
Sofia University
“St. Kliment Ohridski”

Faculty of
Mathematics and Informatics

Neural Networks for Facility Location Problems

Vladislav Haralampiev

A thesis presented for the partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Professional field: 4.6 Informatics and Computer Science

Doctoral program: “Computer Science” — Algorithms and Complexity

Scientific supervisor:

Assoc. Prof. PhD Minko Markov

Sofia, 2021

Neural Networks for Facility Location Problems

Vladislav Haralampiev

Abstract

Optimization problems from science and engineering are often modeled mathe-

matically as combinatorial optimization problems. The result is usually an NP -hard

problem and this is why heuristic methods are often used to find in reasonable time

a good solution.

A wide range of algorithms based on different phenomena have been developed

for approximately solving combinatorial optimization problems. Among them, we

can find a class of neural network methods. Such methods were studied at least from

the 1980s, but they never became a popular choice for solving optimization prob-

lems. And there are good reasons for this. Two main types of neural networks for

combinatorial optimization exist: Hopfield networks and self-organizing approaches

(in our opinion, it is better to call them “template approaches”). Hopfield networks

return solutions of poor quality. Furthermore, they have parameters for which it

is tricky to find good values. The self-organizing approaches to combinatorial op-

timization return good solutions, but they can be applied to a very limited set of

problems (in the literature, this is almost always the Traveling Salesman Prob-

lem). It is clear that with such drawbacks, the existing neural network approaches

can not become popular.

This work proposes a new neural network approach to combinatorial optimiza-

tion. The method is called competition-based neural networks (CBNNs) and can

be considered to be a combination of Hopfield networks and the self-organizing ap-

proaches. As is often done for neural networks, we can also consider an analogy

between the proposed method and the “real” world. Instead of the usual brain

analogy, CBNNs can be compared to the economy of an imaginary environment.

In this environment, there is a set of competing companies that are divided into

2

Neural Networks for Facility Location Problems

segments. Three rules drive the evolution of the system: the strongest survives, the

lucky ones survive, and as time progresses, the total amount of luck in the system

decreases. This is an extremely simplified model of our real economy, but the neu-

ral networks from machine learning are also an extremely simplified model of the

human brain. For solving a combinatorial optimization problem, we can set the

economy of this imaginary world of companies to be equal to the objective function

of the problem and let the system evolve according to its rules. If we believe that

our real economy is tuned to solve the problems that arise in practice, then the

imaginary system of companies should also maximize the economy of its imaginary

world and, as a result, maximize the value of the objective function of the modeled

combinatorial optimization problem.

Of course, there are more concrete reasons to say that competition-based neural

networks are able to maximize functions. It can be proven that CBNNs asymptot-

ically converge to an optimal solution of the modeled combinatorial optimization

problem. We additionally discuss a way of computing the speed of convergence.

The theoretical guarantees provided by CBNNs are either analogous or are stronger

than the guarantees of the other well-known metaheuristics for combinatorial opti-

mization.

Asymptotic convergence is a good thing to have but, in practice, we never want

to wait that long. To estimate the practical performance of CBNNs, the model is

applied to 6 different facility location problems. The field of facility location was

chosen because it offers a wide range problems that are at the same time natural and

easy to state but are hard to solve. In fact, we originally developed competition-

based neural networks for solving p-MiniSum, a classical facility location problem.

The results of the neural network approach are very promising. The method is

often able to optimally solve the input instance. When the returned solution is not

optimal, the difference, even in the worst case, is just several percent.

For historical reasons, there is a lot of skepticism about the field of neural net-

works for combinatorial optimization. When Hopfield networks were proposed in

the 1980s, this generated a lot of enthusiasm because the model is a way of obtain-

Chapter 0 Vladislav Haralampiev 3

Neural Networks for Facility Location Problems

ing a meaningful digital result from analog computations. People then started to

evaluate the potential of Hopfield networks and soon found out that the model has

many problems. This, in turn, generated pessimistic views about the potential of

neural networks for solving combinatorial optimization problems and created a “bad

name” for the field. We do not want to say that Hopfield networks were bad. In

fact, we believe that, as a model, they were an excellent initial step. But people

expected too much from them. The goal of this work is to demonstrate that the

idea of using massively parallel systems of simple computing units (that is, neural

networks) can result in good algorithms for combinatorial optimization and should

be considered along with the other metaheuristics. The proposed competition-based

neural networks are surely not perfect and may never become an established high

quality metaheuristic for solving combinatorial optimization problems. But, at least

for facility location, they demonstrate excellent results and can serve as an example

of a general neural network algorithm that is very competitive to the established

methods of solving combinatorial optimization problems.

4 Chapter 0 Vladislav Haralampiev

Acknowledgements

A lot of people helped me during my study. I want to express my sincere thanks

to Minko Markov, Georgi Georgiev and Dobromir Kralchev for their advice and

support throughout my PhD program. I am also very grateful to all the people from

Sofia University for making my study a pleasant and hassle-free experience, both

from scientific and administrative sides.

The Internet is an excellent source of information. It is not exactly clear who

to thank for the existence of such a tool because it is the result of the collaborative

effort of millions of people. But I was very lucky to do my research in a time when

there is an easy and open access to information.

Finally, I want to thank my parents for their support!

5

Declaration

I declare that this thesis is the result of my own original work that was done during

my PhD study at Sofia University between years 2017 and 2021.

6

Contents

1 Introduction 10

1.1 Preliminaries on algorithms and complexity. 10

1.2 Combinatorial optimization. Facility location problems. 13

1.3 Solution techniques . 19

1.4 Contributions of the thesis . 23

2 Metaheuristics for combinatorial optimization 25

2.1 Local search . 26

2.2 Overview of established metaheuristics 27

2.3 Neural networks for combinatorial optimization. 33

2.3.1 Hopfield networks . 35

2.3.2 Boltzmann machines . 45

2.3.3 Self-organizing approaches . 51

3 Competition-Based Neural Networks (CBNNs) 55

3.1 The problem solved by CBNNs . 57

3.2 The CBNN solver . 59

3.3 Remarks on the CBNN solver . 68

4 Analysis of CBNNs 72

4.1 Empirical properties as a single point method 73

4.2 Empirical properties as Markov chains 81

4.3 CBNNs with restarts . 89

4.4 Proof of asymptotic convergence . 91

7

Neural Networks for Facility Location Problems

4.5 Speed of convergence . 100

4.6 CBNNs in practice . 103

5 Applications of CBNNs 106

5.1 The p-MiniSum problem . 109

5.1.1 Mathematical definition and known results 109

5.1.2 CBNN model . 111

5.1.3 CBNN solver . 114

5.1.4 Test data . 115

5.1.5 Results . 115

5.1.6 Final notes . 117

5.2 The p-Hub problem . 119

5.2.1 Mathematical definition and known results 121

5.2.2 CBNN model . 122

5.2.3 Test data and results . 126

5.3 The p-Defense-Sum problem . 129

5.3.1 Mathematical definition and known results 129

5.3.2 CBNN model . 131

5.3.3 CBNN solver . 132

5.3.4 Test data . 132

5.3.5 Results . 133

5.4 The Maximal Covering Location Problem 134

5.4.1 Mathematical definition and known results 135

5.4.2 CBNN model . 137

5.4.3 Test data and results . 139

5.5 Flow Intercepting Facility Location 144

5.5.1 Mathematical definition and known results 145

5.5.2 CBNN model . 146

5.5.3 CBNN solver . 149

5.5.4 Test data and results . 149

5.6 The Assignment problem . 151

8 Chapter 0 Vladislav Haralampiev

Neural Networks for Facility Location Problems

5.6.1 Mathematical definition and known results 152

5.6.2 CBNN model . 153

5.6.3 CBNN solver . 154

5.6.4 Test data and results . 155

6 Conclusion 157

6.1 Future work . 160

A Markov chains 161

B Datasets based on geographic data 167

Chapter 0 Vladislav Haralampiev 9

Chapter 1

Introduction

This work describes a neural network approach to combinatorial optimization. More

specifically, the approach is designed for and tested on facility location problems.

We have chosen this class of problems because they are intuitive, easy to state, and

hard to solve. While the approach was designed for facility location, it can be viewed

as a general metaheuristic for combinatorial optimization and applied to many other

problem classes.

The first chapter of the thesis introduces combinatorial optimization and fa-

cility location problems. It also discusses possible ways of tackling a combina-

torial optimization problem. Chapter 2 continues the discussion by concentrat-

ing on well-known metaheuristics for combinatorial optimization, including neural

network methods. Chapter 3 introduces a new neural metaheuristic that we call

a competition-based neural network. The theoretical properties of the proposed

method are investigated in Chapter 4, where we show that it is guaranteed to asymp-

totically reach an optimal solution of the modeled problem. Chapter 5 investigates

the empirical properties of competition-based neural networks by applying the ap-

proach to six classical facility location problems.

1.1 Preliminaries on algorithms and complexity.

This section is a brief introduction to polynomial-time solvability and NP -hardness.

Complexity theory is large and is not the topic of this work, so we refer to [4, 36]

10

Neural Networks for Facility Location Problems

for more information.

Informally, a computational problem is an infinite set of input instances together

with a description of what needs to be output for each instance. For example, the

input may be a map of a city and two points A and B on the map. The problem

may ask us to output a solution that is an optimal path from A to B. What is

meant by optimal is specified by the problem: maybe a shortest path, or a fastest

path, or something else. An algorithm is a fixed finite set of instructions. The set

of instructions can be executed on a given input of a problem to produce in a finite

number of steps an output. We can think of this as a program in C or any other

programming language. The program reads its input from a given file and outputs

a solution to another file.

The thesis deals with algorithms that return good but suboptimal solutions. It

may not be immediately clear why one would agree to accept a suboptimal solution

instead of an optimal one. The reason for this is that some problems are hard and

for them finding the exact optimal solution becomes too expensive computationally.

In such situations, quickly finding a good suboptimal solution is a valuable result.

An important property of every algorithm is its time complexity: the number of

steps it performs as a function of the input size. An algorithm is polynomial-time

if there is a constant c such that for every instance of size s, the number of steps

the algorithm performs on the instance is bounded by sc. The constant c is the

same for all instances. There are several subtleties with the notion of polynomial-

time algorithms. First, the number of steps depends on the computational model.

Intuitively, different models allow different sets of instructions. A model X may

have more powerful instructions than model Y and simulating them in model Y

may require a lot of steps. Second, the size of an instance depends on how it

is encoded. As a simple example, we can compress the input and often this will

reduce its size. It turns out that for the reasonable computational models and input

encodings, the set of problems that are solvable by polynomial-time algorithms is the

same [58]. The exact number of steps may be different, but if there is a polynomial

algorithm for a problem in one of the models, then there is a polynomial algorithm

Chapter 1 Vladislav Haralampiev 11

Neural Networks for Facility Location Problems

in any other model. This allows us to omit the details of the input encoding and

the computational model.

Defining what is a hard problem is not straightforward. A major result in com-

puter science from the 1960s is the conjecture that there are problems of such com-

plexity that no polynomial-time algorithm exists for them. This conjecture is still

not proven, but it forms the basis of the currently accepted distinction between easy

and hard problems. Easy (tractable) problems are the ones for which there is a

polynomial algorithm. Hard (intractable) problems are the ones for which there is

no such algorithm.

When investigating the complexity of problems, it is convenient to deal with

decision problems: ones that have a single bit of output. They are also sometimes

called YES / NO problems because their result is often interpreted as YES or NO.

For example, does a given graph contain a Hamiltonian cycle, YES or NO? The

complexity class P consists of decision problems for which there is a polynomial

algorithm. These problems are considered to be easy. The class NP consists of

decision problems for which the instances with answer YES have a short “certificate”

of correctness that can be verified in polynomial time. To say in another way, there

is a polynomial-time algorithm that, when given an instance and its certificate,

verifies that the answer to the instance is YES. Consider the problem of detecting a

Hamiltonian cycle. Its input is a graph. A certificate can be the Hamiltonian cycle

itself (certificates are meaningful only for instances with answer YES). It is easy to

write a polynomial algorithm that, given a graph and a cycle, verifies that the cycle

is a Hamiltonian cycle in the graph. This way, the problem of deciding if a graph

has a Hamiltonian cycle is in the NP class. Notice that the idea of a certificate

is related to the object that we try to detect in the decision problem. Often, the

certificate is the object itself, but this is not a requirement. Certificates are not

unique and, as long as they are short enough, they can be an arbitrary useful thing.

The class NP is large. It is easy to show that P is a subset of NP and our

current understanding is that P is a proper subset. We want to stress that this is

a conjecture. While it is widely believed to be true, the result is still not proven.

12 Chapter 1 Vladislav Haralampiev

Neural Networks for Facility Location Problems

Remember that the class P consists of the easy problems. Intuitively, if we remove

these from NP , then we are left with hard problems. As a side note, there is a

whole hierarchy of complexity classes and NP is not the end of the hierarchy [4].

We say that a problem is NP -hard if every problem in NP can be reduced

to it in polynomial time. There are well-established techniques for creating NP -

hardness proofs [26] and such proofs are generally not very complicated. At least,

it is relatively easy to understand the proof once somebody invented it.

NP -hard problems appear very often in practice. Hundreds examples of such

problems can be found in [36, 55]. NP -hardness implies that the given problem is

at least as hard as any problem in NP . If we believe that there are problems in NP

for which no polynomial-time algorithm exists, then no polynomial-time algorithm

exists for NP -hard problems.

1.2 Combinatorial optimization. Facility location

problems.

Combinatorial Optimization Problems (COP) ask for an optimal object among a

finite set of objects [88]. The set of objects is sometimes allowed to be countably

infinite, but this work only deals with finite sets. Classical examples of COPs are

the Travelling Salesman Problem, the Maximum Matching Problem and

the Minimum Spanning Tree Problem. The formal definition of a COP is given

below and it follows the definition from [81].

Definition 1.2.1. (Combinatorial optimization problem) A combinatorial op-

timization problem is specified by its instances. An instance is a pair (F, obj). F

is called the set of feasible solutions and can be any finite set. obj, the objective

function, is a mapping from F to the real numbers. In case of a minimization prob-

lem, the goal of a COP is to find a point s ∈ F for which obj(s) ≤ obj(x) for

any point x ∈ F . If the problem is a maximization problem, then the condition

obj(s) ≤ obj(x) is substituted by obj(s) ≥ obj(x).

There are two varieties of COPs: for minimization and for maximization. By

Chapter 1 Vladislav Haralampiev 13

Neural Networks for Facility Location Problems

inverting the sign of the objective function, a maximization problem becomes a

minimization one. This is why, when dealing with algorithms for combinatorial

optimization, it is enough to consider only minimization problems.

The main topic of the thesis is a new neural network approach to combinatorial

optimization. The approach is evaluated on (and actually designed for) a subset

of all COPs that is called facility location problems. These problems form a large

class of practically important tasks that are at the same time intuitive and easy

to state but are difficult to solve. Facility location problems were first formally

introduced by Alfred Weber in 1909 [104]. He was interested in finding an optimal

location for a warehouse to minimize the total travel distance between it and a set of

customers. Up to the 1960s, the work on location theory consisted of many separate

applications that were not tied together by a unified framework. In the 1970s,

facility location problems attracted more theoretical interest and classes of common

location problems were identified. Solution methods were developed together with

results on the computational complexity of the problems.

The unifying idea behind facility location problems is that there are resources

that need to be spatially allocated. In general, we have to choose the location

of one or more facilities to serve a set of demands. The demands are distributed

in space. From then on, there are many varieties. The spatial topology can be,

for example, the Euclidean plane or a graph network. The objective function can

minimize the sum of distances, or minimize the maximum distance, or something

else. The number of facilities to locate may or may not be fixed beforehand. The

facilities may interact with each other, there may be competitors, and so on. To get

an intuition about the type of problems being solved, we list below several classical

facility location problems:

� p-Hub Problem. A mail delivery company needs to choose the locations

of p processing centers (hubs). Every customer is assigned to a single hub.

When customer A sends mail to B, the mail travels through the path A →

HA → HB → B (here HA and HB are the hubs of A and B). The reason

for such indirect deliveries is economy of scale — the hubs accumulate mail

14 Chapter 1 Vladislav Haralampiev

Neural Networks for Facility Location Problems

from all their customers and a single truck delivers all the combined traffic.

The expected amount of mail between every pair of customers is known be-

forehand. The goal of the problem is to route all traffic as cheaply as possible

by optimally selecting the locations of the hubs. More information about the

p-Hub Problem together with the results of the competition-based neural

network solver on a set of instances can be found in Section 5.2.

� p-DefenseSum Problem. There are p military facilities that need to be

located in a given area. The area may be captured by the enemy and we

do not want him to be able to establish stable control over the facilities. To

establish stable control, the enemy needs to build the necessary infrastructure.

This becomes costly if the facilities are far apart from each other. The goal of

the problem is to place the p facilities in such a way that the sum of distances

between all pairs of facilities is maximized. In Section 5.3 the competition-

based neural network solver is applied to a set of p-DefenseSum instances.

� MaximalCovering. A company needs to locate p cell phone towers. The

goal is to cover as many populated places as possible. An application of

competition-based neural networks to a set of MaximalCovering instances

is given in Section 5.4.

� MaxiSum. People in a given region produce waste that needs to be recycled

somewhere. But people do not want to live near such a recycling facility. This

is why it needs to be placed in such a way that the sum of distances from the

houses to the recycling facility is maximized.

� p-Center. We need to choose the locations of p centers for handling medical

emergencies. In such situations, the maximal time of response to an emergency

is crucial. This is why we want the maximal distance from a location to the

emergency center that services it to be as small as possible.

This work does not aim to provide a detailed review of facility location problems,

so we will not spend more time presenting the rich variety of such problems. A

Chapter 1 Vladislav Haralampiev 15

Neural Networks for Facility Location Problems

taxonomy and representative tasks from location research can be found in [10, 16,

27]. In Chapter 5, the neural network approach that is developed in this work is

applied to six classical facility location problems. There we give more details about

the problems, their known variants, and solution methods. Here we just want to

mention three points about facility location that we believe are important.

First, facility location problems are not always discrete. For example, the space

where we locate facilities can be the Euclidean plane, or we may be allowed to

place facilities along the edges of a geometric graph. Continuous problems are more

difficult to solve. There are some results for such facility location problems. As an

example, there is a method for the Weber Problem [12]. But generally people

try to avoid dealing with continuous spaces. The way to avoid them is to either

prove that the set of optimal solutions can be found among a hopefully small finite

subset of all possible locations, or to discretize / bucketize the solution space and

get an approximation of the optimal solution. In the literature, the details of the

discretization methods are often omitted and it is stated in the constraints of the

problem that facilities can be placed only on a given finite set of locations. In the

thesis we do the same and from now on it is assumed that facility location problems

are discrete.

The second point is that facility location problems are almost always NP -hard.

We know of only one nontrivial facility location problem on a general graph that

is not NP -hard, the Discrete Anti-P-Center Problem [62]. As discussed

earlier, it may happen that there is an efficient algorithm for NP -hard problems.

Researchers have been working for decades on such problems and no one was able

to find an efficient polynomial algorithm for even a single one of them. This does

not mean that such an algorithm does not exist. But, if our goal is just to solve a

single problem and we are not ready to invest a huge amount of effort, then it is

reasonable to take as an axiom that no polynomial algorithm exists that optimally

solves NP -hard problems. This gives a hint about the type of methods that are

necessary when dealing with facility location problems (see the next section).

The last point is that facility location problems often have two different param-

16 Chapter 1 Vladislav Haralampiev

Neural Networks for Facility Location Problems

eters: the number of facilities to locate and the size of the network / number of

clients. The complexity of facility location problems grows more quickly with the

number of facilities than with the size of the network. If the number of facilities is

a fixed constant, then facility location problems are usually not NP -hard because

iterating through all possible solutions runs in polynomial time. This is good news

because the number of facilities to locate is often much smaller than the size of the

network. The bad news is that, even for relatively small number of facilities, the

problem seems to inherit the “source of difficulty” of the general NP -hard problem.

The number of all possible solutions may by polynomial (something like n20), but

the time necessary to iterate through all of them is huge and it is not clear how to

improve such a “polynomial” algorithm.

When solving a real-world combinatorial optimization problem, it is important

to have a mathematical formulation of it. A strict mathematical formulation ensures

that we understand correctly what we are asked to do. The problems that appear

in practice are usually stated in human language. Their description is vague and

missing important details1. Someone needs to understand well the essence of the

problem and to create a simplified abstract model of it that only keeps the important

parts. This requires expert knowledge and the skills that are necessary for creating

mathematical formulations seem to be relatively separate from the skills that are

necessary for actually performing the optimization. The thesis deals with problems

from the point of having a strict mathematical definition.

Below we give the definition of p-MiniSum, one of the best-known facility loca-

tion problems. This problem is used as a working example throughout the thesis.

In human language, it sounds like this: find the optimal locations of p warehouses

to serve a set of demands. In the graph variant of the problem, the demands are

populated places that are connected by roads. The road network is represented by

a weighted undirected graph and the facilities can only be placed in the vertices of

the graph.

1In [93] the author describes several situations in which he needed to solve problems in practice.
It is interesting to read about his experience.

Chapter 1 Vladislav Haralampiev 17

Neural Networks for Facility Location Problems

Definition 1.2.2. (p-MiniSum Problem)

� Input

1. A weighted, undirected and connected graph G(V,E) with vertex set V

and edge set E. The edges have positive lengths and the shortest distance

in G between any pair of vertices u,w ∈ V is denoted as dist(u,w).

2. Number p of facilities to place.

� Solution

A subset of p vertices v1, ..., vp from V that minimize
∑

c∈V minvi∈v1...vpdist(c, vi).

An example p-MiniSum instance is shown in Figure 1.1. Assuming p is part of

the input, the problem in general graphs is well-known to be NP -hard (by reduction

from the Set Cover Problem [57]). More information about p-MiniSum is given

in Section 5.1, where we apply neural networks for solving it.

Figure 1.1: Example p-MiniSum instance with 4 warehouse facilities. The dots
(vertices) represent populated places and the 4 selected locations are marked with
an additional circular outline.

Solution methods for COPs can have specific requirements on how the definition

of a problem should look like. For example, Integer Programming [24] is a common

way of solving NP -hard problems. It requires the problem to be defined as a set of

integer variables that are bound by linear constraints and the function to optimize

should also be linear. We call modeling the step of converting a general mathematical

formulation of a problem to a formulation with specific requirements.

18 Chapter 1 Vladislav Haralampiev

Neural Networks for Facility Location Problems

Similarly to Integer Programming, the neural networks from this work also need

a modeling step. They require combinatorial optimization problems to be described

by a:

� Set of binary variables {x1, ..., xn}.

� Constraints among the variables (see Section 3.1 for the type of constraints).

� Objective function to minimize or maximize.

The solution space of the problem consists of all possible ways of assigning values

to the variables (2n ways for n variables). Each assignment is called a point. Some

points may not satisfy the constraints of the problem and thus do not represent

feasible solutions. The subspace of the solution space that consists of all points that

satisfy all constraints of the problem is called the feasible region. This is the same

as the set F of feasible solutions from Definition 1.2.1 of a COP. Of course, we seek

for an optimum among the set of feasible solutions.

1.3 Solution techniques

The section discusses some possible ways of solving optimization problems. The goal

is to see the place of neural networks among the available methods for combinatorial

optimization.

Optimization is a problem of navigating in the solution space and locating a

point with desirable properties. The problems we consider have a finite set of feasible

solutions. One way of finding the optimal answer for them is to iterate through every

feasible configuration and pick the one that is best. Backtracking is a well-known

way of performing such an iteration through the solutions space [93]. The method

is guaranteed to optimally solve the problem, but it can consume a huge amount of

resources even for relatively small instances.

For most problems, the size of the solution space is at least exponential in the

size of the input instance. As discussed in [93], modern processors have a clock

rate of several gigahertz, which generally means that we can iterate through several

Chapter 1 Vladislav Haralampiev 19

Neural Networks for Facility Location Problems

million solutions in a second, not much more. Several million is roughly the number

of permutations of 10 items, or the number of subsets of 22 objects. This gives an

idea about the limits of backtracking.

Backtracking demonstrates probably the simplest idea of how to perform the

search for an optimum: blindly go through every feasible solution while making

sure that you do not visit something twice and do not skip something. Develop-

ing better algorithms is related to finding regularities in the solution space. The

regularities allow us to efficiently navigate and discover a “path” to the optimum

without considering most of the feasible solutions.

A special case is if the problem we are working on can be solved in polynomial

time. Intuitively, there is a polynomial algorithm only if the solution space is highly

structured. For example, in [88] it is noted that the existence in the solution space

of polyhedral characterizations and min-max relations almost always means that a

polynomial algorithm can be developed. When solving a COP, it is usually true

that either a polynomial-time algorithm exists for it, or the problem is NP -hard

[88]. The thesis deals with the second case that seems to be more common. From

now on it is assumed that the problem we have is NP -hard and no polynomial

algorithm exists for it. As a side note, problems that can be solved in polynomial

time are also important and very interesting. The methods for solving them tend

to be quite different from the methods for NP -hard problems [26].

The strategy for tackling an NP -hard problem depends on the trade-offs that

are acceptable. Assume that an exact optimal solution is absolutely required. We

know that no polynomial algorithm exists for the problem. Very intuitively (and

not completely correct), this says that an exact algorithm for the problem can not

do something “smart” and is like an iteration through a large number of candidate

solutions. A very large fraction of the considered configurations are “useless” in

the sense that they are neither optimal nor on a “path” to an optimal solution. A

good algorithm will try to reduce the amount of “useless” configurations that are

considered. The two techniques below implement this idea.

20 Chapter 1 Vladislav Haralampiev

Neural Networks for Facility Location Problems

� Pruning.

A backtracking-like algorithm corresponds to a tree in the solution space.

The root of the tree contains the set of all possible solutions. The leaves are

singleton sets containing individual solutions. Each internal node corresponds

to fixing some part of the solution and this creates different branches in the

search tree. If at some point the algorithm detects that a whole branch can not

possibly contain an optimal solution, then it does not make sense to consider

this branch and the procedure can ignore it. This is the general idea of pruning

that can be implemented in different ways. For example, one classical design

paradigm is called Branch-And-Bound [23]. It uses various bounds to decide

that some branches can be discarded because they can not possibly contain a

solution that is better than the best solution found so far. Developing good

bounds is a hard problem-specific task, so this is not a low-investment way of

solving a problem. But it often allows solving instances of moderate size.

� Instance-specific algorithms.

An instance of a problem may have properties that simplify it. For example,

there may be symmetries. The input graph may be planar. The maximum

degree of a vertex may be small. We can develop a program specifically for

solving this single instance. The result is not exactly an algorithm because it

does not have an input that changes. But, since we can make use of simplifying

properties that do not hold for the general problem, the solution procedure

may be substantially faster. The above idea can be generalized to classes of

input instances that share the same simplifying properties. In such situations,

it may be cleaner to define a special case of the general problem and solve

this special case (it can even happen that the special case of the problem is

solvable in polynomial time).

If a good suboptimal solution is acceptable or the instance is just too large for

exact methods, then we switch to choosing an algorithm that returns approximately

optimal solutions. There are two main groups of such methods: approximation

algorithms and heuristics.

Chapter 1 Vladislav Haralampiev 21

Neural Networks for Facility Location Problems

The first group consists of polynomial-time approximation algorithms with prov-

able approximation bounds. This means that for such methods it can be proven

that, for example, the returned solution is at most two times worse than the opti-

mal one. An introduction to approximation algorithms can be found in [100]. The

development of such procedures resembles more the development of polynomial-time

algorithms.

From the perspective of facility location, up to 1997 no approximation algorithms

were described in the literature for this class of problems [68]. Today, approximation

algorithms are known for variants of several location theory problems like Unca-

pacitated Facility Location and p-Median. The main ideas of some of these

approaches are outlined in [68]. Approximation algorithms are interesting from the-

oretical perspective but, from our personal experience, they are not very flexible:

if the problem slightly changes, then the algorithm is no longer applicable. Addi-

tionally, their guarantees on the solution quality are often not strong enough. As

an example, an approximation algorithm may be guaranteed to return a solution

that is at most two times worse than the optimal one. In reality, other methods

may get us much closer to the optimum than this (in the experiments in Chapter 5,

the neural network finds solutions that are at most several percent worse than the

optimum).

The other group of methods for finding approximately optimal solutions consists

of heuristic approaches. These methods do not provide a guarantee of the quality

of the returned solution. Intuitively, here is how the justification of a heuristic al-

gorithm sounds like: we tried it on reasonably similar data and it worked well, so it

should work well. This is a bit exaggerated but gives an idea about the drawback of

heuristic approaches. Despite the described drawback, heuristics established them-

selves as a good solution technique and are an important “weapon” in the arsenal

of any practical algorist [93].

Common heuristic algorithms are either constructive methods or are based on

local search [8]. Constructive algorithms start from an empty partial solution and

repeatedly add components until a complete solution is created. They are often

22 Chapter 1 Vladislav Haralampiev

Neural Networks for Facility Location Problems

the fastest methods for finding an approximate solution, but the quality is typically

inferior to other approaches. Local search starts from a random initial configuration

and repeatedly tries to improve it by making small modifications. This turns out

to be a very useful idea for solving combinatorial optimization problems and is

discussed in more details in Section 2.1.

We need to be careful when developing heuristic algorithms. It is easy to come up

with heuristic ideas that look reasonable at first sight but result in terrible solution

quality. This is why it is good to base the algorithm on a framework that has proven

itself. Metaheuristics are such frameworks. They are not complete algorithms but

guidelines on how to develop an algorithm. The metaheuristic provides the skeleton

of the search procedure and determines how the procedure navigates towards a good

configuration in the solution space. Problem-specific work still needs to be done to

fill in the blanks in the procedure. Metaheuristics are discussed in more details in

the next chapter.

The neural network approaches to combinatorial optimization fall into the cat-

egory of metaheuristics. From the above discussion it can be seen that there are

methods that are easier to develop but are much slower, like backtracking. There are

methods that are faster and return better solutions, like instance-specific algorithms,

but their development is much more time-consuming and expensive. Metaheuristics

target a sweet spot between returning an optimal result and being fast to execute

and cheap to design. They are relatively quick, relatively easy to develop, and

relatively reliably return a relatively good solution.

1.4 Contributions of the thesis

The thesis investigates the potential of neural networks for solving combinatorial

optimization problems. It introduces a new neural network metaheuristic for com-

binatorial optimization that we call competition-based neural networks. The meta-

heuristic is described in the context of facility location problems. The proposed

approach is guaranteed to asymptotically reach an optimal solution of the modeled

problem and we show how to estimate the speed of convergence. The thesis also de-

Chapter 1 Vladislav Haralampiev 23

Neural Networks for Facility Location Problems

scribes the application of competition-based neural networks to six practical facility

location problems.

In summary, the main contributions of the thesis are:

� Analysis of the existing neural networks for combinatorial optimization. In-

sights into the reasons for the poor performance of these methods on facility

location problems.

� Introduction of competition-based neural networks, a new neural network

metaheuristic for combinatorial optimization, together with asymptotic con-

vergence results and speed of convergence results.

� Selection of six practical facility location problems for evaluating the empirical

performance of the introduced neural network method. Generation of more

than 500 realistic input instances of the chosen problems, together with the

optimal solutions of the instances.

� Demonstration of how to model the six selected facility location problems for

solving with competition-based neural networks.

� Extensive empirical evaluation of the proposed neural network metaheuristic

on the selected set of facility location problems.

The idea to use neural networks for combinatorial optimization is not something

new, it existed at least from the 1980s [48]. But neural networks never became a

popular tool for solving combinatorial optimization problems and there is a negative

opinion in the community about the entire concept [75, 82, 106]. Chapter 2 of

the thesis studies the existing neural networks for combinatorial optimization. We

agree that the existing approaches have problems and most probably will never be

competitive to other metaheuristics. But we do not agree that the whole concept of

neural networks for combinatorial optimization is flawed. The proposed competition-

based neural networks can serve as an argument because they are a neural network

method that, at least for facility location problems, is very competitive to other

metaheuristics, both as theoretical guarantees and as empirical performance. We

consider this proof-of-a-concept to be the most important contribution of the thesis.

24 Chapter 1 Vladislav Haralampiev

Chapter 2

Metaheuristics for combinatorial

optimization

The term metaheuristic was introduced by Glover in 1986 [37]. As the suffix meta

suggests, this concept is at a higher level of abstraction than the heuristic methods

for optimization. The term metaheuristic still does not seem to have a single univer-

sally accepted definition. Several definitions from different researchers are quoted

in [8]. The common idea is that metaheuristics are frameworks for developing algo-

rithms. The resulting algorithms are expected to return suboptimal but sufficiently

good solutions to optimization problems. As was mentioned at the end of the previ-

ous chapter, in the field of combinatorial optimization metaheuristics are positioned

as a low-investment way of getting solutions of good quality. This is often exactly

what is needed in practice when solving a combinatorial optimization problem, so

metaheuristics have become an important tool.

The chapter starts by introducing local search, an idea that is very useful for

quickly finding good solutions. We then discuss several established metaheuristics

for solving optimization problems. The chapter ends with an overview of the existing

neural network methods for combinatorial optimization.

25

Neural Networks for Facility Location Problems

2.1 Local search

Local search is an idea that can be found in many metaheuristics. It is not usu-

ally considered to be a separate metaheuristic. Hill climbing is a closely related

optimization technique and the two terms are sometimes used interchangeably [93].

Local search starts from some solution and repeatedly performs small modifications

that improve the quality of the solution. The procedure stops when no improvement

can be made with such modifications. This type of movement in the solution space

seems to be important and beneficial for quickly finding good answers to optimiza-

tion problems that occur in practice.

Local search uses the notion of neighborhood structures in the solution space.

Definition 2.1.1. (neighborhood) Let S be the solution space. The neighborhood

function next : S → 2S assigns to every point s ∈ S a set of neighbors next(s) ∈ S.

Definition 2.1.2. (local minimum) Let S be the solution space and f be the

objective function of a given problem. The point s ∈ S is a local minimum if for

every s′ ∈ next(s) f(s) ≤ f(s′).

The neighborhood structures capture the intuition of making small modifications

to the current solution. By repeatedly moving to a better neighbor of the current

configuration, local search eventually reaches a local minimum. This process is

shown in Algorithm 1.

Algorithm 1: Local search that minimizes the objective function F .

1 sol← initial random solution
2 while True do
3 candidate← argmin{F (x) | x ∈ next(sol)}
4 if F (candidate) < F (sol) then
5 sol← candidate
6 else
7 break

8 end

Defining a good neighborhood for local search is a problem-specific task and it

can significantly affect the quality of the final solution. A bad neighborhood choice

can create many poor local minima or plateau regions that artificially increase the

26 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

complexity of the problem. The size of the neighborhood is important for the time

complexity of local search approaches. Indeed, the neighborhood of a point can

be chosen to be the whole solution space. Then local search is guaranteed to find

a global minimum of the objective function, but it will be nothing more than an

iteration through the set of all possible solutions. Usually very small (constant size)

neighborhoods are used.

In the thesis we often say that an algorithm somehow moves in the solution

space. This can cause confusion and we want to clarify the terms that are used

to describe the movement. The solution space consists of points. What is a point

depends on the problem and is often a concrete assignment of values to the variables

of the problem. Once a neighborhood structure is defined in the solution space then

we can talk about neighbors of a given point. Local search and methods related to

it start from some point and repeatedly move to a neighbor. This creates a chain

of transitions that is called a trajectory. The movement consists of proposing a

candidate that is a neighbor of the current point and transitioning to it if some

algorithm-specific condition is satisfied. This step is sometimes called accepting /

rejecting the candidate. Local search is a simple method that accepts the new point

if the value of the objective function for it is better than the value for the current

point.

The quality of the solution that local search finds highly depends on the initial

random configuration. Because of this, the method is often modified to increase the

likelihood of reaching a good solution. The modification can be problem-specific but

usually a well-known framework (a metaheuristic) is used.

2.2 Overview of established metaheuristics

This section gives a brief overview of some established metaheuristics. While the

methods are quite different, we can still see some common ideas that apparently

work well for a wide range of problems. Neural metaheuristics are omitted in the

list below and are discussed in greater detail in the next section.

Chapter 2 Vladislav Haralampiev 27

Neural Networks for Facility Location Problems

� Repeated local search

The idea is to repeatedly run local searches starting from different randomly

generated points. This is probably the most basic of the trajectory methods

(methods that operate on a single solution at a time). Local minima define

basins of attraction in the solution space. A basin on attraction is a region of

points from which local search reaches the same local minimum. By randomly

generating the starting point, we hope to explore enough such regions to obtain

a good solution.

� Simulated annealing (SA)

Simulated annealing was introduced in the paper [61]. The method extends

local search by allowing it to accept moves that decrease the quality of the

current solution. In this way, simulated annealing has an explicit strategy

for escaping from local minima. For a point s in the solution space local

search always transitions into a new point s′ ∈ next(s) that has a better value

of the objective function. If no such point exists, then local search stops.

Simulated annealing also selects a point s′ ∈ next(s) as a candidate for next

state. Let F denote the objective function that is minimized. As in local

search, if F (s′) < F (s), then we make s′ the new current solution. Otherwise,

we accept the worsening transition to s′ with probability that exponentially

decreases with the difference between F (s′) and F (s). There is also a positive

parameter T called temperature that scales the difference F (s′)− F (s). High

values of the parameter make high the probability of accepting even very

bad transitions. Values of T close to 0 allow only a small deterioration of the

value of the objective function and basically transform the algorithm into local

search. SA starts from a high temperature and gradually decreases it. In this

way, it gradually shifts from exploration to exploitation. The method is based

on an analogy with the thermal process of annealing substances in a heat bath

to obtain a low energy state. This is contrary to local search that corresponds

to quenching (instantaneously lowering the temperature in a heat bath).

28 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

� Tabu search

This metaheuristic introduced the idea of memory structures. It takes basic

local search and forces it to always move to the best next solution s′ in the

neighborhood of the current solution s, even if such a step makes the solution

worse. This is a type of exploration strategy but it results in short cycles in

the solution space and in reality does not perform meaningful exploration. For

this reason, tabu search introduces a tabu list that contains the most recently

visited points. When taking the neighborhood of the current solution, the

points from this list are excluded. If the list is long enough, then it should

break the cycling behavior. Currently, tabu search has become much more

advanced. The tabu list usually operates on the level of solution components

and not only on complete solutions. The length of the list changes dynamically

and there are other memory structures that implement long(er)-term memory.

Comparing the implementation of recent tabu search to simulated annealing

it is generally true that the tabu search code is “messier”, it contains a lot of

complex logic implementing the memory structures. More information about

the tabu search metaheuristic can be found in [38].

� GRASP

GRASP stands for Greedy Randomized Adaptive Search Procedure. Similarly

to repeated local search, it consists of multiple local search runs from differ-

ent starting points. The starting points are not completely random but are

generated by a randomized greedy algorithm. This algorithm iteratively adds

solution components to a partial solution. The “quality” of each component

is evaluated at every step of the greedy algorithm and a random component

is chosen to be added among the k best ones where k is a parameter of the

method. The hope is that the greedy algorithm samples the most promis-

ing regions of the solution space and that they represent different basins of

attraction. More information about GRASP can be found in [83].

� VNS

The idea of Variable Neighborhood Search (VNS) is that a local minimum

Chapter 2 Vladislav Haralampiev 29

Neural Networks for Facility Location Problems

for one neighborhood may not be a local minimum for another neighbor-

hood. By dynamically changing the neighborhood, we may be able to es-

cape from poor local minima. VNS uses a sequence of neighborhood functions

next1, next2, ..., nextk. Often, nexti is a subset of nexti+1 in the sense that

nexti(x) is a subset of nexti+1(x) for all points x. The metaheuristic performs

three steps in cycle: shaking, local search, and transition. In the shaking step,

a point s′ is chosen among nexti(s). Then a classic local search is performed

starting from s′. This local search is not related to the neighborhood sequence

and may even use a neighborhood not in it. If the local search reaches a

solution s′′ that is better than s, then s′′ becomes the current solution, the

neighborhood is reset to next1 and a new iteration starts. Otherwise, nexti is

substituted by nexti+1 and the process is repeated. More information about

the VNS metaheuristic can be found in [80].

� Guided local search

Another possible way of escaping from poor local minima is to dynamically

change the objective function. This is the main idea of Guided local search.

Of course, the objective function can not be a completely random function. It

needs to express the goals of the optimization problem being solved. Guided

local search takes the “cost” of the solution and adds to it weighted terms that

detect the presence of certain solution features. This features are problem-

specific and can be any properties that discriminate between solutions. As

the algorithm progresses, it changes the weights of the features in the hope of

escaping from poor local minima. More information about Guided local search

can be found in [102].

� Genetic algorithms

The metaheuristics described so far are called trajectory methods because

they operate on a single solution at a time. Genetic algorithms are population

methods. Instead of a single solution, they manage a set of solutions. Genetic

algorithms define a set of crossover and mutation operations. The crossover

operations take two (or more) “parent” solutions and produce new ones by

30 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

combining the features of the “parents”. The hope is to select the best features

from both “parents” and obtain a stronger solution (that is, a solution with

a smaller value of the objective function). Mutations operate over a single

solution and randomly modify some part of it. This serves to diversify the

population and mutations are also a form of self-adaptation (a way to make

the solution stronger). Genetic algorithms also perform a step of the type

“the strongest survives”. Either the weakest solutions (with the worst value

of the objective function) are discarded or the probability for weak solutions

to become “parents” is substantially decreased. The process that is described

above is inspired by the natural evolution of species. Genetic algorithms start

from a random population and let it develop according the described rules.

The best solution encountered during the process becomes the answer to the

optimization problem. More information about Genetic algorithms and their

properties can be found in the book [101].

� Ant colony optimization

Ant colony optimization was introduced in [28]. This metaheuristic, similarly

to Genetic algorithms, is a population method. Additionally, Ant colony op-

timization is not local search based but a constructive method (a solution is

produced by adding components to an initially empty solution). The meta-

heuristic is inspired by the way ants find best paths. Each solution component

has a dynamic heuristic evaluation of its quality. It also has a pheromone value

(pheromone is the substance that ants leave on a path when they walk on it).

This pheromone value expresses how often the component was used and how

good the obtained solutions, containing this component, were. A combination

of the heuristic evaluation of the component and the pheromone value defines

the probability of adding it to the solution that the “artificial ant” is building.

After all ants in the population complete their solutions, a pheromone update

is performed and a new iteration starts. The best solution obtained during

this process is taken as the final answer to the optimization problem.

All metaheuristics from the list above either return or are usually modified to

Chapter 2 Vladislav Haralampiev 31

Neural Networks for Facility Location Problems

return a local minimum of the objective function. Finding a local minimum is

relatively cheap and it is one thing we can expect from a good metaheuristic. The

quality of local minima can vary drastically and just returning the first one found

is not enough. Because of this, all metaheuristics struggle to escape from poor local

minima. This is done either by accepting worsening moves, or by using memory

structures, or by modifying neighbourhoods, or by applying some other idea. A

mechanism for escaping from poor local minima is an important property of a good

metaheuristic.

Another common idea is the use or randomization. As mentioned earlier, de-

veloping an exact efficient algorithm is often related to finding useful structures in

the solution space. Intuitively, if a metaheuristic is deterministic, then it defines a

relatively simple structure in the solution space. If the metaheuristic gives good so-

lutions, then this structure is useful and most probably an exact efficient algorithm

can be developed based on it. If we can not find such an efficient algorithm for the

considered problem, then we can not find a good deterministic metaheuristic either.

Another way to think about this is that during the execution of a metaheuristic

there are places where decisions need to be made. If we knew how to correctly make

these decisions, then the metaheuristic would have been an exact algorithm. We do

not know, so we make decisions at random. Randomization is a way of implicitly

dealing with complexities.

Finally, metaheuristics are strategies for traversing parts of the solution space

and aim to find a good balance between exploration of new regions and exploitation

(improvement) of the most promising solutions found (the exploration-exploitation

trade-off dilemma is often discussed in the multi-armed bandit problem and, in

general, in the field of reinforcement learning [97]). Just blindly trying new regions

is not enough because, for most problems, the solution space is complex, consisting

of a huge number of different basins of attraction, and hoping to blindly hit a

good region is a dead end. This is why good metaheuristics introduce bias in the

exploration. While they still make random moves and not always greedily prefer

the locally best option, the metaheuristics show preference towards good “solution

32 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

components”, either by recombining good solutions to produce new ones, or by

substantially decreasing the probability of bad moves, or by using some other idea.

This implicit preference allows the metaheuristics to find a good region without fully

exploring the solution space. But it also limits the set of problems to which the

corresponding method can be successfully applied. If the properties of the problem

being solved do not align with the implicit bias of the metaheuristic, then we can

not expect the method to magically find a good solution to the problem. To this

end, applying a metaheuristic vaguely resembles the “dark art” of tuning very deep

neural networks in machine learning where there are many hyperparameters whose

relationships are not fully understood but whose values highly affect the performance

of the model [71].

2.3 Neural networks for combinatorial optimiza-

tion.

Artificial neural networks are an attempt to produce machines with capabilities

that are similar to nervous systems of animals. It is believed that the essence of

natural nervous systems is “control through communication” [13]. These natural

systems are massive networks of simple interconnected cells and it seems that from

the cooperation of the cells emerges consciousness and complex behavior [51]. While

artificial neural networks are inspired by nature, we should be careful when making

biological analogies. As noted in [74], humans tend to compare the most advanced

machines of their time to the human brain. Historically brains were compared to

pneumatic machines (ancient times) and clocks (the Renaissance). More recently

they were compared to telegraph networks. Nowadays we can say that the brain

is similar to an artificial neural network, but it is not clear if this is a good (or

useful) model. Even if they are not a good model of the brain, artificial neural

networks emerged as a useful tool for solving many practical problems. In our

opinion, the most valuable conclusion from the biological analogy is that massively

parallel hierarchical systems of simple computing units are intelligent in the sense

Chapter 2 Vladislav Haralampiev 33

Neural Networks for Facility Location Problems

that they are able to solve problems. Here we will not go into the details of the

biological model of nervous systems. In recent years much progress has been made

in understanding how the brain works. Nowadays we know very well how individual

neurons function and we try to understand how ensembles of such neurons produce

complex behavior. A good introduction of the biological model of nervous systems

can be found in [85].

Artificial neural networks are often associated with machine learning. They

provide a robust and convenient framework for approximating functions. Much of

the recent progress in artificial intelligence is one way or another related to neural

networks. But the model itself is far from new. Ideas to use something similar to

neural networks existed from the beginning of the computer era. Back then, there

were not one but many competing definitions of computability [85]. Eventually, the

von Neumann model established itself as a winner, but the other models are still

present. Among them, for example, are cellular automata that, as a computing

model, are related to neural networks.

The neural networks for combinatorial optimization are different from the ones

for machine learning and classification. The goal of machine learning is essentially to

approximate a function. We have an “empirically” given function and the network

needs to “learn” it from examples. In combinatorial optimization we seek an optimal

structure. There is no notion of learning or training examples. In this context, it is

convenient to think about neural networks as machinery for optimization and not

as something that learns.

Existing neural network methods for solving combinatorial optimization prob-

lems are divided into two categories: Hopfield networks and self-organizing ap-

proaches. They are introduced in the following subsections. It should be mentioned

that both these methods are not popular for solving optimization problems. At least,

they are not as popular as neural networks in machine learning. There are good

reasons for this. As discussed later in the section, the original Hopfield networks

produce solutions of poor quality and thus can not compete with other metaheuris-

tics. Self-organizing approaches, on the other hand, produce good solutions, but can

34 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

only be applied to a very restricted set of problems.

2.3.1 Hopfield networks

One way to think about Hopfield Networks (HN) is that they are a special case

of Bidirectional Associative Memories (BAM). A good detailed description of both

models can be found in [85]. We start by introducing the BAM model that histori-

cally appeared after Hopfield networks.

The goal of a BAM and associative memories in general is to store a set of

vectors {(in1, out1), (in2, out2), ..., (ink, outk)}. When given a vector close enough to

ini, the associative memory should produce outi. Systems of this type are useful for

de-noising input vectors.

BAMs are fully connected bipartite graphs consisting of simple computing units.

The the left side of Figure 2.1 shows a BAM network and the right side shows one

of the computing units.

Figure 2.1: A small BAM network. On the left is the network itself with layers of
size 3 and 2. The right side shows one of the computing units, unit y2.

We denote the n units on the left side of a BAM as ~X = (x1, x2, ..., xn) and

the m units on the right side as ~Y = (y1, y2, ..., ym). The weight of the connection

between xi and yj is denoted as wij and the weights of all connections are written

in a single n x m matrix W . Each unit of a BAM has a value: either 1 or −1. The

unit can update its value. When performing an update, it computes the weighted

sum over its connections and sets its value to the sign of the sum. For example, for

unit yj this can be written as yj = sgn(
∑

i∈{1..n} xi · wij). It is assumed that the

sign function for 0 is undefined and in that case, the value of yj is not changed.

Initially, a BAM is fed from the left side with a vector ~X0. It computes the vector

Chapter 2 Vladislav Haralampiev 35

Neural Networks for Facility Location Problems

~Y0 on the right side as described in the previous paragraph. BAMs are synchronous

networks, so all units on the right side compute their values at the same time. The

vector ~Y0 can be written as sgn(~X0 ·W). After ~Y0 is computed, the units on the

left side compute their values. This operation can be written as ~X1 = sgn(W · ~Y0
T

).

The “passing” of values back and forth between the layers continues until a stable

state (~X, ~Y) is reached. The vector ~Y is taken as the final result of the network for

the input ~X0.

BAMs have learning algorithms that, given a set of input and output vectors,

try to memorize this set. For example, Hebbian learning can be used for training a

BAM. In Hebbian learning, the weight matrix W is set to the sum of the correlation

matrices of the vector pairs that need to be stored. The details of the procedure

are described in [85]. In the thesis, we are not interested in the learning capabilities

of BAMs but in the existence of stable states (~X, ~Y). For Hopfield networks, these

stable states are going to be the solutions of the modeled combinatorial optimization

problem.

The notion of an energy function is used for proving that a BAM network reaches

a stable state. The same energy function is central in the analysis of Hopfield

networks. The pair (~X, ~Y) is a stable state if ~Y = sgn(~X ·W). This happens if

~Y is close enough to ~X ·W . The scalar product between these two vectors can be

though of as a measure of closeness (if not taking into account the lengths of the

vectors, then the scalar product is the cosine of the angle between them). Following

this line of thought, the energy function is defined as a scalar product of ~X ·W and

~Y : E = −~x ·W ·~yT . The minus at the front is because it sounds more natural to say

that we minimize the energy. If the scalar product was not multiplied by −1, then

our goal of making ~X ·W and ~Y close to each other would mean that the energy

needs to be maximized.

The stable states of a BAM network correspond to local minima of the energy

function. The result is stated below.

Theorem 2.3.1. (Theorem 19 from Section 13.2 of [85]) A BAM with an arbitrary

weight matrix W reaches a stable state that corresponds to a local minimum of

36 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

the energy function in a finite number of iterations by using either synchronous or

asynchronous updates.

A proof of the theorem can be found in [85]. The essence is that every update

that changes the value of a unit decreases the energy function. This is simple to

show by subtracting the energy before and after the update. An important point is

that the network does not need to be synchronous. The result still holds even if the

units update their values in arbitrary order.

Now we introduce the Hopfield network model by describing how it can be derived

from a BAM. Assume that there is a BAM with layers {x1, ..., xn} and {y1, ..., yn}

of equal size. Lets glue together the two layers: x1 and y1 are merged, x2 and y2

are merged, and so on. The result is a fully connected graph with n vertices. The

weights of the edges in it are symmetric. From this graph we remove all edges from a

vertex to itself. This is necessary because the presence of such short feedback loops

interferes with the convergence properties of the model. The resulting graph is the

underlying structure of Hopfield networks.

Similarly to a BAM, a Hopfield network is fed with some initial vector ~X and the

computing units are left to update their values. Unlike BAMs, Hopfield networks are

asynchronous. Their computing units decide to update at random times and inde-

pendently from one another. The probability of two units updating simultaneously

is zero. Such asynchronous networks biologically are more realistic, but the assump-

tion of zero delay in computation and value updates is, of course, a non-realistic

simplification.

The computing units of a BAM use the sign function as nonlinearity and when

updating, unit xi sets its value to sgn(
∑

j∈{1..n}wij · yj). Hopfield networks use

the step function as nonlinearity. More specifically, unit xi sets its output to 1 iff∑
j∈{1..n}wij ·xj > σi where σi is a parameter of the unit. When we later discuss the

energy function of Hopfield networks, we will see that this is not a major difference.

A very small Hopfield network is shown in Figure 2.2. It has two computing

units, x1 and x2. Since the value of each unit is either 1 or −1, the network can be

in 4 different states. Assume the network is in state ~X = (1, 1). If unit x2 updates

Chapter 2 Vladislav Haralampiev 37

Neural Networks for Facility Location Problems

Figure 2.2: A small Hopfield network. The weight of the only edge is −1 and
σ1 = σ2 = 0.

itself, then it will compute x1 · −1 = 1 · −1 and compare this value to 0. It is less

than zero, so the unit sets its state to −1. If now x1 decides to update, it will

compare −1 · −1 to 0 and will keep its state 1. From then on it can be verified that

not changes will happen and the network will indefinitely stay in state (1,−1).

One additional modification is often applied to Hopfield networks when they are

used for solving combinatorial optimization problems. The values of the neurons of

BAMs are bipolar, 1 or −1. HNs use the values 1 and 0. The reason for BAMs

to use bipolar encoding is that they, as a memory, are better at storing orthogonal

or almost orthogonal vectors. Bipolar vectors have a higher probability of being

orthogonal than vectors composed of 0s and 1s. Hopfield networks for combinatorial

optimization do not care about orthogonal vectors but 0 and 1 are more easily

interpreted as OFF / ON when modeling problems. The operation of the individual

neurons and of the whole network does not significantly change because of switching

to 0/1 vectors. If neuron xi updates, it sets its value to 1 iff
∑

j wij · xj > σi.

As can be seen from the example network in Figure 2.2, Hopfield networks have

stable states. This is the property that makes them interesting for solving op-

timization problems. Remember that BAMs with asynchronous updates are also

guaranteed to reach a stable state (see Theorem 2.3.1). The proof that a Hopfield

network eventually reaches a stable state is very similar to the one for BAMs and

can be found in [85]. Again, an energy function is defined and it is shown that

every flip of the state of a unit decreases the energy. The energy function is actu-

ally the same as for BAMs. The only detail is that BAMs use the sign function,

while HNs use a step function. For modeling this we can notice that the expres-

sion
∑

j wij · xj > σi of a Hopfield network corresponds to (and has the same effect

as) sgn(
∑

j wij · xj + 1 · (−σi)). If we transform the vector ~X to ~X ′ by adding

an additional dimension that is constantly 1 and expand the weight matrix W to

38 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

W ′ with an additional row and column containing the −σi values, then we get the

sign function as nonlinearity. BAMs energy function that measures vector close-

ness becomes E = − ~X ′ · W ′ · ~X ′
T

. To work with the original weight matrix, we

can substitute X ′ and W ′ in the expression above by their definitions and obtain

E = − ~X ·W · ~XT + 2σi · xi. When simplifying the expression, we use the fact that

the variables xi are binary, so σi ·xi2 = σi ·xi. In most literature on HNs the energy

function is further divided by 2 and written as E = −1
2

∑
xi · xj · wij +

∑
xi · σi.

The idea to use Hopfield networks for solving combinatorial optimization prob-

lems was first described by Hopfield and Tank in the paper [48]. They apply the

method to the Traveling Salesman Problem and report very promising re-

sults. Moreover, they describe a hardware implementation of the network that uses

analogue computing units (neurons). This generated a lot of enthusiasm because

the method essentially describes an extremely effective way of delivering meaningful

digital result from analogue input. But the enthusiasm was not long and soon it be-

came clear that the approach has many problems. We will talk about the problems

a little bit later. First we want to write in pseudocode the Hopfield-Tank method for

solving optimization problems. Originally, the approach was described in terms of

equations of motion for the neurons (because it was designed to be implemented as

a chip). Here the approach is described in pseudocode for conventional computers.

A Hopfield network manages a set of n binary variables that correspond to com-

puting units or neurons. The first step is to express the objective function and the

constraints of the problem in a form that is compatible with the energy function E.

This may sound restrictive, but a lot of problems can be modeled in such a way. The

next step is to actually run the network until a stable state is reached. We already

described in text how the network operates. Algorithm 2 shows how this looks like

in pseudocode.

The whole algorithm is compact and straightforward. The neurons update asyn-

chronously and independently of one another. Since the probability of two neurons

updating at the same time is 0, on a conventional consequential computer we can

model the whole process by randomly selecting a neuron and calling its update

Chapter 2 Vladislav Haralampiev 39

Neural Networks for Facility Location Problems

Algorithm 2: Combinatorial optimization with a Hopfield network

1 Function Update(xi):
2 if

∑
xj · wij > σi then

3 xi ← 1
4 else if

∑
xj · wij < σi then

5 xi ← 0

6

7 while stable state is not reached do
8 // {x1, ..., xn} are the variables of the problem
9 i← UniformIntRand(1..n)

10 Update(xi)

11 end

procedure. In the update procedure we apply a step function and set xj to 1 iff∑
xj · wij > σi. Assuming E|xi=v is the value of the energy function with xi set to

v, the expression in the update procedure is actually (E|xi=0) − (E|xi=1). So, from

the two options for xi, the one that minimizes the energy is chosen.

Now we describe how to apply the method to solve the p-MiniSum Problem

introduced in Section 1.2, Definition 1.2.2. The input of the problem is a weighted

undirected graph G with vertex set V = {v1, ..., vm} and the number p of facilities

(warehouses) to place. There is a client in every vertex of the graph and the goal is

to find a set of p vertices where to locate the facilities so that the cost of servicing

the clients is minimized. The cost is defined as
∑

c∈V minvi∈v1...vpdist(c, vi). Figure

1.1 from Section 1.2 shows an example instance of the problem.

The idea of how to model p-MiniSum for solving with Hopfield networks is taken

from our paper [42]. In the problem, there are two different types of relations: which

facility a client uses and where a facility is located. The relations are modeled with

two groups of binary variables: CFij (client-facility relation) and FLjk (facility-

location relation). Variable CFij is 1 iff the client in vertex vi uses facility number

j. Variable FLjk is 1 iff facility number j is placed in vertex vk. Figure 2.3 illustrates

the proposed p-MiniSum model.

The p-MiniSum model has n = 2 · m · p variables. Each variable is natu-

rally mapped to a neuron of the Hopfield network. An assignment of values to the

variables represents a feasible solution to p-MiniSum if every client is serviced by

40 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

Figure 2.3: p-MiniSum model. The variables of the problem are actually the edges
in image (not all edges are shown). The edges on the left side represent the client-
facility relations and on the right — the facility-location relations. Solid edges have
value 1 and dashed edges have value 0. The path of solid edges in the image can
be interpreted as saying that the third client (house, left column) uses the second
facility (middle column) that is placed in the third location (right column).

exactly one facility and every facility is placed in exactly one location.

The objective function of p-MiniSum can be represented as:

∑
i,j,k

CFij · FLjk · dist(vi, vk)

Intuitively, the formula says that if the client in vertex vi uses facility j that is placed

in vertex vk, then the distance from vi to vk is added to the value of the objective

function. For points that are feasible solutions the described function exactly gives

the cost of servicing all clients.

The objective function
∑

i,j,k CFij · FLjk · dist(vi, vk) is a quadratic function

and is compatible with the notion of energy of a Hopfield network. What is left

is to model the feasibility constraints: every client needs to be mapped to exactly

one facility and every facility needs to be placed in exactly one location. The way

constraints are modeled in Hopfield networks is by adding penalty terms to the

objective function. For the constraint that every client i uses exactly one facility we

can add the penalty (1 −
∑

j∈{1..p}CFij)
2. The expression gets its minimum value

of 0 iff the constraint is satisfied. Similarly, for the facility-location relations we add

penalty terms of the form (1 −
∑

k∈{1..m}CFjk)
2. Notice that both expressions are

quadratic and are thus compatible with the energy function of a Hopfield network

(after opening the brackets, the constant 1 can be omitted; terms of the form CF 2
ij

can be simplified because all variables are binary, so CF 2
ij = CFij).

Chapter 2 Vladislav Haralampiev 41

Neural Networks for Facility Location Problems

The full HN-compatible objective function of p-MiniSum is written as:

∑
i,j,k

CFij · FLjk · dist(vi, vk)+

A ·
∑

i∈{1..m}

(1−
∑

j∈{1..p}

CFij)
2+

B ·
∑

j∈{1..p}

(1−
∑

k∈{1..m}

CFjk)
2

Here A and B are parameters that need to be specified. After opening the brackets

and simplifying, it can be seen that the expression is of the form of an energy function

E = −1
2

∑
xi · xj · wij +

∑
xi · σi. By equating the two expressions, the values of

wij and σi of the neurons are computed and we are ready to run the network. It

was already discussed that a Hopfield network finds a local minimum of the energy

E. So, what we get at the end is a local minimum of the function from the start

of this paragraph. If the constants A and B are well chosen, this local minimum

should give us a good solution to the p-MiniSum instance.

In theory all that looks good. But, sadly, in practice Hopfield networks are not

able to find high-quality solutions. Before discussing the reasons for this, we want

to stress the strong sides of the Hopfield-Tank approach. First, Hopfield networks

minimize a quadratic function and by using the right penalties, many problems can

be formulated in a HN-compatible way. Second, the approach is massively parallel

and asynchronous. This allows a very simple and efficient parallel implementation.

Third, Hopfield networks can be implemented in hardware. Moreover, they can

benefit from the development of optical computers and other specialized neural

network hardware that can speed them up by orders of magnitude. Discussion

about neural network hardware can be found in [85].

The main disadvantage of the Hopfield-Tank approach is that it does not produce

good solutions. This, of course, is a very deadly disadvantage. The quality of the

solutions that are returned by Hopfield networks is not competitive with the quality

of the solutions obtained using other metaheuristics. The problems of the Hopfield-

Tank approach are described in the paper [106] where the authors try to reproduce

42 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

the initial results of Hopfield and Tank. In the paper, the authors are not able to

reproduce such good results and their conclusion is that the HN approach does not

scale even for moderately-sized inputs. Not only Hopfield networks are not able

to find good solutions to the Travelling Salesman Problem, but they are not

even able to find feasible solutions. And the probability of finding a feasible solution

decreases with the size of the input.

We performed a number of experiments with Hopfield networks on p-MiniSum

instances based on the Bulgarian road network. The experiments are described

in the paper [42]. The results were also very discouraging. While our approach

to p-MiniSum was designed so that HNs eventually reach a feasible solution, the

returned solutions turned out to be not much better than just randomly generated

ones. Of course, it is possible that another model of p-MiniSum that gives better

solutions exists, but we believe that our results illustrate the main problems of the

Hopfield-Tank approach. Below a summary of the conclusions from the experiments

is presented.

First, the idea to model constraints with penalty terms seems to be very problem-

atic. This has also been noted in [106] for the Travelling Salesman Problem.

In the HN-compatible objective function of our p-MiniSum model there are two

parameters called A and B. The parameters scale (weight) the penalty terms and

are there to enforce feasibility of the final solution. Making the parameters large

guarantees that local minima of the energy represent feasible solutions. But large

values for A and B bias the energy function and the penalty terms start to dominate

over the real objective of p-MiniSum. So, intuitively, A and be B need to be as

close to 0 as possible but still large enough to guarantee that a feasible solution is

reached. In our experiments, we performed a type of a grid search over A and B to

push them as close to 0 as possible while still having the Hopfield network converge

to a feasible solution. In general, finding good values for the weighting parameters

of a Hopfield network is complex and instance-specific. Indeed, one of the research

directions in the field was to develop a method for choosing these parameters [54,

70]. We do not know of a robust general method for this. Also, we believe that if

Chapter 2 Vladislav Haralampiev 43

Neural Networks for Facility Location Problems

the number of parameters is kept constant, as is usually done, and the size of the

input is allowed to grow, then from one point onward it becomes impossible to find

parameters that provide reasonable balance between the objective of the original

problem and the feasibility constraints.

Second, a related problem of Hopfield networks is the shape of the search space.

HNs are essentially a local search method. They operate over binary variables and

use a single variable flip neighbourhood structure. A search space is defined by the

variables of the problem and the chosen neighbourhood. If there are many poor-

quality local minima or plateau regions, then local search performs badly. This is

exactly what penalty terms “contribute” to the search space. Even if the objective

function of the original optimization problem behaves well, when penalty terms are

added, they artificially create a huge number of poor local minima (intuitively, the

local minina roughly correspond to “every” possible solution). This is again the

same problem of correctly weighting the penalty terms. If we are too aggressive to

enforce feasibility, then we end up with a bad search space. In the other extreme, if

our penalties are too weak, then we end up with infeasible solutions.

Expanding on the comparison to local search, we know from the field of meta-

heuristics that by itself this method is not enough to obtain a high-quality solution.

A modern optimization method needs to incorporate some way of escaping from

poor local minima. Apart from the randomness in the order of neuron updates,

Hopfield networks are completely deterministic and do not have any of the features

of high-quality metaheuristics outlined at the end of Section 2.2. This is why it is

expected for Hopfield networks to not be able to compete in solution quality with

other metaheuristics. In fact, HNs were not designed for solving combinatorial opti-

mization problems. Hopfield and Tank noticed that they can be used for this, but,

originally, Hopfield networks were a model of a memory and not a machinery for

optimization.

Finally, a few notes about the original hardware implementation of Hopfield net-

works. The weights and parameters of the network are implemented with resistances

and the proposed chip is instance-specific. This is bad because we want hardware

44 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

that is able to solve general problems or at least a given class of problems. Creat-

ing a new chip for every instance does not sound realistic. Hopfield networks can

be implemented on devices like field-programmable gate arrays that allow the inte-

grated circuit to be reconfigured after manufacturing [96]. We also believe that if

Hopfield networks demonstrate good problem solving properties, then a better hard-

ware implementation for them is going to be developed. But for now, the hardware

implementation of HNs is more like a proof of a concept than something that can

be used in practice.

As a summary, Hopfield networks for combinatorial optimization have problems

and probably in their pure form will never be competitive to other metaheuristics.

But they drew attention to the fact that massively parallel networks of neurons

demonstrate spontaneous computational properties. As we will see later, combining

this idea with better ways to express constraints and with methods to escape from

local minima leads to a robust metaheuristic for facility location problems that is

very competitive to other approaches.

2.3.2 Boltzmann machines

As we saw in the previous section, one of the problems of Hopfield networks is

that they do not have a mechanism for escaping from local minima. Looking at

other metaheuristics for combinatorial optimization, we see that incorporating such

a mechanism means that randomness (noise) needs to be introduced in the operation

of the network. There are different places where noise can be introduced. Boltzmann

Machines (denoted BM) [46] introduce randomness to Hopfield networks at the point

where we decide the value of a variable based on the difference of the energy function

between the two possible values. Other possibilities exist. For example, Gauss

machines [2] introduce noise by providing to every neuron an external stochastic

input. The input obeys the Gauss distribution, which explains the name of the

model. This section describes BMs because they seem to be more popular and are

representative of the general idea.

Boltzmann machines have several usages. Here we introduce them from the

Chapter 2 Vladislav Haralampiev 45

Neural Networks for Facility Location Problems

perspective of solving combinatorial optimization problems. The mechanism used

by BMs for escaping from local minima is basically simulated annealing (see Sec-

tion 2.2). So they can be both considered to be stochastic Hopfield networks and

distributed implementation of simulated annealing.

Similarly to Hopfield networks, BMs operate over a complete undirected weighted

graph G(V,E). The vertices of the graph, called neurons or units, represent binary

variables and can have two states: 0 (OFF) and 1 (ON). Boltzmann machines can

also use bipolar encoding for the variables, but, in our opinion, binary encoding is

more natural for combinatorial optimization. Every edge (ui, uj) of the graph has

a connection strength (weight) cij = cji. Every vertex ui has a loop (ui, ui) with

weight cii.

On intuitive level, the goal of a BM is to reach consensus over the state of

the units. Consensus is measured by the function
∑

(ui,uj)∈E ui · uj · cij that the

Boltzmann machine tries to maximize (ui denotes both the vertex ui and the value

of the corresponding variable). Notice that in the context of Boltzmann machines we

say “consensus” but this in reality is a quadratic function analogous to the energy

function of Hopfield networks. We emphasize that the strengths cij can be both

positive and negative, which makes maximization hard.

As in Hopfield networks, every unit of a BM has a local update procedure for

its state. Assume unit ui wants to perform an update. The unit computes ∆C, the

difference in consensus if its state is flipped. It is easy to verify that the difference

in consensus can be written as:

∆C = (1− 2ui) · (
∑

uj · cij)

If ∆C > 0, the unit performs the state flip. Otherwise, the unit performs the state

flip with probability (1 + e
−∆C
T)−1. This acceptance criterion is directly taken from

the simulated annealing metaheuristic. T , the temperature, is a positive parame-

ter. It controls the acceptability of state flips that decrease the consensus. During

the operation of BMs, the value of T decreases, which makes deteriorating flips of

variables less and less probable.

46 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

Algorithm 3: Combinatorial optimization with Boltzmann machine

1 T ← initial temperature, a real positive number

2 α← temperature decrease coefficient, a real number between 0 and 1

3 STEPS ← steps per iteration, proportional to the number of neurons

4 ITERS ← number of iterations

5

6 Function Accept(∆):

7 if ∆ ≥ 0 then

8 return True

9 else

10 prob← 1

1+e
−∆
T

11 return UniformRealRand(0, 1) ≤ prob

12

13 Function Update(ui):

14 ∆← (1− 2ui) · (
∑
uj · cij)

15 if Accept(∆) then

16 ui = 1− ui

17

18 for iter ← 0 to ITERS do

19 for step← 0 to STEPS do

20 i← UniformIntRand(1..n) // n - number of neurons

21 Update(ui)

22 end

23 T ← T · α

24 end

Algorithm 3 shows one possible implementation of a Boltzmann machine for

solving combinatorial optimization problems. It is similar to the Hopfield networks

from Algorithm 2. The main difference is the usage of the randomized acceptance

criterion for state flips. The operation of a Boltzmann machine ends with a tem-

perature T that is close to 0. In this case, since the low temperature pushes the

Chapter 2 Vladislav Haralampiev 47

Neural Networks for Facility Location Problems

probability of deteriorating flips very close to 0, the BM behaves like a Hopfield net-

work. This means BMs stop in a local maximum of the consensus function. There

is a slight nuance that is usually ignored. The probability of deteriorating moves

goes to 0 but it never reaches 0. So BMs actually never settle in a single state. But,

in practice, we can ignore this and just stop the optimization after a certain number

of iterations.

For BMs it can be proven that they asymptotically reach a global maximum of the

consensus function (the proof is analogous to the one for simulated annealing [61]).

This is a strong result. It says that BMs, in probabilistic sense, can optimally solve

any problem that can be modeled in a way that is compatible with them, including

NP -hard problems. And sometimes this result produces more enthusiasm then it

should. The result says that, given enough time, BMs reach a global maximum with

high probability. But the time necessary for this is huge. Even the best of the known

bounds on the number of steps are larger than the size of the whole solution space.

In this time we can traverse the whole space and trivially compute the optimum. Of

course, the property of asymptotically reaching a global maximum is a desirable one

for any metaheuristic, but just this property does not mean that the metaheuristic

is good.

As with Hopfield networks, if we want to solve a combinatorial optimization

problem with BMs, we first need to model it in a BM-compatible way. For our

purposes, a Boltzmann machine manages a set of binary variables and approximately

finds the maximum of the consensus function. The first part of the modeling is to

represent the object that the combinatorial optimization problem asks for as a binary

vector. This binary vector naturally maps to the units of the Boltzmann machine.

The second part of the modeling is to specify the connections and their strengths.

Boltzmann machines maximize the consensus, so the value of this function needs to

be equal or directly related to the quality of the represented solution. Additionally,

for most models, not every binary vector corresponds to a valid solution. There is a

subset of these vectors that contains the feasible solutions and we must ensure that

the Boltzmann machine arrives at a feasible one. It is guaranteed that a BM finds

48 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

a local maximum of the consensus function, so the easiest way to ensure feasibility

is to make any local maximum a feasible solution. This can be achieved by adding

penalty terms to the consensus function.

The described framework is quite flexible and many combinatorial optimization

problems can be modeled in this way. Possible modelings of the classical Max Cut,

Independent Set and Graph Coloring problems can be found in [67]. The

authors solve instances of these problems using Boltzmann machines and obtain

very good results. In the end of this subsection, we briefly describe their model

of the Independent Set problem as an example of a successful application of

a BM to a combinatorial optimization problem. While Boltzmann machines are

better than Hopfield networks at maximizing a function, they suffer from the same

problem of using penalty terms to enforce feasibility constraints. The penalty terms

introduce bias in the consensus function and artificially increase the complexity of

the solution space. In such unfavorable situations, Boltzmann machines can hardly

improve on the results of Hopfield networks [85]. From the perspective of facility

location problems, the constraint to choose one option from many (one facility for

every client, for example) produces a difficult solution space. Penalty terms for this

constraint partition the space into many regions with poor local maxima from which

it is hard to escape.

To get an idea about the performance of Boltzmann machines on facility location

problems, we applied them to a set of realistic p-MiniSum instances based on the

Bulgarian road network. Our experiments are described in [42]. These instances are

actually the same ones that we used for evaluating Hopfield networks. The results of

BMs were very disappointing. They produced solutions that were just slightly better

than the ones produced by Hopfield networks, but BMs were significantly slower.

Our opinion is that Boltzmann machines are competitive to other metaheuristics

only if the problem being solved fits well in the consensus model. Once the need

to add penalty terms for enforcing feasibility emerges, the Boltzmann machines are

no longer competitive. Sadly, this most probably means that BMs are not a good

method for solving facility location problems.

Chapter 2 Vladislav Haralampiev 49

Neural Networks for Facility Location Problems

We finish this subsection with a classical problem that fits well in the consensus

model and, as a consequence, BMs perform very well on it.

Definition 2.3.1. (Independent Set Problem)

� Input

1. An undirected graph G.

� Solution

The size of the largest independent set of G. An independent set of a graph

is a subset of its vertices such that no two vertices in the subset are adjacent.

Theorem 2.3.2. The Independent Set Problem can be modeled for solving

with a Boltzmann Machine.

Proof. The construction below is a slight modification of the construction in [67].

Let G(V,E) be the input graph. For each vertex ui in G, we create a variable

xi in the Boltzmann machine. The value of xi is 1 iff vertex ui is taken in the

independent set. For every edge (ui, uj) ∈ E, the variables xi and xj are connected

and the connection strength is −2. Additionally, all loops (xi, xi) are added with

connection strength 1. This completes the construction.

To prove that the described construction represents a modeling of the Inde-

pendent Set Problem, it needs to be shown that local maxima of the consensus

function correspond to independent sets and that the value of the consensus function

is related to the size of the set.

For the first part, assume there is a local maximum of the consensus that does not

correspond to an independent set. This means that there are two vertices ui 6= uj

that are connected by an edge in G and for which xi = xj = 1. Setting xi to 0

decreases the consensus by 1 because of the loop at xi and increases it by at least 2

because of the connection between xi and xj. Overall, the consensus increases. This

is a contradiction with the current state being a local maximum of the consensus

function.

For the second part, we already showed that local maxima correspond to inde-

pendent sets. When the values of the variables of a Boltzmann machine represent an

50 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

independent set, the consensus function is equal to the size of the set because only

the terms corresponding to loops can be nonzero. By maximizing the consensus

function, the Boltzmann machine actually maximizes the size of the independent

set. It is worth mentioning that the intermediate states during the operation of the

Boltzmann machine may not be local maxima and so they do not necessary repre-

sent independent sets. For such states, the value of the consensus function is not

equal to the size of the represented set.

2.3.3 Self-organizing approaches

The neural network methods for combinatorial optimization that were described so

far are based on the Hopfield networks model. The self-organizing approach that

is presented in this section is based on a different idea. A better name for it may

be a “template approach” because the essence of the method is to take a template

of the solution and deform it so that it matches the instance being solved. In

the literature it was shown that self-organizing approaches produce better solutions

to the Travelling Salesman Problem than Hopfield networks [3, 32]. But

the drawback of these approaches is that they are not general enough and are not

applicable to most problems. We start by introducing self-organizing feature maps

and, more specifically, the elastic net method for combinatorial optimization. Then

we talk about the drawbacks of this class of methods.

Probably the best-known self-organizing neural network is the topology-preserving

map proposed by Kohonen [65, 66]. What the method does is to create a map of

the input space in a self-organizing way. The approach is inspired by the process of

mapping visual signals to regions of the human brain. By self-organizing it is meant

that the “correct” output is not known a priori and so no notion of distance to the

“correct” output can be defined. Topology-preserving maps produce tiling of the

input space into subregions and are not made for combinatorial optimization. But

the idea of a self-organizing process can be used for solving optimization problems.

The elastic net method [30] is an example of how to use such a process for solving

the Travelling Salesman Problem (TSP).

Chapter 2 Vladislav Haralampiev 51

Neural Networks for Facility Location Problems

In self-organizing feature maps we are given an input space that provides us

with vectors according to its probability distribution (the probability mass may

not be uniformly distributed). This space is complex and is not convenient for the

application that we have in mind. For example, maybe in a 3-dimensional space

there is a 2-dimensional surface with many curvatures and we want to move a robot

on this surface but can not analytically describe the surface. We need to simplify the

input space by approximately mapping another space that has desirable properties

to the input space.

For simplicity, assume that we are charting an n-dimensional space with a chain

of units. In the chain each unit has a left and right neighbor (with the exception of

the leftmost and the rightmost units). Every unit i has an associated n-dimentional

weight vector wi. The weight vectors are initially random and are adjusted during

the training process.

Once the network is trained, when an input vector x is provided, each unit

computes the Euclidean distance between its weight vector and x. The unit with the

smallest distance outputs 1 and all other units output 0. This way, each input vector

is associated with one unit which defines a tiling of the input space. Intuitively, the

map is trained in such a way that the neighborhood relation between the units

extends to the tiles of the input space.

The training is performed by an iterative procedure. It has two parameters: η

(learning rate) and neighborhood function φ from a pair of states to a non-negative

real number. The value φ(i, j) represents the strength of the connection between

units i and j. A popular choice is setting φ(i, j) = 1 iff |i − j| ≤ R for a chosen

radius R and 0 otherwise. The training procedure is described below:

1. Initialize the weight vectors wi to random values.

2. Select an input vector inp.

3. Find the unit k for which the Euclidean distance between wk and inp is mini-

mal.

4. For each unit i update wi = wi + η · φ(i, k) · (inp− wi).

52 Chapter 2 Vladislav Haralampiev

Neural Networks for Facility Location Problems

5. Modify η and φ according to the schedule. If the maximum number of itera-

tions has not been reached yet then go to step 2.

During the training there is a schedule that says how to gradually decrease the

learning rate η and the neighborhood function φ. Often both the radius of φ and

the strength of the connection are decreased. The goal of the decrease schedule is to

make the corrections smaller as time progresses so that the whole system can arrive

at a stable state at the end of the training.

On intuitive level, each vector of the input space pulls the closest unit from the

chain. When a unit is pulled, its neighbors are also pulled in the same direction

because of the neighborhood function. The effect is that the chain of units gets

positioned uniformly in the subspace defined by the input vectors. The properties

of Kohonen networks are still not completely understood. There are several proofs

of convergence of one-dimensional networks in one-dimensional space, but there is

no general proof of convergence for multidimensional networks [85].

As was said earlier, Kohonen networks do not perform combinatorial optimiza-

tion. The elastic net method is the best-known example of how to apply ideas from

Kohonen networks to combinatorial optimization problems (more specifically, to a

variant the TSP problem). Assume that n cities in the Euclidean plane are given.

The goal of the TSP is to find the shortest cycle that visits every city exactly once.

The elastic net method starts with a template of such a cycle: a ring of units. This

template is then elongated until it starts to pass sufficiently close to the input cities.

Similarly to Kohonen networks, the deformation is guided by two forces — cities

pull the units towards them and units pull their neighboring units. The first force is

responsible for mapping the template to the input cities and the second force makes

the resulting cycle short.

Lets denote by xi the coordinates of the i-th input city and by yj the coordinates

of the j-th unit on the ring. The optimization in the elastic net method is an iterative

process of changing the yj. The rule of change is written below.

∆yj = α
∑
i

wij(xi − yj) + βK(yj+1 + yj−1 − 2yj)

Chapter 2 Vladislav Haralampiev 53

Neural Networks for Facility Location Problems

The two terms in this sum correspond to the two forces (their relative importance is

determined by the α and β parameters). K is a length parameter that gradually de-

creases during the optimization. wij is a decreasing function of the distance between

xi and yj and expresses how strongly city i attracts unit j in the current configu-

ration. Both terms in the equation depend on distances between points and, as the

optimization progresses, larger distances are less and less favored. This somewhat

resembles the decrease of the temperature in simulated annealing. At the start of

the optimization each point on the ring is almost uniformly pulled by each city. As

time progresses, every city “specializes” on its section of the ring.

In [30] it is shown that the iterative process described above finds a local mini-

mum to an energy function for which global minima are optimal solutions. This is

the basis of the claim that the elastic net method finds good approximate solutions

to the TSP problem. [30] also contains experimental results showing that the elastic

net method indeed is able to find good solutions.

While the idea of the elastic net method is very interesting, for the method to

work it needs a template of the solution. Moreover, the template object needs to

be in the same space as the input objects of the problem. From the perspective of

facility location problems this is a serious drawback. While the elastic net method

is not limited to just cycles (it can map, for example, star graphs or any other

graph), defining a template for the solution of a facility location problem seems to

be complicated. Intuitively, we do not even know how many clients each facility

will service. If we can not define a template, we can not apply the method. This

limitation can be seen in the set of problems to which the elastic net method has

been applied. To the best of our knowledge, all applications in the literature are to

the TSP problem or some of its variants.

54 Chapter 2 Vladislav Haralampiev

Chapter 3

Competition-Based Neural

Networks (CBNNs)

This section introduces Competition-Based Neural Networks (CBNN), a method

that we originally developed for solving facility location problems [42]. As is usually

done for neural networks, the section starts with an analogy between the method

and the real world.

Instead of a human brain analogy we use a business analogy. There is a set of

companies that can be active (ON, 1 in binary encoding) or closed (OFF, 0). The

companies are partitioned into segments. Inside a segment the competition is severe

but there is no competition between companies from different segments. The whole

system is guided by three principles. First, the companies are selfish. They care only

about themselves and want to be ON (this is the goal of every company). Second,

the “law of the jungle” holds: in every segment only the strongest survives. This is

the essence of the competition. Every company wants to be ON, but eventually only

one company from every segment will be ON (in other words, only one company

from a segment survives). There are complex relationships between the companies,

including cross-segment relationships, so who is strongest depends on the current

global configuration. By configuration it is meant the state, ON or OFF, of the

companies. Company A may be stronger than company B in one configuration but

weaker in another. Third, there is luck (randomness) in the environment. Occa-

55

Neural Networks for Facility Location Problems

sionally it can happen that a weaker company is lucky and is able to successfully

compete with a stronger company and to keep its ON state. The probability of this

to happen decreases exponentially with the difference between the strengths of the

companies. Such “luck” can have consequences for the global configuration. It can

produce enough change to transform the previously weaker company into the current

leader in its segment and in this way to secure an ON state for it. We emphasize

that the described system has a complex behavior and its final state depends not

only on the properties of the companies but also on the initial state and the sequence

of (random) events that happen during the evolution of the system.

In addition to the three principles above, there is another mechanism in the envi-

ronment that is called temperature T (as in Simulated annealing). This temperature

controls the amount of “luck”. A large value means there is a lot of randomness

in the competition. We can think of it as introducing a new invention in the envi-

ronment. Initially, there is a lot of enthusiasm from the invention. Even a “small”

and weak company can be lucky enough to find a good application for it and this

increases the total amount of noise in the competition. Eventually, everyone learns

the best applications of the invention, and the noise because of it decreases.

The economy of this imaginary environment is a function of the states of the

companies. In the real world, competition makes the economy stronger. Addition-

ally, new inventions quickly push forward the economy. If we are able to represent

the objective of a combinatorial optimization problem as an economy of such an

imaginary world, we can leave the competing companies to push it up to a good

state (solution). Of course, the described environment is a very simplified model of

the real world, but artificial neural networks are also extremely simplified models of

the human brain.

To sum up, the idea of the method is to binary encode the variables of a given

combinatorial optimization problem as states (ON / OFF) of companies. Set the

economy to be equal to the value of the objective function. Then randomly initialize

the system of companies and set the temperature T to a high value. After this,

leave the companies to compete with one another according to the three described

56 Chapter 3 Vladislav Haralampiev

Neural Networks for Facility Location Problems

principles while slowly decreasing the temperature. It can be shown that after the

system is left for long enough to evolve according to its principles, it reaches a stable

state. This stable state (hopefully) represents an approximately optimal solution to

the combinatorial optimization problem.

The method can be expected to produce good solutions to real problems because

our society and economy are tuned to solve such problems. Of course, there are more

formal reasons than this to say that CBNNs can be expected to find solutions of high

quality. The next chapter is devoted to analyzing the properties of competition-

based neural networks. There we show that they asymptotically converge to a

global optimum and we discuss the speed of convergence. In the Chapter 5, we

apply competition-based neural networks to several facility location problems and

empirically demonstrate their excellent performance.

3.1 The problem solved by CBNNs

Competition-based neural networks operate over a set {x1, x2, ..., xt} of binary vari-

ables. The set of variables is partitioned into r non-empty subsets. In the business

analogy from the start of the section we called the subsets segments and from now on

we use the name groups for them. The goal of a competition-based neural network

is to minimize the value of an objective function F (x1, ..., xt). F can be an arbitrary

function. We say arbitrary but, as any other method, CBNNs have certain bias and

plugging a “badly behaving” function leads to worse solutions. When modeling a

given problem for solving with a CBNN, there may be many different possibilities

for defining the objective function. One reason for this is that competition-based

neural networks automatically enforce feasibility constraints. Over the infeasible

region of the solution space, the objective function can be defined any way we like.

Of course, we should define it reasonably to make it simpler for the network to find

a good solution. This is discussed further in Chapter 5 where the neural network

method is applied to several facility location problems. The general form of the

CBNN problem is formally stated below.

Chapter 3 Vladislav Haralampiev 57

Neural Networks for Facility Location Problems

Definition 3.1.1. (CBNN problem) Assume that the set {x1, ..., xt} of binary

variables is partitioned into subsets {G1, ..., Gr} that are called groups. The goal of

the CBNN problem is to minimize a given function F (x1, ..., xt) under the constraints

that
∑

xi∈Gj xi = 1 for every group Gj.

It is easy to verify that there are combinatorial optimization problems that can-

not be formulated as a CBNN problem. The problem is defined in a way that is

convenient for modeling facility location. The main idea of using competing com-

panies for performing optimization can solve a more general problem. This work

uses the problem above because it is enough for facility location and it simplifies the

analysis of the method.

The feasibility constraints of the CBNN problem are of the type
∑

xi∈Gj xi = 1

for every group Gj. These are the 1-of-k constraints (choose one option from k)

that were hard to model with Hopfield networks and Boltzmann machines. Such

constraints can be seen in all facility location problems we know of and competition-

based neural networks can naturally express them.

We finish the section by returning to the p-MiniSum facility location problem

from Section 1.2. When discussing Hopfield networks, we formulated p-MiniSum

as a problem over the binary variables CFij and FLjk. The problem can be written

as below (see Section 5.1):

Minimize:∑
i,j,k

CFij · FLjk · dist(vi, vk)

Subject to:

∀i ∈ {1..n}
∑

j∈{1..p}

CFij = 1

∀j ∈ {1..p}
∑

k∈{1..n}

FLjk = 1

This is a CBNN problem. It has two types of variables, but we can still call all

of them xi if we want without changing anything. For the group constraints, all

58 Chapter 3 Vladislav Haralampiev

Neural Networks for Facility Location Problems

CFij variables with the same i are placed in a single group. Likewise, all FLjk

variables with the same j go into one group. This partitions all variables into n+ p

groups. Looking at Figure 2.3, for every node, all outgoing edges define a group.

This guarantees that for every node, exactly one of its outgoing edges is selected to

be ON in the final solution.

3.2 The CBNN solver

We present a formal description of the neural network solver for the CBNN problem.

In fact, several slightly different variants of the solver are used in the thesis. The

section starts with a description of a variant of the solver that is called group-best.

This is the solver that is used most of the time in Chapter 5 where we solve several

practical facility location problems. The section continues with the description of

how to transform the group-best solver into a solver that we call group-average. The

difference between the two is very small. In the business analogy, the only change is

in the way we compute the strongest competitor for a company. The group-average

variant of the CBNN solver is the one that is used when proving convergence of

competition-based neural networks. Finally, several possible improvements of the

general CBNN solver are described. The goal of these modifications is to reduce the

runtime of the method and we sometimes apply them in Chapter 5 when solving

large facility location instances. All variants of the CBNN solver are very similar to

each other and essentially express the same idea.

According to the business analogy, the optimization process of a CBNN is a

simulation of the economy of an imaginary world of variables (companies) of the

problem. To that end, the group-best solver needs three main components: a way

to evaluate the strength of a variable, a competition mechanism, and a luck factor.

For a given optimization problem, we know its objective function F (x1, ..., xt) where

xi are the variables. We want this function to be our economy and it is clear that

the strength of a variable needs to somehow reflect its contribution to the objective

function. Assume we have two variables xi and xj from the same group. F [xi = 1](~x)

denotes value of the objective function F for the vector ~x in which all variables of

Chapter 3 Vladislav Haralampiev 59

Neural Networks for Facility Location Problems

the group of xi are set to zero except for xi that is set to 1. If xi and xj belong to

the same group and F [xi = 1](~x) < F [xj = 1](~x), it makes sense to say that the

variable xi is stronger than xj. This can be slightly unintuitive because xi is on the

left side of the less comparison. An explanation of why xi is stronger (better) is that

our goal is to minimize F and in the current configuration, setting xi to 1 makes

the value of F smaller. Remember that xi and xj are in the same group, so they

compete against each other and in the final solution only one of them can be in ON

state.

The above definition of strength glues together the mechanism of competing

companies and our goal of minimizing the objective function F . Notice that in

the definition of strength, whether xi is stronger than xj depends on the current

global configuration ~x (that is, on the states of the other companies). Algorithm 4

shows in pseudocode the general CBNN solver. So far, we have only introduced the

strength evaluation component that is represented by the function OnCost in the

pseudocode.

The second part of the neural network method is the competition mechanism.

In the pseudocode, it is represented by the Update function. This function has

two arguments: a variable xi and the current temperature T . The temperature is

necessary for the luck mechanism and is discussed later in the section. The variables

in the network are independent. When updating xi, we can check the states of the

other variables, but we can only change the state of xi. The update of xi starts with

the computation of the set of variables from its group that are in ON state. This set

is called active (line 15 in the pseudocode). Then the strongest among the active

variables is computed. It is denoted by best (line 21). For deciding which variable

is the strongest, we use the already described way of measuring variable strength

that is represented by the OnCost function. Finally, the competition mechanism

is implemented between lines 23 and 26: if the current variable xi is stronger than

best, then it is ON. Otherwise, it is OFF. The decision follows the simple “rule of the

jungle”. This concludes the description of the competition mechanism of group-best

CBNNs. The variant of the solver is called group-best because the current variable

60 Chapter 3 Vladislav Haralampiev

Neural Networks for Facility Location Problems

Algorithm 4: General CBNN solver

1 α← temperature decrease coefficient, a real number between 0 and 1
2 STEPS ← steps per iteration, proportional to the number of variables
3 ITERS ← number of iterations for the whole optimization
4

5 // Value of the objective function if only xi was ON in its group.
6 Function OnCost(~x, i):
7 return F [xi = 1](~x)
8

9 Function Accept(∆, T):
10 prob← 1

1+e
∆
T

11 return UniformRealRand(0, 1) ≤ prob

12

13 Function Update(xi, T):
14 G← group of xi
15 active← {xj ∈ G | i 6= j and xj = 1}
16

17 if active is empty then
18 xi ← 1
19 return

20

21 best← min({OnCost(~x, j) | xj ∈ active})
22 me← OnCost(~x, i)
23 if me < best then
24 new value← 1
25 else
26 new value← 0
27

28 if Accept(|best−me|, T) then
29 new value← 1− new value
30 xi ← new value

31

32 T ← initial temperature, a real positive number
33 ~x← random initial state
34 for iter ← 0 to ITERS do
35 for step← 0 to STEPS do
36 i← UniformIntRand(1..t) // t - number of variables
37 Update(xi, T)

38 end
39 T ← T · α
40 end

Chapter 3 Vladislav Haralampiev 61

Neural Networks for Facility Location Problems

is compared against the best variable in its group. There are other possibilities

for implementing the competition mechanism. For example, xi can be compared

against a random variable from the active set or against the average OnCost of the

variables. The second option is used in the group-average solver that we introduce

later.

One special case of the competition mechanism is handled between lines 17 and

19. For a variable xi, its set of competitors, denoted active in the pseudocode, can

be empty. If this happens, then there is no competitor to which to compare the

variable xi and the Update procedure simply sets the value of xi to 1 to satisfy

the corresponding group constraint. The described situation can happen for the

strongest variables in their corresponding groups during the late stages of the opti-

mization and it sounds reasonable to keep their ON state. Of course, such variables

can still be turned OFF with some probability later, when the states of the other

variables change. Another possibility for getting an empty active set is for this to

occur in the initial random solution. It does not matter much what we do in this

case and setting the value of xi to ON again is OK.

The last component is the luck factor. In the Update procedure, luck is applied

on lines 28-29. At this point, the value of xi that follows the “rule of the jungle”

is already known and what the luck factor does is to flip this value with some

probability. In the business analogy, “being lucky” means that the company-variable

is still able to compete and keep its ON state despite being weaker. The other side of

the luck factor is that the strongest company may with some probability transition

from ON to OFF state. The probability of the flip depends on the difference between

the strengths of xi and best (the strongest variable among the active variables). It

also depends on the temperature T , a real positive number. The formula for the

probability is (1 + e
∆
T)−1 and is implemented by the function Accept(∆, T). Here

∆ is the absolute value of the difference of strengths of xi and best. The swap

probability exponentially decreases with the increase of ∆. This makes sense: if

xi and best are very close in quality, then it sounds natural to try to substitute

best by xi in an effort to improve the global solution. On the other hand, if xi is

62 Chapter 3 Vladislav Haralampiev

Neural Networks for Facility Location Problems

much worse than best, then most probably it does not make sense to try to turn ON

xi instead of best. The swap probability also depends of the temperature T that

scales ∆. The temperature is very similar to the one in Simulated annealing and

is a way of controlling the balance between exploration and exploitation. When it

is high, even swaps with large value of ∆ are accepted with probability around 0.5

and the method is heavily biased towards exploration. Temperatures close to 0 force

the algorithm to reject swaps with very small ∆ and the algorithm becomes biased

towards exploitation and local search.

The main loop of the CBNN solver is between lines 32 and 40 of Algorithm 4.

We call the inner loop between lines 35 and 38 an epoch. It consists of a sequence of

calls to the Update procedure. Every call executes the competition mechanism for

a single variable that is chosen uniformly at random among all variables. During

an epoch, for all calls to Update the temperature T is kept the same. STEPS is

a hyperparameter that denotes the number of calls to Update that happen in an

epoch. It sounds reasonable for STEPS to be at least several times larger than the

number of variables. Such a value should guarantee that with high probability every

variable is updated at least once for every temperature T . The outer loop of the

CBNN solver is on line 34. What it does is to perform ITERS epochs with different

temperatures. For every subsequent epoch, the temperature is gradually decreased

by the rule T ← T · α. The first epoch is the one with the highest temperature and

the last epoch is the one with the lowest temperature. It was already mentioned

that by decreasing T , the method shifts from exploration to exploitation. So the

main loop gradually directs the CBNN solver from almost random exploration of

the search space to local search in the most promising region found so far. The main

loop requires several additional parameters: the number of different temperatures for

which the loop is executed (ITERS), the initial temperature, and the temperature

decrease coefficient α. Later in the section, we discuss strategies for selecting the

parameters.

So far, the group-best variant of the general CBNN solver was described. In

Chapter 4 it is proven that if a competition-based neural networks is given enough

Chapter 3 Vladislav Haralampiev 63

Neural Networks for Facility Location Problems

time, then it converges to an optimal solution of the problem being solved. Key

to this proof is that we can approximately say what is the probability of the net-

work to be in a given state. Explicitly writing this probability for the group-best

CBNN solver is hard. This motivates the introduction of the group-average CBNN

solver. For this variant of the neural network it is possible to explicitly write an

approximation of the probability of a state. Remember that in the group-best

CBNN solver, in the Update procedure the current variable xi competes with the

strongest variable among the active ones in its group. In the group-average CBNN

solver, xi competes with the “average” variable, that is, with an imaginary variable

whose strength, expressed by OnCost, is the average OnCost of the variables from

the active set. If there is no luck and the OnCost of xi is larger than this aver-

age OnCost, then xi will be ON. Otherwise, it will be OFF. When converting the

group-best CBNN solver to the group-average one, the only difference in the pseu-

docode is that line 21 is changed from best ← min({OnCost(~x, j) | xj ∈ active})

to best ← avg({OnCost(~x, j) | xj ∈ active}). On later stages of the optimization,

when the temperature is relatively low, it is generally true that the active set either

consists of a single variable or of variables with almost the same OnCost. This

makes the difference between the group-best CBNN solver and the group-average

one small. On earlier stages, when the temperature is high, the difference is more

noticeable because there is more variation among the active set.

Another variant of the general CBNN solver is the group-random solver. In it, xi

competes with a random variable among the active variables instead of competing

with the strongest one or the average. In the pseudocode, the modification is again

only on line 21. The motivation is to improve the performance. The active set can

be quite large, especially on earlier stages of the optimization, and the OnCost com-

putation can also be expensive. When xi competes against a random variable, only

the OnCost of this variable needs to be computed and this saves time. The speed

improvement from such a modification looks very substantial, but our experiments

show that it is not that big. For obtaining comparable quality to the two other

variants of the solver, the number of iterations per epoch needs to be increased and

64 Chapter 3 Vladislav Haralampiev

Neural Networks for Facility Location Problems

this reduces the speed gains from the modification.

Several other modifications of the general CBNN solver are sometimes used in

Chapter 5 to reduce the runtime of the method. Depending on the objective func-

tion, the computation of OnCost can be very expensive. As a concrete example, the

objective function of p-MiniSum is F (CF, FL) =
∑

i,j,k CFij · FLjk · dist(vi, vk).

Computing the OnCost requires the evaluation of F and takes O(n2p) time. But we

do not need to know the exact OnCost. What we need is the difference between the

OnCost of the current variable and the strongest variable in its group. Assuming

the current variable is CFab, we can write the expression for the OnCost as

F [CFab = 1](~CF , ~FL) =∑
k

1 · FLbk · dist(va, vk) +

∑
i 6=a

∑
jk

CFij · FLjk · dist(vi, vk)

For all variables in the group of CFab the second summand is the same and will can-

cel out when computing the difference in OnCost. This way, the second summand

can safely be ignored and the computation now takes O(np) time. When solving

problems with CBNNs, a similar optimization can often be made and it significantly

speeds up the solver without changing the quality of the final solution. The perfor-

mance of the OnCost computation can sometimes be further improved for specific

problems by maintaining appropriate data structures.

Another possible way of speeding up the general CBNN solver is to perform

all updates at once. That is, we execute the Update procedure as described in

Algorithm 4 but on line 30 instead of performing xi ← new value, we just remember

that the variable xi needs to be set to the value new value. Then, after the epoch

is completed, we apply all the saved updates. With such a modification there is

no benefit from updating the variables at random (line 36) because all calls to

Update use the state of the variables at the start of the epoch. This way, during

an epoch we can just iterate through the variables from the first one to the last

one and call Update. The benefit from the modification is that all variables are

Chapter 3 Vladislav Haralampiev 65

Neural Networks for Facility Location Problems

changed at once and we can precompute the OnCost and other information at

the start of an epoch to speed up the Update procedure. This can substantially

decrease the runtime, especially if the group sizes are large. Notice that the resulting

method is not exactly equivalent to Algorithm 4. Performing all updates at once

decreases the randomness in the operation of the neural network and can potentially

create unwanted regularities. Our experiments show (see Chapter 5) that if the

number of epochs is kept the same, then the solutions from the original CBNN

solver are slightly better than the solutions from the modified solver described in this

paragraph. Increasing the number of epochs for the modified solver is often enough

to close the gap in solution quality. The original CBNN solver can be thought of

as an approximation of a model of asynchronous parallel computation in which no

two processors update at the same time (this is discussed in the next subsection).

The described modification resembles a system of synchronous processors. If every

variable is a separate processor and Update takes the same time for all of them, then

starting all processors simultaneously at the beginning of an epoch results in the

described modification. This type of multiprocessor systems do exist [103] and one

of the reasons for trying out the modified CBNN solver was to see if it still returns

solutions of good quality on such systems.

Apart from the possible modifications of Algorithm 4, another important aspect

of applying CBNNs in practice is how to choose its parameters. What we need

to specify is the initial temperature T , the temperature decrease coefficient α, the

number of steps per epoch STEPS, and the number of epochs ITERS. In our

experiments, we set the number of steps per epoch to be several times larger than

the number of variables. Choosing the value of ITERS depends on how much com-

putational time we are ready to invest in solving the instance of the combinatorial

optimization problem. The initial temperature T needs to be high enough to al-

low almost any variable flip with probability not much less than 0.5. To that end,

either a problem-specific expression for T can be used, or the initial temperature

can be empirically computed. For the empirical computation, the neural network

is initialized at random and a dummy first epoch is executed that does not modify

66 Chapter 3 Vladislav Haralampiev

Neural Networks for Facility Location Problems

the values of the variables (line 30 in Algorithm 4 is not executed). During this first

epoch, the largest ∆ passed to the Accept function is computed and it is used as the

initial temperature T . We think that for choosing the value of α it is best to decide

what the final temperature Tf of the network should be and compute α based on

this (by final temperature it is meant the one of the last epoch). In Chapter 4 it is

shown that for any given temperature and any state there is a certain probability

for the network to be in this state. Moreover, only states that correspond to optimal

solutions have significant probability. But this only holds if the temperature is “low

enough”. Exactly writing a formula for what is “low enough” is not trivial. For the

problems in Chapter 5, a value of Tf equal to 0.1 works good. It can be seen that

Tf = T · αITERS, so α = (
Tf
T

)
1

ITERS . Actually, the temperature decrease process by

itself can be considered to be a hyperparameter. In all our experiments we use an

exponential decrease: after every epoch the temperature is multiplied by α. Other

possibilities exist. For example, in Simulated annealing there is the same idea of a

temperature decrease schedule and for this method several different schedules were

developed (exponential decrease seems to be the most popular of them, though).

The runtime of the CBNN solver is proportional to STEPS · ITERS. In the

next chapter, when we prove the convergence properties of CBNNs, we will see how

these two hyperparameters relate to the quality of the solution found. At this point

it suffices to say that for competition-based neural networks the ideal case is for

alpha to be very close to 1 (meaning that ITERS is large) and the number of

steps per epoch STEPS to be large as well. Remember that STEPS · ITERS

is the runtime of the method and it is bounded. There are two main strategies to

satisfy the constraint on the runtime: either make ITERS large and STEPS small

or the opposite. The first option with many relatively short epochs often results

in a better solution to the combinatorial optimization problem. A third option of

balancing STEPS and ITERS and making them approximately equal is not a good

idea. The reason for this is discussed in the next chapter.

When solving an instance of a problem with a competition-based neural net-

work, it makes sense to perform several runs of the optimization algorithm. This is

Chapter 3 Vladislav Haralampiev 67

Neural Networks for Facility Location Problems

because of the randomness in the solver. From empirical tests with real-world prob-

lems we noticed that CBNNs are quite robust and the quality of the final solution

does not highly depend on the initial (random) solution. Because of this, perform-

ing multiple runs of the solver from different initial solutions and using the same

hyperparameters is not that beneficial. It is better to perform several runs of the

CBNN algorithm with different values of the hyperparameters (STEPS, ITERS,

initial temperature, temperature decrease coefficient). Generally speaking, the best

strategy is to perform a single very long run of the competition-based neural net-

work. In practice, this takes too much time and a compromise is needed. Quickly

obtaining a good solution requires selecting good values for the hyperparameters.

Understanding all “forces” behind this compromise is hard, so performing multiple

runs with different reasonable values of the hyperparameters often results in a better

overall solution.

3.3 Remarks on the CBNN solver

Competition-based neural networks are a metaheuristic for combinatorial optimiza-

tion and it is interesting to see where the model is positioned in the metaheuristic

classification. The CBNN solver is a trajectory method because it operates on a

single solution and not on a population of solutions. The solver performs small

modifications of the current solution, so it is a local search based method and not

a constructive one. It uses a simple single variable flip neighbourhood and has an

explicit strategy for escaping from local mimima. The strategy resembles the one

used by simulated annealing. We can see that the CBNN solver possesses all the

properties of high-quality metaheuristics that were outlined in Section 2.2 but is a

very simple one and more similar to the early work on metaheuristics. The neu-

ral network method does not have memory structures like in tabu search. This is

expected because the idea of neural networks is to create meaningful global result

from local computations, while the concept of memory structures in tabu search is

by itself a global construct. Of course, we can find a way to combine CBNNs with

ideas from other metaheuristics, but the thesis does not deal with this.

68 Chapter 3 Vladislav Haralampiev

Neural Networks for Facility Location Problems

The optimization properties of CBNNs emerge from the joint operation of many

independent computing units which is the main characteristic of neural networks.

Every unit (neuron) computes the OnCost of some of the units in its group and

decides its state based on these values (the way the decision is made is called a

competition mechanism). The operations are local inside every group and are in a

sense local inside every unit.

From all metaheuristics that were outlined in the first chapter, competition-based

neural networks are closest as an idea to Hopfield networks, Boltzmann machines,

simulated annealing, and the self-organizing approaches. Hopfield networks stand

apart from the rest of the methods because, as a machinery for optimization, Hop-

field networks are rather primitive. They are like a simple single run of a hill climbing

heuristic. But the idea from Hopfield networks to solve combinatorial optimization

problems by mapping variables to independent computing units that execute sim-

ple update procedures is useful and can be seen both in Boltzmann machines and

competition-based neural networks.

Simulated annealing is a very general method. It is a framework for developing

algorithms, but when solving a concrete problem, many of the details need to be

invented. So it is not completely correct to compare simulated annealing to Boltz-

mann machines and competition-based neural networks. The last two methods are

much more concrete. It is true that Boltzmann machines are basically simulated

annealing applied to a specific graph with specific neighborhood structure. But this

specific application is valuable, it has good properties and is a convenient model for

a class of problems. In a similar way, competition-based neural networks can be

considered to be ideas from simulated annealing that are applied to a specific graph

with a specific neighborhood structure. Here the application is not as direct. First,

simulated annealing always accepts moves that improve the value of the objective

function. Competition-based neural networks accept such moves with probability

that is smaller than 1. This aligns better with the idea of competing companies that

can sometimes be lucky or not lucky. Second, in simulated annealing, Boltzmann

machines, and Hopfield networks there is a global function that is used to decide

Chapter 3 Vladislav Haralampiev 69

Neural Networks for Facility Location Problems

whether to accept a move. It has different names: energy, consensus. But the idea is

the same. The probability of a given transition in these models depends on the dif-

ference of this global function between the candidate for next state and the current

state. There is no such function in competition-based neural networks. There is a

function that measures the solution quality and is related to the energy or consensus

functions. But in CBNNs, when making a decision on whether to accept a given

transition, the delta in quality is computed between the candidate and the best of

its currently active competitors. This is a local property and is not expressed by

a single global energy/consensus that is shared by all variables. It is well-known

that if given enough time, simulated annealing converges to an optimal solution of

the problem being solved. This proof is based on the existence of a single (simple)

global function that dictates the probabilities of the state transitions. The same

proof holds for Boltzmann machines because they use the same global function.

But the proof does not hold for competition-based neural networks. It is true that

they asymptotically converge to an optimal solution and we show this in the next

chapter. But the way they move and converge to an optimal solution is different,

especially in the beginning of the optimization.

CBNNs also have similarities with the self-organizing approaches to combinato-

rial optimization. A classical example of these approaches is the already introduced

elastic net method. When applied to the Traveling Salesman Problem, the

method fits around the input points a template that is like a rubber band. The

competition mechanism of competition-based neural networks can also be seen as a

type of a template. It forces the optimization procedure to choose for every group

constraint of the input problem exactly one of the k possible options. This type of a

template can be more expressive than the rubber band from the elastic net method.

The template that is produced by the competition mechanism of CBNNs can model

in a natural way the feasibility constraints of facility location problems. There is no

need to introduce penalty terms in the objective function. Notice that penalty terms

are necessary when modeling facility location problems for Hopfield networks and

Boltzmann machines. As was already discussed, penalty terms should be avoided

70 Chapter 3 Vladislav Haralampiev

Neural Networks for Facility Location Problems

because they artificially increase the complexity of the search space. Another sim-

ilarity between CBNNs and self-organizing approaches is the winner-takes-all (or

most) idea. This was called “rule of the jungle” in the description of CBNNs.

One of the strong points of neural networks is that they allow a relatively simple

parallel implementation. Algorithm 4 describes competition-based neural networks

as a sequential method. This is more convenient for classical computers and simpli-

fies the analysis of the algorithm. Competition-based neural networks, like Hopfield

networks, also have a straightforward parallel implementation. Under similar sim-

plifying assumptions (no two units update at the same time) it can be shown that

the sequential algorithm performs the same computations as a parallel version. As

a consequence, the returned solutions are the same. The main drawback of the ex-

isting neural networks for combinatorial optimization is the poor quality of the final

solution. This is why in the thesis we concentrate on analyzing the quality of the

solutions, produced by competition-based neural networks, and not on the runtime

of the method. It is shown that CBNNs find good solutions and, in this respect, are

competitive to other metaheuristics. The problems of the existing neural network

approaches are not in the idea of using massively parallel ensembles of neurons but

in the specifics of their implementation of this idea.

Chapter 3 Vladislav Haralampiev 71

Chapter 4

Analysis of CBNNs

In Chapter 5, competition-based neural networks are applied to a number of facility

location problems to demonstrate their good empirical performance. The current

chapter gives a theoretical justification of why competition-based neural networks

can solve combinatorial optimization problems.

At any point in time, the values of the neurons of a CBNN define a configuration

that maps to some (possibly infeasible) solution of the combinatorial optimization

problem. During the operation of the neural network, it changes the values of the

neurons. In this way, the neural network goes through a chain of states in the

solution space. Every slot in the chain contains a configuration: the values of the

neurons at this point in time. Transitioning from a slot to the next one corresponds

to proposing a variable flip (this is done in the Update function of Algorithm 4).

The flip may or may not be accepted, so it is possible for two consecutive slots to

contain the same configuration. Randomness is involved in the acceptance criterion

and the whole operation of the neural network is randomized.

At least two perspectives exist for looking at the operation of a competition-

based neural network. We can think of it a single point trajectory method and for

every position in the chain of states to consider the exact single solution that sits

there. This perspective is convenient for gaining intuition about the explore-exploit

strategy of CBNNs. But it is not convenient for proving the convergence properties

of the neural network method because of the randomness in its operation. Another

72

Neural Networks for Facility Location Problems

possibility is to think of the neural network operation as of a Markov chain (see

Appendix A for the definition of Markov chains). For every slot in the chain, we do

not consider which single configuration is there but are interested in the probability

distribution of the configurations that can sit there. This perspective is useful for

proving that CBNNs converge to optimal solutions. For example, we can prove a

result like this: the probability for a slot far enough in the chain to contain an

optimal solution converges to 1 as the temperature T decreases.

One thing we want to mention is that, when talking about probabilities, there

should be a large number of independent runs of the process. Probabilities are

meaningful only when the “experiment” is repeated many times. When solving a

problem, a single run of the neural network is performed (maybe 5-10 runs, but not

billions for sure). This single run is the important one. It does not matter that from

1000 runs 999 are good if our single run is bad. This is something we should consider

when dealing with randomized algorithms. From a positive side, if the probability

of bad runs is extremely small, then we can believe that we are lucky and will never

hit a bad one.

The chapter starts with two empirical experiments that highlight important

properties of CBNNs. After the two experiments, we proceed with the proof of

asymptotic convergence of competition-based neural networks.

4.1 Empirical properties as a single point method

For this experiment, the general CBNN solver (Algorithm 4) is applied to a small

p-MiniSum instance that is derived from the Bulgarian road network. The instance

is shown in Figure 4.1 and is one of the instances that are used in Section 5.1.

The p-MiniSum problem has already been introduced in Section 1.2. A detailed

explanation of how p-MiniSum is modeled for solving with a CBNN is omitted here.

The goal of this section is to provide a high-level intuition about the operation of

CBNNs and not to specifically deal with the p-MiniSum problem. The details of

how to apply competition-based neural networks to the problem can be found in

Section 5.1.

Chapter 4 Vladislav Haralampiev 73

Neural Networks for Facility Location Problems

Figure 4.1: Example p-MiniSum instance. The black circles are the populated
places.

Figure 4.2: Value of the objective function of p-MiniSum during the optimization
process. On the X axis is the epoch number. On the Y axis is the value of the
objective function.

Figure 4.2 shows the value of the objective function of p-MiniSum after every

epoch of the optimization. The general tendency is to decrease the objective func-

tion, but there is a lot of variance that gradually narrows as time progresses. This

is a characteristic property of CBNNs: they allow not only moves that improve the

value of the objective function but also moves that worsen it. The temperature of

the neural network gradually decreases with time and the probability of worsening

moves also decreases.

The graph in the figure can be divided into three distinctive stages. The first

stage, up to approximately iteration 80, is similar to a random exploration of the

search space. During this stage, the objective function is not significantly decreased.

Next, between approximately iterations 80 and 200, follows a quick improvement of

the solution. During this stage, the exploration side of the algorithm is gradually

74 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

reduced and the exploitation of the best-performing subcomponents is increased.

The meaning of a solution subcomponent is problem-specific and a good property

of CBNNs is that we do not need to specify what a subcomponent is. The neu-

ral network spontaneously finds them during its operation. They are like building

blocks from which the whole solution can be built piece by piece. In the p-MiniSum

example, one subcomponent can be a cluster of populated places that are serviced

by the same facility. As time progresses, it can be noticed that such clusters are

naturally formed by the neural network for the p-MiniSum instance and the clus-

ters are relatively stable. In the beginning of the optimization, populated places

often change their cluster, but later, the core populated places of a cluster move

very rarely. The formation of subcomponents is somewhat similar to representation

learning of the neural networks for classification. The third stage starts from ap-

proximately iteration 200 and can be thought of as final tuning of the solution. The

general structure of the solution is already decided and here only small modifica-

tions are made. Maybe a populated place on the border moves to another cluster, or

something similar. The stage is dominated by exploitation and is like hill climbing.

It is interesting to compare the operation of the CBNN to a classical local search

(hill climbing) heuristic. Figure 4.3 shows how the objective function of p-MiniSum

changes during several runs of a variant of hill climbing. The search repeatedly tries

to assign a client to another warehouse or to change the location of a warehouse if

this decreases the value of the objective function.

Figure 4.3: Values of the objective function for three runs of a local search heuristic.
The X axis shows the iteration number. On the Y axis is the value of the objective
function of p-MiniSum.

Chapter 4 Vladislav Haralampiev 75

Neural Networks for Facility Location Problems

Clearly, the shape of the curves is very different from the one of the neural

network. In Figure 4.3, we see immediate rapid decrease of the objective function

that ends in a local minimum. There are no stages as in the CBNN graph from Figure

4.2. Hill climbing is “pure exploitation” of the region from which the optimization

starts. It is difficult to see this from the graphs, but all three local search runs

end up in solutions for which the value of the objective function is slightly worse

than the optimal value of 583.344. The competition-based neural network finds the

optimal solution. The results of the hill climbing heuristic are expected because hill

climbing does not perform exploration and highly depends on the initial random

solution. Every local optimum — good or bad, forms a basin of attraction. If the

search starts in this basin, then it finds the corresponding local minimum. The test

p-MiniSum instance is relatively simple, but for a complex problem, the quality of

the local minima varies widely, and many of them are poor. No matter what the

quality is, every local optimum forms a basin of attraction and there is no guarantee

that the “good” ones cover a significant “area” of the search space. Hill climbing

starts from a random point that falls in a random basin of attraction and this directly

affects the quality of the solution found by the method. On the other hand, CBNNs

perform exploration by occasionally accepting locally “bad” moves. This allows

the CBNN to escape at least from some of the poor local optima and the neural

network method does not depend that much on the initial solution. The cost of this

is a much larger computational time in comparison to hill climbing. Additionally,

as can be seen from Figure 4.1, during the first and last stages of a CBNN run, the

improvement of the value of the objective function is small. But these two stages

consume a significant amount of time. In practice, especially the first one, because

in it many variables have value 1, which slows down the computation of OnCost in

Algorithm 4.

The CBNN solver starts from a high temperature and gradually decreases it. It

is interesting to see what happens if the solver is started with a low temperature.

Its operation in this case is similar to hill climbing, but there are nuances. Figure

4.4 shows how the value of the objective function of p-MiniSum changes for one

76 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

run of a low temperature CBNN.

Figure 4.4: Value of the objective function of p-MiniSum for a low temperature
CBNN run. The X axis shows the iteration number. On the Y axis is the value of
the objective function.

It can be seen that the value of the objective function is not always decreas-

ing. This is different from hill climbing and is a consequence of the competition

mechanism and the independent local operation of the neurons. As an example,

consider a client that is connected to three facilities. This represents an infeasible

configuration, but it can occur during the operation of the neural network. Let the

OnCost of the three connections be 1, 2, and 4. All of them are in a single group

and the best one has value 1. If we now update the neuron with value 2, then, for a

low temperature, it will become OFF (the neuron is not the best in its group and a

low temperature means there is no luck). This results in an increase of the value of

the objective function because now the contribution of this group of neurons is 1+4
2

instead of 1+2+4
3

. This is a simple example. More complex relationships between

neurons and groups can exist and they can cause growth of the objective function.

The independence of the neurons is beneficial for the parallel implementation of the

neural network. In comparison to a hill climbing heuristic, it additionally introduces

more randomness in the solver. This may be beneficial for escaping from poor local

optima. The last statement can cause controversy and it obviously depends on the

problem. As some justification, for the test p-MiniSum instance, the low tempera-

ture CBNN finds a solution of value 598.323. This is slightly worse than the optimal

value of 583.344 and it is better than the solutions from all three hill climbing runs.

Chapter 4 Vladislav Haralampiev 77

Neural Networks for Facility Location Problems

Looking from left to right in Figure 4.2, it seems that the variance of the objective

function of p-MiniSum first grows and then shrinks to 0. Figure 4.5 shows the

standard deviation of the objective function on a separate graph.

Figure 4.5: Standard deviation of the objective function of p-MiniSum during each
epoch of the optimization. The X axis shows the epoch number. On the Y axis is
the standard deviation.

Indeed, there is a spike at approximately epoch 150. This may look surpris-

ing. During the operation of the neural network, the temperature monotonically

decreases. Intuitively, the standard deviation should be the highest in the first stage

of the optimization. This is because there the temperature is the highest and the

neural network is most likely to accept “risky” moves (it almost randomly explores

the solution space). In later stages, as the temperature is lowered, the optimiza-

tion shifts towards exploitation and the standard deviation should decrease. The

explanation of why there is a spike is connected to the formation of solution subcom-

ponents. Initially, the solution is random. The temperature is high, so bad moves

are accepted with high probability, but very bad moves almost do not exist. When

the solution is random, there is no structure and all variable flips are almost the

same. No single one of them affects significantly the quality of the solution. But

once good solution subcomponents start to form, then now there are very bad moves

(variable flips) because breaking a subcomponent can drastically worsen the current

solution. Up to around epoch 150, the temperature is still high enough to allow

pretty bad transitions. The combination of the high temperature and the formation

78 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

of solution subcomponents causes the standard deviation of the objective function

to grow. At around epoch 150, the temperature becomes low enough to prohibit

most of the very bad variable flips. From then on, the standard deviation almost

monotonically decreases.

Figure 4.6: Average value of the proposed ∆ in the Accept function of Algorithm 4.
The Y axis shows the epoch number.

Figure 4.5 shows the standard deviation of the objective function during each epoch.

This value is created by two forces: the proposed ∆ in the Accept function of Al-

gorithm 4 and the accept probability that depends on the current temperature. It

is interesting to separately see what ∆ values are proposed in the Accept function.

This is illustrated in Figure 4.6. Instead of showing the ∆ value for every call to

Accept, in the figure, the average ∆ per epoch is given. This is done to reduce the

noise. There is a lot of variance in the individual ∆ values, which makes it hard to

see the general tendency in the graph. In the right end of the graph, the ∆ values

are high and flat. This is because there the competition-based neural network has

already decided the general structure of the final solution. The middle part shows

rapid growth of the delta: good solution components are formed and kept. The left

part may look flat, but it actually shows a slow growth. This part is dominated by

exploration and while some subcomponents start to form, most of the solution is

still random. The process described in this paragraph illustrates the explore-exploit

strategy of competition-based neural networks. They initially explore promising

solution sub-configurations and, as time progresses, tend to keep the ones that com-

bine to the best possible solution. This is different from the memory structures

Chapter 4 Vladislav Haralampiev 79

Neural Networks for Facility Location Problems

of Tabu search, but can be thought of as a kind of a probabilistic memory. The

graphs in this section also demonstrate the importance of the temperature schedule.

After every epoch, the temperature changes just slightly. But it can be seen how

drastically such a change affects the behavior of competition-based neural networks,

especially around epochs 100 - 150.

As noted several times, a competition-based neural network occasionally accepts

transitions that reduce the quality of the current solution. The acceptance proba-

bility depends on two factors, the temperature and the proposed reduction of the

quality of the solution. The function Accept from Algorithm 4 is the one that tells

whether to perform a worsening transition. Figure 4.7 shows what percentage of the

proposed worsening transitions are actually accepted.

Figure 4.7: The red line shows the percentage of the proposed worsening transitions
that are accepted. The X axis is the epoch number, the Y axis is the percentage.
The blue line in the figure gives the value of the objective function of p-MiniSum.
The blue line is there for convenience, its Y axis is just scaled to fit and has no
meaning as percentage.

Initially, when the temperature is high, around 50% of the proposed transitions

are accepted. The acceptance probability is 1

1+e
∆
T

and it is easy to verify that its

limit as T grows is 1
2
. In the right side of the graph, the probability decreases

to 0. This is the limit of the acceptance probability when T decreases to 0. Apart

from that, the graph does not seem to be very informative: the probability decreases

with time, but is not clearly mapped to the 3 stages that are present in the objective

function graph.

80 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

4.2 Empirical properties as Markov chains

A competition-based neural network manages a set of n binary variables (equiva-

lently, n neurons, or units). Lets denote by ~xi the binary vector that contains the

values of the variables at a given point in time. The operation of the competition-

based neural network can be described as a sequence of such vectors ~x0, ~x1, The

initial vector in the sequence is randomly chosen. After that, every new vector is

computed by applying the Update procedure to one of the variables of the previous

vector (Algorithm 4 from Section 3.2 shows in pseudocode the CBNN solver).

Because of the randomness in the network operation, if we concentrate on the

exact value of every individual vector ~xi, then it is hard to analyze the global perfor-

mance. Instead, the probability distribution of every ~xi over its 2n possible values

can be considered. This distribution is denoted as Xi. If we substitute every ~xi by

such a probability distribution, then the randomness goes away. Every Xi can be

uniquely computed from Xi−1. What we will empirically see here and prove later is

that this sequence of probability distributions converges to a single probability dis-

tribution π. If the network runs long enough, the vector ~xi at time point i is drawn

from the distribution π. Further, in this distribution, the vectors that correspond

to suboptimal solutions have almost zero probability. So, if we pick a vector ~xi far

enough in the sequence, then it will correspond to an optimal solution because only

such vectors have nonzero probability in π. This is the intuition behind the claim

that, in probabilistic sense, competition-based neural networks solve combinatorial

optimization problems.

Assume for now that the temperature T of the competition-based neural network

is fixed. When looking at the operation of the network as a sequence of vectors,

it is easy to see that this is a Markov chain: the vector xi depends only on the

vector xi−1 (information about Markov chains and their properties can be found

in Appendix A). Formally, P (xi|xi−1, xi−2, ..., x0) = P (xi|xi−1) and the process is

memoryless. Markov chains are well-studied and known results about them can be

used to analyze CBNNs.

In Markov chains, the usual terminology is to use the name states for our set

Chapter 4 Vladislav Haralampiev 81

Neural Networks for Facility Location Problems

of 2n possible values of ~xi. It is convenient to naturally map this set of possible

values to the integers from 0 to 2n− 1 so that we can assume ~xi is an integer whose

binary encoding gives the values of the neurons of the network. In Markov chains,

there is also a state transition probability matrix A. Each element A[~a][~b] of the

matrix contains P (~b|~a), the probability to transition from ~a to ~b in the chain. For

competition-based neural networks, the matrix A is implicitly given by the Update

procedure from Algorithm 4. For a state ~a and a variable, the Update procedure flips

the value of the variable with certain probability. By writing these probabilities in A

(and dividing by the total number of variables, because in Algorithm 4 the variable

itself is randomly chosen), we get the state transition probability matrix. Notice

that this matrix is huge. Its size is 2n × 2n where n is the number of variables.

Additionally, the matrix is very sparse. Nonzero values in it correspond to variable

flips (or staying in the same state), so the number of nonzero values is on the order

of n · 2n.

In this section, we perform three experiments. The goal of the first one is to

empirically see that the sequence X0, X1, ... of probability distributions converges

and that, assuming the temperature is low, in the limit distribution π only opti-

mal solutions have significant probability. The second experiment investigates how

quickly the sequence of Xi converges. It may not be obvious why we work with

sequences of probability distributions if what we care about is a single run of the

competition-based neural network. The goal of the third experiment is to provide

additional insight into this.

In the experiments from this section, the p-Defense-Sum Problem is used

instead of the usual p-MiniSum Problem. This is because the size of the state

transition probability matrix grows very quickly and we were not able to create a

meaningful p-MiniSum instance for which the size of the matrix is manageable.

The p-Defense-Sum problem is introduced in Section 5.3. In the problem, we are

given a graph representing a road network. The goal is to position p facilities in

the vertices while maximizing the sum of pairwise distances between the facilities.

One way to think of this is that we are locating military objects. Spreading them

82 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

Figure 4.8: Example p-Defense-Sum instance in which 2 facilities need to be
located. It is optimal to place the two facilities in vertices A and B. The distance
between them is 3. For any other pair of vertices, the distance is less than 3.

in space makes it hard for the enemy to capture and establish stable control over

the facilities. Figure 4.8 shows the p-Defense-Sum instance that is used for the

experiments. The exact CBNN-compatible model of the problem is not needed for

this section. It is described in detail in Section 5.3 that is devoted to p-Defense-

Sum. We only want to say that the model of the instance from Figure 4.8 has 2 · 6

variables, resulting in a state transition probability matrix of size 4096 x 4096.

Using a matrix notation, the probability distribution Xi, a row vector, can be

written as Xi−1 ·A. By unrolling this, we get Xi = X0 ·Ai. CBNNs can be made to

choose one specific hardcoded value for the initial state ~x0, so the initial probability

distribution X0 is almost all-zero vector except for having 1 at index ~xi. The first

experiment is to take such a vector X0 and verify that X0 · Ai converges.

Table 4.1 shows the probability distributions Xi = X0 · Ai for several different

i and temperatures T (i has at least three equivalent interpretations: length of the

chain, number of calls to Update, or runtime of the neural network). In all cases,

the initial probability distribution X0 is set to a vector that has 1 at index 4095 and

0 at all other indexes. As expected, for any temperature, the last two columns are

very similar. The larger i is, the more the corresponding column is similar to the

last column. This hints that Xi converges when increasing i. Later in this chapter it

is proven that Xi always converges to the same vector π no matter what the initial

distribution X0 is. The fact that the neural network converges is important because

it gives a clue that the algorithm does something meaningful. Convergence to the

same vector π is also important because it means that the quality of the solution,

returned by a CBNN, ideally is independent of the initial random solution. This is in

Chapter 4 Vladislav Haralampiev 83

Neural Networks for Facility Location Problems

T = 10
~x X10 X40 X100 X200 X2000

2049 0.000001 0.000477 0.000565 0.000565 0.000565
96 0.000001 0.000477 0.000565 0.000565 0.000565
2053 0.000005 0.000485 0.000550 0.000550 0.000550
224 0.000005 0.000484 0.000548 0.000548 0.000548
2055 0.000022 0.000509 0.000550 0.000550 0.000550
3585 0.000022 0.000505 0.000547 0.000547 0.000547
368 0.000020 0.000451 0.000491 0.000491 0.000491

T = 2
~x X10 X40 X100 X200 X2000

2049 0.000008 0.006807 0.008222 0.008227 0.008227
96 0.000008 0.006807 0.008222 0.008227 0.008227
2053 0.000052 0.005250 0.005904 0.005906 0.005906
224 0.000052 0.005196 0.005870 0.005872 0.005872
2055 0.000217 0.004238 0.004483 0.004483 0.004483
3585 0.000195 0.003941 0.004290 0.004292 0.004292
368 0.000173 0.002643 0.002819 0.002820 0.002820

T = 0.5
~x X10 X40 X100 X200 X2000

2049 0.000085 0.149850 0.251901 0.261692 0.262021
96 0.000085 0.149850 0.251901 0.261692 0.262021
2053 0.000396 0.034137 0.036915 0.036735 0.036724
224 0.000384 0.032522 0.036176 0.036417 0.036428
2055 0.001080 0.007670 0.005849 0.005641 0.005634
3585 0.000903 0.006081 0.005450 0.005491 0.005634
368 0.000878 0.001671 0.000956 0.000900 0.000898

T = 0.2
~x X10 X40 X100 X200 X2000

2049 0.000123 0.263950 0.466142 0.485568 0.486573
96 0.000123 0.263950 0.466142 0.485568 0.486573
2053 0.000520 0.026631 0.006222 0.003436 0.003285
224 0.000497 0.023608 0.005175 0.003352 0.003282
2055 0.001261 0.002777 0.000238 0.000035 0.000026
3585 0.001059 0.001728 0.000099 0.000028 0.000026
368 0.001082 0.000544 0.000007 0.000001 0.000000

Table 4.1: Convergence of CBNNs. Xi = X0 · Ai is computed for i ∈
{10, 40, 100, 200, 2000}. The initial distribution X0 is an all-zero vector except for
index 4095 = 212−1 where there is 1. This corresponds to starting the competition-
based neural network from a very symmetric state in which all variables have value
1. The dimensionality of Xi is 4096. For readability, the probabilities of only 7 of
the 4096 states are given in the table (the column ~x shows which ones). Among
them are the two optimal solutions, 2049 and 96. In fact, there is a single optimal
solution if we look at it as a set. But the neural network returns an ordered pair and
this is why there are two optimal states. The state transition probability matrix A
depends of the temperature T of the CBNN. In the table, Xi = X0 ·Ai is computed
for 4 different values of T .

84 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

contrast to local search, for which the quality of the final solution strongly depends

on the initial one. Of course, when solving a problem, we do not want to depend

on things like being lucky enough to start from a “good” point. From table 4.1 it

can be guessed that when the temperature T is 0.2, in π the probability of state 96

is approximately 0.49. This means that if the CBNN is stopped after performing

1012 iterations, with probability 0.49 it will be in state 96 representing an optimal

solution. 1012 is just a very large number and it is used here because we do not want

to talk about the speed of convergence yet. Running the neural network for so long

to solve such a simple instance is not practical, neither is it guaranteed that 1012 is

enough time for the CBNN to converge on large instances.

Apart from the fact that the sequence X0, X1, ... of probability distributions

converges, it is interesting to see what is its limit distribution. For temperature

T = 10, a high temperature, the limit distribution π is close to uniform. From

the perspective of solving combinatorial optimization problems, such a distribution

gives us nothing. It is like randomly generating a solution and hoping to hit an

optimal one. The situation is different when T = 0.2. For this temperature, in π

only states 2049 and 96 have a significant probability and both of them represent

optimal solutions. It can be guessed that for high temperatures π is uniform and

as the temperature is lowered, the probability concentrates on states representing

optimal solutions. In the limit case when T approaches 0, only optimal solutions

have non-zero probability. From these considerations it can be seen how we will

later prove asymptotic convergence to an optimal solution: first prove convergence

of CBNNs to some distribution π, then prove that in π the probability of non-optimal

solutions is close to 0.

The speed of convergence is another property of the CBNN solver that is im-

portant in practice. Sadly, the bounds for the speed are not satisfactory (they

are larger than the size of the solution space). Competition-based neural networks

use the mechanism of gradually lowering the temperature exactly because of this.

There are heuristic reasons to believe that such a mechanism speeds up the pro-

cess of finding a good solution. In addition, we should remember that the goal of

Chapter 4 Vladislav Haralampiev 85

Neural Networks for Facility Location Problems

competition-based neural networks is not to find the exact optimum but is to find a

good approximate solution. Convergence to the optimum is not necessary for this.

The state transition matrix A is called a stochastic matrix: a matrix in which

every row represents a probability distribution. From Markov chain theory it is

known that chains with certain properties converge to a unique distribution (vector)

π. Later, these properties are defined and we show that they hold in our case. For

this vector π it is true that π · A = π. Such vectors are called eigenvectors of

the matrix A corresponding to eigenvalue 1. The set of eigenvalues of A is called

spectrum and it can be used to bound the speed of convergence. Appendix A

introduces the terminology and results that are mentioned in this paragraph. For

Markov chains, the speed of convergence is formalized by the notion of mixing time.

Intuitively, the mixing time is a power s for which every component of X0 ·As differs

from the corresponding component of π by at most 1
4

for any initial distribution X0

(see Definition A.0.7). The constant 1
4

is an arbitrary one. It can be 1
10

, for example.

This only scales the mixing time. There is a theorem saying that the spectrum of

the stochastic matrix A contains the eigenvalue 1 and all other eigenvalues in the

spectrum are smaller than 1 by absolute value (the result is a consequence of the

Perron-Frobenius theorem; see Theorem A.0.2). This is actually the reason why

Markov chains converge to π: its eigenvalue is 1 and it dominates all other. If we

denote by µ the absolute value of the second-largest eigenvalue, it is known that the

mixing time is proportional to 1
log(1

µ
)
. Intuitively, this is because the s-th power of

the matrix A can be written as a sum of terms of the form: eigenvalue of the matrix

to the s-th power multiplied by something. The largest eigenvalue 1 to any power is

1, but the powers of eigenvalues that are less than 1 by absolute value diminish when

s grows. Formal description of the above results is in Appendix A. For now, what

we care about is that the speed of convergence depends on the second-largest by

absolute value eigenvalue of A, denoted as µ. If the CBNN performs around 1
log(1

µ
)

updates, this should get it pretty close to the stationary distribution π. It should be

mentioned that eigenvalues are generally complex numbers and eigenvectors consist

of complex numbers. For a stochastic matrix, the largest eigenvalue by absolute

86 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

value is 1, but the other eigenvalues can be complex numbers. In this section, we

always talk about (and write) their absolute values because this is what matters for

the speed of convergence of Markov chains.

T = 10
1.000000 0.932283 0.926618
T = 2
1.000000 0.969312 0.94976
T = 0.5
1.000000 0.998949 0.967023
T = 0.2
1.000000 0.999998 0.971709

Table 4.2: The three largest by absolute value eigenvalues of the matrix A for
different temperatures T (the largest eigenvalue is always 1). The second-largest
eigenvalue gives the speed of convergence of the CBNN.

Table 4.2 gives the three largest by absolute value eigenvalues of the state tran-

sition probability matrix A for different temperatures. It can be seen that the

second-largest eigenvalue grows when the temperature is decreased. For example,

the second-largest eigenvalue for T = 10 is approximately µ = 0.932283, giving a

mixing time of 1
log(1

µ
)
≈ 33. For T = 0.2 the same computation shows that the mixing

time is ≈ 1150000. High temperatures T correspond to almost uniform distribution

π over the solutions that gives us no information about the optimal solution of the

problem. But the low value of the mixing time says that the competition-based

neural network “finishes” quickly. On the other hand, low temperatures correspond

to distributions in which only optimal solutions have significant probability. In this

way, a CBNN running with a low temperature optimally solves the combinatorial

optimization problem. But for low temperatures, the mixing time becomes huge.

This can be called a temperature trade-off of a CBNN: high temperatures are not

informative, but the computation is quick. Low temperatures give the optimal solu-

tion, but the computation is slow. The goal of gradually decreasing the temperature

of a competition-based neural network from a high value to a low value is to combine

the good properties of both worlds and reach a nearly-optimal solution in reasonable

time.

The last experiment for this section illustrates the link between the CBNN algo-

Chapter 4 Vladislav Haralampiev 87

Neural Networks for Facility Location Problems

rithm and the probability distributions that we talk about. The CBNN algorithm

is run with temperature T = 0.8. For this temperature, the mixing time is ≈ 390.

The algorithm is left to perform 3000 updates, several times more than the mixing

time. After this, the CBNN is left to perform additional 20000 updates that are

stored to compute the empirical probabilities of the states. As mentioned several

times, probabilities make sense when something is performed repeatedly. The 20000

updates “materialize” the distribution to which the neural network converges.

Figure 4.9: Expected and empirical distribution over the states of the CBNN for
temperature T = 0.8. The blue bars on the left represent the expected distribution
(eigenvector for eigenvalue 1). The green bars on the right are the seen empirical
probabilities. To make the graph readable, only the 40 most probable states from
the expected distribution are taken and their empirical and expected probabilities
are shown (in decreasing order of the expected probability).

Figure 4.9 shows the results of the experiment. The empirical distribution that

we get and the expected distribution π obtained from solving π·A = π are quite close.

The two tallest bars are the two optimal states, 96 and 2049. The probability of each

one of them if a little bit more than 10%. From the 20000 iterations of the CBNN

it ends up in one of these two states in approximately 4400 of the iterations. This

means that the CBNN passes through an optimal solution of the instance 4400 times

during the 20000 iterations. As the temperature decreases, the probability mass

concentrates on the two optimal states and the competition-based neural network

will stay even more often in them. In this sense, the network solves the combinatorial

optimization problem.

88 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

4.3 CBNNs with restarts

We already discussed in the previous section that the speed of convergence of a

CBNN depends on the second-largest by absolute value eigenvalue of the state tran-

sition probability matrix. The value is instance-specific and is outside of our control.

This section describes a modification of the general CBNN solver for which we can

control the second-largest by absolute value eigenvalue.

During the operation of a CBNN, a chain of states is created. As we empirically

saw in the previous section, the probability distribution of the elements of this chain

converges to a distribution π. This is true no matter what the initial state is. But

how quickly the sequence of distributions converges to π depends on the initial state.

Intuitively, the neural network can get stuck in a bad region of the solution space

and a huge amount of time will be necessary to escape from this region. In such a

case, it is better to just randomly jump to a new point. The described intuition is

the motivation for CBNNs with restarts. The method performs identical operations

as regular competition-based neural networks with a fixed temperature, but at each

step, with a certain small probability p, it can jump to an arbitrary state. Ideally,

we want to jump only when the neural network is stuck in a bad region. The solver

does not know for sure if the current region is bad, so it always jumps with some

probability. This somewhat resembles performing multiple runs of a hill climbing

heuristic.

Using the terminology from the previous section, the state transition probability

matrix Ar of CBNNs with restarts can be written as (1− p) ·A+ p ·E. The matrix

A is the state transition matrix of regular CBNNs and E is a matrix of all 1/|S|

where |S| is the size of the state space. The matrix E says that we can jump with

equal probability from any state to any other state.

In Section 4.5, it is proven that the second-largest by absolute value eigenvalue

of Ar is at most 1− p. This means that the mixing time of CBNNs with restarts is

O(1/log(1
(1−p))). Large value for the probability p makes the mixing time small and

the neural network finishes quickly. On the other hand, a large p makes the sta-

tionary distribution close to a uniform one. Remember that a uniform distribution

Chapter 4 Vladislav Haralampiev 89

Neural Networks for Facility Location Problems

is useless for solving combinatorial optimization problems. Finding an acceptable

value for p is not trivial: it needs to give a good enough for our purposes mixing

time and still to guarantee that the neural networks arrives at a nearly optimal state

with a high probability.

Tables 4.3 and 4.4 show the results of two experiments that are similar to the

ones from the previous section. In the experiments, the CBNN with restarts is run

with a temperature T = 0.2 and restart probability p equal to 0.1 and 1
|S| . The

p-Defense-Sum instance is the same as the one from the previous section. Its

model has 12 variables, so |S| = 4096.

p = 0.1
1.000000 0.900000 0.874538
p = 1

|S|
1.000000 0.999755 0.971472

Table 4.3: The three largest by absolute value eigenvalues of the state transition
probability matrix Ar of a CBNN with restarts for restart probabilities 0.1 and 1

|S| .

~x π for p = 0.1 π for p = 1
|S|

2049 0.035110 0.481761
96 0.035110 0.481761
2053 0.008039 0.003590
224 0.007482 0.003520
2055 0.002646 0.000076
3585 0.002253 0.000061
368 0.001821 0.000020

Table 4.4: The stationary distribution π of a CBNN with restarts for restart proba-
bilities 0.1 and 1

|S| . For readability, the probabilities of only 7 of the 4096 states are
shown. Among them are 96 and 2049, the two optimal solutions.

From the tables it can be seen that the second-largest eigenvalue in both cases is

equal to 1−p. In the p = 0.1 case, in the stationary distribution π, the probability of

the two optimal states 96 and 2049 is not substantially larger than the probability

of the other states. This means that the CBNN with p = 0.1 is not useful for

solving the p-Defense-Sum instance. On the other hand, when p = 1
|S| , the total

probability of ending up in one of the two optimal states is close to 97%, so it can be

said that the CBNN optimally solves the given instance. It is interesting to compute

90 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

the mixing time for p = 1
|S| . In this case, µ = 1 − 1

|S| and we get 1
log(1

µ
)
≈ |S|. If

the CBNN with restarts with p = 1
|S| performs |S| steps, then it will find with high

probability the optimal solution.

CBNNs with restarts are attractive because they are relatively simple: they run

at a constant temperature and we can control the speed of convergence. The caveat

is that the stationary distribution can be very sensitive to the value of p. By carefully

balancing the temperature and the value of p, we can prove results of the type: if

|S| is the size of the state space, then in time O(|S|2) a CBNN with restarts will

find an optimal solution with high probability. We do not consider such results to

be useful: in time |S| we can trivially solve the problem by iterating through every

possible solution. CBNNs with restarts are convenient for some proofs, but do not

seem to be beneficial when solving real problems.

4.4 Proof of asymptotic convergence

The goal of this section is to show that if a competition-based neural network is given

enough time, then it finds an optimal solution with probability 1. As mentioned

multiple times in the chapter, during its operation, the CBNN solver (Algorithm

4) creates a Markov chain. Markov chains are a very convenient tool for analyzing

processes. Our plan is to use well-known facts about them to first show that the

chain of a CBNN converges and then to show that in its stationary distribution only

optimal states have significant probability. Appendix A introduces the properties of

Markov chains that are necessary for the proofs.

CBNNs have two properties that complicate the proof of convergence. The first

one is created by groups in which all variables (neurons) have value 0. If a state

contains such a group, then it represents an infeasible solution. The problem is that

in the CBNN solver, we never turn OFF all variables in a group. This can be seen

from the if statement on line 17 of the general CBNN solver: if the active set is

empty, then the variable is always set to 1. Consider what happens to a state with a

group that is completely OFF. We can get out of this state with nonzero probability

by turning ON one of the variables in the group. But we can not get back into

Chapter 4 Vladislav Haralampiev 91

Neural Networks for Facility Location Problems

this state because we never turn OFF all variables. If the CBNN starts in such a

violating state, then the neural network will get out of it and never return back.

Instead of dealing with this type of cases, it is simpler to remove all states that

contain a group that is completely OFF. From now on, we assume that the state

space S of the CBNN Markov chain does not contain such states. Notice that once

we get inside this cleaned space S, then we always travel inside it. And it is trivial to

find an initial state that does not contain a completely OFF group (turn everything

ON, for example). So cutting out the states with a completely OFF group does not

change at all the CBNN solver (assuming we do not initialize the neural network

with such an infeasible solution).

The Markov chain of a CBNN can be described by its state transition probability

matrix A (see Definition A.0.2). This is the same matrix as the one from Section 4.2

and we use the same encoding of the binary vectors of the state space S as natural

numbers (the numbers need to be shifted to account for the removal of states that

contain completely OFF groups; this is a technical detail). The element A[~vi, ~vj]

contains the probability of transitioning from ~vi to ~vj. This probability is implicitly

given by the Update procedure of the solver (Algorithm 4). The second property

that complicates the proof of convergence is that the transition probability depends

of the temperature T . In terms of Markov chains, the chain is not homogeneous

(see Definition A.0.1). From now on, we assume that the temperature T is fixed

and so the Markov chain becomes homogeneous (the matrix A is constant). Notice

that in the real CBNN solver, the matrix A is piecewise constant. The proof for

constant temperatures can be extended to piecewise constant temperatures and the

convergence results for the fixed temperature case also hold for the complete CBNN

solver that gradually decreases T . Dealing with piecewise constant temperatures

introduces technical details that just make it harder to see the essence of the con-

vergence proof. This is why here only the proof for the fixed temperature case is

given.

Explicitly writing the state transition probability matrix A of the CBNN Markov

chain is tedious. Instead of writing formulas for the entries of the matrix, the

92 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

content of the matrix is described below in text by tracing the code from the Update

procedure of the general CBNN solver (Algorithm 4). The important property to

remember is that a competition-based neural network performs single variable flips.

Intuitively, the probability of a flip is large if it improves the solution. Otherwise, the

probability is small. Assume ~vi and ~vj are two states. For the probability A[~vi, ~vj]

it holds:

� If ~vi and ~vj differ in the values of at least two variables, then A[~vi, ~vj] = 0.

This is because the general CBNN solver only performs single variable flips.

� If ~vi = ~vj, then A[~vi, ~vj] = 1 −
∑

~v 6= ~vj A[~vi, ~v]. That is, if the solver did not

decide to transition to another state, then it stays in the current state.

� If ~vi and ~vj differ in the value of exactly one variable x, then the probability

A[~vi, ~vj] can be written as β · Ã[~vi, ~vj]. Ã[~vi, ~vj] is the transition probability

from the Update procedure of Algorithm 4. β is 1 divided by the number of

variables and it multiplies Ã[~vi, ~vj] because the CBNN solver randomly selects

the variable to update (see line 36 of Algorithm 4). For Ã[~vi, ~vj] there are two

similar cases depending on whether ~vi[x] is 0 or 1.

1. Transitioning from ~vi[x] = 0 to ~vj[x] = 1:

For the current configuration ~vi, let me be the OnCost of the variable x

and let active be the set of variables from the group of x that are in ON

state. The names me and active are directly taken from Algorithm 4.

Notice that active can not be empty because we explicitly removed from

the set of states the configurations that have a completely OFF group.

Following the naming from Algorithm 4, let best be the OnCost of the

variable that competes against x. How exactly best is computed depends

on which variant of the CBNN solver is used. For the group-best CBNN

solver, best is the smallest OnCost among the variables in the active

set (remember that the CBNN solver minimizes the objective function).

For the group-average CBNN solver, best is the average OnCost among

the variables in the active set and corresponds to an imaginary variable.

Chapter 4 Vladislav Haralampiev 93

Neural Networks for Facility Location Problems

If me > best, then Ã[~vi, ~vj] = 1

1+e
∆
T

where ∆ = |me − best|. That is,

the current variable x is worse and the only reason for x to transition

to ON state is the luck factor. If the temperature T is close to 0, then

Ã[~vi, ~vj] = 1

1+e
∆
T

is also close to 0. In the other case, Ã[~vi, ~vj] = 1− 1

1+e
∆
T

.

2. Transitioning from ~vi[x] = 1 to ~vj[x] = 0:

This case is completely analogous to the previous one and a detailed

description of it is omitted.

For showing that a Markov chain has a stationary distribution (see Definition

A.0.3), it is enough to prove that the chain is irreducible and aperiodic (see Theorem

A.0.1).

Lemma 4.4.1. The Markov chain of a CBNN is irreducible.

Proof. A Markov chain is irreducible if any state can be reached with nonzero prob-

ability from any other state in a finite number of transitions (see Definition A.0.4).

Competition-based neural networks allow with nonzero probability single variable

flips. It is clear that by using such flips, any state can be reached from any other in

at most 2 ·n transitions where n is the number of variables. One way to achieve this

is to turn ON all variables in the current state and then to turn OFF the variables

that need to be OFF in the final state.

Notice that states that contain completely OFF groups were explicitly removed

from the state space. Such states are not reachable from others and if we did not

remove them, then the Markov chain formally would not have been irreducible.

Lemma 4.4.2. The Markov chain of a CBNN is aperiodic.

Proof. Definition A.0.5 states what is an aperiodic Markov chain. Intuitively, this

property means that the chain does not alternate between several groups of states.

As an example, consider the chain from Figure 4.10. Starting from state A, we

can return back to it after 2, 4, 6, ... transitions but not after an odd number of

transitions. Such a chain cannot converge to a single distribution because it infinitely

alternates between the states A and B. For every even index in the chain, the

probability to be in A is nonzero. For every odd index, the probability drops to 0.

94 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

Figure 4.10: A Markov chain with a period of 2. In the chain, with probability 1 we
move from A to B and from B to A. Notice that if we start from A, then we return
to this state only on even moves.

Lemma 4.4.1 shows that the Markov chain of a CBNN is irreducible. The Markov

chain additionally has a state ~vi for which A[~vi, ~vi] > 0 (for example, this obviously

holds for a state that is an optimal solution). The fact that the CBNN Markov chain

is aperiodic follows as a consequence of these two properties (see Lemma A.0.1).

Lemma 4.4.3. The Markov chain, corresponding to a competition-based neural net-

work, has a stationary distribution.

Proof. The definition of a stationary distribution is given in Definition A.0.3. It

intuitively says that if a Markov chain has a stationary distribution π, then ini ·Ak

converges to π no matter what the initial distribution ini is. Said in another way,

for every state ~vi and index idx that is large enough it is true that the probability

for the neural network to be in state ~vi at index idx in the chain does not depend

on the index and on the configuration that is used for initializing the CBNN. The

unique vector π of state probabilities (the stationary distribution) can be computed

by solving the system π ·A = π and so it is an eigenvector of A that corresponds to

eigenvalue 1 (see Definition A.0.6 for information about eigenvalues / eigenvectors)

The result that we want to prove is actually a direct consequence of Theorem

A.0.1. The Markov chain of a CBNN is aperiodic and irreducible (Lemmas 4.4.1 and

4.4.2) and from the theorem this means that the chain has a stationary distribution.

Lemma 4.4.3 is the first part of the proof that CBNNs asymptotically converge

to optimal solutions. The lemma shows that if the neural network runs for long

enough, then the states through which it moves start to follow some probability

distribution π. The second part of the proof is to show that in π the probability of

suboptimal solutions can be made arbitrary small. There is a lot of freedom when

Chapter 4 Vladislav Haralampiev 95

Neural Networks for Facility Location Problems

choosing the function F that is minimized by the competition-based neural network.

This is good because it allows many problems to be modeled in a CBNN-compatible

way. The bad side of the freedom is that we can specifically construct unnatural

objective functions that do not align with the expectations of the neural network.

As a result, the neural network does not minimize them. Intuitively, the problem

stems from the fact that the goal of a CBNN is to minimize a global function F ,

but it makes decisions based on local differences of OnCost (see Algorithm 4). The

OnCost estimates the strength of a variable by measuring its contribution to the

objective function F . It is natural to say that if one variable is better than another

one, then enabling the better variable decreases the value of the objective function.

But unnatural objective functions F can be constructed for which this does not hold.

We decided to only prove here that for the p-MiniSum Problem, the group-average

CBNN solver converges to an optimal solution. This proof can be used as a template

for creating other proofs showing that CBNNs converge to optimal solutions for the

problems from Section 5. Another option was to restrict our attention to some

subset of all possible objective functions, like the quadratic functions of Hopfield

networks, and to show the result for them. We decided to not do this because,

first, the result seems to hold for natural objective functions that come from real-

world problems and we did not want to artificially prohibit some of these functions.

Intuitively speaking, if the objective function has a probabilistic interpretation and

is the expected value of something, then the neural network successfully minimizes

it. Second, plugging a different problem in the p-MiniSum proof requires in most

cases only slight modification.

Analytically finding the stationary distribution of an arbitrary Markov chain is

challenging. The property that a stationary distribution satisfies is that it is the

unique probability vector π for which π ·A = π (see Theorem A.0.1). In some cases,

we can “guess” π. Lemma 4.4.4 is one possible way of ensuring that our guess is

indeed the stationary distribution of the Markov chain.

Lemma 4.4.4. Assume we have an irreducible aperiodic Markov chain with state

transition probability matrix A together with a probability distribution π′ such that

96 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

π′[~vi] · A[~vi, ~vj] = π′[~vj] · A[~vj, ~vi] for every pair of states. Then π′ is the stationary

distribution of the Markov chain.

Proof. From Theorem A.0.1 we know that an irreducible aperiodic Markov chain has

a unique stationary distribution π. If π′ satisfies π′ ·A = π′, then it is this stationary

distribution. If π′ · A = r, then r[~vi] =
∑

j π
′[~vj] · A[~vj, ~vi] =

∑
j π
′[~vi] · A[~vi, ~vj] =

π′[~vi]·
∑

j A[~vi, ~vj] = π′[~vi] meaning that π′ = r. This shows that π′ satisfies π′·A = π′

and is the stationary distribution of the Markov chain.

The p-MiniSum problem is discussed in detail in Section 5.1. Its objective

function is written as F =
∑ CFij

CDi
· FLjk
FDj
· dist(i, k). The binary variables CFij

express whether client i is services by facility j. Similarly, the binary variables FLjk

express whether facility j is placed in location k. CDi =
∑

j CFij is the degree of

client i (that is, to how many facilities it is connected). Eventually, CDi becomes

1 for every client because of the group constraints. FDj =
∑

k FLjk is the degree

of facility j. As discussed in Section 5.1, the division by CDi and FDj gives a

probabilistic interpretation to the objective function and helps the neural network

to quickly find a good solution.

Theorem 4.4.1. Assume that the group-average CBNN solver with low constant

temperature T is applied to a p-MiniSum instance. Then, by selecting a low enough

temperature T , in the stationary distribution π of the resulting Markov chain the

probability of the suboptimal solutions can be made arbitrary small.

Proof. A Markov chain is characterized by its state transition probability matrix A.

Lemma 4.4.3 shows that the Markov chain of a CBNN converges to a stationary

distribution π. If we could “guess” what π is, then everything is easy. The problem

is that π most probably can not be written as a simple formula. A workaround is to

slightly change the elements of A so that for the resulting matrix we can “guess” π.

Then use the fact that such small perturbations of the elements of A only slightly

change the stationary distribution (see Theorem A.0.4).

The entries of the matrix A were described in the bullet list at the start of the

section. Consider an entry A[~vi, ~vj] for two states ~vi and ~vj that differ in the value of

Chapter 4 Vladislav Haralampiev 97

Neural Networks for Facility Location Problems

exactly one variable x (the other entries are either on the diagonal or are 0). A[~vi, ~vj]

is of the form β · Ã[~vi, ~vj]. β is a normalization constant that appears because the

CBNN algorithm randomly chooses the variable to update. Ã[~vi, ~vj] is either 1

1+e
∆
T

or 1− 1

1+e
∆
T

. Notice that when the temperature T is close to 0, then Ã[~vi, ~vj] is either

very close to 0 or it is very close to 1. This is because ∆ = |me − best| is always

positive in Algorithm 4 and by pushing T closer to 0, the value of e
∆
T can be made

arbitrary large. It can be verified for the p-MiniSum Problem and a temperature

T close to 0 that if enabling the variable x makes the value of the objective function

worse, then the probability of enabling the variable is close to 0. If enabling the

variable improves the objective function, that the probability is close to 1.

Now we define another Markov chain over the same state space and with a state

transition probability matrix B. Lets take two states ~vi and ~vj that differ in the

value of exactly one variable and for which F (~vi) > F (~vj). Lets denote by ∆1 the

difference |F (~vi)−F (~vj)| and lets set the entry B[~vi, ~vj] of B to be equal to β · 1

1+e
∆1
T

.

For the other direction — the ~vj to ~vi transition, B[~vj, ~vi] is set to β ·(1− 1

1+e
∆1
T

). β is

the same normalization constant as the one from the previous paragraph. Similarly

to the matrix A, when the states ~vi and ~vj differ in the value of more than one

variable, the probability B[~vi, ~vj] is set to 0. The diagonal entries B[~vi, ~vi] are set

to 1−
∑

~v 6=~vi B[~vi, ~v] (if we do not explicitly transition to a new state, then we stay

in the same state). When the temperature T is close to 0, matrices A and B are

very similar. This is because if B[~vi, ~vj] is β multiplied by something that is almost

1, then the ~vi to ~vj transition improves the value of the objective function. As

discussed in the previous paragraph, in this case A[~vi, ~vj] is also β multiplied by

almost 1. When the ~vi to ~vj transition makes the value of the objective function

worse, then the situation is the analogous: in both A and B the (~vi, ~vj) entry is close

to 0. From this reasoning we see that the difference between the matrices A and B

can be made arbitrary small by decreasing T .

There is one degenerate case that we skipped. It is possible for the value of the

objective function to not change when flipping the value of a variable x. This can

happen, for example, if we duplicate a vertex in the input graph. In such a case,

98 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

the corresponding entries for the x flip in the matrices A and B are going to be

β · 1
2

and so the matrices can still be made arbitrary close to each other. It is also

not unreasonable to exclude such degenerate cases from consideration: in practice,

we can always add small noise to the input that will not change substantially the

solution but will break the symmetries.

For the matrix B Lemma 4.4.4 can be applied to show that in the stationary

distribution π, the probability π[~vi] of any state ~vi is γ · e
−F (~vi)

T . The value γ is a

normalization constant that makes
∑

~vi
π[~vi] = 1. For applying Lemma 4.4.4, it

is necessary to show that π[~vi] · B[~vi, ~vj] = π[~vj] · B[~vj, ~vi]. This is trivially true

if ~vi = ~vj. When ~vi and ~vj differ in the values of more than one variable, then

B[~vi, ~vj] = B[~vj, ~vi] = 0 and the equation is also true. The remaining case is a pair

of states that differ in exactly one variable. Take two such states ~vi and ~vj for which

F (~vi) > F (~vj). It needs to be shown that:

π[~vi] ·B[~vi, ~vj] = π[~vj] ·B[~vj, ~vi] ⇐⇒
π[~vi]

π[~vj]
=
B[~vj, ~vi]

B[~vi, ~vj]

By substituting the “guessed” distribution π, for the left side we get:

π[~vi]

π[~vj]
=
γ · e

−F (~vi)

T

γ · e
−F (~vj)

T

= e
−∆1
T

In the above equation, ∆1 denotes |F (~vi) − F (~vj)|. By substituting the transition

probabilities from B, for the right side we have:

B[~vj, ~vi]

B[~vi, ~vj]
=

1
1+e∆1/T

1− 1
1+e∆1/T

=
1

e
∆1
T

= e
−∆1
T

This shows that the left and right sides are equal. The symmetric case with F (~vi) <

F (~vj) can be verified in the same way.

So far, we have shown that π[~vi] · B[~vi, ~vj] = π[~vj] · B[~vj, ~vi] for any pair of

states. From Lemma 4.4.4 it follows that π from the previous paragraph is the

stationary distribution of the Markov chain with state transition probability matrix

B. The matrix A of the CBNN chain can be made arbitrary close to B by decreasing

Chapter 4 Vladislav Haralampiev 99

Neural Networks for Facility Location Problems

the temperature T . This means that by decreasing T , the stationary distribution

of the CBNN chain with matrix A can be made arbitrary close to the stationary

distribution π of the Markov chain with matrix B (see Theorem A.0.4). In π,

the optimal states are exponentially more probable than the other states. As a

consequence, in the stationary distribution of the competition-based neural network

optimal states are also exponentially more probable. Moreover, if ∆1 is the difference

in the value of the objective function F for an optimal and a suboptimal solution,

then the optimal solution is e
∆1
T times more probable. By decreasing the temperature

T , this “gap” in probability can be made arbitrary large. This, combined with the

fact that the sum of the probabilities of all states is 1, means that the probability

of the suboptimal states can be made arbitrary close to 0.

Combined, Lemma 4.4.3 and Theorem 4.4.1 say that for the p-MiniSum Prob-

lem, competition-based neural networks that operate under a low temperature have

a stationary distribution in which the probability of suboptimal states can be made

arbitrary close to 0. If the CBNN is left to run for long enough, then it arrives at

an optimal solution. This completes the proof of asymptotic convergence.

4.5 Speed of convergence

As discussed in Section 4.2, the worst-case time that is necessary for a CBNN with a

fixed temperature to converge to its stationary distribution depends on the second-

largest by absolute value eigenvalue of the state transition probability matrix A.

This quantity can be computed and, for example, given two instances, we can say

which one is simpler for the CBNN solver. The described procedure is not practical,

though. Computing the eigenvalues is expensive because the matrix A is huge. Its

size is the square of the size of the solution space.

Consider how the matrix A looks like. When the temperature is low, the CBNN

accepts with high probability transitions that improve the solution. Transitions that

decrease the quality of the solution are accepted with low probability. This is quite

similar to the hill climbing heuristic. Separate basins of attraction are formed in

100 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

the solution space and they are almost disconnected. In hill climbing, the basins

of attraction are completely disconnected and this is why it is not guaranteed to

find a global optimum (in terms of Markov chains, the hill climbing Markov chain is

not irreducible). In the CBNN case, the basins of attraction are weakly connected.

While this allows the method to find a global optimum, the convergence will be slow.

Markov chains of the described type are called nearly uncoupled chains [45]. It is

well-known that for such chains, the second largest by absolute value eigenvalue is

very close to 1.

Section 4.3 introduced a modification of the CBNN solver that is called CBNN

with restarts. The state transition probability matrix of it is of the form Ar =

(1 − p) · A + p · E for some restart probability p. The matrix E is a matrix of

all 1/|S| where |S| is the size of the state space. A CBNN with restarts behaves

almost in the same way as a regular CBNN, but at every iteration with probability

p it resets the states of its neurons to random values. This operation improves the

connectivity between the different basins of attraction. For such neural networks,

the result below holds:

Theorem 4.5.1. For the second-largest by absolute value eigenvalue µ of the state

transition probability matrix Ar of a CBNN with restarts it is true that |µ| ≤ 1− p.

Proof. We care about the absolute value of eigenvalues. To avoid adding everywhere

by absolute value, when we say that an eigenvalue is the largest or is less than

something, it is assumed that the statement is about the absolute value of the

eigenvalue.

Lets denote by ~v an eigenvector that corresponds to µ, the second-largest eigen-

value of the matrix Ar. From the definition of eigenvectors and eigenvalues (see

Definition A.0.6) it holds that ~v · Ar = µ · ~v. The matrix Ar is a stochastic matrix

and its rows sum up to 1. This means that Ar ·~1 = ~1. Lets compute the expression

~v ·Ar ·~1. If we compute it in the order (~v ·Ar) ·~1 = (µ · ~v) ·~1, we get µ · ~v ·~1. If the

expression is computed in the order ~v · (Ar · ~1) = ~v · (~1), we get ~v · ~1. As a result,

µ · ~v ·~1 = ~v ·~1 and (µ− 1) · (~v ·~1) = 0. From Theorem A.0.2 we know that |µ| < 1,

so (µ− 1) 6= 0. Then ~v ·~1 needs to be 0.

Chapter 4 Vladislav Haralampiev 101

Neural Networks for Facility Location Problems

The matrix Ar is (1 − p) · A + p · E. All entries of the matrix E are equal

to 1
|S| . We already showed that ~v · ~1 = 0, so ~v · E = 0. ~v is an eigenvector

of Ar. Because of this, ~v · Ar = µ · ~v. The expression ~v · Ar can be written as

~v · ((1− p) ·A+ p ·E) = (1− p) ·~v ·A+ p ·~v ·E = (1− p) ·~v ·A. The last equality is

because ~v ·E = 0. Now we have that (1− p) ·~v ·A = µ ·~v ⇐⇒ ~v ·A = µ
1−p ·~v. The

same vector ~v is an eigenvector of the matrix A and the corresponding eigenvalue

is µ
1−p . The matrix A is also a stochastic matrix, so the absolute value of all of

its eigenvalues is less than or equal to 1 (see Theorem A.0.2). This means that

|µ|
1−p ≤ 1 ⇐⇒ |µ| ≤ 1− p.

As a summary of the result, the largest eigenvalue of Ar is 1 and the absolute

value of the second-largest eigenvalue is at most (1− p).

We see that we can control very well the second-largest by absolute value eigen-

value of a CBNN with restarts. The cost of this is that the restart probability p

biases the stationary distribution of the method towards a uniform distribution and

the stationary distribution can be very sensitive to the value of p. The paper [20]

shows one possible way of measuring the sensitivity of a Markov chain to small

perturbations using the notion of mean first passage time. Assume that ~vi and ~vj

are two states. The mean first passage time is the expected number of steps to

reach for the first time ~vj from ~vi. The probability of state ~vj in the stationary

distribution is very sensitive to small perturbations when the maximum mean first

passage time from some state to ~vj is large. Intuitively, if ~vj is an optimal solution,

then the mean first passage time for it measures how long it takes to reach ~vj from

some initial configuration. This is related to the time that is necessary for a regular

CBNN to reach ~vj from a random point. So, if a regular CBNN converges slowly,

then a CBNN with restarts is very sensitive to the value of p.

Remember that CBNNs can solve NP -hard problems. Unless P = NP , we

should not be able to prove that they converge to an optimal solution in polynomial

time. Indeed, the above reasoning shows that the described methods do not possess

“special powers”: they can adapt to the complexity of the input instance, but there

are instances for which the methods are slow. Bounds on the time can be proven,

102 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

but the bounds are larger than the size of the solution space and we do not consider

such results useful. In reality, we do not apply fixed temperature CBNNs or CBNNs

with restarts for solving problems. What we apply is the general CBNN solver from

Algorithm 4. This solver gradually decreases the temperature from a high value

towards 0. As discussed in the next section, there are heuristic reasons to believe

that this helps the method to quickly find a good solution.

4.6 CBNNs in practice

The asymptotic convergence of CBNNs to an optimal solution is a good property. It

says that the method is not internally biased and indeed is a procedure for solving

combinatorial optimization problems. Otherwise, CBNNs would have been a method

that returns for unknown reason a solution of unknown quality. But the runtime

requirements for asymptotic convergence of CBNNs are too bad to be useful in

practice. We want to be able to solve problems in polynomial time. In this section,

it is discussed why CBNNs can still be expected to return good solutions even when

restricted to polynomial time in the size of the input instance. The reasoning is

an intuition, not a proof. Since CBNNs solve NP -hard problems, a real proof for

polynomial time CBNNs should not exist unless P = NP .

From the convergence proof, it can be seen that solving a problem with a

competition-based neural network is equivalent to reaching the stationary distribu-

tion of the corresponding low temperature Markov chain. Computers can simulate

CBNNs with temperatures very close to 0 and the low temperature constraint is not

a major problem in practice. The trouble comes from the time that is necessary to

reach a stationary distribution. It is true that CBNNs reach this distribution no

matter what the initial solution is. But the time that is necessary for this signifi-

cantly depends on the initial solution. Assume that the initial solution of a CBNN

is drawn from a distribution ini. If ini is close to the stationary distribution, then

the neural network converges quickly. If it is not close, then the convergence is slow.

Restricting a CBNN to polynomial time means that the epoch length is also poly-

nomial. The epoch length is the length of the Markov chain. Forcing the length to

Chapter 4 Vladislav Haralampiev 103

Neural Networks for Facility Location Problems

be polynomial and, at the same time, requiring that the chain reaches its stationary

distribution means that the initial distribution ini needs to be quite close to the

stationary distribution. Assume T1 is the “low enough temperature” for solving the

input instance and π1 is the stationary distribution of the CBNN for this tempera-

ture. How to find ini1 from which to start the neural network? It needs to be close

to π1, a distribution in which only optimal states have nonzero probability. If we

knew what the optimal states are, then we would not have used the neural network

to find them. A workaround is to take a temperature T2 that is just slightly larger

than T1. Compute the stationary distribution π2 of the CBNN for T2 and set ini1

to be equal to π2. This works because T1 and T2 differ just slightly and so the state

transition probability matrices for the two temperatures are almost equal. As a re-

sult, π1 and π2 are also very close (see Theorem A.0.4). Now one problem has been

solved, but we face another one: how to choose the initial distribution ini2 for the

temperature T2. For this, a third temperature T3 is taken that is slightly larger than

T2 and the stationary distribution for T3 is used as the initial distribution for T2.

This process can be repeated and, as a result, we get a sequence T1, T2, T3, ..., Tm.

On every step, the stationary distribution for Ti is used as the initial distribution

for Ti−1. Notice that on every step, the temperature grows, and Tm is not a small

temperature. For large temperatures, the stationary distribution of a CBNN is close

to a uniform one. If we make the sequence long enough, then Tm will be large and

we can use the uniform distribution as the initial distribution for Tm. A uniform

distribution is easy to create. This is the essence of the complete CBNN solver

from Algorithm 4 that decreases the temperature after every epoch. The sequence

Tm, Tm−1, Tm−2, ..., T1 was called there a temperature decrease schedule.

We want to repeat again the same idea but from a slightly different perspective.

The explanation is an expanded version of the observations in our paper [44]. The

CBNN solver from algorithm Algorithm 4 can be though of as creating a sequence

of Markov chains for different temperatures. The last chain with the lowest temper-

ature is the one that actually “solves” the problem. The other chains are a type of

preprocessing. Assume that the network has already reached its stationary distri-

104 Chapter 4 Vladislav Haralampiev

Neural Networks for Facility Location Problems

bution for a given temperature. If we only slightly decrease the temperature, then

the stationary distribution will also only slightly change. Which should mean that

only a small number of transitions is necessary to restore it for the new temperature.

Intuitively, the number of steps now should be much smaller than the number of

steps needed to reach the stationary distribution from a random state (solving the

problem from scratch). When the temperature is high, the stationary distribution

is close to a uniform distribution (all transitions are almost equally probable). So

we can assume that for high temperatures, the neural network starts in its equilib-

rium state. We only care about the last Markov chain with the lowest temperature.

Our hope is that the epoch length L is long enough to maintain the network close

to its stationary distribution for all temperatures (as a special case, for the lowest

temperature). We want to again stress the difference with directly “solving” the

given problem. When “solving” a problem, we intuitively want to reach the station-

ary distribution from a random state, while here we already start in a stationary

distribution and only need to maintain it. This should be simpler.

Chapter 4 Vladislav Haralampiev 105

Chapter 5

Applications of CBNNs

The first four chapters are devoted to introducing competition-based neural net-

works and to proving their properties. We have already discussed why the model

is expected to find good solutions to combinatorial optimization problems. In this

chapter, we apply CBNNs to a number of facility location problems to demonstrate

their good empirical performance. The problems are listed below.

� The p-MiniSum Problem (Section 5.1).

This maybe is the first problem that comes to mind when talking about facility

location. We have a number of clients and need to position p warehouses

so as to minimize the transportation costs. In the thesis, when we needed

an example problem, the p-MiniSum Problem was used most of the time.

In Section 5.1, the CBNN solver is evaluated on p-MiniSum instances from

the Bulgarian roads data set. The data set was created specifically for the

experiments in the thesis.

� The p-Hub Problem (Section 5.2).

The goal here is to design a hub network. In this type of networks, there is a

set of locations and hubs. The traffic between the locations is routed through

the hubs. Postal delivery networks and airplane passenger networks are two

examples of systems of this type. The goal of the p-Hub problem is to position

the available hubs in such a way that the total cost of routing the traffic is

minimized. Usually, for facility location problems locating the facilities is

106

Neural Networks for Facility Location Problems

hard. But once the locations are selected, it is easy to assign the clients to

them. The p-Hub problem is unusual because for it both the location step

and the assignment step are hard. In Section 5.2, the CBNN solver is tested

on the Australia Post data set. This is a well-known data set for evaluating

algorithms for the p-Hub problem.

� The p-Defense-Sum Problem (Section 5.3).

In this problem, the goal is to position p facilities so as to maximize the sum of

pairwise distances between the facilities. The p-Defense-Sum Problem is

an example of an obnoxious facility location problem. In obnoxious facility lo-

cation, the goal is to maximize distances instead of minimizing them. Another

problem of this type is locating a garbage dump site: people want to push

such facilities further away from their home. The p-Defense-Sum Problem

is also an example of a facility location problem without clients. The CBNN

solver is evaluated on p-Defense-Sum instances that were derived from the

road network inside Bulgarian cities. The data set was specifically created for

the experiments in Section 5.3.

� The Maximal Covering Location Problem (MCLP) (Section 5.4).

MCLP is from the class of covering problems and is related to the classic Set

cover problem (one of Karp’s 21 NP -complete problems that were shown to

be NP -complete in 1972 [57]). We have a set of populated places and the goal

is to position p cell phone towers so that they cover the maximal number of

populated places. The CBNN solver for the MCLP Problem is evaluated

on two sets of instances. The first one is derived from the map of Bulgaria

and is created specifically for the experiments in Section 5.4. The second set

of instances is created from Steiner Triple Systems. They are a well-known

source of hard instances for set covering problems.

� Flow Intercepting Facility Location (Section 5.5).

In the Flow Intercepting Facility Location Problem, we know the

daily commute routes of people and want to position advertising boards so that

Chapter 5 Vladislav Haralampiev 107

Neural Networks for Facility Location Problems

the boards cover as much of the roads as possible. An obvious difference with

the other facility location problems is that here the clients are not individual

points but are roads. Apart from that, the problem is very similar to the

other set covering problems. The CBNN solver is tested on instances that are

derived from the road network of Sofia. The instances were specifically created

for the experiments in the thesis.

� The Assignment Problem (Section 5.6).

The Assignment Problem is different from the rest of the problems in

this section. It is not usually considered to be a facility location problem

and a polynomial-time algorithm is known for it. We decided to evaluate

competition-based neural networks on the Assignment Problem because

this application illustrates one way of dealing with overlapping group con-

straints. The CBNN solver is applied to randomly generated instances of the

problem.

The field of facility location offers a wide range of problems. We selected the six

problems above because they highlight different aspects of facility location. Overall,

competition-based neural networks demonstrate excellent performance on the test

problems. They are often able to quickly find the optimal solution to the input

instance. When the returned solution is not optimal, it is at most several percent

worse than the optimal one. This is not bad for a method that works out-of-the-

box. The results of the CBNN solver on the test facility location problems are very

competitive to the results of the other high-quality metaheuristics.

108 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

5.1 The p-MiniSum problem

The p-MiniSum Problem, also known as p-Median, is one of the best-known

problems of discrete location theory. The goal of the problem is to locate p facili-

ties while minimizing the sum of distances between demand points and the closest

facility. MiniSum problems originated in the 17th century when Fermat posed the

problem of finding a median point of a triangle (a point that minimizes the sum

of distances to the triangle vertices). In the early 20th century, the problem was

generalized to the case of finding more than one median point among more than

three points (this is called the Multifacility Weber Problem).

The section deals with the graph variant of p-MiniSum. Intuitively, there is a

set of populated places and a road network connecting them. The goal is to locate

p warehouses so as to minimize the sum of distances from every populated place to

the closest warehouse. The problem was studied in the 1960s by Hakimi [40, 39] in

terms of communication networks. Originally, Hakimi allowed locating warehouses

not only in populated places (the vertices of the graph) but also along the edges.

He showed that there is an optimal solution to the problem in which warehouses

are placed only in vertices. The reason is that if a warehouse is in the middle of an

edge, then moving it in one of the two directions along the edge will not decrease the

quality of the solution. This result leads to the modern formulation of p-MiniSum

in which warehouses can only be placed in the vertices of the input graph.

The content of the section is based on our paper [42] that compares different

neural network approaches for the p-MiniSum Problem.

5.1.1 Mathematical definition and known results

The p-MiniSum Problem was formally stated in Chapter 1, Definition 1.2.2. The

input of the problem is a weighted, undirected and connected graph G(V,E) with

positive edge lengths. The number p of facilities is also given. The goal of the prob-

lem is to find a subset of p vertices u1, ..., up that minimizes
∑

c∈V mini∈{1..p} dist(c, ui)

where dist(c, ui) is the distance in G from c to ui. This subset of vertices represents

the locations of the facilities. A weighted variant of the problem exists in which the

Chapter 5 Vladislav Haralampiev 109

Neural Networks for Facility Location Problems

distance from every vertex to the closest facility is multiplied by the weight of the

vertex.

Kariv and Hakimi showed that the p-MiniSum Problem in general graphs is

NP -hard [56]. In trees, the problem can be solved in polynomial time via dynamic

programming on subtrees [56, 98]. It should be noted that if the number of facilities

p is a fixed constant, then the p-MiniSum Problem (and many other facility

location problems) can trivially be solved in polynomial time by iterating through

every possible configuration (in this context, polynomial does not mean fast). In

real-world applications of p-MiniSum, the value of p is usually much smaller than

the total number of vertices. Of course, even for such p, iterating through all possible

ways of placing the facilities quickly becomes too slow. But special algorithms can

be developed for the small p case that are quite fast. For example, in [43] we show

that the 1-MiniSum Problem in k-trees, a generalization of trees, can be solved

in O∗(n · lg(n)) time. This is a subquadratic complexity and is less than the time

that is necessary to compute all pairwise distances between the vertices of the input

graph. From our experience, the complexity of p-MiniSum and most other facility

location problems grows very quickly with the increase of p. Even for relatively

small values of p, exactly solving the problem becomes expensive.

The p-MiniSum Problem in general graphs can be formulated as an Integer

Programming (IP) problem and solved using any of the available IP solvers. One

possible formulation is given below. n in the formulation denotes the total number

of vertices in the graph. The distance between any two vertices ui and uj is denoted

as dist(ui, uj). The binary variables xi,j in the formulation express whether the

client in vertex i is serviced by a facility in vertex j. The binary variables yj express

whether a facility is placed in vertex j. The first group of constraints guarantees that

if a client is serviced by a facility in vertex j, then this facility is indeed opened. The

second group guarantees that every client is serviced by exactly one facility. The

third group says that in total p facilities need to be opened.

110 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

Minimize:∑
i,j∈{1..n}

xi,j · dist(ui, uj)

Subject to:

xi,j ≤ yj ∀i, j ∈ {1..n}∑
j∈{1..n}

xi,j = 1 ∀i ∈ {1..n}

∑
j∈{1..n}

yj = p

xi,j ∈ {0, 1} ∀i, j ∈ {1..n}

yj ∈ {0, 1} ∀j ∈ {1..n}

Even for relatively small instances of p-MiniSum, exactly solving the IP prob-

lem above becomes too slow. Many approximate approaches were developed for

the p-MiniSum Problem. Iteration optimization and heuristics were the earliest

proposed techniques. From these approaches, modifications of vertex substitution

[99] seem to be the most popular. Methods that are based on LP relaxations of

IP formulations of p-MiniSum have also been investigated. More recently, many

metaheuristics like Genetic algorithms, Tabu search and Simulated annealing have

been applied to the p-MiniSum Problem. A recent annotated bibliography of the

literature on solution methods for the p-MiniSum Problem can be found in [84].

5.1.2 CBNN model

The p-MiniSum Problem is used as a working example throughout the thesis.

A model of the problem that is compatible with Hopfield networks was presented

in Section 2.3. This subsection presents a CBNN model of p-MiniSum that uses

the same set of variables. The CBNN-compatible formulation of a problem is not

unique. We present one possible model that seems to be good and that was used

Chapter 5 Vladislav Haralampiev 111

Neural Networks for Facility Location Problems

for the experiments in this section.

For defining a model, we need to specify the set of variables, the set of group

constraints, and the objective function. In the CBNN formulation of p-MiniSum

there are two families of binary variables: CFij and FLjk. CF stands for client-

facility relation and CFij is 1 if and only if the client in vertex i uses facility j. The

FL family of variables models the facility-location relation and FLjk is 1 if and only

if the facility j is placed in vertex k. Figure 5.1 visually illustrates the variables of

the encoding.

Figure 5.1: p-MiniSum. The variables of the CBNN model are actually the edges
in image (not all edges are shown). The edges on the left side represent the client-
facility relations and on the right — the facility-location relations. Solid edges have
value 1 and dashed edges have value 0. The path of solid edges in the image can
be interpreted as saying that the third client (house, left column) uses the second
facility (middle column) that is placed in the third location (right column).

Setting the value of every binary variable of the model to 0 or 1 results in

a configuration in the search space. The configurations do not always represent

feasible solutions. For example, it is possible for both FL01 and FL02 to have value

1. This means that facility 0 is placed in two locations at the same time and the

configuration is not a feasible solution. The set of group constraints of the CBNN

model guarantees that the neural network eventually finds a feasible solution. The

group constraints for the p-MiniSum Problem are written below.

∀i ∈ {1..n}
∑

j∈{1..p}

CFij = 1

∀j ∈ {1..p}
∑

k∈{1..n}

FLjk = 1

n denotes the number of vertices. The first set of constraints guarantees that every

112 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

client is connected to exactly one facility. The second set of constraints guarantees

that every facility is placed in exactly one location.

So far, the CBNN model of p-MiniSum tells the neural network to find a valid

solution. The objective function F is what guides the neural network towards good

solutions. Assuming dist(i, k) denotes the distance between vertices i and k in the

graph, the objective function of p-MiniSum can be written as
∑

i,j,k CFij · FLjk ·

dist(i, k). The term CFij ·FLjk ·dist(i, k) is nonzero only if both CFij and FLjk have

value 1. In this case, the interpretation of the variables is that client i is serviced

by facility j that is placed in location k. When this happens, the distance between

i and k is added to the value of F .

The function F from the previous paragraph directly expresses the goal of the

p-MiniSum Problem. But we can define a better objective function. Remember

that during the operation of a CBNN, the neural network passes through infeasible

configurations. In the final solution, all group constraints are enforced, but this may

not be true for intermediate configurations. The objective function still needs to be

defined for them. In an intermediate configuration, it can happen that client A is

serviced by facility B that is placed in both locations C and D. Adding both the

distance from A to C and from A to D to the value of F seems unnatural. Moreover,

it makes the job of the neural network harder.

A better objective function for the p-MiniSum Problem can be created by

making sure that the function has a meaningful interpretation for the infeasible

solutions. A good way to achieve this is to have a probabilistic interpretation of the

CBNN objective function. When a facility is placed in two locations, it is assumed

that the facility is placed in the first one with probability 0.5 and in the second

one with the same probability. A client that is connected to multiple facilities is

handled similarly. The objective function is defined as the expected value of the sum

of distances from the clients to the facilities that service them. It can be written as∑
i,j,k

CFij
CDi
· FLjk
FDj
· dist(i, k). CDi =

∑
j CFij is the degree of client i. FDj is the

degree of facility j. In this way,
CFij
CDi

is the probability for client i to be serviced

by facility j and
FLjk
FDj

is the probability for facility j to be placed in location k.

Chapter 5 Vladislav Haralampiev 113

Neural Networks for Facility Location Problems

The whole term in the sum is assumed to be zero if there is a division by zero.

This probabilistic objective function is the one that is used in the CBNN model of

p-MiniSum. Notice that when all feasibility constraints are satisfied, then the CDi

and FDj values are all 1 and the value of the objective function is exactly the sum

of the distances from every client to the facility that services it.

5.1.3 CBNN solver

For the experiments with the p-MiniSum instances, the group-average variant of

the general CBNN solver (Algorithm 4) is used. This is the same solver as the one

from the proof of asymptotic convergence of CBNNs from Section 4.4. The solver

uses the p-MiniSum model that was described in the previous subsection and is

applied without modifications.

The CBNN solver is randomized, so it makes sense to perform multiple runs

per p-MiniSum instance and pick the best of the returned solutions. Additionally,

CBNNs have relatively low variance. When performing multiple runs, it is best

to change every time the hyperparameters of the neural network. We change the

number of steps per epoch and the temperature decrease coefficient. Two general

strategies for the hyperparameters were mentioned in Section 3.2: small temperature

decrease with smaller number of steps per epoch or larger temperature decrease with

large number of steps per epoch. For every p-MiniSum instance, we execute the

CBNN solver three times: two times following the first strategy and once following

the second strategy.

The same sets of hyperparameters are used for all instances. The hyperparam-

eters were chosen based on general observations about all data and no instance-

specific tuning was performed. We want to stress here one difference between the

neural networks for classification and the ones for combinatorial optimization. In

classification problems, the neural network needs to generalize information from a

training set and when given a new instance, the network can not automatically

understand how good its prediction is. When solving combinatorial optimization

problems, CBNNs known very well how good their solution is because they can eas-

114 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

ily compute the value of the objective function for the solution. While CBNNs do

not know for sure what is the optimal value of the objective function, they can easily

say whether solution A is better than solution B. This allows instance-specific tun-

ing to be performed: try many combinations of the hyperparameters and pick the

best solution found for the instance. Such tuning can not be done in a simple way

for classification problems because on new data we generally can not automatically

infer if one solution (a label for the input) is more correct than another one.

5.1.4 Test data

The Bulgarian road network is used to generate realistic p-MiniSum instances. For

creating an instance, a rectangular area on the map is selected. All populated

places and roads in this area are extracted and used as an underlying graph of the

instance. The areas are chosen so that they contain between 20 and 90 populated

places. The number of facilities is set to a value between 2 and 6. The resulting

p-MiniSum instances are small enough to be able to exactly compute the optimal

solution in reasonable time using an IP solver. OpenStreetMap [25] is used as

a source of geographic data. The data is extracted with Overpass XML queries

as described in Appendix B. For computing the optimal solution, each instance is

modeled as an integer programming problem and solved using the Cbc mixed integer

programming solver [17]. In total, 50 different rectangular areas were selected. This

gives 50 · 5 = 250 p-MiniSum instances. Four of them are shown in Figure 5.2.

As can be seen from the definition of p-MiniSum, the solution to the problem

is a list of p vertices of the input graph. Once this list is known, assigning clients to

facilities is trivial: every client is assigned to the closest facility. Figure 5.3 shows

an example instance together with one possible solution.

5.1.5 Results

Even without tuning, the results of the CBNN solver on the Bulgarian roads data

set are very promising. The average error on all instances is 0.2% and 87% of

all instances are solved optimally. Here, by error we mean the difference between

Chapter 5 Vladislav Haralampiev 115

Neural Networks for Facility Location Problems

Figure 5.2: Four example p-MiniSum instances that were derived from the road
network of Bulgaria. The dots denote populated places and the lines represent the

road network.

Figure 5.3: An example p-MiniSum instance in which 4 facilities need to be placed.
The dots (vertices) represent the populated places and the 4 selected locations are
marked with an additional circular outline.

the value of the objective function for the optimal solution and for the one that is

returned by the CBNN solver (the difference is written as a percentage of the value of

the optimal solution). Table 5.1 shows the results of the CBNN solver that are split

by the number of facilities p. As expected, p = 2 is the simplest case and the neural

network optimally solves all such instances. p = 6 gives the hardest instances. The

same tendency can be seen for most facility location problems. Their complexity

grows quickly with the increase of p.

116 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

p Error Exact Max. error
2 0% 100% 0%
3 0.2% 87.9% 2.68%
4 0.06% 90.9% 1.45%
5 0.14% 90.9% 2.88%
6 0.57% 66.7% 4.48%

Table 5.1: Results of the CBNN solver on the Bulgarian roads data set. The data
set is split into five parts by the number of facilities to be placed (the p column).
The Error column gives the average error for the instances where the error is the
difference between the optimal solution and the solution that is returned by the
neural network. The difference is written as a percentage of the value of the optimal
solution. The Max. error column gives the maximum error for the group of
instances. The Exact column gives the percentage of the instances in the group
that are optimally solved by the neural network.

5.1.6 Final notes

In our paper [42], we compared three neural network approaches for the p-MiniSum

problem on the Bulgarian roads data set: Hopfield networks (see Section 2.3.1),

Boltzmann machines (see Section 2.3.2) and the group-best variant the CBNN solver.

The results of the group-best CBNN are very close to the ones obtained in this

section using the group-average variant. We want to mention here the difference

between group-best and group-average CBNNs. The first type compares the OnCost

of the current variable to the OnCost of the best active variable in its group. The

second type compares the OnCost of the current variable to the average OnCost of

the active variables in its group. On earlier stages of the optimization, the result of

the comparison can be quite different between the two variants. On later stages of

the optimization, the difference between the two CBNN variants becomes relatively

small and should not significantly affect the operation of the neural network.

The results of both Hopfield networks (HN) and Boltzmann machines (BM) on

the Bulgarian roads data set are very discouraging. While both methods were always

able to find a valid configuration, on average they find solutions that are more than

two times more expensive than the optimal solution. The results of BMs are slightly

better than the results of HNs, but the runtime is significantly longer. Also, the

value of the objective function for the returned solutions just slightly decreases when

Chapter 5 Vladislav Haralampiev 117

Neural Networks for Facility Location Problems

increasing the number of facilities p. And the quality of the solutions is not much

better than the quality of a random solution. This hints that both HNs and BMs

put emphasis on finding valid configurations and almost do not optimize for their

quality. The full experiment with these two types of neural networks is described in

[42]. We just want to mention our conclusions on why they do not perform well. The

poor performance of HNs and BMs seems to follow from a combination of the usage

of penalty terms as a mechanism for enforcing solution validity and the inflexible

neighborhood definition. For Hopfield networks, there is an additional drawback of

complete determinism in the sense that the model only allows moves that decrease

the value of the energy function.

After comparing the results of CBNNs to the results of the two other neural

network approaches, we can conclude that competition-based neural networks sig-

nificantly outperform in solution quality both HNs and BMs. CBNNs are slower

than Hopfiled networks but are much faster than Boltzmann machines.

118 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

5.2 The p-Hub problem

Assume there are N locations and there is traffic between every pair of locations. For

example, in a postal delivery system there may be N clients who send mail to each

other. Ideally, there will be a direct link between each pair of clients. In practice,

deploying such an infrastructure is too expensive. Therefore, usually several hub

locations are selected through which all traffic is routed. Every client is serviced by

exactly one hub. When client A wants to send a package to client B, the package

travels from A to the hub that services A, from there to the hub that services B,

and finally to B (see Figure 5.4). If the number of hubs is P , then the number

of direct links in such a system is around P 2 + P · N . This is much less than

the approximately N2 links that are necessary if every pair of clients was directly

connected. The drawback of the hub system is that the distances, traveled by the

packages, increase (which also increases costs). The p-Hub Problem, sometimes

referred to as USApHMP, asks for the optimal placement of the P hubs so as to

minimize the cost of servicing all traffic. Apart from postal delivery networks, the

problem arises when designing telecommunications networks and airline passenger

networks.

Figure 5.4: Example of a hub network. The larger circles represent hubs. If client
A wants to send a package to client B, then the package goes through the hubs H1

and H2.

For evaluating the CBNN solver on the p-Hub Problem, the Australia Post

(AP) data set [31] is used. Next, the p-Hub Problem is described in terms of

postal delivery. There are N locations in the plane that are numbered with the

integers 1..N . The amount of mail traffic from location i to location j is denoted

as Wij. This amount may not be symmetric. Exactly P of the locations need

Chapter 5 Vladislav Haralampiev 119

Neural Networks for Facility Location Problems

to be designated as hubs and every location needs to be mapped to exactly one

hub. When sending a package from location A to location B, the package is routed

through the hubs of A and B. The cost of delivering one unit of mail is proportional

to the distance traveled. The route of a package consists of three distinct stages:

collection from a source to a hub, transfer between hubs, and delivery from a hub

to a destination. These three stages have different costs per unit of distance. For

example, the transfer between hubs is the cheapest because of economies of scale.

To account for this, in the AP data set there are three multipliers α, β, and γ.

They are used to multiply the distance when computing the cost of a stage. For

a pair of locations i and j, the distance between them is denoted as dist(i, j). If

the route of a package is A → H1 → H2 → B, then the cost per unit of mail is

α · dist(A,H1) + β · dist(H1, H2) + γ · dist(H2, B). Notice that it is possible for H1

to be equal to H2. In this case, the transfer cost is 0 and only the collection and

delivery steps need to be performed. As mentioned in the previous paragraph, the

goal of the p-Hub Problem is to decide which P locations to designate as hubs

and how to assign the other locations to the hubs so that the total cost of servicing

the mail traffic is minimized. The next section describes a quadratic programming

model of this intuitive definition of the p-Hub Problem.

Several variations of the p-Hub Problem exist that are not considered in this

chapter. For example, instead of creating a link between every pair of hubs, it

may be more appropriate to order them in a ring. A truck may cycle through this

ring and deliver all cargo more efficiently. There may be capacity constraints on

the amount of mail that each hub can service. The number of hubs may not be

specified beforehand. Instead, there may be a cost of opening a new hub. In such a

scenario, the p-Hub Problem asks to minimize the cost of opening the hubs plus

the cost of delivering mail traffic for a given period of time. There is also a variant

of the problem in which we want to deliver as much traffic as possible within a given

budget. These problems can still be solved by competition-based neural networks

or their modifications.

120 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

5.2.1 Mathematical definition and known results

Below, one possible quadratic programming formulation of the p-Hub Problem

is given. It has N2 binary variables. The meaning of the variable Zij is that the

client in location i is serviced by a hub in location j. The variables Zjj have special

interpretation: Zjj is 1 iff there is a hub in location j.

Minimize:∑
i,j

α · Zij · dist(i, j) · outi+

∑
i,j

γ · Zij · dist(i, j) · ini+

∑
i,j

∑
k,l

β · Zij · Zkl · dist(j, l) ·Wik

Subject to:

∀i ∈ {1..N}
∑

j∈{1..N}

Zij = 1

∀i, j ∈ {1..N} Zij ≤ Zjj∑
j

Zjj = p

∀i, j ∈ {1..N} Zij ∈ 0, 1

The first set of constraints guarantees that every client is serviced by exactly one

hub. The second set of constraints guarantees that if a client is serviced by a hub in

location j, then there is indeed an open hub in this location. The third constraint

says that exactly p hubs are open. In [77], a very similar formulation to the one

above is given. Several other formulations of p-Hub can be found in the literature.

For example, Campbell gives an integer programming formulation of the problem

with O(N4) variables [15]. The variables are of the form Xijkl with a meaning

that the traffic from i to j is routed through hubs k and l. While solving integer

programming problems is in general easier than solving quadratic programming

problems, the large increase in the number of variables probably makes the integer

Chapter 5 Vladislav Haralampiev 121

Neural Networks for Facility Location Problems

programming formulation less attractive.

As many other facility location problems, the P-Hub Problem in general

graphs is known to be NP -hard [72]. Even if the hubs are already selected, the

allocation step of assigning clients to hubs is still NP -hard [72]. This is in contrast

to most other facility location problems in which the optimal allocation can be found

efficiently.

General integer programming and quadratic programming solvers can be used to

exactly solve a p-Hub instance. Specialized exact solving procedures have also been

developed for the problem. For example, in [77] an LP-based branch-and-bound

method is described. Solving large p-Hub instances is expensive, so many approx-

imate approaches for the problem have been developed. These include problem-

specific heuristics [77, 64], Tabu search [63, 92], Genetic algorithms [1, 73], Simulated

annealing [31], and Variable neighbourhood search [49]. Neural network approaches

have also been applied to the problem. For example, the paper [94] describes a

mapping of p-Hub instances onto a Hopfield network.

5.2.2 CBNN model

This section describes a formulation of the p-Hub problem that is compatible with

competition-based neural networks. Additionally, a modification of the general

CBNN solver is described that reduces the runtime of the method. The modifi-

cation is purely for speeding up the Update function of Algorithm 4 and does not

essentially change the operation of the neural network or the quality of the final

solution. We try to avoid tuning the solver for speed, but in this case, the problem

instances are quite large and the runtime becomes significant.

In the CBNN formulation of p-Hub, there are two types of binary variables:

CHij and HLjk. The first type of variables represent the client-hub relation. In the

final solution, CHij is 1 iff client i is serviced by hub j. The second type of variables

represent the hub-location relation. HLjk is 1 iff hub j is placed in location k.

It is convenient to think of the CH and HL variables as of oriented edges going

from a client to a hub and from a hub to a location (see Figure 5.5). As usual,

122 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

in the intermediate solutions during the operation of the CBNN it is possible for

one client to be serviced by multiple hubs and for one hub to be placed in multiple

locations. That is, intermediate states of the neural network may not represent

feasible solutions. In the final solution, it is guaranteed that there will be no such

violations of the feasibility constraints.

Figure 5.5: CBNN model of p-Hub. On the left are the clients, in the middle are
the hubs, and on the right are the locations (in the p-Hub Problem, the set of
clients coincides with the set of possible locations). The binary variables of the
formulation are the edges in the figure. The two solid edges are an example of

variables with value 1. Intuitively, the solid edges say that the client on the left is
serviced by the hub in the middle that is placed in the location on the right.

The constraints that guarantee the feasibility of the solution are written as fol-

lows:

∀i ∈ {1..N}
∑

j∈{1..P}

CHij = 1

∀j ∈ {1..P}
∑

k∈{1..N}

HLjk = 1

The first set of constraints guarantees that every client is serviced by exactly one

hub. The second set guarantees that every hub is placed in exactly one location. In

terms of CBNNs, these are called group constraints. For every client, its outgoing

edges are placed in one group. Similarly, the outgoing edges of every hub are placed

in one group. The CBNN solver enforces the constraint that in the final solution,

exactly one edge from a group has value 1.

When defining the objective function, it needs to be taken into account that

group constraints from the previous paragraph may be violated in intermediate

Chapter 5 Vladislav Haralampiev 123

Neural Networks for Facility Location Problems

solutions. This is because of the way competition-based neural networks operate. A

possible interpretation of such violations is that a client is serviced by several hubs

and that a hub is placed in several locations. The objective function still needs to

be defined for such states and it needs to be smooth. When a client is serviced by

several hubs, we assume that the traffic from the client splits evenly between the

hubs. Branching hub-location edges are handled in a similar way. Figure 5.6 gives

an example. In the figure, the edges are the variables with value 1. Client C1 is

Figure 5.6: Example of an intermediate state in which a client is serviced by
multiple hubs that are placed in multiple locations. The traffic splits evenly at

each branching point.

serviced by hubs H1 and H2. Hub H1 is placed in locations L1, L2 and L3. Hub

H2 is placed in L4 and L5. At each branching point, the traffic splits evenly. For

example, the C1 → H1 → L1 path services 1
2
· 1
3

= 1
6

of the traffic from C1, so 1
6

of

the traffic from C1 goes through L1. In the same way, we can compute for every

client Ci and every location Lj what fraction of the traffic from Ci goes through Lj.

This fraction is denoted as part(Ci, Lj). For computing the value of the objective

function, we iterate through every pair of clients Ci, Ci′ and every pair of locations

Lj and Lj′ . If Ci is serviced through a hub in Lj and Ci′ — through Lj′ , then the

cost is Wii′ · (α · dist(Ci, Lj) + β · dist(Lj, Lj′) + γ · dist(Lj′ , Ci′)). Note that this

is traffic from Ci to Ci′ . The cost of the traffic in the opposite direction is written

similarly. This cost is further multiplied by part(Ci, Lj) · part(Ci′ , Lj′) because of

the split of traffic at branching points. Finally, the objective function is defined

as the sum of all these multiplied costs. There is one special case, the traffic from

a client to itself. While in this case there is still a collection step and a delivery

step (potentially split between several hubs), the transfer cost is set to 0. It is easy

to verify that for states of the neural network that represent feasible solutions, the

124 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

value of the objective function, defined in this paragraph, is equal to the value of

the function that the p-Hub Problem asks us to minimize. The objective function

from this paragraph also has a meaningful interpretation for intermediate states that

violate the feasibility constraints and is relatively smooth when flipping the values

of the variables.

The described constraints and objective function can already be plugged into

the general CBNN solver from Section 3.2. The resulting algorithm for the p-Hub

Problem is rather slow. One way to speed it up is to notice that the bottleneck of

the algorithm is the computation of the objective function. As described, it requires

N4 time. The CBNN solver performs a sequence of variable updates and each one

requires the objective function to be computed multiple times for slightly modified

states. Say we are performing a variable update for the variable x. Let g be the

group of x and g be the variables from g that are currently ON (have value 1). We

need to compute the objective function for modified states in which all variables

from g are OFF except for a single variable: either x itself or a variable from g.

Moreover, the solver does not care about the exact value of the objective function

F . What it actually needs is the difference between the value of F with x = 1 and

the smallest value of F with a variable from g set to 1. By maintaining certain

additional information, this difference can be computed much faster than in N4

time. The computation is different for client-hub and for hub-location variables, so

the two cases are described separately. The modification of the solver allows it to

perform the same operation with a smaller number of computations and does not

change the logic of the CBNN algorithm or the quality of the final solution.

Assume we need to update the hub-location variable HLjk. Let I be the set of

indexes for which CHij is 1. Changes to the objective function come from pairs of

clients for which at least one is in I (all other costs are the same and will cancel

out when computing the difference in the value of the objective function). The

collection and distribution costs are easily and efficiently handled by precomputing

for every client how much traffic goes out of it and how much traffic goes into it

(these values are known from the beginning). The harder part is the transfer cost.

Chapter 5 Vladislav Haralampiev 125

Neural Networks for Facility Location Problems

For computing it, we maintain the amount of traffic between every pair of hubs.

The CBNN performs variable flips and the traffic between hubs can be efficiently

maintained under such changes. Once this traffic is known, we can iterate through

every hub j′ and its location k′ and add the cost of all the transfer traffic between j

and j′. This completes the computation of the objective function. As described, the

procedure takes at most N · P time. We want to stress that the Update function of

the general CBNN solver only cares about differences of the value of the objective

function and so we compute only the part of the objective function that is not equal

in the two states.

The final part is updating a client-hub variable. Say we want to update the

variable CHij. Again, changes to the objective function come from traffic to / from

client Ci. Computing the collection and delivery costs is done in a similar way as

for hub-location variables. For computing the transfer costs, we first calculate for

every hub the amount of traffic to / from it. This is done in a straightforward way

by iterating through all pairs of a client and a hub. Once the traffic to hubs is

known, we compute the traffic to locations by iterating through hub-location pairs

and branching the hub traffic appropriately. We then iterate through every location

that is connected to hub Hj and add the cost of the traffic to every other location

(the amount of traffic is already computed). The evaluation takes at most N2 time.

This completes the description of the modified CBNN solver for the p-Hub

Problem. In comparison to the general CBNN solver, the only non-standard part

is the more efficient computation of the value of the objective function. Solving

large instances is still quite slow and we put a hard limit of 20 seconds for solving

an instance. For the largest instances, this limits the optimization to 15 - 20 epochs.

Better results can probably be achieved by giving the optimization more time (or

by further tuning the speed of the solver).

5.2.3 Test data and results

The described approach is tested on the Australia Post (AP) data set. This data set

consists 200 locations (postcode districts) together with the mail flow between them.

126 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

The collection cost α is set to 3, the transfer cost β = 0.75, and the distribution

cost γ is 2. This data set was created by the authors of [31]. In the paper, they

additionally describe a procedure for generating smaller instances from the one with

200 locations. Figure 5.7 shows two example inputs. Table 5.2 summarizes the

results of the CBNN solver on the 28 instances from the AP data set.

Figure 5.7: Two example instances from the Australia Post data set.

N P Optimal sol. Error
10 2 167 493.06 0
10 3 136 008.13 0
10 4 112 396.07 0
10 5 91 105.37 0
20 2 172 816.69 0
20 3 151 533.08 0
20 4 135 624.88 0
20 5 123 130.09 0
25 2 175 541.98 0
25 3 155 256.32 0
25 4 139 197.17 0.04%
25 5 123 574.29 0
40 2 177 471.67 0
40 3 158 830.54 0

N P Optimal sol. Error
40 4 143 968.88 0
40 5 134 264.97 0.13%
50 2 178 484.29 0
50 3 158 569.93 0
50 4 143 378.05 0
50 5 132 366.95 0
100 5 136 929.44 2.27%
100 10 106 469.57 1.28%
100 15 90 605.10 0.71%
100 20 80 682.71 3.29%
200 5 140 409.41 0.06%
200 10 111 088.33 0.43%
200 15 95 460.54 4.68%
200 20 85 560.39 1.95%

Table 5.2: Results of the competition-based neural network on the AP data set.
The Error column shows by how much the solution, found by the CBNN, is worse
than the optimal solution for the instance. 0 in this column means that the neural
network has found the optimal solution.

As in [31], the test instances can be divided into two groups: small (N ≤ 50, P ∈

{2, 3, 4, 5}) and large (N ≥ 100, P ∈ {5, 10, 15, 20}). The neural network approach

solves exactly all but two of the small instances. For these two instances, the error

is so small that probably it does not matter in practice. For the large instances

the average error is 1.8%. While the results on the large instances are good, they

Chapter 5 Vladislav Haralampiev 127

Neural Networks for Facility Location Problems

are worse than the results on the small ones. An explanation for this is that the

complexity of the instances grows quickly. One way to measure it is to count the

number of terms in the objective function. This count is proportional to the square

of the number of client-location pairs. For the largest of the small instances, this

value is approximately (50 · 5 · 50)2 ≈ 150 · 106. For the largest instance from the

whole data set, this count is approximately (200 · 20 · 200)2 ≈ 640 · 109. While most

of the time a large fraction of the terms is zero, still, the massive increase shows that

the complexity grows quickly. We put a hard limit of 20 seconds on the execution

time of the CBNN, so it is expected for the results to become worse as the size of

the input increases.

In comparison to the results of other approaches on the AP data set, the perfor-

mance of the CBNN solver is similar to the performance of the Simulated annealing

algorithm from [31]. This algorithms is an improvement of a method that was devel-

oped for Australia Post to decide the locations of mail sorting centers. The method

was used by Australia Post and we can expect that its solutions are good enough

for practical applications. The best results on the AP data set seem to be produced

using Genetic algorithms. The algorithm from [1] is able to exactly solve all of the

AP instances. In comparison to the results of Hopfield networks, the performance

of the competition-based neural network solver is significantly better. To summa-

rize the above, the performance of CBNNs is good and seems to be acceptable for

applications in practice. But recent algorithms for the p-Hub Problem outper-

form the CBNN solver. Maybe there is a better CBNN-compatible model of the

p-Hub Problem that is smaller in size. This most probably will lead to a better

performance in the allocated time.

128 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

5.3 The p-Defense-Sum problem

The p-Defense-Sum Problem is an example of an obnoxious facility location

problem. These problems are characterized by a push objective. The goal of p-

Defense-Sum is to locate p facilities on a network without clients so as to maximize

the sum of pairwise distances between the facilities. Civil and military applications

are known for the model [16].

For an intuitive justification of the p-Defense-Sum Problem, assume that p

military facilities need to be positioned. If an enemy is ever able to conquer them,

then we want to make it as hard as possible for the enemy to establish stable control

over the facilities. By maximizing the sum of distances between the facilities, we

make it more time-consuming and expensive for the enemy to deploy the required

infrastructure for ensuring stable control.

Another closely related model can also be found in the literature, the p-Defense-

Min Problem. This problem asks us to maximize the minimum interfacility dis-

tance. Intuitively, maximizing this distance increases the cost of destroying two

facilities in a single attack. If the enemy just wants to destroy the facilities instead

of controlling them, then the objective function of p-Defense-Min may be more

adequate.

5.3.1 Mathematical definition and known results

The p-Defense-Sum Problem has several slightly different definitions. We use

the definition of unweighted p-Defense-Sum from [16].

Definition 5.3.1. (p-Defense-Sum) Find a list of vertices u1, u2, ..., up that max-

imizes
∑

i<j dist(ui, uj).

The p-Defense-Sum Problem in general graphs was shown to be NP -hard

by Hansen [41]. He also shows that p-Defense-Sum can be solved in polynomial

time when restricted to tree graphs.

The p-Defense-Sum Problem is a special case of the Generic Multifacil-

ity Location Problem (GMLP) considered by Chhajed and Lowe [18]. They

Chapter 5 Vladislav Haralampiev 129

Neural Networks for Facility Location Problems

present an algorithm for GMLP that is designed for a special case of the problem

in which the dependency graph, defined by interactions between pairs of facilities,

is a k-tree. This algorithm can be used for solving p-Defense-Sum instances, but

the time complexity is at least Ω(|V |k).

Kincaid [60] applies two metaheuristics — Simulated annealing and Tabu search,

to small randomly generated instances of p-Defense-Sum. The two metaheuristics

are directly applied in their classical form. A 2-interchange neighborhood is used. In

this neighborhood, a random vertex from the chosen list of vertices is swapped with

a random vertex not in the list. Kincaid concludes that both metaheuristics pro-

duce surprisingly good results and that Tabu search performs better than Simulated

annealing.

The p-Defense-Sum Problem can also be formulated as a 0-1 integer pro-

gramming problem (see, for example, Kuby [69]). One possible formulation is given

below. In this formulation, it is not possible to locate two facilities in the same

vertex.

Maximize:∑
a<b

yab · dist(a, b)

Subject to:

∀a∈{1..n} xa ∈ {0, 1}

∀a∈{1..n}∀b∈{(a+1)..n} yab ∈ {0, 1}

∀a∈{1..n}∀b∈{(a+1)..n} 2 · yab ≤ xa + xb∑
a∈{1..n}

xa = p

Each binary variable xa indicates whether a facility is located in the corresponding

vertex a. The sum constraint guarantees that exactly p facilities are placed in the

graph. The binary variables yab indicate whether the distance between vertices a

and b needs to be added to the value of the objective function. The distance needs

to be added when there are facilities in both vertices a and b. This is represented

130 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

by the 2 · yab ≤ xa + xb constraints.

5.3.2 CBNN model

Assume we need to solve the p-Defense-Sum Problem in a directed weighted

graph G with vertex set v1, v2, ..., vn. One possible CBNN-compatible model of the

problem is given below.

Maximize:∑
xia · xjb · dist(a, b)

Subject to:

∀i∈{1..p}∀a∈{1..n} xia ∈ {0, 1}

∀i∈{1..p}
∑

a∈{1..n}

xia = 1

There are n · p binary variables. Variable xia has value 1 iff facility i is placed in

vertex a. The sum constraints guarantee that every facility is placed in exactly one

vertex. The objective function is the sum of terms of the form xia · xjb · dist(a, b).

The meaning of each term is that if facility i is placed in vertex a and facility j is

placed in vertex b, then the distance between a and b needs to be added to the value

of the objective function. In this way, the distance between every pair of facilities is

actually added twice, but scaling the value of the objective function does not matter

when maximizing it.

The described CBNN-compatible model of p-Defense-Sum assumes that mul-

tiple facilities can be placed in the same vertex. Depending on the structure of the

input graph, this can be beneficial for maximizing the sum of pairwise distances be-

tween the facilities. Locating several facilities in the same vertex sounds unnatural,

so we additionally add the constraint that this should not happen. For enforcing the

constraint, a small modification is made to the general CBNN solver from Section

3.2. Whenever it decides the value of variable xia, the solver first checks if some

other variable xja is 1 (which means that another facility is already placed in vertex

Chapter 5 Vladislav Haralampiev 131

Neural Networks for Facility Location Problems

a). If this happens, then the solver aborts the value update of xia and continues

to the next variable update. The modification guarantees that there is no vertex in

which two or more facilities are located.

5.3.3 CBNN solver

For the experiments in this section, the group-best variant of the general CBNN

solver (Algorithm 4) is used. The solver is modified as described in the previous

subsection to guarantee that no two facilities are placed in the same vertex.

The quality of the returned solutions was excellent from the first attempt, so the

parameters of the solver were not tuned at all. For all instances, we run the solver

just once. The initial temperature is set automatically to the maximum OnCost of

a variable in the initial random solution.

5.3.4 Test data

The test p-Defense-Sum instances are derived from the road network of several

Bulgarian cities (Appendix B describes the process of extracting geodata). To create

an instance, a rectangular area inside a city is selected and all roads are extracted.

In this way, the underlying graph of the instance is created. The roads are the edges

of the graph and the vertices are the intersections of the roads. We additionally

remove vertices of degree one. Figure 5.8 shows the graphs of three of the test

instances.

Figure 5.8: Three example p-Defense-Sum instances.

We choose 32 different areas and for each area set the number of facilities to a

value between 2 and 5. This gives 128 p-Defense-Sum instances. The areas are

132 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

chosen so that the resulting graphs consist of between 40 and 200 vertices. The

instances are relatively small. Competition-based neural networks can quickly solve

larger problems. The reason for restricting to small instances is to be able to compute

the exact solution with a method that is different from CBNNs. Surprisingly, the

integer programming formulation from the previous section performs very badly

even for the smallest instance (we used the CBC mixed integer programming solver

[17]; it was too slow even for 40 vertices and 4 facilities). In the end, the optimal

solutions for the instances were computed by an optimized backtracking algorithm.

5.3.5 Results

The results of competition-based neural networks on the Bulgarian cities data set

are excellent. The described CBNN solver quickly finds an optimal solution to 127 of

the 128 instances. Figure 5.9 shows the only instance that is not solved optimally.

For this instance, the CBNN solver finds a solution of value 3098.676, while the

optimal solution has value 3115.645.

Figure 5.9: The only instance from the Bulgarian cities data set that is not solved
optimally by the CBNN solver. In the instance, 3 facilities need to be positioned.

Chapter 5 Vladislav Haralampiev 133

Neural Networks for Facility Location Problems

5.4 The Maximal Covering Location Problem

When locating private facilities, the decision maker usually wants to maximize the

profit. Because of this, the resulting abstract model is of MiniSum-type, in which

the goal is to minimize the sum of distances or something similar. Unlike private

facility location, defining an acceptable objective function for public facility location

is more complicated. The cost of a public facility is paid by every taxpayer and the

chosen location of the facility needs to balance the interests of everyone. According

to [22], two types of objective functions are usually employed: functions that are

based on the total weighted distance and functions that minimize the distance from

the furthest user of a facility. The second option is the basis of the class of covering

facility location problems.

The Maximum Covering Location Problem (further called p-MCLP) is

one of the first studied covering problems. It was introduced in 1974 by Church

and ReVelle [22]. In the same year, a similar problem was also studied by White

and Case [105]. The goal of p-MCLP is to locate p facilities while maximizing

the covered population. To get an intuition about the problem, we describe an

imaginary situation where it may naturally appear. Assume that medical service

needs to be provided to a rural area. The area consists of a network of populated

places. To provide the service, we need to choose a subset of the populated places

where to build the necessary infrastructure. Each of the facilities that we build

can only provide service to populated places within a given distance. We want

to provide medical service to everyone while spending as little as possible. The

number of facilities usually is a good measure of the expenses, so we want minimize

the number of opened facilities. Sadly, it is often the case that, for example, 5

facilities are enough to cover 98% of the population, but 10 facilities are necessary

to cover everyone. In this case, when the budget is fixed, it makes sense to open

5 facilities and provide alternative specialized access for the rest of the population.

We arrived at the p-MCLP Problem. Our budget allows us to open p facilities

and the goal is to locate them in such a way that the number of covered populated

places is maximized. Review of several other applications of p-MCLP can be found

134 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

in [21] and [87]. Apart from obvious applications like locating cell phone towers,

in practice, p-MCLP can be useful in conservation biology [95], for airplane crew

scheduling, and for some other scheduling problems.

In this section, we study the unweighted p-MCLP Problem. By unweighted it

is meant that the goal is to maximize the number of covered populated places and

not the total covered population. There is a closely related weighted version of the

problem and the difficulty of both of them seems to be comparable. The classical set

cover problem in which we want to find the minimal number of facilities that are nec-

essary to cover all populated placed is also closely related to p-MCLP. Many other

related covering problems exist. We sometimes want to cover as many populated

places as possible within a distance S, but there is an additional requirement that

every populated place needs to be within distance T > S from a facility. Intuitively,

we want to provide good service to as many people as possible. But we need to

provide some (potentially bad) service to everyone. This problem is called MCLP

with Mandatory Closeness Constraints [22]. In another class of problems,

the goal is to locate p facilities so as to minimize the maximum distance from a

populated place to a facility. Such problems are called p-Center. Notice that in

p-MCLP there is a hard limit on the distance from a facility, while in p-Center

we want to minimize this maximum distance. The second case is appropriate for

situations in which the quality of the service decreases with distance, but long dis-

tances are still acceptable. The first case is for situations like responding to medical

emergencies where responding withing a given time limit is crucial. There are many

more related covering problems, some of them are described in [107].

5.4.1 Mathematical definition and known results

In the formal definition of unweighted MCLP, we are given n sets and a number p.

We need to choose p of the sets so that the size of the union of the chosen sets is

maximized. The problem from the previous section can be transformed into such a

formulation by generating, for every possible facility location, the set of populated

places that are covered by the facility.

Chapter 5 Vladislav Haralampiev 135

Neural Networks for Facility Location Problems

One possible integer programming formulation of MCLP is given below. Assume

there are n sets S1, S2, ..., Sn. Each set consists of some of the the integers from 1

to m. For every integer i ∈ {1..m}, we define Ci to be the indexes of the sets from

S1, ..., Sn that contain i. The IP formulation has two families of binary variables:

x1, x2, ..., xn and y1, y2, ..., ym. The variable xi is 1 iff the set Si is selected. The

variable yi is 1 iff the element i is covered by a selected set.

Maximize:∑
i∈{1..m}

yi

Subject to:∑
i∈{1..n}

xi = p

∀i∈{1..m} yi ≤
∑

j∈Ci
xj

∀i∈{1..n} xi ∈ {0, 1}

∀j∈{1..m} yj ∈ {0, 1}

The first constraint guarantees that exactly p facilities are placed. Each of the

constraints in the second group can be rewritten as yi =>
⋃
j∈Ci xj. They say that

if we think an element i is covered, then there is a selected set that covers it. The

last two sets of constraints mean that all variables are binary.

The IP formulation above can be directly used for solving p-MCLP instances.

According to [22], in their experiments, in 80% of the cases a Linear Programming

(LP) relaxation of the problem returned a solution that consisted of only zeroes and

ones (as a consequence, the same solution is optimal for the original IP problem).

The remaining instances in their experiments were resolved manually by inspection.

LP solvers are efficient and can be used for solving quite large instances. When

the resulting solution is not all 0-1, different Branch and Bound schemes and other

branching procedures can be used. For example, the paper [35] describes a La-

grangian heuristic for solving p-MCLP instances. It should be noted that it often

makes sense to preprocess the given instance by applying reduction rules. One sim-

136 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

ple reduction rule is to remove a candidate location if what it covers is a subset of

the elements that are covered by another location (so the other location is always a

better option). More complex reduction rules can also be defined. Such rules can

significantly decrease the size of the instance being solved. Additionally, heuristic

methods exist for decomposing an instance into several smaller and easier ones [91].

P-MCLP instances in practice tend to be relatively simple. When generating

test instances for this section, we noticed that a straightforward greedy algorithm

is often able to find a very good solution (even an optimal one in many cases). The

algorithm is to add every time the set that covers the largest number of uncovered

elements. It can be proven that the algorithm has an approximation ratio of 1− 1
e

[47]. While in practice this algorithm may perform quite well, it is known that

the bound is essentially the best possible unless P = NP [33]. Several extensions

of the algorithm above exist that improve the solution quality. For example, an

interchange heuristic can be used. In this heuristic, we try to substitute a chosen

set with another one if this increases the number of covered elements. Subsequently,

a local search procedure can be applied to further improve the solution.

Many of the well-known metaheuristics for combinatorial optimization have been

applied to the p-MCLP problem or some of its variants. The paper [5] describes

a Genetic algorithm approach for the problem. A Simulated annealing method is

described in [52]. Tabu search [59] and interchange heuristics [86] have also been

applied.

5.4.2 CBNN model

There are different ways to model the p-MCLP Problem for solving with a CBNN.

One of them is described in this subsection. The previous subsection defines p-

MCLP as a problem on sets. For convenience, here we call clients the m elements

of the union of all sets. Each set is called a possible location of a facility. The p-

MCLP Problem is to choose p of the locations so that the union of the clients that

are covered by them is maximized. The CBNN model of the p-MCLP Problem

has two families of binary variables: cfij and fljk. Intuitively, each client chooses

Chapter 5 Vladislav Haralampiev 137

Neural Networks for Facility Location Problems

which facility to use. The variable cfij is 1 iff client i uses facility j. The fact

that client i has chosen facility j does not mean that the client is serviced. If the

facility is too far from the client, then he will receive no service. The variables fljk

express whether facility j is placed in location k. The constraints below enforce the

feasibility of the solution.

∀i∈{1..m}
∑

j∈{1..p}
cfij = 1

∀j∈{1..p}
∑

k∈{1..n}
fljk = 1

The first family of constraints guarantees that every client has chosen exactly one

facility. The second family of constraints guarantees that every facility is placed in

exactly one location.

Consider a pair of variables cfij and fljk such that the value of both of them

is 1. This configuration means that client i has chosen facility j that is placed

in location k. Client i is covered if location k covers him. If all constraints

from the previous paragraph are satisfied, then the number of covered clients is∑
i,j,k cfij · fljk · |i ∈ Sk|. Here |i ∈ Sk| is 1 iff i ∈ Sk, otherwise it is 0. The goal of

the p-MCLP Problem is to maximize this sum and so it looks like a good objec-

tive function for the CBNN model. The problem is that during the operation of the

neural network, the constraints from the previous paragraph may not be satisfied. In

the final solution all constraints are going to be enforced, but in intermediate states

during the optimization it is possible for a client to choose multiple facilities and

for a facility to be placed in multiple locations. Similarly to the p-MiniSum Prob-

lem, it seems reasonable to have a probabilistic interpretation of such infeasible

configurations. When a client is connected to multiple facilities, the interpretation

is that the client uses each one of them with equal probability. If a facility is con-

nected to multiple locations, then it is placed in each one of the locations with equal

probability. The objective function is then the expected number of covered clients.

This can be written as
∑

i,j,k
cfij
degi
· fljk
degj
· |i ∈ Sk|. degi and degj denote the number of

138 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

facilities to which client i is connected and the number of locations to which facility

j is connected. When all constraints are satisfied, this sum is exactly the number of

covered clients.

The described model can be directly plugged into the general CBNN solver (Al-

gorithm 4). In our experiments, we use a modified version of the solver because some

of the test instances are quite large and the general solver becomes too slow. The

modification is the update all variables at once one that was was discussed in Section

3.2. The general solver consists of a sequence of variable updates. Every variable

update needs to compute the OnCost of all variables in the corresponding group.

The OnCost intuitively measures the contribution of the variable to the value of

the objective function and computing it is slow. The modification of the solver is to

performs all variable updates at once. To achieve this, we first compute the OnCost

of every variable. We then iterate through all variables, perform the update logic

and remember for which variables we need to change their value, but we do not

modify anything. Since we are not changing anything, getting the OnCost of every

variable is just a table lookup. After the update logic is executed for all variables,

we perform at once all the stored changes of variable values. The described opera-

tion substitutes the sequence of variable updates that happen during one iteration

of the general CBNN solver. Nothing else is changed. Apart from being faster,

the described procedure is closer to the operation of a parallel implementation of

competition-based neural networks on certain hardware. In our experiments with

p-MCLP instances, there is no significant difference in solution quality between the

general and the modified solvers.

5.4.3 Test data and results

The CBNN model from the previous subsection is evaluated on two sets of p-MCLP

instances: Bulgarian cities and Steiner Triple Systems. The first set of instances is

generated specifically for the experiments in this section. The second set is a well-

known source of hard instances for evaluating set covering algorithms. The instances

in the first set are relatively small and the general CBNN solver is used for them

Chapter 5 Vladislav Haralampiev 139

Neural Networks for Facility Location Problems

without modifications. The instances in the second set are larger and we use the

modified CBNN solver that was described in the previous subsection. No reduction

rules or other preprocessing steps were applied to the instances.

Bulgarian cities

The first set of test instances is generated using data about the populated places

in Bulgaria. Intuitively, we are placing facilities that provide service within some

distance D (aerial distance, not road distance). For generating an instance, we select

a rectangular geographic area and extract all populated places within it. After this,

a number of facilities p is chosen and the distance limit D is computed so that

the described greedy algorithm for p-MCLP covers a specified percentage C of the

populated places. Once D is selected, for every populated place, we compute the set

of covered populated places if a facility is located in it. This results in a p-MCLP

instance. Additionally, the instance is discarded if the greedy algorithm is able to

optimally solve it. The areas are chosen so that the number of populated places is

around 100. The value for C is chosen to be around 80% - 95%. The number of

facilities p is set to a value between 4 and 6. The sizes of the instances are small

enough to be able to find the exact solution in reasonable time by an optimized

iteration through all solutions. The CBNN solver can handle much larger instances.

Figure 5.10 shows one example p-MCLP instance.

Figure 5.10: A p-MCLP instance. The green and red dots are the populated
places. The red dots are the locations where facilities are placed. The large circles

show the areas that are covered by the facilities.

Table 5.3 shows the results of the CBNN solver on the Bulgarian cities instances.

The CBNN solver is able to solve optimally 67% of the instances and the quality

140 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

of the solutions is reasonable for all instances. On instance 7, the CBNN solver

performs worse than the greedy algorithm. For all other instances, it outperforms

the greedy algorithm. It is interesting that for the Bulgarian cities instances, the

original CBNN solver produces better solutions than the modified solver. When the

number of epochs for the modified solver is increased, then the gap in solution quality

starts to narrow. It seems that on the Bulgarian cities data set the modified solver

needs a more gradual temperature decrease schedule to achieve the same solution

quality as the general solver.

Test Greedy CBNN Opt.
1 93 95 95
2 120 124 124
3 59 61 61
4 57 58 58
5 78 78 82
6 93 96 96
7 55 54 57
8 40 41 41
9 58 60 60
10 85 88 88
11 87 92 92
12 87 93 93
13 99 99 103

Test Greedy CBNN Opt.
14 89 93 93
15 75 75 79
16 71 73 73
17 65 65 67
18 76 76 77
19 87 91 91
20 88 92 93
21 61 63 64
22 56 57 57
23 51 53 53
24 93 93 98
25 107 113 113

Table 5.3: Results on the Bulgarian cities data set. The numbers in the Greedy,
CBNN and Opt. columns show how many populated places the corresponding
algorithm was able to cover.

Steiner Triple Systems

A Steiner Triple System (STS) is a set A together with a family B of subsets of size

3 from A with the property that every pair of elements from A appears in a unique

triple from B. The problem, posed on a STS, is to find the smallest subset of A

that covers all elements from B. In terms of the p-MCLP Problem, the elements

of A are the possible locations. The subsets from B are the clients. Each client

is covered by exactly 3 of the locations: the ones that form the client-subset. The

STS covering problem has many symmetries and was specially chosen to be hard for

set covering algorithms. More information about the problem and a description of

Chapter 5 Vladislav Haralampiev 141

Neural Networks for Facility Location Problems

one possible solving procedure can be found in [78]. A Steiner Triple System exists

iff |A| ≡ 1 or 3 (mod 6). It is interesting that up to around year 2000, the exact

solution of STS covering instances with |A| greater than 81 was not known. Even

now, we do not know the exact solutions for instances of size that is more than

several hundred.

The STS covering problem asks for the minimal number of facilities that are

necessary to cover all clients, while p-MCLP seeks for the maximal number of

covered clients using a given number p of facilities. To convert an STS covering

instance to a p-MCLP instance, we set p to be equal to the answer of the STS

covering problem (the answer is computed by another method). For the resulting

p-MCLP instance, we want the CBNN solver to cover all clients. STS covering

instances together with their optimal solutions are taken from [6]. Table 5.4 shows

an STS instance with |A| = 9 and the corresponding instance of the p-MCLP

problem.

STS Covering instance
2 3 4
1 3 5
1 2 6
5 6 7
4 6 8
4 5 9
1 8 9
2 7 9
3 7 8
1 4 7
2 5 8
3 6 9

p-MCLP instance
2 3 7 10
1 3 8 11
1 2 9 12
1 5 6 10
2 4 6 11
3 4 5 12
4 8 9 10
5 7 9 11
6 7 8 12

Table 5.4: An STS covering instance with |A| = 9 and the corresponding p-MCLP
instance. Each row of the STS instance on the left corresponds to a client and the
three numbers give the identifiers of the facilities that cover this client. On the right
is the p-MCLP instance. Each row of it corresponds to a facility and gives the
identifiers of the clients that are covered by the facility. The optimal solution of the
STS instance is 5, so in the p-MCLP instance, p is set to this value.

The results of the modified CBNN solver are shown in Table 5.5. The STS

instances are quite large. For example, the last one has 61 · (81 + 1080) ≈ 70 000

variables. To keep the runtime of the neural network small, the modified CBNN

142 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

solver is used in the experiments. For the instances from the STS data set, it seems

that this does not degrade the quality of the returned solutions.

Instance CBNN Optimal Error
9 12 5 12 12 0
15 35 9 35 35 0

27 117 18 117 117 0
45 330 30 323 330 2.1%
81 1080 61 1066 1080 1.3%

Table 5.5: Results of the modified CBNN solver on the STS instances. The name
X Y Z of an instance means that there are X facilities, Y clients and Z facilities are
enough to cover all clients.

Chapter 5 Vladislav Haralampiev 143

Neural Networks for Facility Location Problems

5.5 Flow Intercepting Facility Location

In the p-MiniSum Problem and in many other facility location problems, the

clients specially travel to a facility for receiving some service. The setting is different

in flow interception problems. Intuitively, there is a city in which people travel to

work. Along their paths we can open facilities. The main goal of every client

(person) is to get to work, but if he passes by a facility, then he will receive its

service. For example, the facilities may be advertising boards. We want to position

some number of them along the roads so that as many people as possible see the

advertisement. As another example, we want to position gas stations or restaurants

along the roads so as to maximize the number of potential clients. This type of

problems are called Flow Intercepting Facility Location (FIFL) problems.

In the problem that is considered in this section, we are given a graph (city)

together with a set of paths in this graph. The paths correspond to the daily

commute routes of the people that live in this city. There is additionally a budget

of p advertising boards. Our goal is to optimally position these boards so that as

many people as possible see the advertisement. Seeing an advertisement is binary,

either yes or no. It does not matter if you saw the advertisement only once or you

saw it ten times along your route.

Flow Intercepting Facility Location problems have several variants. Ob-

viously, the paths can be weighted or unweighted (this section deals with unweighted

paths). The number of facilities to open can be pre-specified or we may want to

minimize the number of facilities that are necessary to cover all traffic. There may

be a cost associated with positioning a facility and the goal may be to maximize

the revenue that is defined as income from the traffic minus the cost of opening the

facilities. Review of some of the FIFL problems and their solution methods can be

found in [9].

In Section 5.4, the Maximal Covering Location Problem was presented.

It can be noticed that this problem is very similar to the FIFL problems. In fact,

the problem is the same: cover as many points as possible. But in flow intercepting

problems, the points are actually paths and for covering a path, a facility needs

144 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

to be placed on it. It makes sense to consider flow intercepting facility location

problems as a separate class of problems because the paths give special structure to

the instances that is at the same time a challenge and an opportunity for obtaining

better solutions.

5.5.1 Mathematical definition and known results

Assume there is a graph with vertices v1, v2, ..., vm together with a set of n paths

π1, π2, ..., πn. The goal of the FIFL Problem is to locate p facilities on the graph

so as to maximize the number of covered paths. A path is covered if at least one

facility is located on it. Generally speaking, a facility can be placed both in a vertex

or along an edge of the graph. It is easy to prove that there is an optimal solution in

which facilities are placed only in vertices [7]. This is because if a facility is located

along an edge, then it can be moved in one of the two directions until it hits a vertex

and the movement will not change the quality of the solution. The set of locations

can further be restricted to the starting points of the paths together with their

intersection vertices. For simplicity, in this subsection we allow placing facilities

only in the vertices of the input graph and do not use other ways of reducing the

size of the set of possible locations.

An Integer Programming formulation of the FIFL problem is given below.

Maximize:∑
xj

Subject to:

∀j∈{1..n} xj ≤
∑
vi∈πj

yi

∑
i∈{1..m}

yi = p

∀i∈{1..m} yi ∈ {0, 1}

∀j∈{1..n} xj ∈ {0, 1}

There are two set of variables, xj and yi. The variable xj is 1 iff the path πj is covered.

Chapter 5 Vladislav Haralampiev 145

Neural Networks for Facility Location Problems

The variable yi is 1 iff there is a facility in vertex vi. The first set of constraints

guarantees that if a path is considered to be covered, then there is at least one open

facility on the vertices that comprise the path. The second constraint guarantees

that exactly p facilities are placed in the graph. The rest of the constraints say that

all variables are binary.

According to [9], the FIFL Problem is NP -hard. This is expected because set

covering is NP -hard and is closely related to FIFL. For exactly solving an instance

of the problem, the integer programming formulation above can be used together

with any available IP solver. In [7], a specialized branch-and-bound method for the

problem is described. Greedy algorithms also exist. Their main idea is to choose

vertices that cover the largest number of still uncovered paths. Such algorithms

have surprisingly good performance on real-world instances [7, 9].

5.5.2 CBNN model

As already mentioned, the Flow Intercepting Facility Location Problem

is actually the Maximal Covering Location Problem from Section 5.4 that is

stated over a special graph. We can use the described CBNN model of the Maximal

Covering Location Problem from Section 5.4 to model FIFL instances. For

this, we call clients the n input paths. The locations are the m nodes along the

paths. Using this analogy, the CBNN formulation from Section 5.4 can be written

as below.

Maximize:∑
i,j,k

cfij
degi

· fljk
deg′j

· |Nodek ∈ Pathi|

Subject to:

∀i∈{1..n}
∑

j∈{1..p}
cfij = 1

∀j∈{1..p}
∑

k∈{1..m}
fljk = 1

146 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

The interpretation of the variables is the same as the interpretation for the

Maximal Covering Location Problem. Having cfij = 1 and fljk = 1 means

that if client (path) i is covered at all, then it is covered by facility j that is placed

in location k. The final decision of whether the path is covered is pushed to the

objective function: the term |Nodek ∈ Pathi| is 1 if and only if Nodek is indeed

along Pathi. Notice that there may be several facilities along a given path and we

should not count the path to be covered multiple times. This is achieved by the first

set of group constraints guaranteeing that a path is connected to exactly one facility.

The second set of group constraints guarantees that a facility is placed in exactly

one location. The degi and deg′j in the objective function stand for the number

of facilities that are connected to client i and for the number of locations that are

connected to facility j (client i is connected to facility j iff cfij = 1). In the final

solution, all these values are 1, but in intermediate solutions, the group constraints

may be violated and these values may not be 1. The form of the objective function

is specially chosen so that it has good behavior for such intermediate solutions (the

same objective function is used in Section 5.4, where the reasoning behind it is

explained).

The CBNN model of a problem is not unique. Because the model above coincides

with the one for the Maximal Covering Location Problem, we give another

possible CBNN formulation of the FIFL Problem. There are two sets of binary

variables, xij and ykj. Every pair of a path i and a vertex j along it corresponds to

a variable xij. The value 1 of a variable xij says that if the path i is covered at all,

then it is covered by a facility in vertex j. The variables ykj correspond to pairs of

a facility k and a vertex j. ykj is 1 iff facility k is placed in vertex j. The solution

feasibility constraints are written as below.

∀i∈{1..n}
∑

j∈{1..m}
xij = 1

∀k∈{1..p}
∑

j∈{1..m}
ykj = 1

These group constraints guarantee that every path is connected to exactly one vertex

Chapter 5 Vladislav Haralampiev 147

Neural Networks for Facility Location Problems

and every facility is connected to exactly one vertex. They do not remove the

possibility for two facilities to be placed in the same location. In this case, we

should be careful to not overcount the number of covered paths. The easiest way

is to ensure that in the final configuration no two facilities are placed in the same

vertex. Guaranteeing this results in overlapping group constraints: every facility

needs to be placed in exactly one vertex and every vertex needs to be connected

to at most one facility. Overlapping group constraints are discussed in Section 5.6,

where we deal with the Assignment Problem. The same idea of pushing one of

the constraints to the objective function can be applied here. The objective function

to maximize becomes
∑ xij

degi
· ykj
deg′k
· 1
deg′′j

. When both xij = 1 and ykj = 1, then the path

i is serviced through a facility in vertex j that is indeed opened. This means that 1

needs to be added to the number of covered paths. This value 1 is scaled so that the

objective function has good behavior for infeasible intermediate states in which a

facility is placed in multiple vertices or a path is serviced through multiple vertices.

The scaling coefficients are degi, deg
′
k and deg′′j . degi in the objective function is the

degree of path i (to how many locations it is connected in the current configuration).

Similarly, deg′k is the number of locations to which facility k is connected. deg′′j is

the number of facilities to which location j is connected. If any of the degi, deg
′
k,

and deg′′j values is zero, then the corresponding term in the sum is set to 0. In the

final solution, the feasibility constraints are satisfied and so degi and deg′k have value

1. The division by deg′′j is the way of enforcing the overlapping group constraints. It

makes it unattractive to place multiple facilities in the same vertex and, in the local

minima of the objective function, there will be no such violations. In fact, there

could be such violations if the optimal solution is the same for p− 1 and p facilities

(that is, we can open more facilities than are needed to cover all paths). But in such

a case, we can discard any of the violating facilities without changing the quality of

the solution. Overlapping constraints are discussed in more detail in Section 5.6.

148 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

5.5.3 CBNN solver

For the experiments with the FIFL instances, we use the group-best variant of the

general CBNN solver (Algorithm 4). For the first formulation that is based on the

model of the maximal covering location problem, we additionally apply the update

all at once modification from Section 3.2. That is, for all updates during an epoch,

we compute the updated values of the variables but do not apply them immediately.

The new values are stored an applied at once at the end of the epoch. This allows

the solver to precompute OnCosts and other information to speed up the updates.

5.5.4 Test data and results

For generating test instances, we selected 10 rectangular areas from Sofia and ex-

tracted the road network in them as described in Appendix B. After that, for every

rectangular area, we generated 400 random non-self-intersecting paths and itera-

tively selected 80 of them. Every path that is added to an instance is chosen so that

it has several intersections with the previously added paths. The idea is to make

the generated instances dense enough to be interesting. Random paths are used

instead of shortest ones because shortest paths often seem to have a structure of the

following type: go as quickly as possible to a main street, use the main street for as

much as possible, and then turn to the final destination. This creates high-traffic

junctions and in turn simplifies the instance because covering such junctions will

probably give an optimal solution. Random paths make the traffic more even and

deciding where to place facilities becomes harder. An example FIFL instance is

shown in Figure 5.11.

For getting a complete FIFL instance, we also need to specify the number of

facilities p. This number is set to a value between 2 and 6. The result is a set

of 50 instances on which the CBNN solver is evaluated. The optimal solutions for

the instances are computed using the described IP formulation and the Cbc mixed

integer programming solver [17].

The CBNN solver that uses the first of the two described models of the FIFL

Problem (the model that is taken from the Maximal Covering Location

Chapter 5 Vladislav Haralampiev 149

Neural Networks for Facility Location Problems

Figure 5.11: An example instance of the Flow Intercepting Facility
Location Problem. The 80 paths in the instance are drawn using different
colors. The coordinates of the junctions are kept, but the exact shape of the

streets between the junctions is simplified to straight lines.

Problem) shows good performance on the test instances. From the set of 50

instances, it optimally solves 47. The remaining 3 instances are all with a number

of facilities p equal to 6 and for them the CBNN solver is able to cover one path less

than in the optimal solution. This is not bad, but we expected that the solver will

optimally solve all instances. The reason is that the greedy algorithm that selects

locations covering the maximal number of still uncovered paths performs extremely

well of the FIFL instances, so they should be easy.

The results of CBNN solver applied with the second model of the FIFL Prob-

lem are worse. It optimally solves approximately half of the instances. For both

models, the runtime of the solver is restricted to 10 seconds. We additionally per-

formed an experiment in which the CBNN solver with the second model was exe-

cuted with a time limit of 2 minutes (in our opinion, this is too much for such small

instances). In this case, the solver optimally solved all 50 inputs. It seems that the

second model requires more time to converge than the first one. This is somewhat

unexpected because the second model is smaller in size than the first one.

150 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

5.6 The Assignment problem

The Assignment Problem is a classical combinatorial optimization problem. It

has several different equivalent formulations. In one of them, there are n workers

and n jobs. Every worker needs to be assigned to exactly one job so that no two

workers are assigned to the same job. For every pair of worker i and job j, there is a

profit p[i, j] of assigning i to j. The goal of the problem is to find a valid assignment

that maximizes the sum of profits. This can be modeled as a bipartite graph. If

the workers are placed in the left side of the graph and the jobs in the right side,

then in graph theory terms a valid assignment is called a perfect matching. The

assignment problem asks for a perfect matching that has the maximum profit. An

example instance of the problem is shown in Figure 5.12.

Figure 5.12: Example instance of the Assignment Problem. The nodes on the
left are the workers and the nodes on the right are the jobs. Assuming the solid

edges have profit 2 and the dashed edges have profit 1, the optimal solution to the
instance has profit 6 and consists of the solid edges.

The assignment problem is usually not considered to be a facility location prob-

lem. There are some similarities, but the essence of the assignment problem is

different. We decided to evaluate competition-based neural networks on it because

it looks like an NP -hard problem but can be solved efficiently. The second rea-

son is that it requires overlapping group constraints. This is discussed later, when

the CBNN formulation of the problem is given. Here we just mention that in the

Assignment Problem, every worker needs to be assigned to exactly one job and

every job needs to be assigned to exactly one worker. This is a two-way constraint.

In facility location problems, the constraints are usually one-way: every client needs

to be assigned to exactly one facility, but a single facility can be assigned to multiple

clients.

Chapter 5 Vladislav Haralampiev 151

Neural Networks for Facility Location Problems

The Assignment Problem is clearly related to finding matchings. The Maxi-

mal Matching Problem is another classical combinatorial optimization problem.

It asks for the matching of maximal size in a given bipartite graph. This is a special

case of the Assignment Problem. Related to the topic of matchings is the topic

of network flows. The Assignment Problem by itself is a special case of the

Max-Flow-Min-Cost Problem. So far, we considered only matchings in bipar-

tite graphs. They can also be defined in general undirected graphs. The problem

of finding a maximal matching with minimal cost in a general graph is an extension

of the assignment problem. The problems, mentioned in this paragraph, may seem

to be NP -hard, but all of them can be solved in polynomial time. Except for the

algorithm for maximal matching with minimal cost in general graphs, the algorithms

for these problems additionally are relatively simple to implement.

5.6.1 Mathematical definition and known results

The Assignment Problem predates the computer era. Recently, it was discovered

that an algorithm for it was invented by Carl Gustav Jacobi and was described in his

work “About the research of the order of a system of arbitrary ordinary differential

equations” that was published around year 1890. The knowledge was lost for more

than a century until an algorithm for the problem was reinvented in the 1950s by

Kuhn.

The assignment problem can be written as an integer programming problem as

follows:

Maximize:∑
xij · p[i, j]

Subject to:

∀i∈{1..n}
∑

j∈{1..n}

xij = 1

∀j∈{1..n}
∑

i∈{1..n}

xij = 1

∀i∈{1..n}∀j∈{1..n} xij ∈ {0, 1}

152 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

The variable xij is 1 iff worker i is assigned to job j. The first group of constraints

guarantees that every worker is assigned to exactly one job. The second group of

constraints guarantees that every job is assigned to exactly one worker. The last

group says that all variables are binary. While general IP solvers can be used for

finding an optimal solution, the Assignment Problem has special properties that

simplify it. It can be shown that the last group of constraints that forces all variables

to be binary can be dropped and the resulting linear programming problem still has

an optimal solution in which all variables are binary. This directly means that the

Assignment Problem can be solved in polynomial time because what is left is a

linear programming problem and such problems can be solved efficiently. There are

also specialized algorithms for the Assignment Problem that are simple and fast.

For example, the Hungarian algorithm [76]. When implemented using Fibonacci

heaps, its runtime is O(n2lg(n)). A simple O(n3) implementation of the Hungarian

algorithm is fast enough to solve instances with 1000 workers and jobs in several

seconds on a regular computer. The paper [29] reviews several other approaches to

the problem. The authors of papers also describe an approximation algorithm that

runs in time O(n2) for any fixed error bound.

5.6.2 CBNN model

In the description below, it is assumed that all profits are positive. If this is not

the case, a large enough value C can be added to every element of the profit matrix

without changing the optimal assignment.

The Assignment Problem has two types of feasibility constraints: every

worker needs to be assigned to exactly one job and every job needs to be assigned to

exactly one worker. Each one of the two types of constrains can easily be modeled

by group constraints of competition-based neural networks. But modeling both of

them at the same time is problematic for classical CBNNs. This is why we use group

constraints to model the requirement that every worker is assigned to exactly one job

and use a specially chosen objective function to enforce the other set of constraints.

Chapter 5 Vladislav Haralampiev 153

Neural Networks for Facility Location Problems

Below, our CBNN-compatible formulation of the Assignment Problem is given.

Maximize:∑ xij · p[i, j]
degj

Subject to:

∀i∈{1..n}
∑

j∈{1..n}

xij = 1

∀i∈{1..n}∀j∈{1..n} xij ∈ {0, 1}

As in the IP formulation, xij are binary variables that indicate whether worker i is

assigned to job j. The first group of constraints are classical CBNN group constraints

that guarantee that every worker is assigned to exactly one job. The degj values in

the objective function stand for the degree of job j (degj =
∑

i∈{1..n} xij). It can be

seen that for local maxima of the objective function, it is not possible to have two

workers assigned to the same job (assuming there are no jobs of equal cost; if such

jobs exist, then after the optimization ends, the possible violations can be resolved

by a simple procedure). This is because if both a and b are assigned to the same

job, then if the profit from a is larger than the profit from b, assigning b to any other

free job increases the total profit. It was shown that CBNNs find local maxima of

the objective function and, as a result of this, the solver will automatically enforce

the constraint that every job is assigned to exactly one worker.

5.6.3 CBNN solver

For the experiments, we use the group-best variant of the general CBNN solver

(Algorithm 4). The solver is applied without modifications. It is worth mentioning

that the computation of OnCost here is slightly more complicated. This is because

assigning worker i to job j changes degj and this affects the profits of all other workers

that are assigned to j (such violating configurations in which more than one worker

is assigned to a job can appear during the optimization process). Because of this,

when computing the OnCost of an i → j assignment, we should also account for

154 Chapter 5 Vladislav Haralampiev

Neural Networks for Facility Location Problems

the (decrease of) profit from the other workers that are assigned to j. Luckily, this

can be done efficiently by maintaining for every job the sum of profits of all workers

assigned to it together with the degj values.

As mentioned several times, there are two general strategies for the hyperparam-

eters of the solver: large number of epochs with smaller number of iterations per

epoch or smaller number of epochs with large number of iterations. For every test

instance, we perform 4 runs of the solver: two with the first strategy and two with

the second one. The same hyperparameters are used for all instances and we did

not try to significantly tune them. Generally, the first strategy performs better and

applying the second one is not necessary.

5.6.4 Test data and results

For testing the CBNN solver, we generated 30 random instances of the textscAssign-

ment Problem of size 50. For every instance, we first uniformly at random choose

an upper bound of the profit between 200 and 500 and then randomly fill in the

profit matrix of the instance with values between 100 and the chosen upper bound.

The values of the bounds in the generation procedure are empirically selected so

that the resulting instances are relatively hard to solve. If the upper bound of the

profit is very small, then there is very little variation in the profit matrix and the

instance is simple. On the other hand, a very large upper bound also results in an

easy instance because then iteratively picking the largest values in the worker - job

profit matrix gives an optimal solution.

The optimal solution for every instance is computed using the Hungarian al-

gorithm. We also run a greedy and local search algorithms to have something to

compare with the results of the CBNN solver. The greedy algorithm finds the largest

element p[i, j] in the profit matrix, assigns worker i to job j, and repeats the same

process for the rest of the matrix. The local search algorithm starts from a random

assignment, repeatedly chooses two workers i1 and i2, and swaps their assigned jobs

if this improves the solution. Because there is a lot of randomness in this process,

100 independent runs of the local search algorithm are performed for every instance.

Chapter 5 Vladislav Haralampiev 155

Neural Networks for Facility Location Problems

Additionally, a run of the local search algorithm is performed starting from the so-

lution returned by the greedy algorithm. The results of the solution methods are

summarized in Table 5.6.

Solution method Result
Greedy 97.81%

Local Search 99.07%
Local Search (G) 99.02%

CBNN 99.70%

Table 5.6: Results on the Assignment Problem instances. The solution methods
are described in the paragraph above. The Local Search (G) method is local search
starting from the solution that is returned by the Greedy algorithm. The Result
column gives the quality of the solution for the corresponding method averaged over
the 30 test instances. The quality of a solution is its profit divided by the profit of
the optimal solution for the instance and multiplied by 100 to have an interpretation
as percentage.

As can be seen from Table 5.6, the results of the solution methods are good.

The CBNN solver obtains the best results. It also outperforms all other methods

on all 30 test instances (but sometimes the difference is very small). None of the

methods is able to find the optimal solution for any of the test instances. We also

want to mention that our sequential implementation of the CBNN solver is much

slower than the other considered methods.

156 Chapter 5 Vladislav Haralampiev

Chapter 6

Conclusion

The need to solve combinatorial optimization problems arises very often. Crew

scheduling, facility location, vehicle routing, assembly line balancing, and frequency

assignment are just several examples of the wide range of optimization problems

that appear in practice. If we need to solve such a problem and have an unlimited

budget, then it makes sense to investigate into the special properties of the problem

at hand and to develop a highly customized algorithm for it. This is widely believed

to result in the best solution. But developing a highly customized algorithm is

time-consuming and expensive. And even if we have the resources for this, it is still

good to base the algorithm on an idea that has proven itself for other problems.

When the budget is small, we look for a method that returns very good solutions

but works out-of-the-box and with little problem-specific tuning. Metaheuristics for

combinatorial optimization offer exactly this. They are useful ideas, or templates,

for building algorithms.

Many metaheuristcs are known. Some of the most popular ones are Simulated

annealing, Tabu search, and Genetic algorithms. Section 2.2 describes the main ideas

of 8 established metaheuristics. It is noted that the metaheuristics have different

strong sides and have bias towards different properties of the optimization problem

being solved. Among all approaches to combinatorial optimization, there is a class

of neural network methods. Their strong side is the existence of a natural and

efficient parallel implementation and the possibility to use special hardware like

157

Neural Networks for Facility Location Problems

optical computers, systolic arrays, and field-programmable gate arrays. This should

not be underestimated because multiprocessor systems and parallel algorithms can

significantly speed up the computation and allow complex problems to be solved in

a reasonable amount of time. But the existing neural networks for combinatorial

optimization have very serious problems. The methods can be classified into two

groups: Hopfield networks and self-organizing approaches. Hopfield networks do not

produce good solutions. In this respect, they are easily outperformed even by very

simple algorithms. The self-organizing approaches to combinatorial optimization can

be applied to a very limited set of problems. It is clear that with such downsides,

the existing neural network methods can not become an established tool for solving

optimization problems in practice.

We believe that the idea of using massively parallel systems of simple computing

units (that is, neural networks) to solve combinatorial optimization problems is

good. The skepticism surrounding the field is largely because of historical reasons.

Hopfield networks were the first proposed neural network method for combinatorial

optimization. But they were not designed as a machinery for optimization. They

were initially designed as an associative memory. Hopfield and Tank noticed that

the model can solve instances the Travelling Salesman Problem and is a way

of obtaining a meaningful digital result from analog computations. This produced a

lot of enthusiasm in the optimization community. People started to ask themselves

if neural networks are better suited for solving NP -hard problems than standard

digital computers. The results soon followed: Hopfield networks do not scale. For

instances of moderate size, they are not only unable to find good solutions, but they

can not even find feasible ones. No Hopfield network of polynomial size can solve

the Travelling Salesman Problem to a desired accuracy. And so on. Some

of the negative results can be found in [14, 53, 106]. The set of negative results

created doubts about whether neural networks are suitable at all for combinatorial

optimization. And this stopped the progress in the field.

Finding a good way of using neural networks for solving combinatorial opti-

mization problems is still an open question. This work proposes to base the neural

158 Chapter 6 Vladislav Haralampiev

Neural Networks for Facility Location Problems

networks for combinatorial optimization on a competition mechanism between the

neurons. The mechanism allows the model to maximize functions and, at the same

time, to enforce certain feasibility constraints. Section 3.2 describes a general CBNN

solver for optimization problems that uses the mechanism of competing neurons. In

Chapter 4, several desirable properties of the proposed algorithm are proven: it finds

local optima of the objective function, it asymptotically converges to an optimal so-

lution, and its speed of convergence can be estimated. From theoretical perspective,

the guarantees of the CBNN solver are either equivalent or are stronger than the

known guarantees of the established metaheuristics for combinatorial optimization.

Theoretical guarantees are a good thing. They give a hint that the competition-

based neural network is doing something reasonable. It is not biased in the sense

that we think the neural network optimizes function A but, in reality, it optimizes a

completely different function B. Just theoretical guarantees are not enough, though.

What matters a lot for metaheuristics is their empirical performance on the problems

that we need to solve in practice. Metaheuristics need to be able to automatically

adjust to the input instances and to quickly find very good solutions without the

tedious work for the developer of manually inspecting the instances.

In Section 5, the proposed competition-based neural networks are evaluated on 6

facility location problems. We selected this class of problems because it offers a wide

range of practically important tasks that are at the same time intuitive and easy to

state but are hard to solve. Competition-based neural networks demonstrate very

promising performance on the test instances. They are often able to optimally solve

the input. When the returned solution is not optimal, it is always at most several

percent worse than the optimal one. This level of performance seems to be enough

for the practical applications of the facility location problems that were used in the

experiments. The performance on the test problems is also very competitive to that

of other metaheuristics.

Chapter 6 Vladislav Haralampiev 159

Neural Networks for Facility Location Problems

6.1 Future work

A lot of work is yet to be done for the neural networks to establish themselves as

a good and reliable metaheuristic. As we already said, our opinion is that neural

networks have the potential to rapidly find good solutions to combinatorial optimiza-

tion problems. We also think that the competition mechanism between neurons is

beneficial for this. The CBNN solver provides an example of a neural network algo-

rithm that quickly finds excellent solutions to a range of facility location problems.

Having such an example is good, it acts as a proof of a concept.

An important step for future developments is to apply neural networks to more

combinatorial optimization problems. We are not saying that the CBNN solver is

ideal or that it is the only possible neural network method. The solver is just an

initial step. In fact, we designed it with a bias towards facility location. The idea

of using competing neurons has a more general implementation than the CBNN

solver from Section 3.2. We created the CBNN problem from Section 3.1 and the

restricted CBNN solver because it is enough for the problems that we targeted

and we wanted to keep the amount of work manageable so that we can prove the

asymptotic convergence and discuss the speed of convergence. For other problems,

maybe it is good to have a slightly different implementation of the mechanism of

competing neurons and their groups. Maybe it is also beneficial to combine it with

something else. The mechanism seems to work for combinatorial optimization and

can act as a basis for neural network algorithms.

Developing a method is one thing. A different thing is making it popular. We

really like integer programming because it offers an intuitive language for defining

problems and has available solvers. You define the problem, pick a solver, and receive

a solution. If we want neural networks for combinatorial optimization to become a

popular tool, then something similar needs to be done. Either a new language for

defining problems that is better suited for neural networks needs to be developed,

or an existing one can be used. Then a reasonably efficient and stable solver needs

to be written. This is a large effort that is often underestimated.

160 Chapter Vladislav Haralampiev

Appendix A

Markov chains

Markov chains are a convenient model for analyzing competition-based neural net-

works. Here we state several well-known facts about them that are used for proving

asymptotic convergence of CBNNs and for estimating the speed of convergence.

Markov chains are well studied. Good overview of their properties can be found in

[11, 34, 50].

In the Markov chains we are interested in, there is a finite state space S. The

chain itself is a collection of random variables {X1, X2, ..., Xi, ...}. Each one of the

variables is drawn from S. The chain satisfies the Markov property:

Prob(Xi = vi | X1 = v1, X2 = v2, ..., Xi−1 = vi−1) = Prob(Xi = vi | Xi−1 = vi−1)

This property is sometimes called lack of memory: the probability of the current

state depends only on the previous state and not on how we got to the previous

state. Prob(Xi = vi | Xi−1 = vi−1) are usually called transition probabilities.

An intuitive way to think about Markov chains is that we have a robot. In its

hand there is a ball of a certain color. In total, there are S possible colors that are

called a state space. For the robot, the time is discrete and can be written as the

numbers 0, 1, 2, 3, ... At every point in the time sequence, the robot looks at the

ball in its hand. Based on its color, the robot selects a new color. It then removes

the current ball from its hand and puts there a new one with the newly chosen color.

The robot then continues to the next time step. If we write down the sequence of

161

Neural Networks for Facility Location Problems

colors X0, X1, X2, ..., we end up with the sequence of random variables from the

previous section. The robot is not deterministic and it can perform a very complex

procedure for choosing the next color. What is important is that the robot only

knows the color of the ball in its hand. It does not have a working memory where

it can store all the colors of the balls so far. Generally speaking, when deciding the

color of the next ball, the robot can check the current time. This complicates the

analysis of the resulting Markov chain. For simplicity, we do not allow the robot

to perform such checks. The operation of the robot becomes straightforward: it

has a table in its “head” that tells, given the color of the ball in its hand, what is

the probability distribution for the next color. What the robot does is to select a

color following this probability distribution. This type of Markov chains are called

homogeneous and are defined below.

Definition A.0.1. (Homogeneous Markov chain) A Markov chain {Xn | n ∈

N} is called homogeneous if for all a, d ∈ N and vi, vj ∈ S it holds that Prob(Xa+d =

vi | Xa = vj) = Prob(Xd = vi | X0 = vj).

The definition basically says that in homogeneous chains, the probability of the next

state does not depend on the current time.

Definition A.0.2. (Transition probability matrix) A state transition probabil-

ity matrix for a homogeneous Markov chain with a discrete state space S of size n

is a n× n matrix P for which Pij = Prob(X2 = vj | X1 = vi).

For homogeneous Markov chains, the transition matrix P together with the proba-

bility distribution ini of the initial state X0 is enough to define the whole process.

It is easy to see that the probability distribution of Xk at any time step k can be

written as ini · P k (ini here is a row vector and P k is the k-th power of P). A

special property of the matrix P is that every row of it is a probability distribution:

the entries of every row are real numbers between 0 and 1 that sum up to 1. Such

matrices are called stochastic matrices.

An important property of Markov chains is that they (in certain cases) converge.

This means that if the chain is long enough, then every next element in it is drawn

162 Chapter A Vladislav Haralampiev

Neural Networks for Facility Location Problems

from the same probability distribution π no matter what the initial distribution

ini is. In the robot analogy, if the machine runs long enough, then it starts to

produce balls of color that follows the probability distribution π (called stationary

distribution). The following definition formalizes this.

Definition A.0.3. (Stationary distribution) Assume there is a Markov chain

X1, X2, ... with state space S = {1, 2, ..., n} and transition matrix P . The stationary

distribution of the Markov chain (if it exists) is defined as a stochastic vector π

whose i-th component is given by lim
k→∞

Prob(Xk = i | X1 = j) for all j.

Two properties of Markov chains that hold for the chains of competition-based

neural networks are defined below. These properties guarantee that a stationary

distribution exists for the Markov chain.

Definition A.0.4. (Irreducible chain) A Markov chain is irreducible if for any

pair of states v1 and v2, the probability of reaching v2 from v1 in a finite number of

transitions is nonzero.

Definition A.0.5. (Aperiodic chain) For a state vi, let Di consist of all integers

k > 0 for which P k[vi, vi] > 0. The Markov chain is aperiodic if gcd(Di) = 1 for

every state vi.

The following straightforward lemma is convenient for showing that an irre-

ducible Markov chain is aperiodic.

Lemma A.0.1. If for an irreducible Markov chain with transition matrix P there

is a state i with P [i, i] > 0, then the Markov chain is aperiodic.

If a Markov chain is aperiodic and irreducible, then it converges to a unique

stationary distribution. Theorem A.0.1 states this result. A proof of the theorem

can be found in [34].

Theorem A.0.1. Let P be the transition matrix of an irreducible and aperiodic

Markov chain. Then there exists a unique stationary distribution π the components

of which are determined by the following equation:

∑
i

πi · P [i, j] = πj for all j

Chapter A Vladislav Haralampiev 163

Neural Networks for Facility Location Problems

Theorem A.0.1 says that ini · P k converges to π for any initial distribution ini

(P is the transition matrix of the Markov chain). But it does not say anything

about the speed of convergence. Results from linear algebra about eigenvectors and

eigenvalues can be used for estimating the speed of convergence.

Definition A.0.6. (Eigenvector / eigenvalue) A nonzero vector v is called a

left eigenvector for a matrix M if v ·M = α · v for a number α. α is called the

corresponding eigenvalue.

Notice that the stationary distribution π is an eigenvector of the state transition

matrix P with eigenvalue 1 (eigenvectors can be arbitrary scaled; π is scaled so that

its components sum up to 1 because it needs to be a probability distribution). The

definition above talks about left eigenvectors. Similarly, right eigenvectors can be

defined if we substitute the left matrix multiplication v ·M with right multiplication

M ·v. It is well-known that the multiset of left eigenvalues is the same as the multiset

of right eigenvalues.

It was already mentioned that the matrix P of a Markov chain, a stochastic

matrix, has special properties. A simple one is that P ·~1 = ~1 where ~1 is a vector of

ones. This is because every row of P sums to 1 and it shows that 1 is an eigenvalue

of P . The following result is a consequence of the Perron-Frobenius theorem and

says that 1 is the largest by absolute value eigenvalue of P .

Theorem A.0.2. Let P be the transition matrix of an aperiodic irreducible Markov

chain. If α1, α2, ..., αn is the list of eigenvalues of P , ordered by absolute value, then

α1 = 1 and α1 > |αi| for any other eigenvalue αi of P .

The proof of the theorem can be found in [90]. A simple intuition about one

possible proof is the following. It is obvious that P · ~1 = ~1 because the rows of P

sum up to 1. This means that 1 is an eigenvalue of the matrix P . Assume that α

is an eigenvalue for which |α| > 1 and that an eigenvector ~v corresponds to α. We

know that P · ~v = α · ~v. This means that P k · ~v = αk · ~v. If |α| > 1, then the length

of αk ·~v grows infinitely as k increases. So the length of P k ·~v should grow infinitely

as k increases. This in not possible. P to any integer power k remains a stochastic

164 Chapter A Vladislav Haralampiev

Neural Networks for Facility Location Problems

matrix and so all elements of P k are at most 1. For P k · ~v to grow infinitely, it

should be true that at least one element of P k grows infinitely. This shows that all

eigenvalues of P are at most 1.

The theorem can be used to prove that Markov chains converge. Intuitively, if

all eigenvalues are different, then the spectral decomposition of P k =
∑
αi
k · ui ·wi.

The αi are the eigenvalues of P , wi and ui are the corresponding left and right

eigenvectors. For every eigenvalue that is less than 1 by absolute value, the summand

diminishes as k grows. In the end, only the summand of αi = 1 is left. Similar

reasoning shows that P k = ~1 · π + O(kdeg−1 · |α2|k) in the general case. The matrix

P can have several equal eigenvalues (the property is called algebraic multiplicity

of the eigenvalue) and this is why there is a term of the form kdeg−1 (deg is the

multiplicity of α2). A strict description of the reasoning from this paragraph can

be found in the beginning of Chapter 6 of [11]. The important conclusion from

the formulas is that the speed of convergence of the Markov chain is geometric and

depends on the absolute value of the second-largest by absolute value eigenvalue.

This is formalized below in the definition of mixing time.

Definition A.0.7. (Mixing time) For an aperiodic irreducible Markov chain

X1, X2, ... with state transition matrix P , the mixing time is the smallest t for

which |Prob(Xt ∈ A)− π(A)| ≤ 1
4

for all subsets A of the state space and all initial

distributions ini of the Markov chain. Here Prob(Xt ∈ A) denotes the probability

of Xt being in the subset A and π is the stationary distribution of the Markov chain.

Theorem A.0.3. (Speed of convergence) Let µ = |α2|, where α2 is the second-

largest by absolute value eigenvalue of the transition matrix P . Then the mixing

time of the Markov chain is O(1
log(1

µ
)
).

One more property of Markov chains is useful for analyzing competition-based

neural networks. Assume that P is the state transition probability matrix of an

aperiodic irreducible Markov chain. We know that the chain has a stationary distri-

bution π and it is interesting to see how this stationary distribution changes when

the matrix P is slightly changed. Results concerning this are called perturbation

Chapter A Vladislav Haralampiev 165

Neural Networks for Facility Location Problems

bounds. A survey of known bounds can be found in [19]. The bound below is taken

from [89].

Theorem A.0.4. (Perturbation bound) Let P and P̃ be the state transition

probability matrices of two aperiodic irreducible Markov chains with stationary dis-

tributions π and π̃. The two chains are defined over the same set of states. Assuming

E = P − P̃ , it holds that ‖π − π̃‖1 ≤ ‖Z‖∞‖E‖∞. Z = (I − P + ~1 · π)−1 is called

the fundamental matrix of P . The 1-norm of a vector ‖v‖1 is the absolute sum of

its entries. The ∞-norm of a matrix ‖M‖∞ is the maximum absolute row sum.

Notice that the matrix Z depends only on P and when P is fixed, ‖Z‖∞ is a

constant. This means that we can make the difference between π and π̃ arbitrary

small by pushing P̃ closer to P . In this sense, very small perturbations of the matrix

P change the stationary distribution just slightly.

166 Chapter A Vladislav Haralampiev

Appendix B

Datasets based on geographic data

Many facility location problems have a very natural interpretation in terms of road

networks. Such interpretations are often used in this work to introduce the prob-

lems. For example, the p-MiniSum Problem (Section 5.1), the p-Hub Problem

(Section 5.2) etc. When choosing the data on which to evaluate competition-based

neural networks, we wanted to select test instances resembling facility location prob-

lems that are solved in practice. This is why we decided to generate test instances

based on a real-world road network and selected the Bulgarian road network as an

underlying graph. OpenStreetMap [25] was chosen as a source of geographic data.

Here it is briefly described how data from this resource can be used to generate test

instances for facility location problems.

OpenStreetMap (OSM) is a collaborative project to create a map of the world.

The geodata of the project can be queried in different ways, one of which is by

using Overpass XML queries [79]. One of the endpoints for executing such queries

is http://overpass-api.de/api/interpreter.

Listing B.1 below shows two possible queries for retrieving information about

the populated places and the roads in a given region.

Listing B.1: Overpass XML queries for fetching populated places and roads

1 < !== Query f o r r e t r i e v i n g populated p l a c e s ==>

2 <osm=s c r i p t output=” j son ” timeout=”25”>

3 <union>

4 <query type=”node”>

167

Neural Networks for Facility Location Problems

5 <has=kv k=” p lace ” regv=” v i l l a g e | town | c i t y ”/>

6 <has=kv k=” i s i n : c o u n t r y ” v=”COUNTRY”/>

7 <bbox=query w=”WW” s=”SS” e=”EE” n=”NN”/>

8 </query>

9 </union>

10 <pr in t mode=”body”/>

11 <r e cu r s e type=”down”/>

12 <pr in t mode=” ske l e t on ” order=” quad t i l e ”/>

13 </osm=s c r i p t>

14

15 < !== Query f o r r e t r i e v i n g roads ==>

16 <osm=s c r i p t output=” j son ” timeout=”25”>

17 <union>

18 <query type=”way”>

19 <has=kv k=”highway”/>

20 <has=kv k=”highway” regv=”motorway | trunk | primary | secondary |

t e r t i a r y | u n c l a s s i f i e d ”/>

21 <bbox=query w=”WW” s=”SS” e=”EE” n=”NN”/>

22 </query>

23 </union>

24 <pr in t mode=”body”/>

25 <r e cu r s e type=”down”/>

26 <pr in t mode=” ske l e t on ” order=” quad t i l e ”/>

27 </osm=s c r i p t>

In the example queries, COUNTRY is a placeholder for the country name for which

we want to fetch data. WW,SS,EE,NN are placeholders for the coordinates of

the bounding box for which to return the populated places and roads. The regv

parameters in the queries specify what type of roads and populated places we are

interested in. For example, if we do not want “unclassified” roads to be included in

the response (these are generally small roads), then this option should be omitted

in the regv parameter. The service http://lxbarth.com/bbox can be used for

visually obtaining the bounding box coordinates WW,SS,EE,NN .

Once the query is executed, it returns a set of entries for the objects that are in-

side the specified region. When the query is about populated places, then each entry

168 Chapter B Vladislav Haralampiev

Neural Networks for Facility Location Problems

contains the coordinates of a populated place together with additional information

like its name. For roads, each entry in the response specifies a section of a road and

contains a list of coordinates of points along the section and additional information.

The returned segments need to be further glued together to obtain the complete

road map. The coordinates are real numbers and there can be small rounding er-

rors in them. When gluing road segments, we should not check for exact match

of endpoints but for small enough distance between the endpoints. If the number

of entries in the response is small, then finding the approximately equal endpoints

can be done naively by iterating through all pairs of road segments. If the response

if large, the space can be divided into buckets and then we should only check the

distances between the endpoints in the same bucket or in neighboring buckets.

The result of gluing road segments together and positioning populated places is a

graph representation of the road network inside the specified region. This represen-

tation is used for generating test instances for facility location problems. Depending

on the problem, we may want to compute the shortest distances between all pairs

of populated places, or to generate random paths, or something else. Creating this

type of data from graphs is relatively easy and can be achieved using well-known

algorithms. It should be noted that the road network can be used at different levels

of precision. For example, we may work on a city level and ignore the roads inside

the populated places. This results in a sparser graph. We may also concentrate

entirely on the roads inside a single city. The result is a denser graph with more

redundancy. Such test instances may be more challenging for some facility location

problems.

The whole process of creating test instances is relatively simple and consists of

several straightforward steps. Our implementation is a pipeline of Python scripts

that process the data one after another until a test instance is generated. The details

are omitted here. We only mention how the approximate distance between a pair of

points is computed (Listing B.2) and give one example visual representation of the

result of an Overpass XML query (Figure B.1).

Chapter B Vladislav Haralampiev 169

Neural Networks for Facility Location Problems

Listing B.2: Computation of the (approximate) distance between two points speci-

fied by their coordinates

1 def Distance (p1 , p2) :

2 R = 6371

3 f i 1 = DegreesToRadians (p1 . l a t)

4 f i 2 = DegreesToRadians (p2 . l a t)

5 d e l t a f i = f i 1 = f i 2

6 delta lambda = DegreesToRadians (p1 . lon = p2 . lon)

7 a = (math . s i n (d e l t a f i / 2) * math . s i n (d e l t a f i / 2) +

8 math . cos (f i 1) * math . cos (f i 2) *

9 math . s i n (delta lambda / 2) * math . s i n (delta lambda / 2))

10 c = 2 * math . atan2 (math . s q r t (a) , math . s q r t (1 = a))

11 return R * c

Figure B.1: Visualization of the result of an Overpass XML query for the area
around Mladost 2 in Sofia, Bulgaria. The returned road segments are colored in
different colors.

170 Chapter B Vladislav Haralampiev

Bibliography

[1] Benaini A. et al. “Solving the Uncapacitated Single Allocation p-Hub Median

Problem on GPU”. In: Bioinspired Heuristics for Optimization. Studies in

Computational Intelligence. 774 (2019).

[2] Akiyama et al. “Combinatorial optimization with Gaussian machines”. In: In-

ternational 1989 Joint Conference on Neural Networks. Vol. 1. 1989, pp. 533–

540.

[3] B. Angéniol, G. De La Croix, and J-Y. Le Texier. “Self-organizing feature

maps and the travelling salesman problem”. In: Neural Networks 1.4 (1988),

pp. 289–293. issn: 0893-6080.

[4] S. Arora and B. Barak. Computational Complexity: A Modern Approach.

USA: Cambridge University Press, 2009.

[5] S. Atta, P. R. S Mahapatra, and A. Mukhopadhyay. “Solving maximal cover-

ing location problem using genetic algorithm with local refinement”. In: Soft

Computing - A Fusion of Foundations, Methodologies and Applications 22

(12 2018).

[6] J. E. Beasley. “OR-Library: Distributing Test Problems by Electronic Mail”.

In: Journal of the Operational Research Society 41 (11 1990).

[7] O. Berman, R. Larson, and N. Fouska. “Optimal Location of Discretionary

Service Facilities”. In: Transportation Science 26 (3 1992).

[8] Christian Blum and Andrea Roli. “Meta-heuristics in combinatorial optimi-

sation: Overview and conceptual comparison”. In: ACM Computing Survey

35(3) (Jan. 2003), pp. 268–308.

171

Neural Networks for Facility Location Problems

[9] M. Boccia, A. Sforza, and C. Sterle. “Flow Intercepting Facility Location:

Problems, Models and Heuristics.” In: J Math Model Algor 8 (2009), 35–79.

[10] Margaret L. Brandeau and Samuel S. Chiu. “An Overview of Representa-

tive Problems in Location Research”. In: Management Science 35.6 (1989),

pp. 645–674.

[11] P. Bremaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and

Queues. Springer-Verlag, New York, 1999.

[12] J. Brimberg. “The Fermat—Weber location problem revisited”. In: Mathe-

matical Programming 71 (1995), 71–76.

[13] A. G. Brown. Nerve Cells and Nervous Systems. An Introduction to Neuro-

science. Springer-Verlag London, 2001.

[14] J. Bruck and J. Goodman. “On the power of neural networks for solving hard

problems”. In: Journal of Complexity 6 (2 1990), pp. 129–135.

[15] J. Campbell. “Integer programming formulations of discrete hub location

problems”. In: European Journal of Operational Research 72 (2 1994).

[16] Paola Cappanera. A Survey on Obnoxious Facility Location Problems. 1999.

[17] Cbc (Coin-or branch and cut) mixed integer linear programming solver. https:

//github.com/coin-or/Cbc. Accessed: 23.10.2020.

[18] D. Chhajed and T.J. Lowe. “Solving Structured Multifacility Location Prob-

lems Efficiently”. In: Transportation Science 28 (1994), pp. 104–115.

[19] G. Cho and C. Meyer. “Comparison of perturbation bounds for the stationary

distribution of a Markov chain”. In: Linear Algebra and its Applications 335.1

(2001), pp. 137–150.

[20] G. Cho and C. Meyer. “Markov chain sensitivity measured by mean first

passage times”. In: Linear Algebra and its Applications 316 (Sept. 2000),

pp. 21–28.

172 Chapter B Vladislav Haralampiev

Neural Networks for Facility Location Problems

[21] C. Chung. “Recent Applications of the Maximal Covering Location Planning

(M.C.L.P.) Model”. In: The Journal of the Operational Research Society 37

(8 1986), pp. 735–746.

[22] R. Church and C. ReVelle. “The maximal covering location problem”. In:

Papers of the Regional Science Association 32 (1974), 101–118.

[23] J. Clausen. “Branch and Bound Algorithms-Principles and Examples”. In:

2003.

[24] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming. Springer,

Cham, 2014.

[25] OpenStreetMap contributors. Planet dump [Data file from 27/12/2019]. Re-

trieved from https: // planet. openstreetmap. org . 2015.

[26] T. Cormen et al. Introduction to Algorithms, Third Edition. 3rd Edition. The

MIT Press, 2009. isbn: 0262033844.

[27] Mark Daskin. “Network and Discrete Location: Models, Algorithms and Ap-

plications”. In: Journal of the Operational Research Society 48 (Jan. 1996).

doi: 10.1057/palgrave.jors.2600828.

[28] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. “Ant System: Op-

timization by a colony of cooperating agents.” In: IEEE transactions on

systems, man, and cybernetics. Part B, Cybernetics : a publication of the

IEEE Systems, Man, and Cybernetics Society 26 (Feb. 1996), pp. 29–41.

doi: 10.1109/3477.484436.

[29] R. Duan and S. Pettie. “Linear-Time Approximation for Maximum Weight

Matching”. In: Journal of the ACM 61 (2014).

[30] R. Durbin and D. Willshaw. “An analogue approach to the travelling sales-

man problem using an elastic net method”. In: Nature 326 (1987), 689–691.

[31] A. Ernst and M. Krishnamoorthy. “Efficient algorithms for the uncapacitated

single allocation p-hub median problem”. In: Location Science 4 (3 1996),

pp. 139–154.

Chapter B Vladislav Haralampiev 173

Neural Networks for Facility Location Problems

[32] F. Favata and R. Walker. “A study of the application of Kohonen-type neural

networks to the Travelling Salesman Problem”. In: Biol. Cybern. (1991).

[33] U. Feige. “A threshold of ln n for approximating set cover”. In: Journal of

the ACM 45 (4 1998).

[34] W. Feller. An Introduction to Probability Theory and Its Applications. New

York: Wiley, 1950.

[35] R. D. Galvão and C. ReVelle. “A Lagrangean heuristic for the maximal cov-

ering location problem”. In: European Journal of Operational Research 88 (1

1996), pp. 114–123.

[36] M. Garey and D. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[37] F. Glover. “Future paths for integer programming and links to artificial in-

telligence”. In: Comput. Oper. Res. (1986), 533–549.

[38] Fred W. Glover and Manuel Laguna. Tabu Search. Springer Science+Business

Media New York, 1997.

[39] S.L. Hakimi. “Optimum distribution of switching centers in a communication

network and some related graph theoretic problems”. In: Operations Research

13 (1965), 462–475.

[40] S.L. Hakimi. “Optimum locations of switching centers and the absolute cen-

ters and medians of a graph”. In: Operations Research 12 (1964), pp. 450–

459.

[41] P. Hansen and D. Moon. Dispersing Facilities on a Network. Rutgers Uni-

versity. Rutgers Center for Operations Research, 1988.

[42] V. Haralampiev. “Neural network approaches for a facility location problem”.

In: International Scientific Journal Mathematical Modeling 4 (2020).

[43] V. Haralampiev. “Single facility location problems in k-trees”. In: 58th An-

nual Science Conference of Ruse University and Union of Scientists - Ruse.

2019.

174 Chapter B Vladislav Haralampiev

Neural Networks for Facility Location Problems

[44] V. Haralampiev. “Theoretical Justification of a Neural Network Approach

to Combinatorial Optimization”. In: Proceedings of the 21st International

Conference on Computer Systems and Technologies. 2020, pp. 74–77.

[45] D.J. Hartfiel and C. Meyer. “On the structure of stochastic matrices with

a subdominant eigenvalue near 1”. In: Linear Algebra and its Applications

272.1 (1998), pp. 193–203.

[46] G. Hinton and T. Sejnowski. “Boltzmann Machines: Constraint Satisfac-

tion Networks that Learn”. In: Carnegie Mellon University Technical Report

(1984).

[47] D. Hochbaum. “Approximating covering and packing problems: set cover,

vertex cover, independent set, and related problems”. In: 1996.

[48] J.J. Hopfield and D.W. Tank. ““Neural” computation of decisions in opti-

mization problems”. In: Biol. Cybern. 52 (1985), 141–152. doi: 10.1007/

BF00339943.

[49] A. Ilic et al. “A general variable neighbourhood search for solving the unca-

pacitated single allocation p-hub median problem”. In: European Journal of

Operational Research 206 (2010), 289–300.

[50] D. Isaacson and R. Madsen. Markov Chains: Theory and Applications. Wiley,

1976.

[51] Horgan J. “Can science explain consciousness?” In: Sci Am. 271(1) (1994),

pp. 268–308.

[52] M. Jabalameli, B. Tabrizi, and M. Javadi. “A Simulated Annealing method

to solve a generalized maximal covering location problem”. In: International

Journal of Industrial Engineering Computations 2 (2 2011), pp. 439–448.

[53] D. Johnson. “More Approaches to the Traveling Salesmann Guide”. In: Na-

ture 330 (1987).

[54] B. Kamgar-Parsi. “Dynamic Stability and Parameter Selection in Neural Op-

timization”. In: Proceedings International Joint Conference on Neural Net-

works. Vol. 4. 1992, pp. 566–571.

Chapter B Vladislav Haralampiev 175

Neural Networks for Facility Location Problems

[55] M. Kao. Encyclopedia of Algorithms. 2nd Edition. Springer Publishing Com-

pany, 2016.

[56] O. Kariv and S. L. Hakimi. “An Algorithmic Approach to Network Location

Problems. II: The p-Medians”. In: SIAM Journal on Applied Mathematics

37 (1979), pp. 539–560.

[57] R. Karp. “Reducibility among combinatorial problems”. In: Complexity of

Computer Computations. Ed. by R. Miller and J. Thatcher. Plenum Press,

1972, pp. 85–103.

[58] P. Kaye, R. Laflamme, and M. Mosca. An introduction to quantum computing.

Oxford U. Press, New York, 2007.

[59] R. Kincaid, C. Easterling, and M. Jeske. “Computational experiments with

heuristics for two nature reserve site selection problems”. In: Comput. Oper.

Res. 35 (2 2008), pp. 499–512.

[60] R.K. Kincaid. “Good solutions to discrete noxious location problems via

metaheuristics”. In: Ann Oper Res 40 (1992), 265–281.

[61] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated

Annealing”. In: Science 220.4598 (1983), pp. 671–680.

[62] C. Klein and R. Kincaid. “The Discrete Anti-P-Center Problem”. In: Trans-

portation Science 28.1 (1994), pp. 77–79.

[63] J.G. Klincewicz. “Avoiding local optima in the p-hub location problem using

tabu search and GRASP”. In: Annals of Operations Research 40 (1992),

283–302.

[64] J.G. Klincewicz. “Heuristics for the p-hub location problem”. In: European

Journal of Operational Research 53 (1 1991).

[65] T. Kohonen. Self-organization and associative memory. Springer-Verlag Berlin

Heidelberg, 1989.

[66] T. Kohonen. “Self-organized formation of topologically correct feature maps”.

In: Biol. Cybern. 43 (1982), 59–69.

176 Chapter B Vladislav Haralampiev

Neural Networks for Facility Location Problems

[67] J. Korst and E. Aarts. “Combinatorial optimization on a Boltzmann ma-

chine”. In: Journal of Parallel and Distributed Computing 6.2 (1989), pp. 331

–357.

[68] Bernhard Korte and Jens Vygen. Combinatorial Optimization. Theory and

Algorithms. Springer-Verlag Berlin Heidelberg, 2006.

[69] M. Kuby. “Programming models for facility dispersion: the p-dispersion and

maxisum dispersion problems”. In: Mathematical and Computer Modelling

10 (10 1988), p. 792.

[70] W. Lai and G. Coghill. “Genetic Breeding of Control Parameters for the

Hopfield/Tank Neural Net”. In: Proceedings International Joint Conference

on Neural Networks. Vol. 4. 1992, pp. 618–623.

[71] D. Lakhmiri, S. Digabel, and C. Tribes. “HyperNOMAD: Hyperparameter

optimization of deep neural networks using mesh adaptive direct search”. In:

Technical Report G-2019-46, HEC Montreal (2019).

[72] R. F. Love and J. G. Morris. “Facility Location: Models and Methods”. In:

Publications in Operations Research 7 (1996).

[73] M. Marić, Z. Stanimirović, and P. Stanojević. “An efficient memetic algo-

rithm for the uncapacitated single allocation hub location problem”. In: Soft

Computing 17 (3 2012).

[74] P. McCorduck. Machines Who Think: A Personal Inquiry into the History

and Prospects of Artificial Intelligence. W. H. Freeman, 1979.

[75] B. Müller, J. Reinhardt, and M. Strickland. Neural Networks: An Introduc-

tion. Springer-Verlag Berlin Heidelberg, 1995.

[76] J. Munkres. “Algorithms for the Assignment and Transportation Problems”.

In: Journal of the Society for Industrial and Applied Mathematics 5 (1 1957).

[77] M. O’Kelly. “A Quadratic Integer Program for the Location of Interacting

Hub Facilities”. In: European Journal of Operational Research 32 (3 1987).

Chapter B Vladislav Haralampiev 177

Neural Networks for Facility Location Problems

[78] J. Ostrowski et al. “Solving large Steiner Triple Covering Problems”. In:

Operations Research Letters 39 (2 2011).

[79] Overpass API/Overpass QL. https://wiki.openstreetmap.org/wiki/

Overpass_API/Overpass_QL. Accessed: 29.10.2020.

[80] Hansen P. and Mladenović N. “An Introduction to Variable Neighborhood

Search.” In: Voß S., Martello S., Osman I.H., Roucairol C. (eds) Meta-

Heuristics. (1999).

[81] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms

and Complexity. USA: Prentice-Hall, Inc., 1982.

[82] C. Peterson. “Parallel Distributed Approaches to Combinatorial Optimiza-

tion: Benchmark Studies on Traveling Salesman Problem”. In: Neural Com-

putation 2.3 (1990), pp. 261–269.

[83] Leonidas Pitsoulis and Mauricio Resende. “Greedy Randomized Adaptive

Search Procedures”. In: (Feb. 2001).

[84] J. Reese. “Solution methods for the p-median problem: An annotated bibli-

ography”. In: Wiley Periodicals, Inc. NETWORKS 48 (3 2006), 125–142.

[85] R. Rojas. Neural Networks - A Systematic Introduction. Springer-Verlag Berlin

New-York, 1996.

[86] K. Rosing, C. ReVelle, and J. Williams. “Maximizing Species Representation

under Limited Resources: A New and Efficient Heuristic”. In: Environmental

Modeling & Assessment 7 (2002), 91–98.

[87] D. Schilling, V. Jayaraman, and R. Barkhi. “A review of covering problems

in facility location”. In: Computers & Operations Research (1993).

[88] Alexander Schrijver. Combinatorial Optimization. Polyhedra and Efficiency.

Springer-Verlag Berlin Heidelberg, 2003.

[89] P. Schweitzer. “Perturbation Theory and Finite Markov Chains”. In: Journal

of Applied Probability 5.2 (1968), pp. 401–413.

178 Chapter B Vladislav Haralampiev

Neural Networks for Facility Location Problems

[90] E. Seneta. Non-negative Matrices and Markov Chains. Springer-Verlag, New

York, 1981.

[91] E. Senne, M. Pereira, and L. Lorena. “A Decomposition Heuristic for the

Maximal Covering Location Problem”. In: Advances in Operations Research

(2010).

[92] M. R. Silva and C. B. Cunha. “New simple and efficient heuristics for the

uncapacitated single allocation hub location problem”. In: Computers & Op-

erations Research 36 (12 2009), pp. 3152–3165.

[93] S. Skiena. The Algorithm Design Manual. Springer, 2008. isbn: 9781848000704

1848000707 9781848000698 1848000693.

[94] K. Smith, M. Krishnamoorthy, and M. Palaniswami. “Neural versus tradi-

tional approaches to the location of interacting hub facilities”. In: Location

Science 4 (3 1996), pp. 155–171.

[95] S. Snyder and R. Haight. “Application of the Maximal Covering Location

Problem to Habitat Reserve Site Selection: A Review”. In: International Re-

gional Science Review 39 (1 2014).

[96] M. Sousa et al. “Architecture Analysis of an FPGA-Based Hopfield Neural

Network”. In: Advances in Artificial Neural Systems (2014).

[97] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. The MIT

Press, 2015.

[98] A. Tamir. “An O(pn2) algorithm for p-median and related problems on tree

graphs”. In: Operations Research Letters 19 (1996), pp. 59–64.

[99] M. B. Teitx and P. Bart. “Heuristic Methods for Estimating the Generalized

Vertex Median of a Weighted Graph”. In: Operations Research 16 (5 1968),

955–961.

[100] V. Vazirani. Approximation Algorithms. Springer-Verlag Berlin Heidelberg,

2003.

Chapter B Vladislav Haralampiev 179

Neural Networks for Facility Location Problems

[101] M. Vose. The Simple Genetic Algorithm: Foundations and Theory. Complex

Adaptive Systems. MIT Press, 1999.

[102] Christos Voudouris, Edward Tsang, and Abdullah Alsheddy. “Guided Local

Search”. In: Sept. 2010, pp. 321–361. doi: 10.1007/978-1-4419-1665-5_11.

[103] M. Wakamura and Y. Maeda. “FPGA implementation of bidirectional asso-

ciative memory via simultaneous perturbation rule”. In: Proceedings of the

41st SICE Annual Conference. SICE 2002. Vol. 3. 2002, pp. 1631–1632.

[104] Alfred Weber. Ueber den Standort der Industrien. 1909.

[105] J. White and K. Case. “On Covering Problems and the Central Facilities

Location Problem”. In: Geographical Analysis 6 (3 1974), pp. 281–294.

[106] G.V. Wilson and G.S. Pawley. “On the stability of the Travelling Salesman

Problem algorithm of Hopfield and Tank”. In: Biol. Cybern. 58 (1988), 63–70.

doi: 10.1007/BF00363956.

[107] R. Zanjirani Farahani and M. Hekmatfar. Facility Location: Concepts, Mod-

els, Algorithms and Case Studies. Physica-Verlag HD, 2009.

180 Chapter B Vladislav Haralampiev

