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Chapter 1

Introduction

Modern variational analysis can be viewed as a further extension of the cal-
culus of variations with focus on optimization of functions relative to various
constraints and on sensitivity and stability of optimization-related problems
with respect to perturbations.

One of the most characteristic features of modern variational analysis is
the intrinsic presence of nonsmoothness, i.e. the necessity to deal with nondif-
ferentiable functions, sets with nonsmooth boundaries, and set-valued map-
pings. One reason for the growth of the subject has been, without a doubt,
the recognition that nondifferentiable phenomena are more widespread, and
play a more important role than smooth ones. Many fundamental objects
frequently appearing in the framework of variational analysis (e.g., the dis-
tance function, value functions in optimization and control problems, solution
maps, etc.) are inevitably nonsmooth and also have set-valued structures re-
quiring the development of new forms of analysis that involve generalized
differentiation.

Even the simplest and historically earliest problems of optimal control
are intrinsically nonsmooth, in contrast to the classical calculus of variations.
Optimal control has always been a major source for applications of advanced
methods of variational analysis and generalized differentiation.

Since the discovery of Pontryagin maximum principle, the dawn of op-
timal control theory, various versions of this result have been established,
under different technical assumptions and with different proofs. As early
as in 1965, Dubovickii and Miljutin realized the importance of convex ap-
proximations of closed sets for obtaining necessary optimality conditions for
nonlinear problems in optimization. In a series of papers (cf., for example,
the bibliography of [60]), the corresponding proofs are based on theorems for
nonseparation of sets.

The classical concept of transversality has been applied successfully as a
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qualification condition in nonseparation results. Transversality is originally
studied in the fields of mathematical analysis and differential topology. Re-
cently, it has proven to be useful in variational analysis as well. As it is stated
in [38], the transversality-oriented language is extremely natural and conve-
nient in some parts of variational analysis, including subdifferential calculus
and nonsmooth optimization, as well as in proving sufficient conditions for
linear convergence of the alternating projections algorithm (cf. [30]).

The classical definition of transversality at an intersection point of two
smooth manifolds in a Euclidean space is that the sum of the corresponding
tangent spaces at the intersection point is the whole space (cf. [32], [33]).

In order to prove the Pontryagin maximum principle (cf., for example, the
bibliography of [60]), Hector Sussmann generalizes the definition of transver-
sality for closed convex cones in Rn: the cones CA and CB are transversal if
and only if

CA − CB = Rn

and strongly transversal, if they are transversal and CA ∩ CB ̸= {0} (cf.
Definitions 3.1 and 3.2 from [60]). In the finite-dimensional case, strong
transversality of the approximating cones of the same type (either Clarke or
Boltyanski) is a sufficient condition for local nonseparation of sets. The sets
A, B containing a point x0 are said to be locally separated at x0, if there exists
a neighborhood Ω of x0 so that Ω ∩ A ∩ B = {x0}. In infinite-dimensional
case, strong transversality of the approximating cones of the same type does
not imply local nonseparation of sets, as shown by the following example.

Example 1.0.1. Take the Hilbert cube

A := {(xn) ∈ l2 : |xn| ≤ 1/n} ⊂ l2

and a ray B := {λy : λ ≥ 0}, where y := (1/n3/4)∞n=1. We have that the
corresponding Clarke tangent cones T̂A(0) = l2 and T̂B(0) = B are strongly
transversal, while the sets A and B are locally separated at 0.

There are various transversality-type properties reflecting the various
needs of the possible applications. In the literature there exist many notions
generalizing the classical transversality as well as transversality of cones.
Some of them are introduced under different names by different authors, but
actually coincide. We refer to [51] for a survey of terminology and comparison
of the available concepts. The central ones among them are transversality
and subtransversality. They are also objects of study in the recent book [39].
One of the reasons for that is the close relation to metric regularity and
metric subregularity, respectively.
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The term subtransversality is recently introduced in [30] in relation to
proving linear convergence of the alternating projections algorithm. How-
ever, as said earlier, it has been around for more than 20 years, but under
different names – see Remark 4 in [51] and the references therein. It is
a key assumption for two types of results: linear convergence of sequences
generated by projection algorithms and a qualification condition for normal
intersection property with respect to the limiting normal cone and a sum
rule for the limiting subdifferential. Another quite remarkable feature of
subtransversality, was investigated in [9]. It turns out that subtransversality
implies a rather general nonseparation result which is crucial for obtain-
ing necessary optimality conditions of Pontryagin maximum principle type
(including optimal control problems with infinite-dimensional state space).
Moreover, subtransversality is a natural assumption for proving abstract La-
grange multiplier rule.

The following results are taken from [9].

Proposition 1.0.2 (Nonseparation result). Let A and B be closed subsets
of the Banach space X. Let A and B be subtransversal at x0 ∈ A ∩ B with
constants δ > 0 and K > 0. Assume that there exist vA with unit norm which
belongs to the Bouligand tangent cone to A at x0 and vB with unit norm which
belongs to the derivable tangent cone to B at x0, such that ∥vA − vB∥ < 1

K
.

Then A and B cannot be locally separated at x0.

Theorem 1.0.3 (Lagrange multiplier rule). Let us consider the optimization
problem

f(x) → min subject to x ∈ S ,

where f : X −→ R ∪ {+∞} is lower semicontinuous and proper and S is a
closed subset of the Banach space X. Let x0 be a solution of the above prob-
lem. Let C̃epif (x0, f(x0)) and CS(x0) be closed convex cones, contained in the
corresponding Bouligand approximating cones Tepif (x0, f(x0)) and TS(x0).
Let at least one of them consist of derivable tangent vectors.
(a) If C̃epif (x0, f(x0))−CS(x0)× (−∞, 0] is not dense in X ×R, then there
exists a pair (ξ, η) ∈ X∗ × R such that

(i) (ξ, η) ̸= (0, 0);

(ii) η ∈ {0, 1};

(iii) ⟨ξ, v⟩ ≤ 0 for every v ∈ CS(x0);

(iv) ⟨ξ, w⟩+ ηs ≥ 0 for every (w, s) ∈ C̃epif (x0, f(x0)).
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(b) If C̃epif (x0, f(x0))− CS(x0)× (−∞, 0] is dense in X ×R, then epif and
S × (−∞, f(x0)] are not subtransversal at (x0, f(x0)).

Another notion of tranversality - tangential transversality, was introduced
recently by Bivas, Krastanov and Ribarska in [9]. The authors arrived to the
study of transversality of sets when investigating Pontryagin’s type maximum
principle for optimal control problems with terminal constraints in infinite
dimensional state space.

Besides the aformentioned results, the authors also established intersec-
tion rules for tangent cones in Banach spaces and some relations to masive-
ness of sets. Many questions about tangential transversality remained open
(see [9], p. 28).

These results inspired one of the lines of research in the thesis, which
is connected to the application of subtransversality and tangential transver-
sality for obtaining necessary optimality conditions in terms of abstract La-
grange multipliers.

The intriguing thing here is to verify the subtransversality assumption
in nontrivial cases. Our aim is to find some conditions which are sufficient
for subtransversality of two sets. However, the approach we take is proving
tangential transversality instead of subtransversality. It happens that usually
tangential transversality is easier to verify than subtransversality when the
information known concerns the tangential structure of the sets.

We present a general sufficient condition for tangential transversality (cf.
Theorem 4.3.1 and Theorem 4.3.2). The underlying idea is that in many cases
the uniformness of the local approximation of a closed set can be used instead
of some suitable compactness assumption. This is especially important in the
infinite-dimensional case.

We motivate the usefulness of the obtained general results by providing
some applications. One of them is finding a Lagrange multiplier when one of
the sets is the epigraph of a function which is Lipschitz in one of the variables,
uniformly with respect to the other.

The main application we obtained, in fact the starting point of this re-
search, was the famous Aubin condition from [15] for the basic problem of the
calculus of variations. We formulate an abstract (infinite-dimensional) ver-
sion of this condition. This abstract version inspired the rest of the results in
Chapter 4. We show that if a function (actually its epigraph) satisfies this as-
sumption and the constraint has a specific form (tailored after the constraint
in the basic problem of the calculus of variations as an infinite dimensional
optimization problem), one can find a Lagrange multiplier. Sure, the proof
makes use of our main result. It is worth noting that in our abstract ver-
sion of Aubin condition, compactness of the operator is not necessary. For
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our argument, it is sufficient to assume that the image under the operator
L of the correcting set is totally bounded in X. In fact, the case when L is
the integration operator from Y = L1([a, b],Rn) to X = L∞([a, b],Rn) could
be important for future applications of our results. Clearly, this operator is
bounded but not compact, and it maps weakly compact sets in Y to totally
bounded sets in X, thus allowing to use weakly compact sets as ”correcting
sets“. To further motivate our main result, we show that some known suffi-
cient conditions for tangential transversality can be obtained as its particular
cases. Namely, we obtain Theorem 4.2.11 (taken from [9]) and Proposition
4.2.13 (taken from [8]) as corollaries of our main result Theorem 4.3.2. More-
over, the well known notion of compactly epi-Lipschitz set is extended for a
pair of closed sets (cf. Definition 4.4.7) and is shown that it could also be
used as a sufficient condition for tangential transversality. This investiga-
tion has been developed in [46], where a more general necessary optimality
condition, involving measures of noncompactness, is proved.

Yet another notion of transversality was introduced recently by Drusvy-
atskiy, Ioffe and Lewis in [30]. It is intermediate between subtransversality
and transversality and serves as an important sufficient condition for local
linear convergence of alternating projection algorithm for solving finite di-
mensional nonconvex feasibility problems. It steadily grows in importance
and number of researchers extend this transversality concept to more general
settings and investigate its primal and dual characterizations. These notions
(which some authors call “good arrangements of sets”) and the relations be-
tween them, have been studied in details. See, e.g., [19],[20], [18], [50], and
the literature therein. Still some aspects are not well understood. Indeed,
one of the starting points of this investigation was a question of A.Ioffe about
finding a metric characterization of intrinsic transversality. In fact, a variety
of characterizations of intrinsic transversality in various settings are known
(Euclidean, Hilbert, Asplund, Banach and normed linear spaces) but all of
them involve the linear structure of the space. The reason is that researchers
are mainly concentrated on the dual space. To the best of our knowledge,
the first primal characterization of intrinsic transversality is obtained in [61]
where the structure of a Hilbert space is assumed in most of the considera-
tions.

These questions, along with the unknown relation between tangential
transversality and intrinsic transversality, give rise to another line of research
in the thesis.

The result of our study was somewhat surprising: it happened that in-
trinsic transversality and tangential transversality are “almost” equivalent.
Moreover, the relation is very easy to establish, given the characterization
of intrinsic transversality via the slope of coupling function due to Ioffe and
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Lewis. Thus a primal space characterization of intrinsic transversality has
been obtained. We put a significant effort in clarifying the exact relationship
of this characterization and the primal characterization of intrinsic transver-
sality obtained by Thao et al. in [61], which they call property (P). We
proved that property (P) implies our characterization in general Banach
space setting and these properties are equivalent in Hilbert space setting.
We would like to emphasize that the property we introduce is simpler (or at
least it looks simpler) than the property (P) – less variables are involved.

Establishing the exact relationship between intrinsic transversality and
tangential transversality helped us to obtain primal space infinitesimal char-
acterizations and slope characterizations of both transversality and sub-
transversality close in nature to tangential transversality. Thus, although
the definitions and motivations for the four types of transversality properties
we consider, are not similarly looking, we obtained characterizations in a
unified manner for all of them, which make obvious their close relations on
the one handside, and their differences on the other handside. Indeed, it is
now obvious that

transversality =⇒ tangential
transversality =⇒ intrinsic

transversality =⇒ subtransversality

and neither implication is invertible. This hierarchy of the properties and of
their respective slope characterizations sheds new light on the topic. There
have been known primal sufficient conditions and primal necessary conditions
for transversality and subtransversality, but no primal characterizations (see
[20] and [19]). The relationship of our characterization to these conditions is
very similar to the relationship of our characterization of intrinsic transver-
sality to property (P) – we work with less points which makes the situation
simpler.

After obtaining characterizations of these transversality concepts in a
unified manner, we go on to examine the regularity concepts. We obtain a
characterization of metric regularity properties of a set-valued map in terms
of transversality properties of sets associated with the graph of the set-valued
maps. We show directly that one can transfer from subtransversality to met-
ric subregularity and from transversality to metric regularity. Similar results
were already obtained in [21], [22] and [12], but there is no clear statement
of such interchangeability. We moreover show proofs of some known primal
space characterizations of the regularity concepts, using the already derived
characterzations of their transversality counterparts. We also show how one
can easily obtain from these results the characterizations of metric regularity
via the first order variation and the graphical derivative.
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In the last chapter of the thesis we consider continuity of the optimal
value mapping for an abstract optimization problem in metric spaces, where
the feasible set varies, i.e. depends on a parameter. Specifically, we deal with
the function

Sval (p) := inf{g(y) | y ∈ D(p)}.

where X and Y are metric spaces, D : X ⇒ Y is a set-valued mapping
and g : Y → R is a function. The classical Maximum theorem of Berge
([7]) (in the more general setting when X and Y are merely topological
spaces) considers the case when g also depends on p and says that when g is
continuous (on X × Y ) and D is compact-valued and continuous at p̄ ∈ X,
then Sval is continuous at p̄. It is widely used in mathematical economics
and optimal control.

Another version of this result is due to Berdyshev ([6]) where a so-called
t-continuity (which is stronger than the well known Pompeiu-Hausdorff con-
tinuity) is required for the mapping D (see Theorem 5.3.1). The result of
Berdyshev also shows that when the space is metric and g is uniformly con-
tinuous on Y , the Pompeiu-Hausdorff continuity suffices to prove continuity
of Sval. The corresponding definitions are stated explicitly in the chapter.

Generalizations of the classical Berge theorem, which consider various
well-posedness conditions of the function on the constraint set that also guar-
antee continuity of the value function, can be found in the book of Lucchetti
([54]). Detailed discussion on this topic could be also found in the book by
Dontchev and Zolezzi ([28]).

The motivation for our investigations on this topic was Theorem 5 of
Chapter IX, Section 1, in [28], which states as follows

Theorem 1.0.4. Assume that for some point p̄ of the topological space X,
D is continuous at p̄ and g is continuous on D(p̄). Then Sval is continuous
at p̄.

However, in [28] it is not clearly stated what kind of continuity the authors
have in mind, and this may lead to a possible confusion. We will show by
a counterexample that the theorem is false if the assumed continuity of the
mapping D is in the Pompeiu-Hausdorff sense in the case of metric spaces.
Note that in [28] the spaces are topological (as in Theorem 1.1) so it is
reasonable to assume that a topological definition of continuity is had in
mind. Still this is not clearly stated. The main purpose of this chapter of
the thesis is to consider this issue (in the case of metric spaces), namely
when Theorem 1.0.4 holds and when it does not, and in the latter case,
we examine additional assumption, under which it holds. We investigate
the interplay between the continuity properties of f and D which would
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guarantee continuity of Sval. In the course of our research, we formulate a
continuity assumption depending both on f and D, which we call Relaxed
uniform continuity assumption, (RUCA). We show that it is sufficient for
continuity of Sval but is also in some sense necessary. Moreover, we comment
on how earlier results fit naturally in our approach.

Throughout the thesis, we have eschewed using variational principles,
though some of our results could be obtained in this way, too. However,
we prefer to lean more on geometric intuition, which, in our understanding,
makes the results and their proofs more natural and well motivated.

The thesis is organized as follows.
The second chapter contains necessary preliminary definitions and results.
The third chapter is divided into six sections. In the first section a primal

characterization of subtransversality is obtained. To do it, we prove a techni-
cal result (Lemma 3.1.3) allowing to pass from a local inequality to a global
one. Its proof essentially appeared in [9] and it is based on transfinite induc-
tion. It could have been proved using Ekeland’s variational principle like most
“rate of descend” results in the literature, but we prefer the transfinite induc-
tion because it is really direct to employ and requires very little thought – a
simple induction enables the transition to a global property from a local one
in a straightforward manner. In our understanding this kind of argument is
natural and saves one from the necessity of seeking for the “right” function in
every particular case. Moreover, a slope characterization of subtransversality
is proved in the first section. The second section is devoted to transversality.
A primal characterization of transversality is obtained from the respective
characterization of subtransversality. The relation to tangential transversal-
ity is clarified emphasizing the fact that in the “uniform” situation of the
transversality property the existence of “a positive step” and the existence
of “an interval (0, δ) of possible steps” are equivalent. Using this, two slope
characterizations of transversality are obtained. The third section deals with
intrinsic transversality. A primal characterization (of purely metric nature)
and a slope characterization are readily proved. The exact relation of our ap-
proach and the approach of Thao et al. in [61] is established. This is the most
technical result in this chapter. We obtain the coincidence of subtransver-
sality and intrinsic transversality in the convex case as an easy consequence.
In the fourth section we obtain a characterization of metric regularity via
transversality and metric subregularity via subtransversality. In the last two
sections we use the primal space characterization of transversality and sub-
transversality to derive primal space characterizations of metric regularity
and metric subregularity.

The fourth chapter contains three sections. It begins with a section on
preliminaries, giving detailed definitions and discussion on already existing
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notions and results we use, mainly concerning uniform tangent sets. The
second section contains the main result, an abstract sufficient condition for
tangential transversality. It is stated in two forms, the first being more
intuitive and easy to grasp, and the second being more general. The third
section contains three original applications, along with new proofs of already
existing theorems. The first application is concerned with functions which are
Lipschitz in one of the variables, uniformly with repsect to the other. After
that, a notion of jointly massive sets is introduced, and is used in another
sufficient condition. The third application shows that the Aubin condition
and compactness of the operator defining the feasible set, are also sufficient
for tangential transversality. Finally, all three applications are combined in
a theorem providing Lagrange multiplier rule.

The fifth chapter is divided into two sections. The first shows a coun-
terexample to a result whose hypothesis is not enough clarified. After that,
an attempt to remedy the situation is provided, making use of the (RUCA)
as one of the hypothesis. In the second section, a result concerning (RUCA)
and its relation to the notion of topological continuity of set-valued mappings
is proved.
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Chapter 2

Preliminaries

2.1 Basic notation
The following notations are used throughout the thesis:

1. if X is a metric space, Br(x0) will denote the open ball centered at x0
with radius r; the closed ball will be denoted by B̄r(x0).

2. the closure of a set C is denoted by C̄

3. the boundary of a set C is denoted be ∂C, i.e. the set of those points
in X such that for any ε > 0, A∩Bε(x) ̸= ∅ and (X \A)∩Bε(x) ̸= ∅.

4. the convex hull of a set is denoted by co.

5. the conical hull of a set C is denoted by cone C, i.e.

cone C = {rc | r > 0, c ∈ C}.

Given a metric space X and a function f : X → R ∪ {+∞}, we define the
epigraph of f as follows:

epi f = {(x, r) ∈ X × R | r ≥ f(x)}.

We say that such a function is lower-semicontinuous if epi f is a closed subset
of X×R. We say that the function is proper if the set {x ∈ X | f(x) < +∞}
is nonempty.

For a subset A of X and ε > 0 we define the ε−neighbourhood of A - Aε

as
Aε =

⋃
x∈A

Bε(x) = {z ∈ X | ∃x ∈ A, ρ(z, x) < ε}.
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2.2 Set-valued mappings and regularity
Definition 2.2.1. Let X and Y be metric spaces, and 2Y be the family of
all subsets of Y . A mapping F : X → 2Y \ {∅} is called set-valued mapping.
Another notation is F : X ⇒ Y .
Remark: It is possible the domain and the range of F to be topological spaces,
which are usually assumed to be Hausdorff. .

The graph of F , denoted by Gr F , is defined by

Gr F := {(x, y) ∈ X × Y | y ∈ F (x)}.

The inverse map of F , F−1 : Y ⇒ X is defined by

F−1(y) := {x ∈ X | y ∈ F (x)}, whenever y ∈ Y.

We remind the already classical definitions.

Definition 2.2.2. Let X and Y be metric spaces, F : X ⇒ Y and (x̄, ȳ) ∈
Gr F . We say that F is (metrically) regular around (x̄, ȳ) if there exist
K > 0 and δ > 0 such that for all x ∈ Bδ(x̄) and all y ∈ Bδ(ȳ) the following
inequality holds:

d(x, F−1(y)) ≤ Kd(y, F (x)).

Definition 2.2.3. Let X and Y be metric spaces, F : X ⇒ Y and (x̄, ȳ) ∈
Gr F . We say that F is (metrically) subregular around (x̄, ȳ) if there exist
K > 0 and δ > 0 such that for all x ∈ Bδ(x̄) the following inequality holds:

d(x, F−1(ȳ)) ≤ Kd(ȳ, F (x)).

2.3 Slopes and coupling function
For a set A in a metric space X, we denote by δA : X → R ∪ {+∞} its
indicator function

δA(x) =

{
0, if x ∈ A

+∞, otherwise.

Following [23] we introduce two types of slopes.

Definition 2.3.1. Consider a metric space X, a function f : X → R∪{±∞}
and a point x̄ ∈ X such that f(x̄) is finite. The slope of f at x̄ is

|∇f |(x̄) := lim sup
x→x̄

max{f(x̄)− f(x), 0}
d(x̄, x)

.
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The nonlocal slope is

|∇f |⋄(x̄) := sup
x ̸=x̄

max{f(x̄)− f(x), 0}
d(x̄, x)

.

Definition 2.3.2. For subsets A and B of the metric space X, the so-called
“coupling function” ϕ : X ×X → R ∪ {+∞} is defined as

ϕ(x, y) = δA(x) + d(x, y) + δB(y) .

The above definition has been introduced in [29].

2.4 Transversality concepts
Assume that A and B are subsets of the normed space X. Consider the
function HA,B : X ×X → X defined as

HA,B(x1, x2) =

{
{x1 − x2}, x1 ∈ A, x2 ∈ B

∅, else
(2.1)

Definition 2.4.1. Let X be a normed space, and A, B be closed subsets of
X. Let x̄ ∈ A ∩ B. Then A and B are called transversal at x̄ if HA,B is
regular around ((x̄, x̄),0).

Definition 2.4.2. Let X be a normed space, and A, B be closed subsets of
X. Let x̄ ∈ A ∩ B. Then A and B are called subtransversal at x̄ if HA,B is
subregular around ((x̄, x̄),0).

These definitions are derived as characterizations in [51], where another
definitions of transversality are used. A characterization of transversality
derived in [37] (cf. [48]) is

Proposition 2.4.3. Let A and B be closed subsets of the normed space X.
A and B are transversal at x̄ ∈ A ∩B, if and only if there exists K > 0 and
δ > 0 such that

d(x, (A− a) ∩ (B − b)) ≤ K(d(x,A− a) + d(x,B − b))

for all x ∈ B̄δ(x̄) and a, b ∈ B̄δ(0).

One observes that only one of the sets could be translated, i.e. we may
take a = 0 and only vary b. A more general and thorough analysis on this
topic is done in [13].

When a and b are fixed to be 0 in the last definition, a similar character-
ization of subtransversality is obtained (cf. [37]):
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Proposition 2.4.4. Let A and B be closed subsets of the Banach space X.
A and B are subtransversal at x̄ ∈ A ∩ B, if and only if there exists K > 0
and δ > 0 such that

d(x,A ∩B) ≤ K(d(x,A) + d(x,B))

for all x ∈ Bδ(x̄).

Thus we observe that A and B are transversal at x̄ ∈ A ∩ B if and only
if the subtransversality inequality holds for A − a and B − b with constant
K for all x ∈ B̄δ(x̄) and a, b ∈ B̄δ(0).

It is worth noting that while the definitions of transversality and sub-
transversality clearly make use of the linear structure, the characterization
of subtransversality, given by Proposition 2.4.4, is purely metric. Thus, one
may think of subtransversality as of metric concept with definition in met-
ric spaces given by the characterization in Proposition 2.4.4. However, all
chracterizations of transversality use the linear structure.

The notion of tangential transversality is introduced in [9]. The corre-
sponding definition follows.

Definition 2.4.5. Let A and B be closed subsets of the metric space X. We
say that A and B are tangentially transversal at x̄ ∈ A ∩ B, if there exist
M > 0, δ > 0 and η > 0 such that for any two different points xA ∈ B̄δ(x̄)∩A
and xB ∈ B̄δ(x̄) ∩ B, there exist sequences tm ↘ 0, {xAm}m≥1 in A and
{xBm}m≥1 in B such that for all m

d(xAm, x
A) ≤ tmM, d(xBm, x

B) ≤ tmM, d(xAm, x
B
m) ≤ d(xA, xB)− tmη .

Clearly, the three constants M, δ, η are redundant. More specifically, one
can choose M = 1, which changes η, or choose η = 1 and change M.

Yet another type of transversality, intrinsic transversality, is introduced
in [29] and [30]. It is originally considered for finite-dimensional spaces.

Definition 2.4.6. The closed sets A,B ⊂ Rd are intrinsically transversal at
the point x̄ ∈ A ∩B, if and only if there exist δ > 0 and κ > 0 such that for
all xA ∈ B̄δ(x̄) ∩ A \B and xB ∈ B̄δ(x̄) ∩B \ A it holds true that

max

{
d

(
xA − xB

∥xA − xB∥
, NB

(
xB
))

, d

(
xB − xA

∥xB − xA∥
, NA

(
xA
))}

≥ κ ,

where ND (x̄) is the proximal or limiting normal cone to D at x̄.
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2.5 Tangent cones
Throughout the thesis, if Y is a Banach space, we will denote by BY [BY ] its
open [closed] unit ball, centered at the origin. The index could be omitted
if there is no ambiguity about the space. If S is a closed subset of Y and
y ∈ S, we will denote by TS(y) the Bouligand tangent cone to S at y, i.e.

TS(y) :=

{
v ∈ Y :

yk − y

τk
→ v

for some sequences yk ∈ S, yk → y
and τk > 0, τk → 0

}
;

by GS(y) the derivable tangent cone to S at y, i.e.

GS(y) :=

v ∈ Y :
ξ(τk)− y

τk
→ v

for some vector-valued function
ξ : [0, ε] → S, ξ(0) = y and for every
choice of a sequence τk > 0, τk → 0

 ;

and by T̂S(y) the Clarke tangent cone to S at y, i.e.

T̂S(y) :=

v ∈ Y :
for every ε > 0 there exists δ > 0
such that for every t ∈ [0, δ] it holds true that
S ∩ (y + δB) + tv ⊂ S + tεB

 .
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Chapter 3

On transversality-type properties

In this chapter we endow the Cartesian product X × Y of the metric spaces
(X, dX) and (Y, dY ), with the metric

d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2).

for the sake of simplicity. The particular choice of the metric is relevant only
to the constants involved. However, our considerations in this chapter is to
derive qualitative results, so that we are not concerned with the constants.

3.1 Primal space characterizations of subtransver-
sality

In this section we obtain primal space characterizations of subtransversality.
In the papers [19] and [20] (see Remark 3.5 in [19]) similar conditions are
presented. It is proved that these conditions are characterizations (both
necessary and sufficient) only in the convex case.

Our approach is to some extent motivated by the considerations in the
paper [9]. In it, the notion of tangential transversality (2.4.5) is introduced
as a sufficient condition for nonseparation of sets, tangential intersection
properties and a Lagrange multiplier rule.

The definition of tangential transversality can be reformulated equiva-
lently.

Proposition 3.1.1. Let A and B be closed subsets of the metric space X.
A and B are tangentially transversal at x̄ ∈ A ∩B, if and only if there exist
δ > 0 and ζ > 0 such that for any two different points xA ∈ B̄δ(x̄) ∩ A and
xB ∈ B̄δ(x̄) ∩ B, there exist sequences {xAm}m≥1 ⊂ A and {xBm}m≥1 ⊂ B
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converging to xA and xB repsectively and such that for all m

d(xAm, x
B
m) ≤ d(xA, xB)− ζmax{d(xAm, xA), d(xBm, xB)}

and max{d(xAm, xA), d(xBm, xB)} > 0.

Now we introduce a weaker notion. Note that the main difference is that
“there exists a sequence {tn}∞n=1 of positive reals tending to zero such that for
every tn belonging to it . . . " is replaced by “there exists a positive real θ such
that . . . ". This is indeed a significant difference, as it will be shown later on.
The other weakening in the definition, “x̄ ∈ A∩B” to “A∩ B̄ δ

2(1+2M)
(x̄) ̸= ∅,

B ∩ B̄ δ
2(1+2M)

(x̄) ̸= ∅”, is for purely technical reasons.

Definition 3.1.2. Let A and B be closed subsets of the metric space X and
x̄ ∈ X. We say that A and B have property (T ) at x̄ if there exist δ > 0
and M > 0 such that A∩ B̄ δ

2(1+2M)
(x̄) ̸= ∅, B ∩ B̄ δ

2(1+2M)
(x̄) ̸= ∅ and for any

xA ∈ A∩ B̄δ(x̄) and xB ∈ B ∩ B̄δ(x̄) with xA ̸= xB there exist θ > 0, x̂A ∈ A
and x̂B ∈ B such that

d(xA, x̂A) ≤ θM , d(xB, x̂B) ≤ θM and d(x̂A, x̂B) ≤ d(xA, xB)− θ .

Equivalently, A and B have property (T ) at x̄ if and only if there exist δ > 0
and M > 0 such that A ∩ B̄ δ

2(1+2M)
(x̄) ̸= ∅ , B ∩ B̄ δ

2(1+2M)
(x̄) ̸= ∅ and for

any xA ∈ A ∩ B̄δ(x̄) and xB ∈ B ∩ B̄δ(x̄) with xA ̸= xB there exist x̂A ∈ A
and x̂B ∈ B such that

d(x̂A, x̂B) ≤ d(xA, xB)− 1

M
max{d(xA, x̂A), d(xB, x̂B)}

and max{d(xA, x̂A), d(xB, x̂B)} > 0.

Note that in this definition we do not require the point x̄ to be in the
intersection of A and B, only to be sufficiently close to both A and B.

The lemma below is the main technical result, whose direct corollaries
will justify the benefits of the above definition. Its proof may seem long,
because it essentially contains the proof of the Ekeland variational principle.
There are many similar assertions in the literature and their proofs all rely
on variational principles (Ekeland variational principle or see e.g. [5], [4], [40]
or [14] for alternatives). Our result can be proved using them, but we prefer
to prove it using transfinite induction in order to emphasize the usefulness
of the method and its geometrical intuition.
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Lemma 3.1.3. Let A and B be closed subsets of the complete metric space
X and x̄ ∈ X. Let A and B have property (T ) at x̄ with constants δ and M .

Let xA ∈ A with d(xA, x̄) ≤ δ

1 + 2M
and xB ∈ B with d(xB, x̄) ≤ δ

1 + 2M
.

Then, there exists xAB ∈ A ∩B with

d(xAB, xA) ≤Md(xA, xB) and d(xAB, xB) ≤Md(xA, xB) .

Proof. If the points xA and xB coincide, the assertion of the theorem is trivial.
If d(xA, xB) > 0, we are going to construct inductively three transfinite
sequences indexed by ordinal numbers (cf., for example, § 2 Ordinal numbers
of Chapter 1 in [42]). More precisely, we prove that there exist an ordinal
number α0 and transfinite sequences {xAα}1≤α≤α0 ⊂ X, {xBα }1≤α≤α0 ⊂ X,
{tα}1≤α≤α0 ⊂ [0,+∞), such that xAα0

= xBα0
and for each α ∈ [1, α0] we have

that the following properties hold true:

(S0) xAα ∈ B̄δ(x̄) ∩ A and xBα ∈ B̄δ(x̄) ∩B;

(S1) d(xAα , xBα ) ≤ d(xA, xB)− tα (and hence tα is bounded by d(xA, xB));

(S2) d(xAα , x̄) ≤ d(xA, x̄) + tαM and d(xBα , x̄) ≤ d(xB, x̄) + tαM ;

(S3) d(xAα , xAγ ) ≤M (tα − tγ) and d(xBα , xBγ ) ≤M (tα − tγ) for each γ ≤ α.

We implement our construction using induction on α. The process ter-
minates when xAα = xBα for some α, and this α is named α0. We start with
xA1 := xA ∈ B̄δ(x̄)∩A, xB1 := xB ∈ B̄δ(x̄)∩B and t1 = 0. It is straightforward
to verify the inductive assumptions (S1)-(S3) for α = 1.

Assume that xAβ ∈ B̄δ(x̄)∩A, xBβ ∈ B̄δ(x̄)∩B and tβ are constructed and
(S1)-(S3) are true for all ordinals β less than α and the process has not been
terminated.

Let us first consider the case when α is a successor ordinal, i.e. α = β+1.
As β < α0 (the process has not been terminated), we have d(xAβ , xBβ ) ̸= 0.
Moreover (S0) holds, so we can apply property (T ) to obtain θ > 0, x̂Aβ , x̂

B
β ,

and we define tα := tβ + θ, xAα := x̂Aβ and xBα := x̂Bβ . Now we have xAα ∈ A,
xBα ∈ B, d(xAα , xAβ ) ≤ Mθ, d(xBα , xBβ ) ≤ Mθ and d(xAα , x

B
α ) ≤ d(xAβ , x

B
β ) − θ.

Using the inductive assumption, we have

d(xAα , x
B
α ) ≤ d(xAβ , x

B
β )− θ ≤ d(xA, xB)− tβ − θ = d(xA, xB)− tα .
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Therefore, (S1) is verified for α.
Now the inequalities d(xAα , xAβ ) ≤Mθ, d(xBα , xBβ ) ≤Mθ and the inductive

assumption (S2) for β yield

d(xAα , x̄) ≤ d(xAβ , x̄) + d(xAα , x
A
β ) ≤ d(xA, x̄) + tβM +Mθ = d(xA, x̄) + tαM,

d(xBα , x̄) ≤ d(xBβ , x̄) + d(xAα , x
B
β ) ≤ d(xB, x̄) + tβM +Mθ = d(xB, x̄) + tαM.

Thus (S2) is verified for α. Using the estimate tα ≤ d(xA, xB) being
proved above, the assumption of the lemma and the above inequalities, we
obtain

d(xAα , x̄) ≤ d(xA, x̄) + tαM ≤ d(xA, x̄) +Md(xA, xB) ≤

d(xA, x̄) +M(d(xA, x̄) + d(xB, x̄)) ≤ δ

1 + 2M
+M

2δ

1 + 2M
= δ

which means that xAα ∈ B̄δ(x̄). Similarly xBα ∈ B̄δ(x̄). Thus (S0) holds.
Now we turn our attention to (S3). Let γ ≤ α. If γ = α, (S3) is trivially

fulfilled. Now let γ < α. Then γ ≤ β and from the inductive assumption
follows

d(xAα , x
A
γ ) ≤ d(xAβ , x

A
γ ) + d(xAα , x

A
β ) ≤M (tβ − tγ) +Mθ =M (tα − tγ)

and in the same way

d(xBα , x
B
γ ) ≤ d(xBβ , x

B
γ ) + d(xBα , x

B
β ) ≤M (tβ − tγ) +Mθ =M (tα − tγ) .

We have verified the inductive assumptions (S0)-(S3) for the case of a
successor ordinal α.

We next consider the case when α is a limit ordinal number. Let β < α be
arbitrary. Then β+1 < α too. Since the transfinite process has not stopped
at β + 1, then d(xAβ , x

B
β ) > 0, and hence taking into account (S1) we obtain

that tβ < d(xA, xB). Hence the increasing transfinite sequence {tβ}1≤β<α

is bounded, and so it is convergent. We denote tα := limβ→α tβ. Since
d(xAβ , x

A
γ ) ≤ (tβ − tγ)M , the transfinite sequence {xAβ }1≤β<α is fundamental.

Hence there exists xAα so that {xAβ }1≤β<α tends to xAα as β tends to α with
β < α. In the same way one can prove the existence of xBα so that the
transfinite sequence {xBβ }1≤β<α tends to xBα as β tends to α. To verify the
inductive assumptions (S1)-(S3) for α, one can just take a limit for β tending
to α with β < α in the same assumptions written for each β < α. For (S0)
one uses that A and B are closed.

We have constructed inductively the transfinite sequences {xAβ }β≤α ⊂ A,
{xBβ }β≤α ⊂ B and {tβ}β≤α ⊂ [0,+∞). The process will terminate when
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xAα = xBα for some α. Since d(xAα , xBα ) ≤ d(xA, xB) − tα and the transfinite
sequence tα is strictly increasing, the equality xAα = xBα will be satisfied for
some α = α0 strictly preceding the first uncountable ordinal number. Indeed,
the successor ordinals indexing the so constructed transfinite sequences form
a countable set (because to every successor ordinal α+1 corresponds the open
interval (tα, tα+1) ⊂ R, these intervals are disjoint and the rational numbers
are countably many and dense in R). Therefore, α0 is countably accessible.
On the other handside, assuming the Axiom of countable choice, ω1 is not
countably accessible). Hence our inductive process terminates before ω1.

Then we put xAB := xAα0
= xBα0

∈ A ∩ B and because of (S1) we have
that tα0 ≤ d(xA, xB). Applying (S3) we obtain d(xAB, xA) ≤ M(tα0 − t1) ≤
Md(xA, xB) hence d(xAB, xB) ≤Md(xA, xB) .

This completes the proof.

Completeness is crucial in the above lemma. The following theorem is
formulated in a way that enables us to use it to obtain primal space charac-
terizations both for subtransversality and transversality.

Theorem 3.1.4. Let A and B be closed subsets of the complete metric space
X and x̄ ∈ X. If A and B have property (T ) at x̄, then there exist K > 0
and δ > 0 such that

d(x,A ∩B) ≤ K(d(x,A) + d(x,B)) (3.1)

for all x ∈ B̄δ(x̄).
If there exist K > 0 and δ > 0 such that (3.1) holds for all x ∈ B̄δ(x̄),

A ∩ B̄ δ
4K+10

(x̄) ̸= ∅ and B ∩ B̄ δ
4K+10

(x̄) ̸= ∅, then A and B have property
(T ) at x̄.

Proof. Let A and B have property (T ) with constants M, δ. Let δ̂ :=
δ

8(1 + 2M)
. Let x ∈ B̄δ̂(x̄) and choose ε ∈ (0, δ̂). Then there exists xA ∈ A,

such that d(x, xA)<d(x,A) + ε. We have that d(x,A) ≤ d(x, x̄) + d(x̄, A) ≤
δ̂+ δ

2(1+2M)
=5δ̂, so that d(x, xA)<6δ̂. Since d(x, x̄) ≤ δ̂, the triangle inequality

implies

d(xA, x̄)<7δ̂ <
δ

1 + 2M
.

Similarly, we find xB ∈ B, such that d(x, xB)<d(x,B) + ε and

d(xB, x̄) <
δ

1 + 2M
.
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Then xA and xB satisfy the requirements in Lemma 3.1.3. Hence, there is
xAB ∈ A ∩B, such that

d(xAB, xA) ≤Md(xA, xB) and d(xAB, xB) ≤Md(xA, xB) .

We estimate

d(x,A ∩B) ≤ d(x, xAB) ≤ d(x, xA) + d(xA, xAB) < d(x,A) + ε+Md(xA, xB)

< d(x,A) + ε+M(d(x, xA) + d(x, xB))

≤ d(x,A) + ε+M(d(x,A) + ε+ d(x,B) + ε)

≤ (M + 1)(d(x,A) + d(x,B)) + ε(1 + 2M)

Letting ε→ 0 proves (3.1) with constants δ̂ and M + 1.
For the second part, let (3.1) hold with constants δ and K. Take distinct

xA ∈ A ∩ B̄δ(x̄) and xB ∈ B ∩ B̄δ(x̄) and for ε := d(xA, xB) > 0, find
xAB ∈ A ∩B such that

d(xA, xAB) < d(xA, A ∩B) + ε ≤ Kd(xA, B) + ε

≤ Kd(xA, xB) + ε = (K + 1)d(xA, xB).

Then
d(xB, xAB) ≤ d(xA, xB) + d(xA, xAB)

<d(xA, xB) + (K + 1)d(xA, xB) = (K + 2)d(xA, xB).

Now property (T ) follows with x̂A = x̂B = xAB, θ = d(xA, xB) > 0 and
M = K + 2, because proximity of A and B to x̄ is assumed.

As a corollary we obtain that property (T ) is an equivalent characteriza-
tion of subtransversality in the presence of completeness.

Corollary 3.1.5. If x̄ ∈ A ∩ B, where A and B are closed subsets of the
complete metric space X, then A and B have property (T ) at x̄ if and only
if A and B are subtransversal at x̄.

The following proposition is a reformulation of Corollary 3.1.5.

Proposition 3.1.6. Under completeness of the space X, A and B are sub-
transversal at x̄ if and only if there exist δ > 0 and κ > 0 such that for all
x ∈ A ∩ B̄δ(x̄) and y ∈ B ∩ B̄δ(x̄), x ̸= y, it holds

|∇ϕ|⋄(x, y) = sup
(u,v)̸=(x,y)

max{ϕ(x, y)− ϕ(u, v), 0}
d((x, y), (u, v))

≥ κ.
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Proof. Assume that the sets A and B are subtransversal. Then according to
Corollary 3.1.5 property (T ) holds.

Then, there exist M > 0, δ > 0 such that for any two different points
xA ∈ B̄δ(x̄) ∩ A and xB ∈ B̄δ(x̄) ∩ B, there exist θ > 0, x̂A ∈ A with
d(xA, x̂A) ≤ θM , and x̂B ∈ B with d(xB, x̂B) ≤ Mθ, and the following
inequality holds true

d(x̂A, x̂B) ≤ d(xA, xB)− θ.

Clearly, the last inequality yields that (x̂A, x̂B) ̸= (xA, xB). Remind that
ϕ(xA, xB) = d(xA, xB) (Definition 2.3.2) since xA ∈ A and xB ∈ B and
similarly ϕ(x̂A, x̂B) = d(x̂A, x̂B). This leads to

d(xA, xB)− d(x̂A, x̂B) ≥ θ ≥ d(xA, x̂A) + d(xB, x̂B)

2M

Therefore

ϕ(xA, xB)− ϕ(x̂A, x̂B)

d((xA, xB), (x̂A, x̂B))
=
d(xA, xB)− d(x̂A, x̂B)

d(xA, x̂A) + d(xB, x̂B)
≥ 1

2M
.

Thus we obtain that
|∇ϕ|⋄(xA, xB) ≥ 1

2M

for any two different points xA ∈ B̄δ(x̄) ∩ A and xB ∈ B̄δ(x̄) ∩B.
For the reverse direction, we have that for some δ > 0 and κ > 0 and for

any two different points x ∈ A ∩ B̄δ(x̄) and y ∈ B ∩ B̄δ(x̄)

|∇ϕ|⋄(x, y) = sup
(u,v)̸=(x,y)

max{ϕ(x, y)− ϕ(u, v), 0}
d((x, y), (u, v))

≥ κ > 0.

So fix x ∈ A ∩ B̄δ(x̄) and y ∈ B ∩ B̄δ(x̄) with x ̸= y. We obtain that there
are u and v such that

ϕ(x, y)− ϕ(u, v)

d(x, u) + d(y, v)
≥ κ

2
.

As above, ϕ(x, y) = d(x, y). Observe that ϕ(u, v) < ∞, thus u ∈ A and
v ∈ B. Hence d(u, v) ≤ d(x, y) − θ where θ =

κ

2
(d(x, u) + d(y, v)) > 0.

Moreover d(x, u) ≤ 2

κ
θ and d(y, v) ≤ 2

κ
θ. Thus we obtain that property (T )

holds with constants δ and M :=
2

κ
.
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3.2 Primal space characterizations of transver-
sality

We continue to obtain primal space characterizations of transversality. A
direct consequence of the definition of transversality and Theorem 3.1.4 is a
characterization of transversality in terms of “translated” subtransversality.

Proposition 3.2.1. Let A and B be closed subsets of the Banach space X
and x̄ ∈ A ∩ B. Then A and B are transversal at x̄ if and only if there
exist δ > 0 and M > 0 such that for any a ∈ B̄δ(0) and b ∈ B̄δ(0), any
xA ∈ A∩ B̄δ(x̄+ a) and xB ∈ B ∩ B̄δ(x̄+ b) with xA − a ̸= xB − b there exist
θ > 0, x̂A ∈ A and x̂B ∈ B such that

∥xA − x̂A∥ ≤ θM , ∥xB − x̂B∥ ≤ θM and

∥x̂A − x̂B − (a− b)∥ ≤ ∥xA − xB − (a− b)∥ − θ .

Proof. Let A and B be transversal at x̄ and K and δ̂ be the corresponding
constants in the definition. Denote δ = δ̂/(4K +10). Then for all a ∈ B̄δ(0)
and b ∈ B̄δ(0), the sets A− a and B − b have property (T ) with constants δ
and M = K + 2 according to Theorem 3.1.4 and the estimates in its proof.
Now let the sets satisfy the above property with constants δ and M . Thus
for all a ∈ B̄ δ

2(1+2M)
(0) and b ∈ B̄ δ

2(1+2M)
(0), the sets A − a and B − b have

property (T ) with constants δ and M . Then, again Theorem 3.1.4 and the
estimates in its proof
implies that

d(x, (A− a) ∩ (B − b)) ≤ (M + 1)(d(x,A− a) + d(x,B − b))

for all x ∈ B̄ δ
8(2M+1)

(x̄), which is precisely transversality.

Another way to prove this proposition is by using the Ioffe criterion for
metric regularity, cf. e.g. [14, Proposition 2.2], applied to the mapping HA,B.

Strengthening in one of the directions of this proposition gives a charac-
terization of transversality in terms of “translated” tangential transversality.

Proposition 3.2.2. Let A and B be closed subsets of the Banach space X
and x̄ ∈ A ∩ B. Then A and B are transversal at x̄ if and only if there
exist δ > 0 and M > 0 such that for any a ∈ B̄δ(0) and b ∈ B̄δ(0), any
xA ∈ A∩ B̄δ(x̄+ a) and xB ∈ B ∩ B̄δ(x̄+ b) with xA − a ̸= xB − b there exist
{xAm}m≥1 ⊂ A, {xBm}m≥1 ⊂ B and tm ↘ 0 such that for each m

∥xAm − xA∥ ≤ tmM , ∥xBm − xB∥ ≤ tmM and

∥xAm − xBm − (a− b)∥ ≤ ∥xA − xB − (a− b)∥ − tm .

22



Proof. The “if” direction is straightforward from Proposition 3.2.1.
For the converse, let A and B be transversal at x̄. This means that the
map H := HA,B from (2.1) is regular around ((x̄, x̄),0) with constants δ̂ and
K. Take δ < δ̂/4, a ∈ B̄δ(0), b ∈ B̄δ(0) and xA ∈ A ∩ B̄δ(x̄ + a) and
xB ∈ B ∩ B̄δ(x̄+ b). Then

∥xA − xB∥ = ∥xA − (x̄+ a)− (xB − (x̄+ b)) + a− b∥ =

≤ ∥xA − (x̄+ a)∥+ ∥xB − (x̄+ b)∥+ ∥a∥+ ∥b∥ ≤ 4δ < δ̂

Define v = − xA − xB − (a− b)

∥xA − xB − (a− b)∥
and choose a sequence tm ↘ 0 such that

xA − xB + tmv ∈ B̄δ̂(0)

and tm < ∥xA − xB − (a− b)∥. Metric regularity of H implies that

d((xA, xB), H−1(xA − xB + tmv)) ≤ Kd(H(xA, xB), xA − xB + tmv)≤ Ktm.

Since the distance to the empty set is +∞, we have thatH−1(xA−xB+tmv) ̸=
∅. For m ≥ 1 consider (xAm, x

B
m) ∈ H−1(xA − xB + tmv) ⊂ A×B such that

∥(xAm, xBm)− (xA, xB)∥<d((xA, xB), H−1(xA − xB + tmv)) + tm.

Metric regularity once again implies

∥(xAm, xBm)− (xA, xB)∥<d((xA, xB), H−1(xA − xB + tmv)) + tm ≤ (K + 1)tm .

Finally, we have that

∥xAm − xBm − (a− b)∥ =∥xA − xB + tmv − (a− b)∥ =

=∥xA − xB − (a− b)∥ − tm .

Remark 3.2.3. In the above proposition we can obtain the (formally) stronger
statement that there exists λ > 0 such that the decreasing property holds for
any t ∈ (0, λ] instead of the sequence {tn}∞n=1 tending to zero from above.

Remark 3.2.4. Propositions 3.2.1 and 3.2.2 remain true if we consider
translations in only one of the sets, i.e. we may take a = 0 and only vary b.

The following proposition is a reformulation of Proposition 3.2.1 and
Proposition 3.2.2 is used for the equivalence of existence of positive local
and of positive nonlocal slope.
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Proposition 3.2.5. Under the assumption that X is a Banach space, A and
B are transversal at x̄ if and only if there exist δ > 0 and κ > 0 such that
for all a and b with ∥a∥ ≤ δ and ∥b∥ ≤ δ and all x ∈ (A − a) ∩ B̄δ(x̄) and
y ∈ (B − b) ∩ B̄δ(x̄) with x ̸= y it holds

|∇ϕa,b|⋄(x, y) = sup
(u,v)̸=(x,y)

max{ϕa,b(x, y)− ϕa,b(u, v), 0}
∥(x, y)− (u, v)∥

≥ κ

where ϕa,b denotes the coupling function of A−a and B−b (remind Definition
(2.3.2))

Moreover, this is equivalent to the existence of κ̂ > 0 such that for all
x ∈ (A− a) ∩ B̄δ(x̄) and y ∈ (B − b) ∩ B̄δ(x̄)

|∇ϕa,b|(x, y) = lim sup
(u,v)→(x,y)

max{ϕa,b(x, y)− ϕa,b(u, v), 0}
∥(x, y)− (u, v)∥

≥ κ̂

Proof. The proof of the first part of the proposition is analogous to the proof
Proposition 3.1.6.

For the second part, clearly |∇ϕa,b|⋄(x, y) ≥ |∇ϕa,b|(x, y), and thus the
second slope type property implies the first one.

For the reverse implication, the first part of the Proposition implies that
the sets A and B are transversal at x̄ ∈ A ∩ B with some constants δ > 0
and M > 0. Fix a ∈ B̄δ(0) and b ∈ B̄δ(0) and x ∈ (A − a) ∩ B̄δ(x̄) and
y ∈ (B − b) ∩ B̄δ(x̄), x ̸= y. Recall that Proposition 3.2.2 implies that
for xA := x + a ∈ A ∩ B̄δ(x̄ + a) and xB := y + b ∈ B ∩ B̄δ(x̄ + b) (thus
xA − a ̸= xB − b) there exist {xAm}m≥1 ⊂ A, {xBm}m≥1 ⊂ B and tm ↘ 0 such
that

∥xAm − xA∥ ≤ tmM , ∥xBm − xB∥ ≤ tmM and

∥xAm − xBm − (a− b)∥ ≤ ∥xA − xB − (a− b)∥ − tm .

This is equivalent to

d(xA − a, xB − b)− d(xAm − a, xBm − b)

tm
≥ 1 .

Using that d(xA − a, xAm − a) ≤Mtm and d(xB − b, xBm − b) ≤Mtm, we have
that

d(xA − a, xB − b)− d(xAm − a, xBm − b)

d(xA − a, xAm − a) + d(xB − b, xBm − b)
≥ 1

2M
.

whence
d(x, y)− d(xAm − a, xBm − b)

d(x, xAm − a) + d(y, xBm − b)
≥ 1

2M
.
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Since x ∈ A− a and y ∈ B− b, ϕa,b(x, y) = d(x, y). Similarly xAm− a ∈ A− a
and xBm− b ∈ B− b, hence ϕa,b(x

A
m−a, xBm− b) = d(xAm−a, xBm− b). Moreover

xAm − a→ x, xBm − b→ y. This implies that

|∇ϕa,b|(x, y) = lim sup
(u,v)→(x,y)

max{ϕa,b(x, y)− ϕa,b(u, v), 0}
∥(x, y)− (u, v)∥

≥ 1

2M
.

Another way to prove this proposition is by using the Ioffe slope-based
criterion for metric regularity from [39] (see also [62]) applied to the mapping
HA,B.

3.3 Intrinsic transversality - extensions and re-
lated notions

In this section we provide a metric characterization of intrinsic transversality.
This characterization could be used as a definition of intrinsic transversality
in general metric spaces. Moreover, we show that it is almost equivalent to
the notion of tangential transversality, via observing a slope type character-
ization of the latter. Finally we show that the metric characterization we
provide is equivalent in Hilbert spaces to a characterization introduced and
studied in [61].

Fix a point x̄ ∈ A∩B. First, we provide a characterization of tangential
transversality in terms of the slope of the coupling function (remind Defini-
tion 2.3.2).

Proposition 3.3.1. The subsets A and B of the metric space X are tangen-
tially transversal at x̄ if and only if there exist δ > 0 and κ > 0 such that for
any two different points x ∈ A ∩ B̄δ(x̄) and y ∈ B ∩ B̄δ(x̄) it holds

|∇ϕ|(x, y) = lim sup
(u,v)→(x,y)

max{ϕ(x, y)− ϕ(u, v), 0}
d((x, y), (u, v))

≥ κ .

Proof. The proof is analogous to the proofs of Proposition 3.1.6 and 3.2.5.

Intrinsic transversality is introduced in [29] and [30] as a sufficient condi-
tion for local linear convergence of the alternating projections algorithm in
finite dimensions. Drusvyatskiy, Ioffe and Lewis found a characterization of
intrinsic transversality in finite dimensional spaces in terms of the slope of the
coupling function (cf. Proposition 4.2 in [30]). We use this characterization
as a definition of intrinsic transversality in general metric spaces.
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Definition 3.3.2. Let X be a metric space. The closed sets A,B ⊂ X are
intrinsically transversal at the point x̄ ∈ A∩B, if there exist δ > 0 and κ > 0
such that for all xA ∈ B̄δ(x̄) ∩ A \ B and xB ∈ B̄δ(x̄) ∩ B \ A it holds true
that

|∇ϕ|(xA, xB) ≥ κ .

We continue to observe the “almost” equivalence of intrinsic transversal-
ity and tangential transversality. Due to Proposition 3.3.1 we have that the
only difference between tangential transversality and intrinsic transversality
is that in the original definition of tangential transversality the required con-
dition should hold for all points of A and B (respectively) near the reference
point, whereas in intrinsic transversality – only for points in A\B and B \A
(respectively). We introduce the following property.

Definition 3.3.3 (Property (LT )). We say that the closed sets A and B
satisfy property (LT ) at x̄ ∈ A ∩ B, if there exist ε > 0 and θ > 0 such that
for any two different points xA ∈ B̄ε(x̄) ∩ A \ B and xB ∈ B̄ε(x̄) ∩ B \ A,
there exist sequences tm ↘ 0, {xAm}m≥1 ⊂ A and {xBm}m≥1 ⊂ B such that for
all m

d(xAm, x
A) ≤ tm, d(xBm, x

B) ≤ tm, d(xAm, x
B
m) ≤ d(xA, xB)− tmθ .

The comments above yield the following

Corollary 3.3.4. The sets A and B are intrinsically transversal at x̄ ∈ A∩B
if and only if they satisfy property (LT ) at x̄.

In this way we answer a question of Prof. A. Ioffe about finding a metric
characterization of intrinsic transversality.

The following example shows that although the difference is slight, the no-
tion of tangential tranvsersality is stronger than the one of intrinsic transver-
sality.

Example 3.3.5. Consider the sets in R2,

A = {(x, y) | y = 3x, x ≥ 0} ∪
{(

1

n
,
2

n

)}
n≥1

and
B = {(x, y) | y = x, x ≥ 0} ∪

{(
1

n
,
2

n

)}
n≥1

.

Apparently these two sets are intrinsically transversal at (0, 0), however they
are not tangentially transversal, because there are isolated points of the in-
tersection in every neighbourhood of the reference point.
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We are also able to answer some of the questions posed in [9]:

1. Tangential transversality is an intermediate property between transver-
sality and subtransversality. However, the exact relation between this
new concept and the established notions of transversality, intrinsic trans-
versality and subtransversality is not clarified yet.

This question is now fully answered in the case of complete metric
spaces. The characterizations of intrinsic transversality and tangential
transversality show that the examples at the end of Section 6 in [30]
may be used to prove that tangential transversality is strictly between
transversality and subtransversality even in Rd.

2. It would be useful to find some dual characterization of tangential trans-
versality.

The original definition of intrinsic transversality is stated in dual terms
(Definition 2.2 in [29] and Definition 3.1 in [30]) –
Replacing “xA ∈ B̄δ(x̄) ∩ A \ B and xB ∈ B̄δ(x̄) ∩ B \ A” with
“xA ∈ B̄δ(x̄) ∩ A, xB ∈ B̄δ(x̄) ∩ B and xA ̸= xB” we obtain a dual
characterization of tangential transversality in finite dimensions.

It is known that intrinsic transversality and subtransverslity coincide for
convex sets in finite-dimensional spaces (cf. Proposition 6.1 in [38] or Corol-
lary 3.4 in [50] for an alternative proof). Both proofs exploit the dual char-
acterizations of intrinsic transversality and substransversality. Now we can
easily obtain the slightly stronger result

Corollary 3.3.6. Let X be a Banach space. The closed convex sets A,B ⊂ X
are tangentially transversal at the point x̄ ∈ A ∩ B, if and only if they are
subtransversal at x̄.

Proof. It is enough to check, that if the sets are subtransversal, they are
moreover tangentially transversal (Definition 2.4.5). According to the pri-
mal characterization obtained in Theorem 3.1.4, subtransversality implies
property (T ) with some constants δ and M . Let xA ∈ A ∩ B̄δ(x̄) and
xB ∈ B ∩ B̄δ(x̄). Then there are x̂A ∈ A, x̂B ∈ B and θ > 0, such that

∥xA − x̂A∥ ≤ θM , ∥xB − x̂B∥ ≤ θM and ∥x̂A − x̂B∥ ≤ ∥xA − xB∥ − θ .

Let {rn}n≥1 ⊂ (0, 1) be a sequence tending to 0. Since A is convex,
xAn := (1− rn)x

A + rnx̂
A ∈ A for all n ∈ N. Similarly for xBn . Then

∥xAn − xBn ∥ =
∥∥(1− rn) (x

A − xB) + rn(x̂
A − x̂B)

∥∥
≤ (1− rn) ∥xA − xB∥+ rn(∥xA − xB∥ − θ) = ∥xA − xB∥ − tn
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where tn = rnθ. Moreover we have∥∥xAn − xA
∥∥ = rn

∥∥x̂A − xA
∥∥ ≤ rnθM = tnM,

and similarly for xBn − xB.

Thus intrinsic transversality also coincides with tangential transversality
and subtransversality in the case of convex sets. This last equivalence is also
straight-forward to obtain via function slopes characterizations – using that
for convex functions the limiting slope and the nonlocal slope coincide (cf.
e.g. Proposition 2.1(vii) in [49]), the result follows from Propositions 3.1.6
and 3.3.1.

In the papers [50] and [61] a generalization of intrinsic transversality to
Hilbert spaces is derived. It is based on the normal structure - Definition 2(ii)
in [50] and Definition 3 in [61]. Moreover, in paper [61] a so called property
(P) is introduced. It is in primal space terms and is shown to be equivalent
to the afformentioned extension of intrinsic transversality in Hilbert spaces
based on the normal structure (Definition 2(ii) in [50] and Definition 3 in
[61]).

In order to state it we need the following notation - for a normed space
X,

d(A,B,Ω) := inf
x∈Ω,a∈A,b∈B

max{∥x− a∥, ∥x− b∥}, for A,B,Ω ⊂ X

with the convention that the infimum over the empty set equals infinity.
Here is the corresponding definition.

Definition 3.3.7 (Property (P)). A pair of closed sets {A,B} is said to
satisfy property (P) at a point x̄ ∈ A ∩ B if there are numbers α ∈ (0, 1)
and ε > 0 such that for any a ∈ (A \ B) ∩ B̄ε(x̄), b ∈ (B \ A) ∩ B̄ε(x̄) and
x ∈ B̄ε(x̄) with ∥x− a∥ = ∥x− b∥ and number δ > 0, there exists ρ ∈ (0, δ)
satisfying

d
(
A ∩ B̄λ(a), B ∩ B̄λ(b), B̄ρ(x)

)
+ αρ ≤ ∥x− a∥, where λ := (α + 1/

√
ε)ρ

It is clearly equivalent to the following sequential form

Definition 3.3.8 (Property (P ′)). A pair of closed sets {A,B} is said to
satisfy property (P ′) at a point x̄ ∈ A ∩ B if there are numbers α ∈ (0, 1)
and ε > 0 such that for any a ∈ (A \ B) ∩ B̄ε(x̄), b ∈ (B \ A) ∩ B̄ε(x̄) and
x ∈ B̄ε(x̄) with ∥x− a∥ = ∥x− b∥ there exists a sequence sn ↘ 0, satisfying

d
(
A ∩ B̄λn(a), B ∩ B̄λn(b), B̄sn(x)

)
+αsn ≤ ∥x−a∥, where λn := (α+1/

√
ε)sn

for large enough n.
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The following two theorems show that in general normed spaces property
(P) implies property (LT ), while in Hilbert spaces they are equivalent.

Theorem 3.3.9. Let X be a normed space, A and B be closed subsets of X
and x̄ ∈ A ∩ B. Assume that A and B satisfy property (P) at x̄. Then they
satisfy property (LT ) at x̄.

Proof. Let A and B satisfy property (P ′) with constants ε and α. Fix any

a ∈ (A\B)∩ B̄ε(x̄), b ∈ (B \A)∩ B̄ε(x̄) and set x =
a+ b

2
∈ B̄ε(x̄). Propety

(P ′) implies that there exists a sequence sn ↘ 0 such that

d
(
A ∩ B̄λn(a), B ∩ B̄λn(b), B̄sn(x)

)
+αsn ≤ 1

2
∥a−b∥, where λn := (α+1/

√
ε)sn

There exist an ∈ A ∩ B̄λn(a), bn ∈ B ∩ B̄λn(B) and xn ∈ B̄sn(x) such that

∥xn − an∥ ≤ d
(
A ∩ B̄λn(a), B ∩ B̄λn(b), B̄sn(x)

)
+

1

2
αsn,

∥xn − bn∥ ≤ d
(
A ∩ B̄λn(a), B ∩ B̄λn(b), B̄sn(x)

)
+

1

2
αsn.

Summing the latter two inequalities we obtain

∥xn − an∥+ ∥xn − bn∥ ≤ 2d
(
A ∩ B̄λn(a), B ∩ B̄λn(b), B̄sn(x)

)
+ αsn

≤ ∥a− b∥ − 2αsn + αsn = ∥a− b∥ − αsn

The triangle inequality implies

∥an − bn∥ ≤ ∥xn − an∥+ ∥xn − bn∥ ≤ ∥a− b∥ − αsn

Setting tn := λn we obtain

∥an − a∥ ≤ tn, ∥bn − b∥ ≤ tn, ∥an − bn∥ ≤ ∥a− b∥ − tn
α

α + 1/
√
ε
.

Thus property (LT ) holds with ε and θ :=
α

α + 1/
√
ε
.

Theorem 3.3.10. Let X be a Hilbert space, A and B be closed subsets of
X and x̄ ∈ A ∩ B. Assume that A and B satisfy property (LT ) at x̄. Then
they satisfy property (P) at x̄.

29



Proof. Let A and B satisfy property (LT ) with constants ε and θ. We may
assume ε < 1. We shall check that A and B satisfy property (P ′) with the
same ε and α to be specified later. To this end fix any a ∈ (A \ B) ∩
B̄ε(x̄), b ∈ (B \ A) ∩ B̄ε(x̄) and x ∈ B̄ε(x̄) with ∥x− a∥ = ∥x− b∥. Denote
v := x − (a + b)/2. The equation ∥x − a∥ = ∥x − b∥ implies (v, a − b) = 0.

Moreover ∥x − a∥ = ∥(a − b)/2 + v∥. Denote ψ =
2∥v∥

∥a− b∥
. We distinguish

three cases based on the value of ψ - ψ >
θ

5
, ψ ∈

(
0,
θ

5

]
, ψ = 0.

First case, ψ >
θ

5
. Set sn =

∥v∥
n

. Then putting xn :=
a+ b

2
+
n− 1

n
v

we obtain xn ∈ B̄sn(x), ∥xn − a∥ = ∥xn − b∥ and

1

sn
(∥x−a∥−d

(
A ∩ B̄sn(a), B ∩ B̄sn(b), B̄sn(x)

)
) ≥ 1

sn
(∥x−a∥−∥xn−a∥) =

1

sn

(∥∥∥∥a− b

2
+ v

∥∥∥∥− ∥∥∥∥a− b

2
+
n− 1

n
v

∥∥∥∥) =

2n− 1

n

∥v∥∥∥a−b
2

+ v
∥∥+ ∥∥a−b

2
+ n−1

n
v
∥∥ ≥ 2n− 1

n

ψ∥v∥
2
√
ψ2 + 1∥v∥

≥

≥ ψ

2
√
ψ2 + 1

=: f(ψ).

Observe that f is increasing in [0,∞), so that

1

sn
(∥x− a∥ − d

(
A ∩ B̄sn(a), B ∩ B̄sn(b), B̄sn(x)

)
) ≥ f

(
θ

5

)
.

Second case, ψ ∈
(
0,
θ

5

]
. Then v ̸= 0. Since A and B satisfy property

(LT ) there exist sequences tn ↘ 0, {an}n≥1 ⊂ (A\B) and {bn}n≥1 ⊂ (B \A)
such that for all n

∥an − a∥ ≤ tn, ∥bn − b∥ ≤ tn, ∥an − bn∥ ≤ ∥a− b∥ − tnθ . (3.2)

Denote

un =
a+ b

2
+ v − an + bn

2
and wn =

an − bn
∥an − bn∥

.

Observe that

|(un, wn)| ≤
∣∣∣∣(a+ b− an − bn

2
,
an − bn

∥an − bn∥

)∣∣∣∣+∣∣∣∣ 1

∥an − bn∥
(v, (a− an)− (b− bn))

∣∣∣∣
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≤ tn

(
1 +

2∥v∥
∥an − bn∥

)
≤ tn (1 + 2ψ)

for large enough n. Thus (un, wn) → 0. Clearly un → v. Hence for large
enough n holds ∥un∥2 − (un, wn) ≥ ∥v∥2/2. For these n define

γn := 1−

√
(1 + 2ψ)2t2n − (un, wn)2

∥un∥2 − (un, wn)2

and
vn := γn(un − (un, wn)wn).

Then γn ∈ (0, 1) for large enough n (and actually γn → 1 since the numerator
in the root tends to 0, and the denominator stays away from 0). It is easy
to see that (vn, wn) = 0 so that (vn, an − bn) = 0. Next we observe that

∥vn − un∥2 = γ2n(∥un∥2 − (un, wn)
2)− 2γn(∥un∥2 − (un, wn)

2) + ∥un∥2 =

= (γn − 1)2(∥un∥2 − (un, wn)
2) + (un, wn)

2 = (1 + 2ψ)2t2n.

Thus ∥vn − un∥ = (1 + 2ψ)tn. Set sn = (1 + 2ψ)tn ≥ tn. Set xn :=
an + bn

2
+ vn. Since ∥x − xn∥ = ∥vn − un∥, we have xn ∈ B̄sn(x) and

∥xn − an∥ = ∥xn − bn∥. Moreover, using (3.2), an ∈ A ∩ B̄sn(a), bn ∈
B ∩ B̄sn(b). Thus

1

sn
(∥x−a∥−d

(
A ∩ B̄sn(a), B ∩ B̄sn(b), B̄sn(x)

)
) ≥ 1

sn
(∥x−a∥−∥xn−an∥) =

1

(1 + 2ψ)tn

(∥∥∥∥a− b

2
+ v

∥∥∥∥− ∥∥∥∥an − bn
2

+ vn

∥∥∥∥) =

1

(1 + 2ψ)tn

(
∥∥a−b

2

∥∥− ∥∥an−bn
2

∥∥)(∥∥a−b
2

∥∥+ ∥∥an−bn
2

∥∥)∥∥a−b
2

+ v
∥∥+ ∥∥an−bn

2
+ vn

∥∥ +
1

(1 + 2ψ)tn

∥v∥2 − ∥vn∥2∥∥a−b
2

+ v
∥∥+ ∥∥an−bn

2
+ vn

∥∥ .
For the first summand, using (3.2), we obtain

1

(1 + 2ψ)tn

(
∥∥a−b

2

∥∥− ∥∥an−bn
2

∥∥)(∥∥a−b
2

∥∥+ ∥∥an−bn
2

∥∥)∥∥a−b
2

+ v
∥∥+ ∥∥an−bn

2
+ vn

∥∥ ≥ θ

2(1 + 2ψ)

8
5
∥a−b∥

2
12
5

∥∥a−b
2

+ v
∥∥

=
θ

3

1

(1 + 2ψ)
√
ψ2 + 1

.

Here we have used that since
an − bn

2
+ vn −−−→

n→∞

a− b

2
+ v, for large enough

n holds
7

5

∥∥∥∥a− b

2
+ v

∥∥∥∥ ≥
∥∥∥∥an − bn

2
+ vn

∥∥∥∥ and
an − bn

2
−−−→
n→∞

a− b

2
so that
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for large enough n holds
∥∥∥∥an − bn

2

∥∥∥∥ ≥ 3

5

∥∥∥∥a− b

2

∥∥∥∥.
For the second summand,

∥v∥2 − ∥vn∥2 = (1− γ2n)∥v∥2 + γ2n(∥v∥2 − ∥un∥2) + γ2n(un, wn)
2 ≥

≥ γ2n(∥v∥2 − ∥un∥2) = −γ2n

(
(a+ b− an − bn, v) +

∥∥∥∥a+ b− an − bn
2

∥∥∥∥2
)

≥ −γ2n(a+ b− an − bn, v)− γ2nt
2
n ≥ −2γ2ntn∥v∥ − γ2nt

2
n

since
∥∥∥∥a+ b− an − bn

2

∥∥∥∥2 ≤ t2n. Thus

1

(1 + 2ψ)tn

∥v∥2 − ∥vn∥2∥∥a−b
2

+ v
∥∥+ ∥∥an−bn

2
+ vn

∥∥ ≥ − γ2n
1 + 2ψ

(
2∥v∥+ tn∥∥a−b

2
+ v
∥∥+ ∥∥an−bn

2
+ vn

∥∥
)

≥ − γ2n
1 + 2ψ

2∥v∥
8
5

∥∥a−b
2

+ v
∥∥ − tn

γ2n
1 + 2ψ

1
8
5

∥∥a−b
2

+ v
∥∥

≥ −5

4

ψ

(1 + 2ψ)
√
ψ2 + 1

− tn
γ2n

1 + 2ψ

1
8
5

∥∥a−b
2

+ v
∥∥ ≥ −4

3

ψ

(1 + 2ψ)
√
ψ2 + 1

,

for large enough n, since tn ↘ 0. Consequently,

1

(1 + 2ψ)tn

(∥∥∥∥a− b

2
+ v

∥∥∥∥− ∥∥∥∥an − bn
2

+ vn

∥∥∥∥) ≥ θ − 4ψ

3(1 + 2ψ)
√
ψ2 + 1

=: g(ψ).

Observe that g is decreasing in
[
0,
θ

5

]
. Indeed, this could be seen as follows:

evaluate
g′(ψ) =

8ψ3 − (4ψ2 + ψ + 2) θ − 4

3(2ψ + 1)2 (ψ2 + 1)3/2
.

Clearly the denominator is positive.
Let us denote h(ψ) = 8ψ3− (4ψ2 + ψ + 2) θ−4. We have h(0) = −2θ−4 < 0

and h

(
θ

5

)
=

1

125

(
−12θ3 − 25θ2 − 250θ − 500

)
< 0. Let ψ0 ≥ 0 be such

that h(ψ0) = 0. Thus θ =
4 (2ψ3

0 − 1)

4ψ2
0 + ψ0 + 2

. Observe that

5ψ0 − θ = 5ψ0 −
4 (2ψ3

0 − 1)

4ψ2
0 + ψ0 + 2

=
12ψ3

0 + 5ψ2
0 + 10ψ0 + 4

4ψ2
0 + ψ0 + 2

> 0.
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Thus ψ0 >
θ

5
. Hence h is nonzero on

[
0,
θ

5

]
. Moreover h is negative at the

endpoints of that interval, and is also continuous. Hence h attains only neg-

ative values at
[
0,
θ

5

]
, therefore g′ is negative as well and thus g is decreasing

on this interval.
Back to the proof, we obtain

1

sn
(∥x− a∥ − d

(
A ∩ B̄sn(a), B ∩ B̄sn(b), B̄sn(x)

)
) ≥ g(ψ) ≥ g

(
θ

5

)
> 0.

Third case, ψ = 0. Then v = 0. Observe that∥∥∥∥a+ b

2
− an + bn

2

∥∥∥∥ ≤ tn.

Set sn = tn. Then xn :=
an + bn

2
∈ B̄sn(x), ∥xn − an∥ = ∥xn − bn∥ and as

before an ∈ A ∩ B̄sn(a), bn ∈ B ∩ B̄sn(b). Thus

1

sn
(∥x−a∥−d

(
A ∩ B̄sn(a), B ∩ B̄sn(b), B̄sn(x)

)
) ≥ 1

sn
(∥x−a∥−∥xn−an∥) =

1

tn

(∥∥∥∥a+ b

2
− a

∥∥∥∥− ∥∥∥∥an + bn
2

− an

∥∥∥∥) =
∥a− b∥ − ∥an − bn∥

2tn
≥ θ

2
.

We conclude

1

sn
(∥x− a∥ − d

(
A ∩ B̄sn(a), B ∩ B̄sn(b), B̄sn(x)

)
) ≥ (3.3)

min

{
θ

2
, f

(
θ

5

)
, g

(
θ

5

)}
> 0.

Set α := min

{
θ

2
, f

(
θ

5

)
, g

(
θ

5

)}
and λn :=

(
α +

1√
ε

)
sn. Observe that

λn > sn since ε < 1. Thus, using (3.3) we obtain

1

sn
(∥x− a∥ − d

(
A ∩ B̄λn(a), B ∩ B̄λn(b), B̄sn(x)

)
) ≥

1

sn
(∥x− a∥ − d

(
A ∩ B̄sn(a), B ∩ B̄sn(b), B̄sn(x)

)
) ≥ α.

Finally, property (P ′) holds with ε and α.
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3.4 Basic relations between (sub)transversality
and (sub)regularity

The next theorem shows that regularity and subregularity could be charac-
terized in terms of transversality and subtransversality. The same sets as in
the formulations below appear in the papers [21](Theorem 5.2), [22] (Theo-
rem 4.2) and [12] (Theorem 4), but the equivalence with (sub)regularity is
not explicitly stated.

Theorem 3.4.1. Let F : X ⇒ Y be a set-valued mapping between the metric
spaces X and Y , and (x̄, ȳ) ∈ Gr F . Define the sets A := Gr F and B := X×
{ȳ}. Then F is subregular at (x̄, ȳ) if and only if A and B are subtransversal
at (x̄, ȳ).

Proof. Let the sets be subtransversal, that is there are δ > 0 and K1 > 0
such that

d((x, y), A ∩B) ≤ K1(d((x, y), A) + d((x, y), B))

for all (x, y) ∈ B̄δ((x̄, ȳ)). Observe that A ∩ B = {(x̂, ȳ) | x̂ ∈ F−1(ȳ)}. Let
x ∈ B̄δ(x̄). Then

d((x, ȳ), A ∩B) = d(x, F−1(ȳ)) .

On the other hand d((x, ȳ), A) ≤ d(ȳ, F (x)) and d((x, ȳ), B) = 0, whence
subtransversality implies

d(x, F−1(ȳ)) ≤ K1d(ȳ, F (x)),

hence F is subregular at (x̄, ȳ) with constants K1 and δ.
For the reverse direction, let F be subregular at (x̄, ȳ), that is there are

δ > 0 and K2 > 0 such that

d(x, F−1(ȳ)) ≤ K2d(ȳ, F (x)) .

Take (x, y) ∈ B̄δ/3((x̄, ȳ)) and ε ∈ (0, δ/3). Observe that d((x, y), B) =
d(y, ȳ). Let (x′, y′) ∈ A be such that d(x, x′) + d(y, y′) ≤ d((x, y), A) + ε.
Note that

d(x′, x̄) ≤ d((x′, y′), (x̄, ȳ)) ≤ d((x′, y′), (x, y)) + d((x, y), (x̄, ȳ))

≤ d((x, y), A) + ε+ d((x, y), (x̄, ȳ)) ≤ ε+ 2d((x, y), (x̄, ȳ)) ≤ δ.
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Then

d((x, y),A ∩B) = d(x, F−1(ȳ)) + d(y, ȳ) ≤ d(x′, F−1(ȳ)) + d(x, x′) + d(y, ȳ)

≤ K2d(ȳ, F (x
′)) + d(x, x′) + d(y, ȳ) ≤ K2d(y

′, ȳ) + d(x, x′) + d(y, ȳ)

≤ K2d(ȳ, y) +K2d(y, y
′) + d(x, x′) + d(y, ȳ)

≤ (K2 + 1)d((x, y), B) + (K2 + 1)d((x, y), A) + (K2 + 1)ε

Letting ε → 0 proves subtransversality with constants K1 = K2 + 1 and
δ/3.

Corollary 3.4.2. Let F : X ⇒ Y , X and Y be metric spaces, and (x̄, ȳ) ∈
Gr F as above. Define the sets A := Gr F and By := X × {y}. Then F is
regular at (x̄, ȳ) if and only if there are constants δ > 0 and K > 0 such that
for any (x, y) ∈ B̄δ((x̄, ȳ)) and any ŷ ∈ B̄δ(ȳ)

d((x, y), A ∩Bŷ) ≤ K(d((x, y), A) + d((x, y), Bŷ)) . (3.4)

If in addition X and Y are normed spaces, then this is also equivalent to
A and B := Bȳ being transversal at (x̄, ȳ).

Proof. Observe that in the first part of the proof above, we never made
explicit use of the fact that (x̄, ȳ) ∈ A ∩ B. Pick ŷ ∈ B̄δ(ȳ). The inequality
(3.4) is satisfied with Bŷ instead of B, so that, according to Theorem 3.4.1,
we arrive at d(x, F−1(ŷ)) ≤ Kd(ŷ, F (x)) for all x ∈ B̄δ(x̄). Thus, we obtain
regularity at (x̄, ȳ).

For the other direction, again take ŷ ∈ B̄δ(ȳ). Since d(x′, F−1(ŷ)) ≤
Kd(ŷ, F (x′)), for x′ near x̄, as in the proof of Theorem 3.4.1, we obtain

d((x, y), A ∩Bŷ) ≤ (K + 1)(d((x, y), A) + d((x, y), Bŷ)),

for all (x, y) ∈ B̄δ/3((x̄, ȳ)).
If the spaces are normed, then Bŷ = B + (x, ŷ − ȳ) for any x. Thus the

inequality (3.4) is the inequality defining transversality.

3.5 Primal space characterizations of subregu-
larity

We are going to use the characterization of subtransversality from 3.1. The
lemma below is our main technical tool, allowing to pass from a local in-
equality to a global one. It is a slight generalization of Lemma 3.1.3, and the
proof of the latter could be easily adapted to obtain a proof of the former.
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Lemma 3.5.1. Let A and B be closed subsets of the complete metric space
X and x̄ ∈ X. Let f : X ×X → [0,+∞) be lower semicontinuous such that
f(x, y) ≤ d(x, y) for all x, y ∈ X. Assume that there exist δ > 0 and M > 0
such that for any xA ∈ A ∩ B̄δ(x̄) and xB ∈ B ∩ B̄δ(x̄) with f(xA, xB) ̸= 0,
there are θ > 0, x̂A ∈ A and x̂B ∈ B, such that d(xA, x̂A) ≤Mθ, d(xB, x̂B) ≤
Mθ and

f(x̂A, x̂B) ≤ f(xA, xB)− θ.

Fix xA ∈ A ∩ B̄ δ
1+2M

(x̄) and xB ∈ B ∩ B̄ δ
1+2M

(x̄) . Then there exist x̃A ∈ A

and x̃B ∈ B, such that f(x̃A, x̃B) = 0, d(x̃A, xA) ≤Mf(xA, xB) and
d(x̃B, xB) ≤Mf(xA, xB).

The next theorem is a primal space characterization of subregularity (cf.
Theorem 2.58 in [39] or Corollaries 5.8 and 5.9 in [49]). We prove it in a new
way based on the earlier results.

Theorem 3.5.2. Let F : X ⇒ Y be with closed graph and (x̄, ȳ) ∈ Gr F ,
where X and Y are complete metric spaces. Then F is subregular at (x̄, ȳ) ∈
Gr F if and only if there exist constants δ > 0 and τ > 0 such that for all
(x, y) ∈ Gr F ∩ B̄δ((x̄, ȳ)), there is (x̂, ŷ) ∈ Gr F \ {(x, y)}, such that

d(ŷ, ȳ) ≤ d(y, ȳ)− τd((x, y), (x̂, ŷ))

Proof. According to Theorem 3.4.1, F is subregular at (x̄, ȳ) if and only if the
sets A := Gr F and B := X × {ȳ} are subtransversal at that point. Assume
that they are subtransversal. Then, according to Proposition 3.1.4, property
(T ) holds with some constants δ and M . Take (x, y) ∈ A∩ B̄δ((x̄, ȳ)). Then
(x, ȳ) ∈ B ∩ B̄δ(x̄, ȳ) and thus there exist (x̂, ŷ) ∈ A and (x̂B, ȳ) ∈ B such
that

d((x̂, ŷ), (x̂B, ȳ)) ≤ d((x, y), (x, ȳ))− 1

M
max{d((x, y), (x̂, ŷ)), d(x, x̂B)}

and max{d((x, y), (x̂, ŷ)), d(x, x̂B)} > 0. If we assume that (x̂, ŷ) = (x, y),
then in particular ŷ = y. Thus

d((x, y), (x, ȳ))− 1

M
max{d((x, y), (x̂, ŷ)), d(x, x̂B)} < d(y, ȳ)

and
d(y, ȳ) ≤ d((x̂, ŷ), (x̂B, ȳ)).

This contradicts the earlier inequality, hence (x̂, ŷ) ̸= (x, y).
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From here we obtain

d(ŷ,ȳ) ≤ d((x̂, ŷ), (x̂B, ȳ)) ≤ d((x, y), (x, ȳ))− 1

M
max{d((x, y), (x̂, ŷ)), d(x, x̂B)}

≤ d(y, ȳ)− τd((x, y), (x̂, ŷ)) ,

for τ :=
1

M
.

Now assume that there exist constants δ > 0 and τ > 0 such that for all
(x, y) ∈ Gr F ∩ B̄δ((x̄, ȳ)), there is (x̂, ŷ) ∈ Gr F , such that

d(ŷ, ȳ) ≤ d(y, ȳ)− τd((x, y), (x̂, ŷ)) .

Let the function f : (X×Y )×(X×Y ) → [0,+∞) be given by f((x1, y1), (x2, y2)) =
d(y1, y2) . Let (x, y) ∈ A ∩ B̄δ((x̄, ȳ)) and (xB, ȳ) ∈ B with d(xB, x̄) ≤ δ be
arbitrary. Then, there exists a point (x̂, ŷ) ∈ A, satisfying the inequality. For
the points (x̂, ŷ) ∈ A and (xB, ȳ) ∈ B we estimate

f((x̂, ŷ), (xB, ȳ)) = d(ŷ, ȳ) ≤ d(y, ȳ)− τd((x, y), (x̂, ŷ))

= f((x, y), (xB, ȳ))− τ max{d((x, y), (x̂, ŷ)), d((xB, ȳ), (xB, ȳ))} ,

which means that we can apply Lemma 3.5.1 for A and B at (x̄, ȳ) with

function f and constants δ and M :=
1

τ
if the starting points are sufficiently

close to (x̄, ȳ).
Let δ̂ = τ

(τ+2)(τ+1)
δ and take x ∈ B̄δ̂(x̄). If d(ȳ, F (x)) ≥ τ δ̂, then

1

τ
d(ȳ, F (x)) ≥ δ̂ ≥ d(x, x̄) ≥ d(x, F−1(ȳ))

Otherwise, take ε ∈
(
0, τ δ̂ − d(ȳ, F (x))

)
. Take y ∈ F (x) for which

d(y, ȳ) ≤ d(ȳ, F (x)) + ε ≤ τ δ̂ <
τ

τ + 2
δ.

For M = 1/τ , we have d(x, x̄) ≤ δ
1+2M

and d(y, ȳ) ≤ δ
1+2M

.
Applying Lemma 3.5.1 to (x, y) ∈ A and (x, ȳ) ∈ B, it follows that there

exist points (x̃, ỹ) ∈ A and (x̃B, ȳ) ∈ B such that f((x̃, ỹ), (x̃B, ȳ)) = 0,
hence ỹ = ȳ, and d((x̃, ȳ), (x, y)) ≤ Mf((x, y), (x, ȳ)) = Md(y, ȳ). Using
that x̃ ∈ F−1(ȳ) and the choice of y, we obtain that

d(x,F−1(ȳ)) ≤ d(x, x̃) ≤ d((x̃, ȳ), (x, y)) ≤Md(y, ȳ)

≤Md(ȳ, F (x)) +Mε

Letting ε→ 0, we obtain d(x, F−1(ȳ)) ≤Md(ȳ, F (x)) for all x ∈ B̄δ̂(x̄). We
have verified that F is subregular at (x̄, ȳ) by definition.
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3.6 Primal space characterizations of transver-
sality and regularity

We use again the previously obtained characterizations of transversality in
section 3.2. The following theorem is a classical “rate of descent” characteri-
zation (cf. Theorem 2.50 in [39] or Theorem 7 in [41]).

Theorem 3.6.1. Let F : X ⇒ Y be with closed graph and (x̄, ȳ) ∈ Gr F ,
where X and Y are complete metric spaces. Then F is regular at (x̄, ȳ) ∈
Gr F if and only if there exist δ > 0 and τ > 0 such that for all (x, y) ∈
Gr F ∩ B̄δ((x̄, ȳ)) and all v ∈ B̄δ(ȳ), there is (x̂, ŷ) ∈ Gr F \ {(x, y)}, such
that

d(ŷ, v) ≤ d(y, v)− τd((x, y), (x̂, ŷ)) .

Proof. According to Corollary 3.4.2, F is regular at (x̄, ȳ) if and only if there
are constants δ > 0 and K > 0 such that for any (x, y) ∈ B̄δ((x̄, ȳ)) and any
v ∈ B̄δ(ȳ) it holds

d((x, y), A ∩Bv) ≤ K(d((x, y), A) + d((x, y), Bv)) ,

where Bv := X × {v}.
Let F be regular at (x̄, ȳ). Fix δ̂ := δ

4K+10
, (x, y) ∈ A ∩ B̄δ̂((x̄, ȳ)) and

v ∈ B̄δ̂(ȳ). According to Proposition 3.1.4, A and Bv have property (T ) at
(x̄, ȳ) with constants δ̂ and M . Hence, there exist (x̂, ŷ) ∈ A and (x̂B, v) ∈ Bv

such that

d((x̂, ŷ), (x̂B, v)) ≤ d((x, y), (x, v))− 1

M
max{d((x, y), (x̂, ŷ)), d(x, x̂B)}

and max{d((x, y), (x̂, ŷ)), d(x, x̂B)} > 0. If we assume that (x̂, ŷ) = (x, y),
then in particular ŷ = y. Thus

d((x, y), (x, v))− 1

M
max{d((x, y), (x̂, ŷ)), d(x, x̂B)} < d(y, v)

and
d(y, v) ≤ d((x̂, ŷ), (x̂B, v)).

This contradicts the earlier inequality, hence (x̂, ŷ) ̸= (x, y). From here we
obtain

d(ŷ, v) ≤ d(y, v)− τd((x, y), (x̂, ŷ)) ,

for τ :=
1

M
.
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Now, assume that there exist constants δ > 0 and τ > 0 such that for all
(x, y) ∈ Gr F ∩ B̄δ((x̄, ȳ)) and all v ∈ B̄δ(ȳ), there is (x̂, ŷ) ∈ Gr F \{(x, y)},
such that

d(ŷ, v) ≤ d(y, v)− τd((x, y), (x̂, ŷ)) .

Let the function f : (X×Y )×(X×Y ) → [0,+∞) be given by f((x1, y1), (x2, y2)) =
d(y1, y2) . Let us fix (x, y) ∈ A ∩ B̄δ/2((x̄, ȳ)), v ∈ B̄δ/2(ȳ) and (xB, v) ∈ Bv

with d(xB, x̄) ≤ δ/2. Then, there exists a point (x̂, ŷ) ∈ A, satisfying the
above inequality.

For the points (x̂, ŷ) ∈ A and (xB, v) ∈ Bv we estimate

f((x̂, ŷ), (xB, v)) = d(ŷ, v) ≤ d(y, v)− τd((x, y), (x̂, ŷ))

= f((x, y), (xB, v))− τ max{d((x, y), (x̂, ŷ)), d((xB, v), (xB, v))} ,

which means that we can apply Lemma 3.5.1 for A and Bv at (x̄, ȳ) with

function f and constants δ/2 andM :=
1

τ
if the starting points are sufficiently

close to (x̄, ȳ).
Let δ̂ := τ

4(τ+2)(τ+1)
δ and take v ∈ B̄δ̂(ȳ) and x ∈ B̄δ̂(x̄). Applying Lemma

3.5.1 for (x̄, ȳ) ∈ A and (x̄, v) ∈ Bv we arrive at a point xv ∈ F−1(v) such
that d(xv, x̄) ≤Md(ȳ, v) ≤ δ̂/τ

If d(v, F (x)) ≥ δ̂(1 + τ), then

1

τ
d(v, F (x)) ≥ δ̂ +

δ̂

τ
≥ d(x, x̄) + d(xv, x̄) ≥ d(x, xv) ≥ d(x, F−1(v))

Otherwise, take ε ∈
(
0, δ̂(τ + 1)− d(ȳ, F (x))

)
. Take y ∈ F (x) for which

d(y, v) ≤ d(v, F (x)) + ε ≤ δ̂(τ + 1) ≤ τ

4(τ + 2)
δ.

Recall that M = 1/τ , hence d(x, x̄) ≤ δ/2
1+2M

and d(y, ȳ) ≤ d(y, v) + d(v, ȳ) ≤
τ

2(τ+2)
δ = δ/2

1+2M
.

Applying Lemma 3.5.1 to (x, y) ∈ A and (x, v) ∈ Bv, it follows that there
exist points (x̃, ỹ) ∈ A and (x̃B, v) ∈ Bv such that f((x̃, ỹ), (x̃B, ȳ)) = 0,
hence ỹ = v, and d((x̃, v), (x, y)) ≤ Mf((x, y), (x, v)) = Md(y, v). Using
that x̃ ∈ F−1(v) and the choice of y, we obtain that

d(x,F−1(v)) ≤ d(x, x̃) ≤ d((x̃, v), (x, y)) ≤Md(y, v)

≤Md(v, F (x)) +Mε

Letting ε → 0, we obtain d(x, F−1(v)) ≤ Md(v, F (x)) for all x ∈ B̄δ̂(x̄) and
v ∈ B̄δ̂(ȳ). We have verified that F is regular at (x̄, ȳ) by definition.
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Using the above theorem, we establish a characterization of metric reg-
ularity of a map F : X ⇒ Y , X – complete metric space and Y – Banach
space, using its first order (contingent) variation F (1)(x, y). This is first done
in [31] (see also Theorem 4.13 and Remark 4.14(c) in [3] for a proof in Ba-
nach spaces or [41] for an alternative proof). Given (x, y) ∈ GrF , define
F (1) : X × Y ⇒ Y by

F (1)(x, y) := lim sup
t→0+

F (B̄t(x))− y

t
,

where lim sup stands for the Kuratowski limit superior of sets. Equivalently,
v ∈ F (1)(x, y) exactly when there exist sequences tn → 0+, vn → v and
(xn, yn) ∈ Gr F such that d(xn, x) ≤ tn and yn = y + tnvn.

Our proof is done via a sequential characterization of metric regularity,
which we have not seen stated anywhere in the literature.

Corollary 3.6.2. Let us consider F : X ⇒ Y with closed graph, where X is
a complete metric space and Y is a Banach space. Then, the following are
equivalent

(i) F is regular at (x̄, ȳ) ∈ Gr F

(ii) there exist δ > 0 and r > 0 such that

Br(0) ⊂ F (1)(x, y) for all (x, y) ∈ B̄δ(x̄, ȳ) ∩ Gr F

(iii) there exist δ > 0 and τ > 0 such that for all (x, y) ∈ Gr F ∩ B̄δ((x̄, ȳ))
and all ŷ ∈ B̄δ(ȳ), there is a sequence {(xn, yn)}n≥1 ⊂ Gr F \ {(x, y)}
converging to (x, y) such that for all n it holds

∥yn − ŷ∥ ≤ ∥y − ŷ∥ − τd((xn, yn), (x, y)) .

Proof. We have that (iii) implies (i) by Theorem 3.6.1.
Next, we will show that (i) implies (ii). Let F be regular at (x̄, ȳ) ∈ Gr F .

By definition there exist K > 0 and δ > 0 such that for all x ∈ Bδ(x̄) and
all y ∈ Bδ(ȳ) the following inequality holds:

d(x, F−1(y)) ≤ Kd(y, F (x)) .

Fix arbitrary (x, y) ∈ B̄ δ
2
((x̄, ȳ)) ∩ Gr F , v ∈ Y with ∥v∥ < 1

K
=: r and a

sequence tn → 0+ such that yn := y + tnv ∈ Bδ(ȳ). Then, there exist ε > 0
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such that ∥v∥ ≤ 1− ε

K
. Moreover, for every n ∈ N there exists xn ∈ F−1(yn)

such that d(x, xn) ≤ d(x, F−1(yn)) + εtn. Thus

d(x, xn) ≤ d(x, F−1(yn)) + εtn ≤ Kd(yn, F (x)) + εtn

≤ K∥yn − y∥+ εtn ≤ (1− ε+ ε)tn = tn.

Having that (xn, yn) = (xn, y+ tnv) ∈ Gr F , v ∈ F (1)(x, y) by definition. We
have shown that (ii) holds, if F is regular at (x̄, ȳ).

It remains to prove that (ii) implies (iii). Assume that (ii) holds. Let
(x, y) ∈ B̄δ(x̄, ȳ) ∩ Gr F and ŷ ∈ B̄δ(ȳ) be arbitrary. Let us denote v :=
ρ ŷ−y
∥ŷ−y∥ for some ρ ∈ (0, r). Then, v ∈ Y with ∥v∥ = ρ and due to (ii) there

exist sequences tn → 0+, vn → v and (xn, yn) ∈ Gr F such that d(xn, x) ≤ tn
and yn = y + tnvn. Since ρtn < 1 for n – large enough, we estimate

∥yn − ŷ∥ =

∥∥∥∥y − ŷ + tnρ
ŷ − y

∥ŷ − y∥

∥∥∥∥ = ∥y − ŷ∥ − tnρ .

Moreover, we have that tn ≥ d(xn, x) >
d(xn,x)
ρ+1

and tn = ∥yn−y∥
∥vn∥ ≥ ∥yn−y∥

ρ+1
for

n – large enough. Therefore

∥yn − ŷ∥ ≤ ∥y − ŷ∥ − τd((xn, yn), (x, y)) ,

where τ := ρ
2(ρ+1)

.
The proof is complete.

Next, we establish the relation between the metric regularity of a map
F : X ⇒ Y , X and Y – Banach spaces, and its graphical (contingent)
derivative DF (x|y). Given (x, y) ∈ GrF , define DF (x|y) : X ⇒ Y as the
map, whose graph is the (Bouligand) tangent cone TGrF (x, y), i.e.

v ∈ DF (x|y)(u) ⇔ (u, v) ∈ TGrF (x, y) .

Corollary 3.6.3 (cf. Theorem 1.2 in [25] and Theorem 4.13 and Remark
4.14(b) in [3]). Let F : X ⇒ Y and (x̄, ȳ) ∈ Gr F , where X and Y are
Banach spaces. Assume there exist δ > 0 and K > 0 such that for any
(x, y) ∈ GrF with ∥x− x̄∥ ≤ δ, 0 < ∥y − ȳ∥ ≤ δ and any v ∈ Y, ∥v∥ = 1, it
holds

inf

{
∥u∥

∣∣∣∣ v ∈ DF (x|y)(u)
}

≤ K .

Then F is regular at (x̄, ȳ) ∈ Gr F . The reverse direction is also true when
X is finite-dimensional.
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Proof. For the first part, we have that for every ε > 0, every (x, y) ∈ GrF
with ∥x − x̄∥ ≤ δ, 0 < ∥y − ȳ∥ ≤ δ and for every v ∈ Y with ∥v∥ = 1
there is (u, v) ∈ TGr F (x, y) such that ∥u∥ < K + ε. From the definition
of Bouligand tangent cone, there exist sequences un → u, vn → v and a
sequence of positive tn tending to zero, such that (x+ tnun, y+ tnvn) ∈ Gr F .
Let us fix an arbitrary λ ∈ (0, 1]. We have that τn := tn(K+ε)

λ
→ 0 and

(x + tnun, y + tnvn) = (x + τn
λun

K+ε
, y + τn

λvn
K+ε

) ∈ Gr F . Without loss of
generality we can assume that ∥un∥ ≤ K+ε for n – large enough. Taking into
account that d(x, x + τn

λun

K+ε
) ≤ λτn ≤ τn, we obtain that λv

K+ε
∈ F (1)(x, y).

Since the unit vector v ∈ Y , λ ∈ (0, 1] and ε > 0 are arbitrary and ∥ λv
K+ε

∥ =
λ

K+ε
, we obtain that B 1

K
(0) ⊂ F (1)(x, y). Then, F is regular at (x̄, ȳ) due to

Corollary 3.6.2.
For the converse, let X be finite-dimensional and F be regular at (x̄, ȳ)

with constants δ and K. Let (x, y) ∈ GrF with ∥x − x̄∥ ≤ δ and 0 <
∥y− ȳ∥ ≤ δ, ε ∈ (0, 1

K
) and v ∈ Y with ∥v∥ = 1 be arbitrary. Then, we have

that w := ( 1
K
− ε)v ∈ F (1)(x, y) due to Corollary 3.6.2. That is, there exist

sequences tn → 0+, wn → w and (xn, yn) ∈ Gr F such that ∥xn−x∥ ≤ tn and
yn = y+tnwn. Moreover, sinceX is finite-dimensional, we have xn = x+tnpn,
where ∥pn∥ ≤ 1 which implies pn −→n→∞ p (up to a subsequence, labeled in
the same way) and (p, w) ∈ TGr F . Hence ( p

∥w∥ ,
w

∥w∥) = ( p
1
K
−ε
, v) ∈ TGr F and

∥ p
1
K
−ε
∥ ≤ 1

1
K
−ε

. We have obtained that for any v ∈ Y, ∥v∥ = 1, it holds

inf

{
∥u∥

∣∣∣∣ v ∈ DF (x|y)(u)
}

≤ K .

The proof is complete.
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Chapter 4

Sufficient condition for tangential
transversality

4.1 Introduction
In this chapter we will apply the following simplified version of the Lagrange
multiplier rule stated earlier, Theorem 1.0.3. The simplification is regarding
the cones involved - we will use only Clarke tangent cones. Here is the
corresponding theorem.

Theorem 4.1.1 (Lagrange multiplier rule). Let us consider the optimization
problem

f(x) → min subject to x ∈ S ,

where f : X −→ R ∪ {+∞} is lower semicontinuous and proper and S is
a closed subset of the Banach space X. Let x0 be a solution of the above
problem. Let T̂epif (x0, f(x0)) and T̂S(x0) be the Clarke tangent cones to epi f
and S respectively. Then one of the following alternatives hold
(a) If T̂epif (x0, f(x0))− T̂S(x0)× (−∞, 0] is not dense in X × R, then there
exists a pair (ξ, η) ∈ X∗ × R such that

(i) (ξ, η) ̸= (0, 0);

(ii) η ∈ {0, 1};

(iii) ⟨ξ, v⟩ ≤ 0 for every v ∈ T̂S(x0);

(iv) ⟨ξ, w⟩+ ηs ≥ 0 for every (w, s) ∈ T̂epif (x0, f(x0)).

(b) If T̂epif (x0, f(x0))− T̂S(x0)× (−∞, 0] is dense in X × R, then epif and
S × (−∞, f(x0)] are not subtransversal at (x0, f(x0)).
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4.2 Preliminaries
Here we state some preliminary results and definitions. The following defini-
tions are from [44]:

Definition 4.2.1. Let S be a closed subset of X and x0 belong to S. We say
that the bounded set DS(x0) is a uniform tangent set to S at the point x0 if
for each ε > 0 there exists δ > 0 such that for each v ∈ DS(x0) and for each
point x ∈ S ∩ (x0 + δB) one can find λ > 0 for which S ∩ (x+ t(v + εB)) is
nonempty for each t ∈ [0, λ].

Definition 4.2.2. Let S be a closed subset of X and x0 belong to S. We say
that the bounded set DS(x0) is a sequence uniform tangent set to S at the
point x0 if for each ε > 0 there exists δ > 0 such that for each v ∈ DS(x0)
and for each point x ∈ S ∩ (x0+ δB) one can find a sequence of positive reals
tm → 0 for which S ∩ (x+ tm(v+ εB)) is nonempty for each positive integer
m.

The next theorem is the main result from [10].

Theorem 4.2.3. Let S be a closed subset of X and x0 belong to S. The
following are equivalent

1. DS(x0) is a uniform tangent set to S at the point x0

2. DS(x0) is a sequence uniform tangent set to S at the point x0

3. for each ε > 0 there exist δ > 0 and λ > 0 such that for each v ∈ DS(x0)
and for each point x ∈ S ∩ (x0 + δB) the set S ∩ (x + t(v + εB)) is
nonempty for each t ∈ [0, λ].

The basic properties of uniform tangent sets are gathered in the next
proposition taken from [8]:

Proposition 4.2.4. Let S be a closed subset of X and let x0 ∈ S. Let DS(x0)
be a uniform tangent set to S at the point x0. Then, the following hold true:

1. D ⊂ T̂A(x0);

2. the set cDS(x0) is a uniform tangent set to S at x0 for each fixed
constant c > 0;

3. if D′
S(x0) ⊂ DS(x0), then D′

S(x0) is a uniform tangent set to S at x0;

4. if D′
S(x0) is another uniform tangent set to S at x0, then DS(x0) ∪

D′
S(x0) is a uniform tangent set to S at x0;
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5. the convex closed closure coDS(x0) of DS(x0) is a uniform tangent set
to S at x0

6. if S is convex, then (S − x0)∩MB is a uniform tangent set to S at x0
for every M > 0.

Remark 4.2.5. From points 2., 4. and 5. follows that when D and D′ are
uniform tangent sets to A at the point x0, their sum, D + D′, is also an
uniform tangent set to A at x0, because D +D′ ⊆ 2co(D ∪D′).

The following result gives a sufficient condition for a subset of the Clarke
tangent cone to be a uniform tangent set.

Theorem 4.2.6 ([57]). Let A be closed subset of the Banach space X and
x0 ∈ A. If D is compact subset of T̂A(x0), then D is uniform tangent set.

In the very particular (yet useful) case when D is a finite subset of T̂A(x0),
D is a uniform tangent set. Having in mind that in finite-dimensional spaces
the closed bounded sets are compact, we obtain

Corollary 4.2.7. Let A be closed subset of Rn and x0 ∈ A. Then B̄∩ T̂A(x0)
is uniform tangent set to A at x0. It also generates the Clarke tangent cone
T̂A(x0).

Thus, in finite dimensional spaces, the problem of existence of uniform
tangent set which generates the corresponding Clarke tangent cone, is solved.
However, in infinite-dimensional spaces the closed balls are not compact.
Indeed, a result similar to those in Corollary 4.2.7 does not hold in general,
as observed in the following

Example 4.2.8. Let A be the Hilbert cube in ℓ2, defined in Example 1.0.1.
Then T̂A(0) = ℓ2. The set D consisting of standard unit vectors
en = (0, 0, . . . , 0, 1, 0, . . .), n ≥ 1, is a subset of B̄ ∩ T̂A(0), but it is not
uniform tangent set. Indeed, assume on the contrary that for η = 1

2
there

exists δ > 0 such that

A ∩ δB̄+ ten ⊂ A+
t

2
B̄

holds for every t ∈ [0, δ] and every n ≥ 1. In particular, for all n ≥ 1 it

is true that δen ∈ A +
δ

2
B̄. Comparing the n-th position of the vectors, we

obtain that for all n holds δ <
1

n
+
δ

2
, which is clearly impossible, since δ > 0.

Thus D is not a uniform tangent set. Hence B̄∩ T̂A(x0) cannot be a uniform
tangent set as well, since D ⊂ B̄ ∩ T̂A(x0).
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The following result identifies potentially infinite-dimensional situations
in which the Clarke tangent cone could be generated by uniform tangent set.
More results in this direction could be found in [8].

Theorem 4.2.9. [10] Let A be closed subset of the Banach space X and
x0 ∈ A. Let T̂A(x0) be separable set. Then there exists uniform tangent set
D to A at x0, which generates T̂A(x0).

Next we remind the classical concept of compactly epi-Lipschitz sets in
Banach spaces. It was introduced by J.M. Borwein and H.M. Strojwas in
1985 in [11] and it includes all finite-dimensional and all epi-Lipschitsian sets
in Banach spaces. Since then, it has been an important notion in nons-
mooth analysis and has been frequently used in qualification conditions for
obtaining normal intersection properties and calculus rules concerning limit-
ing Fréchet cones and subdifferentials (in Asplund spaces, cf. [55] and [56])
and G-cones and G-subdifferentials (in general Banach spaces, cf. [43] and
[38]). Compactly epi-Lipschitz sets are called massive in [39]. Here is the
corresponding

Definition 4.2.10. Let A be a closed subset of the Banach space X and
x0 ∈ A. We say that A is compactly epi-Lipschitz (massive) at x0, if there
exist ε > 0, δ > 0 and a compact set K ⊂ X, such that for all t ∈ [0, δ] the
following inclusion holds true

A ∩ (x0 + δB) + εB ⊂ A+ tK .

Next we formulate two sufficient conditions for tangential transversality
which can be obtained from the main result of this chapter in a unified
manner. Theorem 4.2.11 is taken from [8] and Proposition 4.2.13 can be
found in [9].

Theorem 4.2.11. Let A and B be closed subsets of the Banach space X
and let x0 ∈ A ∩ B. Let A be massive (or compactly epi-Lipschitz) and
T̂A(x0)− T̂B(x0) be dense in X. Then A and B are tangentially transversal
at x0.

Definition 4.2.12. Let A and B be closed subsets of the Banach space X
and let x0 ∈ A∩B. We say that A and B are strongly tangentially transversal
at x0 if there exist DA(x0) – uniform tangent set to A at the point x0, DB(x0)
– uniform tangent set to the set B at the point x0 and ρ > 0 such that

ρB ⊂ co (DA(x0)−DB(x0))
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Proposition 4.2.13 ([8]). Let A and B be closed subsets of the Banach space
X and let x0 ∈ A ∩ B. If A and B are strongly tangentially transversal at
x0, then A and B are tangentially transversal at x0.

We will need the following theorem.

Theorem 4.2.14 ([8]). Let A and B be closed subsets of the Banach space
X and x0 ∈ A ∩ B. Let DA and DB be uniform tangent sets (to A and
B respectively) at x0, which generate the respective Clarke tangent cones -
T̂A(x0) and T̂B(x0). Let DA−DB has nonempty interior and T̂A(x0)− T̂B(x0)
be dense in X. Then A and B are strongly tangentially transversal.

4.3 Main result
In the following two theorems we formulate our main result. The first is a
simpler version which motivate the general:

Theorem 4.3.1. Let A and B be closed subsets of the Banach space X and
let x0 ∈ A ∩B. Assume that there exist ε > 0, δ > 0 and:

(i) there exist bounded “ball covering” sets MA, MB such that MA −MB

is dense in εB and “correcting” sets UA, UB such that

A ∩ (x0 + δB) + tMA ⊂ A+ tUA and B ∩ (x0 + δB) + tMB ⊂ B + tUB

whenever t ∈ [0, δ];
(ii) there exist uniform tangent sets DA (to A at x0) and DB (to B at

x0) such that DA −DB is dense in UA − UB.
Then A and B are tangentially transversal at x0.

If, in the above theorem, MB = UB = {0}, our assumption would be
reduced to the definition of A being compactly epi-Lipschitz, but with the
difference that the compact set is replaced by a difference of two uniform
tangent sets. Moreover, the “massiveness-like” property is split between the
sets. The above theorem is a direct consequence of its “quantified” version
below. For the statement of the next result we will need the notion of ε-
density: we say that a set A is ε-dense in the set B, if for all v ∈ B there is
u ∈ A such that ∥v − u∥ < ε.

Theorem 4.3.2. Let A and B be closed subsets of the Banach space X and
let x0 ∈ A ∩ B. Assume that there exist ε > 0, δ > 0, q1 > 0, q2 > 0, such
that q1 + q2 < 1 and:
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(i) there exist bounded “ball covering” sets MA and MB such that MA−MB

is εq1-dense in εB and “correcting” sets UA, UB such that

A ∩ (x0 + δB) + tMA ⊂ A+ tUA and B ∩ (x0 + δB) + tMB ⊂ B + tUB

whenever t ∈ [0, δ];
(ii) there exist two bounded sets DA and DB such that DA −DB is εq2-

dense in UA − UB and they are “η-uniform” with η := (1 − q1 − q2)/3, i.e.
for each t ∈ [0, δ]

A ∩ (x0 + δB) + tDA ⊂ A+ tηB and B ∩ (x0 + δB) + tDB ⊂ B + tηB.

Then A and B are tangentially transversal at x0.

Proof. From (ii) we see that UA −UB is bounded, and hence each of the sets
UA and UB is bounded as well. We set

N := sup{∥u∥
∣∣ u ∈ UA ∪ UB ∪DA ∪DB ∪MA ∪MB} and δ̄ :=

δ

1 + 2N
.

Let xA ∈ (x0 + δ̄B) ∩ A and xB ∈ (x0 + δ̄B) ∩ B, xA ̸= xB be arbitrary.

Let us fix t ∈
(
0,min

{
δ̄,

∥xA − xB∥
ε

})
and let us set

v := − xA − xB

∥xA − xB∥
.

Then ∥εv∥ = ε. According to (i), there exist mA ∈ MA and mB ∈ MB,
such that ∥εv − (mA −mB)∥ ≤ εq1. Since 0 < t < δ̄ ≤ δ and

xA ∈ (x0 + δ̄B) ∩A ⊂ (x0 + δB) ∩A, xB ∈ (x0 + δ̄B) ∩B ⊂ (x0 + δB) ∩B,

there exist uA ∈ UA and uB ∈ UB such that

x̃A := xA + t(mA − uA) ∈ A and x̃B := xB + t(mB − uB) ∈ B.

Because uA ∈ UA, uB ∈ UB and DA −DB is εq2-dense in UA − UB, then
∥(dA − dB)− (uA − uB)∥ ≤ εq2 for some dA ∈ DA and dB ∈ DB.

We estimate

∥x̃A−x0∥ ≤ ∥xA−x0∥+t∥mA−uA∥ ≤ δ̄+ δ̄(∥mA∥+∥uA∥∥) ≤ δ̄(1+2N) = δ.

Therefore there exists wA ∈ ηB such that x̃A+t(dA−wA) ∈ A and we obtain

x̃A + t(dA − wA) = xA + t(mA − uA + dA − wA) ∈ A
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and

∥mA − uA + dA − wA∥ ≤ ∥mA∥+ ∥uA∥+ ∥dA∥+ ∥wA∥ ≤ 3N + η.

Analogously we obtain wB ∈ ηB such that xB+t(mB−uB+dB−wB) ∈ B
and ∥mB − uB + dB − wB∥ ≤ 3N + η.

Hence

∥(xA + t(mA − uA + dA − wA))− (xB + t(mB − uB + dB − wB))∥

=

∥∥∥∥xA − xB − tε
xA − xB

∥xA − xB∥
− t(εv − (mA −mB))− twA + twB+

+t((dA − dB)− (uA − uB))
∥∥ ≤

≤ ∥xA − xB∥ − tε+ t(εq1 + η + η + εq2) = ∥xA − xB∥ − tη.

This verifies the tangential transversality of the sets A and B at the point
x0 with constants 3N + η > 0, δ̄ > 0 and η > 0.

4.4 Applications of the main result
Corollary 4.4.1. Theorem 4.2.13 as a corollary of Theorem 4.3.1.

Proof. Let DA and DB are uniform tangent sets to A and B respectively, at
x0 and for some ρ > 0 holds

ρB̄ ⊂ co(DA −DB).

Taking into account the properties of uniform tangent set (Theorem 5.3.4),
we may assume that DA − DB is dense in ρB̄. Let MA = UA := DA and
MB = UB := DB. Let δ > 0 is arbitrary and ε = ρ. In this way we can apply
Theorem 4.3.1, hence A and B are tangentially transversal.

Lemma 4.4.2. Let X and Y are Banach spaces and let f : X × Y →
R∪{+∞} be proper and lower-semicontinuous. Let L : Y → X be continuous
linear operator. Denote

S = {(x, y) ∈ X × Y
∣∣ x = Ly}.

Let (x̄, ȳ) ∈ S be such that there exist δ̄ > 0 and K > 0, such that for all
y ∈ ȳ + δ̄B̄Y and for all x′ ∈ x̄+ δ̄B̄X , x′′ ∈ x̄+ δ̄B̄X holds

|f(x′, y)− f(x′′, y)| ≤ K∥x′ − x′′∥.

Then there exists uniform tangent set D to epif at (x̄, ȳ, f(x̄, ȳ)), such that
D − S ∩BX×Y × [−1, 0] has nonempty interior in X × Y × R.
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Proof. Define

D :=

{
(v,0, d)

∣∣ d ∈ (0, δ̄), ∥v∥ < d

K

}
.

We will show that D is uniform tangent set to epif at (x̄, ȳ, f(x̄, ȳ)). Denote
C = epif . Fix arbitrary ε > 0. We should find δ > 0, such that for all
(v,0, d) ∈ D, for all (x, y, r) ∈ ((x̄, ȳ, f(x̄, ȳ)) + δBX×Y×R) ∩ C and for all
t ∈ [0, δ] holds

((x, y, r) + t ((v,0, d) + εBX×Y×R)) ∩ C ̸= ∅.

Let δ = min

{
δ̄

2
,
δ̄

2M

}
, where M = sup

v∈D
∥v∥ (finite, since D is bounded). Let

(x, y, r) ∈ ((x̄, ȳ, f(x̄, ȳ)) + δBX×Y×R) ∩ C. Then x̄+ δB̄X , y ∈ ȳ + δB̄Y Рё

∥x+ tv − x̄∥ ≤ ∥x− x̄∥+ δ̄

2M
M ≤ δ̄,

hence x+ tv ∈ x̄+ δ̄B̄X . In this way

f(x+ tv, y) ≤ f(x, y) +K∥tv∥ ≤ r + td

(we utilized the Lipschitz condition on f with respect to the first variable,
∥v∥ < d/K and f(x, y) ≤ r), hence (x, y, r) + t(v,0, d) ∈ C.

We will show that thus constructed uniform tangent set D does the work
for our claim. Since L is continuous, it has finite norm. Clearly (0,0,−1/2) ∈
S∩BX×Y ×[−1, 0]. We know that D is open in X×{0}×R. Let (x,0, r) ∈ D
and ε1 > 0 be such that, (x,0, r) + ε1BX×{0}×R ⊆ D. We claim that z :=
(x,0, r)− (0,0,−1/2) = (x,0, r+1/2) lies in the interior of D−S∩BX×Y ×
[−1, 0], i.e. there exists ε > 0, such that z + εBX×Y×R ⊆ D − S ∩ BX×Y ×

[−1, 0]. This would finish the proof. Let ε = min

{
ε1
2
,
ε1

2∥L∥
,

1

∥L∥
, 1

}
and

take arbitrary
z′ = (x′, y′, r′ + 1/2) ∈ z + εBX×Y×R.

Thus ∥x′ − x∥ < ε1/2 and ∥y′∥ < ε1
2∥L∥

, hence

∥x′ + L(−y′)− x∥ ≤ ∥x′ − x∥+ ∥Ly′∥ < ε1
2
+ ∥L∥ ε1

2∥L∥
= ε1.

Moreover |r′ − r| = |r′ + 1/2− (r + 1/2)| < ε1.
In this way z1 := (x′ + L(−y′),0, r′) ∈ D.

On the other hand, since ∥y′∥ < min

{
1,

1

∥L∥

}
, we have ∥Ly′∥ < 1. Thus

(L(−y′),−y′) ∈ S∩BX×Y . Therefore z2 := (L(−y′),−y′,−1/2) ∈ S∩BX×Y ×
[−1, 0]. It remains to observe that z′ = z1 − z2.
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Theorem 4.4.3. Let X and Y be Banach space and let f : X × Y → R be
proper lower-semicontinuous function. Let L : Y → X be continuous linear
operator and

S = {(Ly, y) | y ∈ Y }.

Let (x̄, ȳ) ∈ S be such that there exists δ̄ > 0 and K > 0, such that for all
y ∈ ȳ + δ̄B̄Y and for all x′ ∈ x̄+ δ̄B̄X , x′′ ∈ x̄+ δ̄B̄X holds

|f(x′, y)− f(x′′, y)| ≤ K∥x′ − x′′∥.

Moreover, let T̂epi f ((x̄, ȳ, f(x̄, ȳ)))− T̂S×(−∞,f(x̄,ȳ)]((x̄, ȳ, f(x̄, ȳ))) be dense in
X × Y × R and there exists an uniform tangent set Dg which generates
T̂epi f ((x̄, ȳ, f(x̄, ȳ))). Then epi f and S × (−∞, f(x̄, ȳ)] are tangentially
transversal.

Proof. For brevity denote A := epi f and B = S × (−∞, f(x̄, ȳ)] and z =
(x̄, ȳ, f(x̄, ȳ)). According to Lemma 4.4.2, there exists uniform tangent set D
to A at the point z, such that D−S∩BX×Y × [−1, 0] has nonempty interior.
According to Theorem 4.2.4 (ii), DA := D ∪ Dg is an uniform tangent set.
On the other hand, since S is a vector space, then DB := S ∩BX×Y × [−1, 0]

is an uniform tangent set to B at z. We know that T̂A(z) − T̂B(z) is dense
in X × Y × R. In this way, the assumptions of Theorem 4.2.14. We obtain
that the sets A and B are tangentially transversal.

Remark 4.4.4. If in the above theorem X and Y are separable Banach
spaces, then the existence of Dg follows directly from Proposition 4.2.9.

Below we formulate an abstract (infinite-dimensional) version of the well-
known Aubin condition from [15] for the basic problem of the calculus of
variations:

Definition 4.4.5. Let X and Y be Banach spaces and f : X×Y → R∪{+∞}
be a proper lower semicontinuous function which has finite value at (x, y) ∈
X × Y . It is said that f satisfies the Aubin condition at (x, y, f(x, y)) iff
there exist positive reals δ > 0 and K > 0 such that for every t ∈ [0, δ] the
following inclusion holds true:

epi f ∩
(
(x, y, f(x, y)) + δ ·BX×Y×R

)
+ t
(
BX ,0, 0

)
⊂

⊂ epi f + t
(
0, K ·BY , K[−1, 1]

)
.

The next theorem is the main motivation of our research:
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Theorem 4.4.6. Let X and Y be Banach spaces and f : X×Y → R∪{+∞}
be a proper lower semicontinuous function which satisfies the Aubin condition
at (x, y, f(x, y)). Let L : Y −→ X be a compact linear operator and S :=
{(Ly, y) : y ∈ Y }. We assume that

T̂epi f (x, y, f(x, y))− S × (−∞, 0]

is dense in X × Y × R. Then epi f and S × (−∞, f(x, y)] are tangentially
transversal at (x, y, f(x, y)).

Proof. We are going to use our main result for the sets A := epi f and
B := S × (−∞, f(x, y)]. The ball covering sets are

MA :=
(
BX ,0, [−1, 1]

)
and MB := {(Ly, y, 0) : ∥y∥ ≤ 1},

i.e. MA − MB ⊃ εBX×Y×R, where ε =
1

1 + ∥L∥
. Indeed, let (x, y, r) ∈

εBX×Y×R be arbitrary. Then

(x, y, r) = (x− Ly,0, r)− (−Ly,−y, 0)

and (L(−y),−y, 0) ∈ MB, because ∥y∥ ≤ ε ≤ 1. Moreover, (x − Ly,0, r) ∈
MA because |r| ≤ ε ≤ 1 and

∥x− Ly∥ ≤ ∥x∥+ ∥L∥ · ∥y∥ ≤ (1 + ∥L∥)ε = 1.

The correcting sets are

UA :=
(
0, K ·BY , (1 +K)[−1, 1]

)
and UB := {(0,0, 0)} .

The Aubin condition implies

A ∩
(
(x, y, f(x, y)) + δ ·BX×Y×R

)
+ tMA ⊂ A+ tUA for every t ∈ [0, δ].

The fact that S is a vector space implies that

B ∩
(
(x, y, f(x, y)) + δ ·BX×Y×R

)
+ tMB ⊂ B + tUB for every t ∈ [0, δ].

Now we have to cover UA − UB = UA (with some accuracy η > 0) by the
difference of two uniform tangent sets to A and B, respectively. To this end,
we fix an arbitrary η > 0 (sufficiently small) and we consider the set

C :=
(
K · L

(
BY

)
,0, (1 +K)[−1, 1]

)
.
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The fact that L is a compact linear operator implies that C is totally bounded.
Now the density of T̂epi f (x, y, f(x, y))− S × (−∞, 0] implies the existence of
a finite η-net for C consisting of elements of this dense difference. Therefore
there exist finite sets F ⊂ T̂epi f (x, y, f(x, y)) and G ⊂ S× (−∞, 0] such that

(F −G) + ηBX×Y×R ⊃ C .

Let (0, y, r) be an arbitrary element of UA. Then

(0, y, r) = (Ly, y, 0) + (−Ly,0, r) = (−Ly,0, r)− (−Ly,−y, 0) .

Therefore

UA ⊂ C −
(
S ∩

(
K ·max{1, ∥L∥} ·BX×Y

)
, 0
)
.

Using above inclusion and the η-net for C we obtain that

UA ⊂ (F −G) + ηBX×Y×R −
(
S ∩

(
K ·max{1, ∥L∥} ·BX×Y

)
, 0
)
=

= F −
(
G+

(
S ∩

(
K ·max{1, ∥L∥} ·BX×Y

)
, 0
))

+ ηBX×Y×R .

It remains to notice thatDA := F is a uniform tangent set toA at (x, y, f(x, y))
(it is a finite subset of the respective Clarke tangent cone) and DB :=
G +

(
S ∩

(
K ·max{1, ∥L∥} ·BX×Y

)
, 0
)

is a uniform tangent set to B at
(x, y, f(x, y)). Therefore, the assumptions of Theorem 4.3.2 hold true, and
hence the sets A and B are tangentially transversal.

Now we turn to an extension of the notion of compactly epi-Lipschitz
(massive) sets (cf. Definition 4.2.10). The main difference with respect to
the classical one is that we speak about “massiveness” of two sets as a pair.

Definition 4.4.7. Let A and B be closed subsets of the Banach space X and
x0 ∈ A ∩ B. We say that A and B are jointly massive at x0 if there exist
ε > 0, δ̄ > 0, bounded sets MA ⊂ X, MB ⊂ X and a compact set K ⊂ X
such that:
(i) εBX ⊂MA −MB;
(ii) A ∩ (x0 + δ̄B) + tMA ⊂ A + tK and B ∩ (x0 + δ̄B) + tMB ⊂ B + tK
whenever t ∈ [0, δ̄].

Clearly if the sets A and B are closed, x0 ∈ A∩B and A is massive at x0,
then A and B are jointly massive at x0. Indeed, let A∩ (x0 + δ̄B) + tεBX ⊂
A + tK for some compact set K. Setting MA := εBX , MB := {0} and
K̃ := K ∪{0}, the above written definition holds true because K̃ is compact
as well.

The next assertion is a direct generalization of Theorem 4.3 of [9].
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Proposition 4.4.8. Let A and B be jointly massive at x0 and T̂A(x0) −
T̂B(x0) be dense in X. Then A and B are tangentially transversal at x0.

Proof. Let ε and δ̄ are the constants from (i) in Definition 4.4.7. We put
UA = UB = K. From (i) we see that for each q1 > 0 the assumption (i) of
Theorem 4.3.2 holds true. We fix arbitrary q1 > 0 and q2 > 0 with q1+q2 < 1.
Because K −K is compact, there is a finite εq2/2-net for K −K, i.e. a set
F = {z1, . . . , zn}, such that for any z ∈ K −K there is i ∈ {1, . . . , n} with
∥zi−z∥ ≤ εq2/2. Since T̂A(x0)− T̂B(x0) is dense in X, it is dense in F . Thus
for any i ∈ {1, . . . , n}, one finds dAi ∈ T̂A(x0) and dBi ∈ T̂B(x0), such that
∥dAi − dBi − zi∥ ≤ εq2/2. So for any z ∈ K −K, there is i ∈ {1, . . . , n}, such
that

∥dAi − dBi − z∥ ≤ ∥dAi − dBi − zi∥+ ∥zi − z∥ < εq2/2 + εq2/2 = εq2.

Therefore, if DA := {dAi }ni=1 and DB := {dBi }ni=1, then DA −DB is εq2-dense
in UA −UB. As the set DA (DB, respectively) is a finite subset of T̂A(x0) (of
T̂B(x0), respectively), it is a uniform tangent set to A (to B, respectively) at
x0. In particular, for η = ε(1− q1− q2)/3 > 0 there exits δ̃ such that for each
t ∈ [0, δ̃]

A ∩ (x0 + δ̃B) + tDA ⊂ A+ tηB and B ∩ (x0 + δ̃B) + tDB ⊂ B + tηB.

Now (i) and (ii) from Theorem 4.3.2 are fulfilled with ε and δ = min{δ̄, δ̃}.

The obtained sufficient conditions could be applied with Theorem 4.1.1,
to obtain Lagrange multipliers in different situations, as summarized in the
following

Theorem 4.4.9. Let X and Y be Banach spaces. We consider the optimiza-
tion problem

f(x, y) → min subject to (x, y) ∈ S ,

where f : X × Y −→ R ∪ {+∞} is lower semicontinuous, proper and S is a
closed subset of X ×Y . Let one of the following three conditions be satisfied:

1. X and Y are separable, S = {(Ly, y) | y ∈ Y }, where L is a continuous
linear operator and there exist δ̄ > 0 and K > 0, such that for all y ∈
ȳ+ δ̄B̄Y and all x′ ∈ x̄+ δ̄B̄X , x′′ ∈ x̄+ δ̄B̄X holds |f(x′, y)−f(x′′, y)| ≤
K∥x′ − x′′∥

2. epi f and S × (−∞, f(x̄, ȳ)] are jointly massive at (x̄, ȳ, f(x̄, ȳ)).
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3. S = {(Ly, y) | y ∈ Y }, where L is a compact linear operator and f
satisfies the Aubin condition at (x̄, ȳ).

If 1. or 3. holds, then there exists a triple (ξ, η, ζ) ∈ X∗ × Y ∗ × R such that

(i) (ξ, η, ζ) ̸= (0,0, 0);

(ii) ζ ∈ {0, 1};

(iii) ⟨ξ, Ly⟩+ ⟨η, y⟩ = 0 for every y ∈ Y ;

(iv) ⟨ξ, u⟩+ ⟨η, v⟩+ ζs ≥ 0 for every (u, v, s) ∈ T̂epif (x, y, f(x, y)).

If 2. holds, then all of the above also hold for some triple (ξ, η, ζ) ∈ X∗ ×
Y ∗ × R, except for (iii) which is replaced by ⟨ξ, u⟩ + ⟨η, v⟩ ≤ 0 for every
(u, v) ∈ T̂S(x, y).

Proof. Denote for brevity A = epi f , B = S × (−∞, f(x̄, ȳ)] and z =
(x̄, ȳ, f(x̄, ȳ)). For any of the three additional conditions apply Theorem
4.1.1 and some of the obtained sufficient conditions for tangential transver-
sality.
Assume that alternative b) of Theorem 4.1.1 holds. Then T̂A(z) − T̂B(z) is
dense in X × Y × R.
If 1. holds, we arrive at the setting of Theorem 4.4.3, hence A and B are
tangentially transversal.
If 2. holds, we arrive at the setting of Corollary 4.4.8, hence A and B are
tangentially transversal.
If 3. holds, we arrive at the setting of Theorem 4.4.6, hence A and B are
tangentially transversal.
In any of the cases we obtain that A and B are tangentially transversal. This
contradicts the conclusion of alternative b). Thus alternative a) remains, and
consequently we have Lagrange multipliers.
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Chapter 5

On continuity of optimal value
map

5.1 Preliminaries
We will assume that Sval assumes only finite values. Throughout the chapter,
all the topological spaces involved will be metric spaces with the property
that every open ball is connected (clearly this is the case for normed vector
spaces). We will need the following

Lemma 5.1.1. Let X be a metric space, such that every open ball in it is
connected. Let A be a closed subset of X and x ∈ X \ A. Let c > 0 be such
that d(x,A) < c. Then there exists y ∈ ∂A such that d(x, y) < c.

Proof. Consider Bc(x). If Bc(x)∩∂A = ∅, then X \A∩Bc(x) and A∩Bc(x)
are two nonempty nonintersecting open sets, whose union is Bc(x). This is
a contradiction, since Bc(x) is connected.

Let (X, ρ) be a metric space. We denote Br(x) = {z | ρ(x, z) < r} and
B̄r(x) = {z | ρ(x, z) ≤ r}. For a subset A of X and ε > 0 we define

Aε =
⋃
x∈A

Bε(x) = {z ∈ X | ∃x ∈ A, ρ(z, x) < ε}.

We will consider set-valued maps with closed values only.
We introduce the two continuity (semi-continuity) notions considered in

this chapter.

Definition 5.1.2. Two notions of upper semicontinuity.
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• Topological upper semicontinuity (t-usc). F : X ⇒ Y is t-usc at x̄ ∈ X
if for any open U containing F (x̄), there exists an open neighbourhood
V of x̄ such that F (x) ⊆ U for all x ∈ V .

• Pompeiu-Hausdorff upper semicontinuity (h-usc). F : X ⇒ Y is h-usc
at x̄ ∈ X if for any ε > 0, there exists an open neighbourhood V of x̄
such that F (x) ⊆ F (x̄)ε for all x ∈ V .

Clearly t-usc implies h-usc. However, the reverse implication might not
hold, since in general there are open sets U containing F (x̄) which do not
contain a set of the form F (x̄)ε. However, both notions coincide when F (x̄)
is compact as observed in [2], [6], [27]. Now we state the corresponding
definitions of lower semicontinuity.

Definition 5.1.3. Two notions of lower semicontinuity.

• Topological lower semicontinuity (t-lsc). F : X ⇒ Y is t-lsc at x̄ ∈
X if for any open U such that U ∩ F (x̄) ̸= ∅, there exists an open
neighbourhood V of x̄ such that U ∩ F (x) ̸= ∅ for all x ∈ V .

• Pompeiu-Hausdorff lower semicontinuity (h-lsc). F : X ⇒ Y is h-lsc
at x̄ ∈ X if for any ε > 0, there exists an open neighbourhood V of x̄
such that F (x̄) ⊆ F (x)ε for all x ∈ V .

In general, h-lsc implies t-lsc, and they are equivalent when the value of
the reference point is compact. A mapping is t-continuous (h-continuous) if
it is both t-usc and t-lsc (h-usc and h-lsc).

There are a number of concepts of continuity of set-valued mappings that
are usually tied with corresponding concepts of convergence of sequences of
sets; among them the popular Kuratowski-Painleve continuity ([27]), based
on the notion of set convergence introduced by Painleve and elaborated by
Kuratowski. A good reference for convergence of sets is the survey by Sonntag
and Zalinescu [59].

5.2 The counterexample and a remedy
We begin with a counterexample to Theorem 1.0.4 if continuity is in the
Pompeiu-Hausdorff sense.

Counterexample 5.2.1. Let X = R, Y = R2. Consider

D(p) = {(x, y) ∈ R2 | y ≥ −|p|}
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and

g(x, y) =


0, y ≤ − 1

1+x2

(1 + x2)y + 1, − 1
1+x2 < y < 0

1, y ≥ 0

Then D is continuous at p̄ = 0, g is continuous on all of R2 (in the sense
of Pompeiu-Hausdorff), Sval (0) = 1, while for p ̸= 0, Sval (p) = 0.

Here is a picture of the graph of the function

It is evident, that the conclusion fails, because the function g is arbitrary
steep around ∂D(0). To circumvent this possibility, we introduce a "relaxed"
uniform continuity around ∂D(p̄).

According to the authors knowledge the following definition is new.

Definition 5.2.2. Let F : X ⇒ Y be a set-valued map and f : Y → R. We
say that the couple (F, f) satisfies the relaxed uniform continuity assumption
(RUCA) at x̄ if

(RUCA)

∣∣∣∣∣∣ then |f(y)− f(z)| < ε
if y ∈ ∂F (x̄) and z ∈ F (x) \ F (x̄) satisfy ρ(y, z) < δ,
for any ε > 0 there is δ > 0, such that for all x with ρ(x, x̄) < δ,
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Theorem 5.2.3. Assume that for some p̄ ∈ X, D is h-continuous at p̄ and
g is continuous on D(p̄). Assume moreover that the couple (D, g) satisfies
(RUCA) at p̄. Then Sval is continuous at p̄.

Proof. Upper semicontinuity. Let pk → p̄ and ε > 0. Take x ∈ D(p̄) such
that g(x) < Sval (p̄) + ε/2 (assuming Sval (p̄) > −∞). Since g is continuous
at x, then there exists δ > 0 such that for all y with ρ(y, x) < δ one has
|g(x) − g(y)| < ε/2. For large enough k, d(x,D(pk)) < δ due to h-lsc of D,
so that for all such k, there is some xk ∈ D(pk), such that ρ(x, xk) < δ. And
then

Sval (pk) ≤ g(xk) < g(x) + ε/2 < Sval (p̄) + ε.

Lower semicontinuity. Assume that lim inf
p→p̄

Sval (p) < Sval (p̄). Thus there

exists a sequence pk → p̄ and ε > 0, such that Sval (pk) < Sval (p̄) − 2ε. For
each k, consider xk ∈ D(pk) such that g(xk) ≤ Sval (pk)+ε. If for any of these
k, xk ∈ D(p̄), we readily have a contradiction, since then

g(xk) ≤ Sval (pk) + ε < Sval (p̄)− ε < Sval (p̄) = inf{g(x) | x ∈ D(p̄)}.

If xk /∈ D(p̄) for every k, then h-usc of D at p̄ and Lemma 5.1.1 imply that
for each k there exists x̃k ∈ ∂D(p̄), such that lim

k→∞
ρ(xk, x̃k) = 0. Applying

(RUCA) with ε we obtain that there exists δ > 0 such that for all x ∈
∂D(p̄) and y ∈ D(pk) \ D(p̄) for large enough k, with ρ(x, y) < δ one has
|g(x)−g(y)| < ε. Thus, for large enough k, |g(xk)−g(x̃k)| < ε. This, combined
with the choice of ε, gives us

g(x̃k) < g(xk) + ε ≤ Sval (pk) + 2ε < Sval (p̄) ,

which contradicts the definition of Sval.

It is easy to observe that the pair (D, g) from Counterexample 5.2.1 does
not satisfy (RUCA). From this theorem we obtain the following corollary,
which could also be derived as a special case of the theorem of Berge, since,
as noted, when D(p̄) is compact, h-continuity is equivalent to t-continuity.

Corollary 5.2.4. Let X be a complete metric space. Assume that for some
p̄ ∈ X, D is h-continuous at p̄, g is continuous on D(p̄) and D(p̄) is totally
bounded (bounded if X is finite dimensional normed vector space). Then Sval

is continuous at p̄.

Proof. When D(p̄) is totally bounded, it is compact (since closed by assump-
tion). Then (RUCA) is satisfied automatically.
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5.3 Involving the measure of noncompactness
We turn our attention next to the case of t-continuity of the feasibility map-
ping. As noted earlier, the following theorem follows from a result of Berdy-
shev [6] (and is essentially equivalent to it in the case of metric spaces).

Theorem 5.3.1. Assume that for some p̄ ∈ X, D is t-continuous at p̄ and
g is continuous on D(p̄). Then Sval is continuous at p̄.

We will present a proof of Theorem 5.3.1 at the end of the chapter.
Another result following from Berdyshev’s work is the following

Theorem 5.3.2. Assume that for some p̄ ∈ X, D is h-continuous at p̄ and
g is uniformly continuous on D(p̄). Then Sval is continuous at p̄.

Here is a proof along the lines of our results so far.

Proof ot Theorem 5.3.2. Clearly, uniform continuity of g implies (RUCA)
for the pair (D, g). Thus we may apply Theorem 5.2.3.

Recall that the ball measure of noncompactness is defined as follows

α(A) = inf{r > 0 | there exist finitely many balls of radius r which coverA}.

It is evident that A is totally bounded if and only if α(A) = 0.
The following lemma and the equivalence of (i) and (ii) in Proposition

5.3.4 are close to some observations in [24], [28], [53].

Lemma 5.3.3. Let A and {Ak}k≥1 be closed subsets of X. Assume that for
any open set U which contains A, there exists N ∈ N such that Ak ⊂ U for
any k > N . Then

lim
n→∞

α

(
∞⋃
k=n

Ak \ A

)
= 0. (5.1)

In particular, any sequence {an}n≥1 with an ∈ An \ A, has a convergent
subsequence.

Proof. For brevity denote Bn =
∞⋃
k=n

Ak \ A. Assume that (5.1) is vio-

lated. Clearly α (Bn) is decreasing, so there exists ε > 0 such that for
all n, α (Bn) > ε. Now we construct inductively a sequence {xn}n≥1 with
xn ∈ Bn and ρ(xn, xm) > ε for n ̸= m. Let x1 ∈ B1. Then there exists
x2 ∈ B2 with ρ(x2, x1) > ε. Indeed, if this was not true, then B̄ε(x1) would
be a finite ε cover of B2 - but this is impossible, since α(B2) > ε. Assume

60



that the first n elements of the sequence are constructed: that is we are given
x1, x2, . . . , xn, with xi ∈ Bi and ρ(xi, xj) > ε. Then there is xn+1 ∈ Bn+1 with

ρ(xn+1, xi) > ε for i = 1, 2, . . . , n. If this was not the case, then
n⋃

i=1

B̄ε(xi)

would be a finite ε cover of Bn+1 - contradiction as before. For n ∈ N,

xn /∈ A. Consider V :=
∞⋃
n=1

{xn}. Since ρ(xn, xm) > ε for n ̸= m, we see that

V is closed. Hence U := X \ V is open, contains A and for any N , there
exists n > N with An ̸⊆ U . This contradicts the assumed property for the
sequence An.

For the second part, we see that an ∈ Bd for n ≥ d. Since the measure of
noncompactness does not depend on finitely many elements of a set, we have

0 ≤ α({yn}n≥1) = α({yn}n≥d) ≤ α(Bd)
d→∞−−−→ 0.

Hence α({yn}n≥1) = 0.

Clearly (RUCA) for (F, f) at x̄ is a property depending on both the set-
valued map F and the real-valued function f . However, in some cases, strong
properties of only one of the objects ensures (RUCA) independently of the
other object. For example, if the function f is uniformly continuous on the
whole of Y , (RUCA) is satisfied independently of the properties of the set-
valued map F - i.e. for any map F . On the other hand, as in Corollary 5.2.4,
if F is h-usc at x̄ and F (x̄) is totally bounded, then (RUCA) is satisfied
for any function f which is continuous on F (x̄). The following Proposition
clarifies when such a situation is present. It shows that if F is h-usc at x̄,
then (RUCA) for (F, f) at x̄ holds for any function f continuous on F (x̄)
if and only if F is t-usc.

Proposition 5.3.4. Let F : X ⇒ Y and x̄ ∈ X. The following are equivalent

(i) F is t-usc at x̄;

(ii) F is h-usc at x̄ and for every ε > 0 there exists an open neighbourhood
V of x̄ such that

α

(⋃
x∈V

F (x) \ F (x̄)

)
< ε;

(iii) F is h-usc at x̄ ∈ X and for any function f : Y → R which is continu-
ous on F (x̄), the couple (F, f) satisfies (RUCA) at x̄.

61



Proof. (ii) ⇒ (i). Assume on the contrary, that F is not t-usc at x̄. This
means that there exists an open set U which contains F (x̄) such that for

any n ∈ N there exists xn ∈ X with ρ(xn, x̄) <
1

n
and yn ∈ F (xn), such

that yn /∈ U . Consider A = F (x̄) and An := F (xn). Then, according to the
second part of (ii),

lim
n→∞

α

(
∞⋃
k=n

Ak \ A

)
= 0,

and, as in the proof of Lemma 5.3.3, since yn ∈ An \ A, we may extract a
convergent subsequence (without relabelling). Then there exists ŷ, such that
yn → ŷ. Since yn ∈ F (xn) where xn → x̄, F is h-usc at x̄ and F (x̄) is closed,
we have ŷ ∈ F (x̄). Thus yn → ŷ, yn /∈ U and ŷ ∈ U . But this is impossible,
since U is open.

(i) ⇒ (iii). Clearly F is h-usc and assume on the contrary, that for some
function f : Y → R which is continuous on F (x̄), (RUCA) is not satisfied for
(F, f). This means that there exists ε > 0 such that for all n ∈ N there exists

xn with ρ(xn, x̄) <
1

n
, yn ∈ ∂F (x̄), zn ∈ F (xn)\F (x̄), such that ρ(yn, zn) <

1

n
and |f(yn)− f(zn)| ≥ ε. Consider A = F (x̄) and An := F (xn). Since F is t-
usc, the conditions of Lemma 5.3.3 are satisfied and since zn ∈ An\A, we may

extract convergent subsequence (without relabelling). Since ρ(yn, zn) <
1

n
,

the sequence {yn}n≥1 is also convergent. Since ∂F (x̄) is closed, there exists

ŷ ∈ ∂F (x̄) such that yn → ŷ. As ρ(yn, zn) <
1

n
, zn → ŷ as well. Since

f is continuous at ŷ, there is δ > 0 such that for all v ∈ B̄δ(ŷ) one has
|f(ŷ)− f(v)| < ε

2
. Thus, for large enough n

ε ≤ |f(yn)− f(zn)| ≤ |f(ŷ)− f(yn)|+ |f(ŷ)− f(zn)| < ε,

contradiction.
(iii) ⇒ (ii). Assume that (ii) does not hold. Since F is h-usc, there

exists ε > 0 such that

α

 ⋃
x∈B1/n(x̄)

F (x) \ F (x̄)

 ≥ ε.

for any n. We set A = F (x̄) and An :=
⋃

x∈B1/n(x̄)

F (x). Then, as in the

proof of Lemma 5.3.3, we obtain a sequence {zn}n≥1 with zn ∈ An \ A and
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ρ(zn, zm) > ε for n ̸= m. Thus V :=
∞⋃
n=1

{zn} is a closed set, disjoint from

A (which is also closed). According to Urysohn’s lemma, there exists a
continuous function g : Y → R such that g|A = 1, g|V = 0. Now we apply
(RUCA) for the couple (F, g) at x̄ with ε = 1/2. Then there exists δ > 0,
such that for all x with ρ(x, x̄) < δ, y ∈ ∂F (x̄) and z ∈ F (x) \ F (x̄), such
that ρ(y, z) < δ, holds |g(y)− g(z)| < 1/2. By the construction of zn, we can
find xn ∈ B1/n(x̄) such that zn ∈ F (xn). As F is h-usc at x̄, d(zn, F (x̄)) → 0.
Thus for large enough n, d(zn, F (x̄)) < δ. Then, according to Lemma 5.1.1,
there exists yn ∈ ∂F (x̄) with ρ(yn, zn) < δ. It remains to take n such that
1

n
< δ (so that ρ(xn, x̄) < δ). Then the conditions in (RUCA) are satisfied

for x = xn, y = yn, z = zn. However g(yn) − g(zn) = 1 − 0 > 1/2 -
contradiction.

If Y is finite dimensional normed vector space, then there exists an open
neighbourhood V of x̄ such that

α

(⋃
x∈V

F (x) \ F (x̄)

)
= 0.

This is due to the fact, that in finite-dimensional spaces, the measure of
noncompactness attains only two values - 0 and +∞. However, in infinite
dimensions, we cannot hope for a result of the form "there exists an open
neighbourhood V of x̄ such that α(F (x) \F (x̄)) = 0 for all x ∈ V " as shown
by the following

Example 5.3.5. Let F : R ⇒ Y , where Y is infinite dimensional normed
vector space, be defined by F (t) = B̄|t|(0). Then F is t-usc at 0, but F (t) \
F (0) = B̄|t|(0) \ {0} is not totally bounded for any t ̸= 0.

Proof ot Theorem 5.3.1. Since (i) ⇒ (iii) in Proposition 5.3.4, we may apply
Theorem 5.2.3.
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Chapter 6

Conclusion

6.1 Main contributions
These are the main accomplishments in the thesis due to the author:

1. A general sufficient condition for tangential transversality is obtained.
It is shown that it has as special cases some known sufficient conditions
for tangential transversality

2. The general condition for tangential transversality is applied to derive
tangential transversality of the feasible set of a minimization problem
and the epigraph of the function in interest, at a given reference point.
More specifically, three different scenarios are considered: the function
satisfies Lipschitz condition with respect to the first variable, uniformly
in the second, the feasible set is the graph of a continuous linear op-
erator, and there exists a uniform tangent set generating the Clarke
tangent cone to the epigraph at the reference point; The function sat-
isfies the Aubin condition at the reference point and the feasible set is
the graph of a compact linear operator; The graph and the feasible set
are jointly massive at the referrence point. In each of the three cases,
we used the obtained tangential transversality to derive a Lagrange
multiplier rule if the reference point is a solution to the minimization
problem.

3. Characterization of subtransversality, transversality and intrinsic transver-
sality are obtained in the spirit of the original definition of tangential
transversality, i.e. primal space characterizations. The question of the
relation between all these notions is fully answered. A characteriza-
tion of transversality in terms of ”translated“ tangential transversality
is derived.
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4. Extension of intrinsic transversality to infinite-dimensional spaces is
proposed. It is shown to be implied by a previously proposed extension
([61]), and is proved that both coincide in the case of Hilbert spaces.

5. It is clearly stated and proved that transversality and subtransversal-
ity could be used as a characterization of metric regularity and metric
subregularity. This is later used to obtain new proofs of the well-known
primal space characterizations of the regularity concepts. We use se-
quential primal space characterization of metric regularity to provide
new proof of the characterization of regularity via the first order vari-
ation and via the graphical derivative.

6. The optimal value map associated with a minimization problem whose
feasible set depends on a parameter is considered. It is provided a coun-
terexample to a probable interpretation of a result concerning the conti-
nuity of such map. We propose an additional assumption (RUCA) un-
der which we could prove continuity. We go on to show that (RUCA)
is in some sense necessary to obtain continuity of the map: (RUCA)
is satisfied for all functions in interest if and only if the multivalued
map which defines the feasible set is topologically continuous.

6.2 Publications related to the thesis
1. Apostolov, S.; Krastanov, M.; Ribarska, N. (2020) ”Sufficient Condition

for Tangential Transversality“, Journal of Convex Analysis 27, 19-30

2. Apostolov, S. (2021) ”On continuity of optimal value map“, Comptes
rendus de l’Academie bulgare des Sciences, Vol 74, No4, pp 506-513

3. Apostolov, S.; Bivas, M.; Ribarska, N. (2022) ”Characterizations of
Some Transversality-Type Properties“. Set-Valued and Variational Anal-
ysis. https://doi.org/10.1007/s11228-022-00633-4

4. Apostolov, S.; Bivas, M. Characterizations of metric (sub)regularity via
(sub)transversality, submitted.

6.3 Approbation of the thesis
The results from the thesis have been presented in the following talks:

1. ”Sufficient conditions for tangential transversality“, 47th Winter School
in Abstract Analysis, Svratka, Czech Republic, 2019,
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https://www2.karlin.mff.cuni.cz/ lhota/ (based on a joint work with
Mikhail Krastanov and Nadezhda Ribarska)

2. ”Intrinsic transversality and tangential transversality“, 15-th Interna-
tional Workshop on Well-Posedness of Optimization Problems and Re-
lated Topics, June 28 - July 2, 2021, Borovets, Bulgaria,
http://www.math.bas.bg/ bio/WP21/ (based on a joint work with
Mira Bivas and Nadezhda Ribarska)

3. ”Intrinsic transversality and tangential transversality“, The 13th In-
ternational Conference on Large-Scale Scientific Computations LSSC
2021, June 7 - 11, 2021, Sozopol, Bulgaria (based on a joint work with
Mira Bivas and Nadezhda Ribarska)

4. ”Intrinsic transversality and tangential transversality“, Spring Scientific
Session, Faculty of Mathematics and Informatics, Sofia University, 27
March 2021 (based on a joint work with Mira Bivas and Nadezhda
Ribarska)

5. ”On continuity of optimal value map“, Spring Scientific Session, Faculty
of Mathematics and Informatics, Sofia University, 26 March 2022

6.4 Declaration of originality
The author declares that the thesis contains original results obtained by him
or in cooperation with his coauthors. The usage of results of other scientists
is accompanied by suitable citations.
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