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Abstract

Intelligent Context-Aware Natural Language Dialogue Agent

by

Momchil Hardalov

Doctor of Philosophy in Informatics and Computer Science

Sofia University “St. Kliment Ohridski”

Conversational agents or dialogue systems are computer programs that try to
generate human-like responses during a conversation. In task-oriented scenarios,
these responses should go beyond simple chitchat, focusing on performing task-
specific functions and responding to user requests. In recent years, chatbots and
dialogue systems had their Renaissance and gained a lot of attention not only from
the research community and also from the industry. Moreover, their architectures
evaluated from single domain and rule-based to complex modular multi domain
pipelines, built on top of deep neural networks and even end-to-end differentiable
models.

In this thesis, I take up on the problem of building efficient task-oriented con-
versational agents for customer support, and in particular I investigate several im-
portant components that can improve the quality of the end-to-end conversational
flow and serve better the customer’s requests. First, in order to improve the natural
language understanding abilities of the agent I propose a novel approach for slot
tagging and intent detection based on a pre-trained Transformer that fuses the two
tasks together, by using the predicted intent to guide the slot filling, and by using
a pooled representation from the task-specific outputs of all tokens for intent de-
tection. Next, I focus on curating answers from external knowledge sources, where
I study the abilities of state-of-the-art models for zero-shot multilingual transfer
and evaluated the effects of the retrieved evidence passages on the model’s abili-
ties to answer user questions. However, my research is not limited to producing
short-form answers in a single language, but I also investigate multilingual and
cross-lingual approaches for multiple-choice question answering, and retrieval of
long-form documents and articles that can serve as explanations. I also explore
end-to-end generative models for customer support showing that they can outper-
form information retrieval-based ones, but they still need additional knowledge
grounding in order to overcome hallucination and internal biases. I also introduce
a novel neural re-ranking model to improve multi-source response selection, which
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is a step towards better contextualizing the conversational agents’ responses, as
they are ranked by their relevance, and thus expected to be generated by an expert
model.

In addition, I collect, and release to the public, three new datasets: (i) for
multiple-choice QA from high-school exams – one monolingual in Bulgarian, and
one multilingual, which covers sixteen diverse languages from eight language fam-
ilies; (ii) for detecting previously fact-checked claims, a large-scale English dataset
from claims made in social media and their corresponding fact-checking articles.
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Chapter 1

Introduction

Internet has transformed many areas of our everyday lives. It made a whole new
range of services and products available to a global audience from around the
world. In turn, this has changed the way companies and businesses operate and
interact with their clients. A major, rapidly growing aspect of their operations is the
demand for better and more reliable customer support, not only in terms of how
accurate the information provided by the operator or an automated system is, but
also how fast a solution to a particular problem or request is reached. Moreover,
these services must be accessible by the customers, on one hand, throughout their
preferred channels of communication, and on the other, in their most convenient
language as well. Although, conversation with human experts is more likely to
end in better customer experience, it becomes more and more clear that recruiting
and training new employees becomes infeasibly fast, as it is an expensive and time-
consuming process that cannot keep up with the ever growing rate of adopting
new users. This is a clear sign that further automation with conversation agents
and development of better question answering systems, in addition to new and
improved tools for customer service operators, are urgently needed.

First, let me give a formal definition of conversational agent. The following def-
inition will be used throughout this thesis: “A conversational agent also referred to
as chatbot is a computer program which tries to generate human like responses during a
conversation.” (Ramesh et al., 2017). Next, I focus on the following three research
questions outlined by Gao et al. (2019), in order to scope the problems that conver-
sational agents are expected to solve:

• question answering: “the agent needs to provide concise, direct answers to user
queries based on rich knowledge drawn from various data sources including text col-
lections such as Web documents and pre-compiled knowledge bases such as sales and
marketing datasets”;

• task completion: “the agent needs to accomplish user tasks ranging from restaurant
reservation to meeting scheduling, and to business trip planning”;
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• social chat: “the agent needs to converse seamlessly and appropriately with users –
like a human as in the Turing test – and provide useful recommendations.”.

In order to further quantify the current state of the field, I focus on recently
reported metrics in real-world studies. First, it is important to emphasize that con-
versational agents are gaining more trust both from the companies and from the
customers, and they are becoming an integral part of the customer service pipeline.
Drift’s 2020 State of Conversational Marketing report,1 reported that the usage of chat-
bots as a brand communication channel increased by 92% compared to the previ-
ous year. In the Zendesk report,2 it is noted that 69% of the customers say they are
willing to interact with a bot on simple issues, which is a 23% increase from the
previous year. According to Invesp, 33% of the consumers would rather contact a
company’s customer service via social media rather than by phone.3 However, 54%
of the customers said that their biggest frustration with chatbots was the number of
questions they must answer before being transferred to a human agent.2 Moreover,
customers are concerned with the “understanding” capabilities of the conversa-
tional agents, 60% of them think humans are able to understand their needs better
than chatbots.4 Furthermore, users note the chatbots’ “inability to solve complex
issues” as another major concern of theirs.5

Figure 1.1: Conceptual diagram illustrating the information flow pipeline of a task-oriented
conversational agent. The agent consists of four main components: (i) natural language
understanding component – that detects the intents and extracts slots from the user’s in-
put, (ii) Dialogue Manager – estimates the user’s goal by taking the entire dialog context
as an input (dialogue state tracking) and generates the next system action (dialogue policy),
(iii) Utterance Generation components – maps the dialog act generated by the dialog pol-
icy to a natural language utterance, often multiple strategies are implemented (e.g., language
generation model, filling pre-defined templates, querying external sources such as relational or
graph databases, document stores, ontologies, etc.), and (iv) Utterance Selection – ranking
and selecting the most appropriate utterance for the agent’s next turn. Finally, the compo-

nents I explore in this thesis are marked with ✓, and the ones that are not – with ✗.

1https://www.drift.com/blog/state-of-conversational-marketing/
2,https://cx-trends-report-2022.zendesk.com/growth-areas
3https://www.invespcro.com/blog/social-media-customer-support/
4https://userlike.com/en/blog/consumer-chatbot-perceptions
5https://startupbonsai.com/chatbot-statistics/

https://www.drift.com/blog/state-of-conversational-marketing/
https://cx-trends-report-2022.zendesk.com/growth-areas
https://www.invespcro.com/blog/social-media-customer-support/
https://userlike.com/en/blog/consumer-chatbot-perceptions
https://startupbonsai.com/chatbot-statistics/
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Based on the definitions and the outlined trends, I direct the main focus of this
thesis towards task-oriented conversational agents and their building components
in the domain of customers support. However, maintaining efficient dialogue is a
complex multi-turn process that depends widely on the context. This context is not
limited only to the current conversation, but it also depends on prior commonsense
and domain knowledge about the world that the participants have. All of these
aforementioned factors make it extremely challenging for machine learning models
to produce consistent and factual utterances, especially in an environment that
requires extensive domain expertise, and going beyond simple chit-chat. That is
the reason conversational agents often depend on multiple components to interpret
and to respond to the users’ requests and queries.

In Figure 1.1, I illustrate the main components in the pipeline of a conversa-
tional agent. The first component that the user request is processed through is the
natural language understanding (Weld et al., 2022) one. It is responsible for the gen-
eral understanding of the input, and thus the name of the module. Its main tasks
are (i) to detect the intent and (ii) extract the values for the relevant slots from the
input tokens and pass them to the Dialogue Manager. In turn, the Dialogue Man-
ager aggregates the entire dialogue context, called dialogue state tracking (Williams
et al., 2016), estimates the user’s goal and generates the next system action, i.e., the
dialogue policy. A simple solution for implementing a dialogue manager is to cre-
ate a large hand-designed semantic grammars with thousands of rules (Larsson and
Traum, 2000; Zue et al., 2000; Henderson, 2015; Yan et al., 2017); however, such rule-
based systems are hard to scale and update in a multi-domain scenario. Currently,
state-of-the-art neural networks architectures and refinement learning approaches
are becoming an integral part of dialogue managers, both for state tracking (Wen
et al., 2017; Wu et al., 2019; Zhong et al., 2018) and dialog policy (Young et al., 2010;
Cuayáhuitl et al., 2015; Peng et al., 2018; Su et al., 2018; Wu et al., 2019). Nonethe-
less, in this thesis I do not study approaches related to the Dialogue Manager. My
focus is on improving the natural language understanding abilities and the quality
of the answers and the generated utterances (discussed below), not only in terms
of factually, but also in terms of consistency and relevance to the user’s input.

The next step in the conversational agent’s pipeline is to map the dialog act
generated by the dialog policy to a natural language utterance (Gatt and Krahmer,
2018; Dong et al., 2022). To achieve this, often multiple strategies are implemented
such as natural language generation (NLG) models, filling pre-defined textual tem-
plates or extracting data from external knowledge sources. The templates are an
integral part of task-oriented dialogue (Williams and Zweig, 2016; Wen et al., 2017).
They guarantee consistent and well-written sentences, albeit they suffer from the
same issues as rule-based systems – they are static and should be prepared be-
forehand. Moreover, the agent becomes less flexible, and the dialogue sounds less
natural and diverse. Hereby, I do not study them further in this thesis. On the
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other hand, the NLG models are answering user questions with external knowl-
edge sources such as retrieving long-form answers or finding evidence passages.6

The final part of the pipeline is the next utterance selection model. In the case
of a single natural language generation (or similar) source, this model should copy
the text as the chatbot’s next turn, i.e., to be bypassed in the pipeline. However, in
the case of multiple generation strategies, the conversational agent needs to choose
the most relevant sentence from the list of candidates, and thus this component is
responsible for re-ranking and choosing the most appropriate option from this list.
The decision can again be based on a pre-defined scenario. Here, I explore more
complex methods based on deep neural networks (Qiu et al., 2017; Cui et al., 2017;
Clarke et al., 2022).

1.1 Dissertation Aims and Objectives

The aims of this thesis can be summarized as follows:

1. Develop efficient natural language processing-based approaches for building
multi-component, task-orient, context-aware conversational agents, with the
specific application for serving as customer support chatbots.

2. Create new resources and corpora that can help in the development of di-
alogue agents, on one hand, extending them to multiple languages, and on
the other hand, allowing for generating long-form answers (e.g., articles from
knowledge bases), as opposed to the common short ones.

In this regard, I outline the following research objectives:

• Survey the existing literature, previous work and approaches on conversa-
tional agents and their components.

• Design, describe, implement, and evaluate an natural language understand-
ing (NLU)-based component that jointly identifies the user intent and recog-
nizes what is relevant to its slots.

• Design, describe, implement, and evaluate an algorithm for curating utter-
ances from external knowledge sources.

• Design, describe, implement, and evaluate an end-to-end generative models
for customer support chatbots.

• Design, describe, implement, and evaluate a pipeline for multilingual and
cross-lingual dialogue.

6Customers prefer knowledge bases over all other self-service channels. https://www.hubspot.
com/knowledge-base

https://www.hubspot.com/knowledge-base
https://www.hubspot.com/knowledge-base
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1.2 Dissertation Structure

The rest of this thesis is organized as follows:

• In Chapter 2, I review state-of-the-art approaches related to conversation
agents and their building components. First, I start by reviewing previous
work on task-oriented conversational agents – including modularized and
end-to-end (differentiable) dialogue systems. Second, I cover approaches rele-
vant to two of the main natural language understanding tasks in task-oriented
dialogue – intent classification, slot filling and their joint modeling. Then, I
survey methods for question answering (QA) and machine reading compre-
hension (MRC), zooming into science QA datasets, multilingual models and
approaches for cross-lingual transfer. Next, I summarize previous work on
retrieval long-form explanations through the lenses of the task of detecting
previously fact-checked claims. Finally, I discuss advanced conversational agents
such as end-to-end generative ones, and strategies to combine responses from
different sources, e.g., retrieved from previous conversations, generated using
a sequence-to-sequence model or by filling pre-defined templates.

• In Chapter 3, I describe a novel method for joint intent detection and slot fill-
ing. The main idea is to better leverage the connection between the two tasks.
For this purpose, the representations of the two tasks are fused together while
training the model, on one hand, by an intent pooling attention mechanism,
and on the other, by slot modeling via concatenating the token-level repre-
sentations from the language model with the predicted intent distribution,
and finally adding hand-crafted features. I further demonstrate SOTA re-
sults on two standard NLU datasets, namely ATIS (Hemphill et al., 1990) and
SNIPS (Coucke et al., 2018).

• Chapter 4 introduces new methods for curating answers from external knowl-
edge sources. First, I present a new dataset for multiple-choice question an-
swering in Bulgarian, and I evaluate information retrieval-based methods,
in order to obtain evidence passages. This is further combined with zero-
shot transferred model from high-resource language (i.e., English). Next, I
present a novel method for obtaining long-form answers, i.e., explanations in
the context of detecting previously fact-checked claims. In particular, I de-
scribe a novel weakly supervised method for collecting large-scale datasets of
article–claim pairs, and learning from them with techniques for model self-
adaptation to training on noisy data.

• In Chapter 5, I explore methods for advanced conversation. First, I study
end-to-end generative agents learned from conversation logs, collected from
Social Media, between a company’s customer support operator and a client.
Next, I introduce a new framework for multi-source response selection using
a neural network-based re-ranking model. Finally, I present a new multi- and
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cross-lingual, question answering dataset, and explore the abilities of several
state-of-the-art multilingual models to transfer knowledge across languages.

• Chapter 6 concludes the thesis, summarizes the contributions, and discusses
future research directions.
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Chapter 2

Background and Related Work

In this chapter, I review recent work in the field of conversational agents that are
relevant to this thesis. First, in Section 2.1, I survey a wide range of holistic ap-
proaches to conversational agents, including datasets used for training. Here, I
provide sufficient background for the rest of the thesis. In the rest of the chap-
ter, I zoom into the building components and closely related tasks, included in the
agent’s pipeline such as natural language understanding, knowledge retrieval from
external sources, question answering, natural language generation, among others.

In Section 2.2, I summarize the literature for two conversational NLU tasks:
(i) intent detection, i.e., understanding the user’s current goal, and (ii) slot filling,
i.e., identifying different slots in the running dialog, which correspond to different
parameters of the user’s query. Next, I focus on the related topic of question an-
swering (see Section 2.3), covering full resource and zero-shot approaches applied
in mono- and multilingual scenario.

One of the main research directions covered in this thesis is the problem of
curating answers from external knowledge sources. I study this problem through
the lenses of finding previously fact-checked claims, and thus in Section 2.4 I give the
needed background for this task and the state-of-the-art approaches and models,
including training with noisy data and distant supervision.

Finally, in Sections 2.5 and 2.6, I focus on advances in conversation techniques,
i.e., generative models for dialogue and combining answers obtained from multiple
sources in order to find the best next utterance in a conversation.

2.1 Task-Oriented Conversational Agents

Conversational agents, also referred to as dialogue systems or chatbots, cover a
wide range of applications, based on which they can be classified into two major
categories – open-domain and task-oriented. They are built on top of a multi-
stage pipeline that receives a user request or query as an input, and takes several
steps towards understating and processing the request, followed by generating a
response or taking a pre-defined action. There are several recent survey that focus
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on different aspects of the conversational agents: Tsur et al. (2016) and Gao et al.
(2019) give a holistic overview of dialogue systems and their challenges, Zhang
et al. (2020) covers all components of end-to-end task-oriented dialogue, some of
the work even discusses individual modules such as dialogue state tracking (Balara-
man et al., 2021), natural language understanding (Weld et al., 2022), and response
generation (Fan et al., 2020; Tao et al., 2021), among others.

A common approach towards building end-to-end task-oriented dialogue sys-
tems is to use a modular architecture, i.e., an architecture that has a separate com-
ponent (or module) that is responsible for specific conversational skill, or com-
bines multiple, related skills. Nonetheless, these components are often trained
in isolation, and combined only through the pipeline, thus making the system
non-differentiable. However, these systems are easy to implement and train, and
therefore they are a viable solution from practical standpoint. One of the first
frameworks built for dialogue agents were based on an explicit Bayesian model
of uncertainty, optimizing a policy via a reward-driven process, and partially ob-
servable Markov decision processes (POMDPs) Young et al. (2013). However they
covered limited domains such as tourist service, appointment scheduling, hard-
ware troubleshooting, among others Williams (2007); Kim et al. (2008); Williams
(2008); Thomson and Young (2010); Janarthanam et al. (2011). More recently, neu-
ral networks have become the dominant approach for training such conversational
agents. Wen et al. (2017) introduced a system, where each module is backed by a
neural network. The proposed approach relies on non-differentiable knowledge-
base lookup operators, and each component is learned separately in a supervised
fashion. Zhang et al. (2020) proposed a framework to utilize the conversations’
property that one context can have multiple responses, in order to generate diverse
responses. In particular, they first summarize the dialogue history into the dialogue
state, and then map all valid system actions. Moreover, during training they aug-
ment the dataset by generating new state-action pairs from the history. Sun et al.
(2022) took a step further towards better encoding the context into the dialogue
state and proposed a back and denoising procedure, to allow the model to recover
from mistakes made by preceding modules in the pipeline; in turn, this reduces the
noise in the generation output.

Another promising research direction in building conversational systems is
end-to-end differential approaches. They enable the agent to propagate errors and
share knowledge between the different modules throughout the system. One op-
tion is to use methods based on a single model, i.e., training a multi-skill neural
network. Zhao and Eskenazi (2016) showed one of the first attempts for building
such systems; they combined the natural language understanding and the dialogue
manager components into a single module. Next, Li et al. (2017) argued that down-
stream modules are affected by earlier modules, and that the performance of the
entire system was not robust to the accumulated errors; thus, they presented an
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end-to-end learning framework based on reinforcement learning (RL) and direct
database queries. Lei et al. (2018) introduced a simplified approach based on a
two-stage sequence-to-sequence (Seq2seq) model with an additional copy mecha-
nism that combines state tacking and response generation into a joint model. Eric
et al. (2017) addressed the aforementioned challenges in non-differentiable agents
using “soft” knowledge-base lookups. Memory networks (Sukhbaatar et al., 2015)
are another promising approach for learning task-oriented dialogue agents. Bordes
et al. (2017) evaluated their capabilities on a newly introduced testbed designed to
outline the strengths and weaknesses of end-to-end conversational systems in goal-
oriented applications. Similarly, Madotto et al. (2018) adopted memory networks
with an improved mechanisms to incorporate external information from knowledge
bases using pointer networks Vinyals et al. (2015). However, these approaches have
an internal memory with limited capacity, that cannot store all the needed informa-
tion. In order to mitigate this, Xu et al. (2019) tried to extend the memory and to
encode additional expert knowledge with graphs using a Knowledge-routed Deep
Q-network (KR-DQN). The proposed framework is responsible for both managing
topic transitions, and a knowledge-routed graph branch for topic decision-making.

Currently, the Transfomer-based Vaswani et al. (2017) models are the domi-
nating architecture in NLP; unsurprisingly, they have also been adopted in conver-
sational agents as well. Romero et al. (2021) tried to improve the agent’s context
retrieval and symbolic reasoning abilities by embedding a Transfomer model in
an operational loop that blends both natural language generation and symbolic
injection. Hung et al. (2022) focused on domain specialization for task-oriented di-
alogue systems by first automatically extracting salient domain-specific terms, and
then using the extracted terms to construct resources used for domain-specific pre-
training using conventional mask language modeling objective (Devlin et al., 2019)
and adapter-based approaches. Su et al. (2022) introduced a novel multi-task pre-
training strategy that allows the model to learn the primary task completion skills
embedded in dialogue systems — NLU, dialogue state tracking, dialogue policy,
and NLG — in a sequence generation fashion using an encoder-decoder architec-
ture and heterogeneous dialog corpora.

Typically, conversational agents are trained on static, manually annotated
datasets. Moreover, the data sources and knowledge bases they rely on are also
compiled by human experts. That said, it is clear that obtaining high-quality data is
both time-consuming and expensive, especially when in comes to human–human
or even human–machine dialogues. On one hand, this makes scaling conversational
agents difficult, and on the other hand, it limits their NLU capabilities due to the
limited data that they use both for training (data points) and for inference (knowl-
edge base size). Continual learning is one promising methodology that can help
models learn from their real-world interactions with the users. Lee (2017) explored
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continuous learning (CL) based on regularization techniques in order to avoid catas-
trophic forgetting in training a task-oriented conversational agent on three domains
learned sequentially. More recently, Madotto et al. (2021) extended CL to more do-
mains (37), introducing a new benchmark. Moreover, they proposed a simple yet
effective approach based on residual adapters both in modularized and end-to-end
scenario. Liu and Mazumder (2021) proposed a lifelong interactive learning that re-
lays on automatically obtained training data from actual multi-party conversations.
More precisely, they collect data from four different sources: (i) dialogue history,
(ii) asking the current user for clarifications, (iii) asking another user from the con-
versational thread, (iv) observing user demonstrations. This allows the bot, on one
hand, to converse better – learn the user behaviors, emotions, preferences, i.e., be
context-aware, and on the other hand, enrich its knowledge base with additional
facts, either by asking clarification questions, or inferring from the dialogue history.
Finally, it is worth mentioning that continual learning can be applied also to specific
components from the agent’s pipeline, e.g., dialogue state tracking (Mi et al., 2020),
natural language generation (Wu et al., 2019), etc.

Finally, there have been efforts towards building social bots, and open-domain
conversation agents from big tech companies, some examples include – XioIce
from Microsoft (Zhou et al., 2020), Amazon’s Alexa Challange (Ram et al., 2018),
Google’s Meena (Adiwardana et al., 2020), Meta’s BlenderBot (Roller et al., 2021;
Shuster et al., 2022) and BlendedSkillTalk dataset, that allows bots to blend differ-
ent skills into one cohesive conversational flow (Smith et al., 2020). While open-
domain agents often share similar architectures and modules with task-oriented
chatbots, they focus on chitchat rather than on performing task-specific functions.
Nonetheless, building such bots is an important and challenging task, as they must
retain a set of conversational skills: provide engaging talking points, and display
knowledge, empathy and personality appropriately, while maintaining a consistent
persona (Roller et al., 2021). In this thesis, my focus is on task-oriented agents, and
thus I do not survey previous work on open-domain dialogue.

2.2 Intent Detection and Slot Filling

Previous work did not necessarily focus on the joint modeling of the intent classifi-
cation and the slot filling tasks. In this section, I first cover approaches that address
each task individually, and then I present joint models.

2.2.1 Intent Classification

Several approaches have focused only on the utterance intent, and have ignored slot
information. For example, Hu et al. (2009) mapped each intent domain and user’s
queries into a Wikipedia representation space, Kim et al. (2017) and Xu and Sarikaya
(2013) used log-linear models with multiple-stages and word features. Ravuri and
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Stolcke (2015) investigate word and character n-gram language models based on
Recurrent Neural Network and LSTMs (Hochreiter and Schmidhuber, 1997), Xia
et al. (2018) proposed a zero-shot transfer thought Capsule Networks (Sabour et al.,
2017) and semantic features for detecting the user intent, without labeled data.
Moreover, some work addressed the task in a multi-class multi-label setup (Xu and
Sarikaya, 2013; Kim et al., 2017; Gangadharaiah and Narayanaswamy, 2019).

2.2.2 Slot Filling

Before the rise of deep learning, sequential models such as maximum entropy
Markov model (MEMM) (Toutanvoa and Manning, 2000; McCallum et al., 2000)
and conditional random fields Lafferty et al. (2001); Jeong and Lee (2008) were the
state-of-the-art choice. Recently, several combinations thereof and different neural
network architecture were proposed (Xu and Sarikaya, 2013; Huang et al., 2015;
E et al., 2019). Zhu et al. (2020) explored label embeddings from slots filling and
different kinds of prior knowledge such as: atomic concepts, slot descriptions, and
slot exemplars. Zhang et al. (2020) used time-delayed neural networks achieving
state-of-the-art performance. Siddique et al. (2021) investigated zero-shot trans-
fer of the slot filling knowledge between different tasks. However, a steer away
from sequential models is observed in favor of self-attentive ones such as the Trans-
former (Vaswani et al., 2017; Radford et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Radford et al., 2019; Raffel et al., 2020; Lewis et al., 2020). They compose a
contextualized representation of both a sentence, and each of its words, through a
sequence of intermediate non-linear hidden layers, usually followed by a projection
layer, in order to obtain per-token tags. Such models were successfully applied
to closely related tasks, e.g., named entity recognition (NER) (Devlin et al., 2019),
part-of-speech (POS) tagging (Tsai et al., 2019), etc.

Approaches modeling the intent or the slot as independent of each other suffer
from uncertainty propagation due to the absence of shared knowledge between the
tasks. In order to overcome this limitation, I learn both tasks using a joint model.

2.2.3 Joint Models

Given the correlation between the intent and word-level slot tags, it is natural to
train them jointly. Recent surveys covered different aspects of joint and individual
modeling of the slot and the intent (Louvan and Magnini, 2020; Weld et al., 2022).

Xu and Sarikaya (2013) introduced a shared intent and slot hidden state Con-
volutional Neural Network (CNN) (LeCun et al., 1989), followed by a globally nor-
malized CRF (TriCRF) for sequence tagging. Since then, Recurrent Neural Network
have been dominating, e.g., Hakkani-Tür et al. (2016) used bidirectional LSTMs for
slot filling and the last hidden state for intent classification, Liu and Lane (2016) in-
troduced shared attention weights between the slot and the intent layer. Goo et al.
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(2018) integrated the intent via a gating mechanism into the context vector of LSTM
cells used for slot filling.

Qin et al. (2019) used a self-attentive bidirectional LSTM encoder for the input
utterances and a dual decoder for the intents and the slots, and they applied both
at the token-level. E et al. (2019) introduced a bidirectional interrelated model, us-
ing an iterative mechanism to correct the predicted intent and the slot by multiple
step refinement. Zhang et al. (2019) tried to exploit the semantic hierarchical re-
lationship between words, slots, and intent via a dynamic routing-by-agreement
schema in Capsule Networks (Sabour et al., 2017). Qin et al. (2020) proposed
an adaptive graph-interactive framework using BiLSTMs and graph attention net-
works (GAT, Velickovic et al. (2018)) to model the interaction between intents and
slots at the token level. Recently, Qin et al. (2021) introduced a co-interactive Trans-
former that mixes the slot and the intent information by building a bidirectional
connection between them.

Here, I use a pre-trained Transformer, and instead of depending only on the
language model’s hidden state to learn the interaction between the slot and the
intent, I fuse the two tasks together. Namely, I guide the slot filling by the predicted
intent, and I use a pooled representation from the task-specific outputs of BERT for
intent detection. Moreover, I leverage information from external sources: (i) from
explicit NER and true case annotations, and (ii) from implicit information learned
by the language model during its extensive pre-training.

2.3 Question Answering

2.3.1 Machine Reading Comprehension

The growing interest in machine reading comprehension (MRC) has led to the re-
lease of various datasets for both extractive (Nguyen et al., 2016; Trischler et al.,
2017; Joshi et al., 2017; Rajpurkar et al., 2018; Reddy et al., 2019) and non-extractive
(Richardson et al., 2013; Peñas et al., 2014; Lai et al., 2017; Clark et al., 2018; Mi-
haylov et al., 2018; Sun et al., 2019) comprehension. My work primarily focuses
on the non-extractive multiple-choice type, designed by educational experts, since
their task is very close to my newly-proposed dataset, and are expected to be well-
structured and error-free (Sun et al., 2019).

These datasets brought a variety of models and approaches. The usage of external
knowledge has been an interesting topic, e.g., Chen et al. (2017) used Wikipedia
knowledge for answering open-domain questions, Pan et al. (2019) applied entity
discovery and linking as a source of prior knowledge. Sun et al. (2019) explored
different reading strategies such as back and forth reading, highlighting, and self-
assessment. Ni et al. (2019) focused on finding essential terms and removing dis-
traction words, followed by reformulation of the question, in order to find better
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evidence before sending a query to the MRC system. A simpler approach was
presented by Clark et al. (2016), who leveraged information retrieval, corpus statis-
tics, and simple inference over a semi-automatically constructed knowledge base
for answering fourth-grade science questions.

Current state-of-the-art approaches in machine reading comprehension are
grounded on transfer learning and fine-tuning of language models (Peters et al.,
2018; Conneau et al., 2018; Devlin et al., 2019). Yang et al. (2019) presented an open-
domain extractive reader based on BERT (Devlin et al., 2019). Radford et al. (2018)
used generative pre-training of a Transformer (Vaswani et al., 2017) as a language
model, transferring it to downstream tasks such as natural language understanding,
reading comprehension, etc.

Finally, Peñas et al. (2012) introduced a small-sized Bulgarian MRC dataset.
It was adopted by Simov et al. (2012) for their experiments. They converted the
question-answer pairs to declarative sentences, and measured their similarity to
the context, transforming both to a bag of linguistic units: lemmata, POS tags, and
dependency relations.

2.3.2 Science QA

Work in Science Question Answering emerged in recent years with the development
of several challenging datasets. The most notable is ARC (Clark et al., 2018), which
is a QA reasoning challenge that contains both Easy and Challenge questions from
4th to 8th grade examinations in the Natural Science domain. As in Eχαµs, the
questions in ARC are created by experts, albeit my dataset covers a wide variety of
high school (8th-12th grade) subjects including but not limited to, Natural Sciences,
Social Sciences, Applied Studies, Arts, Religion, etc.

The early versions of ARC (Clark, 2015; Schoenick et al., 2017) inspired several
crowdsourced datasets: Welbl et al. (2017) proposed a scalable approach for crowd-
sourcing science questions given a set of basic supporting science facts. Dalvi et al.
(2019) focused on specific phenomena including understanding science procedural
texts, Mihaylov et al. (2018) and Khot et al. (2020) studied multi-step reasoning,
given a set of science facts and commonsense knowledge, Tafjord et al. (2019), and
Mitra et al. (2019) worked on reasoning about qualitative relationships, and declara-
tive texts, among others. Unlike these English-only datasets, Eχαµs offers questions
in 16 languages. Moreover, it contains questions about multiple subjects, which are
presumably harder as they were extracted mostly from matriculation examinations
(8-12th grade). Finally, Eχαµs contains over 24,000 questions, which is more than
three times as many as in ARC.



Chapter 2. Background and Related Work 14

2.3.3 Multilinguality

Multi- and Cross-lingual Models

Recently, several QA datasets have been created that cover languages other than
English, but still focusing on one such language. Gupta et al. (2018) proposed
a parallel QA task for English and Hindi, Liu et al. (2019) collected a bilingual
cloze-style dataset in Chinese and English. Jing et al. (2019) crowdsourced paral-
lel paragraphs from novels in Chinese and English. A few datasets investigated
multiple-choice school QA (Hardalov et al., 2019; Van Nguyena et al., 2020), albeit
in a limited domain, and for lower school grades (1st-5th). Other efforts focused
on building bi-lingual datasets that are similar in spirit to SQuAD (Rajpurkar et al.,
2016) – extractive reading comprehension over open-domain articles. Such datasets
are collected by crowdsourcing questions, following a procedure similar to (Ra-
jpurkar et al., 2016), in Russian (Efimov et al., 2020), Korean (Lim et al., 2019),
French (d’Hoffschmidt et al., 2020), or by translating existing English QA pairs to
Spanish (Carrino et al., 2020).

Recently, some multilingual datasets, were released to the public.
MLQA (Lewis et al., 2020), and XQuAD (Artetxe et al., 2020) use translations by
professionals and extend the monolingual SQuAD (Rajpurkar et al., 2016) to 7
and 11 languages, respectively, thus forming cross-lingual evaluation benchmarks.
Clark et al. (2020) collected an entirely new dataset (TyDi QA) of questions in 11
typologically diverse languages.

The task was to ask a question, and then the shortest span answering it from a
list of paragraphs was selected. As these datasets are complementary, rather than
making each other obsolete, hereby the recently released XTREME (Hu et al., 2020)
benchmark combined them in a joint task. Eχαµs differs from the aforementioned
multilingual benchmarks in several aspects. First, I extend the multilingual QA
efforts to a different, more challenging domain (Clark et al., 2018). Second, my
datasets support more languages. Next, the questions in Eχαµs are written by
educational experts rather than non-expert annotators, making the evaluation re-
sults comparable to a top-performing student. Finally, my fine-grained evaluation
for different subjects, languages, and combinations thereof allows for an in-depth
analysis and comparison.

(Zero-Shot) Multilingual Models

Multilingual embeddings helped researchers to achieve new state-of-the-art results
on many NLP tasks. While many pre-trained model (Grave et al., 2018; Devlin et al.,
2019; Conneau and Lample, 2019) are available, the need for task-specific data in
the target language still remains. Training such models is language-independent,
and representations for common words remain close in the latent vector space for
a single language, albeit unrelated for different languages. A possible approach to



Chapter 2. Background and Related Work 15

overcome this effect is to learn an alignment function between the spaces (Artetxe
and Schwenk, 2019; Joty et al., 2017). Moreover, zero-shot application of fine-tuned
multilingual language models (Devlin et al., 2019; Conneau and Lample, 2019) on
XNLI (Conneau et al., 2018), a corpus containing sentence pairs annotated with
textual entailment and translated into 14 languages, has shown very close results
to such by a language-specific model.

Zero-shot transfer and multilingual models had been a hot topic in Neural Ma-
chine Translation in the past several years. Johnson et al. (2017) introduced a simple
tweak to a standard sequence-to-sequence (Seq2seq, Sutskever et al. (2014)) model
by adding a special token to the encoder’s input, denoting the target language, thus
allowing a zero-shot learning for new language pairs. Recent work in zero-resource
translation outlined different strategies for learning to translate without having a
parallel corpus between the two target languages. First, a many-to-one approach
was adopted by Firat et al. (2016) based on building a corpus from a single language
paired with many others, allowing simultaneous training of multiple models, with
a shared attention layer. A many-to-many relationship between languages was later
used by Aharoni et al. (2019), in an attempt to train a single Transformer model.

Pivot-language approaches can also be used to overcome the lack of parallel
corpora for the source–target language pair. Chen et al. (2017) used a student–
teacher framework to train an Neural Machine Translation (NMT) model, using
a third language as a pivot. A similar idea was applied to MRC by Asai et al.
(2018), who translated each question to a pivot language, and then found the correct
answer in the target language using soft-alignment attention scores.

2.4 Retrieving Long-Form Explanations

2.4.1 Previously Fact-Checked Claims

While fake news and mis/disinformation detection have been studied exten-
sively (Zubiaga et al., 2016; Li et al., 2016; Zubiaga et al., 2018; Martino et al., 2020;
Hardalov et al., 2022), the problem of detecting previously fact-checked claims re-
mains under-explored. Hassan et al. (2017) mentioned the task as a component of
their end-to-end fact-checking pipeline, but did not evaluate it in isolation, neither
did they study its contribution.

ClaimsKG dataset (Tchechmedjiev et al., 2019) introduced a knowledge graph
task, that allows for exploration of the network of claims related to a named entity
or keyphrase. While the task is similar it does not give information whether the
certain claim was fact-checked or not.

Recently, the task received more attention from the research community. Shaar
et al. (2020) collected two datasets, from PolitiFact (political debates) and from
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Snopes (tweets), of claim and corresponding fact-checking articles. The CLEF Check-
That! lab (Barrón-Cedeno et al., 2020; Shaar et al., 2021) extended these datasets
with additional data in English and Arabic. The best-performing systems (Pritzkau,
2021; Mihaylova et al., 2021; Chernyavskiy et al., 2022) used a combination of BM25
retrieval, semantic similarity using sentence embeddings (Reimers and Gurevych,
2019), and reranking. Bouziane et al. (2020) further used external data from fact-
checking datasets (Wang, 2017; Thorne et al., 2018; Wadden et al., 2020).

Detecting previously fact-checked claims also raised some attention in the in-
dustry. It was introduced as an integral part of Google’s Fact Check Explorer.1 The
tool finds results from several well-known fact-checking websites using a standard
search functionality.

My work is most similar to that of Vo and Lee (2020), who mined 19K tweets
and corresponding fact-checked articles. Unlike them, I focus on textual claims
(they were interested in multimodal tweets with images), I collected an order of
magnitude more examples, and I proposed a novel approach to learn from such
noisy data directly (while they manually checked each example).

2.4.2 Training with Noisy Data

Leveraging large collections of unlabeled data has been at the core of large-scale
language models, such as GPT (Radford et al., 2018, 2019), BERT (Devlin et al.,
2019), and RoBERTa (Liu et al., 2019). Recently, such language models used noisy
retrieved data (Lewis et al., 2020; Guu et al., 2020) or active relabeling and data
augmentation (Thakur et al., 2021). Moreover, using distantly supervised data la-
beling is a crucial part of the recent breakthroughs in few-shot learning (Schick and
Schütze, 2021,).

Yet, there has been little work on using noisy data for fact-checking tasks. Vo
and Lee (2019) collected tweets containing a link to a fact-checking website, based
on which they tried to learn a fact-checking language and to generate automatic
answers. You et al. (2019) used similar data from tweets for fact-checking URL
recommendations.

Unlike the above work, here I propose an automatic procedure for labeling and
self-training specifically designed for the task of detecting previously fact-checked
claims.

2.5 Generation Models for Dialogue

The emergence of large conversational corpora such as the Ubuntu Dialog cor-
pus (Lowe et al., 2015), OpenSubtitles (Lison and Tiedemann, 2016), CoQA (Reddy

1toolbox.google.com/factcheck/explorer

toolbox.google.com/factcheck/explorer
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et al., 2019) and the Microsoft Research Social Media Conversation Corpus (Sor-
doni et al., 2015)2 has enabled the use of generative models and end-to-end neu-
ral networks in the domain of conversational agents. In particular, sequence-to-
sequence models, which were initially proposed for machine translation (Luong
et al., 2015; Sutskever et al., 2014; Bahdanau et al., 2015), got adapted to become a
standard tool for training end-to-end dialogue systems. Early vanilla Seq2seq mod-
els were adopted by Vinyals and Le (2015), who experimented with two datasets:
IT helpdesk tickets and Open Subtitles. They further pointed out to the following
issues: lack of context modeling for multi-turn dialogs, lack of “personality” for
models trained on different sources, and the need for human evaluation of the gen-
erated responses. The models got quickly extended to model hierarchical structure
(Serban et al., 2016), context (Sordoni et al., 2015), and combination thereof (Sor-
doni et al., 2015). While models are typically trained on corpora such as Ubuntu,
some work (Boyanov et al., 2017) has also used data from Community Question An-
swering forums (Nakov et al., 2017); this means forming a training pair involving a
question and each good answer in the corresponding question-answer thread.

Twitter data is particularly suitable for fitting neural conversational models
because of the length restriction, which encourages people to write short, more
precise tweets. Thus, it was used in a number of studies. Serban et al. (2016) im-
proved Seq2seq models using a hierarchical structure. Sordoni et al. (2015) worked
on modeling the context. Shang et al. (2015) proposed a neural network response
generator for short-text conversation, which was trained with a large number of
one-round conversations from a micro-blogging service, and could generate gram-
matically correct and content-wise appropriate responses.

Some interesting approaches for building customer support chatbots were
shown in (Cui et al., 2017; Qiu et al., 2017), as a combination of retrieval and neural
models. Cui et al. (2017) used information from in-page product descriptions, as
well as user-generated content from e-commerce web sites to improve online shop-
ping experience. Their approach incorporated four different components (a fact
database, FAQs, opinion-oriented answers, and a neural-based chit-chat generator)
into a meta-engine that makes a choice between them. Qiu et al. (2017) proposed
an open-domain chatbot engine that integrates results from IR and Seq2seq mod-
els, and uses an attentive Seq2seq reranker to choose dynamically between their
outputs.

In the domain of customer support, it has been shown that generative models
such as Seq2seq and the Transformer perform better then retrieval-based models,
but they fail in the case of insufficient training data (Hardalov et al., 2018). Other
work has incorporated intent categories and semantic matching into an answer
selection model, which uses a knowledge base as its source (Li et al., 2018). In the
insurance domain, Feng et al. (2015) proposed a generic deep learning approach

2http://research.microsoft.com/convo/

http://research.microsoft.com/convo/
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for answer selection, based on Convolutional Neural Network (CNN). In Li et al.
(2015) combined Recurrent Neural Network based on Long Short-Term Memory
(LSTM) cells and reinforcement learning to learn without the need of prior domain
knowledge.

More recently, the Transformer, a model without recurrent connections, was
proposed (Vaswani et al., 2017), demonstrating state-of-the-art results for Machine
Translation in various experimental scenarios for several language pairs and trans-
lation directions, thus emerging as a strong alternative to Seq2seq methods. The
fact that it only uses self-attention makes it a lot faster both at training and at in-
ference time, even though its deep architecture requires more calculations than a
Seq2seq model, as it enables high degree of parallelism, while maintaining the abil-
ity to model word sequences through the mechanism of attention and positional
embeddings.

The raise of large pre-trained Transformers has enabled models to generate
more concise and coherent sequences. They showed state-of-the-art performance
on many benchmarks and tasks, including sequence generation ones. Their success
is rooted, on one hand, in the extensive pre-training on a huge amount of diverse
textual snippets and on the other, in their scale in terms of learnable parameters.
There exist many different approaches for both training the models, and for adapt-
ing their architecture. In contrast to encoder-only transformer models (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019; Lan et al., 2020), GPT* models (Radford
et al., 2018, 2019; Brown et al., 2020) adopt a decoder-only architecture trained on
a generic language modeling objective that allows for word by word sequence gen-
eration. Zhang et al. (2020) further specialized the model on conversational data
from Reddit. Nevertheless, encoder-decoder transformers trained using text-to-
text transfer Raffel et al. (2020) and denoising pre-training Lewis et al. (2020) had
shown better performance compared to both encoder- and decoder-only architec-
tures. Moreover, the models can generate sequences, that differ from their inputs,
although they are no longer trained as language models. Moreover, based on their
success on a single language, these models have been trained using multilingual
corpora Liu et al. (2020); Xue et al. (2021). However, an important limitation are the
maximum input and output lengths, which remained limited between up to 512
tokens and a couple of thousand tokens. This is often enough for encoding single-
turn dialogues, but modern conversational agents must be able to navigate through
multi-turn conversation, and thus they face problems when trying to understand-
ing the whole dialogue history, to generate responses based on long document, etc.
A recently introduced Transformer variant, namely the Longformer Beltagy et al.
(2020), offers a mechanism to ease these limits and increase the maximum sequence
lengths 8 times, up to 4,096 tokens, compared to vanilla BERTs Devlin et al. (2019).
These models start to find applications in end-to-end chatbot Boyd et al. (2020);
Parthasarathi et al. (2021); Su et al. (2022).
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2.6 Multi-Source Response Selection

Response selection has been recognized as an important research direction in the
domain of customer support chatbots. Ritter et al. (2011) presented a data-driven
approach to generating conversational responses to social media posts, based on
phrase-based Statistical Machine Translation (SMT) that is conditioned on the di-
alogue so far. The proposed approach showed better performance compared to
classical information retrieval approaches. Ouchi and Tsuboi (2016) worked on
addressee and response selection for multi-party conversation. More specifically,
they proposed two modeling procedures (static and dynamic) to jointly model the
speakers and their utterances in context. Song et al. (2016) proposed a post-ranking
procedure that combines utterances from a generative and IR models. In order
to obtain new utterance candidates, the model first retrieves candidates from an
inverted index, then it re-writes them using a Seq2seq model in order to contex-
tualize the model its input is conditioned on the query as well. Qiu et al. (2017)
used an attentive Seq2seq re-ranker to choose dynamically between the outputs of
a retrieval-based and a Seq2seq model. Similarly, Cui et al. (2017) combined a fact
database, FAQs, opinion-oriented answers, and a neural-based chit-chat generator,
by training a meta-engine that chooses between them.

Answer combination is also a key research topic in the related field of informa-
tion retrieval. For example, Pang et al. (2017) proposed a generic relevance ranker
based on deep learning and CNNs, which tries to maintain standard IR search
engine characteristics, such as exact matching and query term importance, while
enriching the results based on semantics, proximity heuristics, and diversification.

More recently, Curry et al. (2018) introduced a new ensemble architecture of
multiple bots, as part of the 2018 Alexa prize challenge Ram et al. (2018). It com-
bines multiple rule-based dialogue systems to support topic-based multi-domain
conversations. In particular, the model uses a variety of ontologies and natural
language understanding pipelines that extract information from a different web
sources such as Reddit, although the final selection is guided by a simple prior-
ity bot list. Subramaniam et al. (2018) proposed a novel conversational framework
that uses an Orchestrator Bot to understand the user query and to direct them to a
domain-specific bot that handles subsequent dialogue. Clarke et al. (2022) focused
on improving the capabilities of task-oriented by combining multiple black-box
conversational agents. They leveraged existing personal assistants from big tech
companies (i.e. Alexa, Google Assistant and Siri) and experimented with two tech-
niques for combining their answers: (i) question agent pairing, i.e., select the most
relevant agent to answer the question using metadata about the agent’s capabili-
ties, and (ii) question response pairing, where, similarly to previous work, the goal is
to select the correct agent response.

The response selection task was part of the DSTC-7 (Gunasekara et al., 2019;
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Kummerfeld et al., 2019) and the subsequent DSTC-8 (Kim et al., 2019) challenges.
Zhou et al. (2018) proposed Deep Attention Matching (DAM), a transformer-based
neural network that uses sentence self-attention and cross-attention between the
context and the candidate responses to obtain representations of text segments at
different granularities in order to find the best matching response for the current
context. (Yuan et al., 2019) used fusing with a Multi-hop Selector Network (MSN) to
select relevant context utterances and to match them with the response utterance.
Tao et al. (2019) took a step further in modeling the utterance-response relation,
showing that the depth of interaction affects the effectiveness of the model. (Wang
et al., 2020) framed response selection as a dynamic topic tracking task to match
the topic between the response and relevant conversation context. Their framework
leveraged multi-task learning based on efficient encoding through large pre-trained
Transformers and a self-supervised procedure to inject topical information into the
models.

Finally, it is worth mentioning that another application of the response selec-
tion task is in evaluating dialogue systems (Henderson et al., 2020; Sato et al., 2020;
Wang et al., 2020).

2.7 Summary

In this section, I reviewed previous work related to the topic of this thesis. First,
I highlighted datasets and holistic approaches for building conversation agents.
Next, I continued with the related task of question answering, both from monolin-
gual and cross-lingual perspective. Then, I covered methods for retrieval of long-
form explanations, albeit surveying only one possible direction – finding previously
fact-check claims. Finally, I explored methods for advanced conversation, i.e., gen-
erative conversational models and strategies for combining multiple answers.
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Chapter 3

Semantic Parsing of
Human-Generated Utterances

This chapter presents a novel method for natural language understanding that mod-
els jointly the tasks of intent detection and slot filling. The motivation behind this
approach is that the two tasks have a strong connection between them: first, the
detected intent can narrow down the possible set of slot tags, as not all tags are
applicable to all intents. Moreover, the intent can contextualize the slot tag selec-
tion: the same tokens can have different tags depending on the context and the
intent, e.g., Monday, October 12th can refer to ‘departure date’ when the intent is to
book a flight, however it can also be ‘movie release date’ when the client is looking
for a movie recommendation. On the other hand, this relation is valid also in the
opposite direction as well – between the predicted slots and the intent –, and the
predicted slots can serve as clues for the joint model when classifying the intent.

To this end, the main idea is to use a pooling attention layer for intent classifi-
cation in order to obtain a single representation for the whole sentence formed from
all tokens, as their vectors representations encode information about the slots, too.
Further, the slot filling task is reinforced with truecasing and word-specific features,
that allow the model to distinguish between names such as personal, city, country,
state, etc., in addition to the predicted intent distribution from the aforementioned
layer. The method outperforms strong neural-based models on two well-known
NLU datasets for slot filling and intent detection.

Finally, I present exhaustive analysis of the task-related knowledge in the pre-
trained models. This knowledge helps the models to significantly outperform clas-
sical NLP models without extensive pre-training, but it often leads to overestima-
tion of the model’s performance (Bender et al., 2021; Bowman, 2022).

This chapter is mainly based on

• Momchil Hardalov, Ivan Koychev, and Preslav Nakov. 2020a. Enriched Pre-
trained Transformers for Joint Slot Filling and Intent Detection. arXiv preprint
arXiv:2004.14848
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3.1 Introduction

With the proliferation of portable devices, smart speakers, and the evolution of per-
sonal assistants, such as Amazon Alexa, Apple Siri, Google Assistant, and Microsoft
Cortana, a need for better natural language understanding (NLU) has emerged.
Moreover, many Web platforms and applications that interact with the users de-
pend on the abilities of an internal NLU component, e.g., customer service with
social media (Huang et al., 2021), in dialogue systems in general (Zeng et al., 2021),
for web queries understanding (Tsur et al., 2016; Ye et al., 2016), and general un-
derstanding of natural language interaction (Vedula et al., 2020). The major chal-
lenges such systems face are (i) finding the intention behind the user’s request,
and (ii) gathering the necessary information to complete it via slot filling, while
(iii) engaging in a dialogue with the user.

Table 3.1 shows a user request collected from a personal voice assistant. Here,
the intent is to play music by the artist Justin Broadrick from year 2005. The slot filling
task naturally arises as a sequence tagging task. Conventional neural network archi-
tectures, such as RNNs or CNNs are appealing approaches to tackle this problem.
Various extensions thereof can be found in previous work (Xu and Sarikaya, 2013;
Goo et al., 2018; Hakkani-Tür et al., 2016; Liu and Lane, 2016; E et al., 2019; Gangad-
haraiah and Narayanaswamy, 2019). Moreover, sequence tagging approaches such
as maximum entropy Markov model (MEMM) (Toutanvoa and Manning, 2000; Mc-
Callum et al., 2000) and conditional random fields (CRF) (Lafferty et al., 2001; Jeong
and Lee, 2008; Huang et al., 2015) have been added on top to enforce better model-
ing of the dependencies between the posteriors for the slot filling task. Recent work
has introduced other methods such as hierarchical structured capsule networks (Xia
et al., 2018; Zhang et al., 2019), and graph interactive networks (Qin et al., 2020).

In this chapter, I investigate the usefulness of pre-trained models for natural
language understanding. My approach is based on BERT (Devlin et al., 2019) and its
successor RoBERTa (Liu et al., 2019). That model offers two main advantages over
previous ones (Hakkani-Tür et al., 2016; Xu and Sarikaya, 2013; Gangadharaiah and
Narayanaswamy, 2019; Liu and Lane, 2016; E et al., 2019; Goo et al., 2018): (i) they
are based on the Transformer architecture (Vaswani et al., 2017), which allows them
to use bi-directional context when encoding the tokens instead of left-to-right (as
in RNNs) or limited windows (as in CNNs), and (ii) the model is trained on huge

Intent PlayMusic

Words play music from 2005 by justin broadrick
↓ ↓ ↓ ↓ ↓ ↓ ↓

Slots O O O B-year O B-artist I-artist

Table 3.1: Example from the SNIPS dataset with slots encoded in the BIO format. The
utterance’s intent is PlayMusic, and the given slots are year and artist.
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unlabeled text collections, which allows it to leverage relations learned during pre-
training, e.g., that Justin Broadrick is connected to music or that San Francisco is a
city.

I further adapt the pre-trained models for the NLU tasks. For the intent, I
introduce a pooling attention layer, which uses a weighted sum of the token rep-
resentations from the last language modeling layer. Moreover, I reinforce the slot
representation with the predicted intent distribution, and word features such as
predicted word casing, and named entities. To demonstrate its effectiveness, I
evaluate it on two publicly available datasets: ATIS (Hemphill et al., 1990) and
SNIPS (Coucke et al., 2018)

The contributions of this chapter can be summarized as follows:

• I enrich a pre-trained language model, such as BERT (Devlin et al., 2019) or
RoBERTa (Liu et al., 2019), to jointly solve the tasks of intent classification and
slot filling.

• I introduce an additional pooling network from the intent classification task,
allowing the model to obtain the hidden representation from the entire se-
quence.

• I use the predicted user intent as an explicit guide for the slot fitting layer
rather than just depending on the language model

• I reinforce the slot learning with features such as named entity and true case
annotations.

• I present exhaustive analysis of the task-related knowledge in the pre-trained
model, for both datasets.

3.2 Dataset

In my experiments, I use two publicly available datasets, the Airline Travel Infor-
mation System (ATIS) (Hemphill et al., 1990), and SNIPS (Coucke et al., 2018). The
ATIS dataset contains transcripts from audio recordings of flight information re-
quests, while the SNIPS dataset is gathered by a custom intent engine for personal
voice assistants. Albeit both are widely used in NLU benchmarks, ATIS is substan-
tially smaller – almost three times in terms of examples, and it contains s times less
words. However, it has a richer set of labels, 21 intents and 120 slot categories, as
opposed to the 7 intents and 72 slots in SNIPS. Another key difference is the di-
versity of domains – ATIS has only utterances from the flight domain, while SNIPS
covers various subjects, including entertainment, restaurant reservations, weather
forecasts, etc. (see Table 3.2) Furthermore, ATIS allows multiple intent labels. As
they only form about 2% of the data, I do not extend my model to multi-label
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ATIS SNIPS

Vocab Size 722 11,241
Average Sentence Length 11.28 9.05
#Intents 21 7
#Slots 120 72
#Training Samples 4,478 13,084
#Dev Samples 500 700
#Test Samples 893 700

Table 3.2: Statistics about the ATIS and SNIPS datasets.

classification. Yet, I add a new intent category for combinations seen in the train-
ing dataset, e.g., utterance with intents flight and also airfare, would be marked as
airfare#flight. A comparison between the two datasets is shown in Table 3.2.

3.3 Proposed Approach

I propose a joint approach for intent classification and slot filling built on top of a
pre-trained language model, i.e., BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019). I further improve the base model in three ways: (i) for intent detection, I ob-
tain a pooled representation from the last hidden states for all tokens (Section 3.3.1),
(ii) I obtain predictions for the word case and named entities for each token (word
features), and (iii) I feed the predicted intent distribution vector, BERT’s last hidden
representations, and word features into a slot filling layer (see Section 3.3.2). The
complete architecture of the model is shown in Figure 3.1b.

3.3.1 Intent Pooling Attention

Traditionally, BERT and subsequent BERT-style models have used a special token
([CLS]) to denote the beginning of a sequence. In the original paper (Devlin et al.,
2019), the authors attach a binary classification loss to it for predicting whether

(a) BERT-Joint. (b) Transformer-NLU (mine).

Figure 3.1: Model architectures for joint learning of intent and slot filling: (a) classical joint
learning with BERT/RoBERTa, and (b) proposed enhanced version of the model.
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two sequences follow each other in the text (next sentence prediction, or NSP).
Adding such an objective forces the last residual block to pool a contextualized
representation for the whole sentence from the penultimate layer, which should
have a more semantic, rather than task-specific meaning. The latter strives to im-
prove downstream sentence-level classification tasks such as entailment, semantic
textual similarity, intent detection, etc. However, its effectiveness has been recently
debated in the literature (Conneau and Lample, 2019; Joshi et al., 2020; Yang et al.,
2019; Lan et al., 2020). It has been even argued that it should be removed (Liu et al.,
2019).

Here, the task is to jointly learn the two strongly correlated tasks, i.e., intent
detection and slot filling. Hereby, using the pooled representation from the [CLS]
token can miss important information about the slots’ tags when used as an input
for predicting the users’ intent. I hypothesize that using the token-level representa-
tion obtained from the last layer before the slot projection one can help the model
in learning the intent detection task, as these representations contain important
task-specific information.

Therefore, I introduce a pooling attention layer to better model the relationship
between the task-specific representations for each token and for the intent. I further
adopt a global concat attention (Luong et al., 2015) as a throughput mechanism.
Namely, I learn an alignment function to predict the attention weights αint for each
token. I obtain the latter by multiplying the outputs from the language model
H ∈ RN×dh by a latent weight matrix Wint_e ∈ Rdh×dh , where N is the number of
tokens in an example and dh is the hidden size of the Transformer. This is followed
by a non-linear tanh activation. In order to obtain importance logit for each token,
I multiply the latter by a projection vector v ∈ Rdh (shown in Eq. 3.1). I further
normalize and scale (Vaswani et al., 2017) to obtain the attention weights.

align(H) = v · tanh(Wint_e · HT) (3.1)

αint = so f tmax(
align(H)√

dh
) (3.2)

hint = tanh(
N

∑
i=1

αi
inth

i
enc) (3.3)

yint = WinthT
int + bint (3.4)

Finally, I gather a hidden representation hint as a weighted sum of all attention
inputs, and I pass it through a tanh activation (see Eq. 3.3). For the final prediction,
I use a linear projection on top of hint. I apply dropouts on hint, and on the attention
weights (Vaswani et al., 2017).
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3.3.2 Slots Modeling

The task of slot filling is closely related to tasks such as part-of-speech (POS) tagging
and named entity recognition (NER). Moreover, it can benefit from knowing the
interesting entities in the text. Therefore, I reinforce the slot filling with tags found
by a named entity recognizer (word features). Next, I combine the intent prediction,
the language model’s hidden representations, and some extracted word features
into a single vector used for token slot attribution. Details about all components
are discussed below.

Word Features A major shortcoming of having free-form text as an input is that it
tends not to follow basic grammatical principles or style rules. The casing of words
can also guide the models while filling the slots, i.e., upper-case words can refer
to names or to abbreviations. Also, knowing the proper casing enabled the use of
external NERs or other tools that depend on the text quality.

As a first step, I improve the text casing using a TrueCase1 model. The model
maps the words into the following classes: UPPER, LOWER, INIT_UPPER, and O,
where O is for mixed-case words such as McVey. With the text re-cased, I further
extract the named entities with a NER annotator. Named entities are recognized
using a combination of three CRF sequence taggers trained on various corpora.
Numerical entities are recognized using a rule-based system. Both the truecaser
and the NER model are part of the Stanford CoreNLP toolkit (Manning et al., 2014).

Finally, I merge some entities ((job) title, ideology, criminal charge) into a spe-
cial category other as they do not correlate directly to the domains of either dataset.
Moreover, I add a custom regex-matching entry for airport_code, which are three-
letter abbreviations of the airports. The latter is specially designed for the ATIS (Tur
et al., 2010) dataset. While, marking the proper terms, some of the codes introduce
noise, e.g., the proposition for could be marked as an airport_code because of FOR
(Aeroporto Internacional Pinto Martins, Fortaleza, CE, Brazil). In order to mitigate this
effect, I do a lookup in a dictionary of English words, and if a match is found, I
trigger the O class for the token.

In order to allow the network to learn better feature representations for the
named entities and the casing, I pass them through a two-layer feed-forward net-
work. The first layer is shown in Eq. 3.6 followed by a non-linear PReLU activation,
where Ww ∈ R23×32. The second one is a linear projection fwords (Eq. 3.7), where
Wproj ∈ R32×32.

si
w = Ww[ners; cases] + bw (3.5)

hi
w = max(0, si

w) + α ∗min(0, si
w) (3.6)

fwords(ners, cases) = Wprojhi
w

T
+ bproj (3.7)

1https://stanfordnlp.github.io/CoreNLP/truecase.html

https://stanfordnlp.github.io/CoreNLP/truecase.html
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Sub-word Alignment Modern NLP approaches suggest the use of sub-word
units (Sennrich et al., 2016; Wu et al., 2016; Kudo and Richardson, 2018), which
mitigate the effects of rare words, while preserving the efficiency of a full-word
model. Although they are a flexible framework for tokenization, sub-word units
require additional bookkeeping for the models in order to maintain the original
alignment between words and their labels.

I first split the sentences into the original word-tag pairs, I then disassemble
each one into word pieces (or BPE, in the case of RoBERTa). Next, the original slot
tag is assigned to the first word piece, while each subsequent one is marked with
a special tag (X). Still, the word features from the original token are copied to each
unit. To align the predicted labels with the input tags, I keep a binary vector for the
active positions.

Slot Filling as Token Classification As in Devlin et al. (2019), I treat the slot
filling as token classification, and I apply a shared layer on top of each token’s
representations to predict the tags.

Furthermore, I assemble the feature vector for the ith slot by concatenating
together the predicted intent probabilities, the word features, and the contextual
representation from the language model. Afterwards, I add a dropout followed by
a linear projection to the proper number of slots:

yi
s = Ws[so f tmax(yint); f i

words; hi
LM] + bs (3.8)

3.3.3 Interaction and Learning

To train the model, I use a joint loss function Ljoint for the intent and for the slots.
For both tasks, I apply cross-entropy over a softmax activation layer, except in the
case of CRF tagging. In those experiments, the slot loss Lslot will be the negative log-
likelihood (NLL) loss. Moreover, I introduce a new hyper-parameter γ to balance
the objectives of the two tasks (see Eq. 3.9). Finally, I propagate the loss from all the
non-masked positions in the sequence, including word pieces, and special tokens
([CLS], <s>, etc.). Note that I do not freeze any weights during fine-tuning. More
details about the model can be found in Section 3.4.4.

Ljoint = γ ∗ Lintent + (1− γ) ∗ Lslot (3.9)

3.4 Experimental Setup

In this section, I describe the evaluation measures, the baselines and the state-of-
the-art models I compare to, as well as specific details about my proposed model.
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3.4.1 Measures

I evaluate my models using three well-established evaluation metrics. The intent
detection performance is measured in terms of accuracy. For the slot filling task,
I use F1-score. Finally, the joint model is evaluated using sentence-level accuracy,
i.e., proportion of examples in the corpus, whose intent and slots are both correctly
predicted. Here, I must note that during evaluation I consider only the predictions
for aligned words (I omit special tokens, e.g., [CLS], [SEP], <s>, </s>) and word
pieces).

3.4.2 Baselines

For my baseline models, I use BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,
2019), which I fine-tune. In particular, I train a linear layer over the pooled repre-
sentation of the special [CLS] token to predict the intent. Moreover, I add a shared
layer on top of the last hidden representations of the tokens in order to obtain a slot
prediction. The model’s architecture is shown in Figure 3.1a.

BERT For training the model, I follow the fine-tuning procedure proposed by De-
vlin et al. (2019). I train a linear layer over the pooled representation of the special
[CLS] token to predict the utterance’s intent. The latter is optimized during pre-
training using the next sentence prediction (NSP) loss to encode the whole sentence.
Moreover, I add a shared layer on top of the last hidden representations of the to-
kens in order to obtain a slot prediction. Both objectives are optimized using a
cross-entropy loss.

RoBERTa This model follows the same training procedure as BERT, but drops the
NSP task during pre-training. Still, the intent loss is attached to the special start
token <s>.

Chen et al. (2019) used BERT with a token classification pipeline to jointly
model the slot and the intent, with an additional CRF layer on top.2 However, they
evaluated the slot filling task using per-token F1-score (micro averaging), rather
than per-slot entry, as is standard, which in turn artificially inflated their results.
As their results are not comparable to the rest, I do not include them in my com-
parisons.

2In terms of micro-average F1 for slot filling, Chen et al. (2019) reported 96.1 on ATIS and 96.27
on SNIPS (per-token). For comparison, for my joint model, these scores are 98.1 and 97.9 (per-token);
however, the correct scores for my model are actually 95.7 and 96.3 (per-slot).
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3.4.3 State-of-the-Art Models

I further compare my approach to some other benchmark models. Here, I must note
that I include models that do not use embeddings from large pre-trained Transform-
ers such as BERT in order to measure the improvements that come solely from the
pre-training procedure (see Section 3.5.4):

• Joint Seq. (Hakkani-Tür et al., 2016) uses a RNN to obtain hidden states for
each token in the sequence for slot filling, and uses the last state to predict
the intent.

• Atten.-Based (Liu and Lane, 2016) treats the slot filling task as a generative
one, applying sequence-to-sequence RNN to label the input. Further, an at-
tention weighted sum over the encoder’s hidden states is used to detect the
intent.

• Slotted-Gated (Goo et al., 2018) introduces a special gated mechanism to an
LSTM network, thus reinforcing the slot filling with the hidden representation
used for the intent detection.

• Capsule-NLU (Zhang et al., 2019) adopts Capsule Networks to exploit the
semantic hierarchy between words, slots, and intents using dynamic routing-
by-agreement schema.

• Interrelated (E et al., 2019) uses a Bidirectional LSTM with attentive sub-
networks for the slot and the intent modeling, and an interrelated mechanism
to establish a direct connection between the two. SF (slot), and ID (intent)
prefixes indicate which sub-network to execute first.

• Stack-Propagation (Qin et al., 2019) consists of a self-attentive BiLSTM en-
coder for the utterance and two decoders, one for the intent-detection task
that performs a token-level intent detection, and one for the slot filling task.

• AGIF (Qin et al., 2019) uses Adaptive Graph-Interactive Framework to jointly
model intent detection and slot filling with an intent-slot graph interaction
layer applied to each token adaptively.

3.4.4 Model Details

I use the PyTorch implementation of BERT from the Transformers library of Wolf
et al. (2020) as a base for my models. I fine-tune all models for 50 epochs with
hyper-parameters set as follows: batch size of 64 examples, maximum sequence
length of 50 word pieces, dropout set to 0.1 (for both attentions and hidden layers),
and weight decay of 0.01. For optimization, I use Adam with a learning rate of
8e-05, β1 0.9, β2 0.999, ϵ 1e-06, and warm-up proportion of 0.1. Finally, in order
to balance between the intent and the slot losses, I set the parameter γ (Eq. 3.9)
to 0.6, I test the range 0.4–0.8 with 0.1 increment. All the models use the same
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ATIS SNIPS

Model
Intent
(Acc)

Sent.
(Acc)

Slot
(F1)

Intent
(Acc)

Sent.
(Acc)

Slot
(F1)

Joint Seq. (Hakkani-Tür et al., 2016) 92.60 80.70 94.30 96.90 73.20 87.30
Atten.-Based (Liu and Lane, 2016) 91.10 78.90 94.20 96.70 74.10 87.80
Sloted-Gated (Goo et al., 2018) 95.41 83.73 95.42 96.86 76.43 89.27
Capsule-NLU (Zhang et al., 2019) 95.00 83.40 95.20 97.30 80.90 91.80
Interrelated SF-First (E et al., 2019) 97.76 86.79 95.75 97.43 80.57 91.43
Interrelated ID-First (E et al., 2019) 97.09 86.90 95.80 97.29 80.43 92.23
Stack-Propagation (Qin et al., 2019) 96.9 86.5 95.9 98.0 86.9 94.2
AGIF (Qin et al., 2020) 97.1 87.2 96.0 98.1 87.3 94.8

BERT-Joint 97.42 87.57 95.74 98.71 91.57 96.27
RoBERTa-Joint 97.42 87.23 95.32 98.71 90.71 95.85

Transformer-NLU:BERT 97.87 88.69 96.25 98.86 91.86 96.57

Transformer-NLU:RoBERTa 97.76 87.91 95.65 98.86 92.14 96.35
Transformer-NLU:BERT w/o Slot Features 97.87 88.35 95.97 98.86 91.57 96.25
Transformer-NLU:BERT w/ CRF 97.42 88.26 96.14 98.57 92.00 96.54

Table 3.3: Intent detection and slot filling results on the SNIPS and the ATIS datasets.
Highest results in each category are written in bold. My models are shown in italic; the
non-italic models on top come from the literature. Qin et al. (2019, 2020) report their results

with single precision.

pre-processing, post-processing, and the standard for these tasks metrics. In order
to tackle the problem with random fluctuations for BERT/RoBERTa, I ran the ex-
periments three times and I used the best-performing model on the development
set. I define the latter as the highest sum from all three measures described in
Section 3.4.1. All the above-mentioned hyper-parameter values were tuned on the
development set, and then used for the final model on the test set. All models were
trained on a single K80 GPU instance for around an hour.

3.5 Experiments and Analysis

Here, I discuss the results for my model and I compare them to the state of the
art and to BERT baselines. I further present an exhaustive analysis of the model
components.

3.5.1 Evaluation Results

Table 3.3 presents quantitative evaluation results in terms of (i) intent accuracy, (ii)
sentence accuracy, and (iii) slot F1 (see Section 3.4.1). The first part of the tables
refers to previous work, whereas the second part presents my experiments and is
separated with a double horizontal line. The evaluation results confirm that my
model performs better then the current state-of-the-art.
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Metric Relative Error Reduction

ATIS
Intent (Acc) 4.91% 17.44%
Sent. (Acc) 11.64% 11.43%
Slot (F1) 6.25% 19.87%

SNIPS
Intent (Acc) 40.00% 11.63 %
Sent. (Acc) 35.91% 6.76%
Slot (F1) 37.64% 17.35%

Transformer-NLU vs. SOTA vs. BERT

Table 3.4: Comparing Transformer-NLU:BERT to the two baselines: (i) current SOTA for
each measure, and (ii) conventionally fine-tuned BERT-Joint without the improvements, in

terms of relative error reduction (Eq. 3.10).

While, models become more accurate, the absolute difference between two
experiments becomes smaller and smaller, thus a better measurement is needed.
Hereby, I introduce a fine-grained measure, i.e., relative error reduction (RER) per-
centage, which is defined as the proportion of absolute error reduced by a modela

compared to modelb.

RER = 1− Errormodela

Errormodelb
(3.10)

Table 3.4 shows the error reduction by my model compared to the current
SOTA, and to a BERT-based baselines (see Section 3.4.2). Since there is no single
best model from the SOTA, I take the per-column maximum among all, albeit they
are not recorded in a single run. For the ATIS dataset, we see a reduction of 11.64%
(1.49 points absolute) for sentence accuracy, and 6.25% (0.25 points absolute) for
slot F1, but just 4.91% for intent accuracy (see Table 3.3). Such a small improvement
can be due to the quality of the dataset and to its size. For the SNIPS dataset,
we see major increase in all measures and over 35% error reduction. In absolute
terms, I have 0.76 for intent, 4.84 for sentence, and 1.77 for slots (see Table 3.3).
This effects cannot be only attributed to the better model (discussed in the analysis
below), but also to the implicit information that BERT learned during its extensive
pre-training. This is especially useful in the case of SNIPS, where fair amount of
the slots in categories like SearchCreativeWork, SearchScreeningEvent, AddToPlaylist,
PlayMusic are names of movies, songs, artists, etc.

In addition to the aforementioned results, I also report the Transformer-
NLU:BERT’s (and BERT’s) µ and σ ATIS – Intent 98.0± 0.17 (BERT 97.13± 0.26),
Sentence 88.6± 0.23 (BERT 87.8± 0), Slot 96.3± 0.06 (BERT 96.0± 0.14); SNIPS –
Intent 98.6 ± 0.14 (BERT 98.42 ± 0), Sentence 92.0 ± 0.17 (BERT 91.8 ± 0.19), Slot
96.2 ± 0.05 (BERT 96.1 ± 0.06). The aforementioned results show that the mean
scores of the models in the slot filling task are close, but the variance in Transformer-
NLU is lower. Further, I must note that these values are calculated over the best
runs from each model re-training, and they are not achieved in a single run.
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3.5.2 Transformer-NLU Analysis

I dissect the proposed model by adding or removing prominent components to out-
line their contributions. The results are shown in the second part of Table 3.3. First,
I compare the results of BERT-Joint and the enriched model Transformer-NLU:BERT.
we can see a notable reduction of the intent classification error by 17.44% and
11.63% for the ATIS and the SNIPS dataset, respectively. Furthermore, we see a
19.87% (ATIS) and 17.35% (SNIPS) error reduction in slot’s F1, and 11.43% (ATIS)
and 11.63% (SNIPS) for sentence accuracy. I also try RoBERTa as a backbone to my
model: while I still see the positive effect of the proposed architecture, the over-
all results are slightly worse. I attribute this to the different set of pre-training data
(CommonCrawl vs. Wikipedia). I further focus my analysis on BERT-based models,
since they performed better than RoBERTa-based ones.

Next, I remove the additional slot features – predicted intent, word casing,
and named entities. The results are shown as Transformer-NLU:BERT w/o Slot
Features. As expected, the intent accuracy remains unchanged for both datasets,
since I retain the pooling attention layer, while the F1-score for the slots decreases.
For SNIPS, the model achieved the same score as for BERT-Joint, while for ATIS it
was within 0.2 points absolute.

Finally, I added a CRF layer on top of the slot network, since it had shown
positive effects in earlier studies (Xu and Sarikaya, 2013; Huang et al., 2015; Liu
and Lane, 2016; E et al., 2019). I denote the experiment as Transformer-NLU:BERT
w/ CRF. However, in my case it did not yield the expected improvement. The
results for slot filling are close to the highest recorded, while a drastic drop in
intent detection accuracy is observed, i.e., -17.44% for ATIS, and -20.28% for SNIPS.
I attribute this degradation to the large gradients from the NLL loss. The effect
is even stronger in the case of smaller datasets, making the optimization unstable
for parameter-rich models such as BERT. I tried to mitigate this issue by increasing
the γ hyper-parameter, effectively reducing the contribution of the slot’s loss Lslot

to the total, which in turn harmed the slot’s F1. Moreover, the model does swap
interchangeable slots, rather than the B- and I- prefixes, or slots unrelated to the
intent (see the Error Analysis below).

3.5.3 Intent Pooling Attention Visualization

Next, I visualize the learned attention weights on Figure 3.2a. It presents a request
from the ATIS dataset: i want fly from baltimore to dallas round trip. The utterance’s
intent is marked as atis_flight, and we can see that the attention successfully picked
the key tokens, i.e., I, want, fly, from, and to, whereas supplementary words such as
names, locations, dates, etc. have less contribution. Moreover, when trained on the
ATIS dataset, the layer tends to set the weights in the two extremes — equally high
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for important tokens, and towards zero for the rest. I attribute this to the limited
domain and vocabulary.
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(b) AddToPlaylist (SNIPS).

Figure 3.2: Intent pooling attention weight for one example per dataset. The thicker the
line, the higher the attention weight.

Another example, from the SNIPS dataset, is shown on Figure 3.2b. Here,
the intent is to add a song to a playlist (AddToPlaylist). In this example, we see
a more diverse spread of attention weights. The model again assigns the highest
weight to the most relevant tokens add, to, the, and play. Also, the model learned
that the first wordpiece has the highest contribution, while the subsequent ones are
supplementary.

Finally, I let the pooling attention layer consider the special tokens marking
the start and the end ([CLS], and [SEP]) of a sequence, since they are expected
to learn semantic sentence-level representations from the penultimate layer. The
model assigns high attention weights to both.

3.5.4 BERT Knowledge Analysis

As I start to understand better BERT-based large-scale pre-trained transformer mod-
els (Petroni et al., 2019; Rogers et al., 2020), I also start to observe some interesting
phenomena. BERT is trained on Wikipedia articles, which allows it to learn implicit
information about the world in addition to learning knowledge about language it-
self. Here, I evaluate how that former type of knowledge reflects on the two NLU
evaluation datasets. As a first step, I extract all the slot phrases from the training
sets, i.e., all the words in the slot sequence. Next, I send the latter as a query to
Wikipedia3 and I collect the article titles. Then, I try to match the phrase with an
extracted title. In order to reduce the false negatives, I normalize both texts (strip
punctuation, replace digits with zeros, lower-case), allow difference of one charac-
ter between the two, and finally if the title starts with the phrase, I count it as a
match (e.g., Tampa vs. Tampa, Florida). Overall, 66% of the slots in ATIS and 69% in
SNIPS matched a Wikipage title.

3http://pypi.org/project/wikipedia/

http://pypi.org/project/wikipedia/
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(a) ATIS

(b) SNIPS ∗OPST stands for object part of series. type.

Figure 3.3: Per-class mean reciprocal rank (MRR) for the two datasets used in my study.

Next, I evaluate how much of that information is stored in the model by lever-
aging the standard masking mechanism used during pre-training. In particular, I
split each slot in subwords, and then I replace them one by one sequentially with
the special [MASK] token. I then sort the predictions for that position by proba-
bility and I take the rank of the true word. Finally, I calculate the mean reciprocal
rank (MRR) over all the aforementioned ranks: 0.46 for ATIS, and 0.36 for SNIPS.
I must note that the BERT’s dictionary contains 32K pieces, and the expected uni-
form MRR is ∼1/16,000. Below, I present two examples to illustrate both high- and
low-ranked predictions.
High ranked: play the album jack takes the floor by tom le [MASK] on netflix, here the
model’s top predictions are: [##hrer, ##rner, ##mmon, ##hr, ##rman], and the correct
token is ranked with the highest probability.
Low ranked: play some hong jun [MASK], here the model’s top guesses are mostly
punctuation, and general words such as [to, ;, ##s, and]. The correct token ##yang is
at position 3,036, which indicates that this term is challenging.

In SNIPS (see Figure 3.3b), we can see that types such as track, movie_name,
entry_name, artist, album have very high MRR (0.33–0.40), and ones that require
numerical value, or are not part of well-known named entities suchf as ob-
ject_part_of_series_type (OPST) are the lowest (under 0.1). The same in ATIS (see
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Figure 3.3a) for country_name (8e-3), restriction_code (4e-3), meal (4e-3), in contrast
to airline_code (0.45), transport_type (0.42), etc. However, ATIS in general does not
require such task-specific knowledge, and its MRR is way higher in general, which
is reflected by the overall improvement compared to the baseline models.

3.5.5 Error Analysis

Here, I discuss what errors the proposed architecture solves compared to the BERT
model, and what types of errors are left unsolved. First, I compare the performance
of my method (Transformer-NLU) to BERT-Joint (BERT). In the intent detection task,
the largest improvement (over BERT) comes from examples with slots, indicative
for a given intent. This suggests that the model successfully uses the slot informa-
tion gathered by the pooling attention layer. For the following groups, this is most
prominent: (i) examples with multi-label intents, e.g., atis_airline#atis_flight_no – “i
need flight numbers and airlines . . . ”, where BERT predicted atis_flight_no; (ii) ex-
amples containing distinctive words for another intent class – “Give me meal flights
...”, atis_flight → meal (BERT), “I need a table . . . when it is chiller”, GetWeather →
BookRestaurant (BERT). For all the aforementioned examples, both models filled the
slots correctly, but only Transformer-NLU captured the correct intent. Moreover, we
see a positive effect in detecting SearchCreativeWork and SearchScreeningEvent, while
BERT tends to wrongly fill the slots, and thus swaps the two intents, e.g., “find heat
wave”, or “find now and forever”. Finally, we see an additional improvement for
AddToPlaylist and atis_ground_fare.

Next, I compare the performance of the two models on the slot filling task.
As expected, the newly proposed model performs better, when the curated fea-
tures capture some interesting phenomena. I observe that, when filling code slots
(airport, meal, airfare) – “what does . . . code bh mean”, artists, albums, movies, object
names – dwele, nyoil, turk (artist→ entity_name (BERT)), locations – “. . . between mil-
waukee and indiana”, state→ city (BERT); BERT confuses mango (city) with the fruit
(cuisine); “new york city area” O → city (BERT) and time-related ones – afternoon,
late night, a.m..

Finally, I discuss the errors of Transformer-NLU in general. For the ATIS dataset,
50% of the wrong intents come from multi-label cases (35% with two labels, and
15% with three), 31% atis_flight – “how many flights does . . . /have to/leave . . . ” (→
atis_quantity), 11% atis_city – list la (→ atis_abbreviation), and the others are mis-
takes in atis_aircraft. For the slots, 50% of the errors come from tags that can have
a fromloc/toloc prefix, e.g., city, airport_code, airport_name, etc., another 20% are time-
related (arrive_date, return_date), and filled slots without tag 7%. The errors by
the model for the SNIPS datasets are as follows: mislabeled intents PlayMusic
11%, SearchCreativeWork 22%, SearchScreeningEvent 67%, slots – movie_name 19%,
object_name 16%, playlist 9%, track 9%, entity_name 5%, album 4%, timeRange 4%,
served_dish 2%, filled slots without tag 19%. The model misses 9% (ATIS) and 17%
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(SNIPS) of all the slots that should be filled. This is expected since SNIPS’ slots have
a larger dictionary (11K words), with a large proportion of the slots being names,
and often including prepositions, e.g., “. . . trailer of the multiversity”.

3.6 Summary

In this chapter, I studied the two main tasks in task-oriented conversational natural
language understanding, i.e., intent detection and slot filling. They form an impor-
tant part (component) of customer service chatbots, serving user requests on the
company’s website or on different corporate Web and Social Media platforms. That
component is responsible for extracting slot–value pairs that are later used by the
dialogue manager to navigate the agent’s next actions.

In particular, I proposed an enriched pre-trained language model to jointly
model the two tasks (i.e., intent detection and slot filling), namely, Transformer-
NLU. I designed a pooling attention layer in order to obtain intent representation
beyond just the pooled one from the special start token. Further, I reinforced the
slot filling with word-specific features, and the predicted intent distribution. My
experiments on two standard datasets showed that Transformer-NLU outperforms
other alternatives for all standard measures used to evaluate NLU tasks. I found
that using RoBERTa and adding a CRF layer on top of the slot filling network did
not help. Finally, the Transformer-NLU:BERT achieved intent accuracy of 97.87
(ATIS) and 98.86 (SNIPS). Or as a relative error reduction – almost 5% for ATIS,
and over 40% for SNIPS, compared to the state-of-the-art. In terms of slot’s filling
F1, my models scored 96.25 (+6.25%) for ATIS, and 96.57 (+37.64%) for SNIPS.
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Chapter 4

Curating Answers from External
Knowledge Sources

This chapter discusses different approaches for curating answers from external
knowledge sources. Here, the focus is on methods that rely on retrieval of con-
textual information, passages, entire documents, etc. in order to obtain an answer
to a user-generated question (or a query).

In Section 4.2, I explore the problem of selecting the most relevant answer from
a list of candidates, i.e., multiple-choice question answering. In order to choose the
best option, the pipeline should be based on a two-step approach. First, retrieval
of contextual passages using the question in combination with each of the candi-
dates as a query, and then predict the most probable option based on the retrieved
evidence text. However, rarely the answer to the question is contained directly in
the passages, and therefore the models must derive it by reasoning beyond simple
word matching.

Nevertheless, a single utterance is not always sufficient to answer the cus-
tomer’s question, especially if they need a step-by-step guide to complete their
goal. In Section 4.3, I propose a novel methodology for retrieving previously writ-
ten documents/articles related to claims made in conversations in Twitter. More
precisely, in the domain of conversational agents this can be viewed as redesign-
ing the output that a chatbot produces which is commonly a short sentence, into
a long-form answer that can also serve as an explanation of a process or step-by-
step guide. More precisely, in this chapter, I formulate the problem as follows: the
produced answers are expected to be retrieved fact-checking articles, and the task
can be defined as finding previous fact-checked claims. The three main challenges ex-
plored related to the aforementioned problem in this chapter are: (i) data scarcity,
as the existing datasets are small in size, less then couple of thousand examples to-
tal, (ii) finding negative examples, as only correct article–claim pairs are available,
and therefore there are no explicit samples from the negative class, and (iii) learning
from noisy (labeled with distant supervision) examples.

This chapter is mainly based on:



Chapter 4. Curating Answers from External Knowledge Sources 38

• Momchil Hardalov, Ivan Koychev, and Preslav Nakov. 2019a. Beyond English-
Only Reading Comprehension: Experiments in Zero-shot Multilingual Trans-
fer for Bulgarian. In Proceedings of the International Conference on Recent Ad-
vances in Natural Language Processing, RANLP ’19, pages 447–459, Varna, Bul-
garia

• Momchil Hardalov, Anton Chernyavskiy, Ivan Koychev, Dmitry Ilvovsky, and
Preslav Nakov. 2022b. CrowdChecked: Detecting Previously Fact-Checked
Claims in Social Media. In Proceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing, AACL-IJCNLP ’22, Online

4.1 Introduction

Conversational agents often relay on external sources to answer a user’s query.
Based on the complexity and the intent of the ask, personal assistants such as Ap-
ple’s Siri, Amazon’s Alexa, Google’s Assistant, among others can provide different
forms of output based on the information extracted from external sources such as
knowledge bases, internal APIs or other services. These answers can be catego-
rized in three groups, based on their lengths: (i) short-form – weather forecast,
directions from maps, the data from a smart home device, etc., (ii) long-form –
tutorials, step-by-step guides, passages from a product manual, etc., and (ii) a list
of search results from the Web, if the question is out of their scope (Chen et al.,
2017; Karpukhin et al., 2020). Here, I focus on the former two types, i.e., short- and
long-form answers, and leave the general search results for future work.

Regardless of the form of the answer it is not always trivial to find and extract
relevant information. Moreover, the performance of the models is higher on in-
domain data (Gururangan et al., 2020; Poth et al., 2021), e.g., better represented
topics or the examples in the source language of the training data (Conneau and
Lample, 2019; Conneau et al., 2020), and drops significantly when the data is out-
of-domain (Elsahar and Gallé, 2019). In this chapter, I study the effectiveness of
zero-shot transfer from resource-rich language to low-resource one for the task
of multiple-choice question answer, i.e., selecting the correct answer from a list of
possible candidates, based on retrieved evidence passages. However, it is important
to note that the performance of the models is not only limited to their reasoning
abilities but it is also highly depend on the quality of the retrieved evidences. This
is another research question I explore in the following sections. In particular, I
study the the limitations of classical IR models to find sufficient textual passages.

On the other hand, a lot of the questions that users ask, have already been
answers in previous conversations (Lewis et al., 2021), and thus it is unnecessary
for the dialogue agent to gather the same information again, in order to gener-
ate its next turn. This can be especially critical when the expected response is

https://doi.org/10.26615/978-954-452-056-4_053
https://doi.org/10.26615/978-954-452-056-4_053
https://doi.org/10.26615/978-954-452-056-4_053
https://openreview.net/forum?id=7ObvucmbjMM
https://openreview.net/forum?id=7ObvucmbjMM
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aggregated from multiple knowledge sources or is a long-form answers, i.e., doc-
uments or guides, beyond a few sentences of length. These latter might also be
viewed as explanations, as they contain extensive amount of information and usu-
ally describe some procedure in order to accomplish a task or argumentation about
the question (Kwiatkowski et al., 2019; Barrón-Cedeno et al., 2020; Shaar et al.,
2021). Moreover, with recent the development of large pre-trained Transformers
and their application for semantic search (Reimers and Gurevych, 2019; Gao et al.,
2021; Chuang et al., 2022) enables for better discovery of similar questions and re-
trieval of previously written answers. In this chapter, I explore the abilities of these
models on the task of detecting previously fact-checked claims. In particular, I pro-
pose a novel framework based on self-adaptive learning and distant supervision to
learn a ranking model that has a very high average precision of matching claims
with their fact-checking long-form documents (explanations). Furthermore, as cur-
rently most of the publicly available datasets are quite scarce, I propose an entirely
unsupervised procedure to collect and label claim–article pairs, in order to improve
the model’s performance in a low-resource regime.

The contributions of this chapter are as follows:

• Knowledge retrieval and transfer:

– I introduce a new dataset for reading comprehension in a low-resource
language such as Bulgarian. The dataset contains a total of 2,636
multiple-choice questions without contexts from matriculation exams
and online quizzes. These questions cover a large variety of science top-
ics in biology, philosophy, geography, and history.

– I study the effectiveness of zero-shot transfer from English to Bulgarian
for the task of multiple-choice reading comprehension, using Multilin-
gual and Slavic BERT (Devlin et al., 2019), fine-tuned on large corpora,
such as RACE (Lai et al., 2017).

– I design a general-purpose pipeline1 for extracting relevant contexts from
an external corpus of unstructured documents using information re-
trieval.

• Finding previously written long-form answers:

– I mine a large-scale collection of 330,000 tweets paired with fact-checking
articles;

– I propose two distant supervision strategies to label the dataset;

– I propose a novel approach to learn from this data using a modified
self-adaptive training;

1The dataset and the source code are available at http://github.com/mhardalov/bg-reason-BERT

http://github.com/mhardalov/bg-reason-BERT
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– I demonstrate sizable improvements over the state of the art on a stan-
dard test set from the CLEF-CheckThat!21 competition (Shaar et al.,
2021).

4.2 Knowledge Retrieval

The ability to answer questions is natural to humans, independently of their native
language, and, once learned, it can be easily transferred to another language. After
understanding the question, we typically depend on our background knowledge,
and on relevant information from external sources.

Machines do not have the reasoning ability of humans, but they are still able
to learn concepts. The growing interest in teaching machines to answer questions
posed in natural language has led to the introduction of various new datasets for
different tasks such as reading comprehension, both extractive, e.g., span-based
(Nguyen et al., 2016; Trischler et al., 2017; Joshi et al., 2017; Rajpurkar et al., 2018;
Reddy et al., 2019), and non-extractive, e.g., multiple-choice questions (Richard-
son et al., 2013; Lai et al., 2017; Clark et al., 2018; Mihaylov et al., 2018; Sun et al.,
2019). Recent advances in neural network architectures, especially the raise of the
Transformer (Vaswani et al., 2017), and better contextualization of language mod-
els (Peters et al., 2018; Devlin et al., 2019; Radford et al., 2018; Grave et al., 2018;
Howard and Ruder, 2018; Radford et al., 2019; Yang et al., 2019; Dai et al., 2019)
offered new opportunities to advance the field.

Here, I investigate skill transfer from a high-resource language, i.e., English,
to a low-resource one, i.e., Bulgarian, for the task of multiple-choice reading com-
prehension. Most previous work (Pan et al., 2019; Radford et al., 2018; Tay et al.,
2018; Sun et al., 2019) was monolingual, and a relevant context for each question
was available a priori. I take the task a step further by exploring the capability of a
neural comprehension model in a multilingual setting using external commonsense
knowledge. My approach is based on the multilingual cased BERT (Devlin et al.,
2019) fine-tuned on the RACE dataset (Lai et al., 2017), which contains over 87,000
English multiple-choice school-level science questions. For evaluation, I build a
novel dataset for Bulgarian. I further experiment with pre-training the model over
stratified Slavic corpora in Bulgarian, Czech, and Polish Wikipedia articles, and
Russian news, as well as with various document retrieval strategies. Finally, I ad-
dress the resource scarceness in low-resource languages and the absence of question
contexts in my dataset by extracting relevant passages from Wikipedia articles.

4.2.1 Model

The model has three components: (i) a context retrieval module, which tries to
find good explanatory passages for each question-answer pair, from a corpus of
non-English documents, as described in Section 4.2.1, (ii) a multiple-choice reading
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comprehension module pre-trained on English data and then applied to the target
language in a zero-shot fashion, i.e., without further training or additional fine-
tuning, to a target (non-English) language, as described in Section 4.2.1, and (iii) a
voting mechanism, described in Section 4.2.1, which combines multiple passages
from (i) and their scores from (ii) in order to obtain a single (most probable) answer
for the target question.

Context Retriever

Most public datasets for reading comprehension (Richardson et al., 2013; Lai et al.,
2017; Sun et al., 2019; Rajpurkar et al., 2018; Reddy et al., 2019; Mihaylov et al., 2018)
contain not only questions with possible answers, but also an evidence passage for
each question. This limits the task to question answering over a piece of text, while
an open-domain scenario is much more challenging and much more realistic. More-
over, a context in which the answer can be found is not easy to retrieve, sometimes
even for a domain expert. Finally, data scarceness in low-resource languages poses
further challenges for finding resources and annotators.

In order to enable search for appropriate passages for non-English questions, I
created an inverted index from Wikipedia articles using Elasticsearch.2 I used the
original dumps for the entire Wikipage,3 and I preprocessed the data leaving only
plain textual content, e.g., removing links, HTML tags, tables, etc. Moreover, I split
the article’s body using two strategies: a sliding window and a paragraph-based ap-
proach. Each text piece with its corresponding article title was processed by apply-
ing word-based tokenization, lowercasing, stop-words removal, stemming (Nakov,
2003; Savoy, 2007), and n-gram extraction. Finally, the matching between a ques-
tion and a passage was done using cosine similarity and BM25 (Robertson and
Zaragoza, 2009).

BERT for Multiple-Choice RC

The recently-proposed BERT (Devlin et al., 2019) framework is applicable to a vast
number of NLP tasks. A shared characteristic between all of them is the form
of the input sequences: a single sentence or a pair of sentences separated by the
[SEP] special token, and a classification token ([CLS]) added at the beginning of
each example. In contrast, the input for multiple-choice reading comprehension
questions is assembled by three sentence pieces, i.e., context passage, question, and
possible answer(s). The model follows a simple strategy of concatenating the option
(candidate answer) at the end of a question. Following the notation of Devlin et al.
(2019), the input sequence can be written as follows:

[CLS] Passage [SEP] Question + Option [SEP]

2http://www.elastic.co/
3http://dumps.wikimedia.org/

http://www.elastic.co/
http://dumps.wikimedia.org/
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Figure 4.1: BERT for multiple-choice reasoning.

As recommended by Devlin et al. (2019), I introduce a new task-specific param-
eter vector L, L ∈ RH, where H is the hidden size of the model. In order to obtain
a score for each passage-question-answer triplet, I take the dot product between
L and the final hidden vector for the classification token ([CLS]), thus ending up
with N unbounded numbers: one for each option. Finally, I normalize the scores
by adding a softmax layer, as shown in Figure 4.1. During fine-tuning, I optimize
the model’s parameters by maximizing the log-probability of the correct answer.

Answer Selection Strategies

Finding evidence passages that contain information about the correct answer is
crucial for reading comprehension systems. The context retriever may be extremely
sensitive to the formulation of a question. The latter can be very general, or can
contain insignificant rare words, which can bias the search. Thus, instead of using
only the first-hit document, we should also evaluate lower-ranked ones. Moreover,
knowing the answer candidates can enrich the search query, resulting in improved,
more answer-oriented passages. This approach leaves us with a set of contexts that
need to be evaluated by the MRC model in order to choose a single correct answer.
Prior work suggests several different strategies: Chen et al. (2017) used the raw
predicted probability from a recurrent neural network (RNN), Yang et al. (2019)
tuned a hyper-parameter to balance between the retriever score and the reading
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model’s output, while Pan et al. (2019) and Ni et al. (2019) concatenated the results
from sentence-based retrieval into a single contextual passage.

In my experiments below, I adopt a simple summing strategy. I evaluate each
result from the context retriever against the question and the possible options (see
Section 4.2.1 for more details), thus obtaining a list of raw probabilities. I found em-
pirically that explanatory contexts assign higher probability to the related answer,
while general or uninformative passages lead to stratification of the probability
distribution over the answer options. I formulate this as follows:

Pr(aj|p; q) =
exp(BERT(p, q + aj))

∑j′ exp(BERT(p, q + aj′))
, (4.1)

where p is a passage, q is a question, A is the set of answer candidates, and aj ∈ A.

I select the final answer as follows:

Ans = arg max
a∈A

∑
p∈P

Pr(A|p; q) (4.2)

4.2.2 Data

My goal is to build a task for a low-resource language, such as Bulgarian, as close
as possible to the multiple-choice reading comprehension setup for high-resource
languages such as English. This will allow us to evaluate the limitations of trans-
fer learning in a multilingual setting. One of the largest datasets for this task is
RACE (Lai et al., 2017), with a total of 87,866 training questions with four answer
candidates for each. Moreover, there are 25,137 contexts mapped to the questions
and their correct answers.

While there exist many datasets for reading comprehension, most of them
are in English, and there are a very limited number in other languages (Peñas
et al., 2012, 2014). Hereby, I collect my own dataset for Bulgarian, resulting in

Domain #QA-pairs #Choices Len Question Len Options Vocabulary Size
12th Grade Matriculation Exam

Biology 437 4 10.4 2.6 2, 414 (12, 922)
Philosophy 630 4 8.9 2.9 3, 636 (20, 392)
Geography 612 4 12.8 2.5 3, 239 (17, 668)
History 542 4 23.7 3.6 5, 466 (20, 456)

Online History Quizzes
Bulgarian History 229.0 4 14.0 2.8 2, 287 (10, 620)
PzHistory 183 3 38.9 2.4 1, 261 (7, 518)
Overall 2, 633 3.9 15.7 2.9 13, 329 (56, 104)

RACE Train - Mid and High School
RACE-M 25, 421 4.0 9.0 3.9 32, 811
RACE-H 62, 445 4.0 10.4 5.8 125, 120
Overall 87, 866 4.0 10.0 5.3 136, 629

Table 4.1: Statistics about my Bulgarian dataset compared to the RACE dataset.
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(Biology) The thick coat of mammals in winter is an example of:
A. physiological adaptation
B. behavioral adaptation
C. genetic adaptation
D. morphological adaptation

(Philosophy) According to relativism in ethics:
A. there is only one moral law that is valid for all
B. there is no absolute good and evil
C. people are evil by nature
D. there is only good, and the evil is seeming

(Geography) Which of the assertions about the economic specialization of the Southwest
region is true?
A. The ratio between industrial and agricultural production is 15:75
B. Lakes of glacial origin in Rila and Pirin are a resource for the development of tourism
C. Agricultural specialization is related to the cultivation of grain and ethereal-oil crops
D. The rail transport is of major importance for intra-regional connections

(History) Point out the concept that is missed in the text of the Turnovo Constitution: „Art.
54 All born in Bulgaria, also those born elsewhere by parents Bulgarian , count as

of the Bulgarian Principality. Art. 78 Initial teaching is free and obligatory for all
of the Bulgarian Principality.”

A. residents
B. citizents
C. electors
D. voters

(History Quiz) Sofroniy Vrachanski started a family that plays a big role in the history of
the Bulgarian National Revival. What is its name?
A. Georgievi
B. Tapchileshtovi
C. Bogoridi
D. Palauzovi

Table 4.2: Example questions, one per subject, from the Bulgarian dataset. The correct
answer is marked in green.

2,633 multiple-choice questions, without contexts, from different subjects: biol-
ogy (16.6%), philosophy (23.93%), geography (23.24%), and history (36.23%). Ta-
ble 4.2 shows an example question with candidate answers chosen to represent best
each category. I use green to mark the correct answer, and bold for the question
category. For convenience all the examples are translated to English.

Table 4.1 shows the distribution of questions per subject category, the length
(in words) for both the questions and the options (candidate answers), and the
vocabulary richness, measured in terms of unique words. The first part of the
table presents statistics about the dataset, while the second part is a comparison to
RACE (Lai et al., 2017).

I divided the Bulgarian questions into two groups based on the question’s
source. The first group (12th Grade Matriculation Exam) was collected from twelfth
grade matriculation exams created by the Ministry of Education of Bulgaria in the
period 2008–2019. Each exam contains thirty multiple-choice questions with four
possible answers per question. The second set of questions (Online History Quizzes)
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are history-related and are collected from online quizzes. While they are not created
by educators, the questions are still challenging and well formulated. Furthermore,
I manually filtered out questions with non-textual content (i.e., pictures, paintings,
drawings, etc.), ordering questions (i.e., order the historical events), and questions
involving calculations (i.e., how much X we need to add to Y to arrive at Z).

Table 4.1 shows that history questions in general contain more words (14.0–38.9
on average), compared to other subjects (8.9–12.8 on average). A tangible difference
in length compared to other subjects is seen for 12th grade History and PzHistory,
due to the large number of quotes, and document pieces contained in questions
from these two groups. Also, the average question length is 15.7, which is longer
compared to the RACE dataset with 10.0. On the other hand, the option lengths
per subject category in my dataset follow a narrower distribution. They fall in the
interval between 2.5 and 2.9 words on average, expect for 12th grade History, with
3.6 words. Here, I note a significant difference compared to the option lengths in
RACE, which tend to be 2.4 words longer on average – 5.3 for RACE vs. 2.9 for
ours.

Finally, I examine the vocabulary richness of the two datasets. The total num-
ber of unique words is shown in the last column of Table 4.1 (Vocab Size). For my
dataset, there are two numbers per row: the first one shows statistics based on the
question–answer pairs only, while the second one, enclosed in parentheses, mea-
sures the vocabulary size including the extracted passages by the Context Retriever.
The latter number is a magnitude estimate rather then a concrete number, since its
upper limit is the number of words in Wikipedia, and it can vary for different
retrieval strategies.

4.2.3 Experiments and Evaluation

BERT Fine-Tuning

I divide the fine-tuning into two groups of models (i) Multilingual BERT, and
(ii) Slavic BERT. Table 4.3 below presents the results in the multiple-choice com-
prehension task on the dev dataset from RACE (Lai et al., 2017).

Multilingual BERT As my initial model, I use BERTbase, Multilingual Cased
which is pre-trained on 104 languages, and has 12-layers, 768-hidden units per
layer, 12-heads, and a total of 110M parameters. I further fine-tune the model on
RACE (Lai et al., 2017) for 3 epochs saving a checkpoint after each epoch. I use a
batch size of 8, a max sequence size of 320, and a learning rate of 1e-5.
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#Epoch RACE-M RACE-H Overall

Multilingual BERT
1 64.21 53.66 56.73
2 68.80 57.58 60.84
3 69.15 58.43 61.55

Slavic BERT
2 53.55 44.48 47.12
3 57.38 46.88 49.94

Table 4.3: Accuracy measured on the dev RACE dataset after each training epoch.

Slavic BERT The Slavic model4 was built using transfer learning from the Mul-
tilingual BERT model to four Slavic languages: Bulgarian, Czech, Polish, and Rus-
sian. In particular, the Multilingual BERT model was fine-tuned on a stratified
dataset of Russian news and Wikipedia articles for the other languages. I use this
pre-trained Slavic BERT model, and I apply the same learning procedure as for
Multilingual BERT.

Wikipedia Retrieval and Indexing

Here, I discuss the retrieval setup (see Section 4.2.1 for more details). I use the
Bulgarian dump of Wikipedia from 2019-04-20, with a total of 251,507 articles. I
index each article title and body in plain text, which I call a passage. I further apply
additional processing for each field:

• ngram: word-based 1–3 grams;

• bg: lowercased, stop-words removed (from Lucene), and stemmed (Savoy,
2007);

• none: bag-of-words index.

I ended up using a subset of four fields from all the possible analyzer-field
combinations, namely title.bg, passage, passage.bg, and passage.ngram. I applied Bul-
garian analysis on the title field only as it tends to be short and descriptive, and
thus very sensitive to noise from stop-words, which is in contrast to questions that
are formed mostly of stop-words, e.g., what, where, when, how.

For indexing the Wikipedia articles, I adopt two strategies: sliding window and
paragraph. In the window-based strategy, I define two types of splits: small, con-
taining 80-100 words, and large, of around 300 words. In order to obtain indexing
chunks, I define a window of size K, and a stride equal to one forth of K. Hence,
each K

4 characters, which is the size of the stride, are contained into four different
documents. The paragraph-based strategy divides the article by splitting it using
one or more successive newline characters ([\n]+) as a delimiter. I avoid indexing

4http://github.com/deepmipt/Slavic-BERT-NER

http://github.com/deepmipt/Slavic-BERT-NER


Chapter 4. Curating Answers from External Knowledge Sources 47

entire documents due to their extensive length, which can be far beyond the maxi-
mum length that BERT can take as an input, i.e., 320 word pieces (see Section 4.2.3
for the more details). Note that extra steps are needed in order to extract a proper
passage from the text. Moreover, the amount of facts in the Wikipedia articles that
are unrelated to the questions give rise to false positives since the question is short
and term-unspecific.

Finally, I use a list of top-N hits for each candidate answer. Thus, I have to exe-
cute an additional query for each question + option combination, which may result
in duplicated passages, thus introducing an implicit bias towards the candidates
they support. In order to mitigate this effect, during the answer selection phase
(see Section 4.2.1), I remove all duplicate entries, keeping a single instance.

Experimental Results

Here, I discuss the accuracy of each model on the original English MRC task, fol-
lowed by experiments in zero-shot transfer to Bulgarian.

English Pre-training for Multiple-Choice MRC. Table 4.3 presents the change in
accuracy on the original English comprehension task, depending on the number of
training epochs. In the table, “BERT” refers to the Multilingual BERT model, while
“Slavic” stands for BERT with Slavic pre-training. I further fine-tune the models on
the RACE dataset. Next, I report their performance in terms of accuracy, following
the notation from (Lai et al., 2017). Note that the questions in RACE-H are more
complex than those in RACE-M. The latter has more word matching questions
and fewer reasoning questions. The final column in the table, Overall, shows the
accuracy calculated over all questions in the RACE testset. I train both setups for
three epochs and I report their performance after each epoch. We can see a positive
correlation between the number of epochs and the model’s accuracy. We further
see that the Slavic BERT performs far worse on both RACE-M and RACE-H, which
suggests that the change of weights of the model towards Slavic languages has led
to catastrophic forgetting of the learned English syntax and semantics. Thus, it
should be expected that the adaptation to Slavic languages would yield decrease in
performance for English. What matters though is whether this helps when testing
on Bulgarian, which I explore next.

Zero-Shot Transfer. Here, I assess the performance of the model when applied to
Bulgarian multiple-choice reading comprehension. Table 4.4 presents an ablation
study for various components. Each line denotes the type of the model, and the
addition (+) or the removal (–) of a characteristic from the setup in the previous line.
The first line shows the performance of a baseline model that chooses an option
uniformly at random from the list of candidate answers for the target question. The
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Setting Accuracy

Random 24.89
Train for 3 epochs –
+ window & title.bg & pass.ngram 29.62
+ passage.bg & passage 39.35
– title.bg 39.69
+ passage.bg^2 40.26
+ title.bg^2 40.30
+ bigger window 36.54
+ paragraph split 42.23
+ Slavic pre-training 33.27
Train for 1 epoch best 40.26
Train for 2 epochs best 41.89

Table 4.4: Accuracy on the Bulgarian testset: ablation study when sequentially
adding/removing different model components.

following rows show the results for experiments conducted with a model trained
for three epochs on RACE (Lai et al., 2017).

The basic model uses the following setup: Wikipedia pages indexed using a
small sliding window (400 characters, and stride of 100 characters), and context
retrieval over two fields: Bulgarian analyzed title (text.bg), and word n-grams over
the passage (passage.ngram). This setup yields 29.62% accuracy, and it improves
over the random baseline by 4.73% absolute. We can think of it as a non-random
baseline for further experiments. Next, I add two more fields to the IR query:
passage represented as a bag of words (named passage), and Bulgarian analyzed
(passage.bg), which improves the accuracy by additional 10%, arriving at 39.35%.
The following experiment shows that removing the title.bg field does not change the
overall accuracy, which makes it an insignificant field for searching. Further, I add
double weight on passage.bg, (shown as ^2), which yields 1% absolute improvement.

From the experiments described above, I found the best combination of query
fields to be title.bulgarian^2, passage.ngram, passage, passage.bulgarian^2, where the
title has a minor contribution, and can be sacrificed for ease of computations and
storage. Fixing the best query fields, allowed me to evaluate other indexing strate-
gies, i.e., bigger window (size 1,600, stride 400) with accuracy 36.54%, and para-
graph splitting, with which I achieved the highest accuracy of 42.23%. This is an
improvement of almost 2.0% absolute over the small sliding window, and 5.7% over
the large one.

Next, I examined the impact of the Slavic BERT. Surprisingly, it yielded 9%
absolute drop in accuracy compared to the multi-lingual BERT. This suggests that
the latter already has enough knowledge about Bulgarian, and thus it does not need
further adaptation to Slavic languages.
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Figure 4.2: Accuracy per question category based on the number of query results per
answer option.

Further, I study the impact of the number of fine-tuning epochs on the model’s
performance. I observe an increase in accuracy as the number of epochs grows,
which is in line with previously reported results for English tasks. While this corre-
lation is not as strong as for the original RACE task (see Table 4.3 for comparison),
I still observe 1.6% and 0.34% absolute increase in accuracy for epochs 2 and 3,
respectively, compared to epoch 1. Note that I do not go beyond three epochs, as
previous work has suggested that 2-3 fine-tuning epochs are enough (Devlin et al.,
2019), and after that, there is a risk of catastrophic forgetting of what was learned
at pre-training time (note that I have already seen such forgetting with the Slavic
BERT above).

I further study the impact of the size of the results list returned by the re-
triever on the accuracy for the different categories. Figure 4.2 shows the aver-
age accuracy for a given query size Sq over all performed experiments, where
Sq ∈ {1, 2, 5, 10, 20}. We can see in Figure 4.2 that longer query result lists (i.e., con-
taining more than 10 results) per answer option worsen the accuracy for all cate-
gories, except for biology, where we see a small peak at length 10, while still the
best overall results for this category is achieved for a result list of length 5. A single
well-formed maximum at length 2 is visible for history and philosophy. With these
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two categories being the biggest ones, the cap at the same number of queries for
the overall accuracy is not a surprise. The per-category results for the experiments
are discussed in more detail in the next Section ‘Per-Category Results’.

We can see that the highest accuracy is observed for history, particularly for on-
line quizzes, which are not designed by educators and are more of a word-matching
nature rather then a reasoning one (see Table 4.2). Finally, geography appears to be
the hardest category with only 38.73% accuracy: 3.5% absolute difference compared
to the second-worst category. The performance for this subject is also affected dif-
ferently by changes in query result length: the peak is at lengths 5 and 10, while
there is a drop for length 2. A further study of the model’s behavior can be found
in Section 4.2.4.

Per-Category Results Table 4.5 gives an overview, including per-category break-
down, of my parameter tuning experiments. I present the results for some interest-
ing experiments rather then for a full grid search. The first row shows a random
baseline for each category. In the following rows, I compare different types of in-
dexing: first, I show the results for a small sliding window (400-character window,
and 100-character stride), followed by a big window (1,600-character window, and
400-character stride), and finally for paragraph indexing. I use the same notation as
in Section 4.2.3. The last group in the table (Paragraph) shows the best-performing
model, where I mark in bold the highest accuracy for each category. For complete-
ness, I also show the accuracy when using the Slavic BERT model for prediction,
which yields a 10% drop on average compared to using the Multilingual BERT, for
each of the categories.

4.2.4 Case Study

In Table 4.6, I present the retrieved evidence passages for the example questions
in Table 4.2: I omit the answers, and I only show the questions and the contexts.
Each example is separated by a double horizontal line, where the first row is the
question starting with “Q:”, and the following rows contain passages returned by
the retriever. For each context, I normalize the raw scores from the comprehension
model using Eq. 4.1 to obtain a probability distribution. I then select an answer
using arg max, according to Eq. 4.2. In the table, I indicate the correctness of each
predicted answer using one of the following symbols before the question:

✓ The question is answered correctly.

✗ An incorrect answer has the highest score.

? Two or more answers have the highest score.

I show the top retrieved result in order to illustrate the model scores over dif-
ferent evidence passages and the quality of the articles. The queries are formed
by concatenating the question with an answer option, even though this can lead to
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#docs Overall biology-12th philosophy-12th geography-12th history-12th history-quiz

Random
0 24.89 26.09 24.44 24.18 25.87 24.03

Window Small
title.bulgarian, passage.bulgarian

1 39.95 40.27 40.63 34.97 42.99 41.99
2 40.22 40.27 40.63 35.95 42.62 42.72
5 40.22 38.90 40.63 38.07 41.51 42.48

10 38.66 40.50 39.84 35.46 39.30 38.83
20 36.84 37.53 39.05 33.82 38.75 34.71

title.bulgarian, passage.ngram
1 28.94 29.06 32.06 27.29 27.49 28.40
2 29.09 29.06 33.33 25.00 28.78 29.13
5 29.05 27.46 32.06 26.63 30.63 27.67

10 29.62 29.06 32.54 26.96 30.07 29.13
20 29.43 31.81 32.70 26.63 28.60 27.18

title.bulgarian, passage.ngram, passage, passage.bulgarian
1 38.32 38.22 40.00 34.48 39.48 40.05
2 39.08 37.07 40.32 34.48 40.59 44.17
5 39.35 40.96 39.84 34.64 41.33 41.26

10 38.63 40.50 40.63 33.50 40.41 38.83
20 36.54 38.67 37.94 31.37 37.45 38.59

passage.ngram, passage, passage.bulgarian^2
1 39.69 40.27 40.63 35.13 42.07 41.26
2 40.26 39.82 40.95 35.95 42.62 42.96
5 39.57 39.59 39.37 37.25 40.96 41.50

10 38.70 41.19 39.52 35.78 39.30 38.35
20 37.14 39.36 37.78 35.29 38.38 34.95

title.bulgarian^2, passage.ngram, passage, passage.bulgarian^2
1 39.84 40.27 40.79 35.13 42.25 41.75
2 40.30 40.27 40.63 36.11 42.80 42.72
5 40.26 39.13 40.63 38.40 41.14 42.48

10 38.74 40.50 39.68 35.62 39.48 39.08
20 37.07 37.76 39.05 34.64 38.56 34.95

Window Big
title.bulgarian^2, passage.ngram, passage, passage.bulgarian^2

1 31.22 28.38 33.97 29.41 30.81 33.25
2 33.12 31.58 37.46 31.21 33.95 29.85
5 36.04 35.70 38.10 33.82 37.82 34.22

10 36.54 37.30 36.03 33.99 39.30 36.65
20 35.62 34.55 39.68 31.05 38.38 33.74

Paragraph
title.bulgarian^2, passage.ngram, passage, passage.bulgarian^2

1 41.82 41.42 42.06 38.07 40.96 48.54
2 42.23 42.56 43.17 35.62 42.99 49.27
5 41.59 43.25 40.32 38.73 40.04 48.06

10 39.46 40.96 38.41 36.93 39.85 42.72
20 37.52 39.13 37.62 34.64 38.56 38.59

Slavic BERT
1 33.19 30.89 33.17 28.76 32.29 43.45
2 33.27 31.58 31.90 31.21 35.24 37.62
5 31.14 30.21 30.16 29.25 31.00 36.65

10 30.42 29.29 29.68 29.74 31.92 31.80
20 29.66 28.60 29.37 28.43 32.10 29.85

Table 4.5: Evaluation results for the Bulgarian multiple-choice reading comprehension task:
comparison of various indexing and query strategies.
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Context PrA PrB PrC PrD

✓ Q: The thick coat of mammals in winter is an example of:
1) The hair cover is a rare and rough bristle. In winter, soft
and dense hair develops between them. Color ranges from
dark brown to gray, individually and geographically diverse

0.19 0.19 0.15 0.47

✗ Q: According to relativism in ethics:
1) Moral relativism 0.45 0.24 0.10 0.21
2) In ethics, relativism is opposed to absolutism. Whilst abso-
lutism asserts the belief that there are universal ethical stan-
dards that are inflexible and absolute, relativism claims that
ethical norms vary and differ from age to age and in different
cultures and situations. It can also be called epistemological
relativism - a denial of absolute standards of truth evaluation.

0.28 0.41 0.09 0.22

✓ Q: Which of the assertions about the economic specializa-
tion of the Southwest region is true?
1) Geographic and soil-climatic conditions are blessed for the
development and cultivation of oil-bearing rose and other es-
sential oil crops.

0.12 0.52 0.28 0.08

2) Kirov has an airport of regional importance. Kirov is con-
nected with rail transport with the cities of the Transsiberian
highway (Moscow and Vladivostok).

0.14 0.27 0.06 0.53

3) Dulovo has always been and remains the center of an agri-
cultural area, famous for its grain production. The industrial
sectors that still find their way into the city’s economy are
primarily related to the primary processing of agricultural
produce. There is also the seamless production that evolved
into small businesses with relatively limited economic signif-
icance.

0.25 0.05 0.67 0.03

4) In the glacial valleys and cirques and around the lakes
in the highlands of Rila and Pirin, there are marshes and
narrow-range glaciers (overlaps).

0.10 0.72 0.08 0.10

? Q: Point out the concept that is missed in the text of the
Turnovo Constitution: . . .
1) 0.26 0.26 0.26 0.22

✓ Q: Sofroniy Vrachanski sets up a genre that plays a big role
in the history of the Bulgarian Revival. What is his name?
1) Bogoridi is a Bulgarian Chorbadji genus from Kotel. Its
founder is Bishop Sofronius Vrachanski (1739-1813). His de-
scendants are:

0.06 0.16 0.68 0.10

Table 4.6: Retrieved unique top-1 contexts for the example questions in Table 4.2. The
passages are retrieved using queries formed by concatenating a question with an answer

option.
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duplicate results since some answers can be quite similar or the question’s terms
could dominate the similarity score. The questions in Table 4.6 are from five differ-
ent categories: biology, philosophy, geography, history, and online quizzes. Each
of them has its own specifics and gives me an opportunity to illustrate a different
model behavior.

The first question is from the biology domain, and we can see that the text
is very general, and so is the retrieved context. The latter talks about hair rather
than coat, and the correct answer (D) morphological adaptation is not present in the
retrieved text. On the other hand, all the terms are only connected to it, and hence
the model assigns high probability to this answer option.

For the second question, from the philosophy domain, there are two related
contexts found. The first one is quite short, noisy, and it does not give much in-
formation in general. The second paragraph manages to extract the definition of
relativism and to give good supporting evidence for the correct answer, namely that
there is no absolute good and evil (B). As a result, this option is assigned high proba-
bility. Nevertheless, the incorrect answer here is only one moral law that is valid for all
(A) is assigned an even higher probability and it wins the voting.

In the third example, from the domain of geography, we see a large number of
possible contexts, due to the long and descriptive answers. We can make two key
observations: (i) the query is drawn in very different directions by the answers, and
(ii) there is no context for Southwestern region, and thus, in the second option, the
result is for Russia, not for Bulgaria. The latter passage pushes the probability mass
to an option that talks about transportation (D), which is incorrect. Fortunately, the
forth context has an almost full term overlap with the correct answer (B), and thus
gets very high probability assigned to it: 72%.

The fourth question, from the history domain, asks to point out a missing
concept, but the query is dominated by the question, and especially by underscores,
leading to a single hit, counting only symbols, without any words. As expected,
the model assigned uniform probability to all classes.

The last question, a history quiz, is a factoid one, and it lacks a reasoning
component, unlike the previous examples. The query returned a single direct
match. The retrieved passage contains the correct answer exactly: option Bogoridi
(C). Thereby, the comprehension model assigns to it a very high probability of 68%.

4.3 Answer Retrieval from a Pool of Explanations

The massive spread of disinformation online, especially in social media, was
counter-acted by major efforts to limit the impact of false information not only
by journalists and fact-checking organizations but also by governments, private
companies, researchers, and ordinary Internet users. Such efforts include, but are
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Figure 4.3: Crowd fact-checking thread on Twitter. The first tweet (Post w/ claim) makes
the claim that Ivermectin causes sterility in men, which then receives replies. A (crowd) fact-
checker replies with a link to a verifying article from a fact-checking website. I pair the
article with the tweet that made this claim (the first post ✓), as it is irrelevant (✗) to the other

replies.

not limited to building systems for automatic fact-checking (Thorne and Vlachos,
2018; Guo et al., 2022), rumor debunking (Zubiaga et al., 2016; Derczynski et al.,
2017), fake news detection (Ferreira, 2016; Pomerleau and Rao, 2017), and media
profiling (Baly et al., 2020; Stefanov et al., 2020), among others.

I study the following problem of detecting previously fact-checked claims:
Given a user comment, detect whether the claim it makes was previously fact-checked with
respect to a collection of verified claims and their corresponding articles (see Table 4.7).
This task is an integral part of an end-to-end fact-checking pipeline (Hassan et al.,
2017), and also an important task on its own right as people often repeat the same
claim (Barrón-Cedeno et al., 2020; Vo and Lee, 2020; Shaar et al., 2021). Research
on this problem is limited by data scarceness, with datasets typically having about
a 1,000 tweet–verifying article pairs (Barrón-Cedeno et al., 2020; Shaar et al., 2020,
2021), with the notable exception of Vo and Lee (2020), which contains 19K claims
about images matched against 3K fact-checking articles.

I propose to bridge this gap using crowd fact-checking to create a large col-
lection of tweet–verifying article pairs, which I then label (if the pair is correctly
matched) automatically using distant supervision. An example is shown in Fig-
ure 4.3.
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User Post w/ Claim: Sen. Mitch McConnell: “As recently as October, now-President
Biden said you can’t legislate by executive action unless you are a dictator. Well, in
one week, he signed more than 30 unilateral actions.” [URL] — Forbes (@Forbes)
January 28, 2021

Verified Claims and their Corresponding Articles

(1)

When he was still a candidate for the presidency in
October 2020, U.S. President Joe Biden said, “You can’t legislate
by executive order unless you’re a dictator.” http://snopes.com/
fact-check/biden-executive-order-dictator/

✓

(2)
U.S. Sen. Mitch McConnell said he would not participate in 2020
election debates that include female moderators. http://snopes.
com/fact-check/mitch-mcconnell-debate-female/

✗

Table 4.7: Illustrative examples for the task of detecting previously fact-checked claims.
The post contains a claim (related to legislation and dictatorship), the Verified Claims are
part of a search collection of previous fact-checks. In row (1), the fact-check is a correct
match for the claim made in the tweet (✓), whereas in (2), the claim still discusses Sen.

Mitch McConnell, but it is a different claim (✗), and thus it forms an incorrect pair.

4.3.1 My Newly Collected Dataset: CrowdChecked

Dataset Collection

I use Snopes as my target fact-checking website, due to its popularity among both
Internet users and researchers (Popat, Kashyap and Mukherjee, Subhabrata and
Strötgen, Jannik and Weikum, Gerhard, 2016; Hanselowski et al., 2019; Augenstein
et al., 2019; Tchechmedjiev et al., 2019). I further use Twitter as the source for col-
lecting user messages, which could contain claims and fact-checks of these claims.

My data collection setup is similar to the one in Vo and Lee (2019). First,
I form a query to select tweets that contain a link to a fact-check from Snopes
(url:snopes.com/fact-check/), which is either a reply or a quote tweet, and not a
retweet.5 An example result from the query is shown in Figure 4.3, where the
tweet from the crowd fact-checker contains a link to a fact-checking article. I then
assess its appropriateness to the claim (if any) made in the first tweet (the root of
the conversation) and the last reply in order to obtain tweet–verified article pairs. I
analyze in more detail the conversational structure of these threads in Section 4.3.1,
‘Tweet Collection (Conversation Structure)’.

I then collect all tweets matching the query from October 2017 till October 2021,
obtaining a total of 482,736 unique hits. I further collect 148,503 reply tweets and
204,250 conversation (root) tweets.6 Finally, I filter out malformed pairs, i.e., tweets
linking to themselves, empty tweets, non-English ones, such with no resolved URLs
in the Twitter object (‘entities’), with broken links to the fact-checking website, and

5I exclude retweets, as they do contain no comments, but rather share previous tweets.
6The sum of the unique replies and of the conversation tweets is not equal to the number of

fact-checking tweets, as more than one tweet might reply to the same comment.

http://snopes.com/fact-check/biden-executive-order-dictator/
http://snopes.com/fact-check/biden-executive-order-dictator/
http://snopes.com/fact-check/mitch-mcconnell-debate-female/
http://snopes.com/fact-check/mitch-mcconnell-debate-female/
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all tweets in the CheckThat ’21 dataset. After cleaning the dataset, I ended up with
332,660 unique tweet–article pairs (shown in first row in Table 4.11), 316,564 unique
tweets, and 10,340 fact-checking articles from Snopes they could point to. More de-
tail about the fact-checking articles collection and statistics are given in Section 4.3.1
and on Figure 4.5.

Tweet Collection (Conversation Structure)

It is important to note that this ‘fact-checking’ tweet can be part of a multiple-turn
conversational thread, therefore taking the post that it replies to (previous turn),
does not always express a claim which the current tweet targets. In order to better
understand that phenomena, I perform manual analysis of conversation thread.
The conversational threads are organized in a similar way shown Figure 4.3, i.e., the
root is the first comment, then there can be a long discussion, followed by a fact-
checking comment (the one with the Snopes link). In my analysis I identify four
patterns: (i) current tweet verifies a claim in the the tweet it replies to, (ii) the tweet
verifies the root of the conversation, (iii) the tweet does not verify any claim in the
chain (a common scenario), (iv) in very few cases the fact-check targets a claim
expressed not in the root or the closest tweet. This analysis suggests that for the
task of detecting previously fact-checked claims, it is sufficient to collect the triplet
of the fact-checking tweet, root of the conversation (conversation), and the tweet that
the target tweet is replying to (reply).

Comparison to Existing Datasets

Next, I compare my dataset to a closely related dataset from the CLEF-2021 Check-
That ’21 on Detecting Previously Fact-Checked Claims in Tweets (Shaar et al., 2021),
to which I will refer as CheckThat ’21 in the rest of the chapter. There exist other
related datasets that are smaller (Barrón-Cedeno et al., 2020), come from a different
domain (Shaar et al., 2021), are not in English (Elsayed et al., 2019), or are multi-
modal (Vo and Lee, 2020).

Table 4.8 compares CrowdChecked to CheckThat ’21 in terms of number of exam-
ples, length of the tweets, and vocabulary size. Before I calculated these statistics, I
lowercased the text and I removed all URLs, Twitter handlers, English stop words,
and punctuation. We can see in Table 4.8 that CrowdChecked contains two orders of
magnitude more examples, slightly shorter tweets (but the maximum length stays
approximately the same, which can be explained by the word limit of Twitter), and
has a vocabulary size that is an order of magnitude larger. Note, however, that
many examples in CrowdChecked are incorrect matches (see Section 4.3.1), and thus
I use distant supervision to label them (see Section 4.3.1), with the resulting dataset
sizes of matching pairs shown in Table 4.11. Here, I want to emphasize that there
is absolutely no overlap between CrowdChecked and CheckThat ’21 in terms of
tweets/claims.
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Dataset Tweets‡ Words Vocab
|Unique| Mean 50% Max |Unique|

CrowdChecked (Mine) 316,564 12.2 11 60 114,727
CheckThat ’21 1,399 17.5 16 62 9,007

Table 4.8: Statistics about out dataset vs.CheckThat ’21. ‡The number of unique tweets is
lower compared to the total number of tweet–article pairs, as one tweet can be fact-checked

by multiple articles.

In terms of topics, the claims in both my dataset and CheckThat ’21 are quite
diverse, including fact-checks for a broad set of topics related, but not limited to
politics (e.g., the Capitol Hill riots, U.S. elections), pop culture (e.g., famous per-
formers and actors such as Drake and Leonardo di Caprio), brands (e.g., McDon-
ald’s and Disney), and COVID-19, among many others. Illustrative examples of the
claim/topic diversity can be found in Tables 4.7 and A.3. Moreover, the collection
of Snopes articles contains almost 14K different fact-checks on an even wider range
of topics, which further diversifies the set of tweet–article pairs.

More detail about the process of collecting the fact-checking articles is given in
Section 4.3.1. Finally, I compare the set of Snopes fact-checking articles referenced
by the crowd fact-checkers to the ones included in the CheckThat ’21 competition.

Data Labeling (Distant Supervision)

To label the examples, I experiment with two distant supervision approaches:
(i) based on the Jaccard similarity between the tweet and its fact-checking article,
and (ii) based on the predictions of a model trained on CheckThat ’21.

Jaccard Similarity In this approach, I first pre-process the texts by converting
them to lowercase, removing all URLs and replacing all numbers with a single
zero. Then, I tokenize the texts using the NLTK’s Twitter tokenizer (Loper and Bird,
2002), and I strip all handles and user mentions. The final preprocessing step is to
filter out all stop words7 and punctuation (including quotes and special symbols)
and to stem (Porter, 1980) all tokens.

In order to obtain a numerical score for each tweet–article pair, I calculate the
Jaccard similarity (jac) between the normalized tweet text and each of the title and
the subtitle from the Snopes article (i.e., the intersection over the union of the unique
tokens). Both fields present a summary of the fact-checked claim, and thus should
include more compressed information. Finally, I average these two similarity values
to obtain a more robust score. Statistics are shown in Table 4.9.

Semi-Supervision Here, I train a Sentence-BERT (Reimers and Gurevych, 2019)
model, as described in Section 4.3.2, using the manually annotated data from

7I use the predefined list of English stop words in the NLTK library.
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Range Examples Correct Pairs Correct Pairs
(Jaccard) (%) Reply (%) Conv. (%)

[0.0;0.1) 62.57 5.88 0.00
[0.1;0.2) 18.98 36.36 14.29
[0.2;0.3) 10.21 46.67 50.00
[0.3;0.4) 4.17 76.47 78.57
[0.4;0.5) 2.33 92.86 92.86
[0.5;0.6) 1.08 94.12 94.12
[0.6;0.7) 0.43 80.00 80.00
[0.7;0.8) 0.11 92.31 92.31
[0.8;0.9) 0.05 91.67 92.86
[0.9;1.0] 0.02 100.00 100.00

Table 4.9: Proportion of examples in different bins based on average Jaccard similarity
between the tweet↔ the title/subtitle. Manual annotations of correct pairs (i.e., tweet–article

pairs, where the article fact-checks the claim in the tweet).

Range Examples Correct Pairs
(Cosine) (%) (%)

[-0.4;0.1) 37.83 0.00
[0.1;0.2) 16.50 6.67
[0.2;0.3) 12.28 41.46
[0.3;0.4) 10.12 36.36
[0.4;0.5) 8.58 63.16
[0.5;0.6) 6.69 70.00
[0.6;0.7) 4.47 84.21
[0.7;0.8) 2.48 96.15
[0.8;0.9) 0.97 93.10
[0.9;1.0] 0.08 100.00

Table 4.10: Proportion of examples in different bins based on cosine similarity using
Sentence-BERT trained on CheckThat ’21. Manual annotations of correct pairs.

CheckThat ’21. The model shows strong performance on the testing set of Check-
That ’21 (see Table 4.12), and thus I expect it to have good precision at detecting
matching fact-checked pairs. In particular, I calculate the cosine similarity between
the embeddings of the fact-checked tweet and the fields from the Snopes article.
Statistics about the scores are shown in Table 4.10.

Feasibility Evaluation

To evaluate the feasibility of the obtained labels, I performed manual annotation,
aiming to estimate the number of correct pairs (i.e., tweet–article pairs, where the
article fact-checks the claim in the tweet). My prior observations of the data sug-
gested that unbiased sampling from the pool of tweets was not suitable, as it would
include mostly pairs that have very few overlapping words, which is often an in-
dicator that the texts are not related. Thus, I sample the candidates for annotation
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Figure 4.4: Distribution of the Jaccard similarity scores. The score is an average of the
sim(tweet, title) and sim(tweet, subtitle).

based on their Jaccard similarity, i.e., I divided the range of possible values [0;1]
into 10 equally sized bins and I sampled 15 examples from each bin, resulting
into 150 conversation–reply–tweet triples. Afterwards, the appropriateness of each
reply-article and conversation-article pair is annotated by three annotators indepen-
dently. The annotators had a good level of inter-annotator agreement: 0.75 in terms
of Fleiss Kappa (Fleiss, 1971) (see Section A.1.2).

Tables 4.9 and 4.10 show the resulting estimates of correct pairs for both Jaccard
and cosine-based labeling. In the case of Jaccard, we can see that the expected
number of correct examples is very high (over 90%) in the range of [0.4–1.0], and
then it drastically decreases, going to almost zero when the similarity is less than
0.1. Similarly, for the cosine score, we can see high number of matches in the
top 4 bins ([0.6–1.0]), albeit the number of matches remains relatively high in the
following interval of [0.2–0.6) between 36% and 63%, and again gets close to zero
for the lower-score bins. Next, I analyze the distribution of the Jaccard scores in
CheckThat ’21 in more detail.

Finally, I analyze the distribution of the Jaccard scores in the CheckThat ’21,
shown in Figure 4.4. The distribution is different compared to the one observed
in the my newly collected dataset, as it peaks at around 0.4, and is slightly shifted
towards lower similarity values, suggesting the examples included are not easily
solvable with basic lexical features (Shaar et al., 2021), which I also observe in my
experiments (see Section 4.3.3).
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Fact-checking Articles Collection

In order to obtain a collection of fact-checking articles for each tweet, I first formed a
list of unique URLs shared in the fact-checking tweets from the crowd fact-checkers.
Next, from each URL I downloaded the HTML of the whole page and extracted
the meta information using CSS selectors and RegEx rules. In particular, I follow
previous work (Barrón-Cedeno et al., 2020; Shaar et al., 2021) and collect: title, the
title of the page, subtitle, short description of the fact-check, claim, the claim of
interest, subtitle, short description of the fact-check, date, the date on the article was
published, author, the author of the article. I do not parse the content of the article
and factual label, as the credibility of the claim is not related to the objective of this
task, i.e., the goal is to find a fact-checking article, but not to verify it.

As a result I collected 10,340 articles that are published in the period between
1995–2021. The per-year distribution is shown in Table 4.5 (in brown). The ma-
jority of the articles are from the period after 2015, with a peak at the ones from
2020/2021. I attribute this on the increased media literacy and on the nature of the
Twitter dynamics (Zubiaga, 2018).

Fact-Check Articles Comparison Finally, I compare the set of Snopes fact-
checking articles referenced by the crowd fact-checkers to the ones included in the
CheckThat ’21 competition. We can see that the tweets in CrowdChecked refer to
around 3.5K less articles (namely 10,340), compared to CheckThat ’21, which con-
sists of 13,835 articles. A total of 8,898 articles are present in both datasets. Since
the CheckThat ’21 is collected earlier, it includes less articles from recent years com-
pared to CrowdChecked, and peaks at 2016/2017. Nevertheless, for CheckThat ’21,
the number of Snopes articles included in a claim–article pair is far less compared
to my dataset (even after filtering out the unrelated pairs), as it is capped at the
number of tweets included in that dataset (which is 1.4K).

4.3.2 Method

General Scheme As a base for my models, I use Sentence-BERT (SBERT). It uses a
Siamese network trained with a Transformer (Vaswani et al., 2017) encoder to obtain
sentence-level embeddings. I keep the base architecture proposed by Reimers and
Gurevych (2019), but I use additional features, training tricks, and losses described
in the next sections. The input is a pair of a tweet and fact-checking article, which
I encode as follows:

• User Tweet: [CLS] Tweet Text [SEP]
• Verifying article: [CLS] Title [SEP] Subtitle [SEP] Verified Claim [SEP]

I train the models using the multiple negatives ranking (MNR) loss (Henderson
et al., 2017) (see Eq. 4.3), instead of the standard cross-entropy (CE) loss, as the
datasets contain only positive (i.e., matching) pairs. Moreover, I propose a new
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Figure 4.5: Histogram of the year of publication of the Snopes articles included in Crowd-
Checked (my dataset) vs. those in CheckThat ’21.

variant of the MNR loss that accounts for the noise in the dataset, as described in
detail in Section 4.3.2.

Enriched Scheme In the enriched scheme of the model, I adopt the pipeline
proposed in the best-performing system from the CheckThat ’21 competi-
tion (Chernyavskiy et al., 2021). Their method consists of independent compo-
nents for assessing lexical (TF.IDF-based) and semantic (SBERT-based) similarities.
The SBERT models use the same architecture and input format as described in the
‘General Scheme’ above. However, Chernyavskiy et al. (2021) use an ensemble of
models, i.e., instead of calculating a single similarity between the tweet and the
joint title/subtitle/verified claim, the similarities between the tweet and the claim,
the joint title/claim, and the three together are obtained from three models, one
using on TF.IDF and one using SBERT, for each combination. These similarities are
combined via a re-ranking model (see Section 4.3.2). In my experiments, the TF.IDF
and the model ensembles are included only in the models with re-ranking.

Shuffling and Temperature I adopt a temperature parameter (τ) in the MNR loss.
I also make it trainable in order to stabilize the training process as suggested in
(Chernyavskiy et al., 2022). This forces the loss to focus on the most complex
and important examples in the batch. Moreover, this effect is amplified after each
epoch by an additional data shuffling that composes batches from several groups
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of the most similar examples. This shuffling, in turn, increases the temperature
significance. The nearest neighbors forming the groups are found using the model
predictions. More detail about the training and the models themselves can be found
in (Chernyavskiy et al., 2021).

Training with Noisy Data

Self-Adaptive Training To account for possible noise in the distantly supervised
data, I propose a new method based on a self-adaptive training (Huang et al., 2020),
which was introduced for classification tasks and the CE loss; however it needs to
be modified in order be used with the MNR loss. I iteratively refurbish the labels y
using the predictions of the current model starting after an epoch of choice, which
is a hyper-parameter:

yr ← α · yr + (1− α) · ŷ,

where yr is the current refurbished label (yr = y initially), ŷ is the model
prediction, and α is a momentum hyper-parameter (I set α to 0.9).

Since the MNR loss operates with positive pairs only (it does not operate with
labels), to implement this approach, I had to modify the loss function. Let {ci, vi}1..m
be the batch of input pairs, where m is the batch size, C, V ∈ Rm×h are the matrices
of embeddings for the tweets and for the fact-checking articles (h is the embed-
dings’ hidden size), and C, V are normalized to the unit hyper-sphere (I use cosine
similarity), then:

L = − 1
m

m

∑
i=1

yr
i

( cT
i vi

τ
− log

m

∑
j=1

exp(
cT

i vj

τ
)
)

(4.3)

If I set yr
i = 1, then Eq. 4.3 resembles the MNR loss definition. The parameter τ is

the temperature, discussed in Section 4.3.2 Shuffling and Temperature.

Weighting In the self-adaptive training approach, Huang et al. (2020) introduce
weights wi = maxj∈{1,..,L} ti,j, where ti is the corrected one-hot encoded target vector
in a classification task with L classes. The goal is to ensure that noisy labels will
have a lower influence on the training process compared to correct labels. Instead
of a classification task with one-hot target vectors ti,j, here we have real targets
yr

i . Therefore, I take these probabilities as weights: wi = yr
i . After applying both

modifications with the addition of labels and weights, the impact of each training
example is proportional to the square of the corrected label, i.e., in Eq. 4.3 yr

i is now
squared.

Re-ranking

Re-ranking has shown major improvements for detecting previously fact-checked
claims (Shaar et al., 2020, 2021; Mihaylova et al., 2021; Chernyavskiy et al., 2021),
and thus I include it as part of my model. In particular, I adopt the re-ranking
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Dataset Data Split Threshold Tweet-Article
Pairs

CrowdChecked
(My Dataset)

Train - 332,660

Train
Jaccard

0.30 27,387
0.40 12,555
0.50 4,953

Train
Cosine

0.50 48,845
0.60 26,588
0.70 11,734
0.80 3,496

CheckThat ’21
Train - 999
Dev - 199
Test - 202

Table 4.11: Statistics about my collected datasets in terms of tweet–verifying article pairs.

procedure from Chernyavskiy et al. (2021). It uses a LambdaMART (Wu et al., 2010)
model. The inputs are the reciprocal ranks (position in the ranked list of claims)
and the predicted relevance scores (2 factors) based on the scores of the TF.IDF
and SBERT models (2 models), between the tweet and the claim, claim+title, and
claim+title+subtitle (3 combinations), for a total of twelve features in the ensemble
and four in the single model.

4.3.3 Experiments

In this section, I describe my experimental setup and I present my experimental
results. The training procedure and the hyper-parameters are in Appendix A.1.1,
and the baselines are in Section 4.3.3.

Experimental Setup

Datasets Table 4.11 shows statistics about the data split sizes for CrowdChecked
and CheckThat ’21. I use these splits in my experiments, albeit sometimes mixed
together.

The first group (CrowdChecked) is the data splits obtained from distant su-
pervision. As the positive pairs are annotated with distant supervision and not by
humans, I include them as part of the training set. Each shown split is obtained
using a different similarity measure (Jaccard or Cosine) or threshold. From the to-
tal number of 332K collected tweet–article pairs in CrowdChecked, I end up with
subsets of sizes between 3.5K and 49K examples.

The second group describes the CheckThat ’21 dataset. I preserve the original
training, development, and testing splits. In each of my experiments, I validate and
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test on the corresponding subsets from the CheckThat ’21, while the training set
can be a mix with CrowdChecked.

Baselines and State-of-the-Art

• Retrieval (Shaar et al., 2021) uses an information retrieval model based on
BM25 (Robertson and Zaragoza, 2009) that ranks the list of fact-checking ar-
ticles based on the relevance score between its {’claim’, ’title’} and the tweet’s
text.

• Sentence-BERT is a bi-encoder model based on Sentence-BERT fine-tuned for
detecting previously fact-checked claims using MNR loss. The details are in
Section 4.3.2, General Scheme.

• DIPS (Mihaylova et al., 2021) adopts a Sentence-BERT model that computes
the cosine similarity for each pair of an input tweet and a verified claim (ar-
ticle). The final ranking is made by passing a sorted list of cosine similarities
to a fully-connected neural network.

• NLytics (Pritzkau, 2021) uses a RoBERTa-based model optimized as a regres-
sion function obtaining a direct ranking for each tweet-article pair.

• Aschern (Chernyavskiy et al., 2021) combines TF.IDF with a Sentence-BERT
(ensemble with three models of each type). The final ranking is obtained from
a re-ranking LambdaMART model.

Metrics For my evaluation, I adopt the ranking measures used in the Check-
That ’21 competition. In particular, I calculate the mean reciprocal rank (MRR)
mean average precision (MAP@K) and Precision@K, for K ∈ {1, 3, 5, 10}. All the
models are optimized for MAP@5, as was in the CLEF-2021 CheckThat! lab sub-
task 2A.

Experimental Results

Below, I present experiments that (i) aim to analyze the impact of training with
the distantly supervised data from CrowdChecked, and (i) to further improve the
state-of-the-art (SOTA) results using modeling techniques to better leverage the
noisy data points (see Section 4.3.2). In all my experiments, I evaluate the model on
the development and on the testing sets from CheckThat ’21 (see Table 4.11), and
I train on a mix with CrowdChecked. The reported results for each experiment (for
each metric) are averaged over three runs using different seeds.

Threshold Selection Analysis My goal here is to evaluate the impact of using dis-
tantly supervised data from CrowdChecked. In particular, I train an SBERT base-
line, as described in Section 4.3.2, using four different training datasets: (i) the train-
ing data from CheckThat ’21, (ii) training data from CrowdChecked, (iii) pre-training
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Model MRR P@1 MAP@5

Baselines (CheckThat ’21)
Retrieval (Shaar et al., 2021) 76.1 70.3 74.9
SBERT (CheckThat ’21) 79.96 74.59 79.20

CrowdChecked (My Dataset)
SBERT (jac > 0.30) 81.50 76.40 80.84
SBERT (cos > 0.50) 81.58 75.91 81.05

(Pre-train) CrowdChecked, (Fine-tune) CheckThat ’21
SBERT (jac > 0.30, Seq) 83.76 78.88 83.11
SBERT (cos > 0.50, Seq) 82.26 77.06 81.41

(Mix) CrowdChecked and CheckThat ’21
SBERT (jac > 0.30, Mix) 83.04 78.55 82.30
SBERT (cos > 0.50, Mix) 82.12 76.57 81.38

Table 4.12: Evaluation on the CheckThat ’21 testing set. In parenthesis is name of the
training split, i.e., Jaccard or Cosine selection strategy, (Seq) first training on CrowdChecked
and then on CheckThat ’21, (Mix) mixing the data from the two. The highest results are in

bold.

on data from CrowdChecked and then fine-tuning on CheckThat ’21, (iv) mixing the
data from both datasets.

Table 4.12 shows the results grouped based on training data used. In each
group, I include the two best-performing models. We see that all SBERT models
outperform the Retrieval baseline by 4–8 points absolute MAP@5. Interestingly,
training only on distantly supervised data is enough to outperform the SBERT
trained on the CheckThat ’21 by more than 1.5 MAP@5 points. Moreover, the per-
formance of both data labeling strategies (i.e., Jaccard and Cosine) is relatively close,
suggesting comparable amount of noise in the two datasets.

Next, I train on combined data from the two datasets. Unsurprisingly, both
mixing the data and training on the two datasets sequentially (CrowdChecked −→
CheckThat ’21) yields additional improvement compared to training on a single
dataset. I observe the best result when the model is first pre-trained on the (jac >
0.3) subset of CrowdChecked, and then fine-tuned on CheckThat ’21. This combi-
nation gains 2 points absolute in all metrics, compared to SBERT (CrowdChecked)
and 4 points compared to SBERT (CheckThat ’21). Nevertheless, I must note that
pre-training with the Cosine similarly (cos > 0.50) did not yield such sizable improve-
ments as the ones when using Jaccard. I attribute this, on one hand, to the higher
expected noise in the data according to the manual annotations (see Section 4.3.1),
and on the other hand, to these examples being annotated by a similar model, and
thus presumably easy for it.

Further, I analyze the impact of choosing different thresholds for the distant
supervision approaches. Figure 4.6 shows the change of MAP@5 for each data
labeling strategy. On the left part of the figure, in the interval [0.3–0.5], are shown
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Figure 4.6: MAP@5 for different thresholds and distant supervision approaches. The Jaccard
and the Cosine models are trained only on CrowdChecked, while (Seq) and (Mix) were

trained also on CheckThat ’21.

the results of the Jaccard-based data labeling strategy, and on the right ([0.5–0.8])
– the Cosine strategy. Once again, the models trained on the data selected using
Jaccard similarity perform similarly or better as the SBERT (CheckThat ’21) model
(blue solid line). On the other hand, the Cosine-based selection outperforms the
baseline only in small thresholds ≤ 0.6. These observations are in favor of the
hypothesis that the highly ranked pairs from the fine-tuned SBERT model are easy
examples, and do not bring much signal to the model over the CheckThat ’21 data,
whereas the Jaccard ranked ones significantly improve the model’s performance.
Nonetheless, we see similar performance when training with data from the lowest
two thresholds for the two similarities (without data mixing), which suggests that
these subsets have similar characteristics.

Adding more distantly supervised data is beneficial for the model, regardless
of the strategy. The only exception is the drop in performance when I decrease
the Jaccard threshold from 0.5 to 0.4. I attribute this to the quality of the data
in that bracket, as the examples with lower similarity are expected to add more
noise, however the results improve drastically at the next threshold (adding x2
more examples). The latter suggests that the model was able to generalize better
from the new data. There is no such drop in the Cosine strategy. I explain this with
expectation that noise increases proportionally to the decrease in model confidence.



Chapter 4. Curating Answers from External Knowledge Sources 67

Model MAP@5
Dev Test

DIPS (Mihaylova et al., 2021) 93.6 78.7
NLytics (Pritzkau, 2021) - 79.9
Aschern (Chernyavskiy et al., 2021) 94.2 88.2

SBERT (jac > 0.30, Mix) 90.0 82.3
+ shuffling & trainable temp. 92.4 82.6
+ self-adaptive training (Eq. 4.3) 92.6 83.6
+ loss weights 92.7 84.3

+ TF.IDF + Re-ranking 93.1 89.7
+ TF.IDF + Re-ranking (ens.) 94.8 90.3

Table 4.13: Results on CheckThat ’21 (dev and test). I compare my model and its compo-
nents (added sequentially) to the state of the art. The best results are in bold.

Finally, I report the performance of each model both on the development and
on the testing datasets in Section 4.3.3, Tables 4.14 and 4.15.

Modeling Noisy Data I explore the effects of the proposed changes to the SBERT
training approach: (i) shuffling and training temperature, (ii) data-related modi-
fication of the MNR loss for self-adaptive training with weights. I use the (jac >
0.30, mix) approach in my experiments, as the baseline SBERT models achieved
the highest scores on the dev set (Table 4.14). In Table 4.13, I ablate each of these
modifications by adding them iteratively to the baseline SBERT model.

First, we can see that adding a special shuffling procedure and a trainable
temperature (τ) improves the MAP@5 by 2 points on the dev set and 0.3 on the test
set. Next, we see a sizable improvement of 1 point MAP@5 on the test set, when
using the self-adaptive training with MNR loss. Moreover, an additional 0.7 points
comes from adding weights to the loss, arriving at 84.3 MAP@5. These weights
allow the model to give higher importance to the less noisy data during the training
process. Here, I must note that for these two ablations the improvements on the
development set are diminishing. I attribute this to its small size (199 examples)
and the high values of MAP@5. Finally, note that my model, without using re-
ranking, outperforms all state-of-the-art models, except Aschern, by more than 4.5
points on the testing dataset.

On the last two rows of Table 4.13, I present the results of my model that
includes all proposed components, in combination with TF.IDF features and the
LambdaMART re-ranking, described in Section 4.3.2. Here, I must note that the
model is trained on a part of the CheckThat ’21 training pool (80%) – the other
part is used to train the re-ranking model. The full setup boosts the model’s
MAP@5 up to 89.7 when using a single model of the TF.IDF and SBERT (using
the title/subtitle/claim as inputs, same as SBERT). With the ensemble architecture
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Model MRR P@1 MAP@5

Baselines (CheckThat ’21)
Retrieval (Shaar et al., 2021) 76.1 70.3 74.9
SBERT (CheckThat ’21) 87.97 84.92 87.45

CrowdChecked (My Dataset)
SBERT (cos > 0.50) 88.20 85.76 87.80
SBERT (cos > 0.60) 87.21 84.25 86.69
SBERT (cos > 0.70) 86.18 83.08 85.76
SBERT (cos > 0.80) 83.57 80.40 82.93
SBERT (jac > 0.30) 88.01 85.09 87.61
SBERT (jac > 0.40) 87.26 84.76 86.80
SBERT (jac > 0.50) 86.53 83.42 86.13
(Pre-train) CrowdChecked, (Fine-tune) CheckThat ’21
SBERT (cos > 0.50, Seq) 89.92 87.60 89.49
SBERT (cos > 0.60, Seq) 89.56 87.27 89.20
SBERT (cos > 0.70, Seq) 88.70 85.59 88.36
SBERT (cos > 0.80, Seq) 88.42 85.26 88.03
SBERT (jac > 0.30, Seq) 90.21 87.44 89.69
SBERT (jac > 0.40, Seq) 89.64 86.77 89.25
SBERT (jac > 0.50, Seq) 89.44 86.26 89.03

(Mix) CrowdChecked and CheckThat ’21
SBERT (cos > 0.50, Mix) 89.47 86.77 88.99
SBERT (cos > 0.60, Mix) 88.54 85.76 87.98
SBERT (cos > 0.70, Mix) 87.71 84.92 87.18
SBERT (cos > 0.80, Mix) 88.40 85.26 87.97
SBERT (jac > 0.30, Mix) 90.41 87.94 90.00
SBERT (jac > 0.40, Mix) 89.82 86.60 89.48
SBERT (jac > 0.50, Mix) 88.71 85.26 88.31

Table 4.14: Evaluation on the CheckThat ’21 development set. In parenthesis is name the
training split, i.e., Jaccard (jac) or Cosine (cos) data selection strategy, (Seq) first training on
CrowdChecked and then on CheckThat ’21, (Mix) mixing the data from the two datasets.

(re-ranking based on the scores of three TF.IDF and three SBERT models), I reach
my best results of 90.3 on the test set (adding 1.7 MAP@5 on dev, and 0.6 on test),
outperforming the previous state-of-the-art approach (Aschern, 88.2) by 2 points
MAP@5, and more than 11 compared to the second best model (NLytics, 79.9). This
improvement corresponds to the observed gain over the SBERT model without re-
ranking. Nevertheless, the change in the strength of the factors in LambdaMART is
less. The TF-IDF models still have high importance for re-ranking – a total of 41%
compared to 42.8% reported in Chernyavskiy et al. (2021). Here, I have a decrease
mainly due to an increase of the importance of the reciprocal rank factor from 18.8%
to 20.2% of the SBERT model that selects candidates. The strength of other factors
remains almost unchanged.

Results on the Development Set Here, I present the expanded results for my
experiments described in Section 4.3.3. Tables 4.14 and 4.15 include the results for
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Precision MAP
Model MRR @1 @3 @5 @10 @20 @1 @3 @5 @10 @20

Baselines (CheckThat ’21)
Retrieval (Shaar et al., 2021) 76.1 70.3 26.2 16.4 8.8 4.6 70.3 74.1 74.9 75.7 75.9
SBERT (CheckThat ’21) 79.96 74.59 27.89 17.19 8.96 4.61 74.59 78.66 79.20 79.66 79.83

CrowdChecked (My Dataset)
SBERT (cos > 0.50) 81.58 75.91 28.60 17.76 9.04 4.67 75.91 80.36 81.05 81.27 81.48
SBERT (cos > 0.60) 79.71 74.75 27.39 16.96 8.86 4.59 74.75 78.25 78.84 79.38 79.61
SBERT (cos > 0.70) 78.27 72.28 27.61 17.10 8.89 4.53 72.28 76.95 77.54 78.01 78.12
SBERT (cos > 0.80) 78.39 72.94 27.34 16.83 8.81 4.55 72.94 77.04 77.52 78.08 78.28
SBERT (jac > 30) 81.50 76.40 28.49 17.43 8.94 4.65 76.40 80.45 80.84 81.14 81.38
SBERT (jac > 40) 79.45 74.42 27.34 16.93 8.89 4.65 74.42 77.92 78.52 79.08 79.33
SBERT (jac > 50) 79.96 74.75 27.89 17.29 8.94 4.60 74.75 78.63 79.26 79.63 79.81

(Pre-train) CrowdChecked, (Fine-tune) CheckThat ’21
SBERT (cos > 0.50, Seq) 82.26 77.06 28.27 17.62 9.26 4.76 77.06 80.64 81.41 81.99 82.18
SBERT (cos > 0.60, Seq) 80.13 75.41 27.45 17.00 8.94 4.65 75.41 78.55 79.13 79.76 79.99
SBERT (cos > 0.70, Seq) 79.27 73.43 27.72 17.33 8.94 4.58 73.43 77.78 78.56 78.94 79.09
SBERT (cos > 0.80, Seq) 78.32 72.77 27.17 16.93 8.89 4.58 72.77 76.71 77.41 77.98 78.15
SBERT (jac > 0.30, Seq) 83.76 78.88 28.93 17.82 9.21 4.71 78.88 82.59 83.11 83.49 83.63
SBERT (jac > 0.40, Seq) 80.69 75.25 27.83 17.33 9.09 4.69 75.25 79.04 79.76 80.34 80.57
SBERT (jac > 0.50, Seq) 81.99 76.90 28.16 17.76 9.13 4.69 76.90 80.34 81.33 81.70 81.88

(Mix) CrowdChecked and CheckThat ’21
SBERT (cos > 0.50, Mix) 82.12 76.57 28.55 17.59 9.13 4.68 76.57 80.86 81.38 81.82 82.00
SBERT (cos > 0.60, Mix) 81.45 76.40 28.27 17.43 8.96 4.61 76.40 80.25 80.79 81.14 81.31
SBERT (cos > 0.70, Mix) 79.08 73.10 27.83 17.33 8.89 4.57 73.10 77.72 78.46 78.77 78.95
SBERT (cos > 0.80, Mix) 79.73 74.75 27.56 17.00 9.06 4.62 74.75 78.22 78.73 79.46 79.59
SBERT (jac > 0.30, Mix) 83.04 78.55 28.66 17.52 9.11 4.69 78.55 81.93 82.30 82.75 82.94
SBERT (jac > 0.40, Mix) 81.18 74.59 28.55 17.72 9.14 4.74 74.59 79.79 80.46 80.85 81.10
SBERT (jac > 0.50, Mix) 81.56 76.73 28.22 17.36 9.03 4.71 76.73 80.23 80.71 81.19 81.45

Table 4.15: Evaluation on the CheckThat ’21 testing set. In parenthesis is name the training
split, i.e., Jaccard (jac) or Cosine (cos) data selection strategy, (Seq) first training on Crowd-

Checked and then on CheckThat ’21, (Mix) mixing the data from the two datasets.

the threshold selection analysis experiments on the development set, and testing set,
respectively. In Table 4.15 corresponds to Table 4.12 in the main paper, and includes
all metrics and for all thresholds (shown in Figure 4.6). Next, the results from my
Modeling Noisy Data experiments are in Table 4.16, which corresponds to Table 4.13
in the main paper. In all tables I use the same notation and grouping as in their
corresponding table.

4.3.4 Discussion

My proposed distant supervision data selection strategies show promising results,
achieving SOTA results on the CheckThat ’21. Nonetheless, I am not able to identify
all matching pairs in the list of candidates in CrowdChecked. Hereby, I try to
estimate their expected number using the statistics from the manual annotations,8

shown in Tables 4.9,4.10.

In particular, I estimate it by multiplying the fraction of correct pairs in each
similarity bin by the number of examples in this bin. Based on cosine similarity, I

8Due to the small number of annotated examples the variance in the estimates is large.
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Precision MAP
Model MRR @1 @3 @5 @10 @1 @3 @5 @10

DIPS (Mihaylova et al., 2021) 79.5 72.8 28.2 17.7 9.2 72.8 77.8 78.7 79.1
NLytics (Pritzkau, 2021) 80.7 73.8 28.9 17.9 9.3 73.8 79.2 79.9 80.4
Aschern (Chernyavskiy et al., 2021) 88.4 86.1 30.0 18.2 9.2 86.1 88.0 88.3 88.4

SBERT (jac > 0.30, Mix) 83.0 78.6 28.7 17.5 9.1 78.6 81.9 82.3 82.8
+ shuffling & trainable temp. 83.2 77.7 29.1 17.8 9.1 77.7 82.2 82.6 82.9
+ self-adaptive training (Eq. 4.3) 84.2 78.7 29.3 18.1 9.3 78.7 83.0 83.6 83.9
+ loss weights 84.8 79.7 29.5 18.2 9.3 79.7 83.7 84.3 84.6

+ TF.IDF + Re-ranking 89.9 86.1 30.9 18.9 9.6 86.1 89.2 89.7 89.8
+ TF.IDF + Re-ranking (ens.) 90.6 87.6 30.7 18.8 9.5 87.6 89.9 90.3 90.4

Table 4.16: Results on the CheckThat ’21 testing set. I compare my model and its compo-
nents (added sequentially) to state-of-the-art approaches.

estimate that out of the 332,600 pairs, the matching pairs are approximately 90,170
(27.11%). Further, based on the Jaccard distribution, I estimate that 14.79% of all
tweet-conversation (root of the conversation), and 22.23% tweet–reply (the tweet
before the current in the conversation) pairs are expected to match, or nearly 61,500
examples, assuming that the number of conversations and replies is equal.9

My experiments show that the models can effectively account for the noise in
the training data. Both the self-adaptive training and the additional weighing in
the loss function (described in Section 4.3.2), gain 1 additional point MAP@5 each.
These results suggest that further investigation of the potential of learning from
noisy labels (Han et al., 2018; Wang et al., 2019; Song et al., 2020,; Zhou and Chen,
2021) and utilizing all examples in CrowdChecked, can improve the results even
more. Moreover, I argue that incorporating the negative examples (non-matching
pairs) from CrowdChecked in the training objective can be beneficial for the mod-
els (Lu et al., 2021; Thakur et al., 2021).

4.4 Summary

In this chapter, I studied two directions for curating answers from external knowl-
edge sources, namely: (i) zero-shot transfer from a rich- to a low-resource language
for answer selection from a list of candidates based on a set of retrieved evidence
contexts from an external knowledge base, and (ii) answer retrieval from a pool
of explanations, i.e., previously written long-form answers such as documents or
articles.

First, I studied the task of multiple-choice reading comprehension for low-
resource languages, using a newly collected Bulgarian corpus with 2,633 questions
from matriculation exams for twelfth grade in history and biology, and online ex-
ams in history without explanatory contexts. In particular, I designed an end-to-end

9In practice, there are more replies than conversations.
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approach, on top of a multilingual BERT model (Devlin et al., 2019), which I fine-
tuned on large-scale English reading comprehension corpora, and open-domain
commonsense knowledge sources (Wikipedia). My main experiments evaluated
the model when applied to Bulgarian in a zero-shot fashion. The experimental re-
sults found additional pre-training on the English RACE corpus to be very helpful,
while pre-training on Slavic languages to be harmful, possibly due to catastrophic
forgetting. Paragraph splitting, n-grams, stop-word removal, and stemming further
helped the context retriever to find better evidence passages, and the overall model
to achieve accuracy of up to 42.23%, which is well above the baselines of 24.89%
and 29.62%.

Next, I presented CrowdChecked, a large-scale dataset for detecting previously
fact-checked claims, with more than 330,000 pairs of tweets and corresponding
fact-checking articles posted by crowd fact-checkers. I further investigated two
techniques for labeling the tweet–article pairs using distance supervision, based on
Jaccard similarity and the predictions from a neural network model resulting in
training sets of 3.5K–50K examples. I also proposed an approach for training from
noisy data using self-adaptive learning and additional weights in the loss function.
Furthermore, I exhibit the utility of my data, which yielded sizable performance
gains of four points in terms MRR, P@1, and MAP@5 over strong baselines trained
on manually annotated data (Shaar et al., 2021). Finally, I demonstrated improve-
ments over the state of the art on the CheckThat ’21 dataset by two points, achieving
MAP@5 of 90.3, when using the proposed dataset and pipeline.
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Chapter 5

Advanced Conversation

This chapter explores advanced conversational methods that go beyond single lan-
guage and individual models. In Section 5.3, I discuss end-to-end generative mod-
els. In contrast to the models discussed in previous chapters, these methods should
allow the agent to handle the dialogue and to produce new answers that are un-
seen so far in the conversation, without depending on external sources or NLU
components.

In Section 5.4, I propose a novel approach for selecting the next utterance in
the conversation from a set of candidates obtained from multiple sources, e.g., gen-
erated using sequence-to-sequence models or retrieved from a knowledge base. I
evaluate the proposed approaches using a large-scale dataset collected from a real-
world customer support conversations in social media (Twitter) between companies
and their peers. The dataset is described in detail in Section 5.2.

Finally, in Section 5.5 I study methods that go beyond single language and zero-
shot learning. In particular, I introduce a new dataset for multiple-choice question
answering covering sixteen language from eight language families. Moreover, I use
this dataset to evaluate the capabilities of recent state-of-the-art multilingual models
for cross-lingual transfer. This section develops on and extends further some of the
ideas presented in Chapter 4, Section 4.2.

This chapter is mainly based on

• Momchil Hardalov, Ivan Koychev, and Preslav Nakov. 2018. Towards Auto-
mated Customer Support. In Proceedings of the 18th International Conference on
Artificial Intelligence: Methodology, Systems, and Applications, AIMSA ’18, pages
48–59, Varna, Bulgaria

• Momchil Hardalov, Ivan Koychev, and Preslav Nakov. 2019b. Machine Read-
ing Comprehension for Answer Re-Ranking in Customer Support Chatbots.
Information, 10(3)

• Momchil Hardalov, Todor Mihaylov, Dimitrina Zlatkova, Yoan Dinkov, Ivan
Koychev, and Preslav Nakov. 2020b. EXAMS: A Multi-subject High School Ex-
aminations Dataset for Cross-lingual and Multilingual Question Answering.

https://doi.org/10.1007/978-3-319-99344-7_5
https://doi.org/10.1007/978-3-319-99344-7_5
https://doi.org/10.3390/info10030082
https://doi.org/10.3390/info10030082
https://doi.org/10.18653/v1/2020.emnlp-main.438
https://doi.org/10.18653/v1/2020.emnlp-main.438
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In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’20, pages 5427–5444, Online

5.1 Introduction

Task-oriented dialogue agents are highly effective in serving a user request such as
‘reserve a table’ or ‘book a flight’ they follow a finite-state dialog flow, with pre-
defined structure of the conversation, and iteratively fill a set of pre-defined slots
until the agent has all the needed information to complete the task (Gao et al., 2019).
However, often the agents produce utterances that are based on a limited number
of discrete templates that leads to less natural experience compered to human-to-
human conversation(Følstad and Skjuve, 2019). Moreover, many agents cannot not
effectively engage into a long, open-domain conversation, forcing their users to
either respond passively or lead the dialogue constantly (Hardy et al., 2021). On
one hand, this is due to the limited number of topics that they cover (Mrkšić et al.,
2017; Hung et al., 2022), on the other they lack of personality which can lead to
inconsistent answers and writing style. All of these factors increase the probability
of dialogue breakdowns (Higashinaka et al., 2016).

Recent advances in neural networks for NLP and the rise of the large pre-
trained Transformers, especially models that are trained specifically to generate
sequences (Vaswani et al., 2017; Radford et al., 2018, 2019; Raffel et al., 2020; Lewis
et al., 2020) are a step towards end-to-end conversational agents. In theory, these
models should be able to perform multi-turn open-domain dialogues without the
need of pre-defined scenario or querying external knowledge sources (Zhang et al.,
2020; Roller et al., 2021; Xu et al., 2022). Moreover, they can further learn from the
conversations they engage in with the users, in addition to injected feedback from
domain experts (e.g., customer support agents) (Li et al., 2017; Hancock et al., 2019;
Shuster et al., 2022). Nonetheless, here I must note that this also raises a lot of
ethical and practical concerns, as a chatbots can be biased to produce inappropriate
and harmful dialogue acts, not only by exploits from malicious actors (Vincent,
2016; Hancock et al., 2019; Vanderlyn et al., 2021),but also from the induced biases
learned during their extensive pre-training (Buolamwini and Gebru, 2018; Bender
et al., 2021).

While end-to-end models tend to produce fluent and fairly consistent re-
sponses, another major limitation that prevent their practical applications is that
that they suffer from the risk of hallucination (Dziri et al., 2021; Shuster et al., 2021;
Dziri et al., 2022), i.e., producing factually invalid statements. That said, involv-
ing other strategies (sources) to obtain the next turn can mitigate their limitations
and improve the overall experience (Ouchi and Tsuboi, 2016; Qiu et al., 2017; Cui
et al., 2017; Clarke et al., 2022), e.g., retrieving texts from previous conversations
or template-generated utterances are factual and more concise but less engaging
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compared to end-to-end models. Therefore, in this chapter I explore methods for
multi-source response selection in the domain of customer support conversations
in Social Media.

Finally, more and more companies, independent of their size and market, pro-
vide services for a global audience, and thus offering localization and customer
support in more than language. In this chapter, I explore the abilities of state of the
art multilingual models for cross-lingual transfer (Devlin et al., 2019; Conneau and
Lample, 2019; Conneau et al., 2020; Wang et al., 2020; Liu et al., 2020; Xue et al.,
2021; Soltan et al., 2022). However, training monolingual models for each language
is often infeasible but also limits the conversations that the models are exposed to.
Recent Transformer-based multilingual models had shown an impressive perfor-
mance on zero-shot transfer between languages. Furthermore, a strong indication
of the importance of the task is the recent development multilingual dataset for
conversational agents (Razumovskaia et al., 2022; Ding et al., 2022; Hung et al.,
2022; FitzGerald et al., 2022).

The contributions of this chapter are as follows:

• End-to-End dialogue agents:

– I study end-to-end automating customer support on Twitter using two
types of models: (i) retrieval-based (IR with BM25), and (ii) based on
generative neural networks .

– I provide new data splits of a customer support dataset, based on the
timestamp of the post in order to simulate a real-world scenario.

– I explore two types of unsupervised evaluation measures that does
not need additional human judgments: (i) word-overlap (BLEU@2 and
ROUGE-L), and (ii) semantics (Embedding Average, Greedy Matching,
and Vector Extrema).

– I show that neural-based models outperform retrieval-based ones in all
evaluation metrics.

• Multi-source response selection:

– I propose a novel framework for re-ranking response candidates for con-
versational agents based on techniques from the domain of machine
reading comprehension.

– I design a new negative sampling procedure and incorporate it into a
state-of-the-art question answering model (QANet).

– The proposed re-ranking model shows sizable improvements over single
models on the customer support dataset by selecting the most relevant
from their answers.
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• Multilingual and cross-lingual modeling:

– I advance the task of science QA with multilingual and cross-lingual
evaluations.

– I collect a new challenging dataset Eχαµs from multilingual high school
examinations, which offers several advantages over existing datasets:
(i) it covers various domains, (ii) it is nearly three times larger than pre-
existing Science QA datasets, (iii) it extends multilingual QA tasks to
more languages, (iv) the questions are written by experts, rather than
translated or crowdsourced, (v) the questions are harder since they are
from matriculation exams rather than 4-8th grade.

– I use fine-grained evaluation – per subject and per language – which
yields more precise comparison between models.

– I perform extensive experiments and analysis using top-performing mul-
tilingual models (mBERT, XLM-R), and I show that Eχαµs offers sev-
eral challenges that such models would need to overcome in the future,
including multi-lingual and cross-lingual knowledge retrieval, aggrega-
tion, and reasoning, among others.

5.2 Dataset for Customer Support Conversations

Overall, data and resources that could be used to train a customer support chat-
bot are very scarce, as companies keep conversations locked on their own closet,
proprietary support systems. This is due to customer privacy concerns and to com-
panies not wanting to make public their know-how and the common issues about
their products and services. An extensive 2015 survey on available dialog corpora
by Serban et al. (2018) found no good publicly available dataset for real-world cus-
tomer support.

This situation has changed as a new open dataset, named Customer Support on
Twitter, was made available on Kaggle.1 It is a large corpus of recent tweets and
replies, which is designed to support innovation in natural language understanding
and conversational models, and to help study modern customer support practices
and impact. The dataset contains 3M tweets from 20 big companies such as Ama-
zon, Apple, Uber, Delta, and Spotify, among others. See Figure 5.1 for detail.

As customer support topics from different organizations are generally unre-
lated to each other, I focus only on tweets related to Apple support, which rep-
resents the second largest number of tweets in the corpus. This allows us to stay
focused on a small range of topics that are related to a single company, a situa-
tion closer to a real-world scenario. I filtered all utterances that redirect the user

1https://www.kaggle.com/thoughtvector/customer-support-on-twitter

https://www.kaggle.com/thoughtvector/customer-support-on-twitter
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Figure 5.1: Number of user tweets with replies from customer support per company.

to another communication channel, e.g., direct messages, which are not informa-
tive for the model and only bring noise. Moreover, since answers evolve over time,
I divided the dataset into a training and a testing part, keeping earlier posts for
training and the latest ones for testing. I further excluded from the training set
all conversations that are older then sixty days. For evaluation, I used dialogues
from the last five days in the dataset, to simulate a real-world scenario for customer
support. I ended up with a dataset of 49,626 dialog tuples divided in 45,582 for
training and 4,044 for testing.

Tables 5.1 and 5.2 show some statistics about the dataset. In Table 5.1 we can
see that the average number of turns per dialog is under three, which means that
most of the dialogues finish after one answer from customer support. Table 5.2
shows the distribution of words in the user questions vs. the customer support
answers. We can see that answers tend to be slightly longer, which is natural as
replies by customer support must be extensive and helpful.

5.3 End-to-End Generative Agent

The rapid proliferation of mobile and portable devices has enabled a number of
new products and services. Yet, it has also laid stress on customer support as users
now also expect 24x7 availability of information about their orders, or answers to
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Overall

# words (in total) 26,140
Min # turns per dialog 2.00
Max # turns per dialog 106.00
Avg. # turns per dialog 2.6
Avg. # words in question 20.00
Avg. # words in answer 25.88

# dialogs tuples 49,626
Training set: # of dialogs 45,582
Testing set: # of dialogs 4,044

Table 5.1: Overall statistics about the dataset.

Questions Answers

Avg. # words 21.31 25.88
Min # words 1.00 3.00
25% 13.00 20.00
50% 20.00 23.00
75% 27.00 29.00
Max # words 136.00 70.00

Table 5.2: Statistics about the dataset.

basic questions such as ‘Why is my Internet connection dead?’ and ‘What time is
the next train from Sofia to Varna?’

Customer support has always been important to companies. Traditionally, it
was offered primarily over the phone, but recently a number of alternative commu-
nication channels have emerged such as e-mail, social networks, forums/message
boards, live chat, self-serve knowledge base, etc. As a result, it has become increas-
ingly expensive for companies to maintain quality customer support services over
a growing number of channels. First, they must find people that have both good
language and communication skills. Second, each new employee must go through
several training sessions before being able to operate in the target channel, which is
inefficient and time-consuming. And finally, it is difficult to have employees avail-
able for customer support 24x7. Chatbots are especially fit for the task as they are
automatic: fully or partially. Moreover, from a technological viewpoint, they are
feasible as the domain they need to operate in is narrow. As a result, chit-chat is re-
duced to a minimum, and chatbots serve primarily as question-answering devices.
Moreover, it is possible to train them on real-world chat logs. Here, I experiment
with such logs from customer support on Twitter, and I compare two types of chat-
bots: (i) based on information retrieval (IR), and (ii) on neural question answering.
I further explore semantic similarity measures since generic ones such as ROUGE
(Lin, 2004), BLEU (Papineni et al., 2002) and METEOR (Banerjee and Lavie, 2005),
which come from machine translation or text summarization, are not well suited
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for chatbots.

5.3.1 Method

Preprocessing

Since Twitter has its own specifics of writing in terms of both length2 and style,
standard text tokenization is generally not suitable for tweets. Therefore, I used a
specialized Twitter tokenizer (Manning et al., 2014) to preprocess the data. Then,
I further cleaned the data by replacing the shorthand entries, e.g., ’ll, ’d, ’re, ’ve,
with the most likely literary form, e.g., will, would, are, have. I also replaced slang
words, e.g., ’bout and ’til, with the standard words, e.g., about and until. Similarly, I
replaced URLs with the special word <url>, all user mentions with <user>, and all
hashtags with<hashtag>.

Moreover, I tried to mitigate the effect of missing context in long conversations
by concatenating all previous turns to the current question. Finally, since Seq2seq
models cannot be trained efficiently with a large vocabulary, I chose the top N
words when building the model (see Section 5.3.2 for more details), and I replaced
the instances of the remaining words with a special symbol <unk>.3

Information Retrieval

The IR approach can be defined as follows: given a user question q′ and a list
of pairs of previously asked questions and their answers (Q, A) = {(qj, aj)|j =

1, . . . , n}, find the most similar question qi in the training dataset that a user has
previously asked and return the answer ai that customer support has given to qi.
The similarity between q′ and qi can be calculated in various ways, but most com-
monly this is done using the cosine between the corresponding TF.IDF-weighted
vectors.

a′ = arg max
(qj,aj)

sim(q′, qj) (5.1)

Sequence-to-Sequence

My encoder uses a bidirectional recurrent neural network RNN based on
LSTM Hochreiter and Schmidhuber (1997). It encodes the input sequence x =

(x1, . . . , xn) and calculates a forward sequence of hidden states (
−→
h1 , . . . ,

−→
hm) and

also a backward sequence (
←−
h1 , . . . ,

←−
hm). The decoder is a unidirectional LSTM-based

RNN, and it predicts the output sequence y = (y1, . . . , yn). Each yi is predicted us-
ing the recurrent state si, the previous predicted word yi−1, and a context vector ci.

2By design, tweets have been strictly limited to 140 characters; this constrain has been relaxed to
280 characters in 2017.

3In future work, I plan to try byte-pair encoding instead (Sennrich et al., 2016).
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The latter is computed using an attention mechanism as a weighted sum over the
encoder’s output (

−→
hj ,
←−
hj ), as proposed by Bahdanau et al. (2015).

Transformer

The Transformer model was proposed by Vaswani et al. (2017), and it has shown
very strong performance for machine translation, e.g., it achieved state-of-the-art
results on WMT2014 data for English-German and English-French translation. Sim-
ilarly to the Seq2seq model, the Transformer has an encoder and a decoder. The
encoder is a stack of identical layers, based on multi-head self-attention and a sim-
ple position-wise fully connected network. The decoder is similar, but in addition
to the two sub-layers in the encoder, it introduces a third sub-layer, which per-
forms multi-head attention over the encoders’ stack outputs. The main advantage
of the Transformer model is that it can be trained significantly faster, as compared
to recurrent or convolutional neural networks.

5.3.2 Experiments

I performed three experiments using the models described in Section 5.3.1. Below,
each model is abbreviated by its architecture name from 5.3.2.

IR is based on ElasticSearch4 (ES), as it provides out-of-the-box implementation
of all the components I need. I fed the pre-processed training data into an index
with English analyzer enabled, whitespace- and punctuation-based tokenization,
and word 3-grams. For retrieval, I used the default BM25 algorithm (Robertson and
Zaragoza, 2009), which is an improved version of TF.IDF. For all training questions
and for all testing queries, I appended the previous turns in the dialog as context.
Given a user question from the testing set, I returned the customer support answer
for the top-ranked result from ES.

Seq2seq contains one bi-directional LSTM layer with 512 hidden units per direc-
tion (a total of 1,024). The decoder has two unidirectional layers connected directly
to the bidirectional one in the encoder. The network takes as input words encoded
as 200-dimensional embeddings. It is a combination of pre-trained GloVe (Pen-
nington et al., 2014) vectors learned from 27B Twitter posts5 for the known words,
and a positional embedding layer, learned as model parameters, for the unknown
words. The embedding layers for the encoder and for the decoder are not shared,
and are learned separately. This separation is due to the fact that the words used in
utterances by customers are very different compared to posts by the support. In my
experiments, I used the top 8,192 words sorted by frequency for both the embed-
ding and the output. Based on the statistics presented in Section 4.2.2, I chose to
use 60 words (time-steps) for both the encoder and the decoder. I avoid overfitting

4https://www.elastic.co/products/elasticsearch
5https://nlp.stanford.edu/projects/glove/

https://www.elastic.co/products/elasticsearch
https://nlp.stanford.edu/projects/glove/
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by applying dropout (Srivastava et al., 2014) with keep probability of 0.8 after each
recurrent layer. For the optimizer, I used Adam (Kingma and Ba, 2015) with a base
value of 1.00×10−3 and an exponential decay of 0.99 per epoch.

Transformer is based on two identical layers for the encoder and for the decoder,
with four heads for the self-attention. The dimensionality of the input and of the
output is dmodel = 256, and the inner dimensionality is dinner = 512. The input con-
sists of queries with keys of dimension dk = 64 and values of dimension dv = 64.
The input and the output embedding are learned separately with sinusoidal posi-
tional encoding. The dropout is set to 0.9 keep probability. For the optimization, I
use Adam with varying learning rate based on Eq. 5.2. The hyper-parameter choice
was guided by the experiments described by the authors in the original Transformer
paper (Vaswani et al., 2017).

lrate = d−0.5
model ·min (step_num−0.5, step_num · warmup_steps−1.5) (5.2)

Evaluation Measures

How to evaluate a chatbot is an open research question. As the problem is related
to machine translation (MT) and text summarization (TS), which are nowadays also
addressed using Seq2seq models, researchers have been using MT and TS eval-
uation measures such as BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), and
METEOR (Banerjee and Lavie, 2005), which focus primarily on word overlap and
measure the similarity between the chatbot’s response and the gold customer sup-
port answer to the user question. However, it has been argued (Liu et al., 2016;
Lowe et al., 2017) that such word-overlapping measures are not very suitable for
evaluating chatbots. Thus, I adopt three additional measures, which are more se-
mantic in nature.6

The embedding average constructs a vector for a piece of text by taking the av-
erage of the word embeddings of its constituent words. Then, the vectors for the
chatbot response and for the gold human one are compared using cosine similarity.

The greedy matching was introduced in the context of intelligent tutoring sys-
tems (Rus and Lintean, 2012). It matches each word in the chatbot output to the
most similar word in the gold human response, where the similarity is measured as
the cosine between the corresponding word embeddings, multiplied by a weighting
term, which I set to 1, as shown in equation (5.3). Since this measure is asymmetric,
I calculate it a second time, with arguments swapped, and then I take the average
as shown in equation 5.4.

greedy(u1, u2) =
∑v∈u1

weight(v) ∗maxw∈u2 cos(v, w)

∑v∈u1
weight(v)

(5.3)

6Note that I do not use measures trained on the same data as advised by Liu et al. (2016).
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Word Overlap Measures
BLEU@2 ROUGE-L

IR - BM25 13.73 22.35
Seq2seq 15.10 26.60
Transformer 12.43 25.33

Table 5.3: Results based on word-overlap measures.

Semantic Evaluation Measures
Embedding Average Greedy Matching Vector Extrema

IR - BM25 76.53 29.72 37.99
Seq2seq 77.11 30.81 40.23
Transformer 75.35 30.08 39.40

Table 5.4: Results based on semantic measures.

simGreedy(u1, u2) =
greedy(u1, u2) + greedy(u2, u1)

2
(5.4)

The vector extrema was proposed by Forgues et al. (2014) for dialogue systems.
Instead of averaging the word embeddings of the words in a piece of text, it takes
the coordinate-wise maximum (or minimum), as shown in Eq. 5.5. Finally, the
resulting vectors for the chatbot output and for the gold human one are compared
using cosine.

extrema(ui) =

max ui, i f max ui ≥ |min ui|

min ui, otherwise
(5.5)

Results

Table 5.3 shows the results for the three models I compare (IR, Seq2seq, and Trans-
former) when using word overlap measures such as BLEU@2, which uses unigrams
and bigrams only, and ROUGE-L (Lin and Och, 2004), which uses longest common
subsequence (LCS).

Table 5.4 shows the results for the same three systems, but using the above-
described semantic evaluation measures, namely Embedding Average (with cosine
similarity), Greedy Matching, and Vector Extrema (with cosine similarity). For all
three measures, I used Google’s pre-trained word2vec embeddings because they
are not learned during training, which helps avoid bias, as has been suggested in
(Liu et al., 2016; Lowe et al., 2017).
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Question & Answer Response
(1) my phones speaker just broke down
on me thanks <user> do better

<user> we are here to help. which
iphone and ios version are you using?
are you having a sound quality issue or
is there no sound at all?

IR: <user> we can help with your de-
vice . do you notice the slowness when
performing a particular activity ?
Seq2seq: <user> that is not the expe-
rience we want you to have . which
iphone model do you own ?
Transformer: <user> thanks for reach-
ing out to us . we are always happy to
help . can you tell us which version of
ios 11 you are using ?

(2) i am trying to type it not fuckin
i.t, your product is absolute garbage.
figure it out. <user> <user>

<user> lets take a closer look at this to
get your device working right. which
model do you have and that is the exact
os version number installed?
have you tried any steps so far and
when did this start happening?

IR: <user> thank you for reaching out .
we want to help . to start , lets go to set-
tings > general > about and see which
version of ios your iphone is on please .
Seq2seq: <user> we would be happy to
look into that is going on . can you tell
us more?
Transformer: <user> heres what you
can do to work around the issue until
it is fixed in a future software update :
<url>

(3) capaz que si actualizo ios me telé-
fono se convierta en ladrillo :(....ya no
confío en sus productos <user>

<user> we offer support via twitter in
english. get help in spanish here: <url>
or join <url>

All models: <user> we offer support
via twitter in english get help in span-
ish here <url> or join <url>

(4) <user> excuse me , i am got a
refund confirmation email but nothing
happened . do i have to do anythings
? → <user> thanks for reaching out
to us about your refund ! to clarify ,
was this a refund for a purchase in the
itunes store ? or was this a product
purchase ? <user> thanks for reply . i
am purchased music in itunes store .

<user> thanks. our itunes store support
team would have the best information
for you on that. you can contact them
here: <url>

IR: <user> alright . our itunes support
team will be able to look at this with
you . please reach out to them here :
<url>
Seq2seq: <user> we are investigating
and will update our system status page
as more info becomes available <url>
Transformer: <user> thanks for reach-
ing out . we would recommend leav-
ing that request on our feedback page :
<url>

Table 5.5: Chatbot responses. The first column shows the original question and the gold
customer support answer, while the second column shows responses by the models.
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5.3.3 Discussion

The evaluation results show that Seq2seq performed best with respect to all five eval-
uation measures. For the group of semantic measures, it outperformed the other
systems in terms of Embedding Average by +0.58, in terms of Greedy Matching by
+0.73, and in terms of Vector Extrema by +0.83 (points absolute). Moreover, SeqSeq
was also clearly the best model in terms of word-overlap evaluation measures, scor-
ing 15.10 on BLEU@2 (+1.37 ahead of the second), and 26.60 on ROUGE-L (+1.27
compared to the second best system). The Transformer model was ranked second by
three of the evaluation measures: Greedy Matching, Vector Extrema, and ROUGE-
L. This was unexpected given the state-of-the-art results it achieved for neural ma-
chine translation. Higher Greedy Matching and Vector Extrema scores show that
the Transformer was able to capture the semantics of the gold answer. Moreover,
lower Embedding Average and BLEU@2 scores suggest that it chose different vo-
cabulary or used different word order. This is confirmed by lower ROUGE-L, which
is based on longest common subsequence.

Finally, the retrieval (ir) model achieved the second-best results in terms of
BLEU@2 and Embedding Average, but it was the worst according to the other three
evaluation measures. This shows the superiority of the generative neural models
over simple retrieval.

Table 5.5 shows some example responses generated by the three models. In
the first example (1), the IR model is off and retrieves an answer that addresses
a different customer problem. The Seq2seq model is on the right track, because
it asks the user about his device. The Transformer suggests a similar utterance,
but it makes an assumption about the phone’s operating system, which was not
stated in the user’s question. In the second example (2), all models propose very
different ways of action to the user, compared to the original answer, and they all
seem plausible in this context; yet, the Transformer is a bit off. The next example (3)
illustrates the ability of the three models to distinguish between different languages,
and point the user in the right direction. The last example (4) is a typical example
when neural models fail. The particular question–answer tuple is hard to answer
as there are very few similar examples in the training data. Thus, what the neural
models generate ends up being off-topic. In contrast, the retrieval approach was
able to overcome this and to propose a very good answer.

5.4 Multi-Source Response Selection

The growing popularity of smart devices, personal assistants, and online cus-
tomer support systems has driven the research community to develop various
new methodologies for automatic question answering and chatbots. In the do-
main of conversational agents, two general types of systems have become domi-
nant: (i) retrieval-based, and (ii) generative. While the former produce clear and
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Figure 5.2: My answer re-ranking framework, based on the QANet architecture.

smooth output, the latter bring flexibility and the ability to generate new unseen
answers.

In my thesis, I focus on finding the most suitable answer for a question, where
each candidate can be produced by a different system, e.g., knowledge-based, rule-
based, deep neural network, retrieval, etc. In particular, I propose a re-ranking
framework based on machine reading comprehension (Seo et al., 2017; Chen et al.,
2017; Yu et al., 2018) for question–answer pairs. Moreover, instead of selecting the
top candidate from the re-ranker’s output, I use probabilistic sampling that aims to
diversify the agent’s language and to up-vote popular answers from different input
models. I train my model using negative sampling based on question–answer pairs
from the Twitter Customer Support Dataset.

In my experimental setup, I adopt a real-world application scenario, where I
train on historical logs for some period of time, and then I test on logs for subse-
quent days. I evaluate the model using both semantic similarity measures, as well
as word-overlap ones such as BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004),
which come from machine translation and text summarization.

5.4.1 Re-Ranking Model

My re-ranking framework uses a classifier based on QANet (Yu et al., 2018), a state-
of-the-art architecture for machine reading comprehension, to evaluate whether a
given answer is a good fit for the target question. It then uses the posterior proba-
bilities of the classifier to re-rank the candidate answers, as shown in Figure 5.2.
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Negative Sampling

My goal is to distinguish “good” vs. “bad” answers, but the original dataset only
contains valid, i.e., “good” question–answer pairs. Thus, I use negative sampling
(Mikolov et al., 2013), where I replace the original answer to the target question
with a random answer from the training dataset. I further compare the word-based
cosine similarity between the original and the sampled answer, and, in some rare
cases, I turn a “bad” answer into “good” one if it is too similar to the original
“good” answer.

QANet Architecture

Machine reading comprehension aims to answer a question by looking to extract a
string from a given text context. Here, I use that model to measure the appropri-
ateness of a given question–answer pair.

The first layer of the network is a standard an embedding layer, which trans-
forms words into low-dimensional dense vectors. Afterwards, a two-layer highway
network (Srivastava et al., 2015) is added on top of the embedding representations.
This allows the network to regulate the information flow using a gated mechanism.
The output of this layer is of dimensionality #words× d, where #words is the num-
ber of words in the encoded sentence (Note that it differs for the question vs. the
answer. See Section 5.4.2 for more detail.) and d is the input/output dimensionality
of the model for all Transformer layers, which is required by the architecture.

I experiment with two types of input embeddings. First, I use 200-dimensional
GloVe (Pennington et al., 2014) vectors trained on 27 billion Twitter posts. I compare
their performance to ELMo (Peters et al., 2018), a recently proposed way to train
contextualized word representations. In ELMo, these word vectors are learned acti-
vation functions of the internal states of a deep bi-directional language model. The
latter is built upon a single (embedding) layer, followed by two LSTM (Hochreiter
and Schmidhuber, 1997) layers, which are fed the words from a target sentence in
a forward and a backward direction, accordingly. I obtain the final embedding by
taking a weighted average over all three layers as suggested in (Peters et al., 2018).

The embedding encoder layer is based on a convolution, followed by self-
attention (Vaswani et al., 2017) and a feed-forward network. I use a kernel size of
seven, d filters, and four convolutional layers within a block. The output of the layer
is f (layernorm(x)) + x, where layernorm is the layer normalization operation (Ba
et al., 2016). The output again is mapped to #words× d by a 1D convolution. The
input and the embedding layers are learned separately for the question and the
answer.

The attention layer is a standard module for machine reading comprehension
models. I call it answer-to-question (A2Q) and question-to-answer (Q2A) attention,
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which are also known as context-query and query-context, respectively. Let us denote
the output of the encoder for the question as Q and for the answer as A. In order to
obtain the attention, the model first computes a matrix S with similarities between
each two words for the question and the answer, then the values are normalized
using softmax. The similarity function is defined as follows: f (a, q) = W0[a; q; a⊙ q].

I adopt the notation S = so f tmax(S), which is a softmax normalization over
the rows of S, and S = so f tmax(S⊺) is a normalization over the columns. Then, the
two attention matrices are computed as A2Q = S ·Q⊺, and Q2A = S · S

⊺
· C⊺.

The attention layer is followed by a model layer, which takes as input the con-
catenation of [a; a2q; a⊙ a2q; a⊙ q2a], where I use small letters to denote rows from
the original matrices. For the output layer, I learn two different representations by
passing the output of the model layer to two residual blocks, applying dropout (Sri-
vastava et al., 2014) only to the inputs of the first one. I predict the output as
P(a|q) = σ(Wo[M0; M1]). The weights are learned by minimizing a binary cross-
entropy loss.

Answer Selection

I experimented with two answer selection strategies: (i) max, and (ii) proportional
sampling after softmax normalization. The former strategy is standard and it se-
lects the answer with the highest score, while the latter one returns a random an-
swer with probability proportional to the score returned by the softmax, aiming at
increasing the variability of the answers.

For both strategies, I use a linear projection applied on the output of the last
residual model block, which is shows as “linear block” in Figure 5.2. I can gener-
alize the latter as follows: o(q, ak) = Wo[M], where M is the concatenation of the
outputs of one or more residual model blocks.

I present the formulation of the two strategies, as I introduce the following
notation: Ans is the selected utterance by the agent; o(q, ak) is the output of the
model before applying the sigmoid function; q is the original question by the user;
A is the set of possible answers that I want to re-rank. Equation (5.6) shows the
selection process in the max case.

Ans = arg max
a∈A

(o(q, a)) (5.6)

I empirically found that the answer selection based on the max strategy does
not always perform well. As my experimental results in Tables 5.7 and 5.8 show, I
can gain notable improvement by using proportional sampling after softmax nor-
malization, instead of always selecting the answer with the highest probability. In
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my experiments, I model Ans as a random variable that follows a categorical distri-
bution over K = |A| events (candidate answers). For each of the question–answer
pairs (q, a), I define the probability p that a is a good answer to q using softmax as
shown in Eq. 5.7 and 5.8. Finally, I draw a random sample from Eq. 5.8 to obtain
the best matching answer.

p|q, A ∼ softmax(o(q, a1), · · · , o(q, aK)) (5.7)

Ans|p ∼ Cat(K, p) (5.8)

5.4.2 Experiments

Preprocessing

Since Twitter has its own specifics of writing in terms of both length (by design,
tweets have been strictly limited to 140 characters; this constraint has been relaxed
to 280 characters in 2017) and style, standard text tokenization is generally not
suitable for tweets. Therefore, I used a specialized Twitter tokenizer (Manning
et al., 2014) to preprocess the data. Then, I further replaced shorthand entries such
as ’ll, ’d, ’re, ’ve, with the most corresponding literary form, e.g., will, would, are,
have. I also replaced shortened slang words, e.g., ’bout and ’til, with the standard
words, e.g., about and until. Similarly, I replaced URLs with the special word <url>,
all user mentions with <user>, and all hashtags with <hashtag>.

Due to the nature of writing in Twitter and the free form of the conversation,
some of the utterances contain emoticons and emojis. They are handled automat-
ically by the Twitter tokenizer and treated as a single token. I keep them in their
original form, as they can be very useful for detecting emotions and sarcasm, which
pose serious challenges for natural language understanding.

Based on the statistics presented in Section 4.2.2, I chose to trim the length of
the questions and of the answers to 60 and 70 words, respectively.

Training Setup

For training, I use the Adam (Kingma and Ba, 2015) optimizer with decaying learn-
ing rate, as implemented in TensorFlow (Abadi et al., 2016). I start with the follow-
ing values: learning rate η = 5e-4, exponential decay rate for the 1st and the 2nd
momentum β1 = 0.9 and β2 = 0.999, and constant for prevention of division by
zero ϵ = 1e-7. Then, I decay the learning after each epoch by a factor of 0.99. I also
apply dropout with a probability of 0.1, and L2 weight decay on all trainable vari-
ables with λ =3e-7. I train each model for 42K steps with a batch size of 64. I found
these values by running a grid search on a dev set (extracted as a fraction of the
training data) and using the values suggested in (Yu et al., 2018), where applicable.



Chapter 5. Advanced Conversation 88

Individual Models

Following Section 5.3, here I experiment with three individual models: (i) informa-
tion retrieval-based, (ii) sequence-to-sequence and (iii) the Transformer.

For IR, I use ElasticSearch with English analyzer enabled, whitespace- and
punctuation-based tokenization, and word 3-grams. I further use the default BM25
algorithm (Robertson and Zaragoza, 2009), which is an improved version of TF.IDF.
For all training questions and for all testing queries, I append the previous turns in
the dialog as context.

For Seq2seq, I use a bi-directional LSTM network with 512 hidden units per
direction. The decoder has two uni-directional layers connected directly to the bi-
directional layer in the encoder. The network takes as input words encoded as
200-dimensional embeddings. It is a combination of pre-trained GloVe (Penning-
ton et al., 2014) vectors for the known words, and a positional embedding layer,
learned as model parameters, for the unknown words. The embedding layers for
the encoder and for the decoder are not shared, and are learned separately. This
separation is due to the words used in utterances by the customers being very
different from the posts by the customer support.

For the Transformer, I use two identical layers for the encoder and for the
decoder, with four heads for the self-attention. The dimensionality of the input and
of the output is dmodel = 256, and the inner dimensionality is dinner = 512. The
input consists of queries with keys of dimensionality dk = 64 and values of the
same dimensionality dv = 64. The input and the output embedding are learned
separately with sinusoidal positional encoding.

Evaluation Measures

In order to allow for fair comparison with single models (see Section 5.3), I use the
same evaluation measures described in details in Section 5.3.2.

5.4.3 Evaluation Results

Below, I first discuss my auxiliary classification task, where the objective is to pre-
dict which question–answer pair is “good”, and then I move to the main task of
answer re-ranking.

Auxiliary Task: Question–Answer Appropriateness Classification

Table 5.6 shows the results for the auxiliary task of question–answer appropriate-
ness classification. The first column is the name of the model. It is followed by
three columns showing the type of embedding used, the size of the hidden layer,
and the number of heads (see Section 5.4.1). The last column reports the accuracy.
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Model Embedding Type d_model Heads Accuracy

Majority class – – – 50.52

QANet GloVe
64 4 80.58
64 8 82.83
128 8 83.42

QANet ELMo (token level)
64 4 82.92
64 8 83.88
128 8 83.48

QANet ELMo (sentence level)
64 8 84.09
128 8 85.45

Table 5.6: Auxiliary task: question–answer appropriateness classification results.

Since the dataset is balanced (I generate about 50% positive, and about 50% neg-
ative examples), accuracy is a suitable evaluation measure for this task. The top
row of the table shows the performance for a majority class baseline. The follow-
ing lines show the results for my full QANet-based model when using different
kinds of embeddings. We can see that contextualized sentence-level embeddings
are preferable to using simple word embeddings as in GloVe or token-level ELMo
embeddings. Moreover, while token-level ELMo outperforms GloVe when the size
of the network is small, there is no much difference when the number of parameters
grows (dmodel = 128, #Heads = 8).

Answer Selection/Generation: Individual Models

Table 5.7 reports the performance of the individual models: information retrieval
(IR), sequence-to-sequence (Seq2seq), and the Transformer (see Section 5.4.2 for
more details about these models). The same experimental setup is used for the
experiments described in Section 5.3. The table is organized as follows: The first
column contains the name of the model used to obtain the best answer. The second
and the third columns report the word overlap measures: (i) BLEU@2, which uses
uni-gram and bi-gram matches between the hypothesis and the reference sentence,
and (ii) ROUGE-L (Lin and Och, 2004), which uses LCS. The last three columns
are for the semantic similarity measures: (i) Embedding Average (Emb Avg) with
cosine similarity, (ii) Greedy Matching (Greedy Match), and (iii) Vector Extrema
(Vec Extr) with cosine similarity. In the three latter measures, I used the standard
pre-trained word2vec embeddings because they are not learned during training,
which helps avoid bias, as has been suggested in (Liu et al., 2016; Lowe et al., 2017).

We can see in Table 5.7 that the Seq2seq model outperforms IR by a margin
on all five evaluation measures, which is consistent with previous results in the
literature. What is surprising, however, is the relatively poor performance for the
Transformer, which trails behind the Seq2seq model on all evaluation measures. I
hypothesize that this is due to the Transformer having to learn more parameters as
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Word Overlap Semantic Similarity

Model BLEU@2 ROUGE_L Emb Avg Greedy Match Vec Extr

Transformer 12.43 25.33 75.35 30.08 39.40
IR-BM25 13.73 22.35 76.53 29.72 37.99
Seq2seq 15.10 26.60 77.11 30.81 40.23

QANet on IR
(Individual) 14.92± 0.13 23.30± 0.12 77.47± 0.06 30.40± 0.06 39.63± 0.06

Table 5.7: Main task: performance of the individual models. Single model results results
are reported in Section 5.3.2, Tables 5.3 and 5.4

it operates with higher-dimensional word embeddings. Overall, the Transformer
is arguably slightly better than the IR model, outperforming it on three of the five
evaluation measures.

The last row of Table 5.7 is not an individual model; it is my re-ranker applied
to the top answers returned by the IR model. In particular, I use QANet with Sentence
level ELMo (dmodel = 128, #Heads = 8). I took the top-5 answer candidates (the
value of 5 was found using cross-validation on the training dataset) from the IR
model, and I selected the best answer based on the re-ranker’s scores. I can see that
re-ranking yields improvements for all evaluation measures: +1.18 on BLEU@2,
+0.93 on ROUGE_L, +1.12 on Embedding Average, +0.67 on Greedy Matching,
and +1.64 in Vector Extrema. These results show that I can get sizable performance
gains when re-ranking the top-K predictions of a single model; below I will combine
multiple models.

Main Task: Multi-Source Answer Re-Ranking

Next, I combine the top-K answers from different models: IR and Seq2seq. I did not
include the Transformer in the mix as its output is generative and similar to that
of the Seq2seq model; moreover, as we have seen in Table 5.7 above, it performs
worse than Seq2seq on the dataset. I set K = 2 for the baseline, Random Top Answer,
which selects a random answer from the union of the top K answers by the models
involved in the re-ranking. For the remaining re-ranking experiments, I use K = 5.
I found these values using cross-validation on the training dataset, trying 1–5.

The results are shown in Table 5.8, where different representations are sepa-
rated by a horizontal line. The first row of each group contains the name of the
model. Then, on the even rows (second, forth, etc.), I show the results from a
greedy answer selection strategy, while on the odd rows are the results from an
exploration strategy (softmax sampling). Since softmax sampling and random se-
lection are stochastic in nature, I include a 95% confidence interval for them.

We can see in Table 5.8 that QANet with sentence-level ELMo (dmodel = 128,
#Heads = 8) performs best in terms of BLEU@2, ROUGE_L, and Greedy Matching.
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Model
Word Overlap Semantic Similarity

BLEU@2 ROUGE_L Emb Avg Greedy Match Vec Extr

Random Top Answer 14.52± 0.12 23.41± 0.12 77.21± 0.06 30.24± 0.07 38.25± 0.20

QANet+GloVe
d=64, h=4 15.18 24.13 78.38 31.14 40.85
Softmax 15.81± 0.09 24.53± 0.05 78.32± 0.08 31.10± 0.03 40.51± 0.12

d=64, h=8 15.41 23.62 78.48 30.97 40.81
Softmax 15.90± 0.06 24.39± 0.03 78.38± 0.04 31.11± 0.02 40.66± 0.06

d = 128, h = 8 15.94 24.59 78.29 31.19 40.63
Softmax 16.04± 0.08 24.71± 0.06 78.36± 0.07 31.20± 0.07 40.70± 0.05

QANet+ELMo (Token)
d = 64, h = 4 15.23 23.48 78.25 30.77 40.22

Softmax 15.77± 0.15 24.44± 0.09 78.27± 0.03 31.06± 0.05 40.46± 0.11
d = 64, h = 8 15.30 23.41 78.54 30.97 40.19

Softmax 15.86± 0.07 24.40± 0.06 78.36± 0.08 31.11± 0.04 40.49± 0.05
d = 128, h = 8 15.24 23.59 78.34 30.90 40.19

Softmax 15.89± 0.08 24.55± 0.10 78.33± 0.06 31.11± 0.05 40.40± 0.05

QANet+ELMo (Sentence)
d = 64, h = 8 15.48 23.88 78.44 30.96 40.33

Softmax 16.00± 0.14 24.50± 0.33 78.34± 0.10 31.13± 0.08 40.56± 0.09
d = 128, h = 8 15.64 24.13 78.52 31.14 40.63

Softmax 16.05± 0.06 24.81± 0.08 78.40± 0.07 31.20± 0.06 40.58± 0.03

Table 5.8: Main task: re-ranking the top K = 5 answers returned by the IR and the Seq2seq
models.

Note also the correlation between higher results on the auxiliary task (see Table 5.6)
and improvement in terms of word-overlap measures, where I find the largest dif-
ference between individual and re-ranked models (+1.5 points absolute over the
baseline, and +0.95 over Seq2seq in terms of BLEU@2). In terms of semantic sim-
ilarity, I note the highest increase for Embedding Average (+1.3 over the baseline,
and +1.4 over Seq2seq), and a smaller one for Greedy Matching (+1.0 over the
baseline, and +0.4 over Seq2seq), and Vector Extrema (+2.6 over the baseline, and
+0.6 over Seq2seq).

Overall, the re-ranked models are superior as evaluated on word-matching
measures, which is supported by the improvement of BLEU@2 and Embedding
Average. The smaller improvement for Greedy Matching and Vector Extrema can
be explained by the training procedure for the re-ranking model, which is based
on word comparison. However, these two measures focus on keyword similarity
between the target and the proposed answers, and generative models are better at
this. This is supported by comparing the combined model to IR-BM25, where I see
sizable improvements of +1.5 and +2.0 in terms of Greedy Matching and Vector
Extrema, respectively.

We can further see in Table 5.8 that using a stochastic approach to select the
best answer yields additional improvements. This strategy accounts for the pre-
dicted appropriateness score for each candidate, thus, enriching the model in two
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ways. First, implicit voting is used, as duplicate answer candidates are not re-
moved, resulting in higher selection probability of popular answers from different
input modules. Second, albeit two answers may have a very different structure,
they still can be similar in meaning, leading to very similar scores and promoting
only the first one. This behavior can be mitigated by choosing the winner propor-
tionally to its ranking, thus, also introducing diversity in the chatbot’s language.
This hypothesis is supported by the results in Table 5.8: compare each model to the
corresponding one with softmax selection.

5.5 Multi- and Cross-Linguality

Research on science question answering has attracted a lot of attention in recent
years (Clark, 2015; Schoenick et al., 2017; Clark et al., 2019). Such questions are
challenging as they require domain and common sense knowledge (Clark et al.,
2018), as well as complex reasoning and different forms of inference over a variety
of knowledge sources (Khashabi et al., 2016, 2018). Indeed, a combination of these
was required to achieve noticeable performance gains (Clark et al., 2016). This
inevitably made research in school-level science question answering (QA) hard for
languages other than English due to the scarceness of resources (Clark et al., 2014;
Khot et al., 2017, 2018; Bhakthavatsalam et al., 2020).

There has been a recent mini-revolution in QA, as well as in the field of
natural language processing (NLP) in general, due to the invention of the Trans-
former (Vaswani et al., 2017), and the subsequent rise of large-scale pre-trained
models (Peters et al., 2018; Radford et al., 2018, 2019; Devlin et al., 2019; Lan et al.,
2020; Yang et al., 2019; Liu et al., 2019; Raffel et al., 2020). Nowadays, fine-tuning
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Si quitamos un electrón de un átomo
de oxígeno, ¿qué obtenemos?
A) Un isótopo.
B) Un núcleo desnudo.
C) Un ion. 
D) Un átomo excitado.

Milyen számlák egyenlege jelenik
meg a Mérlegben?
A) Eredmény, forrás.
B) Eszköz, forrás, eredmény. 
C) Eszköz, eredmény.
D) Eszköz, forrás.

etc.

Figure 5.3: Properties and examples from Eχαµs.
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such models on task-specific data has become an essential element of any top-
scoring QA system. Yet, for science QA, training on datasets from a different do-
main (Sun et al., 2019; Khashabi et al., 2020) and carefully selected background
knowledge (Banerjee et al., 2019; Ni et al., 2019) could improve such models fur-
ther.

The success of large-scale pre-trained models and the development of their
multilingual versions (Devlin et al., 2019; Conneau et al., 2020) gives hopes for sup-
posedly better performance in multilingual question answering. Therefore, several
new datasets have been released for multilingual reading comprehension and open-
domain question answering in the Wikipedia domain (Liu et al., 2019; Lewis et al.,
2020; Artetxe et al., 2020; Clark et al., 2020).

Here, I present Eχαµs, a new dataset and benchmark for multilingual and
cross-lingual evaluation of models and methods for answering diverse school sci-
ence questions (see Figure 5.3).

I release the code, pre-trained models and data for research purposes.7

5.5.1 Eχαµs Dataset

I introduce Eχαµs, a new benchmark dataset for multilingual and cross-lingual
question answering from high school examinations. In this section, I present the
properties of the dataset, and I give details about the process of data collection,
preparation and normalization, as well as information about the data splits, and
the parallel questions.

Lang Family #Subjects Question Len Choice Len #Choices #Questions Vocab

Albanian Albanian 8 15.0 5.0 4.0 1,505 11,572
Arabic Semitic 5 10.3 3.4 4.0 562 5,189
Bulgarian Balto-Slavic 6 13.0 3.3 4.0 2,937 15,127
Croatian Balto-Slavic 14 14.7 4.1 3.9 2,879 20,689
French Romance 3 18.4 10.5 3.5 318 2,576
German Germanic 5 18.3 9.1 3.5 577 4,664
Hungarian Finno-Ugric 10 11.6 5.9 3.9 2,267 15,045
Italian Romance 12 20.0 5.6 3.9 1,256 9,050
Lithuanian Balto-Slavic 2 9.7 4.7 4.0 593 5,394
Macedonian Balto-Slavic 8 13.4 4.5 4.0 2,075 13,114
Polish Balto-Slavic 1 13.7 4.3 4.0 1,971 18,990
Portuguese Romance 4 19.9 8.6 4.0 924 6,811
Serbian Balto-Slavic 14 15.4 4.3 3.9 1,637 15,509
Spanish Romance 2 23.0 10.2 3.2 235 2,130
Turkish Turkic 8 19.5 4.6 4.4 1,964 22,069
Vietnamese Austroasian 6 37.0 6.4 4.0 2,443 6,076

#Langs 16 #Families 8 24 17.19 5.08 3.96 24,143 158,942

Table 5.9: Statistics about Eχαµs. The average length of the question (Question Len) and the
choices (Choice Len) are measured in number of tokens, and the vocabulary size (Vocab) is

measured in number of words.

7The Eχαµs dataset and code are publicly available at http://github.com/mhardalov/exams-qa

http://github.com/mhardalov/exams-qa
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Dataset Statistics

I collected Eχαµs from official state exams prepared by the ministries of educa-
tion of various countries. These exams are taken by students graduating from high
school, and often require knowledge learned through the entire course. The ques-
tions cover a large variety of subjects and material based on the country’s education
system. Moreover, I do not focus only on major school subjects such as Biology,
Chemistry, Geography, History, and Physics, but I also cover highly-specialized
ones such as Agriculture, Geology, Informatics, as well as some applied and pro-
filed studies. These characteristics make the questions in the dataset of very high
variety, and not easily solvable, due to the need for highly specialized knowledge.
Next, I discuss the cross-lingual and the multilingual properties of my dataset.

Parallel Questions Some countries allow students to take official examinations in
several languages. Such parallel examinations also exist in my dataset. In particular,
there are 9,857 parallel question pairs spread across seven languages as shown in
Table 5.10. The parallel pairs are coming from Croatia (Croatian, Serbian, Italian,
Hungarian), Hungary (Hungarian, German, French, Spanish, Croatian, Serbian,
Italian), and North Macedonia (Macedonian, Albanian, Turkish).

de es fr hr hu it mk sq sr

de -
es 199 -
fr 253 120 -
hr 189 134 109 -
hu 456 159 274 236 -
it 30 9 15 1,214 99 -

mk 0 0 0 0 0 0 -
sq 0 0 0 0 0 0 1,403 -
sr 40 25 20 1,564 104 1,002 0 0 -
tr 0 0 0 0 0 0 1,222 981 0

Table 5.10: Parallel questions for different language pairs.

Multilinguality The dataset includes a total of 24,143 questions in 16 languages
from eight language families. Each question is a 3-way to 5-way (3.96 on average)
multiple-choice question with a single correct answer. Table 5.9 shows a breakdown
for each language, where the number of subjects, questions, and the vocabulary
size are shown as absolute numbers, while the question length, the choice length,
and the number of choices are averaged. All statistics about the questions and the
answer options are measured in terms of words. We see that I have a rich vocab-
ulary with almost 160,000 unique words. Interestingly, there are ∼9,500 shared
words between at least one pair of languages in the dataset, excluding numbers
and punctuation. As expected, the overlapping words are mostly between closely
related languages (bg-mk, bg-sr, es-it, es-pt, hr-sr, mk-sr). Other common shared
words are subject-specific words such as person names (e.g., Abraham, Karl, Ivan),
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Figure 5.4: Relative sizes of the subjects. Those that cover less than 1.5% of the examples
are in Other.

chemical compounds (e.g., NaOH, HCl), units (e.g., m/s, g/mol), etc. Then, there
are cognates with the exact same spelling (homographs) even between unrelated
languages, mostly words of Latin or Greek origin, e.g., temperatura (temperature)
and forma (form). Finally, there are also false friends, whose meaning differs across
languages, e.g., para can mean for (es/pt) vs. money (mk/tr/sq) vs. couple (pl);
similarly, ser can mean be (es/pt) vs. cheese (pl) vs. after (vi).

Subjects and Categories

Each education system has its own specifics, resulting in some differences in cur-
ricula, topics, and even naming of the subjects. That being said, the original, non-
normalized categories in the dataset are more than 40 for exams from just a few
countries. Given the sparse nature of the subjects, I use a two-level taxonomy in or-
der to categorize them into logically connected groups. The lower-level is a subject,
and the higher level is a major group. I normalized the subject using a two-step
algorithm: first, I put each subject (with its original naming) in a separate category,
then, if the subject was general enough, e.g., Biology, History, etc., or there were
no similar ones, I retained the category; otherwise, I merged all similar subjects to-
gether in a unifying category, e.g., Economics Basics, and Economics & Marketing.
I repeated the aforementioned steps until there were no suitable merge candidates.
As a result, I ended up with a total of 24 subjects (see Section 5.5.1 for more details),
which I further grouped into three major categories, based on the main branches of
science: Natural Science – “the study of natural phenomena”, Social Sciences – “the
study of human behavior and societies”, Other – Applied Studies, Arts, Religion, etc. (see
Figure 5.3).8

The distribution of the major categories is Natural Sciences (40.0%) and Social
Sciences (44.0%) and 16.0% for Others (these are the actual numbers, not approxi-
mate). The remaining questions are labeled as Other as they are not suitable for

8https://en.wikipedia.org/wiki/Branches_of_science

https://en.wikipedia.org/wiki/Branches_of_science
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the two main categories. Figure 5.4 presents the relative sizes of the subjects in the
dataset.

Collection and Preparation

Here, I describe the process of collecting and preparing the data, as it is not trivial
and it could be applied to other languages and examinations. First, I identified
potential online sources of publicly available school exams starting from the Ma-
triculation Examination page in Wikipedia.9

For all languages in the dataset, the first step in the process of data collection
was to download the PDF files per year, per subject, and per language (when par-
allel languages were available in the same source). I converted the PDF files to
text and I used only those that were well-formatted and followed the document
structure.

Then, I used Regular Expressions (RegEx) to parse the questions, their corre-
sponding choices and the correct answer choice. In order to ensure that all the
questions are answerable using textual input only, I removed questions that con-
tained visual information. I did that using a manually curated list of words such
as map, table, picture, graph, etc., in the corresponding language. Next, I performed
data cleaning to ensure the quality of the generated dataset, by manually review-
ing each question and its choices and ensuring that all options, text, and symbols
(e.g., µ, →, α, ←) were displayed correctly. As a result, I filtered out about 17%
of the questions (the percentage varies based on the source, the language, and the
subject). Finally, in order to remove frequency bias such as “most answers are B)”,
I shuffled each question’s choices.

Data Splits

In my experiments, I aim at evaluating the multilingual and the cross-lingual ques-
tion answering capabilities of different models. Therefore, I split the data in order
to support both evaluation strategies: Multilingual and Cross-lingual.

Multilingual In this setup, I want to train and to evaluate a given model with
multiple languages, and thus I need multilingual training, validation and test sets.
In order to ensure that I include as many of the languages as possible, I first split the
questions independently for each language L into TrainL, DevL, TestL with 37.5%,
12.5%, 50% of the examples, respectively.10 I then unite all language-specific subsets
into the multilingual sets TrainMul , DevMul , TestMul , and I used them for training,
development, and testing.

9https://en.wikipedia.org/wiki/Matriculation_examination
10For languages with fewer than 900 examples, I only have TestL.

https://en.wikipedia.org/wiki/Matriculation_examination
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Multilingual Cross-lingual
Language Train Dev Test Train Dev

Albanian 565 185 755 1,194 311
Arabic - - 562 - -
Bulgarian 1,100 365 1,472 2,344 593
Croatian 1,003 335 1,541 2,341 538
French - - 318 - -
German - - 577 - -
Hungarian 707 263 1,297 1,731 536
Italian 464 156 636 1,010 246
Lithuanian - - 593 - -
Macedonian 778 265 1,032 1,665 410
Polish 739 246 986 1,577 394
Portuguese 346 115 463 740 184
Serbian 596 197 844 1,323 314
Spanish - - 235 - -
Turkish 747 240 977 1,571 393
Vietnamese 916 305 1,222 1,955 488

Combined 7,961 2,672 13,510 - -

Table 5.11: Number of examples in the data splits based on the experimental setup.

Since I have parallel data for several languages (discussed in Section 5.5.1), in
this setup, I ensure that the same parallel questions are only found in either train-
ing, development or testing, so that I do not leak the answer from training via some
other language. In order to do that, I sample the questions with the assumptions
and the ratios mentioned above, stratified per subject in the given language. The
number of examples per language and the total number of multilingual sets are
shown in the first three columns of Table 5.11.11

Cross-Lingual In this setting, I want to explore the capability of a model to trans-
fer its knowledge from a single source language Lsrc to a new unseen target lan-
guage Ltgt. In order to ensure that I have a larger training set, I train the model
on 80% of Lsrc, I validate on 20% of the same language, and I test on a subset of
Ltgt.12 The last three columns of Table 5.11 show the number of examples used for
training and validation with the corresponding language.

Reasoning and Knowledge Types

In order to give a better understanding of the reasoning, and the knowledge types
in Eχαµs, I sampled and annotated 250 questions, all of which are from the multi-
lingual Dev. For each question, I provided English translations as not all annotators

11Sometimes, grouping parallel questions in the same split slightly violates the splitting ratios.
12To ensure that the cross-lingual evaluation is comparable to the multilingual one, I use the same

subset of questions from language Ltgt that are used in TestMul
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Figure 5.5: Relative sizes of reasoning types in Eχαµs.

were native speakers of the questions’ language. I followed the procedure and re-
used the annotation types presented in earlier work (Clark et al., 2018; Boratko
et al., 2018). However, as they were designed mainly for Nature Science questions,
I extended them with two new annotation types: “Domain Facts and Knowledge” and
“Negation”. I define these types as:

Domain Facts and Knowledge (Knowledge) This skill requires specific expertise
in properties and facts in a given domain, e.g., physical properties, characteristics
of a chemical element.

Example from Philosophy (Portugal):

Which of the following is an example of a priori knowledge?
A) I know my name.
B) I know how old I am.
C) I know that no brother is an only child. ✓
D) I know some parents are not married.

Negation (Reasoning) is a direct statement of negation, and it is often combined
with other reasoning types such as linguistic matching.

Example from Fine Arts (North Macedonia):

Which of the following works of art does not belong to the fine arts?
A) Graphics.
B) Poem. ✓
C) Design.
D) Sculpture.
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Figure 5.6: Relative size of the Eχαµs knowledge types.

The relative sizes of the knowledge and the reasoning types are shown in Fig-
ures 5.5 and 5.6. Here, I must note that the sizes are approximate rather than exact,
since the annotations are subjective and the distribution may vary.

Subject Analysis

The Natural Science group contains five subjects. The corresponding question length
is 16.4 characters and 3.9 answers on average. Some of the subjects are well-known
and widely studied, such as Physics, Biology and Chemistry. They appear in at least
10 out of the 16 languages, covering 7 out of 8 language families. However, Geology
is less common and is present for only 4 languages. Finally, Science is an isolated
subject for Arabic. This group contributes a total of 9,962 questions in the entire
dataset, as shown in Table 5.12. The major groups in the table are divided with a
horizontal line for convenience.

The second subject group covers Social Sciences. Geography, History, Philosophy,
Psychology and Ethics are more common, and thus are included in seven languages
on average (see Table 5.12). The subject group’s average question length is 18.5 char-
acters. The only sizable deviation being for Citizenship, as most of the questions in
this subject explain some social situation in detail.

The last and smallest of the three subject groups is Others. It combines subjects
that cannot be categorized as exactly science-related (either social or natural). Those
subjects are often specific for a particular country or culture and are fairly diverse.
As expected, they are present for less languages (just two).
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Group Subject Language Grade Q Len Ch Len #Ch #Q Vocab

Natural Science Biology ar, bg, hr, hu, it, sr, H 18.2 4.6 4.0 3,042 24,603
sq, mk, tr, pt, vi

Natural Science Chemistry bg, hr, it, sr, de, hu, H 17.3 4.6 4.2 2,315 14,420
sq, mk, tr, vi

Natural Science Geology hr, it, sr, lt, pt H 12.9 5.6 4.0 720 7,251
Natural Science Physics ar, bg, hr, it, sr, fr, de, H 24.9 7.0 3.6 3,465 26,103

hu, es, sq, mk, tr, vi
Natural Science Science ar M, H 9.1 3.0 4.0 120 1,239

Social Science Busin. & Econ. fr, de, hu, sq, mk, tr, pt H 5.7 6.5 3.9 2,012 16,875
Social Science Citizenship vi H 45.1 6.3 4.0 119 980
Social Science Ethics hr, it, sr H 15.5 2.6 4.0 194 1,859
Social Science Geography bg, hr, fr, de, hu, it, H 15.2 5.0 4.2 1,349 11,207

sr, es, tr, vi
Social Science History bg, hr, it, sr, lt, sq, H 16.6 5.9 4.1 3,300 32,709

mk, tr, vi
Social Science Philosophy bg, hr, it, sr, sq, mk, H 16.5 3.9 4.1 1,903 19,373

tr, pt
Social Science Politics hr, hu, it, sr H 18.2 2.8 3.0 493 5,068
Social Science Psychology hr, it, sr H 16.5 3.9 4.1 1,903 19,373
Social Science Social ar M, H 10.8 3.4 4.0 277 2,828
Social Science Sociology hr, it, sr, sq, mk, tr H 15.2 3.4 4.0 566 6,374

Other Agriculture hu H 7.9 3.6 4.3 215 1,918
Other Fine Arts sq, mk H 12.1 3.8 4.0 757 5,691
Other Forestry hu H 7.8 2.9 3.7 241 1,957
Other Informatics hr, it, sr H 18.7 6.2 4.0 311 2,695
Other Islamic Studies ar M, H 9.4 3.0 4.0 78 925
Other Landscaping hu H 7.4 3.8 4.9 49 596
Other Professional pl H 13.7 4.3 4.0 1,971 18,990
Other Religion hr, sr H 10.3 3.6 4.0 222 2,159
Other Tourism de, hu H 8.8 5.2 4.0 20 359

Table 5.12: Per-subject statistics. The grade is High (H), and Middle (M). The average
length of the question (Q Len) and the choices (Ch Len) are measured in number of tokens,

and the vocabulary size (Vocab) is shown in number of words.

5.5.2 Background Knowledge Corpus

Students need good textbooks to study before they can pass an exam, and the
same holds for a good machine reading model. However, finding the information
needed to answer a question, especially for questions in such a narrow domain
as the subjects studied in high schools, usually requires a collection of specialized
texts. The ARC Corpus (Clark et al., 2018) is an example of such a collection. It is
built by querying a major search engine, and around 100 hand-written templates
for 80 science topics covered by US elementary and middle schools. Albeit effective,
this strategy relies on crafting templates for all language–subject pairs, making the
task time-consuming if applied to multiple languages and subjects.

In my work, I used articles from Wikipedia to build a background knowledge
corpus for each language. In particular, I parsed the text from the entire Wikipage,
removing non-textual content, e.g., HTML tags, tables, etc. Following the common
strategy used to solve similar tasks in English (Clark et al., 2018; Mihaylov et al.,
2018), I split each document into sentences and I indexed them using an inverted
index. In order to reduce the search space, and to mitigate the effect of known
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Language Wiki code #Sentences #Articles Stop word Stemming Keyword Language
(millions) (millions) removal extraction specific

ARC Corpus - 14.6 - ! ! ! !

German de 50.0 2.43 ! ! ! !

French fr 30.0 2.22 ! ! ! !

Italian it 17.5 1.61 ! ! ! !

Spanish es 22.7 1.60 ! ! !

Polish pl 15.6 1.41 !

Vietnamese vi 6.4 1.25 ! ! !

Portuguese pt 11.6 1.03 ! ! !

Arabic ar 6.0 1.04 ! ! ! !

Serbian sr 4.6 0.63
Hungarian hu 7.1 0.47 ! ! !

Turkish tr 4.0 0.35 ! ! ! !

Bulgarian bg 3.0 0.26 ! ! !
Croatian hr 2.7 0.22
Lithuanian lt 2.0 0.20 ! ! !
Macedonian mk 1.6 0.11

Albanian sq 0.8 0.08

Table 5.13: Description of the per-language indices used as a source of background knowl-
edge in my experiments.

linguistic phenomena within the same language family, e.g., homonyms, partially
shared alphabet, etc., I created a separate index for each language.

Table 5.13 describes the main characteristics of the indices created for each lan-
guage from its Wikipedia dump.13 I compared the size of the index to the one from
ARC (Clark et al., 2018). The number of articles for each language is taken from
Wikipedia’s official statistics 14. I also marked the language analysis applied on the
index. Some of the languages in Eχαµs are low-resource ones, especially the ones
from the Balto-Slavic family, which is also clear from their Wikipedia sizes. In the
table, we see that half of the languages have under one million articles, and Alba-
nian even falls under 100K. Moreover, even more languages are comparable with
the number of sentences in the ARC Corpus, which is also built from science books.
Finally, some of the languages (Serbian, Croatian, Macedonian, and Albanian) are
not processed with any language-specific ElasticSearch analyzers.

5.5.3 Baseline Models

I divide my baselines into the following two categories: (i) models without ad-
ditional training, and (ii) fine-tuned models. The first group contains common
baselines, i.e., random guessing and information retrieval solver (Clark et al., 2016).
In addition, I evaluate the knowledge contained in the pre-trained language model,

13I used the official Wiki dumps from March 2020 for all languages.
http://dumps.wikimedia.org/

14The statistics are extracted from http://meta.wikimedia.org/wiki/List_of_Wikipedias

http://dumps.wikimedia.org/
http://meta.wikimedia.org/wiki/List_of_Wikipedias
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i.e., mBERT (Devlin et al., 2019) and XLM-R (Conneau et al., 2020), and I use it as an
answering mechanism. The second group of baselines compare the learning abil-
ity of state-of-the-art multilingual models on the task of multiple-choice question
answering. Since I have multi-choice questions, I adopt accuracy as an evaluation
measure, as this is standard for this setup.

No Additional Training

Information Retrieval IR This IR baseline is from Clark et al. (2016), and it ranks
the possible options o for each question q based on the relevance score returned by
a search engine.15 In particular, for each option oi, I form a query by appending the
option’s text to the question’s (q + oi), and I send this concatenation to the search
engine. I then sum the returned scores for the top-10 hits, and I predict the choice
with the highest score to be the correct answer. More detailed discussion can be
found in Section 5.5.2.

Pre-trained Model as a Knowledge Base (KB) As we start to understand pre-
trained BERT-like models better (Petroni et al., 2019; Rogers et al., 2020), we ob-
serve some interesting phenomena. Here, I evaluate the knowledge contained in
the model by leveraging the standard masking mechanism used in pre-training. I
tokenize each question-option pair into subwords, and then I replace all the pieces
from the option with the special [MASK] token. Following the notation from Devlin
et al. (2019), the input sequence can be written as follows:

[CLS] [Q1] . . . [QN] [M_O1] . . . [M_OM] [SEP],

where Q is the question, and M_O is the masked option. Following the notation
above, I obtain a score for each option in the question based on the normalized
log-probability for the entire masked sequence. (see Eq. 5.9).

score(Oi) =
1
|Oi| ∑

t∈Oi

log PMLM(t|Q) (5.9)

I could probably obtain better results for that evaluation if I form the question-
option pairs as a single statement, e.g., “What is the purpose of something? [SEP]
[M_O]→ The purpose of something is [M_O].”

Fine-Tuned Models

I am interested in evaluating the ability of pre-trained models to transfer science-
based knowledge across languages when fine-tuned.

In order to evaluate the QA capability of these models, I follow the established
approach in this setting (Devlin et al., 2019; Liu et al., 2019; Sun et al., 2019), and

15I build and use a separate index for each language using ElasticSearch.
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I fine-tune them to predict the correct answer in a multi-choice setting, given a
selected context. This setup feeds the pre-trained model with a text, tokenized
using the corresponding tokenizer for the model in the format:

[CLS] C [SEP] Q + O [SEP],

where C, Q and O are the tokenized knowledge context (see Section 5.5.2), the ques-
tion, and the option, respectively. Each question-option pair (Q+O) is evaluated, and
the one with the highest confidence of being an answer is selected.

In my experiments, I used the Transformers library (Wolf et al., 2020). I exper-
imented with the best-performing multilingual models: the Multilingual version of
BERT, or mBERT Devlin et al. (2019), and the recently proposed XLM-RoBERTa, or
XLM-R (Conneau et al., 2020).

Multilingual BERT (Devlin et al., 2019) is a fundamental multilingual model
trained on 104 languages with a vocabulary of 110K word-pieces, with a total of
172M parameters (12 layers, 768 hidden states, 12 heads).

XLM-RoBERTa (Conneau et al., 2020) is a recent multilingual model based on
RoBERTa (Liu et al., 2019). It is trained on 100 languages, with a larger vocabulary
of 250K sentence pieces. It comes in two sizes: XLM-RBase (270M parameters, same
architecture as mBERT, except vocab size), and XLM-R (550M parameters, 24 layers,
1,024 hidden states, 16 heads). For completeness, I include both in my experiments.

I fine-tuned the aforementioned models following the standard procedure for
multiple-choice comprehension tasks, as described in (Devlin et al., 2019) and (Liu
et al., 2019), using the Transformers library (Wolf et al., 2020). The training details
can be found in Appendix B.1.1.

5.5.4 Experiments and Results

In this section, I evaluate the performance of the baseline models described in Sec-
tion 5.5.3 on the Eχαµs dataset. In Table 5.14, I show the overall per-language
performance of the evaluated models. The first group shows simple baselines: ran-
dom guessing and IR over Wikipedia articles. IR is better than random guessing,
but it is clear that most questions require reasoning beyond simple word matching.
In the last group, I evaluate the knowledge contained in the models before and after
the QA fine-tuning. First, I evaluate XLM-R as a knowledge base, and then I use
the Full model but with the question–option pair only.

Multilingual Evaluation

The next two groups show (i) how continuous fine-tuning of XLM-R on multi-choice
machine reading comprehension and multi-choice science QA helps, and (ii) how
the different models (XLM-R, XLM-RBase, and mBERT) compare. I follow a standard
training scheme for such tasks: first I fine-tune on RACE (Lai et al., 2017) (∼85k EN
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ARC R12 Eχαµs
Lang/Set E C en ar bg de es fr hr hu it lt mk pl pt sq sr tr vi All

Random Guess 25.0 25.0 25.0 25.0 25.0 29.4 32.0 29.4 26.7 27.7 26.0 25.0 25.0 25.0 25.0 25.0 26.2 23.1 25.0 25.9
IR (Wikipedia) - - - 31.0 29.6 29.3 27.2 32.1 31.9 29.7 27.6 29.8 32.2 29.2 27.5 25.3 31.8 28.5 27.5 29.5

XLM-R on RACE 61.6 45.9 57.4 39.1 43.9 37.2 40.0 37.4 38.8 39.9 36.9 40.5 45.9 33.9 37.4 42.3 35.6 37.1 35.9 39.1
w/ SciENs 73.6 51.2 68.4 39.1 44.2 35.5 37.9 37.1 38.5 37.9 39.5 41.3 49.8 36.1 39.3 42.5 37.4 37.4 35.9 39.6
then on Eχαµs (Full) 72.8 52.6 68.8 40.7 47.2 39.7 42.1 39.6 41.6 40.2 40.6 40.6 53.1 38.3 38.9 44.6 39.6 40.3 37.5 42.0

XLM-RBase (Full) 54.2 36.4 54.6 34.5 35.7 36.7 38.3 36.5 35.6 33.3 33.3 33.2 41.4 30.8 29.8 33.5 32.3 30.4 32.1 34.1
mBERT (Full) 63.8 38.9 57.0 34.5 39.5 35.3 40.9 34.9 35.3 32.7 36.0 34.4 42.1 30.0 29.8 30.9 34.3 31.8 31.7 34.6
mBERT (Eχαµs only) 39.6 28.5 35.1 31.9 34.1 30.4 37.9 33.3 32.6 29.3 31.1 31.9 42.4 29.0 28.3 29.9 30.8 25.4 30.0 31.7

XLM-R as KB 30.8 26.2 27.2 31.0 27.2 31.7 37.9 29.9 27.6 29.3 28.0 28.3 23.5 24.6 27.0 25.6 25.4 24.4 24.9 27.0
XLM-R (Full) w/o ctx 45.4 39.2 47.6 30.2 34.8 34.3 30.2 33.0 33.6 33.4 28.5 30.9 37.5 30.0 32.4 36.7 32.1 31.7 30.4 32.8

Table 5.14: Overall per-language evaluation. The first three columns show the results on
ARC Easy (E), ARC Challenge (C), and Regents 12 LivEnv (en). The following columns
show the per-language and the overall results (the last column All) for all languages. All is

the score averaged over all Eχαµs questions.

questions over documents), then on the AI2 English science datasets (I call them
SciENs for shorter), including ∼9k EN questions with provided relevant contexts16,
and, finally, on the multilingual training set (see Section 5.5.1) with retrieved rele-
vant contexts from Wikipedia (see Section 5.5.2), which is my desired multilingual
evaluation setting and I call it Full. We can also see that training on the SciENs,
which has mostly primary school questions from Natural Sciences, only yields
+0.5% improvement on Eχαµs. Nevertheless, we see a 2.4% improvement with mul-
tilingual fine-tuning on Eχαµs and +0.5% for English. In the third group, I compare
the results from mBERT, XLM-RBase, and XLM-R after fine-tuning. Increasing the
capacity of the model yields improvements: XLM-R scores 7.4% higher on Eχαµs,
and more than 14% on English datasets, compared to its base version (XLM-RBase).
However, mBERT and XLM-RBase have close performance, with mBERT having a
small advantage in the multilingual setting.

Finally, I fine-tuned mBERT on Eχαµs only. As expected, the performance
drops by 3% absolute compared to the Full setup.

Knowledge Evaluation

The last two rows of Table 5.14 evaluate the knowledge in the best model, namely
XLM-R. With XLM-R as KB (see Section 5.5.3) we see small improvement over the
random baseline: +5% ARC Easy, 2% on R12, and just +1% on Eχαµs and ARC
Challenge. Furthermore, I evaluate the knowledge contained in the model after the
Full fine-tuning by excluding the relevant knowledge context (ctx). This is better
than the XLM-R as KB, but it still achieves inferior overall results, which shows that
the stored knowledge is not enough, and that I need to explicitly obtain additional
knowledge from an external source.

16I use the data described at http://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0

http://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0
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Lang AE ACh R12 de es fr it pt bg hr lt mk pl sr hu sq tr vi ar

enall 73.6* 51.2* 68.4* 35.5* 37.9 37.1 39.5 39.3 44.2 38.5 41.3 49.8 36.1 37.4 37.9 42.5 37.4 35.9 39.1

w/ it +1.4 +1.3 +1.4 +6.2 +4.2* +0.3* - -3.7* +1.2 +4.1 +0.9 +0.8 +1.5 +3.1 +2.8 +0.9 -1.3 +1.8 +1.8
w/ pt +0.1 +1.2 -0.8 +2.2 +2.5* -2.5* +1.4* - +0.3 0.0 +2.0 +0.8 -0.1 -0.6 -0.6 -1.3 +1.3 +0.6 +1.1
w/ bg +0.6 +0.4 -0.4 +3.6 +0.8 +1.6 +3.4 -1.9 - +1.5* +2.9* +1.6* +0.1* +1.5* +2.0 +2.3 -0.9 -0.8 +0.8
w/ hr +1.1 +1.7 -0.2 +4.8 +3.8 +0.3 +5.8 -2.8 +1.7* - +0.2* -0.1* +1.2* +6.7* +2.8 +1.7 +1.2 +0.5 -0.1
w/ mk +1.5 -0.5 +2.2 +1.0 +4.2 -0.3 +2.0 -2.6 +1.8* +3.9* +1.5* - +1.9* 0.0* +2.0 +6.9 +4.8 +0.5 +4.5
w/ pl -2.0 -1.5 -3.1 0.0 +0.4 -2.5 +0.1 -1.3 +1.1* +1.0* -0.5* -0.2* - 0.0* -0.4 +0.3 +0.2 -1.4 +0.9
w/ sr +1.8 -0.1 -1.2 +2.6 +5.1 +1.9 +2.8 -0.6 +2.2* +6.2* +0.2* +1.3* +1.3* - +1.4 -0.4 -0.7 -1.0 +3.2
w/ hu -0.8 -0.8 -1.0 +7.8 +10.2 +2.8 +1.1 -1.9 +0.7 +0.8 -3.2 +0.1 +0.9 +0.9 - -0.2 -0.2 -0.6 -1.4
w/ sq -0.1 +0.3 -1.5 +3.5 -0.5 -0.6 +0.8 +0.9 +0.9 +0.8 +1.0 +3.4 +0.6 +0.6 +1.9 - +0.4 +0.3 +0.2
w/ tr -0.5 +1.1 -1.5 +1.5 +3.0 -1.9 +2.3 -3.0 +1.0 +1.0 -2.7 +1.5 +0.2 +1.2 +2.4 +3.7 - -1.0 +1.8
w/ vi -0.5 +0.4 -0.8 +2.9 +3.4 +4.1 +1.1 +1.1 +1.5 +1.7 +0.4 +0.4 +2.1 0.0 +1.7 +0.8 +1.1 - +3.4

Table 5.15: Cross-lingual zero-shot performance on Eχαµs. The first three columns show
the performance on the test set of the AI2 science datasets (English), followed by per-
language evaluation. The underlined values mark languages that have parallel data with

the source language, and the ones with an asterisk* are from the same family.

Cross-lingual Evaluation

Table 5.15 shows the results from the cross-lingual zero-shot transfer compared to
the English-only baseline enall , from XLM-R fine-tuned on SciEN. The languages are
ordered by family, and then alphabetically. I further fine-tune on a single source
language and I test on all other languages using the splits described in Subsec-
tion 5.5.1. The results show that the additional fine-tuning on a single language is
mostly positive. This is notable when fine-tuning on a language with similar lin-
guistic characteristics to the target language, e.g., Balto-Slavic: bg-sr, hr-mk, pl-mk,
sr-bg.

We also see gains when the source language contains more questions from
largely represented and harder subjects. Examples of such are the experiments
showing the positive effects of training on Vietnamese and Macedonian as source
languages; they both contain such subjects: Biology, History, Chemistry, Physics,
and Geography.

This is an indication that the knowledge from the same or from related subjects
in a non-related language is preferred over knowledge from non-related subjects
from a related language. For the same reasons, Portuguese and Polish show neg-
ative effects of fine-tuning on some of the target languages. They contain mostly
niche subjects such as Professional, Philosophy, Economics, Geology. We see a no-
ticeable drop in accuracy for Portuguese almost everywhere, but it has positive
effect on languages that contain similar subjects (Biology, Economics) or are from
the same language family such as Spanish and Italian (for Portuguese). We see
the opposite in the Lithuanian-Polish pair, languages from the same family (but
different subjects) have negative, or no effect on each other. Finally, I analyze the
results from language pairs containing parallel examples (the underlined values).
Such pairs show consistent improvement (+5 to +10), which suggests that the model
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ar bg de es fr hr hu it lt mk pl pt sq sr tr vi All

  Natural Science
 Social Science

Other
All

43.0 33.7 39.9 43.6 35.9 34.4 37.3 36.9 41.2 35.6 36.3 37.1 34.2 33.8 32.3 35.8
37.9 56.1 39.4 29.2 43.2 47.0 43.6 44.3 40.6 62.1 43.3 46.8 47.4 43.2 46.5 47.2
44.9 33.3 48.5 42.9 35.6 59.0 38.3 50.3 35.3 43.2
40.7 47.2 39.7 42.1 39.6 41.6 40.2 40.6 40.6 53.1 38.3 38.9 44.6 39.6 40.3 37.5 42.0

Performance across school subjects categories

ar bg de es fr hr hu it lt mk pt sq sr tr vi All

Biology
Chemistry

Geology
Physics
Science

All

27.5 47.7 41.8 32.1 42.4 41.5 33.5 42.6 41.1 42.7 37.9 40.8
21.9 21.4 26.4 29.5 38.2 30.9 32.3 24.0 17.4 27.8 27.2

34.4 23.1 41.2 40.5 41.5 37.7
31.9 27.7 40.6 43.6 35.9 33.6 40.6 27.4 28.4 35.3 30.9 22.2 31.7 35.6
52.5 52.5
43.0 33.7 39.9 43.6 35.9 34.4 37.3 36.9 41.2 35.6 36.3 37.1 34.2 33.8 32.3 35.8

Performance across school subjects in Natural Science

Figure 5.7: Fine-grained evaluation by language and school subjects.

learns to align the parallel knowledge from the source language to the target lan-
guage. However, I also must note that the effect is strongly dependent on the size
of the overlapping sets.

5.5.5 Per-Subject Fine-Grained Evaluation

Fine-grained evaluation (Mihaylov and Frank, 2019; Xu et al., 2020) allows an in-
depth analysis of the question answering models. One of the nice features of Eχαµs
is that it supports subject-related fine-grained evaluation. On Figure 5.7, the results
are shown by subject group and per-subject for Natural Science.

We can see that the Natural Science questions are the most challenging ones,
which is mostly due to Chemistry and Physics. Those questions require very
complex reasoning and knowledge such as understanding physical models, pro-
cesses and causes, comparisons, algebraic skills and multi-hop reasoning (see Sec-
tion 5.5.1). These skills are currently beyond the capabilities of the current QA
models, and pose interesting challenges for future work (Welbl et al., 2018; Yang
et al., 2018; Saxton et al., 2019; Lample and Charton, 2020). Informatics is another
challenging subject, as it requires understanding programming code and positional
numerical systems among others.

Figure 5.8 shows fine-grained evaluation for two subject groups: Social Science
and Others. We can see that these subjects are less challenging than Natural Science.
One reason is that many of the subjects in these two groups such as Business &
Economics, Geography, and History can be answered using knowledge that is easily
accessible in sources such as Wikipedia (e.g., “Who was the first prime minister of
Poland after 1990?”), i.e., without the need for complex reasoning or calculations,
which are often needed in order to answer questions in subjects such as Physics
and Chemistry. Nevertheless, while seeing scores as high as 60% for some subjects
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ar bg de es fr hr hu it lt mk pt sq sr tr vi All

Business & Economics
Citizenship

Ethics
Geography

History
Philosophy

Politics
Psychology

Social
Sociology

All

45.9 46.9 45.2 64.2 47.7 45.9 46.7 48.6
43.1 43.1

59.7 70.0 63.2 61.5
52.9 18.4 29.2 29.4 30.3 32.2 33.3 23.1 32.4 50.9 43.0
50.4 45.8 40.3 40.6 63.2 47.8 38.5 46.9 43.9 45.1
63.9 33.3 28.6 61.4 35.0 47.6 27.8 41.4 51.9

58.6 57.1 50.8 61.5 57.8
35.1 41.3 59.3 44.1

37.9 37.9
48.4 52.8 48.1 44.8 41.2 32.1 46.7

37.9 56.1 39.4 29.2 43.2 47.0 43.6 44.3 40.6 62.1 43.3 46.8 47.4 43.2 46.5 47.2

Performance across school subjects in Social Science

ar de hr hu it mk pl sq sr
Overall

Agriculture

Fine Arts

Forestry

Informatics

Islamic Studies

Landscaping

Professional

Religion

Tourism

Overall

38.5 38.5

59.0 50.3 55.6

47.5 47.5

37.3 35.6 34.1 35.9

44.9 44.9

29.4 29.4

38.3 38.3

56.6 40.0 55.0

33.3 63.6 52.9

44.9 33.3 48.8 42.9 35.6 59.0 38.3 50.3 35.3 43.2

Performance across school subjects in Other

Figure 5.8: Fine-grained evaluation by language and school subjects in Social Science and
Other.

and languages, the current multilingual QA models are still far from perfect, which
leaves a lot of room for improvement.

5.5.6 Discussion

My results show that initial fine-tuning on a large monolingual out-of-domain
multi-choice machine reading comprehension dataset (RACE (Lai et al., 2017)) per-
forms much better than no training baselines for answering multilingual Eχαµs
questions. Moreover, additional training on English science QA in lower school
levels has no significant effect on the overall accuracy. These results suggest that
further investigation of fine-tuning with other multilingual datasets (Gupta et al.,
2018; Lewis et al., 2020; Clark et al., 2020; Efimov et al., 2020; d’Hoffschmidt et al.,
2020; Artetxe et al., 2020; Longpre et al., 2021) is needed in order to understand
the domain transfer benefits to science QA in Eχαµs, even if they are not in a
multi-choice setting (Khashabi et al., 2020). Using domain-adaptive and task-adaptive
pre-training (Gururangan et al., 2020) to the multilingual science QA might offer
further potential benefits.

Moreover, we need a better knowledge context for a given question–choice
pair (the last row in Table 5.14). Knowing that the context retrieved from the noisy
Wikipedia corpus is relevant for answering Eχαµs questions, suggests that we need
a better multilingual science corpus, similar to Clark et al. (2018); Pan et al. (2019);
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Bhakthavatsalam et al. (2020). We further need better multilingual knowledge se-
lection and ranking (Banerjee et al., 2019). Finally, my cross-lingual experiments
show that we can align the knowledge between languages from parallel examples,
which poses a new question: Is it only due to keyword matching or could the model align
full sentences?

5.6 Summary

In this chapter, I presented a study on automating customer support on Twitter us-
ing two types of models: (i) retrieval-based (IR with BM25), and (ii) based on gener-
ative neural networks (Seq2seq with attention and Transformer). I evaluated these
models without the need of human judgments, using evaluation measures based
on (i) word-overlap (BLEU@2 and ROUGE-L), and (ii) semantics (Embedding Av-
erage, Greedy Matching, and Vector Extrema). For my experiments, I have divided
the data by the timestamp of the post in order to simulate a real-world scenario.
My experiments showed that generative neural models outperform retrieval-based
ones, but they struggle when very few examples for a particular topic are present
in the training data. Nonetheless, despite showing good results and being able
to generate grammatically correct answers and mostly relevant to the question an-
swers, the data provided only from chat logs is not enough to build an end-to-end
customer support bot. It is due to the evolving nature of customer issues, while
being accurate when they were posted, they tend to become obsolete with time.

Further, I have presented a novel framework for re-ranking answer candidates
for conversational agents. In particular, I adopted techniques from the domain of
machine reading comprehension (Chen et al., 2017; Seo et al., 2017; Yu et al., 2018)
to evaluate the quality of a question–answer pair. My framework consists of two
tasks: (i) an auxiliary one, aiming to fit a goodness classifier using QANet and
negative sampling, and (ii) a main task that re-ranks answer candidates using the
learned model. I further experimented with different model sizes and two types of
embedding models: GloVe (Pennington et al., 2014) and ELMo (Peters et al., 2018).
My experiments showed improvements in answer quality in terms of word-overlap
and semantics when re-ranking using the auxiliary model. Last but not least, I
argued that choosing the top-ranked answer is not always the best option. Thus, I
introduced probabilistic sampling that aims to diversify the agent’s language and to
up-vote the popular answers, while taking their ranking scores into consideration.

Finally, I presented Eχαµs, a new challenging cross-lingual and multilingual
benchmark for science QA in 16 languages and 24 subjects from high school ex-
aminations. I further proposed new fine-grained evaluation that allows precise
comparison across different languages and school subjects. I performed various
experiments and analysis with pre-trained multilingual models (XLM-R, mBERT),
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and I demonstrated that there is a need for better reasoning and knowledge trans-
fer in order to solve some of the questions from Eχαµs. I hope that my publicly
available data and code will enable work on multilingual models that can reason
about question answering in the challenging science domain.
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Chapter 6

Conclusion and Future Work

6.1 Summary

In this thesis, I took up on the problem of building efficient task-oriented conversa-
tional agents for customer support. This is a complex problem and often requires
a pipeline built on top of a modularized dialogue system that combines different
components and models working in synchrony. I investigated several important
components natural language understanding for slot tagging and intent detection,
information retrieval from external knowledge sources, question answering sys-
tem, text generation and re-ranking models. Moreover, my research is not limited
to producing short-forms answers in English, but I also investigated multilingual
and cross-lingual approaches for multiple-choice question answering, and retrieval
of long-form documents and articles that can serve as explanations. Below, I offer
a summary of each chapter.

In the first chapter, I started by presenting my motivation for working on build-
ing dialogue agents for customer support and the main challenges that these sys-
tems face. I further highlighted key concepts and I defined the NLP tasks that I
explored through the following chapters. Moreover, I illustrated the main com-
ponents in a chatbot pipeline and the information flow between them. Finally, I
summarized the thesis aims and I outlined the research objections that originate
from these aims.

Next, I presented an in-depth discussion of prior work on conversational agents
and their application for customer support. I organized the section into six ma-
jor categories: (i) task-oriented conversational agents, (ii) question answering ap-
proaches, (iii) retrieval of long-form explanations from external sources, (iv) end-
to-end generative models for dialog, and finally (v) strategies for response selection
from multiple sources.

In the next three chapters, I described in detail my ideas, the proposed frame-
works, the approaches, and the collected datasets.
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In Chapter 3, I extended and improved on state-of-the-art approaches for joint
slot filling and intent classification on two well-known English datasets: ATIS and
SNIPS. My proposed model incorporates hand-crafted features and attention-based
mechanism in order to jointly reinforce both tasks, achieving intent accuracy of
97.87 (ATIS) and 98.86 (SNIPS). Or as a relative error reduction, it achieved almost
5% on ATIS, and over 40% on SNIPS, compared to the state of the art. In terms of
slot filling, my models achieved an F1 score of 96.25 (+6.25%) for ATIS, and 96.57
(+37.64%) for SNIPS.

In Chapter 4, I studied approaches for curating answers from external knowl-
edge sources. In particular, I focused on two main directions: (i) knowledge re-
trieval from inverted index with contextual passages for zero-shot multiple-choice
question answering, (ii) answer retrieval from a pool of explanations, i.e., finding
previously curated long-form answers to produce a detailed (long-form) answer to
an user query. In particular, I explored the limitations of zero-shot transfer from En-
glish to Bulgarian on a newly collected dataset for multiple-choice question answer-
ing, showing improvements of more than 12.5% in terms of accuracy over strong
baselines. Moreover, I proposed an approach to extract long-form documents that
can serve as explanations based on self-adaptive training and distant supervision,
achieving 90.3 MAP@5 and improving current state of the art by two points. Fur-
thermore, I collected a new English dataset containing more than 330,000 unlabeled
article–claim pairs from crowd fact-checkers, resulting in training sets of 3.5–50K
high-quality examples1, which is 1-2 orders of magnitude larger than pre-existing
datasets.

Finally, in Chapter 5, I presented three directions for advanced conversation:
(i) end-to-end generative conversational agents, (ii) strategies for combining an-
swers from different sources or models, and (iii) multilingual and cross-lingual
knowledge transfer. First, I explored the capabilities of sequence-to-sequence neu-
ral network models, both attentive RNNs and Transformers as a backbone of an
end-to-end conversational agent for customer support, I demonstrated promising
results compared to classical information retrieval models. Next, I proposed a novel
re-ranking approach for response selection from multiple sources based on state-
of-the-art QA model in combination of using pre-trained GloVe or ELMo embed-
dings to encode the words and negative sampling in order to find the most relevant
answer from the set of candidates. Finally, I introduced the largest multilingual
dataset for multiple-choice QA (Eχαµs), containing more than 24K questions in 24
subjects from high-school matriculation exams. The dataset covers a diverse set of
languages: a total of sixteen languages from eight language families. Moreover, I
performed various experiments and analysis with pre-trained multilingual models
(XLM-R, mBERT), and I demonstrated that there is a need for better reasoning and
knowledge transfer in order to solve some of the questions from Eχαµs.

1I estimate 90K correct article–claim pairs to be in this dataset (see Section 4.3.4).
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6.2 Contributions

The key contributions of this thesis are as follows:

• Exploring new models and algorithms:

– I proposed a novel enriched pre-trained language model to jointly model
the tasks of intent detection and slot filling, namely, Transformer-NLU.
Moreover, I designed a pooling attention layer in order to obtain in-
tent representation beyond just the pooled one from the special start
token. Further, I reinforced the slot filling with word-specific features,
and the predicted intent distribution. My experiments on two standard
datasets showed that Transformer-NLU outperforms other alternatives
for all standard measures used to evaluate NLU tasks.

– I proposed an approach for training from noisy data using self-adaptive
learning and additional weights in the loss function. Furthermore, I de-
mostrated the utility of the data collected and labeled using distant su-
pervision (CrowdChecked), which yielded sizable performance gains of
four points in terms of MRR, P@1, and MAP@5 over strong baselines that
are trained on manually annotated data (Shaar et al., 2021). Moreover,
I demonstrated improvements over the state of the art on the Check-
That ’21 dataset by two points, achieving MAP@5 of 90.3, when using
CrowdChecked and my newly proposed pipeline.

– I designed an end-to-end approach the task of multiple-choice reading
comprehension for low-resource languages. The model is built on top of
a multilingual BERT model (Devlin et al., 2019), which I fine-tuned on
large-scale English reading comprehension corpora, and open-domain
commonsense knowledge sources (Wikipedia). My main experiments
evaluated the model when applied to Bulgarian in a zero-shot fashion.

– I developed an approach for automating customer support on Twitter us-
ing two types of models: (i) retrieval-based (IR with BM25), and (ii) based
on generative neural networks (seq2seq with attention and Transformer).
I evaluated these models without the need for human judgements, using
evaluation measures based on (i) word-overlap (BLEU@2 and ROUGE-
L), and (ii) semantics (Embedding Average, Greedy Matching, and Vector
Extrema). My experiments showed that generative neural models out-
perform retrieval-based ones, but they struggle when very few examples
for a particular topic are present in the training data.

– I introduced a novel framework for re-ranking answer candidates for
conversational agents. In particular, I adopted techniques from the do-
main of machine reading comprehension (Chen et al., 2017; Seo et al.,
2017; Yu et al., 2018) to evaluate the quality of a question–answer pair.
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My framework consists of two tasks: (i) an auxiliary one, aiming to fit a
goodness classifier using QANet and negative sampling, and (ii) a main
task that re-ranks answer candidates using the learned model. I further
experimented with different model sizes and two types of embedding
models: GloVe (Pennington et al., 2014) and ELMo (Peters et al., 2018).
My experiments showed improvements in answer quality in terms of
word overlap and semantics when re-ranking using the auxiliary model.

– I designed a new challenging cross-lingual and multilingual benchmark
for science QA from high school examinations. I evaluated the abilities
of state-of-the-art models for zero-shot and cross-lingual transfer in mas-
sively multilingual settings. I showed that pre-training on large English
out-of-domain datasets can help the model to learn the task, but further
improvements can only be achieved by in-domain multilingual data.

– I performed various experiments and analysis with pre-trained multilin-
gual models (XLM-R, mBERT), and I demonstrated that there is a need
for better reasoning and knowledge transfer in order to solve some of
the questions from Eχαµs.

• Creating new datasets:

– I collected a new Bulgarian corpus for multiple-choice reading compre-
hension with 2,633 questions from matriculation exams for twelfth grade
in history and biology, and online exams in history without explanatory
contexts.

– I collected Eχαµs, a new challenging cross-lingual and multilingual
benchmark for science QA in 16 languages and 24 subjects from high
school examinations. I further proposed new fine-grained evaluation
that allows precise comparison across different languages and school
subjects.

– I built CrowdChecked, a large-scale dataset for detecting previously fact-
checked claims, with more than 330,000 pairs of tweets and correspond-
ing fact-checking articles posted by crowd fact-checkers. I further inves-
tigated two techniques for labeling the tweet–article pairs using distance
supervision, based on Jaccard similarity and the predictions from a neu-
ral network model resulting in new training sets of 3.5K–50K examples.

6.3 Directions for Future Research

Modularized (task-oriented) conversational agents offer a great flexibility in terms
of model training, and allow to easily add new or to replace existing modules
to the agent’s pipeline. However, that flexibility brings several limitations along.
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On one hand, there is a disconnect between different components (models) both
during training and inference, that, in turn, leads to error accumulation along the
pipeline (a snowball effect2), e.g., if the natural language understanding recognizes
the wrong intent, this will result in different dialogue policy, and generating the
wrong response. On the other hand, including too many components can increase
the computational cost, hence deploying the dialogue system can become infeasi-
ble. Hereby, I believe that building end-to-end conversational agents is an exciting
research direction that can help to overcome the limitations of module-based con-
versational agents.

In the short term, end-to-end differentiable architectures (Li et al., 2017; Bordes
et al., 2017; Madotto et al., 2018) based on a combination of hierarchical neural
networks, multi-task learning, and multi-model error propagation can be a step
forward in that direction. Nonetheless, it is not always necessary to have one model
per task in the pipeline, and simplifying the model architecture is another important
research direction. A possible approach is to merge several modules together (Zhao
and Eskenazi, 2016; Lei et al., 2018), but a more promising one is to train an expert
model that can perform multiple tasks together, e.g., using multiple classification
heads Weld et al. (2022), prompting (Raffel et al., 2020; Su et al., 2022; Sanh et al.,
2022), or even demonstrations (Brown et al., 2020).

In the long term, in my opinion, single-model architectures based on end-to-
end generative models can be a strong alternative to multi-model pipelines, even
in task-oriented scenarios. Moreover, the release of several large pre-trained Trans-
formers, trained on sequence generation (Raffel et al., 2020; Lewis et al., 2020; Liu
et al., 2020; Xue et al., 2021) tasks is fostering further research in the direction of
generative conversational agents. However, as I discuss in Chapter 5, there is cur-
rently plenty of room for improvements of these models. Moreover, even in an
end-to-end scenario the task-oriented dialogue system will still need to communi-
cate with external knowledge sources such as databases or APIs, in order to collect
the information needed to serve the customer’s request.

Nevertheless, even with the development of models with capacity increased to
billions of trainable parameters (Shoeybi et al., 2019; Brown et al., 2020; Sun et al.,
2021; Fedus et al., 2022; Zhang et al., 2022; Soltan et al., 2022), they are not widely
adopted for real-world applications. The main thing hindering their usage is that
they are vulnerable to both ethical and practical risks (Bender et al., 2021; Bom-
masani et al., 2021) such as hallucination (Dziri et al., 2021; Shuster et al., 2021; Dziri
et al., 2022; Ji et al., 2022), injected biases both during pre-training or fine-tuning,
e.g., learning toxic content (Ousidhoum et al., 2021; Zhou et al., 2021), or different
cultural norms (Arora et al., 2022), among others. That being said, it is clear that
we need more research and better models in order to release end-to-end models
in dynamic real-world scenarios. Moreover, it is not enough to develop efficient

2https://dictionary.cambridge.org/dictionary/english/snowball-effect

https://dictionary.cambridge.org/dictionary/english/snowball-effect
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mechanisms for updating the factual knowledge stored in the model itself (De Cao
et al., 2021), but also to implement additional knowledge grounding (Zhao et al.,
2020), and auto-debiasing (Guo et al., 2022) procedures, in order to ensure that the
chatbots produce correct and factual responses. Finally, we need to develop mech-
anisms that prevent malicious actors to exploit the models (Vincent, 2016; Hancock
et al., 2019; Vanderlyn et al., 2021).

In recent years, we see a growth of work focusing on explaining the decisions
that the models make, in order to arrive at their outputs, and it is now becoming
an important research area both in NLP (Danilevsky et al., 2020) and in other di-
visions of artificial intelligence (Došilović et al., 2018). The same trend holds for
dialogue agents, especially in the cases when the system is expected to provide
not only a confirmation, a short-form clarification question or an answer, but also
an explanation that the user can use to achieve their goals, or to take an informed
decision based on facts, which they can verify as well. This is of vital importance
in domains where mistakes can have high cost such as in medical scenarios or in
business applications.

In Chapter 4, I focused on retrieving answers from long-form documents that
can serve as an explanation, but there are several interesting research directions that
can be explored in future work. One promising direction is explanbility based on
the reasoning chain that the model followed in order to generate the answer (Yang
et al., 2018; Das et al., 2018). Another direction is forming long-form answers with
detailed explanations based on evidence paragraphs (Kwiatkowski et al., 2019; Fan
et al., 2019) and further enriching them on the fly with automatic edits, adding
sources, etc. (Schick et al., 2022), or obtaining token-level explanations (Li and Yao,
2021; Arora et al., 2022).
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[328] Steve Young, Milica Gašić, Blaise Thomson, and Jason D Williams. 2013.
Pomdp-based statistical spoken dialog systems: A review. Proceedings of the
IEEE, 101(5):1160–1179.

[329] Steve J. Young, Milica Gasic, Simon Keizer, François Mairesse, Jost Schatz-
mann, Blaise Thomson, and Kai Yu. 2010. The Hidden Information State
model: A practical framework for POMDP-based spoken dialogue manage-
ment. Comput. Speech Lang., 24:150–174.

[330] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mo-
hammad Norouzi, and Quoc V Le. 2018. QANet: Combining Local Convolu-
tion with Global Self-Attention for Reading Comprehension. In Proceedings of
the 2018 International Conference on Learning Representations, ICLR ’18, Vancou-
ver, Canada.

[331] Chunyuan Yuan, Wei Zhou, Mingming Li, Shangwen Lv, Fuqing Zhu, Jizhong
Han, and Songlin Hu. 2019. Multi-hop Selector Network for Multi-turn Re-
sponse Selection in Retrieval-based Chatbots. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages

https://www.aclweb.org/anthology/N19-4013
https://www.aclweb.org/anthology/N19-4013
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://www.aclweb.org/anthology/D18-1259
https://www.aclweb.org/anthology/D18-1259
https://doi.org/10.1145/2872518.2890588
https://doi.org/10.1145/2872518.2890588
https://doi.org/10.18653/v1/D19-1011
https://doi.org/10.18653/v1/D19-1011


BIBLIOGRAPHY 153

111–120, Hong Kong, China.

[332] Zengfeng Zeng, Dan Ma, Haiqin Yang, Zhen Gou, and Jianping Shen. 2021.
Automatic Intent-Slot Induction for Dialogue Systems. In Proceedings of the
Web Conference 2021, WWW ’21, page 2578–2589.

[333] Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, and Philip Yu. 2019. Joint Slot
Filling and Intent Detection via Capsule Neural Networks. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pages
5259–5267, Florence, Italy.

[334] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022. Opt: Open pre-trained transformer language models. arXiv preprint
arXiv:2205.01068.

[335] Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020. Task-Oriented Dialog Systems
That Consider Multiple Appropriate Responses under the Same Context. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 34(05):9604–9611.

[336] Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang
Gao, Jianfeng Gao, Jingjing Liu, and Bill Dolan. 2020. DIALOGPT : Large-
Scale Generative Pre-training for Conversational Response Generation. In
Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 270–278, Online.

[337] Zhen Zhang, Hao Huang, and Kai Wang. 2020. Using Deep Time Delay Neu-
ral Network for Slot Filling in Spoken Language Understanding. Symmetry,
12(6).

[338] Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie Huang, and XiaoYan Zhu.
2020. Recent advances and challenges in task-oriented dialog systems. Science
China Technological Sciences, 63(10):2011–2027.

[339] Tiancheng Zhao and Maxine Eskenazi. 2016. Towards End-to-End Learning
for Dialog State Tracking and Management using Deep Reinforcement Learn-
ing. In Proceedings of the 17th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, pages 1–10, Los Angeles.

[340] Xueliang Zhao, Wei Wu, Can Xu, Chongyang Tao, Dongyan Zhao, and Rui
Yan. 2020. Knowledge-Grounded Dialogue Generation with Pre-trained Lan-
guage Models. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP ’20, pages 3377–3390, Online.

[341] Victor Zhong, Caiming Xiong, and Richard Socher. 2018. Global-Locally Self-
Attentive Encoder for Dialogue State Tracking. In Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), ACL ’18, pages 1458–1467, Melbourne, Australia.

https://doi.org/10.1145/3442381.3450026
https://doi.org/10.18653/v1/P19-1519
https://doi.org/10.18653/v1/P19-1519
https://doi.org/10.1609/aaai.v34i05.6507
https://doi.org/10.1609/aaai.v34i05.6507
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.3390/sym12060993
https://doi.org/10.3390/sym12060993
https://doi.org/10.1007/s11431-020-1692-3
https://doi.org/10.18653/v1/W16-3601
https://doi.org/10.18653/v1/W16-3601
https://doi.org/10.18653/v1/W16-3601
https://doi.org/10.18653/v1/2020.emnlp-main.272
https://doi.org/10.18653/v1/2020.emnlp-main.272
https://doi.org/10.18653/v1/P18-1135
https://doi.org/10.18653/v1/P18-1135


BIBLIOGRAPHY 154

[342] Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum. 2020. The Design
and Implementation of XiaoIce, an Empathetic Social Chatbot. Computational
Linguistics, 46(1):53–93.

[343] Wenxuan Zhou and Muhao Chen. 2021. Learning from Noisy Labels for
Entity-Centric Information Extraction. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 5381–5392, Online and
Punta Cana, Dominican Republic.

[344] Xiangyang Zhou, Lu Li, Daxiang Dong, Yi Liu, Ying Chen, Wayne Xin Zhao,
Dianhai Yu, and Hua Wu. 2018. Multi-Turn Response Selection for Chatbots
with Deep Attention Matching Network. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1118–1127, Melbourne, Australia.

[345] Xuhui Zhou, Maarten Sap, Swabha Swayamdipta, Yejin Choi, and Noah
Smith. 2021. Challenges in Automated Debiasing for Toxic Language De-
tection. In Proceedings of the 16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume, pages 3143–3155, Online.

[346] Su Zhu, Zijian Zhao, Rao Ma, and Kai Yu. 2020. Prior Knowledge Driven
Label Embedding for Slot Filling in Natural Language Understanding.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:1440–
1451.

[347] Arkaitz Zubiaga. 2018. A longitudinal assessment of the persistence of Twit-
ter datasets. Journal of the Association for Information Science and Technology,
69(8):974–984.

[348] Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva, Maria Liakata, and Rob
Procter. 2018. Detection and Resolution of Rumours in Social Media: A Sur-
vey. ACM Comput. Surv., 51(2).

[349] Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geraldine Wong Sak Hoi, and
Peter Tolmie. 2016. Analysing How People Orient to and Spread Rumours in
Social Media by Looking at Conversational Threads. PloS one, 11(3):1–29.

[350] Victor Zue, Stephanie Seneff, James R Glass, Joseph Polifroni, Christine Pao,
Timothy J Hazen, and Lee Hetherington. 2000. JUPlTER: a telephone-based
conversational interface for weather information. IEEE Transactions on Speech
and Audio Processing, 8(1):85–96.

https://doi.org/10.1162/coli_a_00368
https://doi.org/10.1162/coli_a_00368
https://doi.org/10.18653/v1/2021.emnlp-main.437
https://doi.org/10.18653/v1/2021.emnlp-main.437
https://doi.org/10.18653/v1/P18-1103
https://doi.org/10.18653/v1/P18-1103
https://doi.org/10.18653/v1/2021.eacl-main.274
https://doi.org/10.18653/v1/2021.eacl-main.274
https://doi.org/10.1109/TASLP.2020.2980152
https://doi.org/10.1109/TASLP.2020.2980152
https://doi.org/10.1002/asi.24026
https://doi.org/10.1002/asi.24026
https://doi.org/10.1145/3161603
https://doi.org/10.1145/3161603
https://doi.org/10.1371/journal.pone.0150989
https://doi.org/10.1371/journal.pone.0150989
https://doi.org/10.1109/89.817460
https://doi.org/10.1109/89.817460


155

Appendix A

Curating Answers from External
Knowledge Sources

A.1 Answer Retrieval from a Pool of Explanations

A.1.1 Hyperparameters and Fine-Tuning

Common Parameters 1

• The models are developed in Python using PyTorch (198), the Transformers
library (310) and the Sentence Transformers library (224).2

• I used NLTK (169) to filter out English stop words, Twitter Tokenizer to split
the tweets and to strip the handles, and Porter’s stemmer (207) to stem the
tokens.

• For model optimization I use AdamW (170) with weight decay 1e-8, β1 0.9,
β2 0.999, ϵ 1e-08, for 10 epochs and maximum sequence length of 128 tokens
(per encoder).3

• All SentenceBERT models are initialized from the ’stsb-bert-base’4 checkpoint.

• The SBERT models use cosine similarity both during training inside the MNR
loss and during inference for ranking.

• The values of the hyper-parameters were selected on the development set of
CheckThat ’215 and I chose the best model checkpoint based on the perfor-
mance on the development set (MAP@5).

• I ran each experiment three times with different seeds and averaged all the
metrics.

1The code and the data will be made available with the camera-ready version.
2github.com/UKPLab/sentence-transformers
3When needed, I truncated the sequences token by token, starting from the longest sequence in

the pair.
4huggingface.co/sentence-transformers/stsb-bert-base
5https://gitlab.com/checkthat_lab/clef2021-checkthat-lab/-/tree/master/task2

github.com/UKPLab/sentence-transformers
huggingface.co/sentence-transformers/stsb-bert-base
https://gitlab.com/checkthat_lab/clef2021-checkthat-lab/-/tree/master/task2
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• The models were evaluated on each epoch or 250 steps, whichever is less.

• The evaluation metrics are calculated using the official code from the Check-
That ’21 competition (246)6 and the SentenceTransformer’s library.

• In this thesis, I list 199 examples for the development set of CheckThat ’21,
while Shaar et al. (246) lists 200. The difference comes from one duplicate row
in the development set, which I found and filtered out.

• I trained my models on 5x Tesla T4 GPUs and 1x GeForce GTX 1080Ti, de-
pending on the dataset size, the experiments took between 10 minutes and 5
hours.

Baseline SBERT

• Baseline SentenceBERT is trained w/ LR 2e-05, warmup 0.1, and batch size
32.

• I set the temperature (τ) in the MNR loss to 1.0, i.e., using unmodified MNR.

• The model consists 110M params, same as the bert-base Devlin et al. (56), as
it uses a bi-encoder scheme.

Proposed Pipeline

• The model is trained w/ LR 1e-05, warmup 0.1, and batch size 8, group size
of 4 during the dataset shuffling.

• I tuned settings of the self-adaptive training approach: momentum α to 0.9,
refurbishment process starting at the second epoch.

• I set the learning rate for temperature (τ) in the MNR loss to 0.4.

• In the re-ranking, I used 800 training examples to train SBERT and the re-
maining 199 to train LambdaMART.

• I re-ranked the top-100 results from the best SentenceBERT model with Lamb-
daMART.

• All other training details I kept from (34).

• The model consists 330M params, 3x as the size of the Baseline SBERT, as it
trains three separate models.

• In my preliminary experiments, SBERT-base and SBERT-large models
achieved the same results in terms of MAP@5, therefore I experiment with
the base versions.

6https://gitlab.com/checkthat_lab/clef2021-checkthat-lab/-/tree/master/task2/scorer

https://gitlab.com/checkthat_lab/clef2021-checkthat-lab/-/tree/master/task2/scorer
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A.1.2 Annotations

Setup and Guidelines Each annotator was provided by the same guidelines and
briefed in from one of the authors of this paper. For annotation I used a Google
Sheets document, where non of the annotators had access to the annotations from
the others. The annotation sheet contained the following fields:

• tweet_text – the text of the fact-checking tweet

• text_conversation – the text of the root of the conversation

• text_reply – the text of the last tweet before the fact-checking one

• title – the title of the Snopes article

• subtitle – the subtitle of the Snopes article.

The task annotation task is to mark if ‘Conversation matches’ and ‘Replay
matches’ using a check-boxes. I also allowed them to add comments as a free
form text.

Demographics I recruited three annotators – 2 male and 1 female on age between
25 and 30. The annotators have higher education (at least a bachelors degree), and
are currently enrolled in a Masters or Ph.D. programs in computer science. Each
annotator is proficient in English but is not a native speaker of the language.

Inter-annotator Agreement Here, I present the inter-annotator agreement. I mea-
sure the overall agreement using Fleiss kappa (75) (shown in Figure A.1) but also
the agreement between each two annotators using Cohen’s Kappa (shown in Ta-
ble A.2). The overall level of agreement of agreement between the annotators is
good. Moreover, we can see that between annotator A and C the agreement is almost
perfect both for the replies and conversations. The lowest agreement is between A
and B but still substantial.

Replay Conversation

Fleiss Kappa 0.745 0.750

Table A.1: Fleiss Kappa inter-annotator agreement between my three annotators (A, B, C).

Annotators Replay Conversation
Cohen Kappa

A↔ B 0.650 0.655
A↔ C 0.885 0.922
B↔ C 0.698 0.673

Table A.2: Cohen Kappa inter-annotator agreement between the three annotators (A, B, C).
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Disagreement Analysis After the annotations procedure was finished I analyzed
the examples the annotators disagree on:

(i) The first type of claims that cause disagreement are the ones depend on in-
formation external sources, e.g., ‘Blame Russia again? [URL]’.

(ii) The second type are tweets containing multiple claims that needs to be fact-
checked, however the referenced article does not target the main claim, e.g.,
‘It sounds like someone who is scared as heck that they will not win,” Shermichael
Singleton says of Pres. Trump’s remarks encouraging his supporters to vote twice.’
and its crowd fact-check ‘Did Trump Tell People To Vote Twice?’. Here, the main
claim is in the quote itself, while the remark about voting twice is secondary.

(iii) Third type are – the claim is ambiguous Fanta (soft drink) was created so that the
Nazi’s could replace Coca-Cola during WWII [URL], and the fact-check is about
‘Was Fanta invented by the Nazis?’. Here, it is not clear who created Fanta.
The final pattern is – the claim is partial match with the fact-check, e.g., ‘did
President Trump have a great economy and job creation for 1st 3 years???’, and the
fact-check is ‘Did Obama’s Last 3 Years See More Jobs Created Than Trump’s First
3?’

.

Tweet-Article Pairs Analysis In Table A.3, I show examples of correct (✓) and
incorrect (✗) matching pairs. I sorted the examples within each group based on
the word overlap between the claim and the verified claim, e.g., (1) and (2) have
more words in common between the two texts compared to the overlaps in (3), and
similarly for (4)–(6).

First, I can see that high overlap does not guarantee a correct pair, just like
low overlap does not mean an incorrect pair, which is also visible from the analysis
of the Jaccard similarity in Table 4.9. These two phenomena can be seen in (3),
i.e., a correct pair with low overlap, and in (4), i.e., an incorrect match with high
overlap. Next, some tweets may not contain a claim such as (4), as the user only
asks questions, rather than stating something that can be fact-checked. In contrast,
(6) contains a verifiable claim about gas prices, but the linked Snopes article fact-
checks whether COVID spreads through gas pumps, which is irrelevant in this case.
Row (5) is a partial match, and the tweet contains a check-worthy claim, but the
article by the crowd fact-checker focuses on the IQ of the Fox News viewers, rather
than on how well informed they are, and thus again the match is incorrect. Finally,
in row (1), we can see that the verified claim is almost exactly included in the
tweet, which is an easy case to match. In contrast, for the example in row (3), the
model should do a semantic match based on some prior knowledge that the other
name for influenza A virus subtype H1N1 is swine flu, and moreover, 10,000 should
be associated with the word thousands.
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Tweet w/ Claim Snopes Verified Claim and Article

Correct Matches ✓

(1) “Mussolini may have done many bru-
tal and tyrannical things; he may have
destroyed human freedom in Italy; he
may have murdered and tortured citi-
zens whose only crime was to oppose
Mussolini; but ‘one had to admit’ one
thing about the Dictator: he ‘made the
trains run on time.’” [URL]

Italian dictator Benito Mussolini made
the trains run on time snopes.com/
fact-check/loco-motive/

(2) "Full list of songs Clear Channel banned
following the 911 attacks. Some of these
don’t make any sense at all. 12 [URL]"

Clear Channel Communications banned
their American radio stations from
playing specified songs in order to
avoid offending listeners. snopes.com/
fact-check/radio-radio/

(3) @user @user OMG! Were you on this
planet when Obama did nothing dur-
ing H1N1 crisis? Only difference was
H1N1 caused more than 10000 deaths
and Obama was golfing. Took 6 mos for
him to even have a press conference!

U.S. President Barack Obama waited
until millions were infected and thou-
sands were dead before declaring a
public health emergency concerning
swine flu. snopes.com/fact-check/
obama-wait-swine-flu-n1h1/

Incorrect Matches ✗

(4) Dick Van Dyke? What’s next? Penis Van
Lesbian? What. Is. NEXT???

Dick Van Dyke’s real name is Penis
Van Lesbian. snopes.com/fact-check/
dick-van-dyke/

(5) "I’ve just found a 2012 report on how
well informed TV viewers are NPR was
top, of course. That’s the one the Repub-
licans want to defund, as it’s contrary
to their interests Also Fox viewers were
less well informed than people who did
not watch TV news at all"

A four-year study has found that Fox
News viewers have IQs 20 points lower
than average. snopes.com/fact-check/
news-of-the-weak/

(6) Trump just said he has seen gas prices
at $.89-$.99 per gallon. Where I am it
is currently $1.70. Anyone see prices
Trump is talking about?

The COVID-19 coronavirus disease
is "spreading quickly from gas
pumps." snopes.com/fact-check/
covid19-gas-pump-handles/

Table A.3: Examples from CrowdChecked, showing correct (✓) and incorrect matches (✗).
The examples in each group are sorted by their overlap with the claim made in the tweet.

snopes.com/fact-check/loco-motive/
snopes.com/fact-check/loco-motive/
snopes.com/fact-check/radio-radio/
snopes.com/fact-check/radio-radio/
snopes.com/fact-check/obama-wait-swine-flu-n1h1/
snopes.com/fact-check/obama-wait-swine-flu-n1h1/
snopes.com/fact-check/dick-van-dyke/
snopes.com/fact-check/dick-van-dyke/
snopes.com/fact-check/news-of-the-weak/
snopes.com/fact-check/news-of-the-weak/
snopes.com/fact-check/covid19-gas-pump-handles/
snopes.com/fact-check/covid19-gas-pump-handles/
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Appendix B

Advanced Conversation

B.1 Multi- and Cross-Linguality

B.1.1 Hyperparameters and Fine-Tuning

In this thesis, I am interested in the cross-lingual transferability of multilingual
models such as mBERT (56) and XLM-RoBERTa (43), each of which comes pre-
trained on more than 100 languages. I evaluated the QA capabilities of these mod-
els, following the established protocol (56; 167; 270), namely I fine-tuned them to
predict the correct answer in a multi-choice setting, given a selected context. The
aforementioned setup feeds the pre-trained model with a text, processed using the
model’s tokenizer in the following format:

[CLS] C [SEP] Q + O [SEP]

where C, Q and O are the tokenized knowledge Context (see Section 5.5.2), Question,
and Option, respectively.

I used the Transformers library (310). I fine-tuned mBERT, XLM-R, and
XLM-RBase in three steps. 23 first fine-tuned the models with RACE (140), a
multiple-choice reading comprehension dataset with around 85k questions for
training. Then, I trained on the combination of ARC (39), OpenBookQA (182), and
Regents Living Environments, as in the AristoRoBERTaV7 ARC Challenge leader-
board entry1; I refer to these datasets as SciENs (Science English datasets). I used
the resulting pre-trained models as base models for my Multilingual and Cross-
lingual evaluations (Section 5.5.4 in the paper). For the multilingual evaluation, I
continued training the model, previously fine-tuned on the SciENs datasets, with
my multilingual TrainMul set, validating on DevMul and testing on TestMul . For
my cross-lingual evaluation, I continued training the SciENs model on separate
languages, as described in Section 5.5.4.

In Table B.1, I show the values of the hyper-parameters for each fine-tuning
step and corresponding model. Note that these hyper-parameters were not ob-
tained with an exhaustive search, and thus a better setting might exist for each

1https://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0

https://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0
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Model Batch Size Accum. Steps Max Seq. Len. Learn Rate Warmup Weight Decay

fine-tune on RACE (Step 1)

mBERT 4 64 320 0.00005 0.1 -

XLM-R
XLM-RBase

2 16 320 0.00001 0.1 0.06

fine-tune on SciENs (Step 2)

mBERT
XLM-R
XLM-RBase

2 16 320 0.00001 0.2 0.06

Eχαµs TrainMul (Step 3 - Multilingual)

mBERT
XLM-R
XLM-RBase

2 16 320 0.00001 0.2 0.06

for each source language (Step 3 - Cross-lingual)

mBERT
XLM-R
XLM-RBase

2 8 320 0.00001 0.2 0.06

Table B.1: The hyper-parameter values I used for fine-tuning.

model and dataset. Initially, I used the hyper-parameters for AristoRoBERTaV7 ARC
Leaderboard submission for English-only RoBERTa (167): epochs = 4, learning rate
= 1e-5.

With these parameters alone, the models did not perform well, and thus I
added a warmup of 0.1 and a weight decay of 0.06, which stabilized the training.
In all experiments, I used the Adam optimizer with β1=0.9, β2=0.999, and ϵ=1e-08.

I further performed manual tuning of the hyper-parameters: I experimented
with variations thereof, depending on the performance on the corresponding devel-
opment sets, and I ended up with the values in Table B.1. Moreover, I adjusted the
batch size and the accumulation steps depending on the availability of the GPUs
on the cluster: Nvidia GTX 1080 Ti (Pascal, 11GB memory) or Nvidia Quadro RTX
6000 (24GB). For each examined setting, I trained for up-to 6 epochs, evaluating the
model on the corresponding development set every 100 to 1000 update steps, de-
pending on the dataset size and the effective batch size. For the final evaluations, I
chose the model with the highest accuracy score on the corresponding development
set.

Fine-tuning XLM-R (550M parameters) on Nvidia Quadro RTX 6000 (24GB)
with the given hyper-parameters took around three hours per epoch when fine-
tuned on RACE (∼85k examples), 30 minutes per epoch when fine-tuned on SciENs
(∼9k examples), and 30 minutes on Eχαµs on TrainMul (∼8k examples). Fine-tuning
XLM-RBase (270M parameters) and mBERT (172M parameters) on Nvidia GTX 1080
Ti (Pascal, 11GB memory) with the given hyper-parameters took roughly 2 to 2.5
hours per epoch when fine-tuned on RACE (∼85k examples), 30 to 35 minutes per
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epoch when fine-tuned on SciENs (∼9k examples), and additional 30 minutes on
the Eχαµs TrainMul (∼8k examples).

B.1.2 Subject Definitions

Next, I give a brief description of the less commonly known subjects included in
Eχαµs.

Agriculture covers questions about soil farming and preservation, small animals
breeding and their general health care, and vehicle maintenance and repair.

Business & Economics is a term used to combine five similar subjects related to
business and economics. The questions in these subjects cover theoretical ques-
tions on economics basis, marketing questions, business questions with elements of
accountancy, finances, and organizational studies.

Citizenship is a specific subject from the Vietnamese school system, which tries
to inform and give better perspective on different social situations, to educate stu-
dents in how to perform better, and to be a more aware member of the society by
analyzing different norms and personal morality.

Fine Arts contains analytical and historical questions about different forms of art
such as movies, music, art, etc.

Forestry studies the craft of managing, using, conserving, and repairing forests,
woodlands, and associated resources around them such as water sources and soil.

Geology is the study of the Earth, with the general exclusion of present-day life,
flow within the ocean, and the atmosphere. Questions from this subject cover
branches of Geology such as Economical Geology, Marine Geology, Geomorphol-
ogy, and Geophysics.

Informatics consists of questions about basic hardware knowledge and software
management as well as basics of different positional numeral systems (e.g., binary
and hexadecimal).

Islamic Studies refers to the academic studies of Islam, Quran excerpts, and Mus-
lim morality. This a subject studied in the Qatari educational system during both
middle and high school.

Landscaping teaches about modifying the visible features of an area of land, trees
and park decorations. It also contains questions about plants and soils.



Appendix B. Advanced Conversation 163

Politics covers Croatia’s political system, historical questions about the country’s
development, as well as different regulations and laws, international relations and
contracts.

Professional subject is present in the Polish school system and covers knowledge
on specific professions such as flight attendant, babysitter, care taker, office worker
in terms of profession’s regulations, rules and established norms, etc.

Religion subject covers Christianity studies such as Bible knowledge, related tra-
ditions, e.g., baptism, marriage, etc.

Tourism covers hospitality management, as well as basis of business and tradi-
tions in Hungary and its neighboring countries.

Science which is used in the Arabic school system throughout middle and high
grade studies combines general science questions from Biology, Chemistry, Physics
Geology and their branches such as as Biophysics, Astrophysics, and Biochemistry.

Social subject, similarly to Science, combines questions from political, cultural,
historical and geographical studies.

Sociology is the study of society, patterns of social relationships, social interac-
tion, and culture that surrounds our everyday life.
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