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Chapter 1

Introduction

There are known many papers studying the problem of attainability of a closed
set for small time with respect to the trajectories of a given control system. This
is still an open problem (but there are known already some sufficient conditions,
cf. [12] and [6]). When the set is a point the problem of attainability for small
time is reduced to the problem of small-time local controllability. This is also an
open problem. There are known sufficient and necessary conditions only for some
particular cases (cf. [10], [38] and [26]).

The small-time local controllability (STLC) property is one of the most important
properties of the reachable set of nonlinear control system (cf. [2], [4], [5], [8], [9],
[17]). It is crucial for solving different dynamical problems (cf. [10], [13], [15], [29],
[32], [35]). For example, it is well known that the Bellman function for minimal
time is in the general case only lower semicontinuous (cf. [11]). But if the general
sufficient controllability condition of Sussmann holds true, then this function is
Holder continuous (even Lipcshitz continuous under additional assumptions).

There exist different approaches for styding STLC property requiring different
assumptions (for example, cf. [10], [18], [14], [16], [34], [36], [37]). Here we follow
a general geometrical approach proposed by Sussmann (cf., [34] and [36]). This
approach allows to obtain a general sufficient STLC condition which extends the
most of the existing sufficient controllability conditions. It is based on a classical
formula of Campbell-Baker-Hausdorff (C-B-H) formula, which is one of the basic
result of Lie group theory. We have to point out that usually the Lie algebra
generated by the vector fields of a smooth control system is infinite dimensional.
So, to apply the C-B-H formula a suitable nilpotent approximation is needed (cf.,
[15]).

At the end of the XX century Arthur Krener, Henry Hermes, Hiroshi Kunita,
Ronald Hirshorn and etc. proposed a set E+(x0) of tangent vector fields to the
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reachable set of a smooth control system. The basic idea is to construct suitable
”control variations”. So, if the origin belongs to the interior of the convex hull of
E+(x0) then the corresponding control system is STLC at the point x0. The char-
acterization of the set E+(x0) is still an open problem. The set E+(x0) is defined
in the second chapter following the papers [38], [25] and [26]. Moreover, different
basic properties of this set are presented. Using the set E+(x0), characterization
of the STLC property is obtained in some particular cases (cf., [38] and [26]).

In the third chapter we present the main ideas of the general approach proposed
by Sussman (cf. [34] and [36]). A class of bad Lie brackets is defined. The main
result is the following: if the reachable set has a non empty interior and the bad
Lie brackets can be ”neutralized” by suitable Lie brackets, then the control system
is STLC at the initial point. Next, we consider a class of polynomial control
systems with drift term which is homogeneous of second degree. The general
sufficient STLC condition of Sussmann cannot be applied. We study carefully
the Lie algebra of the vector fields generated by this control system and obtain
that some ”bad Lie brackets” belong to the set E+(0) and hence they are not
obstructions for STLC. The main result of this chapter is a new STLC condition.

We consider the same class of polynomial control systems in the fourth chapter.
Here we study carefully the Lie algebra generated by the drift term and suitable
constant vector fields of the considered control system. We define an increasing
sequence of linear spaces and cones which generalize the corresponding structure
known for the linear case (cf., [38] and [26]) and a suitable ”weight” is defined
on them. This ”weight” is a natural extension of the weight used by Sussmann,
Bianchini and Stefani. It is proved that the elements of this structure belong to
the set E+ and as a corollary a new sufficient STLC condition is obtained. It’s
remarkable that the STLC property in this case is obtained using the values of
bad Lie brackets evaluated at the origin.

Suitable examples are presented in the third and the fourth chapters. They show
the applicability of the obtained sufficient controllability conditions and motivate
the study of the STLC property for more general control systems.

We present a new general necessary condition for STLC property of a class of non
smooth control systems in the fifth chapter. When we study a smooth control
system we obtain a linear subspace L determined by the values at x0 of known
elements of E+(x0). The obtained necessary STLC condition shows when the linear
space L and the values of the right-hand side on L imply that the considered
control system is not STLC at x0. Hence, this necessary condition is a natural
continuation of the approach presented in the previous chapters. Moreover, it is
shown the relation of this result to the known necessary conditions of Sussman (cf.
[34]) and Stefani (cf. [31]).
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Chapter 2

A geometric approach to study
the reachable set

2.1 Small-time local controllability

We consider the following control system Σ in Rn

ẋ(t) = f(x(t), u(t)), (2.1)

where the function f : Rn × Rm → Rn is continuous with respect to the variables
x and u, and the set U is a convex compact subset of Rm.

Let us fix a real T > 0. We denote by UT the set of all measurable functions u
defined on [0, T ] such that u(t) ∈ U for almost all t ∈ [0, T ]. The elements of UT

are called admissible controls. An admissible trajectory of the system Σ defined
on [0, T ] is any absolutely continuous function x : [0, T ] → Rn satisfying (2.1) for
almost each t of [0, T ] with some admissible control u ∈ UT . The reachable set
R(x0, T ) of Σ is the set of all points reachable in time not greater than T by means
of admissible trajectories of Σ starting from the point x0.

Definition 2.1.1 The control system Σ is called small-time locally controllable
(STLC) at the point x0 iff x0 belongs to the interior of the set R(x0, T ) for each
T > 0.

There are many possible approaches to study the small-time local controllability,
leading to different results and requiring different assumptions. Here we follow a
geometrical point of view. The underlying philosophy of our approach is that the
local properties of the reachable set of a control system are determined by the values
of the right-hand side and its derivatives at the initial point x0. Unfortunately,
the derivatives of the right-hand side are not coordinate invariant. Therefore it’s
natural to consider the elements of Lie algebra generated by the vector fields.
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Figure 2.1: STLC property

2.2 Lie brackets and Campbell-Baker-Hausdorff

formula

Let X : Rn → Rn and Y : Rn → Rn be two arbitrary vector fields. By [X, Y ] we
denote its Lie bracket [X, Y ] : Rn → Rn which is defined as follows

[X, Y ](x) := Y ′(x)X(x)−X ′(x)Y (x), for each x ∈ Rn,

where by X ′(x) and Y ′(x) are denoted the corresponding derivatives of the maps
X and Y at the point x. We set ad1(X, Y )(x) := [X, Y ](x) and inductively
adk+1(X, Y )(x) := [X, adk(X, Y )](x) for each positive integer k.

Figure 2.2: Lie brackets
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It could be seen at Figure 2.2 that the Lie bracket [A,B] generates new directions
from the reachable set if the vector fields A,B,−A,−B are admissible vector
fields for the considered control system. To work with the Lie brackets we will use
essentially Campbell-Baker-Hausdorff (C-B-H) formula. By means of the C-B-H
formula we will find ”new” tangent vectors to the reachable set. Before to define
the set of tangent vector fields to the reachable set we introduce some notations:

We denote by Exp(tZ)(x0) the value of the solution of the equation

ẋ(τ) = tZ(x(τ)), x(0) = x0,

at time τ = 1. Below we shall use the notion Exp (Zt)(x0) for an arbitrary family
of analytic vector fields {Zt : t ∈ R}, depending continuously on t, as it is defined
in Sussmann (cf. [34]). Then the formula of Campbell-Baker-Hausdorff can be
formulated as follows : if X and Y are analytic vector fields on Rn, then

Exp (t1X) ◦ Exp (t2Y )(x) =

= Exp

(
t1X + t2Y +

t1t2
2

[X, Y ] +
t1t

2
2

12
[Y, [Y,X]] +

t21t2
12

[X, [X, Y ]] + ...

)
(x),

(2.2)
where ◦ means superposition, and the infinite sum in the right-hand side is con-
vergent for sufficiently small |t1| and |t2|.

Let us denote by L = L(X, Y ) the Lie algebra generated by the vector fields X and
Y , i.e. L is the minimal linear subspace of vector fields which is closed under the
operation Lie bracket. Let us fix N ∈ N and denote by LN = LN(X, Y ) the finite
Lie algebra generated by the vector fields X and Y , i.e. the algebra generated by
Lie brackets in order not greater than N .
If S is a Lie series in L then SN is the corresponding finite Lie series in LN . Also,
Exp (S)N is the finite Lie series in LN , corresponding to Exp (S).
Then we say that Exp (X) ◦ Exp (Y ) ∼= Exp (S) iff ||Exp (X) ◦ Exp (Y )(x) −

Exp (S)(x)N || ≤ C(N)tN+1 for each x ∈ Rn and each N ∈ N, where C(N) > 0.

2.3 Tangent vector fields to the reachable set

Our approach is based on a suitable definition of tangent vector fields to the
reachable set of a control system, namely we define the set E+

α , α > 0, of analytic
vector fields. The definition of this set is related to the works of Krener (cf. [27]),
Hermes (cf. [14]), Sussman (cf. [33]), Kunita (cf. [28]), Veliov and Krastanov (cf.
[38]), Krastanov and Quincampoix (cf. [25]), Krastanov and Veliov (cf. [26]) and
others.
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A function of the type
∑ϱ

i=1 cit
di , where ci > 0 and di are positive real numbers,

i = 1, 2, . . . , ϱ, is called a positive polynomial. Further, we use the notation O(t)
to indicate any family of analytic vector fields O(t;x) parameterized by t > 0,
continuous in (t, x) and such that the ratio O(t;x)/t is bounded when t tends to
zero, uniformly with respect to x ∈ B. Let A0 be the set of all families of analytic
vector fields a(t) = a(t, x) on Rn, parameterized on t, continuous in (t, x) and such
that there exist positive reals θ and c such that ∥a(t, x)∥ ≤ ctθ∥x − x0∥ for all
x ∈ B.

Definition 2.3.1 It is said that the analytic vector field Z belongs to the set
E+

α (x0) of the control system Σ iff there exist families of analytic vector fields
O(tw) with w > α, and a(t) ∈ A0(x0) parameterized by t > 0 and a positive
polynomial p(t) such that

Exp(tαZ + a(t) +O(tw))(x) ∈ R(x, p(t))

for each point x from a neighborhood of the point x0.

Definition 2.3.2 It is said that the analytic vector field Z belongs to the set S of
the control system Σ iff there exist positive real numbers K and T , such that for
every point x and each t ∈ [0, T ]

Exp(tZ)(x) ∈ R(x,Kt).

Remark 2.3.3 By setting t := tβ/α one can prove that the relation A ∈ E+
α (x0)

implies that A ∈ E+
β (x0) for every β > α.

Remark 2.3.4 We denote by E+(x0) the set E+
1 (x0).

The importance of the set E+
α (x0) for studying the local properties of the reachable

sets of a nonlinear control system can be seen from the following

Proposition 2.3.5 (cf. [14], [25] and [26]) Let A1, A2, . . . , Ak belong to
E+

α (x0) for some α > 0 and 0 ∈ int co{A1(x0) +A2(x0) + · · ·+Ak(x0)}. Then the
control system Σ is STLC at the point x0.

Proof. According to Definition 2.3.1 there exists vector fields ai(t) ∈ A0(x0),
positive polynomials pi(t), families of analytic vector fields Oi(t

wi), wi > α, i =
1, . . . , k and T > 0 such that for each t ∈ [0, T ] and x ∈ B

Exp(tαAi + ai(t) +Oi(t
w))(x) ∈ R(x, pi(t))
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for some α > 0. Also, it’s fulfilled that ∥ai(t, x)∥ ≤ cit
θi∥x− x0∥ and ∥Oi(t, x)∥ ≤

c
′
it
wi , i = 1, . . . , k. Then

L(t1, . . . , tk, x) := Exp(tα1A1+a1(t1)+O1(t
w
1 ))◦· · ·◦Exp(tαkAk+ak(tk)+Ok(t

w
k ))(x)

∈ R

(
x,

k∑
i=1

pi(ti)

)
, ti ∈ [0, T ], i = 1, . . . k.

Let y = (y1, ..., yn) as an arbitrary point in B. Then exist t(y) = (t1(y), . . . , tk(y))
such that

y = t1(y)A1(x0) + t2(y)A2(x0) + · · ·+ tk(y)Ak(x0) (2.3)

. Applying C-B-H formula, we obtain that

L(t1, . . . , tk, x0) = Exp

(
k∑

i=1

tαi Ai + a(t1, . . . , tk) +O(tw1
1 , . . . , twk

k )

)
(x0),

where
max

(t1,...,tk,x)∈[0,T ]k,x∈B
∥a(t1, . . . , tk)∥ ≤ ctθ∥x∥

and
max

(t1,...,tk,x)∈[0,T ]k,x∈B
∥o(t1, . . . , tk)∥ ≤ ctw.

Let us define
π∗(δ, y) := L(δt

1
α
1 (y), . . . , δt

1
α
k (y), x0) =

Exp

(
k∑

i=1

δαti(y)Ai + a(δt
1
α
1 (y), . . . , δt

1
α
k (y)) +O((δt

1
α
1 (y))

w1 , . . . , (δt
1
α
k (y))

wk)

)
(x0).

∈ R

(
x,

k∑
i=1

pi(δt
1
α
i (y))

)
, δ ∈ (0, 1).

Using that a(δ
1
α t

1
α
1 (y), . . . , δ

1
α t

1
α
k (y))(x0) = 0 we obtain thatExp

(
a(δ

1
α t

1
α
1 (y), . . . , δ

1
α t

1
α
k (y))

)
=

x0. Then π∗(δ
1
α , y) =

= Exp

(
k∑

i=1

δti(y)Ai + a(δ
1
α t

1
α
1 (y), . . . , δ

1
α t

1
α
k (y)) +O((δt1(y))

w1
α , . . . , (δtk(y))

wk
α )

)
(x0) =

Exp

(
k∑

i=1

δti(y)Ai + a(δ
1
α t

1
α
1 (y), . . . , δ

1
α t

1
α
k (y)) +O((δt1(y))

w1
α , . . . , (δtk(y))

wk
α )

)
◦

Exp
(
−a(δ

1
α t

1
α
1 (y), . . . , δ

1
α t

1
α
k (y))

)
◦ Exp

(
a(δ

1
α t

1
α
1 (y), . . . , δ

1
α t

1
α
k (y))

)
(x0) =

Exp

(
k∑

i=1

δti(y)Ai +O((δt1(y))
w1
α , . . . , (δtk(y))

wk
α )

)
◦
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Exp
(
a(δ

1
α t

1
α
1 (y), . . . , δ

1
α t

1
α
k (y))

)
(x0) =

= Exp

(
k∑

i=1

δti(y)Ai +O′((δt1(y))
w1
α , . . . , (δtk(y))

wk
α )

)
(x0) =

= x0 +
k∑

i=1

δti(y)Ai(x0) +O′′(δ
w1
α t1(y)

w1
α , . . . , δ

wk
α tk(y)

w1
α )

Using (2.3) and w = min{w1, . . . , wk} > α, we obtain that

π∗(δ
1
α , y)− x0 = δ

k∑
i=1

ti(y)Ai(x0) +O′′(δ
w1
α t1(y)

w1
α , . . . , δ

wk
α tk(y)

w1
α ) =

= δy + Ō(δ
w
α t1(y)

w1
α , . . . , δ

w
α tk(y)

wk
α )

Let us denote

βδ(y) :=
1

δ

(
π∗(δ

1
α , y)− x0

)
= y +

1

δ
Ō(δ

w
α t1(y)

w1
α , . . . , δ

w
α tk(y)

wk
α )

Then βδ converges uniformly to the identity map of B as δ → 0. Therefore βδ(B)

contains a neighborhood of 0, if δ > 0 is small enough. Hence the set π∗(δ
1
α , B) =

x0 + δβδ(B) contains a neighborhood of the origin for each sufficiently small δ.

The sum T (δ, y) =
k∑

i=1

pi(δ
1
α t

1
α
i (y)) converges to 0 when δ → 0 for each y ∈ B

and π∗(δ
1
α , y) is a solution of Σ with initial point x0 and time T (δ, y) for each

sufficiently small δ > 0. Hence R(x0, T (δ, B)) contains a neighborhood of the x0

and so, the system Σ is STLC at x0.

Proposition 2.3.6 (cf. [14], [25] and [26]) The set E+
α (x0) is a convex cone.

Proof. Let A1 and A2 belong to E+
α . According to Definition 2.3.1 there exist

vector fields ai(t) ∈ A0(x0), positive polynomials pi(t), families of analytic vector
fields Oi(t

wi), wi > α, i = 1, 2 and T > 0 such that for each t ∈ [0, T ] and x ∈ B

Exp(tαAi + ai(t) +Oi(t
w))(x) ∈ R(x, pi(t))

. Let c > 0 be an arbitrary real number. By setting τ := t.c−
1
α , we obtain that

Exp(ταcA1 + a1(τ.c
1
α ) +O1(τ.c

w
α ))(x) ∈ R(x, p1(τ.c

1
α )) (2.4)

for all x ∈ B and τ ∈ [0, T.c−
1
α ]. Last inclusion implies that cA1 ∈ E+

α .
Let T > 0 be sufficiently small such that

Exp(tαA1 + a1(t) +O1(t
w)) ◦Exp(tαA2 + a2(t) +O2(t

w))(x) ∈ R(x, p1(t) + p2(t)).
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Applying C-B-H formula, we obtain that

Exp(tα(Ai + A2) + a(t) +O(tw)) ∈ R(x, p1(t) + p2(t)) (2.5)

for suitable a(t) ∈ A0. and O(tw).
According to (2.4) and (2.5) we can conclude that E+

α is a convex cone.

Proposition 2.3.7 (cf. [14], [25] and [26]) Let A1 and A2 belong to E+
α , α >

0, A1+A2 ∈ A0, B belong to S+∩A0. Then exists β > α such that the Lie brackets
[B,A1] and [B,A2] belong to E+

β .

Proof. According to definition 2.3.1 there exist vector fields ai(t) ∈ A0(x0), pos-
itive polynomials pi(t), families of analytic vector fields Oi(t

wi), wi > α, i = 1, 2
and T > 0 such that for each t ∈ [0, T ] and x ∈ B

Exp(tαAi + ai(t) +Oi(t
w))(x) ∈ R(x, pi(t)),

where ai(t, x) ≤ ci.t
θi∥x− x0∥ and Oi(t, x) ≤ C

′
it

wi , wi > α, i = 1, 2. Let us choose

a real number b > 0, such that b > max
{
1, 1

θi
, 1
wi−α

}
. The substitution τ = t

1
b

and assumption that T > 0 is sufficiently small lead to

Exp(τ bαA1 + a1(τ
b) +O1(τ

bα+1)) ◦Exp(τB) ◦Exp(τ bαA2 + a2(τ
b) +O2(τ

bα+1))(x)

∈ R(x, p1(τ
b) + τ + p2(τ

b))

for every τ ∈ [0, T
1
b ] and x ∈ B.

Applying C-B-H formula, we obtain successively existence of vector fields ¯a1(t) ∈
A0 and ¯O1(t) such that

Exp

(
τB + τ bαA1 +

τ bα+1

2
[A1, B] + ā1(τ

b) + Ō1(τ
bα+1)

)
◦Exp(τ bαA2 + a2(τ

b) +O2(τ
bα+1))(x) ∈ R(x, p1(τ

b) + τ + p2(τ
b))

. Applying one more time C-B-H formula, we obtain that exist vector fields a(t) ∈
A0 and O(t) such that

Exp

(
τB + τ bα(A1 + A2) +

τ bα+1

2
([A1, B] + [B,A2]) + ā(τ b) + Ō(τ bα+1)

)
(x)

(2.6)
∈ R(x, p1(τ

b) + τ + p2(τ
b))

. Taking in consideration that [A1, B] + [B,A2] = [A1 + A2, B] + 2[B,A2] and
A1 + A2 ∈ A0, b ∈ A0, we can write (2.6) in the suitable form

Exp
(
τ bα+1A2 ++a(τ) +O(τ bα+1)

)
(x) ∈ R(x, p(τ)),
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where a(t) ∈ A0 and O(t) are vector fields and p(τ) = p1(τ
b)+τ +p2(τ

b). It means
that [B,A2] ∈ E+

bα+1. It can be proved analogously that [B,A1] ∈ E+
bα+1.

Following propositions are also related to the elements of E+
α . We don’t present

their proofs.

Proposition 2.3.8 (Sussmann, 1978). Let A1, A2, . . . , Ak belong to E+
α (x0) for

some α > 0 and A1(x0) +A2(x0) + · · ·+Ak(x0) = 0. Then [Ai, Aj], i, j = 1, . . . , k
belong to E+

2 (x0).

Proposition 2.3.9 (Hermes, 1978). Let A1 and A2 belong to S and A1(x0) +
A2(x0) = 0. Then [A1, [A1, A2]] + [A2, [A2, A1]] belongs to E+

3 (x0).

Some known results (cf. for example, [36] ) give us elements of E+
α (x0). Applying

the above written assertions we obtain new elements of the set E+
α (x0) provide

constructions of elements of the E+
β , β > α.

2.4 Homogeneous polynomial vector fields

The main results in chapter 3 and 4 are related to control systems with right-hand
side which is a map whose components are homogeneous polynomials. Because of
that some useful properties of homogeneous polynomial vector fields are presented.

It is said that the vector field Γ : Rn → Rn is homogeneous of degree α iff
Γ(λx) = λαΓ(x) for each x ∈ Rn and for each λ > 0. Because the vector fields
f and gui

, i = 1, . . . , µ, are homogeneous of degree two and zero, respectively, we
present below some properties of the Lie brackets of homogeneous vector fields:

Lemma 2.4.1 Let Γ : Rn → Rn and Λ : Rn → Rn be homogeneous polynomial
vector fields of degrees α and β respectively. Then the Lie bracket [Γ,Λ] is a
homogeneous polynomial vector field of degree α + β − 1 or Λ is identical 0.

Proof. Indeed, [Γ,Λ](λx) = Λ′(λx)Γ(λx) − Γ′(λx)Λ(λx) = λβ−1+αΛ′(x)Γ(x) −
λα−1+βΓ′(x)Λ(x) = λα+β−1[Γ,Λ](x). ♢
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Corollary 2.4.2 Let f : Rn → Rn be a homogeneous polynomial vector field of
degree two and g : Rn → Rn be a constant vector field. Let Λ be a Lie bracket in
f and g which involves k times the vector field f and m times - the vector field g.
Then Λ is a homogeneous vector field of degree k −m+ 1 or Λ it is identical 0.

Proof. The assertion holds true for k = 1 and m = 0 as well as for k = 0 and
m = 1. Let us assume that this assertion holds true for some nonnegative values
of k and m.

Let Γ = [Λ, g], where Let Λ is a Lie bracket in f and g which involves k times
the vector field f and m times - the vector field g. Then Λ is a homogeneous
vector field which (according to our inductive assumption) is or identically zero or
a homogeneous vector field of degree k−m+1. Then, according to Lemma 2.4.1,
Γ is or identically zero or a homogeneous vector field of degree k−m+1+0− 1 =
k − (m+ 1)− 1.

Let now Γ = [Λ, f ], where Let Λ is a Lie bracket in f and g which involves k
times the vector field f and m times - the vector field g. Then Λ is a homogeneous
vector field which (according to our inductive assumption) is or identically zero or
a homogeneous vector field of degree k−m+1. Then, according to Lemma 2.4.1,
Γ is or identically zero or a homogeneous vector field of degree k−m+1+2− 1 =
(k + 1)−m+ 1.

♢

Corollary 2.4.3 Let Λ be a Lie bracket in f and g which involves k times the
vector field f and m times the vector field g, and Λ is homogeneous of degree 1.
Then k = m. Also, all Lie brackets in f and g which are homogeneous of degree
zero are of odd length.

Proof. Let Λ be a Lie bracket in f and g which involves k times the vector field
f and m times - the vector field g, and let Λ be homogeneous of first degree.
According to Corollary 2.4.2, we have that k −m + 1 = 1, i.e. k = m, and hence
Λ is a Lie bracket in f and g of length 2k, i.e. its length is an even number, or it
is identically zero.

Let now Λ be a Lie bracket in f and g which involves k times the vector field f and
m times - the vector field g, and let Λ be homogeneous of degree zero. According
to Corollary 2.4.2, we have that k −m + 1 = 0, i.e. m = k + 1, and hence Λ is a
Lie bracket in f and g of length 2k + 1, i.e. its length is an odd number, or it is
identically zero.
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♢

Corollary 2.4.3 has an essential role in considered problems in chapter 3 and 4. It
define whoch of the Lie brackets are constant but not zero. Exactly these brackets
have to be neutralized with purpose to find new elements of E+

α
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Chapter 3

The classical approach of Sussman
and a sufficient condition for
small-time local controllability

3.1 A general geometrical approach

In this section we present briefly the classical Sussman’s approach to study local
controllability of a nonlinear control system.

Let us consider the following affine control system Σa in Rn

ẋ(t) = f0(x(t)) +
m∑
i=1

ui(t)fi(x(t)), (3.1)

x(0) = 0, u(t) = (u1, . . . , um) ∈ U ∩ B̄,

where vector fields fi, i = 0, . . . ,m are C∞, f0(0) = 0 and U = [−1, 1]m and B̄
is the closed unit ball of Rm centered at the origin. As mentioned earlier the
properties of the Lie algebra generated by the vector fields fi, i = 0, . . . ,m are of
great importance to controllability of the considered system.

Following [34] and [36] we consider an abstract control system: Let X0, X1, X2,

, . . . , Xm be m symbols (called “indeterminates”). We set X⃗ = (X0, X1, . . . , Xm)

and fix a sufficiently large positive integer N . By AN(X⃗) we denote the free
nilpotent associative algebra of order N+1: If I = (i1, . . . , ik) is any finite sequence
with ij ∈ {0, 1}, then we denote by ∥I∥ its length k and set XI := Xi1 · · ·Xik . We
let X∅ := 1. If I ◦ J denotes the concatenation of I and J , then the multiplication
in AN(X⃗) is given by XI XJ := XI◦J whenever ∥I∥+∥J∥ ≤ N . If ∥I∥+∥J∥ > N ,
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then the product XI XJ is set equal to zero. Then the basis of AN(X⃗) consists of
all monomial XI of length less than or equal to N .

We denote by LN(X⃗) the nilpotent Lie subalgebra ofAN(X⃗) generated byX0, X1, . . . , Xm

with the Lie bracket defined by

[P,Q] := PQ − QP.

The elements of LN(X⃗) will be referred to as Lie polynomials in X0, X1, . . . , Xm.
We apply very often the Campbell-Baker-Hausdorff formula (C-B-H formula) which
says that if A and B are Lie polynomials, then there exists a Lie polynomial C
such that

exp (A) exp (B) = exp (C).

Here exp (P ) := 1 +
N∑
i=1

P i

i!
for each Lie polynomial P . Let us remind that the

C-B-H formula up to order three is

C = A + B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [B,A]] + · · ·

Let us define GN(X⃗) to be the set

GN(X⃗) =
{
exp (A) : A ∈ LN(X⃗)

}
.

Then, because of the C-B-H formula, GN(X⃗) is a group.

Following [33], we consider the following control system on AN(X⃗):

Ṡ(t) = S(t)(X0 + u(t)X1), where u(t) ∈ U and S(0) = 1. (3.2)

Let us remind that by U we have denoted the set of all admissible controls, i.e. the
set of all Lebesgue integrable functions u whose domain is a compact interval of
the form [0, T ], T > 0, and u(t) ∈ [−1, 1] for almost every t from [0, T ]. The time
T will be referred to as the terminal time of u and will be denoted by T (u). If
ui : [0, T (ui)] → [−1, 1], i=1,2, are admissible controls, then by u2 ◦ u1 we denote
an element of U with T (u2 ◦ u1) = T (u2) + T (u1) and defined as follows:

u2 ◦ u1(t) :=

{
u1(t) for t ∈ [0, T (u1)),
u2(t− T (u1)) for t ∈ [T (u1), T (u1) + T (u2)).

(3.3)

It is proved in [33] that for each control u ∈ U which is defined on the interval
[0, T (u)], the solution S(u) of (3.2) satisfying S(u)(0) = 1 is well defined on [0, T (u)]
and

S(u)(t) =
∑

∥I∥≤N

sI(u)(t)XI , ∀ t ∈ [0, T (u)],
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where s∅(u)(t) := 1 and for each I = (i1, i2, . . . , ik) with ij ∈ {0, 1}, j = 1, . . . , k,

sI(u)(t) :=

∫ t

0

∫ tk

0

∫ tk−1

0

· · ·
∫ t2

0

uik(τk)u
ik−1(τk−1) · · ·ui2(τ2)u

i1(τ1) dτ1 · · · dτk

(here u0(t) = 1 and u1(t) = u(t) for each t ∈ [0, T (u)]). We define Ser(u) to be
S(u)(T (u)).

The reachable set RN
X⃗
(T ) of (3.2) at time T > 0 is defined as the set of all points

of AN(X⃗) that can be reached in time T by means of solutions of (3.2) starting
from 1. Some properties of the control system (3.2) are presented in more details
in [33]. Here, we shall remind only one corollary of Lemma 3.1 in [33]:

Ser (u1 ◦ u2) = Ser (u1) Ser (u2) (3.4)

for every two admissible controls u1 and u2. Also,

if exp (Ai) ∈ RN
X⃗
(Ti) for i = 1, . . . , k, then

exp (A1) · exp (A2) · · · exp (Ak) ∈ RN
X⃗
(T1 + T2 + · · ·+ Tk).

Let us remind that L(X⃗) denotes the free Lie algebra generated by the indetermi-

nates X0, X1, . . . , Xm, and let Λ be a Lie bracket belonging to L(X⃗). We denote

by Λ(f⃗) that Lie bracket in f0, f1, . . . , fm which is obtained from Λ by substituting

each X0, X1, . . . , Xm by f0, f1, fm, respectively. Also, we set

(
k∑

i=1

αi Λi

)
(f⃗) :=

k∑
i=1

αi Λi(f⃗) for each Lie brackets Λi in X0, X1, . . . , Xm and each real numbers α1,

i = 1, . . . , k. If S is a subset of L(X⃗), then by span S we denote the minimal linear

subspace of L(X⃗) containing the elements of S,

S(f⃗) :=
{
Λ(f⃗) : Λ ∈ S

}
and S(f⃗)(x0) :=

{
Λ(f⃗)(x0) : Λ ∈ S

}
.

At last, by B(X⃗) we denote the set of all Lie brackets in X0, X1, . . . , Xm of odd
length in which each Xi, i = 1, . . . ,m appears an even number of times. We
call the elements of B(X⃗) “bad Lie brackets”. The main idea of the obtained

sufficient conditions in [3], [7], [33] and [36] is that the elements of B(X⃗) have to
be “neutralized” in order not to be obstructions for small-time local controllability.
Also, we define a set of “good” elements of the set Π as follows:

Good := L(X⃗) \ B(X⃗),
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i.e. good elements of the set L(X⃗) are those elements of L(X⃗) that are not bad
Lie brackets.

Let us fix a vector r = (r0, r1, . . . , rm) whose components are positive integers such
that 1 ≤ r0 ≤ ri, i = 1, . . . ,m. We set

∥Λ∥r := r0|Λ|0 +
m∑
i=1

ri|Λ|i, for every Λ ∈ L(X⃗),

where the number of times that Xi, i = 0, 1, . . . ,m, appears in Λ is denoted by
|Λ|i. The number |Λ|i is called degree of Λ with respect to Xi, i = 0, 1, . . . ,m.
Clearly, the length ∥Λ∥ of Λ is equal to |Λ|0 + |Λ|1. The positive numbers ∥Λ∥r
and ∥Λ∥σr are called “r-weight” of the Lie bracket Λ.

For each positive number δ we define the sets

Lδ

r =
{
Λ ∈ L(X⃗) : ∥Λ∥r = δ

}
.

and
Lδ

r =
{
Λ ∈ L(X⃗) : ∥Λ∥r ≤ δ

}
.

Let Λ be a Lie bracket belonging to L(X⃗). It is said that Λ0 can be r-neutralized
if

Λ0(f⃗(x0)) ∈ span
{
Λ(f⃗)(x0) : Λ ∈ L(X⃗) with ∥Λ∥r < ∥Λ0∥r

}
.

Also, if Λ0(f⃗)(x0) = 0, then Λ0 is r-neutralized.

Now we shall formulate two classical results:

Theorem 3.1.1 (Hermes controllability condition, cf. Theorem 2.1 in [34]) We
consider the control system Σ with m = 1. We assume that

1) dim L(X⃗)(f⃗)(x0) = n;

2) Sk(X⃗)(f⃗)(x0) = Sk+1(X⃗)(f⃗)(x0) whenever k is odd (here Sk(X⃗) denotes
the linear span of all Lie brackets in X0 and X1 which involve X1 at most
k-times).

Then the control system Σ is STLC at x0.

Theorem 3.1.2 ([36]) We assume that

1) dim L(X⃗)(f⃗)(x0) = n;

2) if Λ is a bad Lie bracket, then it can be r-neutralized

Then the control system Σ is STLC at x0.
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3.2 A class of polynomial control systems

Let us consider the following control system Σ1 in Rn

ẋ(t) = f(x(t)) + u(t), (3.5)

x(0) = 0, u(t) ∈ U ∩ B̄

where U is a closed convex cone in Rn, B̄ is the closed unit ball of Rn centered at
the origin and f : Rn → Rn is a map whose components are polynomials which
are homogeneous of second degree, i.e. f(λx) = λ2f(x) for each λ > 0 and each
x ∈ Rn.

Unfortunately, the general sufficient conditions from the previous section (Theorem
3.1.1 and Theorem 3.1.2) are not applicable to the considered control system (4.1).
The reason of that is the fact that there exist ”bad” Lie brackets that can not be
neutralized in the sense of Sussmann.

The following control system ΣA is studied in [1]:

∣∣∣∣ ẋ = u
ẏ = q1(x) + q2(y),

(3.6)

where the state variable is z = (x, y) ∈ Rm × Rr, u ∈ Rm is the control variable,
and q1 : Rm → Rr and q2 : Rr → Rr are homogeneous quadratic polynomials, i.e.
q1(λx) = λ2q1(x) and q2(λy) = λ2q2(y) for each λ > 0, x ∈ Rm and y ∈ Rr. We
define the sets Q1 and Q2 as follows:

Q1 := {q1(u) : u ∈ Rm} , Q2 := {q2(y) : ±y ∈ Q1} .

and denote by cone S the smallest convex closed cone containing the set S ⊂ Rr.
Then the result in [1] can be formulated as follows:

Theorem 3.2.1 If
cone Q1 + cone Q2 = Rr,

then the system (3.6) is small-time locally controllable at the origin.

The result of Agular is considered as a corollary of the sufficient condition in the
next section.

In order to show the main idea of our approach, we consider the following
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Example 3.2.1 Let us consider the following 2-dimensional control system Σ2:

ẋ(t) = u, x(0) = 0, u ∈ [−1, 1],
ẏ(t) = v − x2, y(0) = 0, v ∈ [0, 1],

The below formulated Proposition 2.3.5, Proposition 2.3.6 and Proposition 2.3.7
imply that the system Σ2 is small-time local controllable at the origin. Unfortu-
nately, the sufficient condition in [1] is not applicable because set of admissible
values of the controls should be symmetric with respect to the origin.

According to Proposition 2.3.5, it is sufficient to find a finite number of elements of
the intersection of the sets L2 and E+

α (0), for some α > 0, that contain the origin
of Rn in the interior of its convex convex hull.

3.3 Preliminaries

We introduce some notations. If u is an arbitrary element of U ∩ B̄, then we
denote by gu the constant vector field defined by gu(x) := u for each x ∈ Rn.
Let us assume that the linear span M0 is generated by the elements ui ∈ U ∩ B̄,
i = 1, . . . , µ, and let us denote by L = L(f, gu1 , . . . , guµ) the Lie algebra generated
by the vector fields f and gui

, i = 1, . . . , µ. By Lconst we denote the Lie subalgebra
of the constant vector fields contained in L.

Let us assume that the linear span M0 is generated by the elements ui ∈ U ∩ B̄,
i = 1, . . . , µ, and let us denote by L = L(f, gu1 , . . . , guµ) the Lie algebra generated
by the vector fields f and gui

, i = 1, . . . , µ. By Lconst we denote the Lie subalgebra
of the constant vector fields contained in L. It is proved by Jurdjevic and Kupka
(cf. [18]) that Lconst is the smallest vector space of constant vector fields which
contains the vector fields gui

, i = 1, . . . , µ, and which, in addition, contains all
vector fields [gv, [gw, f ]], where gv and gw are arbitrary elements of Lconst.

We denote by A : L → L the automorphism defined by A(f) = f and A(gui
) =

−gui
, i = 1, . . . , µ. We also use the “time reversal” map T defined by Sussmann in

[36]. The maps A and T are linear, i.e. if C ∈ {A,T} and
∑

i∈I αiΛi is a Lie series
in Lie brackets of L, then

C
(∑

i∈I αiΛi

)
=
∑

i∈I αiC(Λi).

and C(Exp(S)) = Exp(C(S)) for each Lie series S of Lie brackets in f and gui
,

i = 1, . . . , µ. Also, we have that T(Λ) = (−1)k+1Λ for each Lie bracket Λ of L
of length k. Further we shall use the following groups of automorphisms Θ± :=
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{Id,A,T,AT} and Θ := {Id,T}, where Id denotes the identity map. Clearly, the
Lie brackets Λ of L that are invariant with respect to the action of the group Θ
are of odd length while the Lie brackets Λ of L that are invariant with respect to
the action of the group Θ± are of odd length and each gui

, i = 1, . . . , µ, appears
in Λ even number of times.

Let us fix a compact neighborhood Ω0 of the origin and set Ω := 2Ω0. Then there
exists T0 > 0 so that each trajectory x of Σ starting from a point x0 ∈ Ω0 and
corresponding to some admissible control from UT with T ≤ T0 is well defined on
the interval [0, T ] and remains in Ω, i.e. x(t) ∈ Ω for all t ∈ [0, T ]. Then the
following finite composition of exponents

Exp(t1(f + g1)) ◦ Exp(t2(f + g2)) ◦ · · · ◦ Exp(tk(f + gk))(x)

is well defined for each x ∈ Ω0, each ti > 0 with T := t1 + · · · + tk ≤ T0 and each
gi ∈ {gu : u ∈ U ∩ B̄}, i = 1, . . . , k. Without loss of generality we may think that
T0 > 0 is sufficiently small so that (according to the C-B-H formula) there exists
a Lie series S such that

Exp(S) ∼= Exp(t1(f + g1)) ◦ Exp(t2(f + g2)) ◦ · · · ◦ Exp(tk(f + gk)). (3.7)

We call Exp(S) an admissible flow of Σ. Clearly,

Exp(S)(x) ∈ R(x, T ). (3.8)

According to the properties of the automorphism T (cf. [36]), we have that

T (Exp(t1(f + g1)) ◦ · · · ◦ Exp(tk(f + gk))) = Exp(tk(f+gk))◦· · ·◦Exp(t1(f+g1))

Remind that the set M0 is a linear span generated by the vectors gu1(0), gu2(0),
. . . , guµ(0), i = 1, . . . , µ. If the vector fields gi, i = 1, . . . , k, belong to the set
{gu1 , gu2 , . . . , guµ}, then we have that

A (Exp(t1(f + g1)) ◦ · · · ◦ Exp(tk(f + gk))) = Exp(t1(f−g1))◦· · ·◦Exp(tk(f−gk))

and A (Exp(S)) (x) ∈ R(x, T ). (3.9)

As in the previous section we define “a weight” in the Lie algebra L. Let us fix
an arbitrary vector r := (p, q) whose components are positive reals satisfying the
inequalities 1 ≤ p ≤ q. Let Λ be an arbitrary Lie bracket in the vector fields f and
gui

, i = 1, . . . , µ. We define its r-weight as follows:

∥Λ∥r := p|Λ|0 +
∑µ

i=1 q|Λ|i,
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where by |Λ|0 it is denoted the number of times that the vector field f appears in
Λ, and by |Λ|i i = 1, . . . , µ, it is denoted the number of times that the vector field
gui

appears in Λ. If Λ and Γ are arbitrary Lie brackets of L, then one can directly
check that ∥[Λ,Γ]∥r = ∥Λ∥r + ∥Γ∥r. Each expression of the form

Λw,σ(ε) :=
J∑

j=1

αjε
∥Λj∥rΛj with ∥Λj∥r ∈ [w, σ], αj ∈ R, and ε ∈ (0, 1),

is called an admissible Lie polynomial in ε (with respect to the weight
∥ · ∥r). We set

Bra(Λw,σ) := {Λj : j = 1, . . . , J}.

Let Θ̃ be a group of automorphisms defined on L and Λ be a Lie bracket. We
say that Λ is invariant (not invariant) with respect to Θ̃ if C(Λ) = Λ for each
(C(Λ) ̸= Λ for some) C ∈ Θ̃. We say that Λw,σ(ε) is invariant (not invariant) with
respect to Θ̃ if all elements of Bra(Λw,σ) are invariant (not invariant) with respect
to Θ̃.

Further we use the following corollary of Proposition 5.1 from [36]:

Proposition 3.3.1 Let Θ̃ be one of the group of automorphisms Θ or Θ± and
ε0 > 0. Let Exp(S(ε)) be an arbitrary admissible flow of Σ such that

Exp(S(ε))(x) ∈ R(x, T (ε)),

where S(ε) = Λ1,w−1
inv (ε) + Λ1,σ−1

not inv(ε) + Λw,σ−1
inv (ε) + O(εσ) with 2 ≤ w ≤ σ −

1, Λ1,w−1
inv (ε), Λ1,σ−1

not inv(ε) and Λw,σ−1
inv (ε) are admissible Lie polynomials in ε (with

respect to the weight ∥·∥r), T (ε) is a positive real polynomial with T (ε) ∈ (0, T0) for
ε ∈ (0, ε0), and x belongs to a neighborhood Ω0 of the origin. Also, we assume that
Λ1,w−1

inv (ε) and Λinv
w,σ−1 are invariant, but Λ1,w−1

not inv(ε) is not invariant with respect
to Θ̃. Then there exist a positive integer m and an admissible flow Exp(Sinv(ε))
such that

Exp(Sinv(ε))(x) ∈ R(x,mT (ε)) for each ε ∈ (0, ε0) for which mT (ε) ∈ (0, T0),

where

Sinv(ε) = mΛ1,w−1
inv (ε) + Λ̄1,w−1

inv (ε) + Λ̄inv
w,σ−1(ε) + Ō(εσ),

Λ̄1,w−1
inv (ε) and Λ̄inv

w,σ−1(ε) are admissible Lie polynomials in ε (with respect to the
weight ∥ · ∥r) that are invariant with respect to Θ̃. Moreover, Λ̄1,w−1

inv is a sum of
Lie brackets of the elements of Bra(Λ1,w−1

inv ) and Bra(Λ1,σ−1
not inv).

Our aim is to study ”bad” brackets in the particular case of homogeneous poly-
nomials of second degree.
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3.4 Sufficient condition

In order to formulate our main result we need some notations: Let rec C be the
largest linear space contained in the convex closed cone C. Next, we define the
following sets:

1. K0 = U and M0 = rec K0;

2. K1 = cone ({f(u) : u ∈ M0} ∪ U) and M1 = rec K1;

3. K2 = cone {f(u) : u ∈ M1}.

Theorem 3.4.1 If the convex cone K1 + K2 coincides with Rn, then the control
system Σ is small-time locally controllable at the origin.

Remark 3.4.2 On the assumptions of Theorem 1 (note that the controls are un-
bounded) we have that

K0 = M0 = U = Rm × {0}, K1 = cone ({f(u) : u ∈ Rm} ∪ U) =

= cone
(
{(0, q1(u))T : u ∈ Rm} ∪ U

)
= Rm × cone Q1,

M1 = rec K1 = Rm × rec cone Q1

K2 = cone {f(u) : u ∈ M1} ⊇ cone {(0, q2(y))T : ±y ∈ Q1} = {0} × cone Q2.

Clearly, the equality cone Q1 + cone Q2 = Rr implies the equality K1 + K2 =
Rm+r, and hence Theorem 3.2.1 is a corollary of Theorem 3.4.1. There are simple
examples of control systems that are STLC (according to Theorem 3.4.1), but their
small-time local controllability does not follow from Theorem 3.2.1.

3.5 Proof of the sufficient condition

Remind that each trajectory x of Σ starting from a point x0 ∈ Ω0 and correspond-
ing to some admissible control from UT with T ≤ T0 is well defined on the interval
[0, T ] and remains in Ω.

Further we will use the notation E+
α for E+

α (0).

Let us fix an arbitrary element u ∈ U ∩ B̄. Then, the vector field f + gu is ad-
missible for the control system Σ. From here, using that f(0) = 0, we obtain that
the vector field gu belongs to the set E+

1 . Also, if u ∈ M0, then the vector fields
f ± gu are admissible for the control system Σ. We set r := (p, q) with p = q = 2
and define the weight ∥ · ∥r. Let
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Υu
1(ε) := Exp (ε2(f + gu)) ◦ Exp (ε2(f − gu)) .

Clearly,

Υu
1(ε)(x) ∈ R(x, 2ε2) ∩ Ω for each x ∈ Ω0 and each ε ∈

(
0,

√
T0

2

)
.

Applying the C-B-H formula, we obtain that

Υu
1(ε)

∼= Exp

(
2ε2f + ε4[gu, f ] +

ε6

3
[gu, [gu, f ]] + Λ7,13

u (ε) +O1
u(ε

14)

)
for some admissible Lie polynomial Λ7,13

u ∈ L(f, gu) in ε (with respect to ∥ · ∥r).
Clearly, the vector fields f and [gu, [gu, f ]] are invariant with respect to the group of
automorphisms Θ±. According to Proposition 3.3.1, there exists a positive integer
m so that

Υu
m(ε)

∼= Exp

(
2mε2f +m

ε9

3
[gu, [gu, f ]] + Λ̄7,13

u (ε) +Ou(ε
14)

)
(3.10)

and

Υu
m(ε)(x) ∈ R(x, 2mε2) ∩ Ω for each x ∈ Ω0 and each ε ∈

(
0,

√
T0

2m

)
, (3.11)

where Λ̄7,13
u is an invariant with respect Θ± admissible Lie polynomial in ε (with

respect to ∥ · ∥r). One can directly calculate that the invariant Lie brackets Λj
u

appearing in Λ̄7,13
u contain two times the vector field gu and three times the vector

field f . According to Lemma 2.4.1, all these brackets Λj
u are homogeneous of

second degree. Hence

Λ̄7,13
u (ε) =

Ju∑
j=1

αj ε
10 Λj

u =: ε10Γ̄10
u , (3.12)

where each Lie bracket Λj
u contains two times the vector field gu and three times

the vector field f . By setting

a(ε) := 2mε2f + ε10Γ̄10
u ,

we obtain from (3.10) and (3.11) that [gu, [gu, f ]] ∈ E+
6 . Because u is an arbitrary

element of the set U ∩ B̄ ∩M0, it follows that the vector field [gu, [gu, f ]] belongs
to the set E+

6 for each u ∈ U ∩ B̄ ∩M0.

Let h̄ ̸= 0 belong to K2. According to the definition of the set K2, there exists
h ∈ M1 such that h̄ = f(h) = [gh, [gh, f ]](0)/2. Because h ∈ M1 there exist

25



positive reals βj > 0 and uj ∈ M0 ∩ U ∩ B̄, j = 0, 1, 2, . . . , k, such that hj :=
f(uj) =

[
guj

,
[
guj

, f
]]

(0)/2, j = 1, 2, . . . , k, and

h = β0gu0 +
k∑

j=1

βjhj. (3.13)

According to the definition of M0, the vector fields f ± guj
, j = 1, 2, . . . , k, are

admissible for Σ. Also, the definition of M1 implies the existence of some positive
reals β−

j > 0 and u−
j ∈ M0 ∩ U ∩ B̄, j = 0, 1, 2, . . . , k−, such that h−

j := f(u−
j ) =[

gu−
j
,
[
gu−

j
, f
]]

(0)/2, j = 1, 2, . . . , k−, and

−h = β−
0 gu−

0
+

k−∑
j=1

β−
j h

−
j . (3.14)

According to the definition of M0, the vector fields f ± gu−
j
, j = 1, 2, . . . , k−, are

admissible for Σ.

We set ū1 := (u1, u2, . . . , uk). Taking into account (3.13), we define the map

Φū1(ε) := Υu1
m ( 6
√

β1 ε) ◦Υu2
m ( 6
√
β2 ε) ◦ · · · ◦Υuk

m ( 6
√
βk ε).

According to (3.11), we have that

Φū1(ε)(x) ∈ R(x, cΦ ε2) ∩ Ω for each x ∈ Ω0 and each ε ∈

(
0,

√
T0

cΦ

)
, (3.15)

where cΦ := 2m
(√

β1 +
√
β2 + · · ·+

√
βk

)
.

Using (3.10) and (3.12), we apply the C-B-H formula and obtain that

Φū1(ε) =
k∏

j=1

Exp

(
2m
√

βjε
2f +

mε6

3
βj[guj

, [guj
, f ]] +

√
βj

5ε10Γ̄10
uj

+Ouj
(ε14)

)
∼=

∼= Exp

(
cΦ ε2f +

mε6

3

(
k∑

j=1

βj [guj
, [guj

, f ]]

)
+ Λ7,13

ū1
(ε) +O1

ū1
(ε14)

)
,

where Λ7,13
ū1

(ε) is an admissible Lie polynomial in ε (with respect to ∥ · ∥r).

According to Proposition 3.3.1, there exists a positive integer m1 so that Φū1
m1

(ε) ∼=

∼= Exp

(
m1cΦ ε2f +

m1mε6

3

(
k∑

j=1

βj [guj
, [guj

, f ]]

)
+ Λ̄7,13

ū1
(ε) +Oū1

(
ε14
))
(3.16)

and

Φū1
m1

(ε)(x) ∈ R(x,m1cΦ ε2) ∩ Ω for each x ∈ Ω0 and each ε ∈

(
0,

√
T0

m1cΦ

)
(3.17)
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where Λ̄7,13
ū1

∈ L(f, gu1 , . . . , guk
) is an admissible Lie polynomial in ε (with respect

to ∥ · ∥r) that is invariant with respect to Θ±. One can directly calculate that
each of the invariant Lie brackets appearing in Λ̄7,13

u contain two times one of the
vector fields from the set {guj

: j = 1, . . . , k} and three times the vector field f .
According to Lemma 2.4.1, all these brackets are homogeneous of second degree.
Hence

Λ̄7,13
ū1

(ε) =

Jū1∑
j=1

ᾱj ε
10 Λj

ū1
:= ε10Γ̄10

ū1
,

where each Lie bracket Λj
ū1

contains two times one of the the vector fields from
the set {guj

: j = 1, . . . , k} and three times the vector field f . Then (3.16) and
(3.17) imply that

Φū1
m1

(ε) ∼= Exp

(
m1cϕ ε2f +

m1mε6

3

(
k∑

j=1

βjghj

)
+ ε10Γ̄10

ū1
+Oū1

(
ε14
))

.

We set

Φu0,ū1
m1

(ε) := Φū1
m1

(ε) ◦ Exp

(
m1mε6

3
(β0f + β0gu0)

)
.

Clearly

Φu0,ū1
m1

(ε)(x) ∈ R(x, T (ε)) ∩ Ω for each x ∈ Ω0 and each ε ∈

(
0,min

(
1,

√
T0

C

))
(3.18)

where T (ε) := m1

(
cΦε

2 +
mε6

3
β0

)
and C := m1

(
cΦ +

mβ0

3

)
.

On the other hand, applying the C-B-H formula, we obtain that

Ψu0,ū1(ε) := Φu0,ū1
m1

(ε) = Exp

(
T (ε)f +

m1mε6

3

(
β0gu0 +

k∑
j=1

βjghj

)
+

+ε10Γ̄10
ū1

+ Λ7,13
u0,ū1

+O1
u0,ū1

(
ε14
))

,

where Λ7,13
u0,ū1

∈ L is an admissible Lie polynomial in ε (with respect to ∥ · ∥r).

Clearly, the elements of Bra(Γ̄10
ū1
), gu0 and the Lie brackets ghj

= [guj
, [guj

, f ]],
j = 1, . . . , k, are invariant with respect to Θ. According to Proposition 3.3.1,
there exists a positive integer m2 so that

Ψu0,ū1
m2

(ε) = Exp

(
m2T (ε)f +

m1m2mε6

3

(
β0gu0 +

k∑
j=1

βjghj

)
+

+m2ε
10Γ̄10

ū1
+ Λ̄7,13

u0,ū1
+O+

(
ε14
))

∈ R(x,m2T (ε)) ∩ Ω for each x ∈ Ω0 and each
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ε ∈

(
0,min

(
1,

√
T0

m2C

))
, where Λ̄7,13

u0,ū1
is an admissible Lie polynomial in ε

(with respect to ∥ ·∥r) that is invariant with respect to Θ. According to the C-B-H
formula, one can directly check that Bra(Λ̄7,13

u0,ū1
) = {[f, [f, gu0 ]]}. Hence,

ε10Γ̄10
ū1

+ Λ̄7,13
u0,ū1

= ε10
Ju0,ū1∑
j=1

Λj
u0,ū1

=: ε10Γ+,

where each Λj
u0,ū1

is homogeneous of second degree (according to Lemma 2.4.1).

We set c+h := mm1m2/3, T
+(ε) := m2T (ε) and C+ := m2C. Taking into account

(3.13), we obtain that

Ψ+(ε) := Ψu0,ū1
m2

(ε) = Exp
(
T+(ε)f + c+h ε

6gh + ε10Γ+ +O+
(
ε14
))

∈ (3.19)

∈ R(x, T+(ε)) ∩ Ω for each x ∈ Ω0 and each ε ∈

(
0,min

(
1,

√
T0

C+

))
,

where Bra(Γ+) is a set of Lie brackets that are homogeneous of second degree.

Analogously, taking into account (3.14), one can prove the existence of an admis-
sible flow (note that g−h = −gh)

Ψ−(ε) = Exp
(
T−(ε)f − c−h ε

6gh + ε10Γ− +O− (ε14)) ∈ (3.20)

∈ R(x, T−(ε)) ∩ Ω for each x ∈ Ω0 and each ε ∈(
0,min

(
1,

√
T0

C−

))
, where Bra(Γ−)

is a set of Lie brackets that are homogeneous of second degree, T−(ε) := c−2ε
2 +

c−6 ε
6, C−, c−h , c

−
2 and c−6 are positive constants. We set

Ψ(ε) := Ψ+
(
γ+ε

)
◦ Exp (εf) ◦Ψ− (γ−ε

)
,

where γ+ := 6

√
1

c+h
and γ− := 6

√
1

c−h
. Taking into account (3.19) and (3.20), we

obtain that

Ψ(ε) ∈ R
(
x, T̄ (ε)

)
∩ Ω for each x ∈ Ω0 and for each ε ∈

(
0,

T0

C̄

)
, (3.21)
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where T̄ (ε) := ϱ2ε
2 + ε + ϱ6ε

6, C̄ := ϱ2 + 1 + ϱ6, ϱ2 :=
(
m2m1cΦ(γ

+)2 + c−2 (γ
−)2
)

and ϱ6 :=

(
m2m1mβ0(γ

+)6

3
+ c−6 (γ

−)6
)
. Applying the C-B-H formula, we obtain

that

Ψ(ε) ∼= Exp
(
(ε+ ϱ3ε

2 + ϱ6ε
6)f+ (3.22)

+
1

12
ε13(2 + ϱ3ε+ ϱ6ε

5)[gh, [gh, f ]] + ε10((γ+)10Γ̄+ + (γ−)10Γ̄−) + Π(ε) + Õ(ε14)

)
,

where Π(ε) :=
∑ν

j=1 βjε
djΞj, βj ∈ R, dj ≥ 10 and Ξj, j = 1, . . . , ν, are Lie

brackets generated by f , gh and the elements of Bra(Γ̄+) and Bra(Γ̄−) in which
the vector field gh appears at most one time. According to Lemma 2.4.1, all
Lie brackets appearing in Π, are homogeneous of degree at last one, and hence,
vanish at the origin. Also, f(0) = 0 and all Lie brackets from the sets Bra(Γ+) and
Bra(Γ−) vanish at the origin. Then (3.21) and (3.22) imply that [gh, [gh, f ]] ∈ E+

13.
Therefore, we have proved that [gh, [gh, f ]] ∈ E+

13 for each h ∈ M1. Moreover, we
have already obtained that [gu, [guf ]] ∈ E+

6 ⊆ E+
13 for each u ∈ M0 as well as

gu ∈ E+
1 ⊆ E+

13. Because K0 +K1 +K2 = Rn, there exists elements Aj of E+
13,

j = 1, . . . , η, such that

0 ∈ int co {A1(0), A2(0), . . . , Aη(0)} .

Applying Proposition 2.3.5, we obtain that the control system (4.1) is STLC at
the origin. This completes the proof of the theorem. ♢
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Chapter 4

Refinement of the approach based
on the set E+

α and one more
sufficient condition for small-time
local controllability

The main idea in this chapter is to refine the approach based on the set of tangent
vector fields of the reachable set. Here we will obtain new elements of E+ - mixed
brackets [gu, [gv, f ]]. Roughtly speaking we need at least one of the Lie brackets
−[gu, [gu, f ]] and −[gv, [gv, f ]] to be suitable element of E+(0).

4.1 Statement of the main result

Let us consider again the control system Σ1 in Rn

ẋ(t) = f(x(t)) + u(t), (4.1)

x(0) = 0, u(t) ∈ U ∩ B̄

where U is a closed convex cone in Rn, B̄ is the closed unit ball of Rn centered at
the origin and f : Rn → Rn is a map whose components are polynomials which
are homogeneous of second degree, i.e. f(λx) = λ2f(x) for each λ > 0 and each
x ∈ Rn.

In order to present the approach and formulate our second sufficient condition, we
define the following sets:
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1. K0 = U , M0 = rec K0;

2. K1 = cone ({f(u) : u ∈ M0} ∪ U)
N1 = {u ∈ M0 : −f(u) ∈ K1}
M1 = span ({[gu, [gv, f ]](0) : v ∈ M0, u ∈ N1} ∪M0) ;

3. For s = 1, 2, 3, ... we define the sets Ks+1, Ns+1 and Ms+1 in the following
recursive way:
Ks+1 = cone (K1 ∪Ms)
Ns+1 = {u ∈ M0 : −f(u) ∈ Ks+1}
Ms+1 = span ({[gu, [gv, f ]](0) : v ∈ M0, u ∈ Ns+1} ∪Ms) ;

Finally, we set κ = min{s : Ms+1 = Ms}. Clearly, κ ≤ n.

Our main result is the following

Theorem 4.1.1 The set {gu : u ∈ Kκ} is a subset of E+.

The proof of Theorem 4.1.1 is presented in the next section.

Corollary 4.1.2 We set

L = cone {f(u) : u ∈ f (M0) ,−u ∈ K1}.

If cone(L ∪Kκ) coincides with Rn, then the control system Σ is small-time locally
controllable at the origin.

Sketch of the proof of Corollary 4.1.2. Taking into account Theorem 3.4.1,
we obtain that the set {gu : u ∈ L} is a subset of E+. Using Lemma 2.3.6, we
obtain that cone({gu : u ∈ L ∪ Kκ}) is also a subset of E+. At last, applying
Lemma 2.3.5, we complete the proof.
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4.2 Examples

Example 4.2.1

Let us consider the following control system:

ẋ(t) = u(t), u(t) ∈ [−1, 1],
ẏ(t) = v(t), v(t) ∈ [−1, 1],
ż(t) = x2(t)− y2(t),
ṗ(t) = z2(t)− x(t)y(t).

We set f(x, y, z, p) := (0, 0, x2 − y2, z2 − xy)T , g1(x, y, z, p) := (1, 0, 0, 0)T and
g2(x, y, z, p) := (0, 1, 0, 0)T .

We have that
M0 = K0 = {(x, y, 0, 0)T : x ∈ R, y ∈ R},

K1 ⊃ {(x, y, z, 0)T : x ∈ R, y ∈ R, z ∈ R},

N1 ⊃ {(x, 0, 0, 0)T : x ∈ R} ∪ {(0, y, 0, 0)T : y ∈ R}

M1 ⊃ {(x, y, 0, p)T : x ∈ R, y ∈ R, p ∈ R},

K2 = {(x, y, z, p)T : x ∈ R, y ∈ R, z ∈ R, p ∈ R}.

Applying Theorem 4.1.1, we obtain that {gu(0) : u ∈ K2} ⊂ E+. Because K2 = R4,
we can conclude (taking into account Lemma 2.3.6) that this control system is
small-time local controllable at the origin.

Example 4.2.2

Let us consider the following control system:

ẋ(t) = u(t), u(t) ∈ [−1, 1],
ẏ(t) = v(t), v(t) ∈ [−1, 1],
ż(t) = x2(t)− y2(t),
ṗ(t) = z2(t)− y2(t).

Using Theorem 4.1.1 and Corollary 4.1.2, we can not conclude that this control
system is STLC at the origin.
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In fact, the reachable set of this system is a linear subspace of a half space and
this system is not STLC at the origin. Indeed, let us fix an arbitrary T from the
interval (0, 1) and let us assume that z(T ) = 0. Since

z(t) =

t∫
0

(x2(s)− y2(s))ds,

we have that

0 = z(T ) =

T∫
0

(x2(t)− y2(t))dt and hence

T∫
0

x2(t)dt =

T∫
0

y2(t)dt (4.2)

Because

p(T ) =

T∫
0

(z2(t)− y2(t))dt,

the following equalities hold true

p(T ) =

T∫
0

 t∫
0

x2(s)ds−
t∫

0

y2(s)ds

2

− y2(t)

 dt =

=

T∫
0

 t∫
0

x2(s)ds

2

dt+

T∫
0

 t∫
0

y2(s)ds

2

dt

−2

T∫
0

 t∫
0

x2(s)ds

 t∫
0

y2(s)ds

 dt−
T∫

0

y2(t)dt.

Taking into account (4.2) and the inequalities

|x(T )| ≤
∫ T

0

|u(t)|dt ≤ T,

we obtain that

p(T ) ≤ 4T

 T∫
0

x2(t)dt

2

−
T∫

0

x2(t)dt =

=

−
T∫

0

x2(t)dt

1− 4T

T∫
0

x2(t)dt

 .

If T is sufficiently small, then p(T ) ≤ 0, and hence this system is not small-time
local controllable at the origin.
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4.3 Proof of Theorem 4.1.1

Let us fix a compact neighborhood Ω0 of the origin and set Ω := 2Ω0. Then there
exists T0 > 0 so that each trajectory x of Σ starting from a point x0 ∈ Ω0 and
corresponding to some admissible control from UT with T ≤ T0 is well defined on
the interval [0, T ] and remains in Ω, i.e. x(t) ∈ Ω for all t ∈ [0, T ]. Then the
following finite composition of exponents

Exp(t1(f + g1)) ◦ Exp(t2(f + g2)) ◦ · · · ◦ Exp(tk(f + gk))(x)

is well defined for each x ∈ Ω0, each ti > 0 with T := t1 + · · · + tk ≤ T0 and each
gi ∈ {gu : u ∈ U ∩ B̄}, i = 1, . . . , k. Without loss of generality we may assume
here and further that T0 > 0 is sufficiently small so that (according to the C-B-H
formula) there exists a Lie series S such that

Exp(S) = Exp(t1(f + g1)) ◦ Exp(t2(f + g2)) ◦ · · · ◦ Exp(tk(f + gk)). (4.3)

Let us define the sets

U+ :=

{
u : (0, εu) → U ∩ B̄ : u(ε) :=

m∑
i=1

εαiui,

ui ∈ U ∩ B̄, αi > 1, i = 1, . . . ,m, εu ∈ (0, 1), m ∈ IN

}
,

and

U :=

{
u : (0, εu) → (rec U) ∩ B̄ : u(ε) :=

m∑
i=1

εαiui,

ui ∈ (rec U) ∩ B̄, αi > 1, i = 1, . . . ,m, εu ∈ (0, 1), m ∈ IN

}
,

where by IN it is denoted the set of all positive integer numbers. Clearly, if u ∈ U ,
then −u also belongs to U .

Let us fix u ∈ U , ε ∈ (0,min(εu, T0/4)) and a real α > 1. Applying the equality
−gu(ε) = g−u(ε) and the C-B-H formula, we obtain that

Exp(εα(f ± gu(ε))) ◦ Exp(εα(f ∓ gu(ε))) =

= Exp

(
2εαf ± ε2α[gu(ε), f ] +

ε3α

3
[gu(ε), [gu(ε), f ]] +O±(ε4α)

)
. (4.4)
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Our choice of ε implies that for each x ∈ Ω0 the trajectory Pu(ε)(x) is well defined,
where

Pu(ε)(x) := Exp(εα(f + gu(ε))) ◦ Exp(εα(f − gu(ε)))◦

◦Exp(εα(f − gu(ε))) ◦ Exp(εα(f + gu(ε)))(x) ∈ R(x, 4εα). (4.5)

Taking into account (4.4) and the C-B-H formula, we obtain that

Pu(ε) = Exp

(
2εαf + ε2α[gu(ε), f ] +

ε3α

3
[gu(ε), [gu(ε), f ]] +O+(ε4α)

)
◦

◦Exp

(
2εαf − ε2α[gu(ε), f ] +

ε3α

3
[gu(ε), [gu(ε), f ]] +O−(ε4α))

)
=

= Exp

(
4εαf +

2ε3α

3
[gu(ε), [gu(ε), f ]] + 2ε3α[f, [f, gu(ε)]] +O(ε4α))

)
. (4.6)

We choose arbitrary elements u0 ∈ U+ and u1, . . . , us from U , set û := (u0, u1, . . . , us), εû =
min{εui

, i = 1, . . . , s} > 0 and consider the function

(0, εû) ∋ ε → gu0(ε) +
s∑

i=1

f (ui(ε)) .

We call this function an admissible sum of Lie brackets. Then, taking into account
(4.5) and (4.6), we obtain for each x ∈ Ω0 and for each ε ∈ (0,min(εû, T0/(4s+1)))
that

Pû(ε)(x) := Exp

(
4

3
ε3α
(
f + gu0(ε)

))
◦

◦Pu1(ε) ◦ · · · ◦ Pus(ε)(x) ∈ R
(
x,

4

3
ε3α + 4sεα

)
. (4.7)

Applying the C-B-H formula, we have that

Pû(ε) = Exp

((
4

3
ε3α + 4sεα

)
f +

4ε3α

3

(
gu0(ε) +

1

2

s∑
i=1

[gui(ε), [gui(ε), f ]]

)
+

+2ε3α
s∑

i=1

[f, [f, gui(ε)]] +Os(ε4α)

)
=

= Exp

((
4

3
ε3α + 4sεα

)
f +

4ε3α

3

(
gu0(ε) +

s∑
i=1

f (ui(ε))

)
+

+2ε3α
s∑

i=1

[f, [f, gui(ε)]] +Os(ε4α)

)
. (4.8)

35



Because the vector field f is homogeneous of second degree, one can check that
the vector fields [f, [f, gui(ε)]], i = 1, . . . , s, are also homogeneous of second degree,
and hence [f, [f, [gui(ε)]](0) = 0, i = 1, . . . , s, for each ε from the interval (0, εû).

So, we have shown that the inclusion (4.7) and the equality (4.8) hold true for the
admissible sum of Lie brackets

(0, εû) ∋ ε → gu0(ε) +
s∑

i=1

f(ui(ε)).

Let us fix the real numbers α > 1 and β > 0 such that the following inequalities
hold true

1 < 2κ−1β < 2κ+1β < α. (4.9)

We set µ := 2κβ,

µ1 := 2κ−1β, µ2 := 2κ−1

(
1 +

1

2

)
β, µs := 2κ−1

(
1 +

1

2
+ · · ·+ 1

2s−1

)
β,

for each s = 1, . . . , κ. Clearly, the inequalities (4.9) imply that

1 < µ1 < µ2 < · · · < µκ < µ and 2µ < α. (4.10)

First, we show that for each elements p and q of the set {1, . . . , κ} with p < q the
following inequality holds true

µp + µ ≤ 2µq. (4.11)

Indeed, we have that

2µq −µ−µp = 2κ
(
1 +

1

2
+ · · ·+ 1

2q−1

)
β− 2κβ− 2κ−1

(
1 +

1

2
+ · · ·+ 1

2p−1

)
β =

= 2κ
(
1 +

1

2
+ · · ·+ 1

2q−1

)
β − 2κ

(
1 +

1

2
+ · · ·+ 1

2p−1
+

1

2p

)
β ≥ 0.

Next, we prove the following

Claim. For each positive integer q ∈ {1, 2, . . . , κ}, and for each element
[
guq ,

[
gvq , f

]]
∈

Mq there exist εuqvq ∈ (0, 1), vqi ∈ M0 and δqi ≥ 0, i = 1, . . . , q̄, such that the
function

(0, εuqvq) ∋ ε → εµq+µ
[
guq ,

[
gvq , f

]]
+ ε2µ

q̄∑
i=1

εδqif(vqi) (4.12)
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is an admissible sum of Lie brackets, i.e. there are u0 ∈ U+ and uα ∈ U , α =
1, . . . , s, such that

εµq+µ
[
guq ,

[
gvq , f

]]
+ ε2µ

q̄∑
i=1

εδqif(vqi) = gu0(ε) +
s∑

α=1

f(uα(ε)),

for each ε ∈ (0, εuqvq).

Proof of the Claim. The proof will be done by induction. First, we show that the
claim holds true for q = 1. Indeed, let [gu1 , [gv1 , f ]] ∈ M1. Then v1 ∈ M0, u1 ∈ N1.
According to the definition of N1,

−f(u1) = gu1,0 +

p1∑
j=1

f(u1j) (4.13)

where u1,0 ∈ U and u1j ∈ M0, j = 1, . . . , p1.

Clearly, there exists εu1v1 ∈ (0, 1) such that for each ε ∈ (0, εu1v1) the sum εµ1u1 +
εµv1 belongs to (rec U) ∩ B̄ and

f(εµ1u1 + εµv1) + ε2µ1gu1,0 +

p1∑
j=1

f(εµ1u1j) =

= ε2µ1f(u1) + εµ1+µ [gu1 , [gv1 , f ]] + ε2µf(v1) + ε2µ1gu1,0 + ε2µ1

p1∑
j=1

f(u1j)

Applying (4.13) we obtain that

εµ1+µ [gu1 , [gv1 , f ]] + ε2µf(v1) =

= ε2µ1gu1,0 + f(εµ1u1 + εµv1) +

p1∑
j=1

f(εµ1u1j).

Hence, the function

(0, εu1v1) ∋ ε → εµ1+µ [gu1 , [gv1 , f ]] + ε2µf(v1)

is an admissible sum of Lie brackets. So, we obtain that the Claim holds true for
q = 1.

Let us assume that the Claim holds true for each positive integer r satisfying the
inequality r ≤ q for some positive integer q < κ. We prove that it holds true also
for p := q + 1.
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Indeed, let us fix an element
[
gup ,

[
gvp , f

]]
∈ Mp \Mq. Then vp ∈ M0, up ∈ Np.

According to the definition of Np,

−f(up) = guαp
+

β̄p∑
βp=1

f(uβp) +

γ̄p∑
γp=1

j̄γp∑
jp=1

[
guγpjp

,
[
gvγpjp , f

]]
, (4.14)

where uαp ∈ U , uβp ∈ M0 and each Lie bracket
[
guγpjp

,
[
gvγpjp , f

]]
∈ Mγp with

γp < p. Clearly, there exists εu0
pv

0
p
∈ (0, 1) such that for each ε ∈ (0, εu0

pv
0
p
) the sum

εµpup + εµvp belongs to (rec U) ∩ B̄ and

f (εµpup + εµvp) = ε2µpf (up) + εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µf (vp) .

We add

ε2µpguαp
+ ε2µp

β̄p∑
βp=1

f(uβp) + ε2µp

γ̄p∑
γp=1

j̄γp∑
jp=1

[
guγpjp

,
[
gvγpjp , f

]]
to both sides of this equality and obtain

f (εµpup + εµvp) + ε2µpguαp
+ ε2µp

β̄p∑
βp=1

f(uβp) + ε2µp

γ̄p∑
γp=1

j̄γp∑
jp=1

[
guγpjp

,
[
gvγpjp , f

]]
=

= ε2µpf (up) + εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µf (vp)+

+ε2µpguαp
+ ε2µp

β̄p∑
βp=1

f(uβp) + ε2µp

γ̄p∑
γp=1

j̄γp∑
jp=1

[
guγpjp

,
[
gvγpjp , f

]]
.

Taking into account (4.14), we obtain that

f (εµpup + εµvp) + ε2µpguαp
+ ε2µp

βp∑
βp=1

f(uβ̄p
) + ε2µp

γ̄p∑
γp=1

j̄γp∑
jp=1

[
guγpjp

,
[
gvγpjp , f

]]
=

= εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µf (vp) . (4.15)

According to the inductive assumption, for each multi-index γpjp there exists
εγpjp ∈ (0, 1) and a function

(0, εγpjp) ∋ ε → ε2µ
pγpjp∑
kp=1

εδγpjpkpf(vγpjpkp)
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(here each vγpjpkp ∈ M0 and each real δγpjpkp ≥ 0) such that the function

(0, εγpjp) ∋ ε → εµ+µγp

[
guγpjp

,
[
gvγpjp , f

]]
+ ε2µ

pγpjp∑
kp=1

εδγpjpkpf(vγpjpkp)

is an admissible sum of Lie brackets, i.e. for each ε ∈ (0, εγpjp) we have that

εµ+µγp

[
guγpjp

,
[
gvγpjp , f

]]
+ ε2µ

pγpjp∑
kp=1

εδγpjpkpf(vγpjpkp) =

= gu0
γpjp

(ε) +

īγpjp∑
iγpjp=1

f
(
uiγpjp

(ε)
)
,

where u0
γpjp ∈ U+ and uiγpjp

∈ U for each iγpjp = 1, . . . , īγpjp .

Taking this into account and setting

εu1
pv

1
p
= min{εu0

pv
0
p
, εγpjp , jp = 1, . . . , j̄γp , γp = 1, . . . , γ̄p} > 0,

we obtain from (4.15) that for each ε ∈ (0, εu1
pv

1
p
) the following equality holds true

f (εµpup + εµvp) + ε2µpguαp
+ ε2µp

β̄p∑
βp=1

f(uβp)+

+

γ̄p∑
γp=1

ε2µp−µγp−µ

j̄γp∑
jp=1

εµγp+µ
[
guγpjp

,
[
gvγpjp , f

]]
+

+

γ̄p∑
γp=1

ε2µp−µγp−µ

j̄γp∑
jp=1

ε2µ
pγpjp∑
kp=1

εδγpjpkpf(vγpjpkp) =

= εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µf (vp) +

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

ε2µ
pγpjp∑
kp=1

εδγpjpkpf(vγpjpkp).

Hence

εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µf (vp) + ε2µ

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

pγpjp∑
kp=1

εδγpjpkpf(vγpjpkp) =
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= f (εµpup + εµvp) + ε2µpguαp
+

β̄p∑
βp=1

f(εµpuβp)+

+

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄p∑
jp=1

εµ+µγp
[
guγp

,
[
gvγp , f

]]
+ ε2µ

pγpjp∑
kp=1

εδγpjpkpf(vγpjpkp)

 =

= f (εµpup + εµvp) + ε2µpguαp
+

β̄p∑
βp=1

f(εµpuβp)+ (4.16)

+

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

gu0
γpjp

(ε) +

īγpjp∑
iγpjp=1

f
(
uiγpjp

(ε)
) .

Clearly there exists εupvp ∈ (0, εu1
pv

1
p
) such that the sum

u0
p(ε) := ε2µpuαp +

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

u0
γpjp(ε)

belongs to the set U+ for each ε ∈ (0, εupvp). Then (4.16) can be written as follows:

εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µf (vp) + ε2µ

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

pγpjp∑
kp=1

εδγpjpkpf(vγpjpkp) =

= gu0
p(ε)

+ f (εµpup + εµvp) +

β̄p∑
βp=1

f(εµpuβp)+

+

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

īγpjp∑
iγpjp=1

f
(
uiγpjp

(ε)
)
.

Because 2µp − µ− µγp ≥ 0, the last equality implies that the function (0, εupvp) ∋
ε → Λ(ε), where Λ(ε) =

= εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µf (vp) + ε2µ

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

pγpjp∑
kp=1

εδγpjpkpf(vγpjpkp),

is also an admissible sum of Lie brackets. Hence, the inductive assumption holds
true for

[
guγp

,
[
gvγp , f

]]
. Because

[
guγp

,
[
gvγp , f

]]
is an arbitrary Lie bracket from

Mp, we can conclude that the inductive assumption holds true also for p := q+1.
Therefore, the inductive assumption holds true for each p ∈ {1, 2, . . . , κ}. This
completes the proof of the Claim.
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Let us fix an integer number p from the set {1, 2, . . . , κ} and an arbitrary Lie
bracket

[
gup ,

[
gvp , f

]]
∈ Mp. Then the Claim implies the existence of εupvp ∈ (0, 1),

vi ∈ M0 and δi ≥ 0, i = 1, . . . , ρ̄, such that

(0, εupvp) ∋ ε → εµ+µp
[
gup ,

[
gvp , f

]]
+ ε2µ

ρ̄∑
i=1

εδif(vi)

is an admissible sum of Lie brackets, i.e.

(0, εupvp) ∋ ε → εµ+µp
[
gup ,

[
gvp , f

]]
+ ε2µ

ρ̄∑
i=1

εδif(vi) = gu0(ε) +
s∑

α=1

f(uα(ε)),

where u0 ∈ U+ and each uα belongs to U for α = 1, . . . , s. This equality and the
relations (4.7) and (4.8) imply that

Exp

((
4

3
ε3α + 4sεα

)
f +

4ε3α

3

(
εµ+µp

[
gup ,

[
gvp , f

]]
+ ε2µ

ρ̄∑
i=1

εδif(vi)

)
+

+2ε3α
s∑

i=1

[f, [f, gui(ε)]] +Os(ε4α)

)
(x) =

= Exp

((
4

3
ε3α + 4sεα

)
f +

4ε3α

3

(
gu0(ε) +

s∑
α=1

f(uα(ε))

)
+

+2ε3α
s∑

i=1

[f, [f, gui(ε)]] +Os(ε4α)

)
(x) =

= Exp

(
4

3
ε3α
(
f + gu0(ε)

))
◦ Pu1(ε)) ◦ · · · ◦ Pus(ε)(x) ∈

∈ R
(
x,

4

3
ε3α + 4sεα

)
for each ε ∈ (0,min(εupvp , T0/(4s+1))) and for each x ∈ Ω0. Here Pu(ε) is defined
by (4.5). Our choice of µp and µ (cf. the inequalities (4.10) and (4.11)) implies
the inequalities µp < µ and 2µ < α. From here we obtain that 3α + µp + µ <
3α + 2µ < 4α. Taking into account that f and [f, [f, gui(ε)]], i = 1, . . . , s, are
homogeneous of second degree for each ε ∈ (0, εupvp), we obtain that f(0) = 0
and [f, [f, [gui(ε)]](0) = 0 for each ε ∈ (0, εupvp). Hence

[
gup ,

[
gvp , f

]]
∈ E+. This

completes the proof of Theorem 4.1.1. △
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Chapter 5

A necessary condition for
small-time local controllability

5.1 Motivation and statement of the main result

We consider the following control system Σn in Rn

ẋ(t) = f(x(t), u(t)), (5.1)

under the assumptions:

A1. The function f : Rn × Rm → Rn is continuous with respect to the variables
x and u;

A2. The set U is a compact subset of Rm;

A3. There exist real numbers ρ ∈ (0, 1) and K > 0, such that the following
inequality holds true

∥f(x2, u)− f(x1, u)∥ ≤ K∥x2 − x1∥

for each u of U and for each two elements x2 and x1 of ρB̄ (by B̄ it is denoted
the closed unit ball of Rn centered at the origin).

In order to show the main idea of our approach, we consider the following

Example 5.1.1 Let us consider the following 3-dimensional control system Σ3:

ẋ(t) = u(t), x(0) = 0, u(t) ∈ [−1, 1],
ẏ(t) = v(t), y(0) = 0, v(t) ∈ [−1, 1],
ż(t) = ax2(t) + bx(t)y(t) + cy2(t) + dx(t)z(t), z(0) = 0,

where a, b, c and d are constants.

42



To study the small-time local controllability of this system at the origin, it is
natural to consider its linearization at the origin:

ẋ(t) = u(t), x(0) = 0,
ẏ(t) = v(t), y(0) = 0,
ż(t) = 0, z(0) = 0.

(5.2)

According to the Kalman criterion this linear system is not small-time local con-
trollable at the origin. On the other hand, one can easily prove that for each
positive time T > 0 there exists a real number µ > 0 such that each point of the
linear space

L := {(x, y, z)T ∈ R3 : z = 0}

(by pT is denoted the transpose vector of p) whose norm is less than µ is reach-
able from the origin in time not greater than T by means of trajectories of the
linearization (5.2).

This fact motivate us to study the values of the right-hand side of the system Σ3

on the linear space L and explains the meaning of the linear span L that appears
in the formulation of the below written Assumption 4. We shall continue the study
of the local properties of the reachable set of the system Σ3 after while.

In order to formulate our main result we need the following assumption:

A4. There exists a proper linear subspace L of Rn (i.e. L ̸= Rn), such that

rec( cone ({f(x, u) : x ∈ ρB̄ ∩ L, u ∈ U} ∪ L ) ) ⊆ L.

Here by cone (S) it is denoted the smallest convex closed cone containing the set
S, and by rec (C) - the largest linear space contained in the convex closed cone C.

Theorem 5.1.1 Let the Assumptions A1, A2, A3 and A4 hold true. Then the
control system Σn is not STLC at the origin.

Theorem 5.1.1 implies directly the following corollary which generalizes the nec-
essary controllability condition (cf. Theorem 1) from [33]. Indeed, let us consider
the case when L = {0}. Then Assumption A4 takes the form:

A4’. rec ( cone ( {f(0, u) : u ∈ U} ) ) = {0}

and we obtain the following

Corollary 5.1.2 Let the Assumptions A1, A2, A3 and A4’ be fulfilled. Then the
control system Σn is not STLC at the origin.

43



Example 5.2 (continuation) In order to apply Theorem 3 to this example, one
has to verify Assumption 4. It is easy to check that the set on the left-hand side
of Assumption 4 is rec (cone (D ∪ L)), where

D :=


u ∈ [−1, 1],

(u, v, ax2 + bxy + cy2)T : v ∈ [−1, 1]
x2 + y2 ≤ ρ2


The following cases are possible:

Case I: b2 − 4ac ≤ 0. Then the sign of the third coordinate of all elements of the
set D is one and the same, and hence, rec (cone (D∪L)) ⊆ L. Applying Theorem
3, we obtain that the control system Σ3 is not small-time locally controllable
at the origin. We would like to point out that this conclusion does not follow
from the known necessary controllability conditions obtained in Sussmann ([34]),
Stefani ([31]), Kawski ([19]) and Krastanov ([24]), because these necessary STLC
conditions concern only the scalar input case.

Case II: b2 − 4ac > 0. We show that in this case the control system Σ3 is
small-time locally controllable at the origin. Note that this conclusion does not
follow from the general result in Sussmann ([36]). Observing that Σ3 is a control-
affine system with quadratic drift term and constant control-input vector fields,
one can try to apply the sufficient controllability condition obtained in Aguilar
([1]). Unfortunately, the STLC property of this example can not be obtained as a
corollary of this result. For this reason we apply another differential-geometrical
approach to determine the possible directions of expansion of the reachable set of
smooth control system. This approach is based on a suitable definition of tangent
vector fields to the reachable set of a control system, namely the set E+ defined
in chapter 2 of analytic vector fields. The definition of this set is related to the
works of Krener ([27]), Hermes ([14]), Sussman ([33]), Kunita ([28]), Veliov and
Krastanov ([38]), Hirshorn ([16]), Krastanov and Quincampoix ([25]), Krastanov
and Veliov ([26]) and others.

We continue with the considered example. We fix ε0 > 0, and a compact neighbor-
hood Ω of the origin. Without loss of generality, we may think that Ω and ε0 > 0
are sufficiently small so that the compositions Υ, Υ2 and Υ4 appearing below are
well defined.

We set p := (x, y, z)T and define the vector fields f : R3 → R3 and g : R3 → R3 as
follows

f(p) = (0, 0, ax2 + bxy + cy2 + dxz)T , gα,β(p) := (α, β, 0)T ,

where α and β are arbitrary elements of the interval [−1, 1]. Because

Exp (ε(f + g)) (p) ∈ R(p, ε)
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for each point p ∈ Ω and each ε ∈ [0, ε0], and f(0) = (0), we can conclude that
the vector field gα,β belongs to the set E+(0).

Let us fix an arbitrary ε ∈ [0, ε0], and arbitrary ᾱ and β̄ from the interval [−1, 1].
We set g := gᾱ,β̄ and Υ(ε) := Exp (ε(f + g)) ◦ Exp (ε(f − g)). Then Υ(ε)(p)
belongs to R(p, 2ε) for each point p ∈ Ω. Applying the C-B-H formula, we obtain
that

Υ(ε) = Exp

(
2εf + ε2[g, f ] +

ε3

3
[g, [g, f ]] +O(ε4)

)
.

Following the proof of Proposition 5.1 in Sussmann (1987) (cf., also, Sussmann
(1983)), we consider the automorphism λ which sends f to f and g to −g. If we
set

Υ2(ε) := Υ(ε) ◦ λ (Υ(ε)) ,

then we have that

Υ2(ε)(p) ∈ R(p, 4ε) for each p ∈ Ω.

On the other hand, applying the C-B-H formula, we obtain that Υ2(ε) =

= Exp

(
4εf + 2ε3[f, [f, g]] +

2ε3

3
[g, [g, f ]] +O1(ε

4)

)
.

By setting Υ4(ε)) := Υ2(ε) ◦ λ (Υ2(ε)), it follows that

Υ4(ε)(p) ∈ R(p, 8ε) for each p ∈ Ω.

Applying again the C-B-H formula, we obtain that

Υ4(ε)) = Exp

(
8εf +

4ε3

3
[g, [g, f ]] +O2(ε

4)

)
.

Because f(0) = 0, the vector field [g, [g, f ]] belongs to the set E+(0) for each
choice of the parameters ᾱ ∈ [−1, 1] and β̄ ∈ [−1, 1]. Clearly we have that

[g, [g, f ]](x, y, z) = 2(0, 0, aᾱ2 + bᾱβ̄ + cβ̄2)T .

We set

A :=
{
(α, β, 0)T : α, β ∈ [−1, 1]

}
and

B :=
{
2(0, 0, aᾱ2 + bᾱβ̄ + cβ̄2)T : ᾱ, β̄ ∈ [−1, 1]

}
.
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Because the origin 0 of Rn belongs to the interior of the convex hull of the set
A ∪ B, we can find finite number of elements ci ∈ A ∪ B, i = 1, . . . , k, such that
0 belongs to the interior of the convex hull of the set {ci : i = 1, . . . , k}. Because
the elements of A ∪ B are values of elements of E+(0) at the origin, there exist
elements Zi ∈ E+ with Zi(0) = ci for each i = 1, . . . , k. Applying Lemma 2.3.5, we
obtain that the control system Σ3 is small-time locally controllable at the origin.

We would like to point out that the small-time local controllability of the system
Σ3 is determined completely by the values of the parameters a, b and c, and does
not depend on the parameter d. □

5.2 Some corollaries

Let Ai : Rn → Rn, i = 1, . . . , k are linear mappings and Ci, i = 1, . . . , k are
convex closed cones in Rn. We consider the control system Σs (called ”switching
system”):

ẋ(t) ∈ Aix(t) + Ci, i = 1, . . . , k.

An admissible trajectory of the system Σs defined on [0, T ] is any absolutely con-
tinuous function x : [0, T ] → Rn, with finitely number of indexes i1, i2, . . . , ip,
numbers 0 = t0 < t1 < . . . tp ≤ T and integrable functions uj : [tj−1, tj] → Cij ,
j = 1, . . . p, satisfying

ẋ(t) = Aijx(t) + uj(t) for almost each t ∈ [tj−1, tj].

Corollary 5.2.1 Let L be a proper linear subspace of Rn such that

rec ( cone ( {
k⋃

i=1

(Aix+ Ci) | x ∈ ρB̄ ∩ L, u ∈ U} ∪ L ) ) ⊆ L.

Then the switching system Σs is not STLC at the origin.

Let L be linear subspace of Rn, such that:

B1. L is invariant with respect to Ai, i = 1, . . . , k, i.e. Aix ∈ L for each x ∈ L;

B2. rec
(
cone

(⋃k
i=1Ci ∪ L

) )
⊆ L.

Corollary 5.2.2 Let B1 and B2 are fulfilled. Then the control system Σs is not
STLC at the origin.
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The corollary coincides with necessary condition of Krastanov & Veliov (2005).
Moreover, if the conditions B1 and B2 are not fulfilled, then the system is STLC
at the origin.

Let us consider the system ΣS

ẋ(t) = f(x(t)) +
k∑

i=1

ui(t)gi(t), (5.3)

We consider the case L = {0}. Then the Assumption A4 takes the form:

A4’. rec ( cone ( {f(0, u) : u ∈ U} ) ) = {0}

and we obtain directly the following corollary

Corollary 5.2.3 Let the Assumptions A1, A2, A3 and A4’ be fulfilled. Then the
control system Σ is not STLC at the origin.

This corollary coincides with Theorem 1 from [33]).

Theorem 5.2.4 (Sussman (1978)) Let the origin does not belong to the convex
hull of the values f(0, u) that corresponds to those u ∈ U for which f(0, u) ̸= 0.
Then the control system ΣS is not STLC at the origin.

Let us consider the following control system: Σ2b:

ẋ(t) = f(x(t)) + u(t)b,

where f is polynomial map homogeneous of degree 2, b is a fixed vector in Rn and
u ∈ [−1, 1].

Then we can formulate the next corollary of the Theorem 5.1.1.

Corollary 5.2.5 Let L̂1 := {αb : α ∈ R} be a proper linear subspace of Rn. Let us
assume that rec ( cone ( {ad2(gξ, f)(0)+2ub : ξ ∈ ρB∩L̂1, u ∈ [−1, 1]} ∪ L̂1 ) ) ⊆
L̂1. Then the control system Σ2b is not STLC at the origin.

This corollary leads to the following theorem of Sussman, preformulated for this
case.
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Theorem 5.2.6 (Sussman (1983)) Let L1 be the linear span of all Lie brackets
in f and b which involves b at most one time. We assume that [gb, [gb, f ]](0) /∈
L1(0). Then the control system Σ2 is not STLC at the origin.

Let us consider the following control system Σ2k′ :

ẋ(t) = f(x(t)) + u(t)b,

where f is polynomial map homogeneous of degree 2k, b is a fixed vector in Rn

and u ∈ [−1, 1]. The theorem 5.1.1 takes the form:

Corollary 5.2.7 Let L̂2k−1 := {αb : α ∈ R} be a proper linear subspace of Rn.
Let us assume that rec ( cone ( {ad2k(gξ, f)(0) + 2ub : ξ ∈ ρB ∩ L̂2k−1, u ∈
[−1, 1]} ∪ L̂2k−1 ) ) ⊆ L̂2k−1. Then the control system Σ2k′ is not STLC at the
origin.

and the necessary optimality condition of Stefani (cf. [31]), applied to the system
Σ2k′ is a corollary of Theorem 5.2.7 .

Theorem 5.2.8 (Stefani (1986)) Let L2k−1 be the linear span of all Lie brackets
in f and b which involves b at most 2k − 1 times.We assume that ad2k(b, f)(0) /∈
L2k−1(0). Then the system Σ2k′ is not STLC at the origin.

Moreover, the necessary condition 5.1.1 is applicable also in case with more than
one control system Σ2k′′ :

ẋ(t) = f(x(t)) +
m∑
i=1

ui(t)bi,

Corollary 5.2.9 Let L̂2k−1 :=

{
m∑
i=1

αibi : αi ∈ R, i = 1, . . . ,m

}
be a proper linear

span of Rn. If

rec ( cone ( {ad2k(gb, f)(0)+
m∑
i=1

uibi : x ∈ ρB∩L̂2k−1, u ∈ U} ∪ L̂2k−1 ) ) ⊆ L̂2k−1,

then the control system Σ2k′′ is not STLC at the origin.

The last corollary is a new result and it’s not a particular case of a known result.
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5.3 Proof of the necessary condition

To prove the sufficiency we apply the differential-geometrical approach based on
the concept of tangent vector fields to the reachable set of a control system, namely
the set E+ which is defined in chapter 2. To prove the necessity, we use some ideas
that can be found in [20], [30], [33], [38] and [26].

We choose the linear independent vectors p1, p2, . . . , pk, so that they generate the
linear span L. Next we add the linear vectors pk+1, . . . , pn so that the vectors
p1, p2, . . . , pn form a basis of Rn. We denote by M the matrix which columns are
the vectors p1, p2, . . . , pn. Let ei, i = 1, . . . , n, be the vector of Rn whose i-th
component is one and all other components are zero. One can directly check that
pi = Mei, i = 1, . . . , n.

We introduce the new coordinates (yT , zT )T := M−1x, where the components of
y (of z) are the first k (the last n− k) components of M−1x. Let y = (y1, . . . , yk)

T

be an arbitrary vector of Rk and 0 be the origin of Rn−k . Then we have that

M

(
y
0

)
=

k∑
i=1

yiMei =
k∑

i=1

yipi ∈ L. (5.4)

Let c := max {f(x, u) : x ∈ ρB̄, u ∈ U}. Because of the compactness of the
set U , the Weierstrass theorem and the continuity of f , the following inequality
holds true c < +∞. Also, the compactness of the set U implies the existence of
T̄0 > 0 such that each admissible trajectory of Σ starting from the origin at the
moment of time zero and corresponding to some arbitrary admissible control from
ΩT̄0

is well defined on the interval [0, T̄0]. Let us fix an arbitrary positive number
T0 ∈ (0, T̄0). Without loss of generality we may think that T0 > 0 is so small
that each admissible trajectory of Σ defined on [0, T0] and starting from the origin
remains in ρB̄.

Let us fix an arbitrary admissible control u ∈ ΩT0 of Σ and let x(t), t ∈ [0, T0], be
the corresponding trajectory of Σ starting from the origin and remaining in ρB̄.
We set (y(t)T , z(t)T )T := M−1x(t), t ∈ [0, T0]. Then

(
ẏ(t)
ż(t)

)
= M−1ẋ(t) = M−1f(x(t), u(t)) =

= M−1f

(
M

(
y(t)
z(t)

)
, u(t)

)
=:

(
g(y(t), z(t), u(t))
h(y(t), z(t), u(t))

)
.

Without loss of generality we may think that T0 > 0 is so small that

M

(
y(t)
0

)
, M

(
0

z(t)

)
and M

(
y(t)
z(t)

)
(5.5)
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belong to ρB̄ for each t ∈ [0, T0]. From here we obtain that

∥h(y(t), z(t), u(t))− h(y(t),0, u(t))∥ ≤ (5.6)

≤ ∥M−1∥
∥∥∥∥f (M (

y(t)
z(t)

)
, u(t)

)
−

f

(
M

(
y(t)
0

)
, u(t)

)∥∥∥∥ ≤

≤ ∥M−1∥ K

∥∥∥∥M (
0

z(t)

)∥∥∥∥ ≤ ∥M−1∥ K ∥M∥ ∥z(t)∥.

We set K̃ := ∥M−1∥ K ∥M∥ and let us assume that

0 ∈ co
({

λ h(y,0, u) : λ ≥ 0, u ∈ U and y ∈ Rk,

such that M

(
y
0

)
∈ L ∩ ρB̄

}
∩ SRn−k

)
,

where SRn−k is the unit sphere of Rn−k centered at the origin.

Then there exist reals γi > 0 and αi > 0, i = 1, . . . , s, so that
∑s

i=1 αi = 1, and
elements ui ∈ U and yi ∈ Rk, i = 1, . . . , s, such that M(yTi , 0T )T ∈ L ∩ ρB,
γi∥h(yi,0, ui)∥ = 1 and

0 =
s∑

i=1

αiγih(yi,0, ui).

From here we obtain the existence of ỹ ∈ Rk such that(
ỹ
0

)
=

s∑
i=1

αiγi

(
g(yi,0, ui)
h(yi,0, ui)

)
=

=
s∑

i=1

αiγiM
−1f

(
M

(
yi
0

)
, ui

)
=

=
s∑

i=1

αiγiM
−1f (li, ui) ,

where li := M(yTi , 0T )T ∈ L ∩ ρB̄. The last equality implies that
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L ∋ l̃ := M

(
ỹ
0

)
=

s∑
i=1

αiγif (li, ui) .

Because α1γ1 > 0, the above written equality implies that

−f (l1, u1) =
1

α1γ1

s∑
i=2

αiγif (li, ui) + l̄ (5.7)

belongs to cone (f(L ∩ ρB̄, U) ∪ L), where l̄ := −l̃/(α1γ1) and

f(L ∩ ρB̄, U) :=
{
f(x, u) : x ∈ L ∩ ρB̄, u ∈ U

}
.

Let us assume that f (l1, u1) ∈ L. Then the definition of the matrix M (cf., also
(5.4)) implies that M−1f (l1, u1) = (ŷ, 0) for some ŷ ∈ Rk. But this contradicts
the equality, M−1f (l1, u1) = (g(y1,0, u1), h(y1,0, u1)) with h(y1,0, u1) ̸= 0. The
obtained contradiction shows that f (l1, u1) ̸∈ L.

Clearly, f (l1, u1) ∈ cone ( f(L ∩ ρB̄, U) ). The inclusion (5.7) implies that
−f (l1, u1) ∈ cone ( f(L∩ ρB̄, U)∪L). Because f (l1, u1) ̸∈ L, we obtain a contra-
diction with the Assumption A4. Hence

0 ̸∈ co
({

λ h(y,0, u)| λ ≥ 0, u ∈ U and y ∈ Rk,

such that M

(
y
0

)
∈ L ∩ ρB̄

}
∩ SRn−k

)
.

Then the Separability theorem implies the existence of a nonvanishing vector ξ
and a real ε > 0 such that 〈

ξ,
h(y,0, u)

∥h(y,0, u)∥

〉
≥ ε (5.8)

for each h(y,0, u) ̸= 0 corresponding to some u ∈ U and y ∈ Rk and satisfying the
relation M(yT , 0T )T ∈ L ∩ ρB̄.

Let T be an arbitrary real from the interval (0, T0). Because

z(t) =

∫ t

0

h(y(s), z(s), u(s))ds, t ∈ [0, T ],

we obtain
z(t) =

∫ t

0

h(y(s), z(s), u(s))ds =

=

∫ t

0

h(y(s), z(s), u(s))− h(y(s),0, u(s))ds+
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+

∫ t

0

h(y(s),0, u(s))ds.

According to (5.6) we obtain that

∥z(t)∥ =

∥∥∥∥∥∥
t∫

0

h(y(s), z(s), u(s))− h(y(s),0, u(s))ds+

+

t∫
0

h(y(s),0, u(s))ds

∥∥∥∥∥∥ ≤

≤
t∫

0

∥h(y(s), z(s), u(s))− h(y(s),0, u(s))∥ds+

+

∫ t

0

∥h(y(s),0, u(s))∥ds ≤

≤ K̃

t∫
0

∥z(s)∥ds+
T∫

0

∥h(y(s),0, u(s))∥ds.

Applying the Gronwall inequality, we obtain that

∥z(t)∥ ≤ eK̃t

T∫
0

∥h(y(s),0, u(s))∥ds, t ∈ [0, T ]. (5.9)

Then ⟨ξ, z(t)⟩ = ⟨ξ,
t∫

0

h(y(s), z(s), u(s))ds⟩ =

= ⟨ξ,
t∫

0

(h(y(s), z(s), u(s))− h(y(s),0, u(s)))ds⟩+

+⟨ξ,
t∫

0

h(y(s), 0, u(s))ds⟩

We estimate each of the addends. Applying (5.9), we obtain that:

∣∣∣∣∣∣
t∫

0

⟨ξ, h(y(s), z(s), u(s))− h(y(s),0, u(s))⟩ds

∣∣∣∣∣∣ ≤
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≤
t∫

0

∥ξ∥.∥h(y(s), z(s), u(s))− h(y(s),0, u(s))∥ds ≤

≤ ∥ξ∥
t∫

0

K̃∥z(s)∥ds ≤

≤ K̃∥ξ∥
t∫

0

eK̃s

T∫
0

∥h(y(σ),0, u(σ))∥dσds ≤

≤ K̃∥ξ∥teK̃t

T∫
0

∥h(y(σ),0, u(σ))∥dσ.

We set Θ := {s ∈ [0, T0] : h(y(s),0, u(s)) ̸= 0}. Then

t∫
0

⟨ξ, h(y(s),0, u(s))ds⟩ =
∫
Θ

⟨ξ, h(y(s),0, u(s))ds⟩ =

=

∫
Θ

〈
ξ,

h(y(s),0, u(s))

∥h(y(s),0, u(s))∥
∥h(y(s),0, u(s))∥

〉
ds ≥

≥ ε

∫
Θ

∥h(y(s),0, u(s))∥ds = ε

t∫
0

∥h(y(s),0, u(s))∥ds

The last inequality follows from (5.8). Using the above written estimates, we
obtain that

⟨ξ, z(T )⟩ =
T∫

0

⟨ξ, h(y(s),0, u(s))ds⟩+

+

T∫
0

⟨ξ, h(y(s), z(s), u(s))− h(y(s),0, u(s))⟩ds ≥

53



≥
T∫

0

⟨ξ, h(y(s),0, u(s))ds⟩

−

∣∣∣∣∣∣
T∫

0

⟨ξ, h(y(s), z(s), u(s))− h(y(s),0, u(s)))⟩ds

∣∣∣∣∣∣ ≥

≥ ε

T∫
0

∥h(y(s),0, u(s))∥ds

−K̃∥ξ∥TeK̃T

T∫
0

∥h(y(s),0, u(s))∥ds =

=
(
ε− K̃∥ξ∥TeK̃T

) T∫
0

∥h(y(s),0, u(s))∥ds ≥ 0

for each sufficiently small T > 0. It follows from here that the control system Σn

is not STLC at the origin. ⋄
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Chapter 6

Conclusion

6.1 Main contributions

The main contributions in the thesis due to the author are:

1. Extension of the Sussman’s approach to neutralize brackets. It’s provided
a new sufficient condition for small-time local controllability for polynomial
right-hand side which is homogeneous of second degree using neutralization
of ”bad” bracket with the same weight.

2. It is developed a new method for constructing new elements of the set of
tangent vector fields to the reachable set of a polynomial control system
whose drift term is a homogeneous vestor field of second degree.

3. A new look on the ”weight” is considered. It’s developed a nonstandard and
complicated method to construct a ”weight” of a Lie bracket.

4. A new necessary condition for small-time local controllability is obtained
under natural assumptions.

6.2 Publications related to the thesis

1. M. I. Krastanov, M. N. Nikolova, A necessary condition for small-time local
controllability, Automatica,2020, ISSN (online):0005-1098, Ref web of Sci-
ence, IF: 5.944 (2020), Web of Science Quartile: Q1 (10/63 Automation &
ControlSystems, JCR-2020)
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2. M. I. Krastanov, M. N. Nikolova, A sufficient condition for small-time control-
lability of a polynomial control system, Comptes rendus de l’Academie bul-
gare des Sciences, 2020, vol:73, issue:12, pages: 1638-1649, ISSN(print):1310-
1331, ISSN(online):2367–5535, Ref Web of Science, IF: 0.378 (2020), Web of
Science Quartile: Q4 (71/72 Multidisciplinary Sciences, JCR-2020)

3. M. I. Krastanov, M. N. Nikolova, On the small-time local controllability,
Systems & Control Letters, 2023, vol:177, ISSN:0167-6911, EISSN:1872-7956,
Ref Web of Science, IF: 2.742 (2021), Web of Science Quartile: Q2 (38/87
Operations research & management science, JCR-2021)

6.3 Approbation of the thesis

The results from the thesis have been presented in the following talks:

1. ”A sufficient condition for small-time controllability of a polynomial con-
trol systems”, Seminar on Optimization, Faculty of Mathematics and Infor-
matics, Sofia University, 3 November 2020 (based on a joint work with M.
Krastanov)

2. ”Approximations of control affine systems”, Seminar on Optimization, Fac-
ulty of Mathematics and Informatics, Sofia University, 10 May 2021 (based
on a paper of H. Hermes)

3. ”On small-time local controllability”, The 13th International Conference on
Large-Scale Scientific Computations LSSC 2021, June 7 - 11, 2021, Sozopol,
Bulgaria, (based on a joint work with M. Krastanov)

4. ”A sufficient condition for small-time controllability” Spring Scientific Ses-
sion, Faculty of Mathematics and Informatics, Sofia University, 26 March
2022 (based on a joint work with M. Krastanov)

5. ”A sufficient condition for small-time controllability” Seminar on Optimiza-
tion, Faculty of Mathematics and Informatics, Sofia University, 6 June 2022
(based on a joint work with M. Krastanov)

6. ”High-order small-time local controllability” Spring Scientific Session, Fac-
ulty of Mathematics and Informatics, Sofia University, 25 March 2023 (based
on a joint work with M. Krastanov)

7. ”High-order small-time local controllability”, The 14th International Confer-
ence on Large-Scale Scientific Computations LSSC 2023, June 5 - 9, 2023,
Sozopol, Bulgaria, (based on a joint work with M. Krastanov)
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8. ”On small-time local controllability”, 16-th International Workshop on Well-
Posedness of Optimization Problems and Related Topics , July 3 - 7, 2023,
Borovets, Bulgaria, (based on a joint work with M. Krastanov)
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folds and controllability of nonlinear ODEs (2021), PhD Thesis,
https://theses.hal.science/tel-04053226/
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