common approaches developed in different areas of practice, and chal-
lenges cross-fertilization of ideas. A problem that starts off simple (like the
inventory problem) lends itself to a particular solution strategy, such as dynamic
programming. As the problem grows in realism (and complexity), the original
technique will no longer work, and we need to look to other communities to
find a suitable method...”. This state of affairs is not so surprising given the
complexity (and possibly scale) of the problems being investigated and also
the richness of possible approaches which may serve one setting excellently
but fail in others.

A brief overview of the problem formulations tackled by each of the
communities listed above, as well as some of the basic notation they use,
can be found in Chapter 2 of [82] and in [80]. In order to keep our pre-
sentation manageable, we will briefly remark here that the discussion in
Chapter 3 of the dissertation is most closely related to Markov decision
processes ([67], [68], [69], [70], [71]), Optimal control ([204], [205], [206],
[207], [208]), and Approximate dynamic programming ([72], [73], [74], [75],
[76], [78]).

1.6 Conceptual organization of the disserta-
tion

This dissertation is conceptually divided into two topics explored in Chap-
ter 2 and Chapter 3 respectively. Chapter 2 defines the novel Multi–type
Sevastyanov Branching Processes through probabilities of Mutation be-
tween types (MSBPM) and obtains results of interest in the context of
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populations escaping extinction. Chapter 3 is dedicated towards the incor-
poration of branching processes, including the MSBPM, into optimization
problems known as Sequential Decision Problems (SDPs).

The novel MSBPM from Chapter 2 is connected to the classic multi-
type Sevastyanov branching process, however, within the MSBPM, proba-
bilities for mutation are used for writing down expressions of interest. This
makes the novel MSBPM well adapted towards modeling biological popu-
lations under stress that escape extinction. Within Chapter 2, we obtain
various systems of equations for the MSBPM as well as for quantities rele-
vant in the context of populations escaping extinction. To the best of our
knowledge, such an in-depth investigation of the topic has not been done
previously (excluding our earlier work in [7] as well as preceding papers
[1] - [6]) for multi-type, continuous-time branching processes. We explore
the case of the MSBPM starting with one particle of age 0 and the case of
the MSBPM starting with one particle of age a, a 6= 0. The latter case, to
the best of our knowledge, has not been explored previously in a system-
atic manner within the context of branching processes. Numerical schemes
for calculating all obtained systems of equations are also developed within
Chapter 2.

In Chapter 3, we begin with an introduction of the “Universal Model-
ing Framework” developed by Warren B. Powell in [82] (2022). The choice
of modeling framework within which we specify our Sequential Decision
Problems (SDPs) is of paramount importance for our perspective on the
systems we attempt to model as well as for the ease of possible future
extensions of our results. Our choice of framework allows us to utilize Bell-
man’s optimality equation for finding solutions of SDPs, provided that our
models conform to the assumptions of the framework. We proceed with our
novel considerations and results as follows. We recast the multi-type Bi-
enaymé-Galton-Watson (BGW) branching process optimization problem,
considered in [77], as a SDP within the “Universal Modeling Framework”.
In Theorem 3.2 from Subsection 3.4.3, we provide a novel proof for Theo-
rem 3.1 from [77] that is based on Bellman’s optimality equation. Theorem
3.2 enables us to efficiently find the solution of SDPs with underlying BGW
dynamics. Next, we incorporate the multi-type Bellman-Harris branching
process with exponential lifespan distributions as well as the Multi-type
Bellman-Harris Branching Process through probabilities of Mutation be-
tween types (MBHBPM; a particular case of the MSBPM) with exponen-
tial lifespan distributions into a SDP and prove that a result, similar to
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Theorem 3.2, holds. We then shown that, with respect to a novel state
space, the MSBPM and the multi-type Sevastyanov branching process can
also be incorporated into SDPs. Unfortunately, an analogue of Theorem
3.2 is not available for these processes. Regardless, Bellman’s optimality
equation allows us to consider the Approximate Dynamic Programming
(ADP) approach for finding the solution of obtained SDPs within future
research. We conclude our investigations by outlining a general ADP algo-
rithm based on post-decision state variables that may serve as a starting
point for the future development of a specialized ADP algorithm for SDPs
with branching process based dynamics.

Within the Appendix, we have provided some standard results regard-
ing the Perron-Frobenius theorem. We reference these results in some of
our MSBPM related discussions.

More detailed description of the structure of Chapter 2 and Chapter 3,
as well as relevant remarks and discussions, can be seen in the correspond-
ing “Chapter overview and organization” sections within these chapters.



CHAPTER 2

Multi-type continuous-time branching

processes through probabilities of mutation
between types

2.1 Chapter overview and organization

In this Chapter, we define the novel continuous time branching process
model that will play the central role within this dissertation - the Multi–type
Sevastyanov Branching Processes through probabilities of Mutation be-
tween types (MSBPM). The MSBPM can be considered as a relative of
the classical multi-type Sevastyanov branching process as defined in Chap-
ter VIII in [8]. The novel characteristic of the MSBPM, with respect to the
classical formulation in [8], is the use of probabilities of mutation (a parti-
cle is a “mutant” if it is of type that is different from the type of its mother
particle) between types. More specifically, through the use of probabilities
of mutation, effectively, we decompose the classical probabilities piααα(u) for
a particle of type i of age u to transform into ααα particles at the end of
its lifespan (see page 229 in [8] or Subsection 1.3.1) into two components:
1) Probabilities pik(u) for the total k number of offspring, regardless of
offspring type, of a type i particle of age u; 2) Probabilities for mutation
of an offspring particle of a type i particle towards type j, uij.

The use of probabilities for mutation opens the way for applications of
the MSBPM into many biological contexts. Most notably, the MSBPM
is well suited for modeling biological populations under stress that face
certain extinction unless a “beneficial” mutation occurs (or a combination
of mutations occur), leading to supercritical behavior. Such situations are

27
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of interest in the areas of cancer modeling and treatment, spread of viruses,
vaccination campaigns, control over agricultural pests and others (see, e.g.,
[61], [62], [63], [64], [65], [66], [104], [1] - [7]). In biological contexts it is
easier to estimate the probabilities for the total number of offspring, pik(u),
and the probabilities of mutation, uij, found within the MSBPM, than the
more abstract piααα(u) used in the multi-type Sevastyanov branching process.
The use of pik(u) and uij often provides us with a model with more clear
and straightforward interpretations.

Within this Chapter, we concentrate our efforts towards obtaining re-
sults for the MSBPM regarding quantities that are of interest in the context
of populations escaping extinction. Other authors, see [64], [65], [66], dis-
cuss similar topics to the ones explored within the dissertation, however,
their discussions is based on multi-type Bienaymé-Galton-Watson (BGW)
processes. The BGW is a discrete time branching process while the MS-
BPM is in continuous time - a more difficult theoretical setting. [61], [62],
[64], [65], explore populations escaping extinction under the assumption
that probabilities of mutation are small quantities. Such an assumption
is not made for obtaining the results for the MSBPM, making the model
more general in terms of possible applications. [61] and [62] assume Pois-
son and geometric offspring distributions for obtaining their results. The
results obtained for the MSBPM do not rely on particular assumptions
of offspring distributions. [64], [65] consider only one supercritical type,
in contrast the MSBPM can accommodate an arbitrary number of super-
critical types, in addition to that almost all of our results do not depend
on type criticality. Further, almost all results obtained for the MSBPM
do not rely on an assumption about the process being non-decomposable,
this assumption being central for many results valid for the classical multi-
type Sevastyanov branching process. We also note that our results for
the MSBPM do not rely on particular assumptions about the lifespan dis-
tributions among types. All mentioned features of the MSBPM and the
results obtained within the current Chapter, highlight the flexibility and
wide area of applicability of the MSBPM in modeling populations escaping
extinction. However, the MSBPM is not to be understood as exclusively
tied to biology - the model can be applied in other areas as well, provided
a proper interpretation of uij.

This Chapter is a continuation and generalization of our previous work
in [1] - [7] where the focus is on cancer modeling as well as modeling escape
from extinction. More specifically, with respect to our latest work in Vi-
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tanov & Slavtchova-Bojkova [7] (2022), the MSBPM provides an extension
in the following directions: 1) The MSBPM can be non-decomposable; 2)
The “emitting” class and the target class can intersect. The process dis-
cussed in [7] is a particular case of the MSBPM, that is, the decomposable
MSBPM (DMSBPM) explored in Subsection 2.3.1 of this dissertation. The
DMSBPM is of particular interest for modeling mutation as it describes an
irreversible path in the evolution of a population of particles. We note that
the development of cancer resistance towards medical treatment in many
situations can be attributed to biological mutations. Thus, the MSBPM
and its decomposable variants rise as well suited candidates for modeling
the risk of cancer reemerging even when an apparently successful treat-
ment is applied. We note that the work in the following Chapter 3 can
be considered as a further continuation of [1] - [7]. A real-world example
of a sequential decision problem (we discuss these problems in Chapter 3)
is the planning of cancer treatment administration throughout time with
respect to cost and benefit considerations. While the results from Chapter
3 are not yet ready for handling the nuances of this particular example,
Chapter 3 is to be understood as a step towards solving such problems.

Within this Chapter, we obtain systems of integral equations for the
probability generating functions (p.g.f.s) of the MSBPM as well as for the
probabilities of extinction within the MSBPM. We obtain p.g.f.s for the
production of particles from one class of particle types within the process
to another. For the general case the particles produced need not necessar-
ily be mutants, however, for particular cases of interest of the MSBPM,
such as the decomposable MSBPM (DMSBPM), we investigate only the
production of mutants. The DMSBPM can be used to model, for example,
a “beneficial” mutation that is reachable only after certain preceding mu-
tations have occurred (see Figure 2.12 is Subsection 2.3.1.1 and Figure 2
within [61]) or other relevant mutation schemes (Figure 2.11 on page 83).
We obtain the distribution of the random variable “time until first ’suc-
cessful’ particle”/“time until first ’successful’ mutant” within the MSBPM,
i.e., the time until the occurrence of a particle/mutant that initiates a non-
extincting process. We also obtain expressions for the hazard function that
is with respect to the occurrence of the first “successful” particle/mutant.
We stress that the proofs of the results within this Chapter do not depend
on assumptions whether a process is decomposable or not (although some
statements are valid only for a decomposable process), decomposability
is treated as a particular case where a particular set of probabilities of
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mutation contains only zeros.

In addition to obtaining results for the case where the MSBPM starts
with one particle of age 0, we also obtain novel variants of our results for
the case where the process starts with one particle of age a, a 6= 0. We
have so far not detected other authors that consider initial particles with
non-zero age. As can be seen from the various figures within the Chapter,
significant difference in the behavior of the investigated quantities can be
observed when we look at those t that are close to the beginning of the
process. This observation has the potential to be very useful with respect
future research stemming from Chapter 3, where optimization problems
related to decision making are investigated in the context of branching
processes.

All results obtained within the Chapter can be computed with the help
of the novel Numerical Scheme 1 and Numerical Scheme 2 constructed in
Subsection 2.2.7.

This Chapter is organized as follows. In Section 2.2, we define the
Multi–type Sevastyanov Branching Processes through probabilities of Mu-
tation between types (MSBPM) and obtain various systems of equations
for quantities of interest in the context of populations escaping extinc-
tion. More specifically, in Subsection 2.2.1 we define the MSBPM. We
then obtain the system of integral equations for the probability generating
functions (p.g.f.s) of the process in Subsection 2.2.2 as well as results the
probabilities for extinction within Subsection 2.2.3. Next, in Subsection
2.2.4 we investigate the p.g.f.s for the number of particles produced within
the process from a class of particle types towards all types within the pro-
cess. We then continue with results concerning the occurrence of the first
“successful” particle produced from any type within a class of types within
the MSBPM in Subsection 2.2.5. In Subsection 2.2.6 we obtain expres-
sions for the hazard function defined with respect to the occurrence of the
first “successful” particle. In Subsection 2.2.7 we provide two numerical
schemes that can be used for computing obtained systems of equations
throughout Chapter 2. We finish this Section with specifications of the
example MSBPMs that we use, in conjunction with the constructed nu-
merical schemes, for demonstrating results obtained within the Chapter.
In Section 2.3, we investigate two particular cases of the MSBPM. In Sub-
section 2.3.1, we consider the decomposable MSBPM (DMSBPM). Within
the Subsection, we obtain variants of the novel results for the MSBPM
that are valid for the DMSBPM and also explore some additional results
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that stem from the enforced decomposability. In Subsection 2.3.2, we con-
sider the particular case of the DMSBPM where there is no dependence of
particle reproduction from particle age. We write down the results for this
important case as corollaries of the results obtained previously.

2.2 Multi–type Sevastyanov Branching Pro-
cesses through probabilities of Mutation
between types (MSBPM)

The theoretical journey preceding the formulation of the Multi–type Sev-
astyanov Branching Processes through probabilities of Mutation between
types (MSBPM), defined in Subsection 2.2.1, can be traced with the grad-
ual expansion of the continuous-time model with two types discussed in [1]
(2016) via the extensions from [2] (2017), [3] (2017), [5] (2019), [6] (2019),
and [7] (2022). Notes about the contents of these papers can be seen at
the end of Section 1.2 in the Introduction. We highlighted the novelty
and features of the MSBPM as well as the relation of the process to previ-
ous work from other authors in Section 2.1. The current Section contains
novel, yet unpublished, results that extend our recent publication Vitanov
& Slavtchova-Bojkova [7] (March 2022).

In what follows, we will be providing figures that illustrate the results
we obtain. The formal specification of the example processes, to which
these figures correspond, is given in Subsection 2.2.8. For the purpose of
a more fluid exposition, some of the figures are given before Subsection
2.2.8. All computations within the dissertation are done via code written
in Python 3.8.13 [209]. The code uses the NumPy 1.20.3 [210] and SciPy
1.6.2 [211] libraries. Figures, that do not contain nodes, are created with
Matplotlib 3.5.1 [212]. Figures that contain nodes are created with yEd
3.20.1 [213].

2.2.1 Notation and definition of the MSBPM

We begin with the introduction of some of the notation and prerequisites
that we extensively use throughout the dissertation:

1. Let W = {1, 2, . . . , n}. W denotes the set of possible particle types.
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2. Denote δδδi =
(
δi1, . . . , δ

i
n

)>
, where δij = 0 if i 6= j and δij = 1 if i = j.

We will use δδδi to specify a single initial particle of type i that is of
age 0. For a single initial particle of type i that is of age a, a 6= 0, we

will use δδδia. Again, we set δδδia =
(
δi1, . . . , δ

i
n

)>
with δij = 0 if i 6= j and

δij = 1 if i = j, however, the subscript “a” in δδδia now specifies the age
of the initial particle.

3. We will be denoting the lifespan cumulative distribution function
(c.d.f.) at t for type i particles, of age 0, withGi(t). If a type i particle
is of age a, we will denote the corresponding c.d.f., conditioned on
the age of the particle, with Gi,a(t).

4. If X is some random variable (r.v.), we denote with X̃ an identical

and independent copy of X. Also, if XXX =
(
X1, . . . , Xn

)>
is a random

vector, then X̃XX is an identical and independent copy of XXX.

5. The probability generating function (p.g.f.) of a discrete r.v. X is
given by E

[
sX
]

=
∑∞

x=0 pxs
x, where |s| ≤ 1. The p.g.f. of a random

vector XXX =
(
X1, . . . , Xn

)>
, comprised of discrete r.v.s, is given by

E

[
n∏
i=1

sXi

i

]
=

∞∑
x1,...,xn=0

[
p(x1, . . . , xn)

n∏
i=1

sxii

]
,

where max{|s1|, . . . , |sn|} ≤ 1. The last requirement can be written
as |sss| ≤ 1, where sss = (s1, . . . , sn)

>.

We define the novel branching process of main interest within the dis-
sertation:
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Definition 2.1. Define the Multi-type Sevastyanov Branching Process
through probabilities of Mutation between types (MSBPM) as the multi-
type branching process satisfying:

1. Each particle type is uniquely associated with an integer from W and
conforms to:

(a) The lifespan of particles of type i, i ∈W, is modeled by a (contin-
uous) r.v. τi. The corresponding cumulative distribution function
(c.d.f.) is denoted by Gi(t) = P(τi ≤ t), also Gi(0

+) = 0.

(b) The number of particles in the offspring of a type i, i ∈ W,
particle of age a is modeled by a (discrete) r.v. νi(a). We de-
note with pik(a) the probability that a type i particle of age a has
k, k ∈ N0, offspring particles (regardless of their type). Thus,
νi(a) is specified by given

{
pik(a)

}∞
k=0

,
∑∞

k=0 pik(a) = 1. We de-

note the corresponding p.g.f. of νi(a) with fi(a; s) = E
[
sνi(a)

]
=∑∞

k=0 pik(a)sk, |s| ≤ 1.

2. Each daughter particle of a type i particle can be of any type j ∈W.
The type of a daughter particle is determined at birth. If i 6= j we say
that a “mutation” occurs. The probability that a daughter particle
of a type i particle is a type j particle is denoted by uij, uij ≥ 0,∑n

j=1 uij = 1. Further:

(a) If type i cannot have daughters of type j we consider the corre-
sponding uij as uij = 0.

(b) Particles are not allowed to change their type within their lifes-
pan.

3. All particles from all particle types evolve independently from one
another, irrespective of generation.

4. Formally
{
ZZZ(t) =

(
Z1(t), Z2(t), . . . , Zn(t)

)>}
t≥0

, where ZZZ(t) stands

for the MSBPM at t and Zi(t) is the number of particles of type i
that exist at t.
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Figure 2.1: A diagram of the MSBPM depicting all possible paths of mu-
tation within the process. Note that some of the uij may be equal to 0
depending on context. In such cases the corresponding arrows are removed
from the diagram. See Figure 2.11 and Figure 2.12 in Subsection 2.3.1.1
for two possible realizations of interest of the MSBPM.

From Definition 2.1, we can see the connection between the MSBPM
and the multi-type Sevastyanov branching process defined in Chapter VIII
of [8]. Through pik(a) and uij, as specified in Definition 2.1, we can con-
struct an analogue of piααα(a) (see Chapter VIII of [8] page 229 or Sub-
section 1.3.1) that has the same interpretation. This is done by setting∑n

j=1 αj = k and piααα(a) := pik(a) k!
α1!...αn!u

α1

i1 . . . u
αn
in .

Definition 2.1 bears no explicit or implicit assumptions about the de-
composability of the process. Decomposability can be modeled by setting
an appropriate combination of uij to 0 and can be avoided either by set-
ting all uij 6= 0 or by careful selection which uij are being set to 0. We
note that some of the results within [8] (e.g., Theorem 1.4 within the In-
troduction) rely on the Perron–Frobenius theorem (see Theorem 4 within
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the Appendix) and the calculation of Perron roots, which implies non-
decomposability. However, within the base definition of the classical multi-
type Sevastyanov branching process, given in Subsection 1.3.1 (or Chapter
VIII from [8]), nothing explicitly forbids for the branching process to be
decomposable. If we take the definition from [8] as having no implicit as-
sumption for decomposability, then the MSBPM (starting with a particle
of age 0) can be viewed as the multi-type Sevastyanov branching process
from [8] rewritten via probabilities of mutation. If we take the definition
from [8] as having an implicit assumption of non-decomposability, then
the MSBPM is not exactly the multi-type Sevastyanov branching process
from [8], however, it is still closely connected to it. Either way, we argue
that naming the process from Definition 2.1 as “Multi-type Sevastyanov
Branching Process through probabilities of Mutation between types” is
appropriate as it is evident that the MSBPM (when starting with one par-
ticle of age 0) enjoys all classical multi-type Sevastyanov branching process
theorems that do not rely on an assumption of non-decomposability. The
MSBPM also enjoys those results that do have this assumption, provided
that the non-zero uij within the MSBPM make it non-decomposable.

Throughout Chapter 2, we obtain various novel results for quantities of
interest in context of populations escaping extinction. The novelty of these
results is partially due to the fact that they are valid within the framework
set by the novel MSBPM. To the best of our knowledge, an in-depth in-
vestigation of the topic has not been done previously for a continuous-time
branching process model of such high sophistication as the MSBPM (here
we exclude our earlier work in [7] as well as preceding papers [1] - [6]).

We also explore the case where the MSBPM starts with a particle that
has non-zero age. To the best of our knowledge, this has also not been
done previously in a systematic manner for a continuous-time branching
process. Processes starting from particles with non-zero age are important
in the context of sequential decision problems (see Chapter 3), where at a
given decision epoch we have a collection of particles, some of them with
non-zero age, that will continue to evolve after we apply a decision. As we
will see, the analogues of our results for the case when the MSBPM starts
with a particle with non-zero age rely on the results for the case when the
process starts with a particle with age 0.

Below, whenever we consider a MSBPM with no dependence of the
reproductive capabilities of particles from their age, we will be referring
to the process as Multi-type Bellman-Harris Branching Process through
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probabilities of Mutation between types (MBHBPM).

2.2.2 Probability generating functions for the MS-

BPM

We turn our attention to the p.g.f.s of the MSBPM. Although there exists
a theorem in [8] (Theorem 1, Chapter VIII, page 231) about the p.g.f.s of
the multi-type Sevastyanov branching process that uses piααα(a), to the best
of our knowledge, there is no previously proven analogue of the theorem in
[8] that uses uij and pik(a).

Definition 2.2. We denote the p.g.f. of a MSBPM, starting with one
particle of type i, i ∈W, that is of age 0, with:

Fi(t;sss) = E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδi

)
,

where |sss| ≤ 1. We denote the p.g.f. of a MSBPM, starting with one particle
of type i, i ∈W, that is of age a, a 6= 0, with

Fi,a(t;sss) = E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

Theorem 2.1. The following system of integral equations holds for the
MSBPM, i ∈W:

(2.1) Fi(t; sss) = si
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirFr(t− y; sss)
)
dGi(y).

Proof. Let the MSBPM start with one particle of type i. We can expand
the expectation in Definition 2.2 as follows:

Fi(t;sss) = E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδi

)
= E

[
E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδi,

(
τi, νi(τi)

))]
.
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Note that the assumption of independent evolution of all particles from
all types allows us to consider each daughter particle, at its moment of
birth, as starting a new independent copy of the MSBPM.

The assumption of independent evolution proves useful when consider-
ing the possible outcomes with respect to τi:

1. The initial particle of type i, i ∈W, dies/reproduces at some moment
y, y > t. The probability for this event is

(
1 − Gi(t)

)
. In this case,

we have E
(∏

j∈W s
Zj(t)
j | ZZZ(0) = δδδi

)
= s1

i = si.

2. The initial particle of type i, i ∈W, dies and reproduces at moment
y, y ≤ t. In this case, for each offspring particle of type m ∈ W, we
obtain a new independent process starting at y with a corresponding

E
(∏
j∈W

s
Z̃j(t−y)
j | Z̃ZZ(0) = δδδm

)
.

As for νi(τi), we keep in mind that, if reproduction occurs before t, the
initial particle will have k, k ∈ N0, offspring particles. We further note
that the distribution of these k offspring particles, among types, follows
the multinomial distribution.

We are ready to proceed with the core of our proof:

Fi(t;sss) =

= E

[
E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδi,

(
τi, νi(τi)

))]
= si

(
1−Gi(t)

)
+

+

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!

∏
r∈W

ukrir ·

·
∏
m∈W

[
E
(∏
j∈W

s
Z̃j(t−y)
j | Z̃ZZ(0) = δδδm

)]km]
dGi(y)

= si
(
1−Gi(t)

)
+

+

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!
·
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·
∏
r∈W

[
uirE

(∏
j∈W

s
Z̃j(t−y)
j | Z̃ZZ(0) = δδδr

)]kr]
dGi(y)

= si
(
1−Gi(t)

)
+

+

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!
·
∏
r∈W

[
uirFr(t− y;sss)

]kr]dGi(y)

= si
(
1−Gi(t)

)
+

∫ t

0

∞∑
k=0

pik(y)
[∑
r∈W

uirFr(t− y;sss)
]k
dGi(y)

= si
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirFr(t− y;sss)
)
dGi(y).

In the expressions above whenever uir = 0, since there can be no mutations
from type i towards type r, we have that the corresponding kr is also kr = 0.
Thus, in this case, ukrir = 1.

Remark 2.1. It is evident that the steps of the proof of Theorem 2.1 do
not depend on the configuration of non-zero uij nor on sss.

Systems of integral equations for Fi(t;sss), corresponding to particular
cases of the MSBPM where some of the uij are 0 and/or where we are
interested only into particles from a particular class of types, can be im-
mediately obtained from Theorem 2.1. More specifically, this is achieved
by setting the necessary uij to 0 and also setting those coordinates of sss,
that do not correspond to types from the class of interest, to 1. We see
how this is done in Subsection 2.3.1 and Subsection 2.3.2.

Corollary 2.1. Let a MSBPM start with one particle of type i, i ∈W,
that is of age a, a 6= 0. Then

(2.2) Fi,a(t; sss) = si
(
1−Gi,a(t)

)
+

∫ t

0

fi

(
a+y;

∑
r∈W

uirFr(t−y; sss)
)
dGi,a(y).

Proof. The proof is completely analogous to the proof of Theorem 2.1, with
the exceptions being that when we consider the cases, with respect to the
moment of death of the initial particle of type i, we have Gi,a(t) instead of
Gi(t), and also when writing pik(·), we must take into account the age, a,
of the initial particle.
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Remark 2.2. We can see from Corollary 2.1 that Fi,a(t;sss), for a fixed
i, i ∈W, does not depend on Fk,a(t;sss), k ∈W. Fi,a(t;sss), however, depends
on equations (2.1).

We can obtain the expected number of particles, per type, that exist at
t within a MSBPM starting with one particle of type i, that is of age 0, via
differentiating Fi(t;sss). Note that this is different form (1.7), on page 19,
where we have the number of particles, per type, within the next generation
of a type i particle. For obtaining the expected number of particles of type
j at t, we calculate the left-hand, with respect to 111, partial derivative:

(2.3) E
(
Zj(t) | ZZZ(0) = δδδi

)
= lim

∆sj→0+

Fi(t; 111)− Fi(t; 111−∆sssj)

∆sj
,

where ∆sssj = (0, . . . ,∆sj, . . . , 0)>. The same line of reasoning is valid when
the initial particle is of age a, a 6= 0 - for obtaining the expected number
of particles of type j at t, we calculate the left-hand, with respect to 111,
partial derivative:

(2.4) E
(
Zj(t) | ZZZ(0) = δδδia

)
= lim

∆sj→0+

Fi,a(t; 111)− Fi,a(t; 111−∆sssj)

∆sj
.

Numerical Scheme 1 and Numerical Scheme 2, presented in Section 2.2.7,
can be applied to the numerators in the right sides of equations (2.3) and
(2.4) respectively, thus we will not develop these equations any further.

2.2.3 Probabilities of extinction for the MSBPM

Definition 2.3. We define the probability of extinction until time t of a
MSBPM beginning with one particle of type i, i ∈W, that is of age 0, as:

qi(t) = P

(∑
j∈W

Zj(t) = 0 | ZZZ(0) = δδδi

)
.

Similarly, if the initial particle is of age a, a 6= 0:

qi,a(t) = P

(∑
j∈W

Zj(t) = 0 | ZZZ(0) = δδδia

)
.
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Remark 2.3. If the event
{∑

j∈W Zj(t
∗) = 0 | ZZZ(0) = δδδi

}
has oc-

curred for some t∗, since there are no particles left in the process, the

event
{∑

j∈W Zj(t) = 0 | ZZZ(0) = δδδi
}

necessarily occurs for all t, t∗ < t.

Thus,
{∑

j∈W Zj(t1) = 0 | ZZZ(0) = δδδi
}
⊆
{∑

j∈W Zj(t2) = 0 | ZZZ(0) = δδδi
}

and qi(t1) ≤ qi(t2) for all t1 < t2, i ∈ W. Similarly, it is also true that
qi,a(t1) ≤ qi,a(t2) for all t1 < t2, i ∈W.

Theorem 2.2. The following system of integral equations holds for the
MSBPM, i ∈W:

(2.5) qi(t) =

∫ t

0

fi

(
y;
∑
r∈W

uirqr(t− y)
)
dGi(y).

Proof. We recognize that Fi(t;sss) are p.g.f.s and apply sss = 000 into the result
of Theorem 2.1.

Corollary 2.2. The following system of integral equations holds for the
MSBPM, i ∈W:

(2.6) qi,a(t) =

∫ t

0

fi

(
a+ y;

∑
r∈W

uirqr(t− y)
)
dGi,a(y).

Proof. We recognize that Fi,a(t;sss) are p.g.f.s and apply sss = 000 into the
result of Corollary 2.1.

Remark 2.4. We can see from Corollary 2.2 that qi,a(t), for a fixed i,
i ∈ W, does not depend on qk,a(t), k ∈ W. qi,a(t), however, depends on
equations (2.5).

Definition 2.4. We denote the probability of extinction of a MSBPM
beginning with one particle of type i, i ∈W, that is of age 0, as:

qi = P

(∑
j∈W

Zj(t) = 0 for some t > 0 | ZZZ(0) = δδδi

)
.

Similarly, if the initial particle is of age a, a 6= 0:

qi,a = P

(∑
j∈W

Zj(t) = 0 for some t > 0 | ZZZ(0) = δδδia

)
.
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Remark 2.5. As a consequence of Remark 2.3, we have the inclusion{∑
j∈W Zj(t

∗) = 0 | ZZZ(0) = δδδi
}
⊆
{∑

j∈W Zj(∞) = 0 | ZZZ(0) = δδδi
}

for

any fixed t∗. Thus, we can write

qi = P

(∑
j∈W

Zj(∞) = 0 | ZZZ(0) = δδδi

)
,

therefore qi = lim
t→∞

qi(t). The same reasoning provides us with

qi,a = P

(∑
j∈W

Zj(∞) = 0 | ZZZ(0) = δδδia

)
,

and qi,a = lim
t→∞

qi,a(t)

Before we give the next theorem, we note that we follow the interpre-
tation lim

y→∞
lim
t→∞

qi(t − y) = qi. This interpretation basically means that

whatever the moment of birth, y, of a type i particle, the independent pro-
cess that starts with this particle has infinite time to develop as t → ∞.
This interpretation is natural and more realistic than the alternative - if
we assume lim

y→∞
lim
t→∞

qi(t−y) = qi(b), where b is a constant, we will be, arbi-

trarily, setting the length of the time interval, b, that the process starting
from the particle at y →∞ has at its disposal to develop until t→∞. We
discuss an analogous situation, in more detail, in Remark 2.10. For now,
we give

Definition 2.5. We define lim
y→∞

lim
t→∞

qi(t − y) = qi and lim
y→∞

lim
t→∞

qi,a(t −
y) = qi,a.

Theorem 2.3. The following system of integral equations holds for the
MSBPM, i ∈W:

(2.7) qi =

∫ ∞
0

fi

(
y;
∑
r∈W

uirqr

)
dGi(y).

Proof. Due to considerations analogous to those in Remark 2.10, we adopt
Definition 2.5. Taking also into account the result of Theorem 2.2, as well
as Remark 2.5, the proof of the current theorem is analogous to the proof
of Case 1 within Theorem 2.5.
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Corollary 2.3. The following system of integral equations holds for the
MSBPM, i ∈W:

(2.8) qi,a =

∫ ∞
0

fi

(
a+ y;

∑
r∈W

uirqr

)
dGi,a(y).

Proof. Due to considerations analogous to those in Remark 2.10, we adopt
Definition 2.5. Taking also into account the result of Corollary 2.2, as well
as Remark 2.5, the proof of the current theorem is analogous to the proof
of Case 1 within Theorem 2.5.

Remark 2.6. We can see from Corollary 2.3 that qi,a, for a fixed i,
i ∈W, does not depend on qk,a, k ∈W. qi,a, however, depends on equations
(2.7).

Corollary 2.4. In the particular case where there is no dependence of
particle reproduction from particle age, i.e., fi(y; s) = fi(s), i ∈ W, the
systems of integral equations (2.7) and (2.8) become the following system
of equations, i ∈W:

(2.9) qi = qi,a = fi

(∑
r∈W

uirqr

)
.

Proof. To prove for qi, we take the result from Theorem 2.3 and drop the
dependence from y within fi:

qi =

∫ ∞
0

fi

(∑
r∈W

uirqr

)
dGi(y)

= fi

(∑
r∈W

uirqr

)∫ ∞
0

dGi(y)

= fi

(∑
r∈W

uirqr

)
.

To prove for qi,a, we take the result from Corollary 2.3 and drop the de-
pendence from y (and a) within fi.

qi,a =

∫ ∞
0

fi

(∑
r∈W

uirqr

)
dGi,a(y).

= fi

(∑
r∈W

uirqr

)∫ ∞
0

dGi,a(y)
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= fi

(∑
r∈W

uirqr

)
.

We complete this subsection with two figures that illustrate the results
obtained. We note that the calculations done for Figure 2.2 and Figure
2.3 at t = 5000 suggest that there could be a more general result than
Corollary 2.4.

Figure 2.2: An application of Theorem 2.3 - probabilities of extinction for
the example MSBPM (Table 2.11, Table 2.6) with mutation scheme “W
towards W” (Table 2.7) starting with one particle of age 0. Displayed
values are cut at t = 300 (h = 10−2) so that the dynamics of the different
qi(t) within [0, 300] is visible. The slightly above 1 criticality of the process
(see the preliminary analysis in Subsection 2.2.8.4) forces us to calculate
qi(t) for large t in order to obtain qi. At t = 5000 (h = 10−1), we have
q1 ≈ 0.96009038, q2 ≈ 0.99744155, q3 ≈ 0.99602606, q4 ≈ 0.99015646,
q5 ≈ 0.99464378, q6 ≈ 0.99762545, those values practically not changing
when calculating with t = 3500, 4000, 4500, 5000. The large values of qi are
in agreement with the low criticality of the process as per the preliminary
analysis of Subsection 2.2.8.4.
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Figure 2.3: An application of Corollary 2.3 - probabilities of extinction for
the example MSBPM (Table 2.11, Table 2.6) with mutation scheme “W
towards W” (Table 2.7) starting with one particle of age a = 15. Displayed
values are cut at t = 300 (h = 10−2) so that the dynamics of the different
qi(t) within [0, 300] is visible. We note that, with respect to Figure 2.2,
q1,15(t) is slightly more curved when compared to q1(t). At t = 5000 (h =
10−1), we have q1,15 ≈ 0.96008794, q2,15 ≈ 0.99743786, q3,15 ≈ 0.99602587,
q4,15 ≈ 0.99015601, q5,15 ≈ 0.99464342, q6,15 ≈ 0.99762525. The values of
qi,a(t) at, t = 5000, practically coincide with the values of qi(t) from Figure
2.2, although for smaller t this is not the case.

2.2.4 Number of particles produced from We towards

W within the MSBPM

Let We ⊆ W be a subset of types within the MSBPM (the subscript
“e” stands for “emit”). Note that we allow We = W. The number of
occurred mutations from We towards types in W \We is a crucial quantity
in the context of populations escaping extinction as the types that have
supercritical reproduction are usually modeled to be outside of We. We
investigate the production of mutants from We ⊂W towards W0 = W \We
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in Subsection 2.3.1 and Subsection 2.3.2. In the current Subsection, we
derive more general results. These general results concern general particle
production, that is, the particles produced from We can be of any type
within W and are not necessarily mutants. Particular cases of these results
that correspond to particle production from We towards any subclass of
W within the MSBPM, can be straightforwardly obtained by appropriately
setting uij = 0, appropriately setting coordinates of sss ot 1, and realizing
in some occasions that sX = 1 due to a relevant random variable X being
always 0.

Definition 2.6. Denote with IWe

j (t) the number of particles (mutant or
not) of type j, j ∈ W, produced from particles with types from We until t
within a MSBPM. We do not count the initial particle within any of the
IWe

j (t). For a MSBPM starting with one particle of type i, i ∈ W, that is

of age 0, denote with hWe

i (t;sss) the following p.g.f.

hWe

i (t;sss) = E
(∏
j∈W

s
IWej (t)

j | ZZZ(0) = δδδi
)
,

where |sss| ≤ 1. We denote the corresponding p.g.f., when the MSBPM starts
with one particle of type i, i ∈W, that is of age a, a 6= 0, with

hWe

i,a (t;sss) = E
(∏
j∈W

s
IWej (t)

j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

We note that unlike Fi(t;sss), which compactly contain information about
the number of particles, per type, that exist at t, hWe

i (t;sss) contain informa-
tion about the number of particles that have been produced until t (with
respect to t some of the produced particles may no longer exist).

Theorem 2.4. The following system of integral equations holds within
the MSBPM:

1. For i ∈We

(2.10)

hWe

i (t;sss) =
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirsrh
We
r (t− y;sss)

)
dGi(y).
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2. For i /∈We

(2.11) hWe

i (t;sss) =
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirh
We
r (t−y;sss)

)
dGi(y).

Proof. The proof of the theorem is similar in idea with the proof of The-
orem 2.1. We begin with expanding the expectation in Definition 2.6 as
follows:
For each i ∈W, we have

hWe

i (t;sss) = E
(∏
j∈W

s
IWej (t)

j | ZZZ(0) = δδδi
)

= E

[
E
(∏
j∈W

s
IWej (t)

j | ZZZ(0) = δδδi,
(
τi, νi(τi)

))]
.

Note that the assumption of independent evolution of all particles from
all types allows us to consider each daughter particle, at its moment of
birth, as starting a new independent copy of the MSBPM.

The possible outcomes, with respect to τi, are:

1. The initial particle of type i, i ∈W, dies/reproduces at some moment
y, y > t. The probability for this event is

(
1 − Gi(t)

)
. In this case,

we have E
(∏

j∈W s
IWej (t)

j | ZZZ(0) = δδδi
)

=
∏

j∈W s0
j = 1.

2. The initial particle of type i, i ∈W, dies and reproduces at moment
y, y ≤ t.

(a) If i /∈ We, then for each offspring particle of type m ∈ W, we
have a new independent process starting at y with a correspond-
ing

E
(∏
j∈W

s
ĨWej (t−y)

j |Z̃ZZ(0) = δδδm
)
.

(b) If i ∈ We, then for each offspring particle of type m ∈ W, we
obtain a new independent process starting at y with a corre-
sponding

E
(
s

(
1+ĨWem (t−y)

)
m ·

∏
j∈W,j 6=m

s
ĨWej (t−y)

j | Z̃ZZ(0) = δδδm
)

=
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= smE
(∏
j∈W

s
ĨWej (t−y)

j | Z̃ZZ(0) = δδδm
)
.

We now proceed with the core of the proof:

1. Let i ∈We. We have

hWe

i (t;sss) =

= E

[
E
(∏
j∈W

s
IWej (t)

j | ZZZ(0) = δδδi,
(
τi, νi(τi)

))]
=
(
1−Gi(t)

)
+

+

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!

∏
r∈W

ukrir ·

·
∏
m∈W

[
smE

(∏
j∈W

s
ĨWej (t−y)

j | Z̃ZZ(0) = δδδm
)]km]

dGi(y)

=
(
1−Gi(t)

)
+

+

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!
·

·
∏
r∈W

[
uirsrE

(∏
j∈W

s
ĨWej (t−y)

j | Z̃ZZ(0) = δδδr
)]kr]

dGi(y)

=
(
1−Gi(t)

)
+

+

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!
·
∏
r∈W

[
uirsrh

We
r (t− y;sss)

]kr]dGi(y)

=
(
1−Gi(t)

)
+

∫ t

0

∞∑
k=0

pik(y)
[∑
r∈W

uirsrh
We
r (t− y;sss)

]k
dGi(y)

=
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirsrh
We
r (t− y;sss)

)
dGi(y).

2. Now, let i /∈We. We have

hWe

i (t;sss) =
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= E

[
E
(∏
j∈W

s
IWej (t)

j | ZZZ(0) = δδδi,
(
τi, νi(τi)

))]
=
(
1−Gi(t)

)
+

+

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!

∏
r∈W

ukrir ·

·
∏
m∈W

[
E
(∏
j∈W

s
ĨWej (t−y)

j |Z̃ZZ(0) = δδδm
)]km]

dGi(y)

=
(
1−Gi(t)

)
+

+

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!
·

·
∏
r∈W

[
uirE

(∏
j∈W

s
ĨWej (t−y)

j |Z̃ZZ(0) = δδδr
)]kr]

dGi(y)

=
(
1−Gi(t)

)
+

+

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!
·

·
∏
r∈W

[
uirh

We
r (t− y;sss)

]kr]dGi(y)

=
(
1−Gi(t)

)
+

∫ t

0

∞∑
k=0

pik(y)
[∑
r∈W

uirh
We
r (t− y;sss)

]k
dGi(y)

=
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirh
We
r (t− y;sss)

)
dGi(y).

In the expressions above whenever uir = 0, since there can be no mutations
from type i towards type r, we have that the corresponding kr is also kr = 0.
Thus, in this case, ukrir = 1.

Remark 2.7. It is evident that the steps of the proof of Theorem 2.4 do
not depend on the configuration of non-zero uij nor on sss. This observa-
tion makes it straightforward to derive p.g.f.s for particle production within
particular cases of the MSBPM.
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We obtain the p.g.f.s for the entirety of the particle production within
a MSBPM via:

Corollary 2.5. Let We = W. The following system of integral equations
hold within the MSBPM, i ∈W:

(2.12) hWi (t;sss) =
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirsrh
W
r (t− y;sss)

)
dGi(y).

Proof. The proof follow immediately from the proof of Theorem 2.4 by
setting We = W.

Systems of integral equations for hWe

i (t;sss), corresponding to particular
cases of the MSBPM, where some of the uij are 0 and/or where we are
interested only in the production of particles from We towards a subclass
of W, can be immediately obtained from Theorem 2.4. More specifically,
this is achieved by setting the necessary uij to 0 and also setting those
coordinates of sss, that do not correspond to types from the target subclass
of W, to 1. We will see how this is done in Subsection 2.3.1 and Subsection
2.3.2.

Corollary 2.6. Let a MSBPM start with one particle of type i, i ∈W,
that is of age a, a 6= 0. Then the following system of integral equations
holds:

1. For i ∈We

(2.13)

hWe

i,a (t;sss) =
(
1−Gi,a(t)

)
+

∫ t

0

fi

(
a+y;

∑
r∈W

uirsrh
We
r (t−y;sss)

)
dGi,a(y).

2. For i /∈We

(2.14)

hWe

i,a (t;sss) =
(
1−Gi,a(t)

)
+

∫ t

0

fi

(
a+ y;

∑
r∈W

uirh
We
r (t− y;sss)

)
dGi,a(y).

Proof. The proof is completely analogous to the proof of Theorem 2.4, with
the exceptions being that when we consider the cases, with respect to the
moment of death of the initial particle of type i, we have Gi,a(t) instead of
Gi(t), and also when writing pik(·), we must take into account the age, a,
of the initial particle.
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Remark 2.8. We can see from Corollary 2.6 that hWe

i,a (t;sss), for a fixed

i, i ∈W, does not depend on hWe

k,a(t;sss), k ∈W. hWe

i,a (t;sss), however, depends

on equations (2.10) and (2.11).

Corollary 2.7. Let We = W. The following system of integral equations
hold within the MSBPM, i ∈W:

(2.15) hWi,a(t;sss) =
(
1−Gi,a(t)

)
+

∫ t

0

fi

(
a+y;

∑
r∈W

uirsrh
W
r (t−y;sss)

)
dGi,a(y).

Proof. The proof follows immediately from the proof of Corollary 2.6 by
setting We = W.

We can obtain the expected number of particles produced until t, per
type, within a MSBPM starting with one particle of type i, that is of
age 0, via differentiating hWe

i (t;sss). For obtaining the expected number of
produced particles of type j until t, we calculate the left-hand, with respect
to 111, partial derivative:

(2.16) E
(
IWe

j (t) | ZZZ(0) = δδδi
)

= lim
∆sj→0+

hWe

i (t; 111)− hWe

i (t; 111−∆sssj)

∆sj
,

where ∆sssj = (0, . . . ,∆sj, . . . , 0)>. The same line of reasoning is valid when
the initial particle is of age a, a 6= 0 - for obtaining the expected number
of produced particles of type j until t, we calculate the left-hand, with
respect to 111, partial derivative:

(2.17) E
(
IWe

j (t) | ZZZ(0) = δδδia

)
= lim

∆sj→0+

hWe

i,a (t; 111)− hWe

i,a (t; 111−∆sssj)

∆sj
.

Numerical Scheme 1 and Numerical Scheme 2, presented in Section 2.2.7,
can be applied to the numerators in the right sides of equations (2.16) and
(2.17) respectively, thus we will not develop these equations any further.

Next, we investigate IWe

j (t) and hWe

i (t;sss) as t→∞.

Definition 2.7. Denote with IWe

j the number of particles (mutants or
not) of type j, j ∈ W, produced from particles with types from We during
the whole MSBPM. We do not count the initial particle within any of the
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IWe

j . For a MSBPM starting with one particle of type i, i ∈ W, that is of

age 0, denote with hWe

i (sss) the following p.g.f.

hWe

i (sss) = E
(∏
j∈W

s
IWej
j | ZZZ(0) = δδδi

)
,

where |sss| ≤ 1. We denote the corresponding p.g.f., when the MSBPM starts
with one particle of type i, i ∈W, that is of age a, a 6= 0, with

hWe

i,a (sss) = E
(∏
j∈W

s
IWej
j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

Remark 2.9. From Definition 2.7 it is evident that IWe

j := lim
t→∞

IWe

j (t)

almost surely. Considering this and the fact that there is a one-to-one cor-
respondence between r.v.s and p.g.f.s, it follows that hWe

i (sss) = lim
t→∞

hWe

i (t;sss)

and hWe

i,a (sss) = lim
t→∞

hWe

i,a (t;sss).

Definition 2.8. We define lim
y→∞

lim
t→∞

IWe

j (t − y) = IWe

j . Consequently

lim
y→∞

lim
t→∞

hWe

i (t− y;sss) = hWe

i (sss) and lim
y→∞

lim
t→∞

hWe

i,a (t− y;sss) = hWe

i,a (sss).

Remark 2.10. Definition 2.8 is relevant for the proof we provide for
Theorem 2.5 below. We now give more details about our considerations.
Let us begin by investigating a MSBPM at some finite moment t, let a
particle be created within the process at some finite y, y ≤ t. The particle
created at y starts an independent copy process that has (finite) time inter-
val of length t − y in order to produce particles from We towards j ∈ W,
thus we work with ĨWe

j (t − y) - no problems to account for in this case.
Next, as per Remark 2.9, if we let t → ∞ while y remains fixed, we now
consider ĨWe

j = lim
t→∞

ĨWe

j (t − y) regardless of the value of our fixed y - in

this case as well no additional problems arise. However, if we let y → ∞
in addition to t → ∞, we now face the question of how to interpret, with
respect to t → ∞, a process that starts from a particle created at y → ∞.
If we set lim

y→∞
lim
t→∞

ĨWe

j (t − y) = ĨWe

j (b), where b ∈ [0,∞), we would, quite

arbitrarily, be giving the length of the time interval during which the copy
process can produce particles from We towards j ∈W. On the other hand,
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if we set lim
y→∞

lim
t→∞

ĨWe

j (t − y) = ĨWe

j , we would be stating that regardless

of the starting moment of the copy process, the length of the time inter-
val, with respect to t→∞, during which the copy process produces particles
from We towards j ∈W, is infinite. We deem that the latter interpretation
is more appropriate in the context of the MSBPM.

Theorem 2.5. The following system of equations holds within the MS-
BPM, i ∈W:

1. Let i ∈We. Then

(2.18) hWe

i (sss) =

∫ ∞
0

fi

(
y;
∑
r∈W

uirsrh
We
r (sss)

)
dGi(y).

2. Let i /∈We. Then

(2.19) hWe

i (sss) =

∫ ∞
0

fi

(
y;
∑
r∈W

uirh
We
r (sss)

)
dGi(y).

Proof.

1. Let i ∈We. We use the result of Theorem 2.4:

hWe

i (sss) = lim
t→∞

hWe

i (t;sss)

= lim
t→∞

(
1−Gi(t)

)
+ lim

t→∞

∫ t

0

fi

(
y;
∑
r∈W

uirsrh
We
r (t− y;sss)

)
dGi(y)

= lim
t→∞

∫ ∞
−∞
I[0,t](y) · fi

(
y;
∑
r∈W

uirsrh
We
r (t− y;sss)

)
dGi(y),

where I[0,t](y) is the indicator function of [0, t]. Since (for any i ∈We)
it is true that the absolute value of the integrand is ≤ 1, by virtue
of the dominated convergence theorem, we can pass the limit inside
the integral. Thus, taking into account Definition 2.8 (and Remark
2.10), we obtain

hWe

i (sss) =

∫ ∞
0

fi

(
y;
∑
r∈W

uirsrh
We
r (sss)

)
dGi(y).
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2. Let i /∈ We. The proof is completely analogous to the proof for the
case of i ∈W.

We obtain the p.g.f.s for the entirety of the particle production within
a MSBPM via:

Corollary 2.8. Let We = W. The following system of integral equations
holds within the MSBPM, i ∈W:

(2.20) hWi (sss) =

∫ ∞
0

fi

(
y;
∑
r∈W

uirsrh
W
r (sss)

)
dGi(y).

Proof. The proof follow immediately from the proof of Theorem 2.5 by
setting We = W.

Corollary 2.9. Let a MSBPM start with one particle of type i, i ∈W,
that is of age a, a 6= 0. Then the following system of integral equations
holds:

1. Let i ∈We. Then

(2.21) hWe

i,a (sss) =

∫ ∞
0

fi

(
a+ y;

∑
r∈W

uirsrh
We
r (sss)

)
dGi,a(y).

2. Let i /∈We. Then

(2.22) hWe

i,a (sss) =

∫ ∞
0

fi

(
a+ y;

∑
r∈W

uirh
We
r (sss)

)
dGi,a(y).

Proof. We take the results from Corollary 2.6 and follow the steps of the
proof of Theorem 2.5.

Remark 2.11. We can see from Corollary 2.9 that hWe

i,a (sss), for a fixed

i, i ∈W, does not depend on hWe

k,a(sss), k ∈W. hWe

i,a (sss), however, depends on

equations (2.18) and (2.19).

Corollary 2.10. Let We = W. The following system of integral equa-
tions holds within the MSBPM, i ∈W:

(2.23) hWi,a(sss) =

∫ ∞
0

fi

(
a+ y;

∑
r∈W

uirsrh
W
r (sss)

)
dGi,a(y).
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Proof. The proof follow immediately from the proof of Corollary 2.9 by
setting We = W.

Corollary 2.11. In the particular case where there is no dependence
of particle reproduction from particle age, i.e., fi(y; s) = fi(s), i ∈ W,
the system of integral equations (2.18), (2.19) from Theorem 2.5, and the
system of integral equations (2.21), (2.22) from Corollary 2.9, become the
following system of equations:

1. Let i ∈We. Then

(2.24) hWe

i (sss) = hWe

i,a (sss) = fi

(∑
r∈W

uirsrh
We
r (sss)

)
.

2. Let i /∈We. Then

(2.25) hWe

i (sss) = hWe

i,a (sss) = fi

(∑
r∈W

uirh
We
r (sss)

)
.

Proof. In order to complete the proof we must simply take the results from
Theorem 2.5 and Corollary 2.9, and we drop the dependence from y within
fi:

1. Let i ∈We. We have

hWe

i (sss) =

∫ ∞
0

fi

(∑
r∈W

uirsrh
We
r (sss)

)
dGi(y)

= fi

(∑
r∈W

uirsrh
We
r (sss)

)∫ ∞
0

dGi(y)

= fi

(∑
r∈W

uirsrh
We
r (sss)

)
and

hWe

i,a (sss) =

∫ ∞
0

fi

(∑
r∈W

uirsrh
We
r (sss)

)
dGi,a(y)

= fi

(∑
r∈W

uirsrh
We
r (sss)

)∫ ∞
0

dGi,a(y)

= fi

(∑
r∈W

uirsrh
We
r (sss)

)
.
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2. Let i /∈ We. The steps of the proof are completely analogous to the
steps of the proof for the case of i ∈We.

The results, displayed in Figure 2.4 and Figure 2.5 below, suggest that a
general theorem for hWe

i (sss) = hWe

i,a (sss) may exist. For Figure 2.4 and Figure
2.5 we have used We = {4, 5, 6}.

We further give Figure 2.6 and Figure 2.7 in order to demonstrate that
the result of Proposition 2.1 (Section 2.3.1.4) is generally not true for an
arbitrary W0. For Figure 2.6 and Figure 2.7 below, we have also used
We = {4, 5, 6} and with respect to Proposition 2.1 we consider W0 = W
and qqqW0

= qqq. We note that although largely similar, Figure 2.6 and Figure
2.7 depict slightly different behavior for t ∈ [0, 100].

Figure 2.4: An application of Theorem 2.4 for the example MSBPM (Table
2.11, Table 2.6) with mutation scheme “W towards W” (Table 2.7) with
We = {4, 5, 6} and starting with one particle of age 0. At t = 5000 (h =
10−1), we have hWe

1 (0.60.60.6) ≈ 0.74851297, hWe
2 (0.60.60.6) ≈ 0.94742302, hWe

3 (0.60.60.6) ≈
0.88973182, hWe

4 (0.60.60.6) ≈ 0.63076144, hWe
5 (0.60.60.6) ≈ 0.82006882, hWe

6 (0.60.60.6) ≈
0.78891955.
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Figure 2.5: An application of Corollary 2.6 - probabilities for extinction for
the example MSBPM (Table 2.11, Table 2.6) with mutation scheme “W
towards W” (Table 2.7) with We = {4, 5, 6} and starting with one particle
of age a = 15. At t = 5000 (h = 10−1), we have hWe

1,15(0.60.60.6) ≈ 0.74851297,

hWe
2,15(0.60.60.6) ≈ 0.94742315, hWe

3,15(0.60.60.6) ≈ 0.88973182, hWe
4,15(0.60.60.6) ≈ 0.63076144,

hWe
5,15(0.60.60.6) ≈ 0.82006882, hWe

6,15(0.60.60.6) ≈ 0.78891955.
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Figure 2.6: Calculations (h = 10−2) for sss = qqq for the example MS-
BPM (Table 2.11, Table 2.6) with mutation scheme “W towards W”
(Table 2.7) with We = {4, 5, 6}, W0 = W, and starting with one par-
ticle of age 0. qqq is the vector with probabilities of extinction calculated
for Figure 2.2, i.e., qqq = (0.96009038, 0.99744155, 0.99602606, 0.99015646,
0.99464378, 0.99762545)>. At t = 1500, we have hWe

1 (qqq) = 0.9068164,

hWe
2 (qqq) = 0.99088022, hWe

3 (qqq) = 0.98390969, hWe
4 (qqq) = 0.95394249,

hWe
5 (qqq) = 0.97383695, hWe

6 (qqq) = 0.98599877. Evidently, the statement

qqqi = hWe

i (qqq) for i ∈We is not true.
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Figure 2.7: Calculations (h = 10−2) for sss = qqq for the example MSBPM
(Table 2.11, Table 2.6) with mutation scheme “W towards W” (Table
2.7) with We = {4, 5, 6}, W0 = W, and starting with one particle of
age a = 15. qqq is the vector with probabilities of extinction calculated
for Figure 2.2, i.e., qqq = (0.96009038, 0.99744155, 0.99602606, 0.99015646,
0.99464378, 0.99762545)>. At t = 1500, we have hWe

1,15(qqq) = 0.90681099,

hWe
2,15(qqq) = 0.99088474, hWe

3,15(qqq) = 0.98390969, hWe
4,15(qqq) = 0.95394063,

hWe
5,15(qqq) = 0.97383717, hWe

6,15(qqq) = 0.98599877. Evidently, the statement

qqqi = hWe

i,a (qqq) for i ∈We is not true.

2.2.5 Time until occurrence of the first “successful”

particle produced from We towards W within

the MSBPM

We call a particle produced from We towards W “successful” if it initiates
a non-extincting MSBPM.
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Definition 2.9. Denote with TWe

W the r.v. that is the time until oc-
currence of the first “successful” particle produced from a type within We

towards a type within W in a MSBPM starting with some combination of
particles with types within We. Without loss of generality, we set the start-
ing number of particles per type r ∈ We to be kr and the starting number
of particles per type r ∈W \We to be 0. We denote the so specified initial
state of the process as ZZZ(0) = ααα∗. We define TWe

W =∞ as the event that no
“successful” particles have been produced from We towards W in a MSBPM
beginning with an initial state ααα∗. Thus, we may write TWe

W ∈(0,∞]. If the
MSBPM starts with a single particle of type i, i ∈ We, of age 0, we use
TWe

W,i as a shortcut notation. If the initial particle is of age a, a 6= 0, we

use TWe

W,i,a.

Theorem 2.6. Let the MSBPM start with kr particles per type r, r ∈
We. Let all particles form ααα∗ have age 0. The distribution of TWe

W has the
following properties:

(i) P
(
TWe

W > t | ZZZ(0) = ααα∗
)

=
∏

r∈We

[
hWe
r (t;qqq)

]kr
.

(ii) P
(
TWe

W =∞ | ZZZ(0) = ααα∗
)

=
∏

r∈We

[
hWe
r (qqq)

]kr
.

(iii) If at least one particle type within W is supercritical, we have

E
[
TWe

W | TWe

W <∞, ZZZ(0) = ααα∗
]

=

=
1

1−
∏

r∈We

[
hWe
r (qqq)

]kr ∫ ∞
0

[ ∏
r∈We

[
hWe
r (t;qqq)

]kr
−

−
∏
r∈We

[
hWe
r (qqq)

]kr]
dt,

if not, then the expectation does not exist.

Proof.
Property (i): Let the process start with a single particle of type i, i ∈We.

The event
{
TWe

W,i > t
}

means that if we consider the separate MSBPM

stemming from particles produced from We towards W, that have come
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into existence prior to t or at t, all those processes become extinct. Thus,
by the law of total probability:

P
(
TWe

W,i > t
)

=

=
∞∑
k=0

[ ∑
∑
r∈W kr=k

[
P
(
IWe

j (t) = kj, j ∈W | ZZZ(0) = δδδi
)
·
∏
m∈W

qkmm

]]
= hWe

i (t;qqq).

The result for ααα∗ follows from the assumption of independent evolution.
Property (ii): Let the process start with a single particle of type i, i ∈We.
We have

P
(
TWe

W,i =∞
)

= lim
t→∞

P
(
TWe

W,i > t
)

= lim
t→∞

hWe

i (t;qqq) = hWe

i (qqq).

The result for ααα∗ follows from the assumption of independent evolution.
Property (iii):

E
[
TWe

W | TWe

W <∞, ZZZ(0) = ααα∗
]

=

=

∫ ∞
0

[
1− P

(
TWe

W ≤ t|TWe

W <∞,ZZZ(0) = ααα∗
)]
dt

=

∫ ∞
0

[
1−

P
(
TWe

W ≤ t, TWe

W <∞|ZZZ(0) = ααα∗
)

1−
∏

r∈We

[
hWe
r (qqq)

]kr ]

=
1

1−
∏

r∈We

[
hWe
r (qqq)

]kr ∫ ∞
0

[
1−

∏
r∈We

[
hWe
r (qqq)

]kr
− P

(
TWe

W ≤ t|ZZZ(0) = ααα∗
)]
dt

=
1

1−
∏

r∈We

[
hWe
r (qqq)

]kr ∫ ∞
0

[
P
(
TWe

W > t|ZZZ(0) = ααα∗
)
−
∏
r∈We

[
hWe
r (qqq)

]kr]
dt

=
1

1−
∏

r∈We

[
hWe
r (qqq)

]kr ∫ ∞
0

[ ∏
r∈We

[
hWe
r (t;qqq)

]kr
−
∏
r∈We

[
hWe
r (qqq)

]kr]
dt.

Note that if each type from W is either subcritical or critical, then qqq = 111

and 1−
∏

r∈We

[
hWe
r (qqq)

]kr
= 0.
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Now that we have proven Theorem 2.6 for the notationally more simple
case of all particles in ααα∗ having age 0, we can more easily prove the more
general:

Theorem 2.7. Let the MSBPM start with kr particles per type r, r ∈
We, let the starting particles in ααα∗ have ages ar,c, c ∈ {1, 2, . . . , kr}, where
ar,c is the age of the c-th particle of type r. We allow ar,c to be 0. The

distribution of TWe

W has the following properties:

(i) P
(
TWe

W > t | ZZZ(0) = ααα∗
)

=
∏

r∈We

[∏kr
c=1 h

We
r,ar,c

(t;qqq)
]
.

(ii) P
(
TWe

W =∞ | ZZZ(0) = ααα∗
)

=
∏

r∈We

[∏kr
c=1 h

We
r,ar,c

(qqq)
]
.

(iii) If at least one particle type within W is supercritical, we have

E
[
TWe

W | TWe

W <∞, ZZZ(0) = ααα∗
]

=

=
1

1−
∏

r∈We

[∏kr
c=1 h

We
r,ar,c(qqq)

] ∫ ∞
0

[ ∏
r∈We

[ kr∏
c=1

hWe
r,ar,c

(t;qqq)
]
−

−
∏
r∈We

[ kr∏
c=1

hWe
r,ar,c

(qqq)
]]
dt,

if not, then the expectation does not exist.

Proof. Property (i): Let the process start with a single particle of type

i, i ∈ We, that is of age ai,c, c ∈ {1, 2, . . . , ki}. The event
{
TWe

W,i,ai,c
> t
}

means that if we consider the separate MSBPM stemming from particles
produced from We towards W, that have come into existence prior to t or at
t, all those processes become extinct. Thus, by the law of total probability:

P
(
TWe

W,i,ai,c
> t
)

=

=
∞∑
k=0

[ ∑
∑
r∈W kr=k

[
P
(
IWe

j (t) = kj, j ∈W | ZZZ(0) = δδδiai,c

)
·
∏
m∈W

qkmm

]]
= hWe

i,ai,c
(t;qqq).
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The result for ααα∗ follows from the assumption of independent evolution.
The proofs for Property (ii) and Property (iii) are analogous to the proofs
of the corresponding properties in Theorem 2.6.

We illustrate Theorem 2.6 and Theorem 2.7 with Figure 2.8 and Figure
2.9 below. In our experimental setup the age of the initial particle does not
play a significant role in the long run. However, there is some difference in
the behavior for t close to 0.

Figure 2.8: An application of Theorem 2.6 - calculations (h = 10−2) for sss = qqq for
the example MSBPM (Table 2.11, Table 2.6) with mutation scheme “W towards W”
(Table 2.7) with We = {4, 5, 6} starting with one particle of age 0. qqq is the vector with
probabilities of extinction calculated for Figure 2.2, i.e., qqq = (0.96009038, 0.99744155,

0.99602606, 0.99015646, 0.99464378, 0.99762545)>. P
(
TWe
W,i ≤ t

)
= 1 − hWe

i (t;qqq), we

can reuse the calculations done for Figure 2.6. At t = 1500, we have P
(
TWe
W,4 ≤ t

)
=

0.04605751, P
(
TWe
W,5 ≤ t

)
= 0.02616305, P

(
TWe
W,6 ≤ t

)
= 0.01400123. As t = 1500

is sufficiently large as to conclude that hWe
i (1500;qqq) = hWe

i (qqq), we also have P
(
TWe
W,4 =

∞
)

= hWe
4 (qqq) = 0.95394249, P

(
TWe
W,5 = ∞

)
= hWe

5 (qqq) = 0.97383695, P
(
TWe
W,6 = ∞

)
=

hWe
6 (qqq) = 0.98599877.
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Figure 2.9: An application of Theorem 2.7 - calculations (h = 10−2) for sss =
qqq for the example MSBPM (Table 2.11, Table 2.6) with mutation scheme
“W towards W” (Table 2.7) with We = {4, 5, 6} starting with one particle
of age a = 15. qqq is the vector with probabilities of extinction calculated
for Figure 2.2, i.e., qqq = (0.96009038, 0.99744155, 0.99602606, 0.99015646,

0.99464378, 0.99762545)>. P
(
TWe

W,i,15 ≤ t
)

= 1−hWe

i,15(t;qqq), we can reuse the

calculations done for Figure 2.7. At t = 1500, we have P
(
TWe

W,4,15 ≤ t
)

=

0.04605937, P
(
TWe

W,5,15 ≤ t
)

= 0.02616283, P
(
TWe

W,6,15 ≤ t
)

= 0.01400123.

As t = 1500 is sufficiently large as to conclude that hWe

i,15(1500;qqq) = hWe

i,15(qqq),

we also have P
(
TWe

W,4,15 =∞
)

= hWe
4,15(qqq) = 0.95394063, P

(
TWe

W,5,15 =∞
)

=

hWe
5,15(qqq) = 0.97383717, P

(
TWe

W,6,15 =∞
)

= hWe
6,15(qqq) = 0.98599877.
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2.2.6 Immediate risk of producing a “successful” par-

ticle from We towards W within the MSBPM

We will study the immediate risk of escape facilitated by the particles with
types within We via the following hazard function:

Definition 2.10. Define for an initial particle of type i, i ∈ We, the
following hazard function:

1. If the initial particle is of age 0

(2.26) gWe

W,i(t)dt = P
(
TWe

W,i ∈ (t, t+ dt] | TWe

W,i > t
)
.

2. If the initial particle if of age a, a 6= 0

(2.27) gWe

W,i,a(t)dt = P
(
TWe

W,i,a ∈ (t, t+ dt] | TWe

W,i,a > t
)
.

It is clear that for i ∈We

gWe

W,i(t)dt =
P
(
TWe

W,i ∈ (t, t+ dt], TWe

W,i > t
)

P
(
TWe

W,i > t
) .

Thus,

(2.28) gWe

W,i(t) =
F

(1)

TWe
W,i

(t)

P
(
TWe

W,i > t
) ,

where F
(1)

TWe
W,i

(t) is the probability density function of TWe

W,i. We can find the

c.d.f. of TWe

W,i via Theorem 2.6 and then approximate F
(1)

TWe
W,i

(t), for example,

with a forward difference.
It is evident that the same line of thought outlined above, applied for

a starting particle of age a, a 6= 0, leads us to

(2.29) gWe

W,i,a(t) =
F

(1)

TWe
W,i.a

(t)

P
(
TWe

W,i,a > t
) .
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A particular case of interest arises when the MSBPM is decomposable
into two classes - We and W0 = W \We, where we consider the parti-
cles produced from We towards W0 but W0 cannot produce particles to-
wards We. Within this setting it is beneficial to consider a modification
of the hazard function from Definition 2.10 that includes the condition
that at t, when we consider the immediate risk of escape, it is true that∑

c∈We
Zc(t) > 0. Indeed if there are no particles from We at t then there

can be no “successful” particles produced from We towards W0. For an
exploration of this case, see Subsection 2.3.1.6.

We illustrate the behavior of gWe

W,i(t) and gWe

W,i(t) in Figure 2.10. We take
note of the very small values on the vertical axis.

Figure 2.10: Calculations for equation (2.28), with h = 10−2, for the
example MSBPM (Table 2.11, Table 2.6) with mutation scheme “W
towards W” (Table 2.7) with We = {4, 5, 6} starting with one parti-
cle of age 0. At t = 1000, we have gWe

W,4(1000) = 2.71785074e − 06,

gWe

W,5(1000) = 1.28172130e− 06, gWe

W,6(1000) = 6.87975348e− 07.
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2.2.7 Numerical schemes for computing obtained sys-

tems of integral equations for the MSBPM

We organize the integral equations obtained so far into two tables. Table
2.1 contains all integral equations that are for a MSBPM starting with a
particle of age 0. We also put into Table 2.1 the result of Theorem 2.8,
i.e., equation (2.53), as it conforms to the same pattern. Let us denote

Bi(t;sss) =
∫ t

0 fi

(
y; Ci(t−y;sss)

)
dGi(y), where Ci(t−y;sss) is the correspond-

ing second argument of fi with respect to the entry of interest in Table
2.1. Through Numerical Scheme 1, derived below, we provide a general
numerical method immediately applicable to the integral equations listed.
We note that Numerical Scheme 1 can trace its origin to [2], where a model
consisting of two particle types is discussed.

Eq. Li(t;sss) Ai(t;sss) Bi(t;sss)

(2.1) Fi(t; sss) = si
(
1−Gi(t)

)
+

∫ t
0fi

(
y;
∑

r∈W uirFr(t− y; sss)
)
dGi(y) i ∈W

(2.5) qi(t) = 0 +
∫ t

0 fi

(
y;
∑

r∈W uirqr(t− y)
)
dGi(y) i ∈W

(2.7) qi = 0 +
∫∞

0 fi

(
y;
∑

r∈W uirqr

)
dGi(y) i ∈W

(2.10) hWe

i (t;sss) =
(
1−Gi(t)

)
+

∫ t
0fi

(
y;
∑

r∈W uirsrh
We
r (t− y;sss)

)
dGi(y) i ∈We

(2.11) hWe

i (t;sss) =
(
1−Gi(t)

)
+

∫ t
0fi

(
y;
∑

r∈W uirh
We
r (t− y;sss)

)
dGi(y) i /∈We

(2.12) hWi (t;sss) =
(
1−Gi(t)

)
+

∫ t
0fi

(
y;
∑

r∈W uirsrh
W
r (t− y;sss)

)
dGi(y) i ∈W

(2.18) hWe

i (sss) = 0 +
∫∞

0 fi

(
y;
∑

r∈W uirsrh
We
r (sss)

)
dGi(y) i ∈We

(2.19) hWe

i (sss) = 0 +
∫∞

0 fi

(
y;
∑

r∈W uirh
We
r (sss)

)
dGi(y) i /∈We

(2.20) hWi (sss) = 0 +
∫∞

0 fi

(
y;
∑

r∈W uirsrh
W
r (sss)

)
dGi(y) i ∈W

(2.53) Vi(t) = 0 +
∫ t

0 fi

(
y;
[∑

m∈We
uimVm(t− y)

]
+
[∑

r∈W0
uirqr

])
dGi(y) i ∈We

Table 2.1: Systems of integral equations for the case of a MSBPM starting
with a particle of age 0.

Numerical Scheme 1. Let Li(t;sss) be from Table 2.1. The correspond-
ing system of integral equations can be numerically computed via the fol-
lowing steps:

1. Let t = 0. For every i that participates in the corresponding system
of integral equations, compute the initial point Li(0;sss) = Ai(0;sss).
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2. Let t = kh, k = 1, 2, . . . , where h is the chosen step size. For every
i that participates in the corresponding system of integral equations
compute

Li(kh;sss) ≈ Ai(kh;sss)+
k∑
j=1

fi

(
jh; Ci

(
(k−j)h;sss

))
·
(
Gi

(
jh
)
−Gi

(
(j−1)h

))
.

Proof. We note that Bi(0;sss) = 0 regardless of Li(0;sss). Thus, the initial
point at k = 0, i.e., at t = 0, is given by Li(0;sss) = Ai(0;sss). Next, let
t = kh, k = 1, 2, . . . . For every i that participates in the corresponding
system of integral equations, we have

Li(kh;sss) = Ai(kh;sss) +Bi(kh;sss)

= Ai(kh;sss) +

∫ kh

0

fi

(
y; Ci(kh− y;sss)

)
dGi(y)

= Ai(kh;sss) +
k∑
j=1

∫ jh

(j−1)h

fi

(
y; Ci(kh− y;sss)

)
dGi(y).

Approximating the integrals in the sum through the right rectangle rule,
we obtain:

Li(kh;sss) ≈ Ai(kh;sss)+
k∑
j=1

fi

(
jh; Ci

(
(k−j)h;sss

))
·
(
Gi

(
jh
)
−Gi

(
(j−1)h

))
,

where we note that when computing Ci
(
(k − j)h;sss

)
, we use the already

obtained approximated values for the Lr
(
(k−j)h;sss

)
that are within Ci

(
(k−

j)h;sss
)
.

Table 2.2, contains all integral equations that are obtained for a MS-
BPM starting with a particle of age a, a 6= 0. We also put into Table 2.2
the result of Corollary 2.22, i.e., equation (2.54), as it conforms to the same

pattern. We denote Bi,a(t;sss) =
∫ t

0 fi

(
a+ y; Ci(t− y;sss)

)
dGi,a(y), however,

we stress that all Ci(t − y;sss) remain as in Table 2.1. Numerical Scheme
2, derived below, is applicable to all integral equations listed within Table
2.2.



68
Chapter 2. Multi-type continuous-time branching processes through probabilities of

mutation between types

Eq. Li,a(t;sss) Ai,a(t;sss) Bi,a(t;sss)

(2.2) Fi,a(t; sss) = si
(
1−Gi,a(t)

)
+

∫ t
0fi

(
a+ y;

∑
r∈W uirFr(t− y; sss)

)
dGi,a(y) i ∈W

(2.6) qi,a(t) = 0 +
∫ t

0 fi

(
a+ y;

∑
r∈W uirqr(t− y)

)
dGi,a(y) i ∈W

(2.8) qi,a = 0 +
∫∞

0 fi

(
a+ y;

∑
r∈W uirqr

)
dGi,a(y) i ∈W

(2.13) hWe

i,a (t;sss) =
(
1−Gi,a(t)

)
+

∫ t
0fi

(
a+ y;

∑
r∈W uirsrh

We
r (t− y;sss)

)
dGi,a(y) i ∈We

(2.14) hWe

i,a (t;sss) =
(
1−Gi,a(t)

)
+

∫ t
0fi

(
a+ y;

∑
r∈W uirh

We
r (t− y;sss)

)
dGi,a(y) i /∈We

(2.15) hWi,a(t;sss) =
(
1−Gi,a(t)

)
+

∫ t
0fi

(
a+ y;

∑
r∈W uirsrh

W
r (t− y;sss)

)
dGi,a(y) i ∈W

(2.21) hWe

i,a (sss) = 0 +
∫∞

0 fi

(
a+ y;

∑
r∈W uirsrh

We
r (sss)

)
dGi,a(y) i ∈We

(2.22) hWe

i,a (sss) = 0 +
∫∞

0 fi

(
a+ y;

∑
r∈W uirh

We
r (sss)

)
dGi,a(y) i /∈We

(2.23) hWi,a(sss) = 0 +
∫∞

0 fi

(
a+ y;

∑
r∈W uirsrh

W
r (sss)

)
dGi,a(y) i ∈W

(2.54) Vi,a(t) = 0 +
∫ t

0 fi

(
a+ y;

[∑
m∈We

uimVm(t− y)
]

+
[∑

r∈W0
uirqr

])
dGi,a(y) i ∈We

Table 2.2: Systems of integral equations for the case of a MSBPM starting
with a particle of age a, a 6= 0.

Numerical Scheme 2. Let Li,a(t;sss) be from Table 2.2. The corre-
sponding system of integral equations can be numerically computed via the
following steps:

1. Let t = 0. For every i that participates in the corresponding system
of integral equations, compute the initial point Li,a(0;sss) = Ai,a(0;sss).

2. Let t = kh, k = 1, 2, . . . , where h is the chosen step size. For every
i that participates in the corresponding system of integral equations
compute

Li,a(kh;sss) ≈

≈ Ai,a(kh;sss) +
k∑
j=1

fi

(
a+ jh; Ci

(
(k − j)h;sss

))
·
(
Gi,a

(
jh
)
−Gi,a

(
(j − 1)h

))
.

Proof. We note that Bi,a(0;sss) = 0 regardless of Li,a(0;sss). Thus, the initial
point at k = 0, i.e., at t = 0, is given by Li,a(0;sss) = Ai,a(0;sss). Next, let
t = kh, k = 1, 2, . . . . For every i that participates in the corresponding
system of integral equations, we have

Li,a(kh;sss) = Ai,a(kh;sss) +Bi,a(kh;sss)

= Ai,a(kh;sss) +

∫ kh

0

fi

(
a+ y; Ci(kh− y;sss)

)
dGi,a(y)
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= Ai,a(kh;sss) +
k∑
j=1

∫ jh

(j−1)h

fi

(
a+ y; Ci(kh− y;sss)

)
dGi,a(y).

Approximating the integrals in the sum through the right rectangle rule,
we obtain:

Li,a(kh;sss) ≈

≈ Ai,a(kh;sss) +
k∑
j=1

fi

(
a+ jh; Ci

(
(k − j)h;sss

))
·
(
Gi,a

(
jh
)
−Gi,a

(
(j − 1)h

))
,

where we note that when computing Ci
(
(k − j)h;sss

)
we use the approxi-

mated values for the Lr
(
(k− j)h;sss

)
that are within Ci

(
(k− j)h;sss

)
. These

approximated values are obtained via the application of Numerical Scheme
1 to the corresponding Lr from Table 2.1.

We note that our implementation of Numerical Scheme 1 and Numer-
ical Scheme 2, through which we have created the various figures found
throughout Chapter 2, is done in Python 3.8.13 [209] by using the NumPy
1.20.3 [210] and SciPy 1.6.2 [211] libraries.

The theoretical examination of the properties of Numerical Scheme 1
and Numerical Scheme 2 is hindered by two difficulties:

1. The schemes are applied onto Riemann–Stieltjes integrals.

2. When computing the approximations of Li(kh;sss) and Li,a(kh;sss),
within Ci

(
(k − j)h;sss

)
we use previously obtained values that are

already approximations.

At this point, we are not able to provide a formal expression for the error
of the schemes, however we can note the following considerations. First,
it is evident from the proofs that at k = 0 the solutions are exact. At
k = 1, since we use the results obtained at k = 0, it is clear that providing
smaller values for the step size h reduces the error for the computation at
k = 1, the same reasoning is then transferred for k = 2, 3 . . . . Thus, smaller
values of h do reduce the error within the schemes. Second, Ci

(
(k− j)h;sss

)
is within fi, which is a well behaved, with respect to its second argument,
p.g.f. with values in [0, 1]. Thus, using previously obtained approximated
values within Ci

(
(k− j)h;sss

)
is not expected to lead to big deviations from

the value of fi obtained with no approximations involved, especially for
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small h. Third, below we provide computed values for h = 10−1, h = 10−2,
and h = 10−3 for the probabilities for extinction of the example MSBPM,
starting with one particle of age 0, that is the result of using Table 2.11
and Table 2.6, with mutation scheme “W towards W” (i.e., Table 2.7):

t q1(t) q2(t) q3(t) q4(t) q5(t) q6(t)

0.5 5.44098264e-4 2.40789763e-2 3.41406470e-2 6.79641172e-5 6.07436015e-4 2.02888829e-2
1 0.00210551 0.06113254 0.06662528 0.00051097 0.00652419 0.03999338
5 0.04063088 0.26054039 0.27669537 0.03925087 0.21429338 0.17896027
20 0.27549534 0.54060739 0.59974974 0.45539839 0.66750029 0.51619682
50 0.52765209 0.74709026 0.79684177 0.71632983 0.85075051 0.79677134
100 0.6799033 0.86746777 0.90674343 0.85175863 0.92425437 0.92499966
300 0.85007145 0.97266778 0.97910123 0.95519509 0.97635273 0.98651223

Table 2.3: h = 10−1.

t q1(t) q2(t) q3(t) q4(t) q5(t) q6(t)

0.5 5.44098912e-4 2.40794063e-2 3.41410757e-2 6.79641172e-5 6.07436015e-4 2.02890491e-2
1 0.00210552 0.061138 0.06662699 0.00051097 0.00652419 0.03999408
5 0.04063234 0.26068007 0.27672715 0.03925087 0.21429357 0.17897572
20 0.27555781 0.54091172 0.60002973 0.45546386 0.66756675 0.51630158
50 0.52788389 0.74736755 0.7972164 0.71664095 0.85087272 0.79694082
100 0.68019356 0.86766493 0.90700384 0.85201402 0.92436393 0.92513654
300 0.85027741 0.97272033 0.9791542 0.95527849 0.97639584 0.98654333

Table 2.4: h = 10−2.

t q1(t) q2(t) q3(t) q4(t) q5(t) q6(t)

0.5 5.44098994e-4 2.40794623e-2 3.41411215e-2 6.79641172e-5 6.07436015e-4 2.02890669e-2
1 0.00210552 0.0611386 0.06662717 0.00051097 0.00652419 0.03999415
5 0.04063249 0.26069416 0.27673034 0.03925087 0.2142936 0.17897727
20 0.27556408 0.54094221 0.60005773 0.45547044 0.66757342 0.51631206
50 0.5279071 0.74739528 0.79725384 0.71667209 0.85088495 0.79695776
100 0.68022261 0.86768464 0.90702985 0.85203956 0.92437488 0.92515022
300 0.850298 0.97272558 0.97915948 0.95528682 0.97640015 0.98654643

Table 2.5: h = 10−3.

It is evident that differences between step sizes h = 10−1, h = 10−2, and
h = 10−3, are practically negligible. The same conclusion is true for a
process starting with one particle of age a, a 6= 0, and quantities other
than the probabilities of extinction. Fourth, theoretical conclusions such
as Proposition 2.1 are satisfied when applying Numerical Scheme 1 and
Numerical Scheme 2.

In terms of computational strain, we note that as k increases so do the
number of computations that we have to do in order to obtain the result for
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k. Thus, the numerical schemes slow down as they advance at large values
of k (respectively t). Using h = 10−3, or smaller h, is not advisable since
the algorithm slows down significantly. All of our observations indicate
that for computations with large t even a step size of h = 10−1 works
sufficiently well.

We take special note on the topic of calculating expectations via Nu-
merical Scheme 1 and Numerical Scheme 2. In the case of a MSBPM
with exploding population it is clear that in order to obtain the precise
value of the expectation for type i particles at t, we need to set ∆sj in
equation (2.3) (or (2.4), (2.16), (2.17)) sufficiently small. As the explod-
ing number of type i particles continues to increase with t, the necessary
∆sj eventually becomes so small so that our numerical schemes (or any
other non-specialized for such situations numerical method) cannot regis-
ter it adequately. Hence, care must be exercised upon inspecting calculated
expectations.

Remark 2.12. Note that when applying Numerical Scheme 1 to any
of the Li from Table 2.1, we must simultaneously calculate approximate
values for all Lr expressions that are in the corresponding system of integral
equations within Ci. As Numerical Scheme 2 uses the values computed by
Numerical Scheme 1, provided that we have these values, we can compute
Li,a from Table 2.2 individually. We further note that when calculating
for t, we also obtain the values at each previous point in the grid given by
t = kh, k = 0, 1, . . . .

Remark 2.13. Numerical Scheme 1 and Numerical Scheme 2 are ap-
plicable also to all results within Section 2.3 as the expressions obtained
within the Section are particular cases of the expressions within Table 2.1
and Table 2.2.

Remark 2.14. All limit quantities within this Chapter, obtained as t→
∞, can be numerically computed via Numerical Scheme 1 or Numerical
Scheme 2 by computing the appropriate equations from Table 2.1 or Table
2.2 for a sufficiently large t.

2.2.8 Setups of example processes

We now give the setups of the example processes, that we will use for
demonstrating our results within this Chapter. All of the processes given
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here consist of 6 types of particles. We employ in total 3 different mu-
tation schemes - one scheme ensures a non-decomposable process, while
the other two enforce decomposability. With respect to the dependence
of the reproduction capabilities of particles from particle age, we consider
a Bellman-Harris type dependence (i.e. the reproductive capabilities of
particles do not depend on age) and a Sevastyanov type dependence. This
makes for 6 different processes, irrespective of initial particle type and
initial particle age.

For simplicity of exposition, instead of an everywhere continuous depen-
dence from particle age, all of the reproduction p.g.f.s for the Sevastyanov
type dependence can be broken into 3 distinct p.g.f.s, each having a fixed
form within a predefined age interval specific for each particle type. This
choice can also be viewed as an emulation of a real-world scenario where
we may have to work with discrete estimations valid within some interval.

2.2.8.1 Lifespan distributions within the example processes

We will work with the following lifespan distributions:

1. Under Exp(λ), we understand the Exponential distribution with
probability density function (p.d.f.) of f(x;λ) = 1

λe
−x/λ, x ∈ [0,∞),

λ > 0.

2. Under Lognorm(µ, σ), we understand the Lognormal distribution

with p.d.f. of f(x;µ, σ) = 1
xσ
√

2π
exp
(
− (ln(x)−µ)2

2σ2

)
, x ∈ (0,∞),

µ ∈ (−∞,+∞), σ > 0.

3. Under Gamma(α, β) we understand the Gamma distribution with
p.d.f. of f(x;α, β) = βα

Γ(α)x
α−1e−βx, x ∈ (0,∞), α, β > 0.

Throughout all of our experiments each particle type will have the
lifespan distribution, specified in Table 2.6.
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Type i Lifespan
distribution

Expected
lifespan

Variance

Type 1 Gamma(2, 0.1) 20 200
Type 2 Lognorm(1.712, 1.415) 15.08 1455.89
Type 3 Exp(10) 10 100
Type 4 Gamma(3, 1/6) 18 108
Type 5 Lognorm(2.158, 0.9) 12.97 209.89
Type 6 Exp(17) 17 289

Table 2.6: Lifespan distributions per type.

2.2.8.2 Mutation schemes within the example processes

We will use the following mutation schemes:

1. Mutation scheme “W towards W”. This mutation scheme is illus-
trated in Figure 2.1. The corresponding matrix is irreducible (see
Definition 1) and the process is non-decomposable.

Type i ui1 ui2 ui3 ui4 ui5 ui6

Type 1 0.70 0.10 0.10 0.05 0.03 0.02
Type 2 0.01 0.90 0.03 0.02 0.03 0.01
Type 3 0.01 0.02 0.80 0.05 0.04 0.08
Type 4 0.10 0.05 0.05 0.60 0.10 0.10
Type 5 0.05 0.03 0.02 0.10 0.70 0.10
Type 6 0.01 0.05 0.03 0.06 0.05 0.80

Table 2.7: Mutation scheme “W towards W”.

2. Mutation scheme “We towards W0”, where We = {4, 5, 6}, W0 =
{1, 2, 3}. Types from We can produce types from W, however, types
from W0 can only produce types from W0. This mutation scheme
is illustrated in Figure 2.11. The corresponding matrix is reducible
(see Definition 1) and the process is decomposable.
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Type i ui1 ui2 ui3 ui4 ui5 ui6

Type 1 0.80 0.10 0.10 0.00 0.00 0.00
Type 2 0.10 0.90 0.00 0.00 0.00 0.00
Type 3 0.10 0.20 0.70 0.00 0.00 0.00
Type 4 0.10 0.05 0.05 0.60 0.10 0.10
Type 5 0.05 0.03 0.02 0.10 0.70 0.10
Type 6 0.01 0.05 0.03 0.06 0.05 0.80

Table 2.8: Mutation scheme “We towards W0”.

3. Mutation scheme “We towards W0,W0 forms a chain”, where We =
{4, 5, 6}, W0 = {1, 2, 3} and types from We can produce mutants
only towards Type 3 from W0, Type 3 can produce mutants only
towards Type 2, Type 2 can produce mutants only towards Type 1,
and Type 1 can only produce Type 1 particles. This mutation scheme
is illustrated in Figure 2.12. The corresponding matrix is reducible
(see Definition 1) and the process is decomposable.

Type i ui1 ui2 ui3 ui4 ui5 ui6

Type 1 1.00 0.00 0.00 0.00 0.00 0.00
Type 2 0.10 0.90 0.00 0.00 0.00 0.00
Type 3 0.00 0.15 0.85 0.00 0.00 0.00
Type 4 0.00 0.00 0.10 0.60 0.15 0.15
Type 5 0.00 0.00 0.05 0.10 0.70 0.15
Type 6 0.00 0.00 0.07 0.06 0.07 0.80

Table 2.9: Mutation scheme “We towards W0, W0 forms a chain”.
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2.2.8.3 Probability generating functions for the total number of
offspring within the example processes

We give two tables for the two types of dependence of reproduction capa-
bilities from particle age. In the Sevastyanov setting, we have deliberately
constructed the individual p.g.f.s, for each type, to become “weaker” in
terms of reproduction intensity, as particles become older. Arguably, such
a setting can be appropriate in biological contexts.

In both cases below, we let only Type 1 to be supercritical, while all
other types are subcritical or critical. This setting is of particular interest
for us, as it can be used to model the escape from extinction of a population
under stress, such as cancer cells under treatment (see [61], [62], [64], [65],
[7], [6]).

1. For the Bellman-Harris type dependence from particle age, we con-
sider the following p.g.f.s for the total number of offspring. Note that
we are actually considering a particular case of the MSBPM, i.e., a
Multi-type Bellman-Harris Branching Process through probabilities
of Mutation between types (MBHBPM). If the mutation scheme used
is either “We towards W0” or “We towards W0, W0 forms a chain”,
we have a decomposable MBHBPM, or DMBHBPM for short. The
DMBHBPM is investigated in Subsection 2.3.2.

Type i p.g.f.
Expected
offspring

Variance

Type 1 0.45s0 + 0.30s2 + 0.25s4 1.60 2.64
Type 2 0.54s0 + 0.46s2 0.92 0.99
Type 3 0.70s0 + 0.12s2 + 0.18s4 0.96 2.44
Type 4 0.75s0 + 0.25s4 1.00 3.00
Type 5 0.79s0 + 0.21s4 0.84 2.65
Type 6 0.70s0 + 0.20s2 + 0.10s4 0.80 1.76

Table 2.10: Probaility generating functions for the total number of particles
in the offspring of a Type i particle within an example Multi-type Bellman-
Harris Branching Process through probabilities of Mutation between types
(MBHBPM).

2. For the Sevastyanov type dependence from particle age, we consider
the following p.g.f.s. Note that in this particular configuration, the
expectation of the total number of particles in an offspring, as well as
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the variance, decrease as particles (regardless of type) become older.
Further, note that the within interval (0, X], where X varies from
particle type to particle type, the p.g.f.s are actually the ones within
Table 2.10. If the mutation scheme used is either “We towards W0”
or “We towards W0, W0 forms a chain”, we have a decomposable MS-
BPM, or DMSBPM for short. The DMSBPM is investigated within
Subsection 2.3.1.

Type i, τi Corresponding p.g.f.
Expected
offspring

Variance

Type 1, τ1 ∈ (0, 11] 0.45s0 + 0.30s2 + 0.25s4 1.60 2.64
Type 1, τ1 ∈ (11, 24] 0.45s0 + 0.35s2 + 0.20s4 1.50 2.35
Type 1, τ1 ∈ (24,∞] 0.45s0 + 0.40s2 + 0.15s4 1.40 2.04

Type 2, τ2 ∈ (0, 7] 0.54s0 + 0.46s2 0.92 0.99
Type 2, τ2 ∈ (7, 19] 0.57s0 + 0.43s2 0.86 0.98
Type 2, τ2 ∈ (19,∞] 0.60s0 + 0.40s2 0.80 0.96

Type 3, τ3 ∈ (0, 8] 0.70s0 + 0.12s2 + 0.18s4 0.96 2.44
Type 3, τ3 ∈ (8, 13] 0.64s0 + 0.26s2 + 0.1s4 0.92 1.79
Type 3, τ3 ∈ (13,∞] 0.56s0 + 0.44s2 0.88 0.99

Type 4, τ4 ∈ (0, 8] 0.75s0 + 0.25s4 1.00 3.00
Type 4, τ4 ∈ (8, 16] 0.64s0 + 0.24s2 + 0.12s4 0.96 1.96
Type 4, τ4 ∈ (16,∞] 0.55s0 + 0.45s2 0.90 0.99

Type 5, τ5 ∈ (0, 6] 0.79s0 + 0.21s4 0.84 2.65
Type 5, τ5 ∈ (6, 17] 0.80s0 + 0.20s4 0.80 2.56
Type 5, τ5 ∈ (17,∞] 0.81s0 + 0.19s4 0.76 2.46

Type 6, τ6 ∈ (0, 10] 0.70s0 + 0.20s2 + 0.10s4 0.80 1.76
Type 6, τ6 ∈ (10, 23] 0.73s0 + 0.17s2 + 0.10s4 0.74 1.73
Type 6, τ6 ∈ (23,∞] 0.75s0 + 0.15s2 + 0.10s4 0.70 1.71

Table 2.11: Probaility generating functions for the total number of par-
ticles in the offspring of a Type i particle within an example Multi-type
Sevastyanov Branching Process through probabilities of Mutation between
types (MSBPM).
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2.2.8.4 Preliminary analysis

Recall Theorem 1.4 (or Theorem 2 from [8], page 238). Evidently, the
probability generating functions discussed above do not allow particles to
have 0 offspring with probability 0. Thus, we may apply Theorem 1.4 and
gain some preliminary insight about the behavior of the example processes.
Note that we obtain probabilities piααα(u) necessary for computing ||Ai

j|| by

calculating piααα(a) = pik(a) k!
α1!...αn!u

α1

i1 . . . u
αn
in , as discussed below Definition

2.1.

1. For mutation scheme “W towards W”, assuming that a MSBPM
starts with particles of age 0, we can immediately apply Theorem
1.4.

(a) For Bellman-Harris type dependence on age, using Table 2.7
and Table 2.10, we calculate ||Ai

j||. We take into account that,

for Bellman-Harris, aij(u) = aij (see equation (1.7) on page 19).

||Ai
j|| =


1.12 0.16 0.16 0.08 0.048 0.032

0.0092 0.828 0.0276 0.0184 0.0276 0.0092
0.0096 0.0192 0.768 0.048 0.0384 0.0768

0.1 0.05 0.05 0.6 0.1 0.1
0.042 0.0252 0.0168 0.084 0.588 0.084
0.008 0.04 0.024 0.048 0.04 0.64


||Ai

j|| has a Perron root of 1.1655915. Hence, by Definition 1.1,
the process is supercritical.

(b) For Sevastyanov type dependence on age, we can exploit the
specifics of our example p.g.f.s for the total number of offspring
in order to save some computations. Indeed, as all particles
decrease their reproductive capabilities with age, we can take
the worst available p.g.f.s for the total number of offspring and
check the criticality of the corresponding MBHBPM - the criti-
cality of our MSBPM will be higher. Using the last entries, with
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respect to type, from Table 2.11, we calculate:

||Ai
j|| =


0.98 0.14 0.14 0.07 0.042 0.028
0.008 0.72 0.024 0.016 0.024 0.008
0.0088 0.0176 0.704 0.044 0.0352 0.0704
0.09 0.045 0.045 0.54 0.09 0.09
0.038 0.0228 0.0152 0.076 0.532 0.076
0.007 0.035 0.021 0.042 0.035 0.56,


with a Perron root of 1.02362078. Thus, by Definition 1.1, the
initially considered MSBPM supercritical. Note also that at
its best (i.e., considering the first entries, with respect to type,
from Table 2.11), the MSBPM corresponds to a criticality of
1.1655915.

We note that criticality of 1.1655915 is not very high, thus we expect
to see large values for the probabilities for extinction.

2. For mutation scheme “We towards W0”, assuming that a MSBPM
starts with particles of age 0, we proceed in the same way.

(a) For Bellman-Harris type dependence on age, using Table 2.8
and Table 2.10, we calculate the ||Ai

j||.

||Ai
j|| =


1.28 0.16 0.16 0.0 0.0 0.0
0.092 0.828 0.0 0.0 0.0 0.0
0.096 0.192 0.672 0.0 0.0 0.0
0.1 0.05 0.05 0.6 0.1 0.1

0.042 0.0252 0.0168 0.084 0.588 0.084
0.008 0.04 0.024 0.048 0.04 0.64

 ,

||Ai
j|| is reducible and we cannot take advantage of Theorem

1.4. However, we can concentrate our attention of the upper-
left corner of ||Ai

j||. We denote

||Ai
j||3×3 =

 1.28 0.16 0.16
0.092 0.828 0.0
0.096 0.192 0.672

 .

||Ai
j||3×3 is non-reducible and the branching process correspond-

ing to it benefits from Theorem 1.4. ||Ai
j||3×3 has a Perron root
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of 1.34000669, thus if the initial particle of the decomposable
MSBPM is from W0 = {1, 2, 3} the process observed is super-
critical.

(b) For Sevastyanov type dependence on age, again, we take the
worst available p.g.f.s for the total number of offspring and check
the criticality of the corresponding MBHBPM.

||Ai
j|| =


1.12 0.14 0.14 0.0 0.0 0.0
0.08 0.72 0.0 0.0 0.0 0.0
0.088 0.176 0.616 0.0 0.0 0.0
0.09 0.045 0.045 0.54 0.09 0.09
0.038 0.0228 0.0152 0.076 0.532 0.076
0.007 0.035 0.021 0.042 0.035 0.56


Again, we inspect

||Ai
j||3×3 =

 1.12 0.14 0.14
0.08 0.72 0.0
0.088 0.176 0.616

 .

||Ai
j||3×3 has a Perron root of 1.17447077, thus if the initial par-

ticle of the decomposable MSBPM is from W0 = {1, 2, 3} the
process observed is supercritical.

3. For mutation scheme “We towards W0, W0 forms a chain” with a MS-
BPM starting with a particles of age 0, we can evaluate the critically
only with respect to type 1. Regardless, we will give our computa-
tions for ||Ai

j||.

(a) For Bellman-Harris type dependence on age, using Table 2.9
and Table 2.10, we calculate the ||Ai

j||.

||Ai
j|| =


1.6 0.0 0.0 0.0 0.0 0.0

0.092 0.828 0.0 0.0 0.0 0.0
0.0 0.144 0.816 0.0 0.0 0.0
0.0 0.0 0.1 0.6 0.15 0.15
0.0 0.0 0.042 0.084 0.588 0.126
0.0 0.0 0.056 0.048 0.056 0.64


Evidently, if the process begins with one particle of type 1, we
will have a supercritical single-type Sevastyanov branching pro-
cess with criticality 1.6.
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(b) For Sevastyanov type dependence on age, we take the worst
available p.g.f.s for the total number of offspring and calculate
for the corresponding MBHBPM.

||Ai
j|| =


1.4 0.0 0.0 0.0 0.0 0.0
0.08 0.72 0.0 0.0 0.0 0.0
0.0 0.132 0.748 0.0 0.0 0.0
0.0 0.0 0.09 0.54 0.135 0.135
0.0 0.0 0.038 0.076 0.532 0.114
0.0 0.0 0.049 0.042 0.049 0.56


If the process begins with one particle of type 1, we will have
a supercritical single-type Sevastyanov branching process with
criticality 1.4.

2.3 Particular cases of the MSBPM

2.3.1 Decomposable Multi-type Sevastyanov Branch-

ing Process through probabilities of Mutation

between types (DMSBPM)

Within this Subsection, we focus on the Decomposable Multi-type Sev-
astyanov Branching Process through probabilities of Mutation between
types (DMSBPM). This process is the Decomposable Multi-type Sevastyanov
Branching Process (DMSBP) discussed in Vitanov & Slavtchova-Bojkova
[7] (2022), however, within the dissertation, we deem appropriate to add an
extra “M” at the end in order to stress that the use of mutation probabili-
ties within the definition of the process is a distinguishing feature. We will
show that the systems of equations for the DMSBPM (a.k.a. DMSBP), ob-
tained in [7], can be derived from the systems of equations for the MSBPM.
We pay special attention to the topic of immediate escape from extinction
as there is a particularity stemming from the fact that the DMSBPM is by
definition decomposable. We also provide the systems of equations for the
DMSBPM in the case of a process starting with a particle that is of age a,
a 6= 0. We note that the DMSBPM can be used to model an irreversible
path in the evolution of a population of particles.
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2.3.1.1 Definition of the DMSBPM

Recall that W = {1, 2, . . . , n}. In what follows, we let W0 ⊂ W and
We = W \W0. In order to avoid ambiguity, without loss of generality,
we impose the following ordering - if |W0| = b, then W0 = {1, 2, . . . , b}
and We = {b + 1, b + 2, . . . , n}. We denote sssW0

= (s1, . . . , sb, 1, . . . , 1)>

and qqqW0
= (q1, . . . , qb, 1, . . . , 1)>. In our considerations below, we assume

that the i-th coordinate of sss is always equal to the i-th coordinate of sssW0
,

i ∈ W0. Analogously, the i-th coordinate of qqq is always equal to the i-th
coordinate of qqqW0

, i ∈W0.

Definition 2.11. Define the Decomposable Multi-type Sevastyanov Branch-
ing Process through probabilities of Mutation between types (DMSBPM) as
the multi-type branching process satisfying:

1. Each particle type is uniquely associated with an integer from W and
conforms to:

(a) The lifespan of particles of type i, i ∈W, is modeled by a (contin-
uous) r.v. τi. The corresponding cumulative distribution function
(c.d.f.) is denoted by Gi(t) = P(τi ≤ t), also Gi(0

+) = 0.

(b) The number of particles in the offspring of a type i, i ∈ W,
particle of age a is modeled by a (discrete) r.v. νi(a). We de-
note with pik(a) the probability that a type i particle of age a has
k, k ∈ N0, offspring particles (regardless of their type). Thus,
νi(a) is specified by given

{
pik(a)

}∞
k=0

,
∑∞

k=0 pik(a) = 1. We de-

note the corresponding p.g.f. of νi(a) with fi(a; s) = E
[
sνi(a)

]
=∑∞

k=0 pik(a)sk, |s| ≤ 1.

2. Each daughter particle of a type i particle, i ∈We, can be of any type
j ∈ W, however, daughter particles of type i particles, i ∈ W0, can
only be of type j ∈W0. The type of a daughter particle is determined
at birth. If i 6= j we say that a “mutation” occurs. The probability
that a daughter particle of a type i particle is a type j particle is
denoted by uij, uij ≥ 0,

∑n
j=1 uij = 1. Further:

(a) If type i cannot have daughters of type j we consider the corre-
sponding uij as uij = 0.

(b) Particles are not allowed to change their type within their lifes-
pan.



82
Chapter 2. Multi-type continuous-time branching processes through probabilities of

mutation between types

3. All particles from all particle types evolve independently from one
another, irrespective of generation.

4. Formally
{
ZZZ(t) =

(
Z1(t), Z2(t), . . . , Zn(t)

)>}
t≥0

, where ZZZ(t) stands

for the DMSBPM at t and Zi(t) is the number of particles of type i
that exist at t.

For illustrative purposes, Figure 2.11 depicts the most general DMS-
BPM, while Figure 2.12 shows a particular case of interest in biology.

Figure 2.11: A diagram of the DMSBPM depicting all possible paths of
mutation within the process. Note that some of the uij may be equal to 0
depending on context. In such cases the corresponding arrows are removed
from the diagram.



2.3. Particular cases of the MSBPM 83

Figure 2.12: A particular case of the DMSBPM where type 1 is reachable
only after mutations leading to type k, type k − 1, . . . , type 2 occur (as-
suming the process begins with particles with types from We). A subcase
of special interest arises when type 1 is the only supercritical type - types
within We can be used to model an existing badly adapted population ap-
proaching extinction, while the mutation path towards type 1, provided by
the types within W0, leads to possible escape from extinction.

2.3.1.2 Probability generating functions for the DMSBPM

Recall Definition 2.2, valid for the MSBPM, where we had, i ∈W,

Fi(t;sss) = E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδi

)
,

and
Fi,a(t;sss) = E

(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδia

)
.

For a DMSBPM starting with one particle of type i, i ∈ W0, since there
can be no mutations from W0 towards We, the DMSBPM will have only
particles with types from W0. Thus, if i ∈W0, we effectively have

Fi(t;sss) = E
( ∏
j∈W0

s
Zj(t)
j | ZZZ(0) = δδδi

)
,
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and

Fi,a(t;sss) = E
( ∏
j∈W0

s
Zj(t)
j | ZZZ(0) = δδδia

)
,

which is the same as substituting sss = sssW0
into Fi(t; ·) and Fi,a(t; ·) from

Definition 2.2:

Fi(t;sssW0
) = E

( ∏
j∈W0

s
Zj(t)
j | ZZZ(0) = δδδi

)
,

Fi,a(t;sssW0
) = E

( ∏
j∈W0

s
Zj(t)
j | ZZZ(0) = δδδia

)
.

In the context of the DMSBPM, for clarity and convenience, we give
the following definition.

Definition 2.12. Given Definition 2.2, denote the p.g.f. of a DMSBPM
starting with one particle of type i ∈W as

1. For i ∈We

Fi(t;sss) = E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδi

)
,

Fi,a(t;sss) = E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

2. For i ∈W0, due to the fact that there can be no mutations from W0

towards We

Fi(t;sssW0
) = E

( ∏
j∈W0

s
Zj(t)
j | ZZZ(0) = δδδi

)
,

Fi,a(t;sssW0
) = E

( ∏
j∈W0

s
Zj(t)
j | ZZZ(0) = δδδia

)
,

where |sssW0
| ≤ 1.

Corollary 2.12. For the DMSBPM, the following system of integral
equations holds:
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1. For i ∈We

Fi(t; sss) = si
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
[ ∑
m∈We

uimFm(t− y; sss)
]
+

+
[ ∑
r∈W0

uirFr(t− y; sssW0
)
])
dGi(y).

(2.30)

2. For i ∈W0

(2.31)

Fi(t; sssW0
) = si

(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W0

uirFr(t− y; sssW0
)

)
dGi(y).

Proof. Considering Remark 2.1, the proof follows directly from the result
of Theorem 2.1. For i ∈We, by virtue of Definition 2.12, we can decompose
the second argument of fi from equation (2.1)

Fi(t; sss) = si
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirFr(t− y; sss)
)
dGi(y)

into

Fi(t; sss) = si
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
[ ∑
m∈We

uimFm(t− y; sss)
]
+

+
[ ∑
r∈W0

uirFr(t− y; sssW0
)
])
dGi(y).

For i ∈W0, in addition to the decomposition above, we can further remove∑
m∈We

uimFm(t − y; sss), since for all m ∈ We, we have uim = 0 because
there can be no mutations from W0 towards We. Thus, for i ∈ W0, we
have

Fi(t; sssW0
) = si

(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W0

uirFr(t− y; sssW0
)

)
dGi(y).
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Corollary 2.13. For the DMSBPM, the following system of integral
equations holds:

1. For i ∈We

Fi,a(t; sss) = si
(
1−Gi,a(t)

)
+

∫ t

0

fi

(
a+ y;

[ ∑
m∈We

uimFm(t− y; sss)
]
+

+
[ ∑
r∈W0

uirFr(t− y; sssW0
)
])
dGi,a(y).

2. For i ∈W0

Fi,a(t; sssW0
) = si

(
1−Gi,a(t)

)
+

∫ t

0

fi

(
a+y;

∑
r∈W0

uirFr(t−y; sssW0
)

)
dGi,a(y).

Proof. The proof is analogous to the proof of Corollary 2.12, however we
use as a starting point for the proof the result of Corollary 2.1.

Expectations for Zi(t), i ∈W, can be handled as in Subsection 2.2.2.

2.3.1.3 Probabilities of extinction for the DMSBPM

Within the DMSBPM the definitions for qi(t), qi,a(t) (Definition 2.3) and
qi, qi,a (Definition 2.4) do not need additional elaborations. The same is
true for Remark 2.3, Remark 2.5, and Definition 2.5, which remain in effect
for the DMSBPM.

Corollary 2.14. The following system of integral equations holds for the
DMSBPM:

1. For i ∈We

(2.32)

qi(t) =

∫ t

0

fi

(
y;
[ ∑
m∈We

uimqm(t− y)
]

+
[ ∑
r∈W0

uirqr(t− y)
])
dGi(y),

Which can be rewritten as

qi(t) =

∫ t

0

fi

(
y;
∑
r∈W

uirqr(t− y)
)
dGi(y).
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2. For i ∈W0

(2.33) qi(t) =

∫ t

0

fi

(
y;
∑
r∈W0

uirqr(t− y)
)
dGi(y).

Proof. We recognize that Fi(t;sss) and Fi(t;sssW0
) are p.g.f.s and apply sss = 000

into the result of Corollary 2.12.

Corollary 2.15. The following system of integral equations holds for the
DMSBPM:

1. For i ∈We

(2.34)

qi,a(t) =

∫ t

0

fi

(
a+y;

[ ∑
m∈We

uimqm(t−y)
]
+
[ ∑
r∈W0

uirqr(t−y)
])
dGi,a(y),

Which can be rewritten as

qi,a(t) =

∫ t

0

fi

(
a+ y;

∑
r∈W

uirqr(t− y)
)
dGi,a(y).

2. For i ∈W0

(2.35) qi,a(t) =

∫ t

0

fi

(
a+ y;

∑
r∈W0

uirqr(t− y)
)
dGi,a(y).

Proof. We recognize that Fi,a(t;sss) and Fi(t;sssW0
) are p.g.f.s and apply sss = 000

into the result of Corollary 2.13.

It is also easy to see that:

Corollary 2.16. The following system of equations holds for the DMS-
BPM:

1. For i ∈We

(2.36) qi =

∫ ∞
0

fi

(
y;
[ ∑
m∈We

uimqm

]
+
[ ∑
r∈W0

uirqr

])
dGi(y).

Which can be rewritten as

qi =

∫ ∞
0

fi

(
y;
∑
r∈W

uirqr

)
dGi(y).
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2. For i ∈W0

(2.37) qi =

∫ ∞
0

fi

(
y;
∑
r∈W0

uirqr

)
dGi(y).

Proof. The proof follows from the result of Theorem 2.3. For i ∈ W0, we
have set all uij = 0, j ∈We.

Corollary 2.17. The following system of equations holds for the DMS-
BPM:

1. For i ∈We

(2.38) qi,a =

∫ ∞
0

fi

(
a+ y;

[ ∑
m∈We

uimqm

]
+
[ ∑
r∈W0

uirqr

])
dGi,a(y).

Which can be rewritten as

qi,a =

∫ ∞
0

fi

(
a+ y;

∑
r∈W

uirqr

)
dGi,a(y).

2. For i ∈W0

(2.39) qi,a =

∫ ∞
0

fi

(
a+ y;

∑
r∈W0

uirqr

)
dGi,a(y).

Proof. The proof follows from the result of Corollary 2.3. For i ∈ W0, we
have set all uij = 0, j ∈We.

For our final result concerting probabilities of extinction, we direct the
reader to Proposition 2.1 within Subsection 2.3.1.4. This results is not
necessarily true for a general MSBPM as we saw from Figure 2.6 and
Figure 2.7 in Subsection 2.2.4.

We illustrate the behavior of the probabilities of extinction of the DMS-
BPM for mutation scheme “We towards W0” (Table 2.8) in Figure 2.13 and
2.14, as well as for mutation scheme “We towards W0,W0 forms a chain”
(Table 2.9) in Figure 2.15 and Figure 2.16.
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Figure 2.13: An application of Corollary 2.14 - probabilities for extinction
of the example DMSBPM (Table 2.11, Table 2.6) with mutation scheme
“We towards W0” (Table 2.8) starting within one particle of age 0. Dis-
played values are cut at t = 300 (h = 10−2) so that the dynamics of the
different qi(t) within [0, 300] is visible. In accordance with the preliminary
analysis from Subsection 2.2.8.4, if the DMSBPM starts with a particle
with type from W0, the criticality of the process is higher in comparison
with the case of Figure 2.2, thus q1, q2, and q3, are smaller in compari-
son with Figure 2.2. More specifically, at t = 1500 (h = 10−1), we have
q1 ≈ 0.77206078, q2 ≈ 0.94263439, q3 ≈ 0.92948039, q4 ≈ 0.93797045,
q5 ≈ 0.96806635, q6 ≈ 0.98125857.
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Figure 2.14: An application of Corollary 2.15 - probabilities of extinction
for the example DMSBPM (Table 2.11, Table 2.6) with mutation scheme
“We towards W0” (Table 2.8) starting within one particle of age a = 15.
Displayed values are cut at t = 300 (h = 10−2) so that the dynamics of
the different qi(t) within [0, 300] is visible. We note that, with respect to
Figure 2.13, q1,15(t) is slightly more curved when compared to q1(t). At
t = 1500 (h = 10−1), we have q1,15 ≈ 0.77206255, q2,15 ≈ 0.94251251, q3,15 ≈
0.92948039, q4,15 ≈ 0.93797146, q5,15 ≈ 0.96806622, q6,15 ≈ 0.98125857.
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Figure 2.15: An application of Corollary 2.14 - probabilities for extinction
of the example DMSBPM (Table 2.11, Table 2.6) with mutation scheme
“We towards W0,W0 forms a chain” (Table 2.9) starting within one particle
of age 0. Displayed values are cut at t = 300 (h = 10−2) so that the
dynamics of the different qi(t) within [0, 300] is visible. Unlike the case in
Figure 2.13, here type 1 does not have to “share” offspring with other types,
leading to q1 being smaller. Type 2, being one mutation away from type 1,
has the second smallest qi. Type 3, being two mutations away from type
1 has the third smallest qi. More specifically, at t = 1500 (h = 10−1), we
have q1 ≈ 0.63701453, q2 ≈ 0.91447893, q3 ≈ 0.95914728, q4 ≈ 0.98841861,
q5 ≈ 0.99346401, q6 ≈ 0.99375408.
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Figure 2.16: An application of Corollary 2.15 - probabilities of extinction
for the example DMSBPM (Table 2.11, Table 2.6) with mutation scheme
“We towards W0,W0 forms a chain” (Table 2.9) starting within one particle
of age a = 15. Displayed values are cut at t = 300 (h = 10−2) so that
the dynamics of the different qi(t) within [0, 300] is visible. With respect
to Figure 2.15, the evolution of q2,15(t) in [0, 150] is significantly altered
by the age of the initial particle. Regardless, we see that for large t all
qi,15 approach the values of the corresponding qi from Figure 2.15. At
t = 1500 (h = 10−1), we have q1,15 ≈ 0.63701453, q2,15 ≈ 0.91436551, q3,15 ≈
0.95914728, q4,15 ≈ 0.98841889, q5,15 ≈ 0.99346397, q6,15 ≈ 0.99375408.

2.3.1.4 Number of mutants produced from We towards W0 within
the DMSBPM

If a population consists only of particles with types from We and all particle
types from We are subcritical or critical, the only hope for the population
to escape extinction is to produce a mutant towards W0 (assuming that
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at least one type from W0 is supercritical). Thus, counting the number of
mutations from We towards W0 is of primary importance in this setting.
We already have the general Definition 2.6, where we count all particles
produced (mutant or not) from We towards W, now, within the DMSBPM,
we will be interested into counting only the mutants produced from We

towards W0. From Definition 2.6, we have

hWe

i (t;sss) = E
(∏
j∈W

s
IWej (t)

j | ZZZ(0) = δδδi
)

and

hWe

i,a (t;sss) = E
(∏
j∈W

s
IWej (t)

j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1. We can obtain the information regarding mutants produced
from We towards W0 by setting sss = sssW0

. Further, it is clear that if the
initial particle is of type i, i ∈W0, then no mutants from We towards W0

can occur, hence, for this case, hWe

i (t;sss) = hWe

i,a (t;sss) = 1. Following these
considerations, in the context of the DMSBPM, for clarity and convenience,
we give the following definition.

Definition 2.13. Given Definition 2.6, for a DMSBPM starting with
one particle of type i, i ∈W, denote the p.g.f.s for the numbers of mutants
produced from We towards W0, until t, as

1. For i ∈We

hWe

i (t;sssW0
) = E

( ∏
j∈W0

s
IWej (t)

j | ZZZ(0) = δδδi
)
,

hWe

i,a (t;sssW0
) = E

( ∏
j∈W0

s
IWej (t)

j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

2. For i ∈W0, due to the fact that there can be no mutations from W0

towards We

hWe

i (t;sssW0
) = hWe

i,a (t;sssW0
) = 1.

Corollary 2.18. For the DMSBPM the following system of integral
equations holds:
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1. For i ∈We

hWe

i (t;sssW0
) =

(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
[ ∑
m∈We

uimh
We
m (t− y;sssW0

)
]
+

+
[ ∑
r∈W0

uirsr

])
dGi(y).

(2.40)

2. For i ∈W0

hWe

i (t;sssW0
) = 1.

Proof. From Definition 2.13, we know that hWe

i (t;sssW0
) = 1, for i ∈ W0.

Recall Theorem 2.4 and Remark 2.1 (the statement of Remark 2.1 is valid
with respect to Theorem 2.4 as well). From Theorem 2.4 we have equations
(2.10)

hWe

i (t;sss) =
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirsrh
We
r (t− y;sss)

)
dGi(y), i ∈We.

Substituting sss = sssW0
yields

hWe

i (t;sssW0
) =

(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
[ ∑
m∈We

uimh
We
m (t− y;sssW0

)
]
+

+
[ ∑
r∈W0

uirsrh
We
r (t− y;sssW0

)
])
dGi(y), i ∈We.

Taking into account that hWe

i (t;sssW0
) = 1, i ∈W0, we obtain the statement

of the theorem.

Corollary 2.19. For the DMSBPM the following system of integral
equations holds:

1. For i ∈We

hWe

i,a (t;sssW0
) =

(
1−Gi,a(t)

)
+

∫ t

0

fi

(
a+ y;

[ ∑
m∈We

uimh
We
m (t− y;sssW0

)
]
+

+
[ ∑
r∈W0

uirsr

])
dGi,a(y).

(2.41)
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2. For i ∈W0

hWe

i,a (t;sssW0
) = 1.

Proof. The proof is analogous to the proof of Corollary 2.18. During the
proof, we use the result of Corollary 2.6.

Definition 2.14. Given Definition 2.7, for a DMSBPM starting with
one particle of type i, i ∈W, denote the p.g.f.s for the numbers of mutants
produced from We towards W0, during the entire process, as

1. For i ∈We

hWe

i (sssW0
) = E

( ∏
j∈W0

s
IWej
j | ZZZ(0) = δδδi

)
,

hWe

i,a (sssW0
) = E

( ∏
j∈W0

s
IWej
j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

2. For i ∈W0, due to the fact that there can be no mutations from W0

towards We

hWe

i (sssW0
) = hWe

i,a (sssW0
) = 1.

Remark 2.15. As a consequence of Remark 2.8, we also have that
lim
y→∞

lim
t→∞

hWe

i (t−y;sssW0
) = hWe

i (sssW0
) and lim

y→∞
lim
t→∞

hWe

i,a (t−y;sssW0
) = hWe

i,a (sssW0
).

Corollary 2.20. The following system of equations holds within the
DMSBPM, i ∈W:

1. For i ∈We

hWe

i (sssW0
) =

∫ ∞
0

fi

(
y;
[ ∑
m∈We

uimh
We
m (sssW0

)
]

+
[ ∑
r∈W0

uirsr

])
dGi(y).

(2.42)

2. For i ∈W0

(2.43) hWe

i (sssW0
) = 1.
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Proof. From Definition 2.14, we have that hWe

i (sssW0
) = 1, for i ∈W0. Recall

Theorem 2.5 and Remark 2.1 (the statement of Remark 2.1 is valid with
respect to Theorem 2.5 as well). From Theorem 2.5 we have equations
(2.18)

hWe

i (sss) =

∫ ∞
0

fi

(
y;
∑
r∈W

uirsrh
We
r (sss)

)
dGi(y), i ∈We.

Substituting sss = sssW0
and applying hWe

i (sssW0
) = 1, when i ∈W0, yields the

statement of the theorem.

Corollary 2.21. For the DMSBPM the following system of integral
equations holds:

1. For i ∈We

(2.44)

hWe

i,a (sssW0
) =

∫ ∞
0

fi

(
a+y;

[ ∑
m∈We

uimh
We
m (sssW0

)
]
+
[ ∑
r∈W0

uirsr

])
dGi,a(y).

2. For i ∈W0

hWe

i,a (sssW0
) = 1.

Proof. The proof is analogous to the proof of Corollary 2.20. During the
proof, we use the result of Corollary 2.9.

Expectations for IWe

j (t), i ∈W, can be handled as in Subsection 2.2.4.

Proposition 2.1. Let each particle type from We, within the DMSBPM,
be either subcritical or critical. Then for i ∈We

(2.45)

qi = hWe

i (qqqW0
) =

∫ ∞
0

fi

(
y;
[ ∑
m∈We

uimh
We
m (qqqW0

)
]

+
[ ∑
r∈W0

uirqr

])
dGi(y)

and
(2.46)

qi,a = hWe

i,a (qqqW0
) =

∫ ∞
0

fi

(
a+y;

[ ∑
m∈We

uimh
We
m (qqqW0

)
]
+
[ ∑
r∈W0

uirqr

])
dGi,a(y).

Proof. Under these assumptions, in order for a DMSBPM starting with
one particle of type i ∈ We, of age 0, to become extinct, each occurring
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mutant from We towards W0 must initiate a process that becomes extinct.
Using the total probability formula we obtain

qi =
∞∑
k=0

[ ∑
∑
m∈W0

km=k

[
P
(
IWe

j = kj, j ∈W0 | ZZZ(0) = δδδi
)
·
∏
r∈W0

qkrr

]]
= hWe

i (qqqW0
).

Analogously, if a DMSBPM starts with a particle that is of age a, a 6= 0

qi,a =
∞∑
k=0

[ ∑
∑
m∈W0

km=k

[
P
(
IWe

j = kj, j ∈W0 | ZZZ(0) = δδδia

)
·
∏
r∈W0

qkrr

]]
= hWe

i,a (qqqW0
).

In the following figures, we illustrate the results obtained and highlight
the result of Proposition 2.1 in Figure 2.21. Again, the figures indicate that
perhaps more general results, than the ones of Corollary 2.4 and Corollary
2.11, exist.
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Figure 2.17: Calculations (h = 10−2) for sss = qqqW0
for the example DMS-

BPM (Table 2.11, Table 2.6) with mutation scheme “We towards W0” (Ta-
ble 2.8) starting with one particle of age 0. Recall from Figure 2.13 that qqq =
(0.77206078, 0.94263439, 0.92948039, 0.93797045, 0.96806635, 0.98125857)>.
Thus, qqqW0

= (0.77206078, 0.94263439, 0.92948039, 1.0, 1.0, 1.0)>. At
t = 1500, we have hWe

4 (qqqW0
) = 0.93797589, hWe

5 (qqqW0
) = 0.96806891,

hWe
6 (qqqW0

) = 0.98126128. Evidently, qqqi = hWe

i (qqqW0
) is true for i ∈ We, as

per Proposition 2.1.



2.3. Particular cases of the MSBPM 99

Figure 2.18: Calculations (h = 10−2) for sss = qqqW0
for the

example DMSBPM (Table 2.11, Table 2.6) with mutation
scheme “We towards W0” (Table 2.8) starting with one par-
ticle of age a = 15. Recall from Figure 2.13 that qqq =
(0.77206078, 0.94263439, 0.92948039, 0.93797045, 0.96806635, 0.98125857)>,
consequently qqqW0

= (0.77206078, 0.94263439, 0.92948039, 1.0, 1.0, 1.0)>.
At t = 1500, we have hWe

4,15(qqqW0
) = 0.93797589, hWe

5,15(qqqW0
) = 0.96806891,

hWe
6,15(qqqW0

) = 0.98126128. Recall from Figure 2.14 that qqq15 =

(0.77206255, 0.94251251, 0.92948039, 0.93797146, 0.96806622, 0.98125857)>.
Evidently, qi,a = hWe

i,a (qqqW0
) is true for i ∈We, as per Proposition 2.1.
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Figure 2.19: Calculations (h = 10−2) for sss = qqqW0
for the ex-

ample DMSBPM (Table 2.11, Table 2.6) with mutation scheme
“We towards W0,W0 forms a chain” (Table 2.9) starting with
one particle of age 0. Recall from Figure 2.15 that qqq =
(0.63701453, 0.91447893, 0.95914728, 0.98841861, 0.99346401, 0.99375408)>.
Thus, qqqW0

= (0.63701453, 0.91447893, 0.95914728, 1.0, 1.0, 1.0)>. At
t = 1500, we have hWe

4 (qqqW0
) = 0.98842052, hWe

5 (qqqW0
) = 0.99346507,

hWe
6 (qqqW0

) = 0.99375507. Evidently, qi = hWe

i (qqqW0
) is true for i ∈ We, as

per Proposition 2.1.
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Figure 2.20: Calculations (h = 10−2) for sss = qqqW0
for the ex-

ample DMSBPM (Table 2.11, Table 2.6) with mutation scheme
“We towards W0,W0 forms a chain” (Table 2.9) starting with
one particle of age a = 15. Recall from Figure 2.15 that qqq =
(0.63701453, 0.91447893, 0.95914728, 0.98841861, 0.99346401, 0.99375408)>,
consequently qqqW0

= (0.63701453, 0.91447893, 0.95914728, 1.0, 1.0, 1.0)>.
At t = 1500, we have hWe

4,15(qqqW0
) = 0.98842052, hWe

5,15(qqqW0
) = 0.99346507,

hWe
6,15(qqqW0

) = 0.99375507. Recall from Figure 2.16 that qqq15 =

(0.63701453, 0.91436551, 0.95914728, 0.98841889, 0.99346397, 0.99375408)>.
Evidently, qqqi,a = hWe

i,a (qqqW0
) is true for i ∈We, as per Proposition 2.1.
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Figure 2.21: Examination of the result of Proposition 2.1 for the example
DMSBPM (Table 2.11, Table 2.6) with mutation scheme “We towards W0”
(Table 2.8). Displayed lines are for type 4. The figures corresponding to
type 5 and type 6 are analogous. The limit value, computed with t = 1500
(h = 10−2), is 0.93797589.

2.3.1.5 Time until occurrence of the first “successful” mutant
produced from We towards W0 within the DMSBPM

We call a mutant from We towards W0 “successful” if it initiates a non-
extincting DMSBPM.

Definition 2.15. Denote with TWe

W0
the r.v. that is the time until oc-

currence of the first “successful” mutant produced from a type within We

towards a type within W0 in a DMSBPM starting with some combination of
particles with types within We. Without loss of generality, we set the start-
ing number of particles per type r ∈We to be kr and denote the initial state

of the process as ZZZ(0) = ααα∗ =
(
0, . . . , 0, Zb+1(0) = kb+1, . . . , Zn(0) = kn

)>
.

In ααα∗, we have taken into account the arrangements made at the beginning
of Subsection 2.3.1.1 and, without loss of generality, we have set |W0| = b.
We define TWe

W0
= ∞ as the event that no “successful” mutants occur dur-
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ing a DMSBPM beginning with an initial state ααα∗. Thus, we may write
TWe

W0
∈(0,∞]. If the DMSBPM starts with a single particle of type i, i ∈We,

of age 0, we use TWe

W0,i
as a shortcut notation. If the initial particle is of

age a, a 6= 0, we use TWe

W0,i,a
.

Proposition 2.2. Let the DMSBPM start with kr particles per type r,
r ∈We. Let all particles form ααα∗ have age 0. The distribution of TWe

W0
has

the following properties:

(i) P
(
TWe

W0
> t | ZZZ(0) = ααα∗

)
=
∏

r∈We

[
hWe
r (t;qqqW0

)
]kr

.

(ii) P
(
TWe

W0
=∞ | ZZZ(0) = ααα∗

)
=
∏

r∈We

[
hWe
r (qqqW0

)
]kr

.

(iii) If at least one particle type r ∈W0 is supercritical, we have

E
[
TWe

W0
| TWe

W0
<∞, ZZZ(0) = ααα∗

]
=

=
1

1−
∏

r∈We

[
hWe
r (qqqW0

)
]kr ∫ ∞

0

[ ∏
r∈We

[
hWe
r (t;qqqW0

)
]kr
−

−
∏
r∈We

[
hWe
r (qqqW0

)
]kr]

dt,

if not, then the expectation does not exist.

Proof.
Property (i): Let the process start with a single particle of type i, i ∈We.

The event
{
TWe

W0,i
> t
}

means that if we consider the separate DMSBPM

stemming from particles produced from We towards W0, that have come
into existence prior to t or at t, all those processes become extinct. Thus,
by the law of total probability:

P
(
TWe

W0,i
> t
)

=

=
∞∑
k=0

[ ∑
∑
r∈W0

kr=k

[
P
(
IWe

j (t) = kj, j ∈W0 | ZZZ(0) = δδδi
)
·
∏
m∈W0

qkmm

]]
= hWe

i (t;qqqW0
).
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The result for ααα∗ follows from the assumption of independent evolution.
The proofs for Property (ii) and Property (iii) are analogous to the proofs
found in Theorem 2.6.

Proposition 2.3. Let the DMSBPM start with kr particles per type r,
r ∈ We, let the starting particles in ααα∗ have ages ar,c, c ∈ {1, 2, . . . , kr}
where ar,c is the age of the c-th particle of type r. We allow ar,c to be 0.

The distribution of TWe

W0
has the following properties:

(i) P
(
TWe

W0
> t | ZZZ(0) = ααα∗

)
=
∏

r∈We

[∏kr
c=1 h

We
r,ar,c

(t;qqqW0
)
]
.

(ii) P
(
TWe

W0
=∞ | ZZZ(0) = ααα∗

)
=
∏

r∈We

[∏kr
c=1 h

We
r,ar,c

(qqqW0
)
]
.

(iii) If at least one particle type within W is supercritical, we have

E
[
TWe

W0
| TWe

W0
<∞, ZZZ(0) = ααα∗

]
=

=
1

1−
∏

r∈We

[∏kr
c=1 h

We
r,ar,c(qqqW0

)
] ∫ ∞

0

[ ∏
r∈We

[ kr∏
c=1

hWe
r,ar,c

(t;qqqW0
)
]
−

−
∏
r∈We

[ kr∏
c=1

hWe
r,ar,c

(qqqW0
)
]]
dt,

if not, then the expectation does not exist.

Proof. Property (i): Let the process start with a single particle of type

i, i ∈ We, that is of age ai,c, c ∈ {1, 2, . . . , ki}. The event
{
TWe

W0,i,ai,c
> t
}

means that if we consider the separate DMSBPM stemming from particles
produced from We towards W0, that have come into existence prior to
t or at t, all those processes become extinct. Thus, by the law of total
probability:

P
(
TWe

W0,i,ai,c
> t
)

=

=
∞∑
k=0

[ ∑
∑
r∈W0

kr=k

[
P
(
IWe

j (t) = kj, j ∈W0 | ZZZ(0) = δδδiai,c

)
·
∏
m∈W0

qkmm

]]
= hWe

i,ai,c
(t;qqqW0

).



2.3. Particular cases of the MSBPM 105

The result for ααα∗ follows from the assumption of independent evolution.
The proofs for Property (ii) and Property (iii) are analogous to the proofs
of the corresponding properties in Theorem 2.6.

We illustrate the behavior of P
(
TWe

W0,i
> t
)

and P
(
TWe

W0,i,a
> t
)

in Figure

2.22 and Figure 2.23.

Figure 2.22: An application of Proposition 2.2 - calculations (h = 10−2) for sss = qqqW0

for the example MSBPM (Table 2.11, Table 2.6) with mutation scheme “We towards
W0” (Table 2.8) starting with one particle of age 0. Recall from Figure 2.13 that qqq =
(0.77206078, 0.94263439, 0.92948039, 0.93797045, 0.96806635, 0.98125857)>, consequently

qqqW0 = (0.77206078, 0.94263439, 0.92948039, 1.0, 1.0, 1.0)>. P
(
TWe
W,i ≤ t

)
= 1−hWe

i (t;qqqW0),

we can reuse the calculations done for Figure 2.17. At t = 1500, we have P
(
TWe
W0,4

≤

t
)

= 0.062024108, P
(
TWe
W0,5

≤ t
)

= 0.0319310927, P
(
TWe
W0,6

≤ t
)

= 0.0187387245. As

t = 1500 is sufficiently large as to conclude that hWe
i (1500;qqqW0) = hWe

i (qqqW0), we also have

P
(
TWe
W0,4

= ∞
)

= hWe
4 (qqqW0) = 0.93797589, P

(
TWe
W0,5

= ∞
)

= hWe
5 (qqqW0) = 0.96806891,

P
(
TWe
W0,6

=∞
)

= hWe
6 (qqqW0) = 0.98126128.
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Figure 2.23: An application of Proposition 2.3 - calculations (h = 10−2)
for sss = qqqW0

for the example MSBPM (Table 2.11, Table 2.6)
with mutation scheme “We towards W0” (Table 2.8) starting with
one particle of age a = 15. Recall from Figure 2.13 that qqq =
(0.77206078, 0.94263439, 0.92948039, 0.93797045, 0.96806635, 0.98125857)>,
consequently qqqW0

= (0.77206078, 0.94263439, 0.92948039, 1.0, 1.0, 1.0)>.

P
(
TWe

W0,i,15 ≤ t
)

= 1 − hWe

i,15(t;qqqW0
), we can reuse the calculations done

for Figure 2.18. At t = 1500, we have P
(
TWe

W0,4,15 ≤ t
)

= 0.062024108,

P
(
TWe

W0,5,15 ≤ t
)

= 0.0319310922, P
(
TWe

W0,6
≤ t

)
= 0.0187387245. As

t = 1500 is sufficiently large as to conclude that hWe

i,15(1500;qqqW0
) =

hWe

i,15(qqqW0
), we also have P

(
TWe

W0,4,15 = ∞
)

= hWe
4,15(qqqW0

) = 0.93797589,

P
(
TWe

W0,5,15 = ∞
)

= hWe
5,15(qqqW0

) = 0.96806891, P
(
TWe

W0,6,15 = ∞
)

=

hWe
6,15(qqqW0

) = 0.98126128.
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2.3.1.6 Immediate risk of producing a “successful” mutant from
We towards W0 within the DMSBPM

Recall Definition 2.10 from Subsection 2.2.6, which is also valid for the case
of the DMSBPM. Due to our interest in W0, we specify

Definition 2.16. Define for an initial particle of type i, i ∈ We, the
following hazard function:

1. If the initial particle is of age 0

(2.47) gWe

W0,i
(t)dt = P

(
TWe

W0,i
∈ (t, t+ dt] | TWe

W0,i
> t
)
.

2. If the initial particle if of age a, a 6= 0

(2.48) gWe

W0,i,a
(t)dt = P

(
TWe

W0,i,a
∈ (t, t+ dt] | TWe

W0,i,a
> t
)
.

It is clear that equations (2.28) and (2.29), from Subsection 2.2.6, hold
with W being substituted with W0.

If there are no particles from types from We left in the population, the
probability of occurrence of a “successful” mutant from We towards W0 is 0.
Therefore, in addition to Definition 2.16 above, we can also investigate the
following modification of the standard formulation of the hazard function:

Definition 2.17. Define for an initial particle of type i, i ∈ We, the
following modified hazard function:

1. If the initial particle is of age 0

(2.49) ĝWe

W0,i
(t)dt = P

(
TWe

W0,i
∈ (t, t+ dt] | TWe

W0,i
> t,

∑
c∈We

Zc(t) > 0
)
.

2. If the initial particle if of age a, a 6= 0
(2.50)

ĝWe

W0,i,a
(t)dt = P

(
TWe

W0,i,a
∈ (t, t+ dt] | TWe

W0,i,a
> t,

∑
c∈We

Zc(t) > 0
)
.

In other words, we will consider the probability of the first “successful”
mutant occurring immediately after time t, under the additional condition
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that at time t the population has at least one particle from a type from
We.

Let us inspect ĝWe

W0,i
(t)dt, i ∈We:

ĝWe

W0,i
(t)dt =

P
(
TWe

W0,i
∈ (t, t+ dt], TWe

W0,i
> t,

∑
c∈We

Zc(t) > 0
)

P
(
TWe

W0,i
> t,

∑
c∈We

Zc(t) > 0
)

=
P
(
TWe

W0,i
∈ (t, t+ dt]

)
P
(
TWe

W0,i
> t
)
− P

(
TWe

W0,i
> t,

∑
c∈We

Zc(t) = 0
) ,

which can be rewritten as

(2.51) ĝWe

W0,i
(t) =

F
(1)

TWe
W0,i

(t)

P
(
TWe

W0,i
> t
)
− P

(
TWe

W0,i
> t,

∑
c∈We

Zc(t) = 0
) ,

where F
(1)

TWe
W0,i

(t) is the probability density function of TWe

W0,i
. We can find

the c.d.f. of TWe

W0,i
via Proposition 2.2 and then approximate F

(1)

TWe
W0,i

(t), for

example, with a forward difference.

It is evident that the same line of thought outlined above, applied for
a starting particle of age a, a 6= 0, leads us to

(2.52) ĝWe

W0,i,a
(t) =

F
(1)

TWe
W0,i,a

(t)

P
(
TWe

W0,i,a
> t
)
− P

(
TWe

W0,i,a
> t,

∑
c∈We

Zc(t) = 0
) .

To simplify notations we introduce:

Definition 2.18. For i ∈We, denote

Vi(t) = P
(
TWe

W0,i
> t,

∑
c∈We

Zc(t) = 0
)
,

Vi,a(t) = P
(
TWe

W0,i,a
> t,

∑
c∈We

Zc(t) = 0
)
.
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Theorem 2.8. The probability Vi(t) of the event that jointly the first
“successful” mutant does not occur before or at t and there are no particles
from We left at t, for a DMSBPM starting with a particle of age 0, satisfies
the following system of integral equations:
(2.53)

Vi(t) =

∫ t

0

fi

(
y;
[ ∑
m∈We

uimVm(t− y)
]

+
[ ∑
r∈W0

uirqr

])
dGi(y), i ∈We.

Proof. Again, we condition with respect to the moment of death of the
initial particle:

Vi(t) = P
(
TWe

W0,i
> t,

∑
c∈We

Zc(t) = 0
)

=

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!

∏
r∈W

ukrir ·

·
∏
r∈W

[
P
(
T̃We

W0,r
> t− y,

∑
c∈We

Z̃c(t− y) = 0
)]kr]

dGi(y)

=

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!
·

·
∏
m∈We

[
uimP

(
T̃We

W0,m
> t− y,

∑
c∈We

Z̃c(t− y) = 0
)]km
·

·
∏
r∈W0

[
uirqr

]kr]dGi(y)

=

∫ t

0

∞∑
k=0

pik(y)
∑

∑
l∈W kl=k

[
k!∏

v∈W kv!
·

·
∏
m∈We

[
uimVm(t− y)

]km
·
∏
r∈W0

[
uirqr

]kr]
dGi(y)

=

∫ t

0

∞∑
k=0

pik(y)

[[ ∑
m∈We

uimVm(t− y)
]

+
[ ∑
r∈W0

uirqr

]]k
dGi(y)
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=

∫ t

0

fi

(
y;
[ ∑
m∈We

uimVm(t− y)
]

+
[ ∑
r∈W0

uirqr

])
dGi(y).

Corollary 2.22. The probability Vi,a(t) of the event that jointly the first
“successful” mutant does not occur before or at t and there are no particles
from We left at t, for a DMSBPM starting with a particle of age a, a 6= 0,
satisfies the following system of integral equations:
(2.54)

Vi,a(t) =

∫ t

0

fi

(
a+y;

[ ∑
m∈We

uimVm(t−y)
]
+
[ ∑
r∈W0

uirqr

])
dGi,a(y), i ∈We.

Proof. The proof is completely analogous to the proof of Theorem 2.8.

We report that, unfortunately, we experienced precision-related numer-
ical difficulties, when trying to calculate ĝWe

W0,i
(t) and ĝWe

W0,i,a
(t) for our exper-

imental setups from Subsection 2.2.8, hence we cannot provide illustrative
figures at this point. This is not very surprising considering the small val-
ues already observed in Figure 2.10 from Subsection 2.2.6. However, we
note that in “simpler”, or more fine-tuned, setups, such as the setup of
two types within [2], ĝWe

W0,i
(t) can be computed less problematically. The

elimination of the numerical difficulties encountered is a to be considered
in future research.
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Figure 2.24: Calculations for gWe

W0,i
(t), with h = 10−2, for the example

DMSBPM (Table 2.11, Table 2.6) with mutation scheme “We towards
W0” (Table 2.8) starting with one particle of age 0. At t = 1000, we
have gWe

W0,4
(1000) = 6.32378172e − 12, gWe

W0,5
(1000) = 1.18904764e − 11,

gWe

W0,6
(1000) = 3.11698760e− 12.
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Figure 2.25: Calculations for gWe

W0,i
(t), with h = 10−2, for the example

DMSBPM (Table 2.11, Table 2.6) with mutation scheme “We towards
W0,W0 forms a chain” (Table 2.9) starting with one particle of age 0.
At t = 1000, we have gWe

W0,4
(1000) = 9.49276919e − 12, gWe

W0,5
(1000) =

3.60108692e− 11, gWe

W0,6
(1000) = 4.94432496e− 12.

2.3.2 Decomposable Multi-type Bellman-Harris Branch-

ing Process through probabilities of Mutation

between types (DMBHBPM)

Within this Subsection, we introduce the Decomposable Multi-type Bellman-
Harris Branching Process through probabilities of Mutation between types
(DMBHBPM). As the DMBHBPM is a particular case of the DMSBPM,
discussed in Subsection 2.3.1, we limit ourselves to stating the process
definition and writing without detailed proof all statements as corollar-
ies of previous results. We note that the DMBHBPM presented here is
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a generalized version of the multi-type Bellman-Harris branching process
(multi-type BHBP) discussed in our previous work Slavtchova-Bojkova &
Vitanov [5] (2019). Within [5] the class W0 consists of only one type.
A further extension, with respect to [5], are the results for the case of a
process starting with a particle of age a, a 6= 0.

2.3.2.1 Definition of the DMBHBPM

Definition 2.19. Define the Decomposable Multi-type Bellman-Harris
Branching Process through probabilities of Mutation between types (DMB-
HBPM) as the multi-type branching process satisfying:

1. Each particle type is uniquely associated with an integer from W and
conforms to:

(a) The lifespan of particles of type i, i ∈W, is modeled by a (contin-
uous) r.v. τi. The corresponding cumulative distribution function
(c.d.f.) is denoted by Gi(t) = P(τi ≤ t), also Gi(0

+) = 0.

(b) The number of particles in the offspring of a type i, i ∈ W,
particle is modeled by a (discrete) r.v. νi. We denote with pik
the probability that a type i particle has k, k ∈ N0, offspring
particles (regardless of their type). Thus, νi is specified by given{
pik
}∞
k=0

,
∑∞

k=0 pik = 1. We denote the corresponding p.g.f. of

νi with fi(s) = E
[
sνi
]

=
∑∞

k=0 piks
k, |s| ≤ 1.

2. Each daughter particle of a type i particle, i ∈We, can be of any type
j ∈ W, however, daughter particles of type i particles, i ∈ W0, can
only be of type j ∈W0. The type of a daughter particle is determined
at birth. If i 6= j we say that a “mutation” occurs. The probability
that a daughter particle of a type i particle is a type j particle is
denoted by uij, uij ≥ 0,

∑n
j=1 uij = 1. Further:

(a) If type i cannot have daughters of type j we consider the corre-
sponding uij as uij = 0.

(b) Particles are not allowed to change their type within their lifes-
pan.

3. All particles from all particle types evolve independently from one
another, irrespective of generation.
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4. Formally
{
ZZZ(t) =

(
Z1(t), Z2(t), . . . , Zn(t)

)>}
t≥0

, where ZZZ(t) stands

for the DMBHBPM at t and Zi(t) is the number of particles of type
i that exist at t.

It is clear from Definition 2.19 that the DMBHBPM is obtained by
removing the dependence on particle age from vi(a), pik(a), and fi(a; s),
within the DMSBPM. As all results from Section 2.2 and Subsection 2.3.1
are proven for the more general case where dependence on particle age is
included and also the steps of all proofs remain the same if this dependence
is removed, it is straightforward to obtain corresponding results for the
DMBHBPM. We note that within the DMBHBPM, as in the DMSBPM,
particle types are divided into two classes W0 and We for which W0∩We =
∅ and W0 ∪We = W. Particles with types from We can produce particles
with types from W and particles with types from W0 can only produce
particles with types form W0. Figure 2.11 and Figure 2.12 can also be
interpreted as depicting particular cases of the DMBHBPM.

2.3.2.2 Results for the DMBHBPM

All definitions from Subsection 2.3.1 are valid for the DMBHBPM.

Corollary 2.23. For the DMBHBPM, the following system of integral
equations holds:

1. For i ∈We

Fi(t; sss) = si
(
1−Gi(t)

)
+

∫ t

0

fi

([ ∑
m∈We

uimFm(t− y; sss)
]
+

+
[ ∑
r∈W0

uirFr(t− y; sssW0
)
])
dGi(y).

2. For i ∈W0

Fi(t; sssW0
) = si

(
1−Gi(t)

)
+

∫ t

0

fi

( ∑
r∈W0

uirFr(t− y; sssW0
)

)
dGi(y).

Proof. Having the result of Corollary 2.12, we remove age dependence
within fi.
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Note that in the next corollary, we can drop age dependence within fi,
however, the age of the initial particle still affects the remaining lifespan
distribution of the initial particle.

Corollary 2.24. For the DMBHBPM, the following system of integral
equations holds:

1. For i ∈We

Fi,a(t; sss) = si
(
1−Gi,a(t)

)
+

∫ t

0

fi

([ ∑
m∈We

uimFm(t− y; sss)
]
+

+
[ ∑
r∈W0

uirFr(t− y; sssW0
)
])
dGi,a(y).

2. For i ∈W0

Fi,a(t; sssW0
) = si

(
1−Gi,a(t)

)
+

∫ t

0

fi

( ∑
r∈W0

uirFr(t−y; sssW0
)

)
dGi,a(y).

Proof. Having the result of Corollary 2.13, we remove age dependence
within fi.

Corollary 2.25. The following system of integral equations holds for the
DMBHBPM:

1. For i ∈We

qi(t) =

∫ t

0

fi

([ ∑
m∈We

uimqm(t− y)
]

+
[ ∑
r∈W0

uirqr(t− y)
])
dGi(y),

Which can be rewritten as

qi(t) =

∫ t

0

fi

(∑
r∈W

uirqr(t− y)
)
dGi(y).

2. For i ∈W0

qi(t) =

∫ t

0

fi

( ∑
r∈W0

uirqr(t− y)
)
dGi(y).
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Proof. Having the result of Corollary 2.14, we remove age dependence
within fi.

Again, we can drop age dependence within fi, however, the age of the
initial particle still affects the remaining lifespan distribution of the initial
particle.

Corollary 2.26. The following system of integral equations holds for the
DMBHBPM:

1. For i ∈We

qi,a(t) =

∫ t

0

fi

([ ∑
m∈We

uimqm(t− y)
]

+
[ ∑
r∈W0

uirqr(t− y)
])
dGi,a(y),

Which can be rewritten as

qi,a(t) =

∫ t

0

fi

(∑
r∈W

uirqr(t− y)
)
dGi,a(y).

2. For i ∈W0

(2.55) qi,a(t) =

∫ t

0

fi

( ∑
r∈W0

uirqr(t− y)
)
dGi,a(y).

Proof. Having the result of Corollary 2.15, we remove age dependence
within fi.

Following Corollary 2.4, valid for the MSBPM, we can merge Corollary
2.16 and Corollary 2.17, valid for the DMSBPM, into:

Corollary 2.27. The following system of equations holds for the DMB-
HBPM:

1. For i ∈We

qi = qi,a = fi

(∑
r∈W

uirqr

)
.

2. For i ∈W0

qi = qi,a = fi

( ∑
r∈W0

uirqr

)
.
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Proof. We apply Corollary 2.4 onto Corollary 2.16 and Corollary 2.17, by
dropping age dependence within fi.

Corollary 2.28. For the DMBHBPM the following system of integral
equations holds:

1. For i ∈We

hWe

i (t;sssW0
) =

(
1−Gi(t)

)
+

∫ t

0

fi

([ ∑
m∈We

uimh
We
m (t− y;sssW0

)
]
+

+
[ ∑
r∈W0

uirsr

])
dGi(y).

(2.56)

2. For i ∈W0

hWe

i (t;sssW0
) = 1.

Proof. Having the result of Corollary 2.18, we remove age dependence
within fi.

Once again, we can drop age dependence within fi, however, the age
of the initial particle still affects the remaining lifespan distribution of the
initial particle.

Corollary 2.29. For the DMBHBPM the following system of integral
equations holds:

1. For i ∈We

hWe

i,a (t;sssW0
) =

(
1−Gi,a(t)

)
+

∫ t

0

fi

([ ∑
m∈We

uimh
We
m (t− y;sssW0

)
]
+

+
[ ∑
r∈W0

uirsr

])
dGi,a(y).

2. For i ∈W0

hWe

i,a (t;sssW0
) = 1.

Proof. Having the result of Corollary 2.19, we remove age dependence
within fi.
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Corollary 2.30. The following system of equations holds within the
DMBHBPM:

1. For i ∈We

hWe

i (sssW0
) = fi

([ ∑
m∈We

uimh
We
m (sssW0

)
]

+
[ ∑
r∈W0

uirsr

])
.

2. For i /∈We

hWe

i (sssW0
) = 1.

Proof. Having Corollary 2.20, we remove age dependence within fi.

Corollary 2.31. For the DMBHBPM the following system of integral
equations holds:

1. For i ∈We

hWe

i,a (sssW0
) = fi

([ ∑
m∈We

uimh
We
m (sssW0

)
]

+
[ ∑
r∈W0

uirsr

])
.

2. For i ∈W0

hWe

i,a (sssW0
) = 1.

Proof. Having the result of Corollary 2.21, we remove age dependence
within fi.

Corollary 2.32. Let each particle type from We, within the DMBHBPM,
be either subcritical or critical. Then for i ∈We

qi = hWe

i (qqqW0
) = fi

([ ∑
m∈We

uimh
We
m (qqqW0

)
]

+
[ ∑
r∈W0

uirqr

])

and

qi,a = hWe

i,a (qqqW0
) = fi

([ ∑
m∈We

uimh
We
m (qqqW0

)
]

+
[ ∑
r∈W0

uirqr

])
.

Proof. Having the result of Proposition 2.1, we remove age dependence
within fi.
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Proposition 2.2 and Proposition 2.3 for the time until occurrence of
the first “successful” mutant from We towards W0, T

We

W0
, can be applied

directly for the case of the DMBHBPM.
Equation (2.51) and equation (2.52) for the modified hazard functions

ĝWe

W0,i
(t) and ĝWe

W0,i,a
(t) respectively, are also valid for the DMBHBPM. We

also have

Corollary 2.33. The probability of the event that jointly the first “suc-
cessful” mutant does not occur before or at t and there are no particles from
We left at t, for a DMBHBPM starting with a particle of age 0, satisfies
the following system of integral equations:

Vi(t) =

∫ t

0

fi

([ ∑
m∈We

uimVm(t− y)
]

+
[ ∑
r∈W0

uirqr

])
dGi(y), i ∈We.

Proof. Having the result of Theorem 2.8, we remove age dependence within
fi.

And lastly, as the age of the initial particle affects its remaining lifespan,

Corollary 2.34. The probability of the event that jointly the first “suc-
cessful” mutant does not occur before or at t and there are no particles from
We left at t, for a DMBHBPM starting with a particle of age a, a 6= 0,
satisfies the following system of integral equations:

Vi,a(t) =

∫ t

0

fi

([ ∑
m∈We

uimVm(t− y)
]

+
[ ∑
r∈W0

uirqr

])
dGi,a(y), i ∈We.

Proof. Having the result of Corollary 2.22, we remove age dependence
within fi.
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CHAPTER 3

Sequential decision problems with

branching process based dynamics

3.1 Chapter overview and organization

In this Chapter, we incorporate branching processes into optimization
problems known as Sequential Decision Problems (SDPs). For our model-
ing of SDPs, we use Warren B. Powell’s “Universal Modeling Framework”
developed in [82] (2022). Our motivation for this choice of framework can
be summarized as follows: 1) The “Universal Modeling Framework” is an
attempt to unify the 15 communities discussed in the Introduction (recall
Section 1.5, pages 22 - 24). This may prove beneficial in future research,
where we may consider complicating the branching process based SDPs
that we investigate; 2) The “Universal Modeling Framework” is straight-
forwardly connected to Approximate Dynamic Programming (ADP; see
[74], [76], [78]) and Reinforcement Learning (RL; see [203], [82]). ADP
and RL rely on simulations in order to produce solutions (of varying qual-
ity) for complex SDPs. We envision future research stemming from this
dissertation, regarding SDPs with branching process based dynamics, as
simulations based; 3) For our purposes, the “Universal Modeling Frame-
work” is conceptually and notationally close to the discussions within the
Markov decision processes community (see Puterman [70] (2005)). This is
a good starting point for considering SDPs with Bienaymé-Galton-Watson
(BGW) branching process dynamics as the BGW process is Markovian
within standard definitions.

Our modeling of SDPs within this dissertation is heavily based on the
ideas developed in [82] and [78] and as such shares the strengths and weak-
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nesses of the “Universal Modeling Framework”. We note that, with respect
to our purposes, we have made some minor contributions to the presenta-
tion in [82], those contributions being Proposition 3.1 and Proposition 3.2
from Subsection 3.2.7, as well as the inclusion of the discount factor γ in
some equations and statements.

In Section 3.2 and Section 3.3, we present the “Universal Modeling
Framework” by adapting parts of the presentation in [82]. In Section 3.4,
Section 3.5, and Section 3.6, we obtain our novel results that incorpo-
rate certain branching processes into SDPs within the “Universal Modeling
Framework”. The results from Section 3.4, Section 3.5, and Section 3.6,
have not been published yet. In Section 3.7, we outline, but do not apply
or investigate the properties of, a general ADP algorithm that can be used
as a starting point for developing a specialized ADP algorithm for finding
the solution of the SDP discussed within Section 3.6. We stress that in the
dissertation, we do not consider stochastic differential equations within the
optimization problems investigated.

The standard notion of “state” within the branching processes commu-
nity postulates that the state of a branching process at t is to be understood
as the number of particles, per type, that exist at t. With respect to a so
defined “state” the BGW branching process as well as the Bellman-Harris
branching process with exponential lifespans are Markovian. The scarce lit-
erature dedicated to combining specifically branching processes and SDPs,
see [77], [199], [200], [201], [202], concentrates its efforts on branching pro-
cesses that are Markovian under the standard notion of state. The papers
listed, effectively, discuss multi-type Bienaymé-Galton-Watson branching
processes. Our novel idea within Section 3.6 is to consider a novel defini-
tion of the state of the MSBPM (the MSBPM is generally non-Markovian
under the standard notion of “state” since particle reproduction can de-
pend on particle age). Under the newly defined “state”, we prove that the
MSBPM is Markovian. This and the following considerations within Sec-
tion 3.6 formally allow us to apply ADP and RL for the purpose of finding
solutions of the corresponding SDP.

We note that [202] develops a model-free RL algorithm for a SDP with
BGW branching process based dynamics. Contrary to [202], our agenda
is to exploit a specified branching process model (such as the MSBPM) as
much as possible. We note that while RL algorithms are usually model-free,
ADP algorithms are usually model-based. This is why we outline a general
ADP algorithm in Section 3.7 as an illustration of possible future research
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- although we successfully incorporate the (generally non-Markovian) MS-
BPM into SDPs within the “Universal Modeling Framework”, devising
practical computational algorithms requires substantial further research.
We hope that the computational tractability of the MSBPM, via Numeri-
cal Scheme 1 and Numerical Scheme 2, together with the theoretical foun-
dation laid within the dissertation, will facilitate future success.

Within Section 3.4, we consider the paper of S. R. Pliska from 1976,
[77]. [77] discusses a SDP with BGW branching process based dynamics
and provides a theorem that allows us to efficiently obtain the solution of
the (finite-horizon) SDP, described within Section 2 and Section 3 of the
paper, via a Dynamic Programming algorithm (see, [67], [68], [69], [70]).
Although [77] acknowledges that the algorithm obtained is a Dynamic Pro-
gramming algorithm, the proof of Theorem 3.1. from [77] uses conditional
expectations and does not use Bellman’s optimality equation (see Section
3.3). Within Section 3.4, we recast the discussion in [77] into the more
contemporary “Universal Modeling Framework” and provide a novel proof
of Theorem 3.1 from [77] that is based on Bellman’s optimality equation.

In Section 3.5, we consider the Multi-type Bellman-Harris Branching
Process through probabilities of Mutation between types (MBHBPM; a
special case of the MSBPM) with exponential lifespan distributions. The
MBHBPM with exponential lifespan distributions is Markovian under the
classical definition of state. Our novel contribution for this case is that we
formally incorporate the process in SDPs within the “Universal Modeling
Framework” and show that a result analogous to the Theorem 3.1. from
[77] holds.

We stress that the algorithms obtained in Section 3.4 and Section 3.5,
that allow for efficiently finding the solutions of the corresponding SDPs,
discussed within these sections, have a limited scope of application. More
precisely, these algorithms easily become non-applicable upon introducing
further (appropriately modeled with respect to the “Universal Modeling
Framework”) dependencies within the discussed SDPs. However, for such
complex SDPs, we can still consider the ADP and/or RL approach.

We note that the field of Controlled Branching Processes (CBPs; see
[115], [124], [181], [182], [120], [121]) contains ideas that are close to the
ideas found within the discussion of sequential decision problems. The
relationship between CBPs and SDPs is that a CBP is a branching process
and as such can be used as a model of uncertainty within a SDP.

This Chapter can also be viewed as a continuation of the efforts within
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[1]-[7], as well as Chapter 2, to model cancer evolution and populations
escaping extinction. Indeed, this context can benefit much from an intro-
duction of SDPs as SDPs provide a way for planning appropriate actions
in advance. This can be very beneficial, for example, within the case of
administering cancer therapies as the different costs and expected results
associated with different therapies have to be considered by the recipient
and medical personnel. SDPs model the outcomes of the choices available
to us, thus, depending on our objectives, they have the potential to become
a useful tool for finding the best way available for forcing a population into
extinction or for maximizing its chance of survival.

The Chapter is organized as follows. In Section 3.2, we introduce rel-
evant concepts from the “Universal Modeling Framework” proposed by
Warren B. Powell in [82]. In Section 3.3, we discuss Bellman’s optimality
equation. In Section 3.4, we recast the model from [77] into the “Universal
Modeling Framework” and utilize Bellman’s optimality equation to pro-
vide a novel proof for Theorem 3.1 from [77]. In Section 3.5, we consider
the MBHBPM with exponential lifespan distributions, construct a corre-
sponding SDP and prove a result similar to Theorem 3.1 from [77] for this
case. In Section 3.6, we consider the MSBPM and construct a SDP with
MSBPM based dynamics. In Section 3.7, we outline an ADP approach for
solving the constructed SDP with MSBPM based dynamics. We finish with
Section 3.8, where we give illustrative examples of SDPs with branching
process based dynamics.

3.2 Modeling of Sequential Decision Prob-
lems (SDPs)

Within this Section, we introduce the “Universal Modeling Framework”
developed by Warren B. Powell in [82] (2022) and [80]. We follow pri-
marily Chapter 9 (page 467) from [82], however, we have streamlined the
presentation in accordance with our purposes.

Recall the 15 mathematical communities, discussed in Section 1.5, that
consider Sequential Decision Problems (SDPs). Each of these communities
has its distinctive toolset and perspective when working with determinis-
tic and/or stochastic optimization. The choice of community/communities
within which to develop and associate our work is thus of paramount impor-
tance. The “Universal Modeling Framework” aims at covering the particu-
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larities encountered within all of the 15 communities that work with SDPs
in a unified way. This may facilitate a more easy incorporation of ideas
from the aforementioned communities into subsequent future research that
continues the work within this dissertation. The framework (as well as the
presentation in [82] and [78]) is also oriented towards the use of simulations
and computer resources - we believe this approach towards solving compli-
cated SDPs to hold great promise, considering that closed-form solutions
are rare for SDPs.

The notation used within the “Universal Modeling Framework” is close
to the notation used within the starting point of our considerations within
Section 3.4, that is [77], and also is a refinement of the notation found in
[78] from where we draw the idea of using ADP in future research. The
“Universal Modeling Framework” is also notationally close to Optimal con-
trol ([204], [205], [206], [207], [208]) and Markov Decision Processes (MDP;
[67], [68], [69], [70], [71]). We stress that working within the “Universal
Modeling Framework” allows us to utilize Bellman’s equality equation, dis-
cussed in Section 3.3, which formally opens the gate for techniques such as
Approximate Dynamic Programming (ADP) and Reinforcement Learning
(RL) to be applied onto SDPs with underlying branching process based
dynamics.

Within the dissertation we do not engage into the full extent of the
“Universal Modeling Framework”, presented in [82]. As we concentrate
the majority of our attention on problems close to MDP, we only provide
concepts that we use and refer the reader to Chapter 9 in [82] for the
entirety of the framework.

Following [82] (page 470), there are 5 components when modeling any
sequential decision problem:

1. State variables

2. Decision/action/control variables

3. Exogenous information variables

4. Transition function

5. Objective function

Before we begin defining these components, recall our informal Descrip-
tion 1.1 of a SDP from Chapter 1 (page 22 of the dissertation). From now
on, in order to avoid unnecessary notational clutter, we adopt:
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Notational Choice 1. We index the decision epochs with t, t = 0, 1, 2, . . .
Any variable indexed with t is understood as a variable corresponding to
decision epoch with index t. When we talk about intervals, e.g. interval (t,
t+1), we understand the interval between epochs with index t and index
t+ 1. We assume that the distance between two decision epochs can vary
between any two neighboring epochs but cannot be 0 or ∞. If there is a
final epoch, its index is T .

Also:

Remark 3.1. Below, we assume that any variable indexed with t is
known at t. With respect to Notational Choice 1, the variable is known at
the decision epoch indexed by t.

We note that, due to the high level of interconnection between the
aforementioned components, it is rather difficult to define them entirely
separately from one other. In order to improve our presentation, we discuss
the components in a different order than the one listed above. The concept
of a “state variable” is central for all other concepts, however, it is the last
one defined. We take this approach as the definition of a “state variable”,
provided within [82], actually involves the other four concepts. Until we
arrive at Subsection 3.2.5, where we define them properly, let St denote the
state at t and let S (or St) be the state space , i.e., the set that contains all
possible states. After the definitions below, in Subsection 3.2.6, we make
remarks and discuss implications.

3.2.1 Exogenous information

All new information that enters the system within the interval between two
decision epochs is considered exogenous information (see Section 9.6 from
[82] on page 506). Even for a purely stochastic system, such as a branching
process for example, the realization of the system at a particular decision
epoch is considered exogenous information. The word “exogenous” ex-
presses the notion that this kind of information is not a result of (although
it can be affected by) other information already available in the system.
Within the “Universal Modeling Framework” the exogenous information,
together with the initial state S0 (if it is stochastic), model all sources of un-
certainty. We use Wt as generic notation for exogenous information. Wt+1

denotes the exogenous information that becomes available during (t, t+1).
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Wt may represent multiple random variables or complicated constructs of
random variables.

3.2.2 Decision variables and Policies/Decision func-

tions

Decision variables (also known as actions or control variables; see Section
9.5 from [82] on page 500) represent how we control/interact with the
evolving system. Decisions applied at epoch t may affect the evolution of
the system from t onward. We denote the set of all possible decisions, the
decision space, with X (or Xt). We use x to index the elements of X (or Xt).
The decision made at decision epoch t is denoted by xt where the subscript
is meant to stress the fact that a particular element of X (or Xt) is to
be associated with t. Decisions can often be written as multi-dimensional
vectors although they can also be more complicated mathematical objects,
such as matrices.

A policy (see Subsection 9.5.5 from [82] on page 505) is a rule that out-
puts a decision xt given a state St. We denote the set of all available policies
with Π and index the elements of the set with π. Whenever we want to
formalize the application of policy π, we may write Xπ(St) (or Xπ

t (St)).
Xπ(St) is called a decision function and having a decision function is equiv-
alent to having a policy π. π can be thought of as the information that
describes the decision function Xπ(St) (or Xπ

t (St)). In literature the terms
“policy” and “decision function” are often interchangeable. Constraints
related to our decision making can enter our modeling via X or the infor-
mation contained within Π.

3.2.3 Transition function

The transition function (also known as “system model” or “state transition
model”; see Section 9.7 from [82] on page 515) determines how the system
evolves from state St to state St+1 given the decision that was made at
time t and the exogenous information that arrives between t and t + 1.
We denote the transition function with SM(St, xt,Wt+1) (the SM(·) stands
for “state model”), thus St+1 = SM(St, xt,Wt+1). The transition function
encompasses all of the dynamics of the system, including the updating of
estimates and beliefs.
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Contrary to this general and simplistic description, usually the proper
formal definition of the transition function for a particular problem is a
very difficult task. Additional care must be taken so that the definitions of
state variables, decision variables, and transition function, agree with each
other.

The transition function SM(St, xt,Wt+1) can be viewed as a close rela-
tive of the transition function f used in Optimal control. We note that in
the dissertation, we do not consider stochastic differential equations within
the optimization problems investigated.

3.2.4 Contribution function and Objective function

The objective function (see Section 9.8 from [82] on page 518) specifies
a relevant performance metric. We write the objective function via the
contribution function C(St, xt) (or Ct(St, xt)) which outputs the result,
with respect to our metric, of applying decision xt onto state St. Let γ be
a discount factor (usually γ ≤ 1). If the initial state S0 is probabilistic, the
objective function can be written as

F π(S0) = ES0
EWt,...,WT |S0

{
T∑
t=0

γtCt
(
St, X

π
t (St)

)
|S0

}
,

if not then we may write

F π(S0) = EWt,...,WT |S0

{
T∑
t=0

γtCt
(
St, X

π
t (St)

)
|S0

}
,

or more compactly

(3.1) F π(S0) = E

{
T∑
t=0

γtCt
(
St, X

π
t (St)

)
|S0

}
.

Within the dissertation we are interested in finding

max
π∈Π

F π(S0).

3.2.5 State variables

Unfortunately even the definition of “state”, a concept central to sequential
decision problems, is not universally agreed upon within the 15 commu-
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nities discussed in the Introduction (see Section 1.5 on page 22 of the
dissertation, [79], [80], [81], [82]).

Within the dissertation, we adopt the definition of “state” variables
given in [82] (more precisely the “Policy-dependent” version in Section
9.4 of [82] on page 481). This choice has certain implication discussed in
Subsection 3.2.6.

Definition 3.1. A state variable is a function of history that, combined
with the exogenous information (and a policy), is necessary and sufficient
to compute the cost/contribution function, the decision function (the pol-
icy), and any information required by the transition function to model the
information needed for the cost/contribution and decision functions.

Definition 3.1 appears a bit convoluted at first, however this is due to the
generality that it tries to achieve. For a more thorough discussion of the
presented definition, the interested reader is directed to Chapter 9 from
[82], pages 481-484.

For the purpose of clarity of the discussion within the dissertation,
we (independently of [82]) provide a more concrete yet more descriptive
statement of Definition 3.1 as follows: The state of the system at t is
understood as the information, that we know and keep record of, about the
system at t. Further, in order for our modeling to work, the information
encoded as the “state” at t together with decisions related information
encoded as “policy”, must be necessary and sufficient for finding a decision
(i.e., calculate the decision function) to be applied to the system at t and
also to calculate the contribution function at t (which may depend on the
decision obtained). In addition to that, the state at t, together with the
decision made at t, and the exogenous information that arrives at t + 1,
must be necessary and sufficient for the transition function to produce the
state at t+ 1.

We denote the set of all possible states, the state space, with S (or
St). We use s to index the elements of S (or St) at t and s′ to index the
elements of S (or St+1) at t+1. States can often be represented as vectors,
however this is not always the case.

The initial state S0 is allowed to be stochastic (note that the indexing
of Wt starts from t = 1).
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3.2.6 Discussion

The following discussion is not directly borrowed from [82] and contains
some of our thoughts regarding the newly obtained concepts. This discus-
sion serves for clarifying these concepts, as well as presenting implications
and considerations relevant for the incorporation of branching processes
into SDPs within the “Universal Modeling Framework”.

The definitions given in the preceding Subsections are general and pro-
vide descriptive information about the required properties of the 5 com-
ponents necessary for modeling a SDP within the “Universal Modeling
Framework”. The level of generality employed is appropriate, considering
the vast variety of possible problems the framework tries to encompass.
We direct the reader to Section 3.8, within the dissertation, for concrete
example specifications of SDPs with branching processes based dynamics.

As stated in [82], page 482, (vi), Definition 3.1 that defines the state
variables has the following crucial implication:

Remark 3.2. As a consequence of Definition 3.1, all properly modeled,
with respect to the “Universal Modeling Framework”, dynamic systems are
Markovian by construction.

This implication complicates actual modeling within the “Universal Model-
ing Framework” as it is often the case that appropriately discerning relevant
dependencies within a dynamic system is not a trivial task. On the other
hand, forcing our modeling to seek a Markovian description of a designated
system may help us spend the necessary time to properly understand the
dynamics of the system that we try to model and thus save us from ven-
turing into inefficient or erroneous modeling. In addition to that, a SDP
with Markovian dynamics can benefit from Bellman’s optimality equation
(see Section 3.3) and consequently can benefit from approximate dynamic
programming and reinforcement learning as well.

Remark 3.2 relates to the exogenous information in the following way:

Remark 3.3. The exogenous information evolving within (t, t + 1) can
depend on states and decisions at t, but not on prior moments, or can be
completely independent. Any knowledge about the exogenous information
process within (t, t + 1), such as parameters for probability distributions,
is explicitly or implicitly encoded within the state of the system and/or the
decision made at t.

We also need to be careful when modeling decisions:
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Remark 3.4. As the decision function depends only on the state at t,
it cannot functionally depend on states and decisions prior to t. When
doing our modeling, we must be careful - we must further ensure that the
outcome from applying a decision upon the state at t does not depend on
information for states and decisions prior to t.

In a general setting, the transition function SM(St, xt,Wt+1) can have
stochastic as well as deterministic components. Our focus within the dis-
sertation is incorporating branching processes within SDPs, thus we will
not be considering transition functions with deterministic components. For
our purposes the transition function between t and t+ 1 is equated to the
branching process between t and t + 1 that is set by the decision at t
and that has as an initial state all necessary information about the parti-
cles that exist at t. We note that in the dissertation, we do not consider
stochastic differential equations within our SDPs. We stress that, since a
branching process is in fact an interplay of the realizations of various un-
derlying probability distributions (see, e.g., the definition of the MSBPM
- Definition 2.1), we can prove relevant statements for a branching process
through proving them for its underlying distributions.

We finish this discussion with a comment concerning the incorpora-
tion of branching process based dynamics into SDPs. Definition 3.1 and
Remark 3.2 raise the question about the applicability of the “Universal
Modeling Framework” outside of the well known cases where branching
process can be viewed as Markov chains. Indeed, the Bienaymé-Galton-
Watson branching process and Bellman-Harris branching processes with
exponential lifespan are Markovian with respect to states defined as the
number of particles, per type, that exist at a specified moment in time t.
In order to apply the “Universal Modeling Framework” outside of these
cases, it will be necessary to redefine the usual state space associated with
a branching process in such a way so that the Markov property holds.
In Section 3.6, we will do precisely that for the, generally non-Markovian
under the standard notion of “state”, MSBPM defined in Chapter 2.

3.2.7 Formal definition of a SDP within the “Univer-

sal Modeling Framework”

We are now ready to formalize Description 1.1 from Section 1.5 from the
Introduction (recall page 22 of the dissertation). Definition 3.2, that we
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give below, constitutes an aggregation of the discussion within Chapter 9
from [82]. When writing Definition 3.2, we keep in mind Notational Choice
1.

Definition 3.2. A finite-horizon Sequential Decision Problem (finite-
horizon SDP) within the “Universal Modeling Framework”, with final de-
cision epoch T , is characterized by the sequence

(S0, x0,W1, S1, . . . , St, xt,Wt+1, St+1, . . . , ST ).

The objective of a finite-horizon SDP is to find a policy that satisfies

max
π∈Π

ES0
EW1,...,WT |S0

{
T∑
t=0

γtCt
(
St, X

π
t (St)

)
|S0

}
.

An infinite-horizon Sequential Decision Problem (infinite-horizon SDP)
within the “Universal Modeling Framework” is characterized by the se-
quence

(S0, x0,W1, S1, . . . , St, xt,Wt+1, St+1, . . . ).

The objective of an infinite-horizon SDP is to find a policy that satisfies

max
π∈Π

ES0
EW1,W2,...|S0

{ ∞∑
t=0

γtCt
(
St, X

π
t (St)

)
|S0

}
.

If the set of all policies, Π, is infinite, we write “sup” instead of “max”.

Within the dissertation, we will be interested only in finite-horizon
SDPs. We leave the topic of incorporating branching processes into infinite-
horizon SDPs for future considerations.

Next, we provide Proposition 3.1 and Proposition 3.2 independently of
the discussion within [82]. We will actively use these propositions, as well
as the considerations following them, in subsequent Sections.

Proposition 3.1. For any fixed policy π, a SDP within the “Universal
Modeling Framework” constitutes a discrete-time (possibly non-stationary)
Markov chain with respect to t = 0, 1, . . . , T .

Proof. Recall that the transition function SM connects the state at t and
the state at t + 1 via St+1 = SM(St, xt,Wt+1). For a fixed policy π, since
Xπ
t (·) is functionally dependent only on St, we effectively have St+1 =
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SM(St,Wt+1). For a fixed π, under the same reasoning, if the stochastic
Wt+1 is not independent, then it is functionally dependent (recall Remark
3.3) only on St. As SM is a transition function for a SDP within the
“Universal Modeling Framework”, SM is conditionally independent from
states and decisions prior to t. Thus, the probability for obtaining St+1 at
t + 1 depends only on St and the we have a Markov chain between t and
t + 1. The Markov chain is non-stationary if the transition probabilities,
under π, are different between different neighboring decision epochs.

The following is also true

Proposition 3.2. A discrete-time, with respect to t = 0, 1, . . . , T , pos-
sibly non-stationary, Markov chain can be viewed as a SDP within the
“Universal Modeling Framework”.

Proof. A discrete-time, with respect to t = 0, 1, . . . , T , Markov chain cor-
responds to a SDP within the “Universal Modeling Framework” that has
only one possible policy. Indeed, the states of the Markov chain, the exoge-
nous information that can be derived from the Markov chain, the singular
policy, and the transition function of the Markov chain, satisfy the neces-
sary definitions within the “Universal Modeling Framework”. Without loss
of generality, we can set to objective and contribution functions to 0.

Perhaps the most difficult moment when modeling a dynamic system as
a SDP within the “Universal Modeling Framework” is verifying that the
defined state variables, decision variables, exogenous information variables,
contribution and objective functions, and transition function, all satisfy the
assumptions of a SDP within the framework. More specifically, proving
the conditional independence of the transition function between t and t+1
from states and decisions prior to t can be especially problematic in the
general case. Proposition 3.1 and Proposition 3.2 provide us with a way of
checking that our model is indeed a SDP within the “Universal Modeling
Framework” - what we need to do is verify that for every fixed policy
π the resulting process is a discrete time Markov chain with respect to
t = 0, 1, . . . , T .
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3.3 Bellman’s optimality equation for SDPs
within the “Universal Modeling Frame-
work”

Within this Section, we adapt the discussions in Chapter 14 from [82] and
Chapter 3 from [78]. Similarly to the presentation for Markov Decision
Processes (MDP) within Section 4.3 in [70], we will first define Bellman’s
optimality equation within the “Universal Modeling Framework” and then,
we will show its relevance with respect to solving SPDs.

3.3.1 Definition of Bellman’s optimality equation for

SDPs within the “Universal Modeling Frame-

work”

Bellman’s optimality equation for SDPs within the “Universal Modeling
Framework” is discussed within Section 14.2 from [82]. In the current
Subsection, we focus only on aspects of the discussion that we will need
when incorporating branching processes into SDPs.

Definition 3.3. In the context of a SDP within the “Universal Modeling
Framework”, as given by Definition 3.2, define (the expectation form of)
Bellman’s optimality equation at t as

(3.2) Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γE

{
Vt+1(St+1)|St, xt

})
.

Vt(St) is also known as the value function as it gives us the value of being in
state St at t. If we write equation (3.2) for consecutive t it is evident that
the Markov property is implied, which is to be expected knowing that all
dynamic systems considered within the “Universal Modeling Framework”
are Markovian. When using (3.2), we keep in mind that the exogenous
information, if any, may or may not depend on St and xt (and does not
depend on states and decisions prior to t). If there is exogenous information
affecting our system, its influence is captured by the expectation in (3.2).

Whenever the state space is discrete, we can write Bellman’s optimality
equation in the following form that is considered standard within the MDP
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community:

(3.3) Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γ

∑
s′∈St+1

P(St+1 = s′|St, xt)Vt+1(s
′)
)
.

If there is an exogenous information affecting our system, its influence is
captured by P(St+1 = s′|St, xt).

If a policy π is fixed, we can substitute xt in (3.2) and (3.3) with Xπ
t (St)

and write

V π
t (St) = Ct

(
St, X

π
t (St)

)
+ γE

{
V π
t+1(St+1)|St, Xπ

t (St)
}

and

V π
t (St) = Ct

(
St, X

π
t (St)

)
+ γ

∑
s′∈St+1

P
(
St+1 = s′|St, Xπ

t (St)
)
V π
t+1(s

′).

V π
t (St) is called the value function under policy π as it provides us with

the value of being in state St following policy π. When π is fixed, since
Xπ
t (·) is a function of St, we can remove Xπ

t (St) from the conditions, thus
arriving at

V π
t (St) = Ct

(
St, X

π
t (St)

)
+ γE

{
V π
t+1(St+1)|St

}
,

V π
t (St) = Ct

(
St, X

π
t (St)

)
+ γ

∑
s′∈St+1

P
(
St+1 = s′|St

)
V π
t+1(s

′).

Bellman’s optimality equation is linked to the solution of the SDP given
by Definition 3.2. Since our primary interest are finite-horizon SDPs, we
limit ourselves to formally verifying this connection only for the case of
finite-horizon SDPs within Theorem 3.1 in the next Subsection.

3.3.2 Bellman’s optimality equation and the solution

of a finite-horizon SDP within the “Universal

Modeling Framework”

Within this Subsection, we will be considering finite-horizon Sequential
Decision Problems (SDPs). The proofs presented here are adapted versions
of the proofs found in Subsection 14.12.1 of [82] (page 770). Here “adapted”
indicates that we have added the discount factor γ in the statements and
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proofs within Subsection 14.12.1 from [82]. We note that due to Notational
Choice 1, the statements below are, effectively, proven for decision epochs
with (possibly) varying distance from one another.

Recall that the objective function of a finite-horizon SDP is given by
equation (3.1), i.e.,

F π(S0) = E

{
T∑
t=0

γtCt(St, X
π
t

(
St)
)
|S0

}
.

We begin by investigating

(3.4) F π
t (St) = E

{
T−1∑
t′=t

γt
′−tCt′

(
St′, X

π
t′ (St′)

)
+ γT−tCT (ST )|St

}
.

It is clear that F π(S0) = F π
0 (S0). Instead of tackling (3.4) directly, we

consider for a fixed π

(3.5) V π
t (St) = Ct(St, X

π
t (St)) + γE

{
V π
t+1(St+1)|St

}
.

The following proposition (Proposition 14.12.1 from [82]) is an appli-
cation of the law of total expectation.

Proposition 3.3.
F π
t (St) = V π

t (St)

Proof. We provide a proof by induction. At T it is clear that F π
T (ST ) =

V π
T (ST ) = CT (ST ). Next, assume the statement holds for t+1, t+2, . . . , T .

We show that it is true for t. From the induction hypothesis and from
equations (3.4) and (3.5), we have

V π
t (St) =

= Ct(St, X
π
t (St)) + γE

{
E
{ T−1∑
t′=t+1

γt
′−(t+1)Ct′(St′, X

π
t′ (St′))+

+ γT−(t+1)CT (ST )
∣∣∣St+1

}∣∣∣∣∣St
}

= Ct(St, X
π
t (St)) + γE

{ T−1∑
t′=t+1

γt
′−(t+1)Ct′(St′, X

π
t′ (St′)) + γT−(t+1)CT (ST )

∣∣∣St}
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= E
{ T−1∑

t′=t

γt
′−tCt′(St′, X

π
t′ (St′)) + γT−tCT (ST )

∣∣∣St}
= F π

t (St),

which completes the proof.

Next, we turn our attention to

F ∗t (St) = max
π∈Π

F π
t (St).

If Π is infinite, we replace “max” with “sup”. The following theorem
corresponds to Theorem 14.12.1 from [82].

Theorem 3.1. Let Vt(St) be a solution to Bellman’s optimality equation
(3.2)

Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γE

{
Vt+1(St+1)|St, xt

})
.

Then, for a finite-horizon SDP

F ∗t (St) = Vt(St).

Proof. The proof consists of two parts. First, we show by induction that
Vt(St) ≥ F ∗t (St) for all St ∈ S and t = 0, 1, . . . , T − 1. Then, we show that
the reverse inequality is true.

Part 1:
Since VT (ST ) = CT (ST ) = F π

T (ST ) for all ST and all π ∈ Π, we get that
VT (ST ) = F ∗T (ST ).
Let our induction hypothesis be that Vt′(St′) ≥ F ∗t′(St′) for t′ = t + 1, t +
2, . . . , T , and let π be an arbitrary policy. For t′ = t, Bellman’s optimality
equation (3.2) is

Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γE

{
Vt+1(St+1)|St, xt

})
.

By the induction hypothesis, Vt+1(St+1) ≥ F ∗t+1(St+1), so we get

Vt(St) ≥ max
xt∈Xt

(
Ct(St, xt) + γE

{
F ∗t+1(St+1)|St, xt

})
.
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By definition, we have that F ∗t+1(St+1) ≥ F π
t+1(St+1) for an arbitrary π. Let

Xπ(St) be the decision that is chosen by policy π when in state St. Then
with the help of Proposition 3.3

Vt(St) ≥ max
xt∈Xt

(
Ct(St, xt) + γE

{
F π
t+1(St+1)|St, xt

})
≥ Ct(St, X

π(St)) + γE
{
F π
t+1(St+1)|St, Xπ(St)

}
= F π

t (St).

Thus
Vt(St) ≥ F π

t (St) for all π ∈ Π,

which proves Part 1.

Part 2:
Now we are going to prove the inequality from the other side. More specif-
ically, we want to show that for any ε > 0 there exists a policy π that
satisfies

(3.6) F π
t (St) + (T − t)ε ≥ Vt(St).

To do this, we again recall Bellman’s optimality equation

(3.7) Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γE

{
Vt+1(St+1)|St, xt

})
.

In general, the set Xt may be infinite, whereupon we have to replace
“max” with a “sup” and handle the case where an optimal decision may
not exist. For this case, we know that we can design a decision rule that
returns a decision xt that satisfies

(3.8) Vt(St) ≤ Ct(St, xt) + γE
{
Vt+1(St+1)|St, xt

}
+ ε.

We can prove (3.6) by induction. We first note that (3.6) is true for
t = T since F π

T (ST ) = VT (ST ). Now assume that it is true for t′ = t+ 1, t+
2, . . . , T . We know from equation (3.5) and Proposition 3.3 that

F π
t (St) = Ct(St, X

π(St)) + γE
{
F π
t+1(St+1)|St, Xπ(St)

}
.

We can use our induction hypothesis, which is F π
t+1(St+1) ≥ Vt+1(St+1) −

(T − (t+ 1))ε, to obtain

F π
t (St) ≥ Ct(St, X

π(St)) + γE
{
Vt+1(St+1)− (T − (t+ 1))ε|St, Xπ(St)

}
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= Ct(St, X
π(St)) + γE

{
Vt+1(St+1)|St, Xπ(St)

}
−

− γE
{

(T − t− 1)ε|St, Xπ(St)
}

=
{
Ct(St, X

π(St)) + γE
{
Vt+1(St+1)|St, Xπ(St)

}
+ ε
}
− (T − t)ε.

Now, using (3.8), we replace the term in brackets with Vt(St):

F π
t (St) ≥ Vt(St)− (T − t)ε,

which completes Part 2.
Combining the results of Part 1 and Part 2, we have shown that

F ∗t (St) + (T − t)ε ≥ F π
t (St) + (T − t)ε ≥ Vt(St) ≥ F ∗t (St).

Since ε can be arbitrary small, the proof of the theorem is complete.

3.3.3 Bellman’s optimality equation and the three

curses of dimensionality

In what follows, we adopt the term “dynamic programming” as viewed in
[70], page 3 - we will use “dynamic programming” to describe an approach
for solving SDPs based on inductive computation. Dynamic programming
algorithms are algorithms that utilize Bellman’s optimality (3.2) or equa-
tion (3.3).

If the state and decision spaces are discrete and finite (these are some
of the classical assumptions within the Markov decision processes commu-
nity, see Subsection 2.1.2 from [70] on page 18), we can try using the fol-
lowing algorithm, often referred to as “Backward Dynamic Programming”
or “Backward Induction Algorithm” (see page 65 from [78] and page 92
from [70]), in order to solve a SDP.

Algorithm 3.1.

Step 0. Initialization: Initialize the terminal contribution VT (ST ).
Set t = T − 1.

Step 1. Calculate (3.3) (or (3.2)):

Vt(St) = max
xt

{
Ct(St, xt) + γ

∑
s′∈S

P(s′|St, xt)Vt+1(s
′)
}
,

for all St ∈ S.
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Step 2. If t > 0, decrement t and return to Step 1. Else STOP.

Unfortunately, Algorithm 3.1, as well as other dynamic programming
algorithms such as “Value iteration” (see Section 3.4 from [78]) and “Pol-
icy iteration” (see Section 3.5 from [78]) for infinite-horizon SDPs, usually
works well only for (relatively) small problems with discrete state and ac-
tion spaces. This is because at some point in the algorithm (for Algorithm
3.1 this is Step 1), we have to do computations for all St ∈ S. Algorithm 3.1
illustrates well the so-called curse of dimensionality - generic dynamic pro-
gramming algorithms can easily (but not always) become non-applicable
with respect to multi-dimensional and/or countably infinite S. A second
curse of dimensionality exists in relation to xt since in some settings the
decision space can also be multi-dimensional and/or countably infinite.
There is potentially an additional third curse of dimensionality if we try
to decompose P(s′|St, xt) with respect to the exogenous information which
can be specified by multiple random variables.

Dropping the assumptions for discrete and finite state and decision
spaces, we can encounter multi-dimensional, continuous, state and deci-
sion spaces, further the exogenous information can also be specified by
multiple continuous random variables. In such cases it is often not possi-
ble to apply the dynamic programming paradigm directly. However, the
core ideas of the paradigm can be used within approaches such as Approxi-
mate Dynamic Programming (ADP; see [78], [76], [82]) and Reinforcement
Learning (RL; see [203], [82]) that are adapted towards handling the curses
of dimensionality. We will touch upon ADP in Section 3.7 of the disserta-
tion.

We note that branching processes are stochastic processes where the
state is usually defined as the number of particles, per type, that exist at
a specified t. Such a state space is countably infinite and possibly multi-
dimensional. Thus, applying algorithms based on Bellman’s optimality
equation in the context of branching processes is not trivial.

3.4 SDPs with underlying BGW branching
process dynamics

To the best of our knowledge, stochastic sequential decision problems,
where the dynamics is generated specifically by a branching process (the
case of the Bienaymé-Galton-Watson branching process is investigated),
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are considered for the first time in [77] (1976). Theorem 3.1 from [77] pro-
vides us with a dynamic programming algorithm that, unlike Algorithm
3.1 from Subsection 3.3.3, does not require from us to iterate all states
within S.

Since we will be considering Bienaymé-Galton-Watson (BGW) branch-
ing processes, Notational Choice 1 is redundant - the moments in time
when the decision epochs occur coincide with the indexing given ty t.

Our contributions within this Section are: 1) We recast the Markov
decision process from [77] into the “Universal Modeling Framework”; 2) We
provide a novel proof for Theorem 3.1 from [77] that is based on Bellman’s
optimality equation. These contributions have not been published yet.

3.4.1 Informal description of the SDP with underly-

ing BGW branching process dynamics

Before jumping into notational particularities, in order to have a clear
picture of the dynamic system we model, we give an informal description
of the finite-horizon SDP discussed in Section 2 and Section 3 of [77]. The
sketch of this description is applicable to all SDPs discussed within the
dissertation.

Consider a finite set of decision epochs indexed by t, t = 0, 1, . . . , T .
Next, consider a multi-type BGW branching process that is consecutively
observed at the decision epochs indexed by t. At each observation, starting
with t = 0:

1. For each particle that exists at t, from each particle type, a decision
is made from among a discrete set of possible decisions. Decisions
affect the reproductive capabilities of particles that exist at t, thus the
characteristics of the BGW branching process may change whenever
a decision is made. Because of this, the evolution of the system of
particles is actually modeled by a sequence of (possibly) different
BGW branching processes, each existing for 1 time unit and each
passing its offspring as the initial state of the next BGW branching
process. If t = T no decisions are made.

2. Upon making a decision for a particle, a reward specific to the com-
bination of particle type and decision made is collected. If t = T , as
stated, no decisions are made, instead a predefined “terminal reward”
is collected per each particle with respect to type.
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3. After making decisions and collecting rewards at t, the (possibly mod-
ified) BGW branching process is left to evolve for 1 time unit until
t+1, where we make new decisions and collect new rewards. If t = T
we terminate after collecting the terminal rewards.

Our objective is to maximize the cumulative expected reward collected by
choosing appropriate decisions at each t.

3.4.2 Definition of SDP Model 1 - SDP with under-

lying BGW branching process dynamics

Before proceeding, we must take note of the following circumstance within
[77]:

Remark 3.5. In [77] it is originally allowed for different decisions to
be made per each particle per each type. However, as proven within [77]
itself, the optimal policy is one that produces the same decision for each
particle within a type. Actually, the assumption of independent evolution of
particles ensures that once we have found an optimal decision at t (corre-
sponding to the optimal policy) for one particle of type i, then this decision
is optimal at t for all particles of type i. This in effect allows us to rede-
fine the decision space used in [77] as a space consisting of discrete tuples
where each element gives the decision for all particles of the corresponding
type. We do take this approach as doing otherwise introduces unnecessary
notational clutter.

For convenience, we also adopt the following:

Remark 3.6. For notational convenience, we will not explicitly write
the probability distributions and p.g.f.s, per type, that govern a branching
process between t and t+1, within the state variables. We do so because, we
want to take advantage of writing the state of the system as a vector where
each vector coordinate corresponds to a type. We will deem probability
distributions and p.g.f.s associated with type i to be implicitly known when
we are considering particles of type i.

We are now ready to specify SDP Model 1 which is the finite-horizon
model discussed in Section 3 of [77].

Definition of SDP Model 1. Define SDP Model 1 as the finite-horizon
Sequential Decision Problem that satisfies:
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1. We observe a BGW branching process at successive times indexed
with t = 0, 1, 2, . . . , T .

2. Let k be the number of particles types within the BGW branch-
ing process. The state space St consists of all k-dimensional vectors
whose coordinates are non-negative integers. The t index in St in-
dicates that there are probability distributions and p.g.f.s associated
with each type that may change with t (after a decision has been
made). The state of the process at t is also called the “generation”
or the “population” at t. The state of the process at t is given by
SSSt = (S1,t, S2,t, . . . , Sk,t)

>, where all Si,t are with values in N0 and Si,t
is the (non-negative) number of particles of type i that exist at t.
The initial state SSS0 is deterministic.

3. Each particle type i has a specific finite set of possible decisions
(actions) X̃i associated with it. Hence, the decision space is given by

X = X̃1 × X̃2 × · · · × X̃k. We denote the decisions made at t with
xxxt = (x1,t, x2,t, . . . , xk,t)

>.

4. Let ci(xi,t) be the individual contribution (reward) received for a type
i particle after making decision xi,t for all particles of type i at t. We
assume that −∞ < ci(xi,t) <∞ for all i and that ci(·) do not depend

on t. If we let ccc(xxxt) =
(
c1(x1,t), . . . , ck(xk,t)

)>
, then the generation

contribution at t is Ct
(
SSSt,xxxt) =

∑k
i=1 Si,t · ci(xi,t) = SSS>t ccc(xxxt). At

t = T no decisions are made, instead a terminal cccT =
(
c1, . . . , ck

)>
is collected, hence the generation contribution at t = T is CT (SSST ) =
SSS>TcccT .

5. The decision selected for a particle affects the number of offspring,
per type, that the particle has in the next generation.

(a) For each k-dimensional vector qqq = (q1, . . . , qk)
> of non-negative

integers, let pi(qqq, xi,t) be the probability that a type i particle,
whose corresponding decision is xi,t, will produce exactly q1 type
1 offspring, . . . , qk type k offspring,

∑
qqq pt(qqq, xi,t) = 1.

(b) Corresponding to each pi(·, xi,t) is the row vector mmmi(xi,t) =(
mi1(xi,t), . . . ,mik(xi,t)

)
, wheremij(xi,t) equals the expected num-

ber of type j offspring produced by a single particle of type i un-
der decision xi,t. We assume that mij(xi,t) <∞ for all xi,t ∈ X̃i
and i, j = 1, . . . , k. Given xxxt ∈ X , we organize the expectations
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into matrix M(xxxt) = (mmm1(x1,t), . . . ,mmmk(xk,t))
>.

6. Denote a policy by π. The set of possible policies, with respect to
X , is Π. Denote the decision function at t, corresponding to policy
π, with Xπ

t (·).
7. A discount factor γ is given.

8. We want to obtain the maximum expected T-period discounted re-
ward given by

max
π∈Π

E

{
T−1∑
t=0

γtCt(SSSt, X
π
t (SSSt)) + γTCT (SSST )|SSS0

}
.

In the context of Proposition 3.1 and Proposition 3.2 from Subsection
3.2.7, let us verify that for any fixed π SDP Model 1 is a (possibly non-
stationary) Markov chain. It has already been noticed within [77] that the
model defined there gives rise to a non-stationary Markov chain for each
policy, although no details are provided. Indeed, given SSSt, the decision
dictated by π, xxxt, modifies all (offspring) distributions that are relevant
for the dynamics of the system. As within a BGW branching process all
particles at t are of age 0, xxxt sets the dynamics between t and t + 1 (we
explicitly note that particles have age 0 as the question regarding particle
age is central to Section 3.6 and the SDP defined there). Thus we have
a Markov chain since the dynamics is dependent only on SSSt (the policy
π being applied is fixed) and there is no dependence from prior states.
When considering SSSt+1 and (t + 1, t + 2), everything is as in the case of
(t, t + 1), however, xxxt+1 (dictated by π) sets possibly different underlying
distributions. When the distributions being set are different, the transition
function between t+1 and t+2 is also different, thus the resulting Markov
chain can be non-stationary. This completes our check and verifies that
SDP Model 1 is indeed a SDP within the “Universal Modeling Framework”.

We can formally characterize the transition function of SDP Model 1

in the following way. Let ZZZt =
(
Z1,t, . . . , Zk,t

)>
denote the multi-type

BGW process at t, where Zi,t is the number of particles of type i that exist
at t. Then, the transition function corresponds to P(ZZZt+1 = SSSt+1|ZZZt =
SSSt, X

π
t (SSSt) = xxxt), where we keep Remark 3.6 in mind. Having checked that

SDP Model 1 is truly a SDP, we have Bellman’s optimality equation at our
disposal.
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Remark 3.7. Note that for SSSt+1 the associated probability distributions
and p.g.f.s for each type are the ones that come into effect after decision
xxxt was made at t for SSSt.

3.4.3 Solution of SDP Model 1

The algorithmic procedure to be used for efficiently obtaining the solution
of SDP Model 1 has been established in Theorem 3.1 within [77] (1976).
The proof of Theorem 3.1 from [77] is based on conditional expectations
and although the author recognizes that the optimal policy can be com-
puted from Theorem 3.1 “...with the usual iterative methods of dynamic
programming...”, Bellman’s optimality equation is not mentioned within
the paper.

In this Subsection, we provide a novel proof of Theorem 3.1 from [77]
that is centered around Bellman’s optimality equation (3.2). More specifi-
cally, since SDP Model 1 is a SDP within the “Universal Modeling Frame-
work”, we can utilize Theorem 3.1 from Subsection 3.3.2 which allows us to
apply Bellman’s optimality equation. We use Bellman’s optimality equa-
tion as a starting point within our proof. Our motivation for developing
a new proof can be summarized as follows: 1) The new proof is in the
more contemporary context of the “Universal Modeling Framework”; 2)
A proof that utilizes Bellman’s optimality equation can prove to be very
useful as a guideline in future research where more complicated SDPs may
be considered; 3) This new proof also happens to be applicable in the con-
text of SDP Model 2, defined in Subsection 3.5.1, and, to the best of our
knowledge, SDP Model 2 has not been considered before in the literature.

The definition of the maximum return operator, identified in [77], will
allow us to write our expressions more compactly:

Definition 3.4. Let XXX be a k-dimensional vector. The maximum return
operator R is given by

RXXX = max
xxx∈X

{
ccc(xxx) + γM(xxx)XXX

}
.

We denote the n-fold composition of R as Rn and R0 is understood as the
identity operator.

We are ready for the main results of Section 3.4.
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Theorem 3.2. For SDP Model 1, the value function Vt(SSSt) satisfies

(3.9) Vt(SSSt) = SSS>t RT−tcccT , t = 0, 1, . . . , T − 1.

Policy π, with corresponding Xπ
t (·), that computes decisions xxxt satisfying

(3.10) ccc(xxxt) + γM(xxxt)RT−t−1cccT = RT−tcccT , t = 0, 1, . . . , T − 1,

is optimal.

Proof. Let us look at the expectation form of Bellman’s optimality equa-
tion, i.e., equation (3.2) for t 6= T . We write it down, using vector notation,
and take into account that, within SPD Model 1, X and the individual con-
tributions received per particle do not depend on t

Vt(SSSt) = max
xxxt∈X

(
Ct(SSSt,xxxt) + γE

{
Vt+1(SSSt+1)|SSSt,xxxt

})
.

Let SSSt = (S1,t, S2,t, . . . , Sk,t)
>. The assumption of independent evolution of

particles within SDP Model 1 allow us to view the BGW branching pro-
cess at t with state SSSt as consisting of S1,t number of independent BGW
branching processes starting at t with one particle of type 1, plus S2,t num-
ber of independent BGW branching processes starting at t with one particle
of type 2, . . . , plus Sk,t number of independent BGW branching processes
starting at t with one particle of type k. Thus, for SSSt = (S1,t, S2,t, . . . , Sk,t)

>

we may write

Vt(SSSt) = max
xxxt∈X

(
SSS>t ccc(xxxt) + γ

(
S1,t · E

{
Vt+1(SSSt+1)|(1, 0, . . . , 0)>,xxxt

}
+

+ S2,t · E
{
Vt+1(SSSt+1)|(0, 1, . . . , 0)>,xxxt

}
+ . . .

+ Sk,t · E
{
Vt+1(SSSt+1)|(0, 0, . . . , 1)>,xtxtxt

}))

= max
xxxt∈X

(
SSS>t ccc(xxxt) + γSSS>t ·

(
E
{
Vt+1(SSSt+1)|SSSt = δδδ1,xxxt

}
, . . . ,

E
{
Vt+1(SSSt+1)|SSSt = δδδk,xxxt

})>)
.
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If we denote
(3.11)

EEEt(xxxt) =
(
E
{
Vt+1(SSSt+1)|SSSt = δδδ1,xxxt

}
, . . . ,E

{
Vt+1(SSSt+1)|SSSt = δδδk,xxxt

})>
,

we arrive at the compact expression

Vt(SSSt) = max
xxxt∈X

(
SSS>t ·

(
ccc(xxxt) + γEEEt(xxxt)

))
= SSS>t ·max

xxxt∈X

(
ccc(xxxt) + γEEEt(xxxt)

)
.

(3.12)

We can now see that in (3.12) the choice of best xxxt ∈ X actually does not
depend on SSSt.

Let us now look at t = T where by the definition of SDP Model 1 we
have

(3.13) VT (SSST ) = CT (SSST ) = SSS>TcccT .

Applying (3.11) for t = T − 1, we obtain

EEET−1(xxxT−1) =
(
E
{
SSS>TcccT |SSST−1 = δδδ1,xxxT−1

}
, . . . ,E

{
SSS>TcccT |SSST−1 = δδδk,xxxT−1

})>
= M(xxxT−1)cccT .

Substituting into (3.12) leads to

VT−1(SSST−1) = SSS>T−1 · max
xxxT−1∈X

(
ccc(xxxT−1) + γM(xxxT−1)cccT

)
(3.14)

= SSS>T−1RcccT ,(3.15)

which proves (3.9) for t = T − 1. We continue by induction. Let (3.9) be
true for t′ = t+ 1, t+ 2, . . . , T − 1, and let us investigate t′ = t. By virtue
of (3.12), we have

Vt(SSSt) = SSS>t ·max
xxxt∈X

(
ccc(xxxt) + γEEEt(xxxt)

)
.

Writing down (3.11) for t, we obtain

EEEt(xxxt) =
(
E
{
Vt+1(SSSt+1)|SSSt = δδδ1,xxxt

}
, . . . ,E

{
Vt+1(SSSt+1)|SSSt = δδδk,xxxt

})>
=
(
E
{
SSS>t+1RT−t−1cccT |SSSt = δδδ1,xxxt

}
, . . . ,E

{
SSS>t+1RT−t−1cccT |SSSt = δδδk,xxxt

})>
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= M(xxxt)RT−t−1cccT ,

thus

Vt(SSSt) = SSS>t ·max
xxxt∈X

(
ccc(xxxt) + γM(xxxt)RT−t−1cccT

)
= SSS>t RT−tcccT ,

which completes the proof of (3.9). The proof of (3.10) follows from (3.9) by
noticing that at any t = 0, 1, . . . , T−1, the best xxxt is derived by maximizing(
ccc(xxxt) + γM(xxxt)RT−t−1cccT

)
, which, by the definition of R, is equivalent to

it RT−tcccT .

We note the following with respect to the result obtained within The-
orem 3.2:

Remark 3.8. Note that Theorem 3.2 in effect says that finding the best
policy π actually does not depend on the state at any t. Finding the best
decision at t amounts to applying the maximum return operator, which
means that we still have to go through all possible xt at t and make corre-
sponding computations using matrices M(xxxt). We note that enumerating
all possible decisions and computing their corresponding matrices M(xxxt)
can prove to be a challenge for problems that have many types and many
possible decisions per type, thus the curse of dimensionality related to the
decision space persists.

3.5 SDPs with underlying exponential lifes-
pan MBHBPM dynamics

Recall that the multi-type Bellman-Harris branching process is a partic-
ular case of a multi-type Sevastyanov branching process where particle
reproduction does not depend on particle age. Analogously, the Multi-
type Bellman-Harris Branching Process through probabilities of Mutation
between types (MBHBPM) is a particular case of the MSBPM from Defi-
nition 2.1 where particle reproduction does not depend on particle age.

Throughout this Section, let ZZZt =
(
Z1,t, . . . , Zk,t

)>
denote either the

multi-type Bellman-Harris branching process or the MBHBPM at t, where
Zi,t is the number of particles of type i that exist at t. We will be following
Remark 3.6 and keeping Remark 3.7 and Notational Choice 1 in mind.
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Our contributions within this Section are: 1) We provide a proof that
the multi-type Bellman-Harris branching process with exponential lifes-
pans, as well as the MBHBPM with exponential lifespans, are discrete-time
Markov chains with respect to t = 0, 1, . . . , T ; 2) For these processes, we
construct SDPs within the “Universal Modeling Framework”; 3) We show
that a theorem similar to Theorem 3.2 holds for the newly constructed
SDPs. These contributions have not been published yet.

3.5.1 Definition of SDP Model 2 - SDP with under-

lying exponential lifespan MBHBPM dynamics

It is well known, [57], that a multi-type Bellman-Harris branching process
with exponential lifespan distributions for all particle types can be viewed
as a continuous-time Markov chain due to the “memorylessness” property
of the exponential distribution. Since we will be considering SDPs, how-
ever, we are interested whether the multi-type Bellman-Harris branching
process with exponential lifespan distributions for all particle types can be
viewed as a discrete-time Markov chain with respect to a discrete set of
moments in time indexed by t = 0, 1, . . . , T .

We could not find an instance in the literature where the multi-type
Bellman-Harris branching process with exponential lifespans is considered
as a discrete-time Markov chain, hence we provide our own proof.

Proposition 3.4. A multi-type Bellman-Harris branching process with
exponential lifespan distributions for all particle types, with states defined
as the number of particles, per type, that exist at moment t, is a discrete-
time Markov chain with respect to the moments in time indexed by t =
0, 1, . . . , T .

Proof. With respect to t = 0, 1, . . . , T , we need to prove that the transition
function between the state at t and the state at t + 1, for the multi-type
Bellman-Harris branching process with exponential lifespan distributions
for all particle types, is conditionally independent from states prior to t and
depends at most on the state at t, i.e., that P(ZZZt+1 = ssst+1|ZZZt = ssst, . . . ,ZZZ0 =
sss0) = P(ZZZt+1 = ssst+1|ZZZt = ssst).

Due to the memorylessness property of the exponential distribution all
particles that exist at t can be considered as having age 0. Having the
assumption of independent evolution of particles in mind, the dynamics of
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a multi-type Bellman-Harris branching process with exponential lifespans,
between t and t+ 1, is set by:

1. The lifespan distribution associated with type i, i = 1, . . . , k.

2. The offspring distribution among types associated with type i, i =
1, . . . , k.

We must prove conditional independence from states prior to t of the afore-
mentioned distributions. Conveniently, by definition, these distributions do
not depend on any state. Consequently, the transition function between t
and t+ 1 depends only on the state at t.

Since the MBHBPM with exponential lifespan distributions corresponds
to the multi-type Bellman-Harris branching process with exponential lifes-
pan distributions (see the discussion below Definition 2.1), by virtue of
Proposition 3.4, the MBHBPM with exponential lifespan distributions, as
well as the DMBHBPM with exponential lifespan distributions, can also
be viewed as a discrete-time Markov chain with respect to t = 0, 1, . . . , T .

We now turn to defining a SDP with underlying exponential lifespan
MBHBPM dynamics. When defining a new SDP, however, we must make
sure that the transition function for the new SDP from t to t+ 1 is condi-
tionally independent not only from states at moments prior to t but also
from decisions made prior to t. Having in mind Proposition 3.1 and Propo-
sition 3.2, we must check if for every fixed π, π being with respect from
the class of decisions we want to consider, the new model, with respect to
its transition function and t = 0, 1, . . . , T , is a (possibly non-stationary)
discrete-time Markov chain. We first give the definition of the new SDP
and then check that it is indeed a SDP within the “Universal Modeling
Framework”.

Definition of SDP Model 2. Define SDP Model 2 as the finite-horizon
SDP that corresponds to the definition of SDP Model 1 upon which the
following modifications are applied:

1. We observe a MBHBPM at epochs indexed with t, t = 0, 1, 2, . . . , T .
Regardless of t, lifespan distributions for particles of each type must
be exponential.

2. Let k be the number of types of particles within the MBHBPM. The
state space St consists of all k-dimensional vectors whose coordinates
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are non-negative integers. The t index in St indicates that there are
probability distributions and p.g.f.s associated with each type that
may change with t (after a decision has been made). However, al-
though lifespan distribution may change their parameters they must
continue to be exponential. The state of the process at t is also called
the “generation” or the “population” at t. The state of the process at
t is given by SSSt = (S1,t, S2,t, . . . , Sk,t)

>, where all Si,t are with values
in N0 and Si,t is the (non-negative) number of particles of type i that
exist at t. The initial state SSS0 is deterministic.

5. The chosen decision xxxt affects the lifespan distributions (however the
distributions remain exponential), the distributions for the number
of particles in the offspring, and the probabilities for mutation within
the offspring, of all particles that exist at t. Thus, the types of all
particles that exist at t are modified as a consequence of xxxt. Particles
that exist at t can create only particles that are of the modified types,
hence only the modified types are being propagated until t+ 1.

(a) Corresponding to the i-th coordinate of xxxt is the row vector
mmmi(xi,t) =

(
mi1(xi,t), . . . ,mik(xi,t)

)
, where mij(xi,t) denotes the

expected number of type j particles at t+1 within a MBHBPM
with exponential lifespan distributions starting at t with a single
particle of type i under decision xi,t. We assume that mij(xi,t) <

∞ for all xi,t ∈ X̃i and i, j = 1, . . . , k. Given xxxt ∈ X , we organize
the expectations into matrix M(xxxt) = (mmm1(x1,t), . . . ,mmmk(xk,t))

>.

Proposition 3.5. SDP Model 2 is a SDP within the “Universal Model-
ing Framework”.

Proof. Similarly to SDP Model 1, SDP Model 2 considers a class of deci-
sions at each t that modify, without dependence from states and decisions
prior to t, all of the underlying distributions associated with each parti-
cle type. Lifespan distributions continue to be exponential, however, their
parameters can change. Under these circumstances, for a fixed π, we can
duplicate the proof of Proposition 3.4 for the case of SDP Model 2, with the
following exceptions: 1) The offspring distribution among types associated
with type i, i = 1, . . . , k, is now written via probabilities of mutation, i.e.,

piααα = pik̂
k̂!

α1!...αk!u
α1

i1 . . . u
αk
ik (see the discussion after Definition 2.1); 2) After

implementing a decision at decision epoch t, the distributions associated
with the process change; 3) If a particle existing at t survives until t+1, the
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argument is restarted with respect to t + 1. Consequently, for every fixed
π, SDP Model 2 can be viewed as a (possibly non-stationary) discrete-time
Markov chain with respect to its transition function and t = 0, 1, . . . , T .

Since SDP Model 2 is a truly a SDP within the “Universal Modeling
Framework”, similarly to Section 3.4.2, we can formally characterize the
transition function via P(ZZZt+1 = SSSt+1|ZZZt = SSSt, X

π
t (SSSt) = xxxt). Further, we

can now utilize Bellman’s optimality equation (3.2).
Evidently, an analogous SDP can be defined for the case of the standard

multi-type Bellman-Harris branching process with exponential lifespans as

well (we use the standard piααα instead of pik̂
k̂!

α1!...αk!u
α1

i1 . . . u
αk
ik ).

3.5.2 Solution of SDP Model 2

As can be seen from the definition, SDP Model 2 is very similar to SDP
Model 1. Indeed, Theorem 3.2 can be replicated in the context of SDP
Model 2.

Theorem 3.3. For SDP Model 2, the value function Vt(SSSt) satisfies

(3.16) Vt(SSSt) = SSS>t RT−tcccT , t = 0, 1, . . . , T − 1.

Policy π, with corresponding Xπ
t (·), that computes decisions xxxt satisfying

(3.17) ccc(xxxt) + γM(xxxt)RT−t−1cccT = RT−tcccT , t = 0, 1, . . . , T − 1,

is optimal.

Proof. Due to the memorylessness property of the exponential distribution,
we can consider all particles that exist at t as having age 0. This and the
assumption of independent evolution of particles allow us to use matrices
M(xxxt) regardless of the state of the system. The rest of the proof of
Theorem 3.3 is completely analogous to the proof of Theorem 3.2, with
the exception that, instead of a BGW branching process, we consider a
MBHBPM with exponential lifespan distributions.

Remark 3.9. When regard to the steps necessary for finding a solution
for SDP Model 2, the situation is analogous to Remark 3.8 valid for SDP
Model 1. There is, however, an additional complication, namely comput-
ing M(xxxt) = (mmm1(x1,t), . . . ,mmmk(xk,t))

> for the MBHBPM with exponential
lifespan distributions. Fortunately, we can do all necessary computations
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via Numerical Scheme 1 applied to the appropriate p.g.f. Fi(t;sss). Recall
Notational Choice 1, more specifically that decision epochs can have vary-
ing distance from one another. Recall also that within Numerical Scheme
1 in order to compute the values at t we have to compute the values (that
are on the grid) before t. Hence, we can save computational time by com-
puting necessary quantities only once for the largest distance between any
two neighboring decision epochs.

Remark 3.10. Due to the correspondence between the multi-type Bellman-
Harris branching process and the MBHBPM it is clear that for a SDP with
dynamics based on the multi-type Bellman-Harris branching process with
exponential lifespan distributions a result analogous to Theorem 3.3 will
hold.

3.6 SDPs with underlying MSBPM dynam-
ics

Throughout this Section, we will consider that Remark 3.6 is in effect.
Also, we keep Remark 3.7 and Notational Choice 1 in mind.

As we saw within the proof of Proposition 3.4, due to the memory-
lessness property of the exponential lifespan distribution, we were able to
consider all particles at t as having age 0, thus their remaining lifespan
was not affected by their true age. If we drop the assumption that lifespan
distributions are exponential, the remaining lifespan of particles that exist
at t depends on their lifespan distribution as well as their respective age.
In the context of the usual definition for states of a branching process,
the states being defined as the number of particles, per type, that exist
at t, the information within the state (and its associated distributions) at
t is not sufficient for a transition function to produce the state at t + 1.
Indeed, so defined states, that do not account for the age of the particles
that exist at t = 0, 1, . . . , T , cannot fully model by themselves the dynam-
ics between any two t and t + 1 as this dynamics (more specifically the
remaining lifespan of particles that exist at t) depends on the ages of the
particles that exist at t. Considering a MSBPM instead of a MBHBPM,
not only the remaining lifespan of particles depends on their age at t but
also their reproductive capabilities depend on the moment of death of a
particle, where the moment of death itself is influenced by the remaining
lifespan distribution. A proper transition function between t and t+ 1 has
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to take into account the ages of particles that exist at t and since any fixed,
in terms of number of particles per type, state at t can have many realiza-
tions with respect to the ages of the individual particles, it follows that,
with respect to the “Universal Modeling Framework”, we have to redefine
the state space in order to be able to construct a SDP where the Markov
property holds.

Our contributions within this Section are: 1) We construct a novel
state space and show that, with respect to it, the multi-type Sevastyanov
branching process, as well as the MSBPM, constitute discrete-time Markov
chains with respect to t = 0, 1, . . . , T ; 2) For these processes, we construct
SDPs within the “Universal Modeling Framework”. The contributions of
this Section have not been published yet.

Unfortunately, unlike Section 3.4 and Section 3.5, there is no theorem
that facilitates an efficient way for finding the solution of a MSBPM (or
multi-type Sevastyanov branching process) based SDP. However, the fact
that we can utilize, by virtue of Theorem 3.1, Bellman’s optimality equa-
tion (3.2), allows us to consider approaches such as Approximate Dynamic
Programming (ADP) and Reinforcement Learning (RL) for finding the so-
lution of interest. We leave the development of a specialized ADP (or RL)
algorithm for future research.

We highlight that stochastic SDPs (and generally stochastic problems)
are one of the most difficult optimization problems within the field of opti-
mization. Nice and compact results are seldom available and different prob-
lems may require specialized algorithms solely designed for them. The mere
existence of the 15 fragmented communities, discussed in Section 1.5, that
deal with sequential decision problems, testifies to the lack of an overarch-
ing approach that can handle a sufficiently large class of problems. In this
context, the successful incorporation of the MSBPM (and other branching
processes) into SDPs within the “Universal Modeling Framework” is a sig-
nificant development, as it provides us with Bellman’s optimality equation
as a possible tool to be used when searching for solutions.

3.6.1 Definition of SDP Model 3 - SDP with under-

lying MSBPM dynamics

We now consider a general MSBPM where the lifespan distributions need
not be exponential and reproductive capabilities of particles can depend
on their age at their moment of death. In this case the ages of the particles
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that exist at t influence the dynamics of the system - in addition to the
lifespan distribution and offspring distribution, among types, associated
with each particle type, we also need the remaining lifespan of the particles
that exist at t, which can be obtained by further knowing the ages of the
particles at t. We construct a novel state space to be used for defining a
SDP with either multi-type Sevastyanov branching processes or MSBPM
dynamics within the “Universal Modeling Framework”. To the best of
our knowledge, multi-type Sevastyanov branching processes, with a state
space that holds information about particle age, have not been discussed
previously.

Definition 3.5. Let there be k types. For each type denote with Di the
set of all 2-tuples of the following form:

1. The first element of the tuple is an integer. We denote this integer
with r, r ∈ N0.

2. The second element of the 2-tuple is a r-tuple. We denote this r-
tuple with lll. Each element li of lll is a non-negative real number, i.e.,
li ∈ R+. The numbers within lll are ordered from smallest to largest.
Duplication is allowed in which case duplicating numbers are written
next to each other.

At t, associate with each Di probability distributions. Following Remark
3.6, we will not write these distributions explicitly, but will consider them
implicitly known. Denote Di with associated distributions at t as Di,t. For
the collection of k types at t, denote Dkt = D1,t ×D2,t × · · · × Dk,t.

Evidently, each element d ∈ Di,t can be interpreted as carrying information
about the number of particles of type i that exist at t (the first component
of the 2-tuple) and also information about the age of each particle of type i
that exists at t (the second component of the 2-tuple). The ordering from
smallest to largest number within the second component of the 2-tuple is
in place to ensure that an actual state cannot be written in more than one
way. Note that the distributions associated with Di,t can be the same for
each t.

With respect to Dkt and t = 0, 1, . . . , T , we can formally write the multi-

type Sevastyanov branching process, as well as the MSBPM, as ZZZ
Dkt
t =(

Z
D1,t

1,t , . . . , Z
Dk,t
k,t

)>
, where Z

Di,t
i,t denotes the number of particles of type i,

as well as their age, that exist at t.
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Proposition 3.6. A multi-type Sevastyanov branching process, with states
defined as the elements of Dkt , is a discrete-time Markov chain with respect
to t = 0, 1, . . . , T .

Proof. With respect to t = 0, 1, . . . , T , we need to prove that the transition
function between the state at t and the state at t + 1, for the multi-type
Sevastyanov branching process, is conditionally independent from states

prior to t and depends at most on the state at t, i.e., that P
(
ZZZ
Dkt+1

t+1 =

ssst+1|ZZZD
k
t

t = ssst, . . . ,ZZZ
Dk0
0 = sss0

)
= P

(
ZZZ
Dkt+1

t+1 = ssst+1|ZZZD
k
t

t = ssst

)
.

Let us consider a multi-type Sevastyanov branching process starting at
t with a single particle from an arbitrary type that has arbitrary age a. By
virtue of the assumption of independent evolution of particles, conclusions
drawn for such a process are applicable to the independent processes staring
at t from each particle within the general multi-type Sevastyanov branching
process with many particles, possibly with varying types and ages.

Following a specified lifespan distribution, the remainder of the parti-
cle’s lifespan is given by the lifespan distribution of the particle conditioned
on its age at t. The dynamics of a system that consists of this singular
particle is completely determined, until the moment of death t

′
(t
′
does not

index a decision epoch, it is a genuine point in time) of the particle, by
its remaining lifespan distribution and its distribution of number of parti-
cles, per type, in the offspring (this distribution depends on the age of the
particle at its moment of death).

From t
′

onward the system is described by a collection of independent
multi-type Sevastyanov branching processes corresponding to each of the
particles in the offspring, each process form the collection treats t

′
as its

initial moment. Thus, the lifespan distributions, the distributions of num-
ber of particles, per type, in the offspring, together with the age of the
particle that exists at t (all of those are encoded in or associated with the
state at t that is an element of Dkt ), describe all of the dynamics from t
onward within a system consisting of this one particle of age a that exists
at t.

It follows that the dynamics of a multi-type Sevastyanov branching pro-
cess (with general continuous lifespan distributions) starting at t, possibly
with multiple particles of various types and ages, is set by:

1. The lifespan distribution associated with type i, i = 1, . . . , k.

2. The offspring distribution (this distribution depends on the age of a
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particle at its moment of death) among types associated with type i,
i = 1, . . . , k.

3. For each particle that exists at t - the age a of the particle.

We must now prove conditional independence from states prior to t of the
aforementioned components. By definition, the lifespan distributions for
all particle types do not depend on any state. The specification itself of
the distribution, for each particle type, of the number of offspring among
types, also does not depend on any state. Since the age a of a particle at
t is a component of the state at t and is thus considered known at t, it
cannot be viewed, with respect to the transition function, as functionally
dependent on states prior to t. Hence, the transition function between t
and t+ 1 depends only on the state at t.

As the MSBPM corresponds to the multi-type Sevastyanov branching
process (see the discussion below Definition 2.1), by virtue of Proposition
3.6, the MSBPM, as well as the DMSBPM, can also be viewed as a discrete-
time Markov chain with respect to Dkt and t = 0, 1, . . . , T .

Next, we will define a SDP with underlying MSBPM dynamics. Simi-
larly to Subsection 3.5.1, we first give the definition of the new SDP and
then check that it is indeed a SDP within the “Universal Modeling Frame-
work”.

Definition of SDP Model 3. Define SDP Model 3 as the finite-horizon
SDP that corresponds to the definition of SDP Model 1 upon which the
following modifications are applied:

1. We observe a MSBPM, as defined in Definition 2.1, at epochs indexed
with t, t = 0, 1, 2, . . . , T .

2. Let k be the number of types of particles within the MSBPM. The
state space is Dkt . The t index in Dkt indicates that there are prob-
ability distributions and p.g.f.s associated with each type that may
change with t (after a decision has been made). The state of the
process at t is also called the “generation” or the “population” at t.
The state of the process at t is given by SSSt = (S1,t, S2,t, . . . , Sk,t)

>,
where Si,t ∈ Di,t with the interpretation of the first component of
Si,t being the number of particles of type i that exist at t and the
interpretation of the second component of Si,t being the ages of each
particle of type i that exists at t. The initial state SSS0 is deterministic.
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5. The chosen decision xxxt affects the lifespan distributions, the distribu-
tions for the number of particles in the offspring, and the probabilities
for mutation within the offspring, of all particles that exist at t. Thus,
the types of all particles that exist at t are modified as a consequence
of xxxt. Particles that exist at t can create only particles that are of the
modified types, hence only the modified types are being propagated
until t+ 1. xxxt does not affect the age of particles that exist at t.

In the context of Proposition 3.1 and Proposition 3.2, let us verify that
for any fixed π SDP Model 3 is a (non-stationary) Markov chain with
respect to its transition function.

Proposition 3.7. SDP Model 3 is a SDP within the “Universal Model-
ing Framework”.

Proof. Similarly to SDP Model 1, SDP Model 3 considers a class of deci-
sions at each t that modify, without dependence from states and decisions
prior to t, all of the underlying distributions associated with each particle
type. Decisions do not affect the age of particles that exist at t. Under
these circumstances, for a fixed π, we can duplicate the proof of Proposition
3.6 for the case of SDP Model 3, with the following exceptions: 1) The off-
spring distribution among types associated with type i, i = 1, . . . , k, is now

written via probabilities of mutation, i.e., piααα(a) = pik̂(a) k̂!
α1!...αk!u

α1

i1 . . . u
αk
ik

(see the discussion after Definition 2.1); 2) After implementing a decision
at decision epoch t, the distributions associated with the process change;
3) If a particle existing at t survives until t+ 1, the argument is restarted
with respect to t + 1. Consequently, SDP Model 3, can be viewed as a
(possibly non-stationary) discrete-time Markov chain with respect to its
transition function, Dkt , and t = 0, 1, . . . , T .

Since SDP Model 3 is a truly a SDP within the “Universal Model-
ing Framework”, we can formally characterize the transition function via

P
(
ZZZ
Dkt+1

t+1 = SSSt+1|ZZZD
k
t

t = SSSt, X
π
t (SSSt) = xxxt

)
. Further, we have Bellman’s

optimality equation (3.2) at our disposal.
Evidently, an analogous SDP can be defined for the case of the standard

multi-type Sevastyanov branching process as well (we use the standard

piααα(a) instead of pik̂(a) k̂!
α1!...αk!u

α1

i1 . . . u
αk
ik ).

Unfortunately, we cannot define for SDP Model 3 a matrix of expecta-
tions M(xxxt) similar to the matrices of expectations within SDP Model 1
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and SDP Model 2. This is because for SDP Model 1 and SDP Model 2 we
were able to consider particles at t as having age 0 and from there we were
also able to compute the expectation for each type given a xxxt. However,
within SDP Model 3, we cannot consider the particles that exist at t as
having age 0, they have an age that is encoded in the state SSSt. Conse-
quently, the matrix of expectations depends not only on xxxt but also on SSSt,
i.e., we have M(SSSt,xxxt). This circumstance breaks the proof of Theorem
3.2, thus we cannot replicate the theorem for the case of SDP Model 3.

3.7 Notes on Approximate Dynamic Pro-
gramming (ADP)

Within this Section, we follow Subsection 9.4.5 (page 490) from [82], as well
as Subsection 4.6.4 (page 138), Subsection 4.6.5 (page 139), and Subsection
4.8.3 (page 147), from [78].

3.7.1 Post-decision state variables and their connec-

tion with Bellman’s optimality equation

Let us recall Definition 3.2, more specifically that a finite-horizon SDP is
characterized by the sequence

(3.18) (S0, x0,W1, . . . , St, xt,Wt, . . . , ST ).

Since state St is what we know just before we make a decision, xt, we will
refer to it as the pre-decision state.

In some settings, it is useful to model the state immediately after a
decision is made. We denote the state at t under the effect of decision xt
as Sxt . We call Sxt the post-decision state. Including the post-decision state
into our considerations we can rewrite the sequence given by (3.18) as

(S0, x0, S
x
0 ,W1, S1, x1, S

x
1 ,W2, S2, x2, S

x
2 , . . . , xT−1, S

x
T−1,WT , ST ).

Since there is no new exogenous information between making the decision
xt and the observation of the post-decision state Sxt , the post-decision state
is a deterministic function of the pre-decision state St and xt.

Remark 3.11. Within Section 3.4, Section 3.5, Section 3.6, we can
see that the post-decision state SSSxxxt for SDP Model 1, SDP Model 2, and
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SDP Model 3, consists of the original state at t, SSSt, however, with new
distributions associated with each particle type, that correspond to xxxt.

Having defined the notion of post-decision state, we can consider decom-
posing the transition function SM(St, xt,Wt+1) into two steps, these steps
being first

(3.19) Sxt = SM,x(St, xt)

and then

(3.20) St+1 = SM,W (Sxt ,Wt+1).

The structure of SM,x(·) and SM,W (·), if such a decomposition is possible,
generally is highly problem-dependent.

Remark 3.12. For SDP Model 1, SDP Model 2, and SDP Model 3, this
decomposition is possible. This follows from Remark 3.11 where it is clear
that computing SSSxxxt is trivial.

With respect to the post-decision state variable Sxt it is useful to introduce:

Definition 3.6. Define V x
t (Sxt ) as the value of being in the post-decision

state Sxt , i.e.,

(3.21) V x
t (Sxt ) = E

{
Vt+1(St+1)|Sxt

}
Let us explore the he relationship between Vt(St) and V x

t (Sxt ) that arises
from Definition 3.6. The following equations are true

V x
t−1(S

x
t−1) = E

{
Vt(St)|Sxt−1

}
,(3.22)

Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γV x

t (Sxt )
)
,(3.23)

V x
t (Sxt ) = E

{
Vt+1(St+1)|Sxt

}
.(3.24)

We note that since Sxt is a deterministic function of St and xt, in (3.23),
Vt(St) is a solution of a deterministic optimization problem. Substitut-
ing (3.24) into (3.23) leads us back to the expectation form of Bellman’s
optimality equation (3.2)

Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γE

{
Vt+1(St+1)|St, xt

})
.
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On the other hand, substituting (3.23) into (3.22) provides us with

(3.25) V x
t−1(S

x
t−1) = E

{
max
xt∈Xt

(
Ct(St, xt) + γV x

t (Sxt )
)
|Sxt−1

}
,

It is important to note that the expectation in (3.25) is outside the “max”
operator, hence (3.25) can be approximated via probabilistic techniques.

3.7.2 An ADP algorithm using post-decision state

variables

In what follows, the core idea to update estimates of the expectation in
(3.25) iteratively over a number of iterations, each iteration being a Monte
Carlo simulation of the SDP we are interested in. With respect to (3.25),
we denote the estimates of V x

t−1(S
x
t−1) as V

n
t−1(S

x
t−1), where n marks the

number of the iteration we are currently on. We also use Snt , xnt , and Sx,nt
to denote the state, decision, and post-decision state, during iteration n.
We denote the value of the approximation of (3.23), that we will use at
iteration n, with v̂nt .

Approximate dynamic programming (ADP) algorithms conceptually re-
volve around the following steps (per each t) for each n:

1. Given Sx,nt−1, simulate Snt . This step is motivated by the condition in
(3.25).

2. Given Snt , use an approximation of deterministic problem (3.23) to
obtain xnt and v̂nt . This step is motivated by the fact that (3.23) is
within the expectation in (3.25).

3. Given Snt , xnt , v̂
n
t , and the old V

n−1
t−1 (Sx,nt−1), use some rule to improve

the existing approximation of the expectation in (3.25), i.e., update

V
n−1
t−1 (Sx,nt−1) to V

n
t−1(S

x,n
t−1).

Within Step 2, given Snt , we have to solve the following deterministic ap-
proximation of (3.23)

(3.26) v̂nt = max
xt∈Xt

(
Ct(S

n
t , xt) + γV

n−1
t (Sx,nt )

)
,

which can be written more explicitly as

v̂nt = max
xt∈Xt

(
Ct(S

n
t , xt) + γV

n−1
t (SM,x(Snt , xt))

)
.
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Solving (3.26) gives us xnt and v̂nt , where xnt corresponds to v̂nt .
We can formally write the updating rule for Step 3 as

V
n
t−1(S

x,n
t−1)← UV

(
V
n−1
t−1 (Sx,nt−1), S

x,n
t−1, v̂

n
t

)
.

We will use the simple updating rule

(3.27) V
n
t−1(S

x,n
t−1) = (1− αn−1)V

n−1
t−1 (Sx,nt−1) + αn−1v̂

n
t .

We outline the ADP algorithm on page 147 from [78]. We have chosen
to present this ADP algorithm due to our observation in Remark 3.11. We
keep Notational Choice 1 in mind.

Algorithm 3.2.

Step 0. Set n = 1. For an initial State S1
0 provide the value function

approximation V
0
t (St) for all St and t.

Step 1. Choose a sample path ωn.

Step 2. For t = 0, 1, 2, . . . , T , do

Step 2a. Optimization: Compute a decision xnt = Xπ
t (St) and

find the post-decision state Sx,nt = SM,x(Snt , x
n
t ).

Step 2b. Simulation: Find the next pre-decision state using
Snt = SM(Snt , x

n
t ,Wt+1(ω

n)).

Step 3. Update the value function approximation (e.g., via (3.27))
in order to obtain V

n
t (St) for all t.

Step 4. If we have not met our stopping rule, let n = n+ 1 and go
to step 1. Else terminate

We note that Algorithm 3.2 is very basic and needs to be refined in
order to be applicable in practice. For example, in Step 0 we have to

compute V
0
t (St) for all St which is susceptible to curses of dimensionality.

For the case of the MSBPM, we have to devise an appropriate strategy
that allows us to compute/update multiple states simultaneously. Evi-
dently, such a strategy is an approximation, however, this approximation
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can prove sufficient for practical purposes. For an in-depth exploration of
ADP algorithms, the reader is referred to the entirety of [78].

We further note that the initial value function approximation plays an
important role when applying Alogrithm 3.2 (and its subsequent refine-
ments). More specifically, it can significantly influence the decisions we
make and consequently the states we visit during the execution of the al-
gorithm (a bad initial approximation can permanently lead us astray from
the truly optimal decisions). Recall our results from Chapter 2 for pro-
cesses starting with one particle of age a, a 6= 0. These results may prove

useful for the purpose of constructing an appropriate V
0
t (St). Further,

for the case of SDP Model 3, we can use the result from applying Theo-
rem 3.3 for the corresponding SDP Model 2, that results from dropping
the dependence of particle reproduction on particle age, as an ingredient
for the initial value function approximation. A thorough methodology for
constructing good value function approximations and obtaining quality so-
lutions for SDP Model 3 remains to be developed in future work.

3.8 Example SDPs with branching process
based dynamics

We illustrate concepts and results within this Chapter with a few example
sequential decision problems. These examples are purely illustrative and
are not connected to real-world data.

3.8.1 Informal description of the example model

We consider a population consisting of three types of particles - Bachelor’s
degree students (type 1), Master’s degree students (type 2), and Ph. D.
degree students (type 3). From now own we will use “individuals” instead
of “particles”. This population is a subset of the larger population of a
country that we will refer to as the “environment”. The attraction and
sustenance of students does not exhaust the environment.

The three types of individuals are related to each other in the following
way: 1) Bachelor’s degree students can “produce” more Bachelor’s degree
students (type 1) as well as Master’s degree students (type 2); 2) Master’s
degree students can produce either Master’s degree students (type 2) or Ph.
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D. degree students (type 3); 3) Ph. D. degree students can only produce
Ph. D. degree students (type 3).

The “end of life” of an individual, i.e., the moment when “reproduc-
tion” occurs is to be understood as the end of an “agitation” cycle. Indeed,
it takes time for the idea to start a Bachelor’s degree to grow and bear fruit
within an individual from the environment. It is also true that for the three
types of students the shadow of doubt, whether they should quit or con-
tinue, reemerges periodically. The event of having zero offspring is to be
understood as an individual either dropping out of the education system
or obtaining the desired degree and not continuing with a pursuit of higher
degrees. The event of producing one individual is to be understood as
the same individual continuing education (in which case his/hers commit-
ment is reaffirmed and the “lifespan” associated with the agitation cycle
is restarted). The event of an individual producing multiple individuals
within the system is to be understood as the individual continuing edu-
cation and also attracting new individuals. “Mutation” probabilities uij,
in this context, correspond to individuals changing the degree they try to
obtain. When i = j the individual continues with his/hers current degree,
when i 6= j the individual obtains the degree corresponding to type i and is
now pursuing the degree that corresponds to type j. The, rather unlikely,
event that an individual produces multiple mutants corresponds to that in-
dividual being able to draw individuals that can pursue the corresponding
degree from within the environment back into the education system.

Figure 3.1: Mutation scheme valid for the example SDP.

The government can regulate the population of students via different
advertisement strategies. Different media and events have different impact
on different types of students as well as different cost. For example social
media can be most impactful with respect to the spread of the ideas of
Bachelor’s degree students towards young people within the environment.
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On the other hand conferences and conventions can be most motivating
for Ph. D. students to continue pursuing their degree. The government
needs to balance its limited budget throughout time so that it minimizes
its costs and still achieve a target objective. For our illustrative purposes,
we will consider that the government only incurs costs for implementing
chosen advertisement policies, however, at the terminal, with respect to our
considerations, moment in time the European Union provides financing for
each active Ph. D. student (the European Union presumably considers the
number of active Ph. D. students as an indicator for the well being of the
institutions within the country).

The above example model, although sounding somewhat realistic, has
many fallacies with respect to properly reflecting all intricacies of its real-
world counterpart. For example, the real-world limitation that each degree
is to be obtained within a specified amount of time is not well defined within
our model. Another example is the real-world circumstance that even if
there are no individuals left in the education system it is still possible for
Bachelor’s degree students to enroll in it. Regardless, this model can be
used as a starting point for an exploration of the topic. The model is open
for upgrades and refinements, as an example we could consider controlled
branching process for providing a mechanism for removing individuals after
a certain period of time, or a branching process with immigration in order
to handle the case of zero Bachelor’s degree students in the educational
system. Such extensions, however, need to be incorporated into a proper
definition of a SDP within the “Universal Modeling Framework” in order
to be able to utilize Bellman’s optimality equation.

We note that our implementation of the result of Theorem 3.2 and The-
orem 3.3, as well as the application of Numerical Scheme 1 and Numerical
Scheme 2 to all relevant, within this example, quantities from Chapter 2,
is done in Python 3.8.13 [209] by using the NumPy 1.20.3 [210] and SciPy
1.6.2 [211] libraries.

3.8.2 SDP with underlying Bienaymé-Galton-Watson

branching processes dynamics

Let us assume that the underlying dynamics is set by a Bienaymé-Galton-
Watson (BGW) branching processes. This assumption is reasonable if the
government collects statistics and reconsiders its advertisement strategy
once per year (or some other time interval). BGW branching processes are
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also in line the fact that students are (usually) accepted into the system
only once per year. By considering BGW, we equate the completion of an
“agitation” cycle with the arrival of a new decision epoch.

The tables below give the correspondence between the decision of the
government to implement a particular advertisement strategy (“Decision
i” corresponds to implementing “strategy i”) towards a type of individuals
and the effects of that decision on the individuals.

We have followed certain rules when building these tables (again, this
example is purely illustrative and is not based on real-world data). For
each type we have decomposed the probability of producing 0 individuals
into two components. The first component represent the, presumably,
standard rate of individuals either obtaining a degree and dropping from
the education system or simply dropping. The second component is the
effect from applying a certain strategy on the rate of dropping out of the
system regardless of whether a degree has been obtained. Evidently less
funding from the government leads to greater dropping rates. We have
assumed that the rate of “mutation” of degrees pursued remains fixed
regardless of the actions of the government, i.e., an individual determined
to continue education completes his/hers degree and advances to the next
degree with an unchanged pace.

The following tables utilize some of the notation used within SDP Model
1

x1,t c1(x1,t)
p.g.f. for total offspring
in a generation

Expected
offspring

in a
generation

u11 u12 u13

Decision 1 -1.6 (0.45 + 0.00)s0 + 0.15s1 + 0.20s2 + 0.20s3 1.15 0.70 0.30 0.00
Decision 2 -1.1 (0.45 + 0.15)s0 + 0.20s1 + 0.15s2 + 0.05s3 0.65 0.70 0.30 0.00
Decision 3 -0.7 (0.45 + 0.30)s0 + 0.15s1 + 0.10s2 + 0.00s3 0.35 0.70 0.30 0.00

Table 3.1: Effects from implementing possible decisions for type 1 individ-
uals.
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x2,t c2(x2,t)
p.g.f. for total offspring
in a generation

Expected
offspring

in a
generation

u21 u22 u23

Decision 1 -1.1 (0.30 + 0.10)s0 + 0.60s1 0.6 0.00 0.85 0.15
Decision 2 -2.56 (0.30 + 0.00)s0 + 0.70s1 0.7 0.00 0.85 0.15
Decision 3 -1.8 (0.30 + 0.10)s0 + 0.60s1 0.6 0.00 0.85 0.15

Table 3.2: Effects from implementing possible decisions for type 2 individ-
uals.

x3,t c3(x3,t)
p.g.f. for total offspring
in a generation

Expected
offspring

in a
generation

u31 u32 u33

Decision 1 -0.5 (0.15 + 0.30)s0 + 0.55s1 0.55 0.00 0.00 1.00
Decision 2 -2.1 (0.15 + 0.20)s0 + 0.65s1 0.65 0.00 0.00 1.00
Decision 3 -3.3 (0.15 + 0.00)s0 + 0.85s1 0.85 0.00 0.00 1.00

Table 3.3: Effects from implementing possible decisions for type 2 individ-
uals.

We consider four decision epochs (the counting starts from “Epoch 0”)
before the final epoch at which we collect the terminal reward, i.e. T = 4.
The terminal reward is given by (0, 0, 325).

The discount factor is γ = 0.65. The discount factor indicates that the
government has more pressing spending at Epoch 0 and its near future as
opposed to waiting for extra funds coming in the far future.

Following SDP Model 1 and considering that the initial state is deter-
ministic, we have to find

max
π∈Π

E

{
T−1∑
t=0

γtCt(SSSt, X
π
t (SSSt)) + γTCT (SSST )|SSS0

}
.

At each decision epoch we have 27 different decision tuples, each deci-
sion tuple has its corresponding matrix of expectations M(xxxt). We omit
writing here these matrices, however we note that for the BGW they can
be obtained via the p.g.f. of the process. The 27 possible decision tuples
amount to 274 = 531 441 possible policies π. By applying Theorem 3.2,
we only have to check the 27 possible decision tuples with respect to the
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optimal return operator, once per each decision epoch. This means that
the application of Theorem 3.2 not only allows us to not iterate all possible
states, but also reduces the necessary computations quite dramatically. In
addition to that, the optimal policy does not depend on the initial state
SSS0.

The optimal policy obtained via Theorem 3.2 is (the i-th coordinate
corresponds to type i, the number at this coordinate is the number of the
decision) Epoch 0: (1, 1, 3), Epoch 1: (1, 2, 3), Epoch 2: (1, 2, 3), Epoch 3:
(3, 2, 3). Not surprisingly, as decision 1 for type 1 is the only decision in the
problem that leads to supercritical reproduction, we chose it throughout
Epoch 0 - 2. At Epoch 3, since there can be no direct production from
type 1 towards type 3, it is best to cut the funding for Bachelor’s degree
students as much as possible. We also see that, in this setting, it is always
best to spend the maximum amount on Ph. D. students.

As the optimal policy does not depend on the initial state SSS0, we can
construct the optimal discounted reward associated with the optimal policy
for any initial state SSS0 by appropriately summing the optimal discounted
rewards corresponding to processes that start with one individual from
type i = 1, 2, 3. In our case the optimal discounted rewards per individual
are: (2.5761181, 5.21493921, 23.59679382).

3.8.3 SDP with underlying exponential lifespan MB-

HBPM dynamics

For the model described in Subsection 3.8.1, we can consider a MBHBPM
with exponential lifespan distributions. In this case we can interpret deci-
sion epochs as the moments at which the individuals enroll in the education
system officially and the government registers them. However, in the mean-
time, individuals may experience multiple “agitation” cycles leading to
multiple chances for dropping from the system as well as multiple chances
for drawing individuals from the environment into starting a degree. We
consider that individuals, even if they are not yet officially enrolled into
the education system but have been successfully agitated, start behaving
as type i individuals (i.e., production of individuals from the three types
that we consider can occur between decision epochs). We note that in
this continuous setting it is perfectly possible (and rather unlikely) for a
Bachelor’s degree student to ultimately produce, e.g., two Ph. D. students
between two neighboring decision epochs. We assume all such possibilities
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are reflected appropriately within the probabilities for the total number of
offspring as well as the probabilities for mutation.

In the context of SDP Model 2 (keeping Notational Choice 1 in mind),
we consider again Table 3.1, Table 3.2, and Table 3.8.2 from the previous
Subsection 3.8.2.

We will again consider four decision epochs (the counting starts from
“Epoch 0”) before the final epoch at which we collect the terminal reward,
i.e. T = 4. The terminal reward is again (0, 0, 325). The discount factor is
once more γ = 0.65.

Under Exp(λ), we understand the Exponential distribution with prob-
ability density function (p.d.f.) of f(x;λ) = 1

λe
−x/λ, x ∈ [0,∞), λ > 0. We

use the following lifespan distributions with respect to decision made:

Decisions for
type 1

Lifespan
distribution

Expected
lifespan

Variance

Decision 1 Exp(4) 4 16
Decision 2 Exp(7) 7 49
Decision 3 Exp(8) 8 64

Table 3.4: Correspondence between lifespan distribution and decision for
type 1.

Decisions for
type 2

Lifespan
distribution

Expected
lifespan

Variance

Decision 1 Exp(7) 7 49
Decision 2 Exp(4.5) 4.5 20.25
Decision 3 Exp(8) 8 64

Table 3.5: Correspondence between lifespan distribution and decision for
type 2.

Decisions for
type 3

Lifespan
distribution

Expected
lifespan

Variance

Decision 1 Exp(9) 9 81
Decision 2 Exp(8) 8 64
Decision 3 Exp(7) 7 49

Table 3.6: Correspondence between lifespan distribution and decision for
type 3.



170 Chapter 3. Sequential decision problems with branching process based dynamics

Following SDP Model 2 and considering that the initial state is deter-
ministic, we have to find

max
π∈Π

E

{
T−1∑
t=0

γtCt(SSSt, X
π
t (SSSt)) + γTCT (SSST )|SSS0

}
.

Despite reusing Subsection 3.8.2, the SDP from Subsection 3.8.2 and
the SDP from the current section are not directly comparable because
the exponential lifespan distributions need to be appropriately scaled. We
will not attempt to do a scaling here and for our illustrative purposes, we
assume that any two neighboring decisions epochs are spaced 10 time units
apart from one another.

At each decision epoch we again have 27 different decision tuples, each
decision tuple has its corresponding matrix of expectations M(xxxt). How-
ever, recalling Remark 3.9, we have to utilize Numerical Scheme 1 and
equation (2.3) from Subsection 2.2.2 in order to compute the 27 different
matrices M(xxxt). We omit writing down all of the 27 expectation matri-
ces here, but we note that we have used h = 102 and ∆sj = 10−8 when
computing them via equation (2.3) from Subsection 2.2.2.

The optimal policy obtained via Theorem 3.3 is (the i-th coordinate
corresponds to type i, the number at this coordinate is the number of
the decision) Epoch 0: (1, 1, 3), Epoch 1: (1, 2, 3), Epoch 2: (1, 2, 3),
Epoch 3: (1, 2, 3). The optimal discounted rewards per individual are:
(7.7624472, 4.28270503, 18.10259452). Although we should be very careful
about comparing the total values of the individual optimal discounted re-
wards yielded by the solutions of the SDP from Subsection 3.8.2 and the
current SDP, we can still make the following observation. For the current
SDP, the individual optimal discounted reward for type 1 individuals has
improved considerably when compared those for type 2 and type 3 indi-
viduals. This is not surprising. As the expected lifespan for all types,
regardless of government decision, is smaller that the distance of 10 time
units between any two neighboring decision epochs, within the current SDP
there are more opportunities for Master’s degree and Ph. D. degree stu-
dents to leave the system in comparison to the SDP from Subsection 3.8.2.
On the other hand there are also more opportunities for the Bachelor’s
degree students to draw people from the environment.
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3.8.4 Notes on SDPs with underlying MSBPM dy-

namics

With respect to the setting of Subsection 3.8.3 we can change the lifespan
distributions to be different from the exponential distribution. This can
make the model more adequate as it is likely that the behavior of individu-
als cannot be described well with only one kind of probability distribution.
From the figures within Chapter 2, we have seen that for times close to
the start of a MSBPM, there can be significant difference in the behavior
of the process when comparing the case of the initial particle having age 0
and the case of the initial particle having age a, a 6= 0. As we have set the
distance between any two neighboring decision epochs to be 10 time units,
we can expect significant difference in the evolution of the system.

Unfortunately, as there is no analogue of Theorem 3.2 or Theorem 3.3
for the case of MSBPM, we have no easy way to obtain a solution for the
corresponding SDP. Fortunately, we have proven that the MSBPM can
be incorporated into SDPs within the “Universal Modeling Framework”,
which allows us to use Bellman’s optimality equation in our considera-
tions. This formally opens the gate for Approximate Dynamic Program-
ming (ADP; see [78]) algorithms, which are often model-based, as well as
Reinforcement Learning (RL; see [82], [203]) algorithms, which are often
model-free. With respect to ADP, we can attempt developing Algorithm
3.2 outlined in Subsection 3.7.2. For this purpose, we can try obtaining
an initial value function approximation via the results from Chapter 2, or
we can take as an initial value function approximation the solution of the
corresponding SDP Model 2. We can also attempt developing a RL algo-
rithm first and then try to refine it with APD. In all of these cases, we will
need to be able to simulate the evolution of the system. The development
of ADP and RL algorithms is left for future research.
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Conclusion

Approbation

Results from the dissertation have been presented at: FMI Spring Scientific
Session (March 2019, 2021, Sofia, Bulgaria), National Seminar on Proba-
bility and Statistics (June 2019, Sofia, Bulgaria), 21st European Young
Statisticians Meeting (29 July - 02 August 2019, Belgrade, Serbia), Sofia
University Young Researchers Conference (February 2020, Sofia, Bulgaria),
The 19th Conference of the Applied Stochastic Models and Data Analysis
International Society ASMDA2021 and DEMOGRAPHICS2021 WORK-
SHOP (June 2021, Athens, Greece), The 5th International Workshop on
Branching Processes and their Applications - IWBPA 2021 (April 2021,
Badajoz, Spain).

The following publications were written during the writing of the dis-
sertation:

1. M. Slavtchova-Bojkova, K. Vitanov. Modelling cancer evolution by
multi-type age-dependent branching processes. Comptes rendus de
l’Acade’mie bulgare des Sciences, 71, 10, 1297-1305, (2018).

2. M. Slavtchova-Bojkova, K. Vitanov. Multi-type age-dependent branch-
ing processes as models of metastasis evolution. Stochastic Models,
35, 284-299, (2019), https://doi.org/10.1080/15326349.2019.1600410.

3. K. Vitanov, M. Slavtchova-Bojkova. On decomposable multi-type
Bellman-Harris branching process for modeling cancer cell popula-
tions with mutations. 21st European Young Statisticians meeting -
Proceedings, 113-118, (2019).

4. K. Vitanov, M. Slavtchova-Bojkova. Modeling escape from extinc-
tion with decomposable multi-type Sevastyanov branching processes.
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Stochastic Models, (2022), https://doi.org/10.1080/15326349.2022.2041037.

Scientific contributions

Within this dissertation the novel Multi–type Sevastyanov Branching Pro-
cesses through probabilities of Mutation between types (MSBPM) is devel-
oped and explored in the context of populations escaping extinction. Unlike
previous works in the field, the MSBPM and the results obtained do not de-
pend on assumptions about mutations being small quantities or particular
lifespan distributions nor on assumptions of non-decomposability or par-
ticular reproduction rates. As such, the novel MSBPM and the associated
novel results constitute a continuous-time extension and/or generalization
of previously obtained results by other authors concerning populations es-
caping extinction (see, e.g., [61], [62], [64], [65]) as well as a continuation
of our previous results in the same field within Vitanov & Slavtchova-
Bojkova [7] (2022) as well as preceding papers [1] - [6]. Various systems
of equations have been obtained - systems of equations for the probability
generating functions (p.g.f.s) of the process, for the probabilities of extinc-
tion, for the p.g.f.s of particle production from one class of particle types
to another. Results concerning the time until occurrence of the first “suc-
cessful” particle as well as the immediate risk of a “successful” particle
emerging have also been obtained. To the best of our knowledge, such an
in-depth investigation of the topic has not been done previously for multi-
type, continuous-time branching processes (excluding our earlier work in
[7] as well as preceding papers [1] - [6]). Aforementioned results have been
obtained for the case of the MSBPM starting with one particle of age 0 and
for the case of the MSBPM starting with one particle of age a, a 6= 0. The
latter case, to the best of our knowledge, has not been explored previously
in a systematic manner within the context of branching processes. Par-
ticular cases of decomposable MSBPMs have also been considered in the
manner described above. Numerical schemes for calculating all obtained
systems of equations have been developed.

Multi-type Bienaymé-Galton-Watson (BGW) branching processes, multi-
type Bellman-Harris branching process with exponential lifespan distri-
butions, multi-type Sevastyanov branching process, as well the MSBPM
and its variants, have been successfully incorporated into Sequential De-
cision Problems (SDPs) within the “Universal Modeling Framework” de-
veloped in [82]. To the best of our knowledge, with the exception of the
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BGW branching process, branching processes have not been considered in
the context of SDPs (within the “Universal Modeling Framework” or in
other modeling frameworks). This incorporation formally opens the gate
for techniques such as Approximate Dynamic Programming (ADP) and
Reinforcement Learning (RL) to be applied onto SDPs with underlying
branching process based dynamics. A novel proof of Theorem 3.1 from
[77], concerning an efficient algorithm for finding the solution of SDPs
with multi-type BGW branching processes dynamics, that uses Bellman’s
optimality equation, has been obtained. An analogous novel result for the
case of the multi-type Bellman-Harris branching process with exponential
lifespan distributions, as well as for the case of the Multi-type Bellman-
Harris Branching Process through probabilities of Mutation between types
(MBHBPM) with exponential lifespan distributions, has been identified. A
novel state space has been constructed for the purpose of successfully incor-
porating the MSBPM and the multi-type Sevastyanov branching process
into SDPs within the “Universal Modeling Framework”.

Note regarding used software

All computations within the dissertation are done via code written in
Python 3.8.13 [209]. The code uses the NumPy 1.20.3 [210] and SciPy
1.6.2 [211] libraries. Figures, that do not contain nodes, are created with
Matplotlib 3.5.1 [212]. Figures that contain nodes are created with yEd
3.20.1 [213].

Declaration for originality of obtained results

I declare that the current dissertation “Branching processes - optimization
and applications” contains original results obtained as a product of my
research (supported by my supervisor). Results that have been obtained,
published, or described by other authors are appropriately cited within the
Bibliography.

The dissertation has not been applied for the purpose of obtaining a
scientific degree from another school, university, or scientific institute.
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Appendix

A.1. Perron–Frobenius theorem

In this section we present without proof basic results about non-negative
and positive square matrices. For what follows, we have used Chapter 17
from [197].

We say a real matrix A is non-negative and write A ≥ 0, if aij ≥ 0 for
all entries of A. We say A is positive and write A > 0 when aij > 0 for all
entries of A.

Theorem 1. (Perron) Let A be a n×n positive matrix. The the following
hold.

1. ρ = ρ(A) > 0 and ρ(A) ∈ spec(A).

2. There is a positive eigenvector ppp such that Appp = ρppp. Furthermore,
any other positive eigenvector is a multiple of ppp.

3. The eigenvalue ρ is a simple eigenvalue - i.e., it has algebraic mul-
tiplicity 1. Consequently, if Avvv = ρvvv, then vvv is a scalar multiple of
ppp.

4. If λ is an eigenvalue of A and λ 6= ρ, then |λ| < ρ.

5. Let B = 1
ρA, so that ρ(B) = 1. Then lim

k→∞
Bk = L exists and has

rank 1. Each column of L is a positive multiple of ppp.

6. Let xxx ≥ 000, xxx 6= 000. Then lim
k→∞

Bkxxx = Lxxx is a positive multiple of ppp.

General non-negative matrices provide us with more scarce results:
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Theorem 2. (Perron–Frobenius) If A is an n × n, non-negative matrix
with spectral radius ρ. Then the following hold.

1. The number ρ is an eigenvalue of A.

2. There exists a non-zero vector ppp ≥ 000 such that Appp = ρppp.

3. There exists a non-zero vector yyy ≥ 000 such that yyy>A = ρyyy>.

Now, we concentrate our attention on the class of “irreducible” non-
negative square matrices.

Definition 1. An n × n matrix A is said to be reducible if there exists a

permutation matrix P such that P>AP =

(
A11 A12

0 A22,

)
where A11 is k×k,

A22 is (n− k)× (n− k), and 1 ≤ k ≤ n− 1. If A is not reducible, we say
A is irreducible.

The following theorem is useful for checking irreducibility:

Theorem 3. Let A be an n×n non-negative matrix. Then A is irreducible
if and only of (I + A)n−1 > 0.

We arrive at the Perron–Frobenius theorem:

Theorem 4. (Perron–Frobenius) If A is an n×n, non-negative, irreducible
matrix, then the following hold.

1. The spectral radius ρ = ρ(A) of A is positive and is an eigenvalue of
A.

2. The eigenvalue ρ is a simple root of the characteristic polynomial
pA(x) of A.

3. There is a positive vector ppp such that Appp = ρppp. Furthermore, Axxx =
ρxxx if and only if xxx is a scalar multiple of ppp.

4. There is a positive vector qqq such that qqq>A = ρqqq>, and yyy>A = ρyyy> if
and only if yyy is a scalar multiple of qqq.

Definition 2. The positive eigenvalue ρ and positive eigenvector ppp from
Theorem 1 and Theorem 4 are called Perron root and Perron eigenvector
respectively.
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