
Porous Medium Flow Simulations using
Massively Parallel MLMC algorithm

Nikolay Shegunov

From the faculty of Mathematics and Informatics, Sofia University, a thesis
presented for the degree of Doctor of Philosophy in Informatics

Supervised by: assoc. prof. dr. Petar Armyanov, Sofia University.

Professional field: 4.6 Informatics and Computer Sciences, doctoral
program "Information Systems"

2021

Acknowledgements

Firstly, I would like to thank my supervisor assoc. prof. dr. Petar Armyanov,
Sofia University, and my scientific advisor prof. dr. Oleg Iliev from Kaiser-
slautern university, for their support during the entire time of my Ph.D.
Furthermore, I would like to thank Fraunhofer ITWM and the university of
Kaiserslautern for their financial support during the first years of my work.
I am grateful for the provided computational resources on the HPC Beehive
cluster hosted at ITWM Fraunhofer and SuperMuc supercomputer located
at Technical University Munich. Without their support, my work would be
impossible. Finally, I would like to thank my colleges from ITWM and Sofia
University for the pleasant working environment.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of this work . 3
1.3 Stochastic computations . 4
1.4 Existing software for high-performance systems 7
1.5 Aim and scope of this work 14

2 Mathematical Models 15
2.1 Random Sampling Algorithms 15
2.2 Finite volume numerical method 20
2.3 Porosity and Permeability . 22
2.4 Multilevel Monte Carlo algorithm 24
2.5 Conclusions . 29

3 Multilevel Monte Carlo method for Laplace Equation 30
3.1 Model equation . 31
3.2 Random field generation . 33
3.3 Problem discretization . 33
3.4 Coarse Grain . 35
3.5 Numerical Experiments . 39
3.6 Conclusions . 45

iii

4 Multilevel Monte Carlo method for Convection-Reaction-
Diffusion equation 47
4.1 Model equation . 48
4.2 Random field generation . 51
4.3 Problem discretization . 51
4.4 Coarse grain . 56
4.5 Numerical experiments . 57
4.6 Conclusions . 60

5 Parallel Algorithms 62
5.1 MLMC computation scheme 64
5.2 Parallel Algorithms . 73
5.3 Scheduling strategies . 77

5.3.1 Level-Solver synchronous (LvlSolSyn) 78
5.3.2 Level synchronous homogeneous (LvlSynHom) 79
5.3.3 Level synchronous heterogeneous (LvlSynHet) 81
5.3.4 Dynamic strategy . 83
5.3.5 Interrupted Dynamic strategy 85
5.3.6 Job queue Dynamic strategy 86

5.4 Review of the parallel strategies 87
5.5 Parallel experiments for Laplace equation 88
5.6 Parallel experiments for convection-reaction-diffusion problem 98
5.7 Conclusions . 100

6 Final thoughts and future work 103
6.1 Final thoughts . 103
6.2 Author contributions . 105
6.3 Author publications . 106
6.4 Future work . 107

Appendices 109

iv

A Abbreviations 110

B Hardware resources 112
B.1 Beehive cluster . 112
B.2 SuperMUC cluster . 112

C List of figures and tables 113

v

Chapter 1

Introduction

1.1 Motivation

Uncertainty is a part of many contemporary scientific models. With a grow-
ing demand for more accurate and predictive models, stochastic modeling is
a rapidly growing area in applied mathematics and scientific computing. To
name just a few applications, consider stochastic gradient descent methods -
an approach well adopted in neural networks and machine learning. Another
area where uncertainty quantification is adopted, is computational finance
- in the pricing of financial derivatives and quantitative risk management.
Uncertainty Quantification (UQ) is also well established in many engineering
and science models. It has led to new SIAM journals and associated annual
conferences [1]. There are even areas of research, that would be impossible
without stochastic modeling. Porous media flow modeling is great example of
such. Those models are of great importance for many societal, environmental,
and industrial problems, such as drug delivery, metal composite materials,
radioactive waste modeling, filtration process and many more. As stochastic
models, simulations of flow in porous medium requires an extreme computa-
tional power to obtain reliable simulations. Hopes are, that with the arrival

1

of exa-capable computers the research of that particular area will be boosted.
New numerical simulation algorithms, capable to utilize the computational
power of the coming High-Performance Computing (HPC) systems will be
needed. To answer this demand, several different numerical algorithms have
been developed, each of which has pros and cons. A well-established algo-
rithm that can utilize the parallel capabilities of the modern HPC systems, is
the well known Monte Carlo (MC) class of algorithms. Those computational
methods rely on repeated random sampling to obtain numerical results. This
simple idea is used in many models, where it is difficult to impose some kind
of physical limitations. It is even applicable to deterministic models, where
one can introduce randomness into the model to solve it. Monte Carlo al-
gorithms are important in computational physics, physical chemistry and
related applied fields. Employed in industry, those algorithms are extremely
useful for problems involving simulations of complex systems - such as studies
of fluids, composite materials, strongly coupled solids cellular structures and
others. Unfortunately, applying a Monte Carlo algorithm is not very prac-
tical for models involving computational fluid dynamics. In that field, the
problems have extreme dimensions. For such problems faster methods are
needed. To overcome this, a generalization of the MC method has attracted
great scientific interest in the last two decades. The generalized method,
called Multilevel Monte Carlo (MLMC), can achieve much faster simulation
times compared to the classical MC method. Its first use was for paramet-
ric integration for the expected value of f(x, λ) - E[f(x, λ)] where x is a
finite-dimensional random variable and λ is a parameter, by Heinrich, in the
beginning of the 21-st century [2, 3, 4]. Nowadays it can be found in various
applications [1].

The idea of the algorithm is to divide the problem into different sub-problems
called levels. Each level is characterized with computational cost. Those lev-
els act as an approximations to the problem, that are much faster to compute
than computing the original problem. Combined appropriately it leads to

2

significant computational cost reduction. That novel algorithm comes with
a variety of interesting problems. Construction of the algorithm requires
proper arrangement and definition of the levels. Another important aspect
is the parallelization of the algorithm. It turns out that in its most general
form the optimal scheduling of the MLMC is an NP-complete problem [5].

In this work the Multilevel Monte Carlo algorithm is considered for porous
medium flow simulation. For such problems, both proper level arrangement
and the optimal scheduling strategy are considered. The aim is to provide
an efficient parallel variant of that algorithm. As such the algorithm can be
used for realistic simulation with the help of High-Performance Computing
(HPC) systems.

Simulation of a flow in a porous medium requires solving Stochastic Partial
Differential Equations (SPDEs). Those differential equations extend the idea
of partial differential equations, by incorporating uncertainty in the model,
for example as an input parameter or as a coefficient parameter. Those uncer-
tainties are modeled as stochastic processes with a probability distribution,
from witch samples can be drawn. The expected value of some random vari-
able can be approximated by taking the empirical mean (the sample mean)
of independent samples of the variable. Quantifying the uncertainty leads to
remarkably large dimensional computational problems.

In principle, MC methods can be used to solve any problem having a proba-
bilistic interpretation, not just SPDEs. The expected value of some random
variable can be approximated by taking the empirical mean (the sample
mean) of independent samples of the variable.

1.2 Outline of this work

In chapter 2 the necessary mathematical foundations needed for the simula-
tions are presented. The general form of MLMC is given, including analysis

3

of its computational cost. In chapter 3 a simple stochastic Laplace equation
model is presented. This stochastic partial differential equation is well estab-
lished as a model equation in the field of uncertainty quantification in porous
medium flows and shows well the computational and modeling challenges of
applying Multilevel Monte Carlo algorithms. Chapter 4 considers a practical
example of transport of mass within a porous media. The formulated equa-
tion has much higher computational complexity than the Laplace equation.
It is widely used and has many application areas as building block in more
complex models. The final chapter 5 considers the programming aspect of
the problem. In it the algorithm procedure for computation is formulated
and different scheduling strategies are considered capable of utilizing a large
number of processor cores. The chapter ends with experiments and analysis
of the proposed algorithms. Each chapter finishes with a conclusion section,
consisting of a summary with the key points in the chapter.

1.3 Stochastic computations

Many real world problems are subject to uncertainty due to some kind of
limitation such as, but not limited to, physical phenomena, expensive mea-
surements, or inability to obtain data. Uncertainty can be included into
mathematical models and experimental measurements in various contexts:
parameter uncertainty - which comes from the model parameters that
are inputs to the computer model; structural uncertainty; model inad-
equacy - which comes from the lack of knowledge of the underlying physics
describing the problem. Extensive efforts have been devoted to characteri-
zation and reduction of uncertainties in the models. A small change in the
data can lead to significant changes in the solution. An illustrative example
is a simple viscous Burger’ equation, where a small change in the uncertainty
leads to a dramatic change of the solution [6]. In the context of differen-
tial equation models more formally, one can consider a physical domain with
D ⊂ Rd, d ∈ {1, 2, 3}, with boundary ∂D and x = (x1, . . . xd).

4

Consider a PDE operator L with boundary condition operator B:

L(x, u; y) = 0, in D.

B(x, u; y) = 0, in ∂D.

Here y = (y1, . . . yN) are parameters of interest. Assume they are mutually
independent. In practice one may be interested in a set of quantities g =

(g1, . . . , gk) ∈ Rk, called observables, that are functions of the solution u.
To model the uncertainty a probabilistic framework is adopted and y =

(y1, . . . yN) is modeled as a N − variate random vector with independent
components in a properly defined probability space (Ω,F ,P). Ω is the sample
space, F ⊆ 2Ω is the σ-algebra and P : F → [0, 1] probability measure
function. Defining ρi : Γi → R+ to be probability density function of a
random variable yi(ω) where ω ∈ Ω has image Γi := yi(Ω),⊂ R for i =

{1 . . . N}. Then joint probability density function of the random vector y is:

ρ(y) =
N∏
i=1

ρi(yi), where Γ :=
N∏
i=1

Γi.

If all random variables have the same support then the finite-dimensional
probability space Γ is a hypercube: (−1, 1)N , (0,∞)N , RN [6].

Before moving to simulations of such stochastic systems, despite of the nu-
merical methods used to solve the problem, it is necessary to properly identify
the random variables y, such that data uncertainty is accurately modeled.
An essential matter is to parameterize the input uncertainty by a set of a
finite number of random variables. A popular choice for parameterization is
Karhunen-Loeve expansion. That method seeks to represent the Gaussian
process by a Gaussian random variable in a series, very similar to the Tay-
lor series. Despite this, each turn includes an independent random variable

5

and hence an additional dimension [7]. Besides, Karhunen-Loeve expan-
sion requires solving a Fredholm integral of a second kind, which leads to
a dense matrix linear system. This is very expensive to compute. Possi-
ble other means of representation is by employing forward and inverse fast
Fourier transforms over a circulant matrix [8], or to use Cholesky decompo-
sition [9]. Another scheme, that attracts great attention in recent years, is
to model the stochastic field by generated solutions to stochastic PDEs [10]
under certain assumptions about the field. In the past years the attention
to this topic is increasing. Complex systems, where models can serve only
as a reduced representation of true physics, revealing quantitative connec-
tions between predictions and observations, are constrained by the ability to
accurately assign values to various parameters in the governing equations.
Subsequently, after the uncertainty is parameterized, several main classes of
numerical methods exist to solve the SPDE model:

• Perturbation methods.
This is the most popular non-sampling method, where the random
fields are expanded via the Taylor series. The random fields are ex-
panded around their means and are truncated at a given order. The
order of magnitude of the uncertainties cannot be too large - typically
at most second order is employed, because resulting system becomes
extremely complicated [6, 11, 12].

• Moment equations.
In this approach the effort is to find the moments of the stochastic
solution directly. The unknowns are the stochastic moments of the
solution and their equations. The challenge lies in the fact that the
derivation of a moment almost always excepts knowledge of higher
stochastic moments. This brings out the so-called “closure” problem,
which is often dealt with by utilizing some “ad-hoc” arguments on the
properties of the higher moments [6].

6

• Generalized polynomial chaos methods.
In this approaches stochastic solutions are expressed as orthogonal
polynomials of the input random parameters - a generalization of the
classical polynomial chaos methods [13]. Here different polynomials
can be chosen, for a particular problem, in order to achieve better
convergence.

• Sampling based methods.
Commonly used methods in this category are Monte Carlo sampling
or one of its variants. Here the approach is to generate an indepen-
dent realization of random inputs, based on the prescribed probability
distribution function. For the generated random realization, data be-
comes fixed and the problem becomes deterministic. Upon solving
the deterministic realizations one collects an ensemble of solutions and
statistical information is extracted. Simple brute force MC algorithm
convergences very slow. To overcome this limitation a number of stan-
dard approaches have been developed e.g. Latin hypercube sampling
or Quasi-Monte Carlo [14, 15, 16, 17, 18, 19]

1.4 Existing software for high-performance
systems

Concurrent programming is a form of computation in which a set of tasks
are computed at the same time. In contrast to sequential computing, where
each task is computed before the next starts, in the concurrent world two
tasks may be computed at overlapping time frames. The main idea of concur-
rent programming is to divide the problem into small sub-tasks that can be
computed concurrently. Concurrent programming is strongly coupled with
parallel programming, where the different sub-tasks are computed in the
same time frame. Concurrent models are a well-established way for compu-
tation. Different concurrent logical models have been developed. Remark-
able ones are the actor model in which the main unit is the actor. Each

7

actor can receive messages and act accordingly to them. The communication
between the different actors is done indirectly through messages. Another
popular model is the client-server model, successful in network applications.
In the transaction model, the operations consist of reads and write. They
are atomic and at each point in time the state validity of the system must
be ensured. Those designs are typically applied in the context of parallel
machines. By definition parallel machine is a machine that combines a set
of processors that can work cooperatively to solve a computational problem.
This definition is broad enough to include parallel supercomputers, that have
hundreds or thousands of processors in networks of workstations; multiple-
processor workstations, and embedded systems. Nowadays the development
of parallel algorithms has been motivated not only for scientific purposes
but also for industrial, thus the demand for more efficient and scalable algo-
rithms is even greater. This is an area where computer science is behind the
hardware capabilities. Mote in-depth discussion of the different concurrent
models can be found in: [20, 21, 22, 23]. There are many ways one can uti-
lize the hardware and thus different parallel concepts: vector computing
(vectorized instructions), multi-core (several CPU cores), cache-coherent
Non-Uniform Memory Access (ccNUMA) , GPU (fast parallel vector pro-
cessing). In general there are three main memory models, depending on how
memory is accessed by the processors: multiprocessors (shared memory),
distributed memory (multi-computers), hybrid architectures (multi-
computers + multiprocessors).

Architecture overview

The main difference between the architectures is how the memory and the
CPUs interact with each other. Figure 1.1, represents a schematic overview
of the shared memory model. Each CPU has equal access to the whole avail-
able memory and each process can read and write to any given memory loca-
tion. In programs, utilizing this model, a data race for a given resource can

8

occur at any time, therefore the main difficulty in the shared memory model
is how to synchronize the access of the shared objects. In this model, a Uni-
form Memory Access (UMA) is possible with Symmetric Multi-Processing
(SMP)

CPU 0 CPU 1 CPU 2 CPU 3

Memory-Interconnect

Mem. Slot Mem. Slot Mem. Slot Mem. Slot

Figure 1.1: Shared memory model

On figure 1.2 a multi-computer model (distributed memory) is presented.
In this model, nodes are coupled by a node interconnect and each CPU
has fast access to its local memory and slow access to the remote memory.
This architecture has Non-Uniform Memory Access (NUMA). The speed
at which a CPU can access a remote memory is strongly dependent on the
network topology used. There are many different network topologies. As
an example of such topologies, consider islands of nodes with relatively fast
memory access among them and relatively slow access to the memory between
the nodes (the different islands are physically far one from another).

Figure 1.3 shows a hybrid model - nodes with distributed and shared mem-
ory architecture. This model is also called the cache-coherent Non-Uniform
Memory Access (ccNUMA) model. This architecture allows fast access to
the data in local memory and slower access to the data in remote memory.
Shared memory programming is possible. Each node has a specialized mem-
ory controller, and the memory controllers in all the nodes cooperate using
directory techniques to maintain cache-coherence across the system.

9

CPU 0 CPU 1 CPU 2 CPU 3

Mem. Slot Mem. Slot Mem. Slot Mem. Slot

Node-Interconnect

Figure 1.2: Distributed memory model

Socket Socket Socket Socket

Mem. Slot Mem. Slot Mem. Slot Mem. Slot

Node-Interconnect

Figure 1.3: Distributed Memory with shared memory

Finally on figure 1.4 a scheme of a hybrid memory model is shown. Most
modern-day HPC systems utilize this model. It consists of a symmetric
multi-processing inside each node and distributed memory parallelization on
the node interconnect. Such architectures can be viewed as a collection of
standard modern multi-core computer systems, physically close to eachother
and connected by high-performance Ethernet type network, typically Infini-
Band, that allows very high throughput and very low latency.

Logical model of HPC systems

The main hardware resources, that programs have to utilize, are the pro-
cessor, memory and potentially graphical accelerators, that become popular

10

SMP NODE SMP NODE SMP NODE SMP NODE

Node Interconnect

Figure 1.4: Hybrid Architectures

recently. This means a parallel program can distribute work across different
processors and graphical accelerators and distribute data between different
nodes, but also between the host memory (main memory) and device mem-
ory (graphical memory) and synchronize and communicate locally within a
single symmetric multi-processing (SMP) node or globally between different
SMP nodes. To address these capabilities different programming frameworks
have been developed. The Message Passing Interface (MPI) is a standardized
actor-like model interface, that uses a message-passing standard to organize
communication between nodes [24]. It is designed to function on a wide
variety of parallel computing architectures. The standard defines the syn-
tax and semantics of library routines. Most notable implementations include
Open MPI and Intel implementation of the standard. As a communication
protocol it offers both point-to-point and collective communication. The
first MPI version has no shared memory concept, and MPI-2 offers only a
limited distributed shared memory concept. However, Open MPI implemen-
tation, can use shared memory for message transfer if it is available [25].
Explicit shared memory programming is available in the third reversion of
the MPI standard [26, 27, 28]. The MPI is meant to provide essential
virtual topology, synchronization and communication functionality between
a set of processes, that are mapped to nodes. Those processes are grouped
in communicators. Each process can communicate with any other process
within a communicator. Processes from different communicators can not
communicate.

11

Libraries for scientific computing

There exist a large number of specialized libraries for linear algebra, as it is an
important part in many models, not only limited to HPC such as: LAPACK,
Eigen, Armadillo, SuperLU . . . , each with own strength and weakness. How-
ever, few open-source, general purpose libraries exist, that are suitable for
massively parallel problems. In the past few years a rapid development have
been done towards such libraries aimed for HPC systems, with high scalability
factors, such as Deal.ii1 and Dune2 libraries [29, 30] , OpenFoam (specialized
in Computational Fluid dynamics)3, Portable, Extensible Toolkit for Scien-
tific Computation (PETSc)4. Dune library is a modular toolbox for solving
partial differential equations, using grid base methods. The underlying idea
of Dune is the creation of interfaces, allowing the use of legacy and/or new li-
braries. It is written in C++, with heavy use of template meta-programming
techniques and feathers from the C++0x standard family. It is also capable
of supporting shared memory as well as distributed memory computations.

Figure 1.5: Dune design structure [31]

The library consists of core modules and modules build on top of them, as
illustrated in figure 1.5. It consists of five core modules, each with a spe-
cific purpose. Dune-common is the base model for all other modules. It
defines internal structures, some interfaces for MPI wrapper, time measure-

1http://dealii.org/
2https://www.dune-project.org/
3https://www.openfoam.com/
4https://www.mcs.anl.gov/petsc/

12

http://dealii.org/
https://www.dune-project.org/
https://www.mcs.anl.gov/petsc/

ments, build system, etc. Dune-geometry provides interfaces for different
geometries, iterators, and so on. Dune-grid represents the grid manager.
It supports structured and unstructured grids, conforming, non-conforming
grids etc. Dune-localfunctions provides interface and implementation for
shape functions, defined on Dune reference elements. Dune-istl or Dune it-
erative solver template library, represents different linear algebra abstractions
as vectors, matrices, sparse vectors and sparse matrices, and different linear
solvers: sequential or parallel. On top of the core, modules exist higher-level
libraries. One of the commonly used modules is Dune-PdeLab. It is aimed
to provide easy and fast way of implementing a numerical methods for PDE.
It is based on the residual assemble approach. The user provides an imple-
mentation on a reference element which is then mapped to a global residual
matrix. It uses Dune-istl as a linear algebra backend. In general, the library
is based on the idea of static polymorphism design pattern with template spe-
cialization and type propagation (type traits as std::numeric_limits). The
idea of such representation is better optimization of the code, done by the
compiler since there are no virtual tables and the exact type is known at
compile-time which enables the compiler to produce more optimized code.
However, such an approach is not without drawbacks. The code is hard to
read, understand and support.

13

1.5 Aim and scope of this work

In this work the Multilevel Monte Carlo algorithm is considered to address
to problems involving porous medium flows. The aim is to:

• Provide an efficient general purpose parallel variant of the algorithm,
capable of much faster simulations compared to the classical Monte
Carlo approach setting. The algorithm must consider the sample to
sample time fluctuations raised by the randomness of the problem.

• Provide an efficient parallel computation scheme, in order to enable
realistic simulations of porous medium flow, with the help of high-
performance computing systems.

To achieve that goal the following tasks are considered:

• Explore the existing approaches to the problem.

• Choose effective algorithm for generation of random porous medium
permeability fields.

• Provide an efficient coarsening strategies for the MLMC setting.

• Provide an adequate heuristic algorithm for efficient work scheduling.

• Choose appropriate software for effective implementation in HPC set-
ting.

14

Chapter 2

Mathematical Models

This chapter considers the underlying mathematical tools needed for con-
structing the computational methods given in chapters 3 and 4. Section 2.1
elaborates on the random number sampling from random fields. The sec-
tion describes the idea behind the circulant embedding algorithm. Section
2.2 discusses the method used for discretization of the PDE. Next section
2.4 formulates the Multilevel Monte Carlo algorithm in its general form and
compares it to the classical Monte Carlo approach. Section 2.3 discuses two
important properties of porous medium, that are later incorporated in to the
models. The chapter concludes with short summary section 2.5.

2.1 Random Sampling Algorithms

An essential problem in uncertainty quantification applications is how to
generate a coordinated random sample by a given covariance matrix from a
multivariate random distribution. Different approaches have been developed
for tackling this problem. Before the sampling algorithms are described,
rewind that for two joint distributed random variables X, Y the covariance
is defined as:

15

cov(X, Y) = E[(X − E[X])(Y − E[Y])] = E[XY]− E[X]E[Y]

The covariance is a measure of the joint variability of two random variables.
Depending on how the random variables are distributed, the covariance may
be positive or negative. The closely related statistical measure correlation is
defined as:

ρX,Y =
cov(X, Y)

σxσy
= E[(X − E[X])(Y − E[Y])]/(σxσy)

The correlation is a measure of how two random variables are related one to
another, i.e. how a change in the value of one of the variables causes a change
in the value of the other variable. It is very useful measure of statistical rela-
tionship and is used for studying and simulation in many statistical models.
Both measures can be generalized to N dimensional multivariate distribu-
tion. Let X = (X1, X2, . . . Xn)

T is a column vector of random variables,
each with finite variance and expected value. Then the covariance matrix is
defined as a matrix with entries Σi,j = cov(Xi, Xj) or:

Σ =

E[(X1 − E[X1])(X1 − E[X1])] · · · E[(X1 − E[X1])(Xn − E[Xn])]

E[(X2 − E[X2])(X1 − E[X1])] · · · E[(X2 − E[X2])(Xn − E[Xn])]

· · · · · · · · ·
...

E[(Xn − E[Xn])(X1 − E[X1])] · · · E[(Xn − E[Xn])(Xn − E[Xn])]

The correlation matrix is defined as the matrix with entries cov(Xi, Xj)/σxiσxj .
It is clear that in order to generate correlated random variables, the covari-
ance matrix is needed. The idea is to generate uncorrelated random variables
and to find a linear transformation that correlates them, i.e. find a linear
transformation, such that the covariance matrix is diagonalized. To achieve
that, consider a random N -dimensional vector consisting of independent ran-

16

dom variables with zero mean and variance of 1. Since E(XiXj) = δij, hence
the covariance matrix:

Σ = E(XXT) = I.

The random vector then can be correlated with covariance matrix Q, by
decomposing the matrix Q in the form Q = LLT . This can be done using
the Cholesky decomposition of Q, since by definition the covariance matrix
is positive definite and symmetric, setting the new random vector Z = LX

and considering the expansion E(ZZT) [32]:

E((LX)(LX)T) = E(LXXTLT) = LE(XXT)LT︸ ︷︷ ︸
E is linear operator

= LILT = Q

Given the Q = LLT decomposition of the covariance matrix, generating ran-
dom samples is straightforward. Generate uncorrelated random vector X
and obtain the random vector Z = LX. More information can be found in
[33, 34, 35, 36]. From a computational standpoint, this method can be ap-
plied to all types of covariance matrices. However, an obscure problem with
covariance matrices is the significant memory requirements. The required
memory to store the whole covariance matrix grows extremely fast and gen-
eration of N ×N correlated random variables requires N 2 ×N 2 covariance
matrix. Under the assumption, that the points that needs to be generated
are equally spaced correlated random variables, the covariance matrix size
can be reduced and more efficient algorithm can be used.

Assume a random field, with constant mean and covariance C(x, y) = c(x−
y), x, y ∈ D. The function c : D → R, is known as a stationary covariance
and the field itself is called stationary. Let x1, x2, . . . , xM ∈ D be the chosen

17

sample points. Realisations of discrete random fields associated with the
Gaussian random filed Z(x, ω), can be generated using circulant embedded
algorithm if Z(x, ω) is stationary and x1, x2, . . . , xM are uniformly spread.
The necessary mathematical tools to describe circulant embedded algorithm
are complex-valued random variables, Fourier transform, and Toeplitz and
Circulant matrices. Before the algorithm is sketched, the necessary results
from the literature are given. For more detailed discussion, refer to [33, 34].

Definition complex multivariate Gaussian distribution: A CM random vari-
able Z = X + iY follows the complex multivariate Gaussian distribution
CN(µ,C) with µ ∈ CM and C ∈ RM × RM , if the real and imaginary part
of Z are independent and

X ∼ N(Re(µ),
1

2
C),

Y ∼ N(Im(µ),
1

2
C)

The entries of the covariance matrix are ci,j = Cov(Zi, Zj) = E[(Zi −
E[Zi])(Zj − E[Zj])]. Please note, that since the real and imaginary part
of Z are intendant the values of ci,j are real [33, 34].

Definition Toeplitz matrix: An M ×M real-valued matrix C is Toeplitz if
ci,j = ci−j for some real numbers c1−M , . . . , cM−1.

C =

c0 c−1 . . . c2−M c1−M

c1 c0 c−1 . . . c2−M
...

cM−2
. . . c1 c0 c−1

cM−1 cM−2 . . . c1 c0

18

A symmetric Toeplitz matrix has entries ci−j = cj−i and is defined by its
first column:

c1 = [c0, c1, . . . cM−1]
T ∈ RM .

1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

Figure 2.1: Example of symmetric Toeplitz matrix

Definition Circulant matrix: An M ×M real-valued Toeplitz matrix C is
circulant if each column is a circular shift of the elements of the previous
column. Those matrices are fully defined by their first column.

3 2 1 2
2 3 2 1
1 2 3 2
2 1 2 3

Figure 2.2: Example of Circulant symmetric matrix

Theorem: Let C be anM×M real-valued circulant matrix with first column
c1. Then

C = WΛW ∗

where W is the Fourier matrix and Λ is the diagonal matrix of eigenvalues
with diagonal:

d =
√
MW ∗c1

If C is symmetric, c1 is Hermitian vector and the eigenvalues are real [33,
34].

19

Using the above theorem in case the covariance matrix is circulant, generating
a pair of samples from N(0, C) is very easy. Let ξ = [ξ1, . . . , ξM] be a random
uncorrelated sample, i.e. ξ ∼ CN(0, 2I), and consider Z = WΛ1/2ξ. Since
E[Z] = E[ξ] = 0 the covariance matrix becomes [33, 34]:

E[ZZ∗] = WΛ1/2E[ξξ∗]Λ1/2W ∗ = WΛ1/22IΛ1/2W ∗ = 2C

In addition, hence Re(Z), Im(Z) ∼ N(0, C) and are independent

E[ZZT] = WΛ1/2E[ξξT]Λ1/2W ∗ = 0

This means that to draw a pair of independent samples from N(0, C), when
C is circulant two independent samples needs to be computed from N(0, C).
Then factorize the matrix C using inverse discrete Fourier transform and
perform matrix-vector multiplication withW - the discrete Fourier transform
matrix. The matrix C is always symmetric and Toeplitz on uniformly spaced
grid points [33, 34]. Any symmetric and Toeplitz matrix can be embedded
into a larger symmetric circulant matrix, satisfying theorem conditions. As
this special structure of the covariance matrix is uniquely defined by the
first column of the matrix, the memory that is needed for the simulations is
reduced.

2.2 Finite volume numerical method

Finite volume (FV) method is one of the most versatile methods. It was
developed with the aim to discretize the equation that describes conservation
laws coming from physics, frequently used in computational fluid dynamics
[37, 38]. The simplest example of one dimensional conservation law is the
following PDE:

qt(x, t) + f(q(x, t))x = 0 (2.1)

20

The conservation laws arise most naturally in an integral forms, stating that
for two points x1, x2 for equation 2.1

d

dt

x2∫
x1

q(x, t)dx = f(q(x1, t))− f(q(x2, t)) (2.2)

Each component of q measures the density of some conserved quantity and
the equation 2.2 states that the total mass of this quantity between any two
points can only change due to the mass flux past the endpoints x1, x2. If
the total mass is not conserved then the equation 2.2 has to contain source
terms, for example, in some chemical reactions taking place. There are many
other such conservative systems and in practice many of them are non-linear,
non-smooth and contains discontinuities. In that case equation 2.1 can be
derived from 2.2, provided that q and f(q) are sufficiently smooth. This
discontinuities lead to computational difficulties and discretization with the
classical approaches, such as finite difference methods in which the deriva-
tives are approximated directly by finite difference tend to break near this
discontinuities. The resulting solution can even become physically incorrect,
for example the solution can contain negative mass. For more in-depth ap-
proaches and methods for solving such systems and the computational chal-
lenges that they posses, consider the great books by Randall and LeVeque
[37, 38]. The most compelling reason to use finite volume method - it is
conservative. Instead of approximating the derivatives directly, FV approach
considers the solution within a control volumes, called cells. Those volumes
are usually polygons. The unknown solution is approximated by cell average
over the control volume and the flux is balanced. Consider the multivariate
form of equation 2.1 and reformulate the equation:

∂u

∂t
+5.f(u) = 0, where u is conserved quantity and

f(u) = [f1(u), . . . , fd(u)]
(2.3)

21

Then integrating over a volume V ∈ R2, and using the divergence theorem
to convert the divergence term into a surface integral over the surface ∂V ,
and denoting with ν(ν1, ...νd) the unit outer normal vector, equation 2.3 is
transformed into:

∂u

∂t

∫
V

udx+

∮
∂V

f(u)dx (2.4)

The computational domain V is divided over non-overlapping cells of finite
volumes: Vr, r = 1, . . . N, V =

⋃
r Vr. Let ur be the cell average of the

unknown quantify into Vr. Then

ur =
1

|Vr|

∫
Vr

u(x)dx (2.5)

Then the integral conservation law 2.4 becomes:

|Vr|
dur
dt

+
∑
s∈N(r)

∫
Vr∩Vs

finids, where

N(r) = {Set of the cell with common interface with Vr}

(2.6)

The above equation is exact. To derive a discretization scheme the flux
integral has to be approximated. This can be achieved by using Gaussian
quadrature. For detailed analysis of that approach please refer to [37, 38,
39, 40].

2.3 Porosity and Permeability

Two important properties, that characterizes a porous medium, are porosity
and permeability. Those two properties present in many models in various
forms and are closely related. Both properties are related to the number, size

22

and the connected openings in the rock or other porous medium. Porosity
measures the medium ability to hold water or other types of fluid within its
porous. It is defined as the ratio of open space in a medium divided by the
total medium volume (solid and open space). Permeability is a measure of
the ease of flow of a fluid to pass through a porous solid. For example, a rock
may be extremely porous, but if the pores are not connected it will have no
permeability. Likewise, a rock may have a few continuous cracks which allow
ease of fluid flow, but when porosity is calculated, the rock doesn’t seem very
porous. Since porosity is a ratio between volumes it can take values from the
range of [0, 1]. In contrast, permeability is dimensionless property. It can
take values from [0,∞).

(a) 0.8 porosity (b) 0.6 porosity

Figure 2.3: Porous media consisting of spherical particles

When the flow within the media is laminar the permeability and porosity
can be connected as Kozeny–Carman equations [41]. This equation is exten-
sively used in practice. Equation contains a constant term that is normally
problem-specific. Different constants are used for different models of porous
mediums.

23

2.4 Multilevel Monte Carlo algorithm

In its simple form Monte Carlo (MC) algorithm is quite intuitive. Suppose
the expected value of a given quantity needs to be computed. To achieve
this, one generates samples Q(i), and computes the empirical expected value
E[Q]:

E[QM,N] =
1

N

N∑
i=1

Q
(i)
M

whereM is characteristic parameter of the underling problem and N denotes
the number of samples. Because the variance is inversely proportional to
the number of samples - N−1V [Q] the Root Mean Square error (RMS) is
O
(

1√
N

)
. This directly means that achieving accuracy of ε requires N ∈

O(ε−2) number of samples to be computed. Here rests the main weakness of
the method - its computational cost. It may require an extreme number of
costly samples to achieve the desired epsilon precision. One way to overcome
the slow convergence is to use distinct samples, picked very carefully, to gain
a better approximation, namely Quasi-Monte Carlo methods [1], [14]. A
more general strategy to overcome the slow convergence of MC method is
to divide the problem into a combination of cheap fast estimators, and slow
and expensive ones in a proper way for the given problem. Doing so will
improve the convergence of MC. The main point of this idea is to represent
the expected value of interest as a telescopic sum:

Q(ω) = QM0
(ω)︸ ︷︷ ︸

Y0(ω)

+QM1
(ω)−QM0

(ω)︸ ︷︷ ︸
Y1(ω)

+ · · ·+QML
(ω)−QML−1

(ω)︸ ︷︷ ︸
YL(ω)

.

Here each Y (ω) can be seen as a standard Monte Carlo estimator, for a given
random vector ω in a properly defined random space. This idea is called

24

Multilevel Monte Carlo (MLMC) and it is particularly useful in the field of
fluid dynamics. To describe it formally, assume ωM : Ω 7−→ RM be a random
vector over some probability space (Ω,F, P) and consider the quantity of
interest QM , defined by some functional, depending on ωM . Assume also
that E[QM] can be made arbitrary close to E[Q] by choosing M sufficiently
large. Our goal is to approximate E[Q] by E[QM]. This can be achieved
by computing an estimator QM and quantifying its accuracy using the root
mean square error.

e(Q̂M) = (E[(Q̂M − E[Q])2])1/2 (2.7)

Then the standard Monte Carlo (MC) estimator is defined as:

Q̂MC
M,N =

1

N

N∑
i=1

Q
(i)
M (2.8)

where Q(i)
M , i = 1, . . . N are independent samples of the unknown quantity

QM . Assuming that the cost of computing one sample is C(Qi
M) ∈ O(Mγ),

where γ is positive constant. Expanding the mean square error will yield
[42]:

e(Q̂MC
M,N)2 = E[(Q̂MC

M,N − E[Q̂MC
M,N] + E[Q̂MC

M,N]− E[Q])2]

= E[(Q̂MC
M,N − E[Q̂MC

M,N])2] + (E[Q̂MC
M,N]− E[Q])2

= V [Q̂MC
M,N] + (E[Q̂MC

M,N]− E[Q])2

(2.9)

Since:

E[Q̂MC
M,N] = E[QM], and V [Q̂MC

M,N] = N−1V [QM]

25

the error becomes:

e(Q̂MC
M,N)2 = N−1V [QM] + (E[QM]− E[Q])2 (2.10)

In applications involving an elliptic PDE, M denotes spatial discretization
parameter and QM approximates the inaccessible quantity Q. QM is com-
puted by solving a PDE problem and the second term in equation 2.10
represents the error of the numerical method used for discretization. It has
a bias effect on the estimator. Under the assumption M is sufficiently large,
it can be considered that (E[QM] − E[Q])2 ≤ ε2/2 holds. Then choosing
N−1V [QM] ≤ ε2/2, gives error estimation e(Q̂MC

M,N) ≤ ε. By neglecting the
bias term in 2.10, MC method converges with a rate of 1/

√
N . The addi-

tional computational cost for a generated sample, governed by the assumption
for large M , leads to large computational times for reasonable simulations.
To overcome this limitation sampling from different levels is needed. The
extension is quite natural. Let {Ml : l = 0 . . . L} ∈ N be increasing se-
quence of numbers called levels with corresponding quantities {QMl

}Ll=0, and
s ≥ 2 be coarsening factor, such that Ml = sMl−1, l = 1 . . . L. Defining
Ŷl = QMl

−QMl−1
and setting Ŷ0 = QM0

, the following expansion for E[QM]

can be formulated:

E[QM] = E[QM0
] +

L∑
l=1

E[QMl
−QMl−1

] =
L∑
l=0

E[Yl] (2.11)

The expectation on the finest level is equal to the expectation on the coarsest
level plus the sum of corrections on a difference in expectation on consecutive
levels. The terms in equation 2.11 are approximated using standard MC
independent estimators, each with Nl samples:

26

Ŷl = N−1
l

Nl∑
i=1

(Q
(i)
Ml
−Q(i)

Ml−1
) (2.12)

Then the Multilevel Monte Carlo estimator is defined as:

Q̂ML
M,N =

L∑
l=1

Ŷl (2.13)

Analogously to MC method, for the mean square error (MSE) is:

e(Q̂ML
M,N)2 =

L∑
l=0

N−1
l V [Yl] + (E[QM − E[Q])2 (2.14)

Of the formulation in equation 2.12, 2.13 above it can be seen that the
definition of levels is quite arbitrary. It is subject to an open question and it
is problem dependent. It is hard to answer the question of apriori estimation
for the number of samples needed per level to achieve the desired accuracy.
In practice a few samples are needed, to obtain an initial guess. To obtain
stopping criteria and express the error in terms of samples, a minimization
of the total computational time is done, under the given error tolerance ε.
By defining C0V0 to be the cost and variance of one sample of Y0 and ClVl be
the cost and variance of one sample for estimator Yl, then cost and variance
of the method becomes:

Ctotal =
L∑
l=0

ClNl

V total =
L∑
l=0

N−1
l ∗ Vl

27

Then for a fixed variance, the cost is minimized by choosing Nl to minimize:

Ctotal + λ2V total

where λ is some Lagrangian multiplier. This gives : Nl = λ
√
Vl/Cl. Achiev-

ing total variance of ε2 implies that λ = ε−2
∑L

l=0

√
Vl/Cl. For more detailed

analysis please refer to [1] and the references therein. Minimizing the total
computational time, relation, between the number of samples that needs to
be performed on a given level and the variance on that level. Turning Nl to
integer gives the

Nl = dλ
√

(vl/tl)e where λ =
1

ε2

L∑
l=0

√
(vl/tl) (2.15)

Then the total computational cost takes the form:

Ctotal =
1

ε2

(
L∑
l=0

√
Vl/Cl

)2

A direct consequence is whether the product VlCl increases or decreases with
the estimator on level l, i.e. the cost grows with the level faster than the
variance decreases. This determines the efficiency of the algorithm. For
example, if the product increases with the level, then the dominant contribu-
tion to the cost comes from the finest estimator (the term VLCL). C becomes
Ctotal ≈ ε−2VLCL. If the dominant contribution comes from coarsest estima-
tor then Ctotal ≈ ε−2V0C0. This contrasts with the standard MC cost of
approximately ε−2V0CL, assuming that the cost of computing QML

is similar
to the cost of computing QML

− QML−1
, and that V [QML

] ≈ V [Q0]. This
shows that in the first case the MLMC cost is reduced by a factor VL/V0,
corresponding to the ratio of the variances V [QML

− QML−1
] and V [QML

],

28

whereas in the second case it is reduced by a factor C0/CL - the ratio of the
costs of computing QM0

and QML
−QML−1

[1].

2.5 Conclusions

The circulant embedding algorithm provides a computationally efficient way
of generating correlated random fields given a covariance matrix over a regu-
lar equidistant grid. The algorithm suggests that only part of the covariance
matrix needs to be stored in the memory. This reduces the memory restric-
tions on the program. The generation of random variables points on the
grid centers coincides well with the finite volume method. The finite volume
method itself is treating the solution of the PDE within a control volume
(in this case a square cell in 2-d) as constant. Combined with the local
preservation of conservative laws and its low computational cost compared
to methods such as finite volume makes it ideal for uncertainty quantifica-
tion method. Finally, the independent sampling property of MC and MLMC
makes them perfect, but not without computational challenge, for simula-
tions on high-performance computational clusters.

By the opinion of the author, the main contributions of this chapter are:

• A review and analysis of the existing solutions to the considered prob-
lems are made. The advantages and disadvantages of the existing
solutions for generating stochastic fields and corresponding sampling
algorithms are evaluated;

29

Chapter 3

Multilevel Monte Carlo
method for Laplace
Equation

Many problems that incorporate uncertainty usually require solving a Sto-
chastic Partial Differential Equation (SPDE). Those equations have attracted
great attention due to their importance in modeling a variety of environmen-
tal and industrial processes. Thanks to the increased computational power,
such solutions can be facilitated. For example, a simulation of a subsurface
water flow in an area of hundreds of square km. In this chapter scalar elliptic
SPDE can be used as a model for such a problem. However the approach
considered here is not limited to this problem. The problem itself is a well-
established model in the area and demonstrates the computational challenges
in Uncertainty Quantification (UQ) for porous medium. To name few other
applications, consider saturated flow in the subsurface or heat conduction in
metal-matrix composites or other composite materials. This chapter starts
by introducing the SPDE model in 3.1. In sections 3.2, 3.3, 3.4 the different
numerical model components are constructed and the Multilevel Monte Carlo

30

(MLMC) levels are defined. Section 3.4 develops the different approxima-
tions of the underling permeability field for the MLMC levels. The chapter
conclude with a section 3.5, dedicated to the numerical simulations. In this
section, a comparison between MLMC and the pure MC algorithm is done.
Also, results are presented for the performed number of samples per level, for
different permeability generating parameters. The section ends with tables
comparing the different approximation techniques. The chapter finishes with
conclusions section, summarizing the obtained results.

3.1 Model equation

Consider steady state single phase flow in random porous media in a unit
cube with domain D = (0, 1)2 and pressure drop from left boundary to the
right boundary:

−∇ · [k(x, ω)∇p(x, ω)] = 0 for x(x1, x2) ∈ D = (0, 1)2, ω ∈ Ω. (3.1)

Subject to boundary conditions:

px1=0 = 1

px1=1 = 0

∂np = 0 on other boundaries,

(3.2)

Both the coefficient k(x, ω) and the solution p(x, ω) are subject to uncer-
tainty, characterized by the random vector ω from a properly defined ran-
dom space (Ω,F ,P). The coefficient k(x, ω) describes the permeability field
within the domain and the solution p(x, ω) describes the steady pressure
distribution under pressure drop. An object of interest for this model is the
mean quantity of the total flux through the unit cube:

31

Q(x, ω) :=

∫
x1=1

k(x, ω)∂np(x, ω)dx. (3.3)

In this general form solving equation 3.1 is extremely challenging. Common
way to overcome this limitation is to use simple designs for k(x, ω), that
expresses the data as well as possible. One model that has been studied ex-
tensively is a log-normal distribution for k(x, ω). The correlation length scale
for k, although small is significant, to fall outside the domain of stochastic
homogenization techniques (see [43]). A commonly used covariance function
that has been used in applications is the following:

C(x, y) = σ2exp(−||x− y||p/λ) , p = {1, 2}. (3.4)

Where || · ||p denotes the lp norm in R2, and satisfies:

E[K(x, .)] = 0,

E[K(x, .), K(y, .)] = C(x, y) = C(y, x)

for x, y ∈ D and K(x, ω) = log(k(x, ω))

Here σ is the variance of the distribution and λ is correlation length - a
constant parameter that characterizes typical repeatability range (for exam-
ple, how likely a stone with given dimensions will appear on some observed
underground field).

Solving numerically equations 3.1, 3.2 and acquiring quantity of interest
3.3, requires first a correlated random permeability field (fixed vector drawn
from the random space) to be generated. Then for such fixed field, the
formed PDE can be solved. Conclusively quantifying the uncertainty is done
by drawing samples and taking the empirical variance. Discussion is made
for each separately.

32

3.2 Random field generation

Generating permeability field requires generation of random correlated vari-
ables according to a given covariance matrix. Different approaches have
been developed which are applicable for large scale simulations. In [42], a
Karhunen–Loève expansion has been considered, in [44] a Circulant Embed-
ding approach is used. For a generating algorithm, the approach presented
in 2.4 is followed and circulant embedding algorithm is used. More in depth
analysis can be found in [44] and [8].

Figure 3.1: Single realization of permeability field in 3D

3.3 Problem discretization

After the random vector has been fixed, i.e permeability has been generated,
the SPDE 3.1 with boundary conditions 3.2 for the corresponding realization
of the permeability field is transformed to a PDE. To discretize the formed
PDE, a Cell centered finite volume method is used. This method preserves
the conservative laws in physics, such as mass preservation or energy preser-
vation, and naturally leads to harmonic averaging of the discontinuous co-
efficients. This property represents the underlying physics more accurately.
It is also the usual method of choice for flow simulation discretization. First
the domain D = [0, 1]2 is divided uniformly into m×m square cells denoted
by Dij : (i−1

m , im)× (j−1
m , jm), for i, j = 1 . . . ,m, and xi,j the center of the cell.

33

To obtain a discretization equation 3.1 is integrated over each cell to obtain
a set of m2 algebraic equations.

∫
Di,j

−5 ·(k(x, ω)5 p(x, ω)) = 0 for i, j = {1 . . .m} (3.5)

Then using divergence theorem for the left hand side of equation 3.5 the
integral is transformed to a boundary integral:

∮
Di,j

−k(x, ω)5 p(x, ω) · n for i, j = {1 . . .m}

Let ki,j denote the value of k at xi,j, and pi,j denote the approximation to
p at xi,j. To approximate the surface integrals, each cell edge is considered
individually. For the contribution of the edge between Di,j and Di+1,j mid-
point rule is used. To approximate k on the edge, harmonic average is used
ki+1/2,j of ki,j and ki+1,j. To approximate 5p(x,w) · n, central difference
approximation is used: (pi+1,j − pi,j)/(xi+1,j − xi,j). The contributions to
other edges are approximated similarly, leading to standard five point stencil
equation for (i, j):

− ki−1/2,jpi−1,j − ki,j−1/2pi,j−1+

− (ki−1/2,j + ki,j−1/2 + ki+1/2,j + ki,j+1/2)pi,j+

− ki+1/2,jpi+1,j − ki,j+1/2pi,j+1

A Neumann boundary condition, i.e. prescribed flux −k∇p · n, is straight-
forward to approximate, by simply substituting the corresponding boundary
term with 0. For the Dirichlet boundaries, midpoint rule and one-sided dif-
ference are used. For ∇p the diffusion coefficient in the boundary cell is
taken. To solve the deterministic problem an account must be taken that

34

the permeability field has a huge magnitude. The governing matrix has bad
condition number and it is quite problematic for numerical computations.
To overcome this difficulty, Conjugate Gradient method preconditioned with
Algebraic Multi Grid (AMG) is used. As linear backend, the solver provided
by DUNE library is used in the current implementation.

Single realization in 3D of Laplace equation, and computed Q

3.4 Coarse Grain

The loosely defined definition of what a level means in the interpretation of
equation 2.11 gives great flexibility when designing an algorithm that uses
MLMC. One of the key components of MLMC is the selection of the coarser
levels and it is strongly coupled with the simulated problem. In [42] authors
use the number of the terms in the Karhunen–Loève expansion to define
coarser levels. In [45] the authors consider coarser grids approximations of
the fine grid problem build with AMG. In [46] the levels are defined as grid
resolutions and arithmetic averaging for the coefficients is used to represent
the permeability field on coarser grids. The number of the basis functions in a
Reduced Basis mixed Multiscale Finite Element Method algorithm (MsFEM)
is used to build the coarser levels in [47, 48]. To define a level in our
Multilevel MC setting, the natural choice is the problem resolution i.e the grid
size for the PDE. For a given estimator in equation 2.12, the level is defined
as the number of cells along an axis direction used in the discretization of the
PDE. Assuming that on the fine grid the discrete PDE system has 2M number

35

of cells, then on coarse level 2M−1 number of cells is used. Using this definition
for two dimensions there are exactly 4 times more discretization points on the
fine grid compared to the coarse and for the three-dimensional case - 8 times
more. The fact that the stochastic coefficients are discontinuous means some
kind of approximation must be employed. To represent the corresponding
permeability field for the term to the coarse grid, three different approaches
are considered.

Random field approximations

Renormalization

Here the coarser levels in MLMC are constructed by renormalization. This
technique has been widely used in the past (and is still intensively used
by many groups) for upscaling hydraulic conductivity in heterogeneous me-
dia. For details please refer to papers [49], [50], [51] and the references
therein. Note that the effective hydraulic conductivity obtained as a result
of the renormalization can be used to calculate an effective flux. In a nut-
shell, the simplified renormalization procedure is based on recursive harmonic
arithmetic and geometric averaging. Dividing the domain D = [0, 1]2 into
M ×M square cells, corresponding to level L of our MLMC algorithm. The
generation of one realization of the random permeability field means that a
permeability value Kl(x) is associated with each cell. The permeability of
twice coarser grid, corresponding to level L− 1, is calculated recursively by
composition of harmonic, arithmetic and geometric means. If two neighbor-
ing cells are in series with respect to the flow direction, then the equivalent
permeability is estimated as a harmonic mean; if the two cells are in parallel
concerning the flow direction, then equivalent permeability is calculated as
an arithmetic mean of the two. As illustrated on fig. 3.2, by starting with
harmonic average a combination of cells 1 and 2 to a rectangle h1,2 is done.
The value for the rectangle is harmonic average of the two cells. Similarly,
cells 3 and 4 can be combined to a rectangle h3,4. Now both rectangles are

36

perpendicular to the flow meaning, that they must be combined by arith-
metic averaging. This leads to Kha

1234 = (h1,2 + h3,4)/2. In a similar manner
Kah

1234 can be computed by first starting combining perpendicular to the flow.
To obtain an equivalent permeability coefficient on a twice coarser grid, the
geometric mean of K1234 =

√
Kah

1234K
ha
1234 is taken. In the three-dimensional

case, there are 3 different options of renormalization, depending on how you
start combining. In our experiments, the sequence harmonic-arithmetic- har-
monic is used. The procedure can be repeated recursively for more than two
levels.

1 2

3 4
K

Kh K2h

p
=

1

p
=

0

p
=

1

p
=

0

h 2h

Figure 3.2: Simplified renormalization

On figure 3.3, a simulation of a permeability field is shown. The permeability
field is approximated with the described above renormalization. The gener-
ating parameters are: σ = 2.0, λ = 0.3; the covariance function is the two
norm function (see equation 3.4). The procedure acts as a smoother over
the field and preserves the geometrical structure, which leads to preserved
variance operator between two fields. Generation with one norm covariance
function leads to similar results.

37

(a) Original field (b) Renormalized ones (c) Renormalized twice

Figure 3.3: Simulations of permeability, σ = 2.0, λ = 0.3

Simple Average

Consider again figure 3.3. One simple idea to combine the permeability cells
is to take the simple average of 4 by 4 for the case of two dimensions and 8
by 8 for three. This approach does not consider any underlying physics.

(a) with AVG (b) with Renormalizaion

Figure 3.4: Random Field Representation, σ = 3, λ = 0.4

Continuous interpolation

Another idea is to use interpolation for calculation of the field at a given
point. The permeability field can be approximated by a low order point-wise

38

polynomial over a cell or a spawn of connected cells. For example a simple
way of interpolation is to use Bi-linear approximation over a cell, where the
coefficient of the approximation is determined by the corners of the cell. The
permeability can even be sampled on a larger grid then the fine grid defined
in MLMC setting, and interpolated by methods that use more points. The
Bi-linear initial test were quite inaccurate, with relative error 10 times larger
than the other discussed methods, and it is not considered and investigated
any further, as it is out of the scope of this work.

Figure 3.4, shows a single generation of the field obtained by the two renor-
malizaion methods. The field is approximated twice. It is clear, that struc-
turally they seem to represent the field similarly, this however changes when
the uncertainty is quantified.

3.5 Numerical Experiments

For testing how MLMC performs, the Laplace equation 3.1 with boundary
conditions 3.2 is considered. The quantity of interest is given by 3.3.

Table 3.1 contains the measured results from experiments with a three-
level MLMC method with simplified renormalization. Theory behind this
approach is that the true permeability value lies between the two terms
Kah

1234 and K
ha
1234 [51], [50]. That is why it is expected the variance operator

to be preserved well across the different levels. As an averaging technique,
simplified renormalization has a smoothing effect. Compared to arithmetic
averaging the variance of the renormalized field is not far from the variance
of the original field. This can be quantitatively confirmed by the presented
data. The variances presented in the third column confirms both:

• after renormalization the variance at the coarsest level is close to the
variance on the original fine grid.

39

• the variances for the corrections in MLMC are decaying very fast fur-
thermore, the second column shows that the difference of the mean flux
computed with MC and MLMC is close, and in the range of ε

The fourth column shows that while MC needs tens of thousands of sample
realizations on the finest grid. For the MLMC algorithm almost the same
number of realizations are needed on a 16 times coarser grid, while only
few computationally expensive realizations are needed on the finest grid.
The renormalization technique leads to very effective MLMC and significant
speedup can be achieved in comparison to the standard MC algorithm.

|E[QMLMC]− E[QMC]| V [Yl] Grid size and Nl

MC - V [Y0] : 1.10483 210 × 210 122761
Two level MLMC 0.00115 V [Y1] : 1.17 29 × 29 132229

V [Y2] : 3.36e− 05 210 × 210 324
Three level MLMC 0.00590 V [Y0]: 1.26 28 × 28 128315

V [Y1]: 8.89e− 06 29 × 29 205
V [Y2]: 9.82e− 06 210 × 210 107

Table 3.1: Simulation with permeability generating parameters σ = 2, λ =
0.3 and with Monte Carlo method tolerance ε = 3e− 3

On figure 3.5 the decay of the empirical variance over the different levels
of MLMC is plotted for a harder problem: σ = 2.5, λ = 0.3, compared to
the problem considered in table 3.1. Again, the renormalizaion technique
accurately represents the permeability field on the coarser grids and very
fast decay of variance is achieved, leading to a small number of expensive
realizations on the finest level.

On figure 3.6, the change of the number of samples, needed to solve different
problems using MLMC, is shown. The simulation is done with renormaliza-
tion. The figure shows the samples per problem across different stochastic
permeability parameters. In all of the cases the dominant contribution to the
cost of the algorithm comes from the coarsest level and Ctotal ≈ ε−2V0C0. In
contrast, to achieve the same tolerance with the MC method, thousands of
samples are required on the finest level.

40

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 1 2

lo
g

2
(v

a
ri
n

a
c
e

l)

Levels

Variance Decay

σ = 2.5, λ = 0.3, ε = 3e-3

(a) 3 Level MLMC

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 1 2 3

lo
g

2
(v

a
ri
n

a
c
e

l)

Levels

Variance Decay

σ = 2.5, λ = 0.3, ε = 3e-3

(b) 4 Level MLMC

Figure 3.5: Decay of empirical variance for σ = 2.5, λ = 0.3, ε = 3e− 3

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

1e+05

1e+05

2e+05

2e+05

2e+05

 0.1 0.2 0.3

N
u

m
b

e
r

o
f

s
a

m
p

le
s

λ

2L MLMC Y[0], ε=0.003

σ = 1.0
σ = 1.5
σ = 2.0
σ = 2.5

(a) Coarse level

 0

 100

 200

 300

 400

 500

 600

 0.1 0.2 0.3

N
u

m
b

e
r

o
f

s
a

m
p

le
s

λ

2L MLMC Y[1], ε=0.003

σ = 1.0
σ = 1.5
σ = 2.0
σ = 2.5

(b) Fine level

Figure 3.6: Estimated number of samples for 2 level MLMC estimator.

In figure 3.7 the same test as figure 3.6 is performed on a four level MLMC.
Again the dominant contribution to the cost of the algorithm comes from the
coarsest level and significant reduction of time is achieved, compared to MC.

41

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

1e+05

1e+05

2e+05

2e+05

2e+05

 0.1 0.2 0.3

N
u

m
b

e
r

o
f

s
a

m
p

le
s

λ

4L MLMC Y[0], ε=0.003

σ = 1.0
σ = 1.5
σ = 2.0
σ = 2.5

(a) Coarse level

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0.1 0.2 0.3

N
u

m
b

e
r

o
f

s
a

m
p

le
s

λ

4L MLMC Y[1], ε=0.003

σ = 1.0
σ = 1.5
σ = 2.0
σ = 2.5

(b) Middle levels

 0

 50

 100

 150

 200

 250

 0.1 0.2 0.3

N
u

m
b

e
r

o
f

s
a

m
p

le
s

λ

4L MLMC Y[2], ε=0.003

σ = 1.0
σ = 1.5
σ = 2.0
σ = 2.5

(c) Middle levels

 0

 50

 100

 150

 200

 250

 0.1 0.2 0.3

N
u

m
b

e
r

o
f

s
a

m
p

le
s

λ

4L MLMC Y[3], ε=0.003

σ = 1.0
σ = 1.5
σ = 2.0
σ = 2.5

(d) Fine level

Figure 3.7: Estimated number of samples for 4 level MLMC estimator.

To further illustrate the superiority of the MLMC algorithm, compared to
a standard Monte Carlo sampling, the total computational time for achiev-
ing tolerance of ε = 0.003 with MC and MLMC approaches for different
stochastic generating parameters is considered. Figure 3.8 shows the results.

42

0e+00

2e+02

4e+02

6e+02

8e+02

1e+03

1e+03

1e+03

2e+03

2e+03

2e+03

2e+03

 1 1.5 2 2.5

T
im

e
[s

]

σ

MC vs MLMC times

MC
2 Lvl MLMC
3 Lvl MLMC
4 Lvl MLMC

(a) λ = 0.1

0e+00

1e+03

2e+03

3e+03

4e+03

5e+03

6e+03

7e+03

8e+03

 1 1.5 2 2.5

T
im

e
[s

]

σ

MC vs MLMC times

MC
2 Lvl MLMC
3 Lvl MLMC
4 Lvl MLMC

(b) λ = 0.2

0e+00

2e+03

4e+03

6e+03

8e+03

1e+04

1e+04

1e+04

2e+04

2e+04

 1 1.5 2 2.5

T
im

e
[s

]

σ

MC vs MLMC times

MC
2 Lvl MLMC
3 Lvl MLMC
4 Lvl MLMC

(c) λ = 0.3

Figure 3.8: Speedup of MLMC with compared MC on 196 cores

Experiments show that if the magnitude of the permeability is quite large
this will yield the need for fine grids to achieve reasonable expected values
for the total flux. The described MLMC method gives substantial speedup,
compared to the MC method. The usage of the simplified renormalization
provides a cheap way to build coarse levels in the MLMC. The variance at
the coarser levels is very close to the variance at the fine level, which makes
the presented particular MLMC method a very efficient variance reduction
method.

Permeability approximation

In the next set of tests, the main interest is how the choice of approximation
of the random field changes the MLMC sampling. The setting is the same:
equation 3.1 with boundary conditions 3.2 and quantity of interest 3.3, using
finite volume is considered. A simulation of MLMC with four levels has been
done with stochastic parameters σ = 2.75, λ = 0.25. The results are shown
in table 3.2. The prescribed tolerance is ε = 1e − 3. The test have been
done on 960 cores. A similar setting can be observed on table 3.3, however
slightly harder, with stochastic parameters: σ = 2.75, λ = 0.3. This test
have been performed on 3840 cores. The speedup achieved in comparison to
MC is between 7 and 10 times. The experiments are done using averaged

43

results over 10 consecutive runs. It is also worth pointing out that for the
simulation of the Monte Carlo and using finite volume as a numeric method
does not yield any kind of approximation of the permeability.

#Method E[Q] Time[s] l0 l1 l2 l3
AVG 1.3411 3696 1.5e6 9035 3760 2211

RENORM 1.3412 3262 1.4e6 2674 1025 144

Table 3.2: MLMC simulation, on 960 cores, σ = 2.75, λ = 0.25, ε = 1e− 3,
EMC [Q] = 1.3403

From the data in table 3.2 it is directly observable that using simplified
renormalization is a better way to represent the field than just simple arith-
metic average. It is faster and preserves the variance better than the simple
average. As for the fine level, only 144 samples have to be done as opposed
to the 2211. This is also true for all other levels. Both approaches give value
close to the expected value computed with Monte Carlo as the relative error
for the simplified renormalization is ≈ 7e− 4, and for the simple average, it
is ≈ 7e− 4.

#Method E[Q] Time[s] l0 l1 l2 l3 l4
AVG 1.4317 2273 2.4e6 11082 10651 4744 2586

RENORM 1.4316 1156 2.3e6 9473 3608 1420 252

Table 3.3: MLMC simulation, on 3840 cores, σ = 2.75, λ = 0.3, ε = 1e− 3,
EMC [Q] = 1.4309

At table 3.3, where a harder stochastic test is performed, for a 5 level Mul-
tilevel Monte Carlo algorithm, again similar results can be observed:

Considering the comparison of the computational times and the number of
samples, one would expect the proportion between the different times to be
the same or comparable to 3.2, but that is not the case. It is clear that
using simplified renormalization is now much faster than simple averaging.
Comparing the different number of samples that renormalization technique
and simple average needs, shows that simplified renormalizaion needs much

44

fewer samples from the different levels and the computational cost of just
averaging is the same. This means, that this technique preserves the vari-
ance operator much better, since by the formula 2.15, for a comparable
computational cost between simple average and simplified renormalization,
the speedup must come from the reduced variance on the finer levels - the
variance decays faster using simplified renormalization.

3.6 Conclusions

The proposed MLMC algorithm achieves a significant speedup compared to
simulations with classical MC for a large range of permeability fields. The
renormalization permeability approximation is on average 16 times faster
than the classical MC (see figure 3.8). At the same time, the relative error
compared to the MC approach is in the range of 1e−4. This makes the renor-
malization technique very suitable for large scale simulations. The approach
with simple arithmetic averaging leads to similar result as the renormaliza-
tion technique, but in the price of more samples on the finer levels. This
means that renormalization is more productive way of representing the per-
meability field on the coarser levels. Comparable in cost by floating-point
operations both requiring exponential time, the simplified renormalizaion re-
quires less computational resources in terms of number of samples needed to
be performed, to achieve the same tolerance.

By the opinion of the author, the main contributions of this chapter are:

• Different approaches for approximation of the stochastic field for the
Laplace problem are analyzed and compared;

• An effective method for renormalization of the stochastic field for the
purposes of the Multilevel Monte Carlo has been developed;

• An approach for determining the levels for the Multilevel Monte Carlo
for the two considered problems is defined;

45

• Analysis and comparison between the rate of convergence and the time
for calculation of the Multilevel Monte Carlo method with simplified
renormalization and the classical Monte Carlo are made.

46

Chapter 4

Multilevel Monte Carlo
method for Convection-
Reaction-Diffusion equation

In this chapter problem that describes a reactive transport inside a random
porous medium is considered. The main driving force of the transport is
the processes of convection and diffusion. The equation used to model such
processes is the well-known Convection-Reaction-Diffusion model [52]. This
equation is used as a model in a chemical reactions, filtration processes as
well as many other applications from physics, biology and chemistry. In sec-
tion 4.1 a steady-state two-dimensional convection-reaction-diffusion equa-
tion is considered. It describes reactive transport in random porous media
consisting of sand, gravel, and other soils. For practical experiments, the
equation is considered in its dimensionless form. The quantity of interest
is also addressed in this section. Sections 4.2, 4.3, 4.3 are devoted to the
construction of the computational model, how the equation is discretized and
how the quantity of interest is computed. Section 4.4 describes how the vari-
ance reduction in the model is done using MLMC algorithm. The chapter

47

concludes with numerical experiments in section 4.5 and summary section
4.6.

4.1 Model equation

Consider a domain Ā = (0, L̄)2 and in that domain steady dimensional
convection-reaction-diffusion equation describing reactive transport in ran-
dom porous media:

−∇ · (D̄∇C̄(x, ω)) +∇ · (v̄(x, ω)C̄(x, ω)) + κ̄C̄(x, ω) = 0

where x = (x1, x2) ∈ Ā = (0, L̄)2, ω ∈ Ω.
(4.1)

Subject to boundary conditions:

Cx1=0 = 1

∂nCx1=L = 0

Symmetric boundaries on the lateral boundaries (∂nC = 0)

(4.2)

In equation 4.1 D̄[m
2

s] is the diffusion coefficient, v̄[ms] is the Darcy velocity,
κ̄[s−1] is the upscaled volumetric (homogeneous) reaction rate and C̄[molm3]

is the unknown concentration. The volumetric reaction rate κ̄ in the case
of heterogeneous reaction (surface reaction at pore scale) can be expressed
as κ̄=γ̄ × κ̄s, where κ̄s[ms] is the reaction rate of the heterogeneous reaction
(reaction rate per unit surface area) and γ̄[m−1] is the specific surface area
(surface per unit volume).

To transform the equation 4.1 in a dimensionless form, consider the following
dimensionless variables:

48

x =
x̄

L̄
, v =

v̄

v̄in
, t =

κ̄L̄2

D̄
, C =

C̄

C̄in

Setting v̄in to be the characteristic velocity, C̄in be the characteristic concen-
tration (this is the prescribed concentration at the inlet), Dp = D̄ be the
characteristic value of the diffusion and let κ̄ be characteristic reaction rate,
the dimensionless form of the convection-reaction-diffusion equation 4.1 is
written as follows:

−∇·(∇C)+Pe(ω)∇·(v(x, ω)C)+Da(ω)C = 0, x ∈ (0, 1)2, ω ∈ Ω. (4.3)

The dimensionless Peclet and Damkohler numbers in equation 4.3 are defined
as follows:

Pe(ω) =
v̄inL̄

D̄(ω)
, Da(ω) =

κ̄L̄2

D̄(ω)
(4.4)

In this formulation of 4.4, the only part which is not a constant is the diffusion
D̄. Please note that both Peclet and Damkohler numbers depend on the
diffusion, which in turn is proportional to the porosity, so one can rewrite
the 4.4 as:

Pe(ω) =
P̃ e

φ(ω)
, Da(ω) =

D̃a

φ(ω)
(4.5)

Where P̃ e, D̃a are predefined, based on intrisic diffusion at pore scale con-
stants, and φ is the porosity. There are several formulas, relating the di-
mensional permeability K̄[m2] to the porosity φ[−] and the specific surface
area γ̄[m−1]. An extensively studied relation is given by the Kozeny-Carman

49

formula [53]. Many different interpretations exist of that formula. In this
work, the one, given by Panda and Lake [54] is adopted:

K̄(ω) =
φ(ω)3

2τ(1− φ(ω))2γ̄2
(4.6)

In equation 4.6, τ is the tortuosity value, this is a measure of the curvature at
pore scale. For simplicity, in the simulations, the porous media is considered
to be built by spheres (circles in 2D) with an average radius r̄. For this case,
the specific surface area is given by:

γ̄ =
2

r̄
in 2D and γ̄ =

3

r̄
in 3D. (4.7)

For the simulations, a medium consisting of soil, gravel, sand, silt, and clay
is assumed. Without any loss of generality in the simulations the average
radius of the particles is given by:

r̄ = 1 ∗ 10−3 m.

The velocity filed in equation 4.3 is defined by Darcy’s law [55]: v(x, ω) =

−k(x, ω)∇p(x, ω), where k(x, ω) is the generated scalar permeability for a
given point in the domain and p(x, ω) is the pressure at that given point.
In the simulation, velocity is modeled with equation 3.1 coupled with the
boundary conditions 3.2. To model the underling permeability in the media,
consider the same model as in the case of Laplace equation i.e. log-normal
distribution, governed by covariance function from equation 3.4. The two
measured quantities are the average concentration and the total flux given
by: vC +D∂C

∂n , across the outflow boundary for equation 4.3.

50

4.2 Random field generation

The generation of the permeability field is done in the same way as described
in section 3.2 - with circulant embedding algorithm. To model the porosity
field it is required to solve the Kozeny-Carman equation 4.6 for porosity.
The roots of the non-linear equation are computed by the bisection method.

(a) Permeability (b) Porosity

Figure 4.1: Single realization of permeability with σ = 2, λ = 0.2 and the
corresponding porosity field with tortuosity τ = 1.3

4.3 Problem discretization

To solve the PDE 4.3 for a fixed value of ω with boundary conditions 4.2,
a cell centered finite volume scheme on a uniform Cartesian grid applied.
Integrating equation 4.3 over a control volume V gives:

−
∫
V

∇ · [∇C(x)] +

∫
V

Pe∇ · [v(x, ω)C(x)] +

∫
V

Da C(x) = 0 (4.8)

51

Applying the divergence theorem to the first two terms, equation 4.8 takes
the form:

−
∮
S

[∇C(x)] · ~n+

∮
S

Pe[v(x, ω)C(x)] · ~n+

∫
V

Da C(x) = 0 (4.9)

The domain D = [0, 1]2 is then uniformly divided into m ×m square cells
with size h×h and h = 1

m . Each cell is denoted by Di,j - the control volume
V (see figure 4.2). The center of the Di,j cell is labeled by P . The left cell
along x coordinate of Di,j - Di−1,j is labeled as W (from west). Analogously
the center of Di+1,j as E (from east), Di,j+1 as N (from north) and Di,j−1

as S (from south). The interfaces of the Di,j are labeled accordingly as
: fw, fe, fn, fs and the normal vectors respectfully: ~nfw = (−1, 0), ~nfe =

(1, 0), ~nfn = (0, 1), ~nfs = (0,−1). Using the mid-point rule the equations are
transformed:

W E

S

N

Pf w

f
e

fn

fs

Figure 4.2: Control Volume V

52

−
∮
S

[∇C(x)] · ~n ≈ −
∑

i=fe,fw,fn,fs

h(∇Ci · ~n) (4.10)

∮
S

Pe[v(x, ω)C(x)] · ~n ≈
∑

i=fe,fw,fn,fs

hPe (viCi · ~n) (4.11)

∫
V

DaC(x) ≈ h2Da Cp (4.12)

In the above equations, ∇Ci in 4.10 represents the value of ∇C(x), Ci in
4.11 the value of C(x) at the middle point of the interface and Cp in 4.12
are the values of the reaction rate and the concentration at point P . To
approximate the values at ∇C(x), Ci for the diffusion term 4.10, a central
difference is employed between the centers of the two cells shearing a common
interface. Then equation 4.10 becomes:

−
∮
S

[∇C(x)] · ~n ≈ −
∑

i=fe,fw,fn,fs

h(∇Ci) · ~n =

− h
[
Ce − Cp

h
− Cp − Cw

h
+
Cn − Cp

h
− Cp − Cs

h

]

To obtain a numerical approximation for the advection term 4.11 upwind
scheme is used. Equation 3.1 with boundary contribution 3.2 is solved on the
same grid and the velocity: v = −k∇p is approximated analogues to the 4.10
by central difference For the discontinuous coefficient k a harmonic average
is used. To obtain a value for the stochastic Pe(ω) = P̃ e ∗ 1/φ(ω), first
a porosity values for the two neighboring cells are computed using Kozeny-
Carman equation 4.6, then to approximate it on the face the average value

53

of the two porosity values is taken. For example for the west interface Pewp
becomes Pewp(ω) = 2P̃ e

φw(ω)+φp(ω) . The convective term becomes:

∮
S

[v(x, ω)C(x)] · ~n ≈
∑

i=fe,fw,fn,fs

hPeiviCi · ~n =

h[−Pwp(Cwmax(0, vi~n)− Cpmax(0,−vi~n))+

Ppe(Cpmax(0, vi~n)− Cemax(0,−vi~n))−

Psp(Csmax(0, vi~n)− Cpmax(0,−vi~n))+

Ppn(Cpmax(0, vi~n)− Cnmax(0,−vi~n))]

(4.13)

TheDamkohler number in equation 4.12 is approximated in the same manner
as Peclet number. To obtain a formula for the flux at the inflow boundary
for the diffusion term (Dirichlet at x = 0), a forward Taylor expansion of
first order is used.

C(xp0) = C(xw0
) +

∂C

∂x
(xw0

)
∆x

2
(4.14)

Here xw0
is the point in the middle of the face coinciding with the Dirichlet

boundary. Rearranging the previous equation gives:

∂C

∂x
(xw0

) =
2

∆x
(C(xp0)− C(xw0

)) (4.15)

And for the convection term one-sided difference and Darcy’s law is used:

54

∆x(Pe(w0) vw0
C(xw0

)) = ∆xPe(xp0)(−K(xp0)∗(p(xp0)−1))C(xw0
) (4.16)

Putting the last two equations into equation 4.10, the discretization scheme
for the full flux on the Dirichlet boundary fw takes the form:

−∆x(
2

∆x
(C(xp0)−C(xw0

))) + ∆x(−K(xp0) ∗ (p(xp0)− 1))C(xw0
) (4.17)

The outflow boundary, where for equation 4.3, has a Neumann (x = 1)
boundary condition, the discretization for the diffusion term is 0. For the
convection term, analogues to the inflow boundary, single sided difference
approximation is used:

∆x(Pe(en)venC(xen)) = ∆xPe(xpn)(−K(xpn) ∗ (0− p(xpn)))C(xe0) (4.18)

where C(xe0) = C(xp0) because the condition is Neumann and the solution
is constant on the boundary.

Then the total flux on the outflow boundary takes the form:

∆x(−K(xpn) ∗ (0− p(xpn)))C(xe0) (4.19)

The boundary condition on the sides (y = 0, y = 1) is 0 - the diffusive term
is zero from equation 4.3 and the velocity is zero, and thus the convective
term.

55

Quantity of interest

To obtain a value for the average concentration simple average across the
boundary cells is used:

Q(x, ω) =

∑m
i=0C(xn)

m
(4.20)

To obtain a value for the total flux given by vC + D∂C
∂n across the outflow

boundary for equation 4.3 and take into account that there is not diffusive
flux, reduce the formula to:

Q(x, ω) =

∑m
i=0 v(xn)C(xn)

m
(4.21)

4.4 Coarse grain

In the model given by equation 4.3 the three sources of uncertainty that
needs to be addressed by MLMC are the uncertainty that comes from the
Peclet and Damkohler numbers and the uncertainty that is incorporated into
the velocity field. Similarly to the case of the Laplace equation, MLMC levels
are defined as grid resolution. Two ways of coarse graining the velocity field
are considered.

• First Solve then Renormalize: The velocity equation 3.1 is solved
on the fine grid and then it is approximated on the coarse level by
simple arithmetic averaging.

• First Renormalize then solve: The permeability field is generated
on the fine level, and then approximated using simplified renormaliza-
tion to obtain a representation for the coarse level. Then the pressure
equation can be solved and the velocity can be computed.

56

(a) Permeability (b) Pressure (c) Concentration

Figure 4.3: Single realization for convection-reaction-diffusion equation for
given stochastic parameters.

4.5 Numerical experiments

To obtain more reliable results, each experiment is repeated 10 times. On
table 4.1 results for 3 level Multilevel Monte Carlo with concentration as
quantity of interest are presented. The coarse graning approach considered
here is: First Solve then approximate. The stochastic parameters are
σ = 1.5, λ = 0.2. The given desired tolerance is set to 5e− 3 and the finest
grid is 210 × 210. It is clear that raising the Peklet number, increases the
stochasticity of the problem while increasing theDamkohler number leads to
easier problems. Similarly on table 4.2, are shown results from experiments
with the flow as quantity of interest. However, for this experiment, the
desired tolerance of the algorithm is reduced to 5e− 2. Computing the flow
leads to much harder problem than computing the concentration, due to the
stochastic velocity field. It seems that Peklet number has less effect here,
compared to the results for concentration. In both tests, the relative error is
low.

In figure 4.4, an investigation of the effectiveness of the MLMC with Solve
then Renormalize coarse-grain approach compared to the classical MC algo-
rithm is presented. The quantify of interest computed is the concentration.
For each problem on each level, the pressure linear system has to be solved

57

Pe Da E[Q] |E[Q]−Emc[Q]|
Emc[Q] Time[s] Y0 Y1 Y2

1 0.5 0.9568 2.472e-3 2539 16467 472 158
1 .15s 0.3955 1.283e-2 914 5199 124 46
1.5 0.5 1.1608 1.029e-3 3473 23121 673 226

σ = 1.5, λ = 0.2, ε = 5e− 3

Table 4.1: Concentration simulation on 112 cores, with single core per prob-
lem

Pe Da E[Q] |E[Q]−Emc[Q]|
Emc[Q] Time[s] Y0 Y1 Y2 Y3 Y4

1.5 0.5 5.5189 3.906e-3 1398 18213 1164 687 343 102
2 0.5 5.8463 1.365e-3 1452 19541 1297 735 348 101

a) σ = 2, λ = 0.2, ε = 5e− 2

Pe Da E[Q] |E[Q]−Emc[Q]|
Emc[Q] Time[s] Y0 Y1 Y2 Y3 Y4

1.5 0.5 6.1716 7.7910e-3 2269 34329 1692 896 571 206
2 0.5 6.4834 1.1876e-3 2450 36687 1932 1005 466 220

b) σ = 2, λ = 0.3, ε = 5e− 2

Table 4.2: Flow simulation on 224 cores, with 1 core per problem

on the finest level, which will lead to smaller gains between cheap estima-
tions (coarser levels), and expensive ones (finer levels), thus impacting the
effectiveness of the algorithm. Doing this type of coarsening, it is expected
that the most effective MLMC will be with a low number of levels. This is
exactly the case. Figure 4.4 shows that most gain is achieved at 3 levels
MLMC. On the right side of the figure the number of samples is presented
for the different MLMC estimators.

On figure 4.5 an examination for the other type of coarsening is considered.
Test parameters are σ = 2, λ = 0.2, ε = 3e − 2, pe = 2.5, da = 0.5. This
time the quantity measured is the flow. Using Renormalize then Solve
the coarse grain approach gives significantly better overall speed. The two
factors contributing are the overall smaller computational cost each processor

58

σ : 2 λ : 0.2
Peclet : 1.5 Damkohler : 0.5
N levels Y0 Y1 Y2 Y3 Y4
2 41502 607 - - -
3 43456 1536 536 - -
4 47063 2809 1630 553 -
5 53093 5039 3084 1728 691

 2

 3

 4

 2 3 4 5

 2.1

 3.3

 5.6

 7.3

S
p
e
e
d
 u

p

R
e
la

tiv
e
 E

rr
o
r

x
1
0

3

Levels

MLMC vs MC

Speed up
10

3
|EMLMC - EMC| / EMC

Figure 4.4: Achieved speedup, concentration

must do to compute a single sample and more importantly, the variance is
preserved better across the different estimators.

 4

 10

 14

 2 3 4 5 6

 0.11

 0.3

 0.6

 0.8

 1.2

S
p

e
e

d
 u

p

R
e

la
ti
v
e

 E
rr

o
r

x
 1

0
2

Levels

MLMC vs MC

Speed up
10

2
|EMLMC - EMC| / EMC #Samples MLMC 5L

LO 49055
L1 2063
L2 916
L3 360
L4 78
Speedup times 14.95
|EMLMC − EMC |/EMC 0.0039

Figure 4.5: Achieved speedup, flow

Table 4.3 is a direct comparison between the two coarsening approaches:
Solve then Renormalize (SR) and Renormalize then Solve (RS).
The test parameters are the same as for figure 4.5. This test positively shows
the superiority of the Renormalize then Solve approach. The variance
preservation is much better thus leading to much smaller number of samples
generated.

59

#Coarseing L0 L1 L2 L3 L4 Faster than MC |EMLMC−EMC |
EMC

SR 57370 3742 2223 1135 374 ≈ ×2.5 ≈ 3.4e− 3
RS 49055 2063 916 360 78 ≈ ×14.9 ≈ 3.2e− 3

Table 4.3: Solve then Renormalize (SR) and Renormalize then Solve (RS)

4.6 Conclusions

Compared to the Laplace equation, computing a sample for Convection-
Reaction-Diffusion equation is much more expensive, hence not only the pres-
sure field but also the steady-state CRD equation has to be computed. The
experiments show that the constants in the Damkohler and Peklet numbers
have a significant impact on the uncertainty of the system. Peklet number
can be viewed as a contributor to the overall uncertainty, resulting in a need
of a larger number of samples. As a system with three main sources of uncer-
tainty, quantifying it is a much computationally harder problem compared to
the Laplace equation. This makes MLMC even more appealing as it provides
a way to speedup the simulations. Both of the proposed methods for coarse-
grain - solve then renormalize and renormalize then solve achieve speedup.
However, the MLMC speedup is not as significant as the Laplace equation
in the case of solve then renormalize, because the reduction of the time that
MLMC provides comes only from the CRD part of the problem and the
pressure part has to be solved in both cases, thus limiting the overall gain.
Nevertheless renormalize then solve gives better speedup, since the overall
time needed to approximate the permeability field and compute the pressure
field is smaller than the time to first compute it and then renormalize it.

By the opinion of the author, the main contributions of this chapter are:

• The Multilevel Monte Carlo method is applied successfully for the first
time to solve the convection-reaction-diffusion equation;

• An approach for determining the levels for the Multilevel Monte Carlo
for the two considered problems is defined;

60

• Analysis and comparison of the two considered approaches for coarse
grain, for the Multilevel Monte Carlo versus the classical Monte Carlo
for the convection-reaction-diffusion problem are performed.

61

Chapter 5

Parallel Algorithms

This chapter addresses the parallel challenges of MLMC simulations. As a
parallel algorithm, MLMC concurrently computes different MC estimators
and properly combines them to obtain the final results. When applied as a
variance reduction method, it can be divided into different components each
with its specific problems and algorithms. By following the mathematical
construction, the distinct parts of a simulation are as follows:

• (i) Generation of the correlated random field that represents the un-
certainty in the SPDEs.

• (ii) Solving deterministic PDE, for each realization of the random co-
efficients.

• (iii) Quantifying the uncertainty, using Multilevel Monte Carlo.

The first two sub-problems are essentially identical as if the simulation is done
with the standard Monte Carlo algorithm. The two algorithms diverge in the
third part sub-problem - where the UQ is done. To achieve faster convergence
MLMC constructs different MC estimators with different sample cost, as

62

formula 2.13 suggests. This makes the problem of efficient parallelization
much harder to answer.

In both cases, the simulations start by acquiring statistical data with initial
or preparation step. In this step, several samples are generated to obtain
empirical data. From the gathered data, the variance can be computed, and
using formula 2.15 the number of samples that need to be computed to ob-
tain the desired tolerance can be estimated. This calculation is repeated until
the desired tolerance is obtained. Section 5.1 describes in detail the compu-
tational procedure. A discussion of the common problems of oversampling,
and underestimation is made alongside some practical approaches to over-
come them. Despite its severe superiority to MC (see [42, 46, 56]), using
MLMC can still be computationally very expensive, particularly for realistic
industrial models, where large scale simulations are needed. To overcome this
huge computational cost, effective parallel strategies must be put in place.
The parallelization can be done at different stages of the algorithm. Anal-
ogous to the different stages of the algorithm, main parallel layers can be
defined:

• (i) Parallelizing the solution of the PDE for each sample.

• (ii) Parallelizing the solution of all samples at one MLMC level.

• (iii) Parallelizing at all or several MLMC levels simultaneously.

In the work of [57], static parallelization, done at each level separately, is
studied. The idling processors are filled with samples, which achieves good
scalability but it is less computationally efficient than other methods. In [5]
the parallelization is done mainly on the first and second layer of parallelism
- within a given level and a sample. Section 5.2 extends that mentioned
approaches. In the section analysis of different strategies is performed. A
scheduling scheme, that performs parallelization on all of the levels simulta-
neously, is proposed. The section finishes with specific modifications of the

63

MLMC algorithm, that provide better overall efficiency, namely in section
5.3.5 and 5.3.6. The chapter concludes with sections 5.5 and 5.6 where
parallel performance experiments are presented and section 5.7, with con-
clusions from the performed experiments.

5.1 MLMC computation scheme

Both MC and MLMC, as a sampling base class of algorithms, rely on re-
peated random sampling. A generation of samples from a properly defined
probability space is done. After a sample is generated, the underlying equa-
tion becomes deterministic and standard methods can be employed to solve
it. Upon solving it, the observed quantity of interest can be extracted and
accumulated to the statistics. After a given number of samples are computed,
the statistical moments are calculated and checked against defined stopping
criteria, such as root mean square error or some other type of error measure-
ment. If the condition is satisfied, the procedure ends and if the condition is
not satisfied, additional samples must be generated. This process is repeated
until the stopping criteria is met. Figure 5.1 lustrates the idea. Each esti-
mation phase is followed by a solve phase, and those estimate-solve blocks
are repeated, until the stopping criteria is met.

Estimate Solve Estimate Solve . . .

Figure 5.1: Block diagram of MLMC algorithm

When MC and MLMC algorithms are used for uncertainty quantification
of SPDE, for each estimate-solve block, in the estimate phase, the required
number of PDE samples that needs to be solved is estimated by equation
2.15. Each solve phase consists of three main sub-tasks:

• (i) Generation of predefined number of correlated random field data
that represents the uncertainty in the SPDEs.

64

• (ii) Solving a deterministic PDE for each realization of the random
coefficients.

• (iii) Quantifying the uncertainty, using MLMC or MC.

In this phase lies the main computational challenge of the MLMC. By con-
struction, MLMC consists of different MC estimators and each estimator
itself has the described solve cycle with its own computational cost. Each
solve phase of the cycle for the Multilevel Monte Carlo, can be further frag-
mented to a hierarchy of solves phases. While for a sequential program that
is not a problem, designing a concurrent version requires balancing those
different phases across the computational resources. Now let us focus on the
solve phase of the problem.

(i) Generation of correlated random field that represents the un-
certainty in the SPDEs.

Generating correlated random fields is an essential problem in many stochas-
tic simulations. For both of the considered SPDEs models, the permeability
field is represented as a correlated random field (for details see chapter 2).
The correlation matrix is constructed by one parameter stationary covari-
ance function 3.4. After the matrix is constructed, the typical approach is
to find a linear transform that diagonalizes the covariance matrix, hence such
a diagonal matrix consists of uncorrelated random variables. Finding such
transformation, however, is a computationally expensive task. The matrix
size grows extremely fast as new points are added to the grid. To over-
come this, special generation algorithms must be considered. If the points
are uniformly spaced, the associated covariance matrix C with a station-
ary Gaussian random field has a Toeplitz matrix. This special structure
allows drawing of samples to be done from a reduced covariance matrix, a
necessity for simulations of large scale. The circulant embedding approach
is discussed in chapter 2.1, exploiting Fourier transform of a Block Cir-
culant with Circulant Blocks (BCCB) matrix, offers better computational

65

complexity, compared to the popular Cholesky decomposition approach and
approaches including Karhunen–Loève Transform and the discrete version of
Karhunen–Loève expansion. In the Circulant Embedding strategy, a perme-
ability sample requires one forward and one inverse Fourier transform. In
practice the transform is done as Fast Fourier transform (FFT), which have
complexity of O(nlog(n)), where n is the number of elements in the trans-
form [58, 59, 60]. In this case, n is the number of the reduced covariance
matrix rows plus possibly the number of the elements from the embedded ex-
tensions. Setting two large embedding extensions, in order to avoid negative
eigenvalues, can lead to a performance hit [33, 34]. Our implementation
follows the implementation described in [44], with minimal extension of n.

For implementation the open-source C++ FFTW library [61] is used. It
supports MPI with its own domain decomposition scheme and it is one of
the most efficient implementations available. The procedure for generating
samples from a given properly defined probability space, using Circulant Em-
bedding consist of preparation step and generation step. In the preparation
step, the reduced covariance matrix is embedded into BCCB matrix. After-
words a forward Fourier transform is applied to the resulting matrix, finishing
the preparation step. Then drawing samples is straightforward. Each ele-
ment is multiplied by the transformed matrix by a random variable with the
desired distribution, and by applying inverse Fourier transform the results
are obtained. A simple step by step algorithm can be expressed as:

1. Reduce and embed the covariance matrix intoBCCB matrix and apply
forward FFT .

2. Generate samples:

(a) For each element of the transformed matrix, generate uncorrelated
random variable from the desired distribution, and multiply it
with the element.

66

(b) Apply IFFT to the modified matrix to obtain a permeability
field.

Note that the transform is done in the complex plane, and each element of the
resulting matrix has a real and imaginary part. This means that for a single
IFFT two correlated random fields are obtained. In the parallel version
of the algorithm, the random number generation can be done without any
exchange of information between the MPI processes. This means that the
scalability of the algorithm will depend mostly on the efficiency of IFFT
implementation. The standard data decomposition of the FFTW library is
performed in one dimension. The data is stored in a standard row-major
C order, this means that the matrix is stored row by row, consecutively in
memory, and each MPI process receives an equal portion of data rows. This
type of representation is done for efficiency reasons.

To generate a sample, each MPI process is doing the same type of matrix
multiplication and random variable generation many times. Those types of
identical work can benefit significantly from co-processor accelerators. To
explore this idea an implementation of the algorithm on a NVIDIA GPU ,
using cuFFT C++ library - An NVIDIA implementation of FFT on CUDA
cores [62] is done. Figure 5.2, compares the two parallel approaches. The
test is performed on a single GPU Node consisting of 2 × NVidia Tesla
K80 GPUs and 2 × Intel Xeon E5-2695 v2 processors on the education
and testing polygon part of HybriLIT supercomputer, Dubna Russia. The
averaged times for generation of 100 permeability fields on a grid of size
210 × 210, with σ = 2.0 and λ = 0.2 is shown. The speedup that is achieved
using only CPU cores for computation at all of the steps is significant up to
around 8 cores. At this point, it is approximately up to 6.755 times faster
than calculation on a single core. When utilizing more than 8 cores the
efficiency gradually decreases. On the other hand, the GPU generation is
much faster. Using single GPU generation time is comparable to 11 CPU
cores, and on two GPUs - approximately 22 CPU cores.

67

(a) One realization

 0.1

 1

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
v
g

.
ti
m

e
 o

v
e

r
1

0
0
 s

o
lv

e
s
 (

lo
g

 s
c
a
le

)

Number of cores

Single Problem Performance

CPU Generation
1 GPU Generation
2 GPU Generation

(b) Gen. Time. CPU vs GPU

Figure 5.2: Generation time and scalability for: σ = 2, λ = 0.2, with grid
size: 210 × 210

(ii) Solving deterministic PDE for each realization of the random
coefficients.

For a fixed random field (permeability field), the Stochastic partial differen-
tial equation becomes deterministic and a standard numerical scheme can be
employed to solve it. Using the well-established and standard cell-centered
finite volume method leads to sparse linear systems that must be solved.
Dune library provides a large number of linear solvers. For the elliptic prob-
lem Conjugate Gradient linear solver is used as the matrix is symmetric and
positive-definite. For the convection-reaction-diffusion equation, Bi Conju-
gate gradient (BiCG) is used with generalized minimum residual (GMRES)
algorithm after each BiCG step. The partitioning of the data in both cases
is done by the same algorithm: the data is partitioned in either in one di-
mension, similar to FFTW library decomposition, or in two dimension as a
blocks. In the case when the number of processors is an exact power of two
the data is partitioned as equal squares and cubes. This distribution diverges
from the partition used in FFTW library - one-dimensional domain decom-
position. This indicates an additional work has to be performed to distribute
the data accordingly. The embedded matrix is at least twice as large than the
covariance matrix and from the construction of the algorithm, the resulting

68

permeability will be located on the top left quarter of the embedded matrix,
if minimal embedding is used. The permeability will be distributed, on half
of the MPI processes used for the generation of that sample. The other half
of the processes will have to fetch all of their associated data, from processes
that contains the data. To check the impact of the overall performance for
the averaged times over 100 samples for the Laplace equation, for a different
number of processors are presented on figure 5.3. Test is over a grid size
212 × 212 and permeability generating parameters σ = 2, λ = 0.3.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

 20
 22
 24
 26

A
v
g
.
ti
m

e
 o

v
e
r

1
0
0
 g

e
n
.
(l
o
g
 s

c
a
le

)

C
G

 i
te

ra
ti
o
n
s

Number of cores

Sample Generation

Setup
Generation

Redistribution
Iterations

Solving

Figure 5.3: Parallel sample generation

The test shows that the time to construct and solve the linear equation is
much more than the time for generation of permeability field. Both algo-
rithms show similar scalability efficiency. After the 28 processor (the vertical
line in the graph) an inter-node communication begins. This additional com-
munication does not impact significantly the time needed for the permeability
redistribution - the part of the generation where the largest quantity of data
is exchanged. The time needed for redistribution is orders of magnitude
smaller than the time needed for generation of the permeability. And the
time to find a solution to the linear system is orders of magnitude smaller
than the time for generation. The parallel efficiency of the sample generation
will be determined by the effectiveness of the linear solver.

69

(iii) Quantifying the uncertainty, using Multilevel Monte Carlo.

The last part of the simulation is the uncertainty quantification. The main
algorithmic procedure steps, that MLMC consists of, are as follows:

1. Initialize input parameters which includes: size of the finest grid; The
number of levels of which MLMC estimator will consist; the permeabil-
ity governing parameters σ, λ. And eventually additional parameters
specific to the SPDE that is solved.

2. Predict the number of samples needed for each MC estimator in order
MLMC to converge using formula 2.15. Generate the required number
of samples and compute the statistical moments of interest. Repeat 2
and 3 until converge.

3. For each MC estimator generate a permeability field and for each level
of the estimator, solve the formed PDE and accumulate the quantity
of interest.

Initialize:

Initial step

Update and Accumulate
statistical moments

Compute additional samples

Parallel section

Have remaining
samples?

EXIT Almost
converged?

Increase Samples scaling
coefficient.

AlmostConvergedCycles++

AlmostConverged
cycles tr.
reached?

EXIT

Reduced
Cycles tr.
reached?

Reduce Samples scaling
coefficient.

cycles++

NO

YES

NO YES

YES

YES

NO

NO

Figure 5.4: Block diagram of MLMC algorithm

At the start of the algorithm, there is no statistical information available to
the estimators, and formula 2.15 can not be used. This implies that MLMC

70

begins with a selected number of samples that have to be performed on
each sub MC estimator, as shown in figure 5.4. The decision of how many
samples to be performed is problem-dependent. For example, setting too
many samples on the finest level may lead to oversampling, as the number of
samples required for the given tolerance may be much smaller. Analogously,
setting to a small number of samples may lead to insufficient statistical data,
and inaccurate prediction of the number of additional samples as well as
the computation time per sample per estimator. To get a sense of how the
samples are distributed and how many samples have to be done at each
level, a preparation phase can be used. In this phase, a similar simpler
problem will be solved (e.g same statistical parameters, much smaller gird),
to obtain a rough estimate of the time distribution of the sample. After
the initial step, the algorithm enters its main loop, statistical moments are
computed and formula 2.15 is used to determine if additional samples are
needed to achieve convergence. After the estimation, parallel computation
is performed. At the end of the computation formula 2.15 is used to check
again for convergence. If it converges, the algorithm stops; if not - the cycle
is repeated. For each estimate-solve cycle the reduction of variance will be
smaller and smaller, because each sample contributes to the reduction of
the variance. This means, smaller and smaller steps are made towards the
desired tolerance, as shown on figure 5.5. When the algorithm gets very
close to convergence, the reduced variance or the steps can get so small that
formula 2.15 may estimate that just a few additional samples are needed.
While mathematically, this is not a problem, those small steps can lead to
significant performance degradation. A few samples will have a tiny impact
on the accumulated statistics and combined with numerical rounding, may
lead to very slow progress or even no progress towards the desired tolerance.

To improve upon that problem, a measure for how the algorithm converges
is introduced. The convergence “rate” between two “estimate-solve” cycles is

71

tol
cp

(a) Step

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

 2 3 4 5 6

C
o
n
v
.
ra

te
(l
o
g
 s

c
a
le

)

Steps

σ = 2.25, λ = 0.3, ε = 1e-3
σ = 3.00, λ = 0.3, ε = 5e-3

(b) MLMC Typical convergence rate

Figure 5.5: MLMC convergence

defined by the following formula:

δ = c− p (5.1)

where c denotes the RMSE for the current cycle, and p denotes the RMSE

for the previous one. Since formula 2.15, connects the empirical variance
with the error ε, when the current RMSE of the algorithm is close to the
desired tolerance, the difference will be very small. This measure gives infor-
mation for the progress of the algorithm and it is allowing more fine-tuned
control. When the algorithm is close to converging, some prescribed thresh-
old for convergence speed can be set. If the speed is too low and progress
is slow, an artificial increase of the required samples can be made. In the
implementation of the algorithm this threshold is set to 103ε. Upon reaching
the threshold, an increase in the number of estimated samples by 200% is
done. This process repeats maximum three times. The fourth time, when
the speed is smaller than desired, the program terminates. This reduces the
risk of doing many estimate-solve cycles and improves the performance of the
algorithm. A very similar situation arises when the algorithm starts. The
main issue here is the lack of sufficient statistical data. In the first few cycles

72

estimation using formula 2.15 may lead to sample times and variables that
are significantly away from the means. This will lead to inaccurate sample
estimations, where much more samples must be computed than necessary
for the given tolerance. This oversampling effect can also notably slow the
algorithm. These inaccurate predictions also affect how the resources are dis-
tributed among the processors in the concurrent implementation. Much alike
when the algorithm is very close to converges, where an increase in sampling
is needed, here instead decrease is needed. For this reason, in the implemen-
tation of the first three estimate− solve cycles, the performed samples are
set to 40% of the original estimation. Those two optimizations make current
version of MLMC more stable and predictable algorithm.

5.2 Parallel Algorithms

MLMC algorithmic approach can provide significant convergence speedup
and better computational cost compared to pure MC, but the simulations
are still quite demanding. They may require millions of samples to complete.
Running MLMC on a single processor is not feasible. Efficient scheduling
strategies for parallel computation are a necessity. In the case of sufficiently
large domains, where a single problem has to be solved on multiple processes
due to memory restrictions, the strategies also depend strongly on the per-
formance characteristics of a single sample solved in parallel. The ultimate
goal of the execution strategy is to schedule as many samples as possible
on a given number of processors, for a minimal time. The problem can be
formulated as a constrained optimization problem. In the case of MLMC in
its general form the problem is NP − complete [5]. An efficient solution
requires simplifications and assumptions. MLMC approach by design defines
three distinct parallel layers:

• (i) Parallelizing the solution for each sample (solving a deterministic
PDE in parallel).

73

• (ii) Parallelizing the solution of all samples on a given MLMC level.
(parallel on different levels)

• (iii) Parallelizing at all or several MLMC estimators simultaneously.

The most efficient and flexible strategies will be those, taking advantage of
all of the three layers of parallelism.

Performance parameters

The design of the scheduling strategy requires different parameters to be
taken into account. The most prominent ones are the number of the differ-
ent estimators, the samples per estimator for a current estimate-solve cycle
and the time to compute one sample for a given estimator. In the case of
a sample solved by multiple processes the parallel solver inefficiencies con-
tribute to the overall time lost for communication and synchronization. The
efficiency and the predictability of the underlying solver is crucial for the
performance of the scheduler. Modern multi-grid solvers scales very well
under reasonable assumptions [5]. Assuming there is no parallel computa-
tion overhead and no inefficiency lost due to load imbalances, the theoretical
minimum computational time is given by:

Tmin =
1

P all

L∑
l=0

NlE[tl] (5.2)

where P all is the number of the available processes for parallel computation.
Nl is the number of samples that have to be performed in level l and E[tl] is
the expected time for solution of a single sample on a single process.

In the case of a single process per sample per level, the minimum time can
be computed directly by recording the time to solve the sample. In the
case of more than one processor per problem, the minimal time can only be
estimated. Assume θ is a measure of how effective the underlying parallel

74

sample solver algorithm is. Then the time to compute a sample in parallel
can be expressed as:

Cl = θlC
min
l (5.3)

where in equation 5.3 Cmin
l is the time to compute a single sample on level

l on P l
min processors. Rewriting equation 5.2 by substituting tl with Cl, the

equation becomes:

Tmin =
1

P all

L∑
l=0

NlE[Cl] =
1

P all

L∑
l=0

NlE[θlC
min
l] =

1

P all

L∑
l=0

NlθlE[Cmin
l]

(5.4)

In the case when θl = 1 for all levels the two formulations are identical. In
the case when more than one process is assigned to a sample on level l, to
compute the minimal time the θl needs to be determined. This can be done
in a pre-processing phase, by computing the θl function for a given scalability
window {P l

min, . . . , P
l
max}, where Pmax is the maximum number of processors

that achieve the desired threshold efficiency, and P l
min is the minimal number

of processes that are able to solve the problem by fully utilizing the memory
capacity. By setting Cp

l to be the time to compute one sample on level l by
p processors, θl becomes:

θl = Cp
l /C

min
l (5.5)

To define the parallel efficiency of a given level of MLMC, the relative
inefficiency is computed by substituting the computational time Ccomp

l with
the minimal level time Tminl and the resulting value is divided by Tminl .
By this way, it can be estimated what is the percentage of the time lost to

75

synchronization relative to the minimal computational time. If the computed
time is close to the minimum time, the value of this fraction will be close
to 1. The lost time for distribution and synchronization will lead to values
grater then 1. To get a decreasing function, the fraction is subtracted from
1:

Effl = 1− (Ccomp
l − Tminl)/Tminl (5.6)

Expressing 5.6 in terms of θ and Cp
l becomes:

Effl(θ, p) = 1−
(Ccomp

l −NlθlE[Cmin
l])

(NlθlE[Cmin
l])

(5.7)

Finally the MLMC efficiency is defined as a sum over the levels:

Eff(θ) = 1−
(
∑

l C
comp
l −

∑
lNlθlE[Cmin

l])∑
l(NlθlE[Cmin

l])
(5.8)

where l ∈ {0, . . . L}.

Layers of execution and parallel models

To classify the parallel scheduling strategies, three main layers of parallelism
are defined as in [5]:

• Level parallelism: Some or all of the estimators on levels l = 0 . . . L

can be computed in parallel

• Sample parallelism: Some or all of the samples {Sil}
Nl

i=0 can be com-
puted in parallel.

• Solver parallelism: The PDE solver, that computes a single sample,
can be done in parallel.

76

The main loop of the program (see figure 5.4), that loops over the samples
and levels is inherently parallel. Only a small post-processing step is required
in which the results are accumulated and quantity of interest is computed.
The challenge is to balance the workload across all of the parallel layers and
to design a concurrent scheduler for the solvers, particularly in the case when
no a priori information is available. Concurrent execution can be classified as
the number of layers that the model uses. The single-layer approach offers no
flexibility and is prone to significant load imbalances. The two-layer approach
gives more flexibility. The two layers can be either Level-Sample or Sample-
Solver. Typically, for simulation with sufficiently large samples, that have
large solver scalability windows and in a total small number of samples, the
Sample-Solver model can have significant parallelization potential. The most
flexible approach will have to take into account all of the layers of parallelism.

5.3 Scheduling strategies

To design the parallel models, the bulk-synchronous model is adopted. The
focus will be on dynamic approaches. They try to improve processor dis-
tribution by a greedy scheme. All the designs have to account that each
estimation step (see figure 5.1) needs information from all levels, as formula
2.15 suggests. The variance from each level is required, to estimate the
number of samples that needs to be computed. This means for each paral-
lel region of the algorithm (see figure 5.4), a synchronization must be done
across all levels and all of the available processors. In this synchronous part
the statistical moment exchange is performed and the number of required
additional samples is calculated. The overall time of this synchronous part is
negligible compared to the total run time of the simulation. In the performed
experiments this type of estimate occurs on average 5− 6 times. Before con-
sidering any scheduling strategies, two important practical aspects of the
implementation have to be considered. The first one is the random number
generator. To generate random permeability fields a random uncorrelated

77

vector has to be generated. In the implementation this is done by generating
a random seed using C + + standard library class random_device. This is a
uniformly-distributed integer random number generator. Each process gets
a seed generated at the beginning of the simulation. As a pseudo-random
number generator, a standard Mersenne Twister engine with a word length
of 64 bits, and a period of 219937 − 1, is used. Please note that when more
than two processes are solving a single sample, the seeds they use are still
different. The second aspect is communicator creation. The split of the MPI
processes between the different layers of parallel execution is done by API
call to MPI_Comm_split. The accumulation of the results is done with col-
lective communication. The redistribution of the data within one sample is
done using MPI one-sided communication with no locks. This enables mul-
tiple messages to be exchanged within a single synchronization procedure.

5.3.1 Level-Solver synchronous (LvlSolSyn)

time

co
re

s

Figure 5.6: LvlSolSyn Time-Processor
diagram

In this scheduling strategy, the par-
allelism is done only at the sample
layer of parallelism. For this strat-
egy, each PDE is solved by a single
process with the assumption that
the compute time for each solution
is constant. For this strategy, the
different estimators are computed
sequentially per estimate-solve cy-
cle. Each estimator is treated as a
pure Monte Carlo and the samples
are computed in parallel. The work
is divided equally across all the MPI processes. Each processor gets the same
number of samples rounded down to integer: N = Nl/Pmax. If the number
of samples is not exactly divisible to available processors or if the number

78

of samples needed is smaller than the available MPI processes, then part
of the processors may be idle for the current estimate-solve execution. Be-
cause formula 2.15 gives the minimum number of samples needed per level
to achieve the desired tolerance, filling the idling MPI processes with sam-
ples is also possible. This can improve the overall speed. Consider the case
where the number of the estimated samples is not sufficient to achieve the
desired tolerance, then the scheduled samples on the idling MPI processes,
will reduce the total number of samples that needs to be computed on the
next estimate-solve cycle. In the other case, when the estimated number of
samples is sufficient for achieving the desired tolerance, the additional sam-
ples will lead to reduced RMS error with no additional time cost. For this
scheduler strategy samples are scheduled by formula N = dNl/Pmaxe.

5.3.2 Level synchronous homogeneous (LvlSynHom)

time

co
re

s

Figure 5.7: LvlSynHom Time-
Processor diagram

In this parallel strategy, the parallelism is
done at two levels: sample and solver. Here
again, no time variations per PDE solve is
assumed. In this parallel scheme, each PDE
solution on level l is solved by a pgl number
of MPI processes within certain scalability
window {Pmin

l . . . Pmax
l }. As in the Level-

Solver synchronous scheme, estimators are
computed sequentially. The idea here is to
group a certain number of MPI processes (if
it is possible, as they are physically close)
to work together on a single PDE problem.
The samples, that have to be computed on a given level, are divided equally
among the groups, that can be formed by the P total number of MPI processes.
Each MPI group on level l gets N = Nl/b(Pmax/pl)c. Ideally each pgl must
divide P total exactly, in order to avoid idling processes. This restricts the

79

scalability window to a subset of the original. Here again as with the Level-
Solver synchronous model, to avoid idling processor groups, the idling groups
are filled with samples. In this scheduling strategy, the intention is that the
imbalances of the workload will be smaller because of the grouping. In the
ideal case, where each PDE solution scales perfectly and there is no time loss
to synchronization, the Level synchronous homogeneous approach, will com-
plete the MLMC simulation for the same amount of time, as Level-Solver
synchronous approach. However, this approach is more flexible than the
single-layer approach. When the available memory on a given node is insuffi-
cient to store the PDE problem, to avoid resource wastage, a parallel sample
computation must be performed. Besides, in a more realistic situation where
the time between two samples on the same level variates, Level synchronous
homogeneous is more robust than Level-Solver synchronous scheduler. Each
MPI group has more samples to compute in total but the time to compute
one sample is less. This will lead to a smaller sample to sample computational
time fluctuations.

The update of the accumulated quantity of interest between two estimate-
solve cycles for both strategies can be done in different ways. As illustrated
on figure 5.8 a simple idea is to schedule a chunk of K samples out of N ,
to be computed for each group (the group size of Level-Solver synchronous
schedule is 1) before an update is done.

time

co
re

s

(a) K = 1

time

co
re

s

(b) 1 < K < N

time

co
re

s

(c) K = N

Figure 5.8: Different update strategies for Level-Solver synchronous and Level
synchronous homogeneous schedulers

80

In the extreme case of K = 1, b(Pmax/pl)c samples are computed in par-
allel and then accumulated to the statistics. This case is not practical as
it will require too much synchronization in the form of message exchange.
Besides each step will be determined by the slowest sample. A single delay
in the computation of one of the samples will directly impact the overall
computational time. The other extreme case where K = N requires only
one synchronization, but it is more prone to inaccurate sample estimations
by formula 2.15.

5.3.3 Level synchronous heterogeneous (LvlSynHet)

time

co
re

s

Figure 5.9: LvlSynHet Time-
Processor diagram

In this approach, again the two layers of
parallelism - sample and solution are con-
sidered. Again for simplicity, assume no
run-time solution deviations are present. In
this scheme the idea is to further try to opti-
mize the processor distribution over a given
estimator, by constructing groups of differ-
ent sizes, instead of constructing groups of
the same size, like in the case of Level syn-
chronous homogeneous scheme. The algo-
rithm consists of pre-processing step and
optimization step. In the pre-processing
step, a computation is performed and a table is constructed with averaged
compute times of a single sample for a different number of MPI processes.
This is performed by considering each of the available processor configura-
tions within the estimator scalability window. For each configuration, an
apriori number of samples is solved and the averaged times are logged in to
the table:

Pmin
l Pmin

l + 1 Pmin
l + 2 . . . Pmax

l

tminl tmin+1
l tmin+2

l . . . tmaxl

81

In the optimization step, first the estimated minimal run time by formula 5.8
is computed. Knowing the optimal time, the maximum number of samples
that each group of MPI process can compute can be determined. This is
done by dividing the optimal time by the pre-computed time, rounded down
to integer (see table 5.1).

Pmin
l Pmin

l + 1 Pmin
l + 2 . . . Pmax

l

btopt/tminl c btopt/tmin+1
l c btopt/tmin+2

l c . . . btopt/tmaxl c

Table 5.1: Maximum number of samples for given optimal time

Finally, to obtain, the group distribution an optimization problem (equation
5.9) is solved:

max{
M−1∑
i=0

btopt/tmin+i
l yictmin+i

l }, where M = Pmax
l − Pmin

l + 1

with constraints:
M−1∑
i=0

(Pmin
l + i)yi ≤ P total

(5.9)

The idea behind equation 5.9 is to select a linear combination of groups
within the scalability window, such that each group work time is as close
as possible to the optimal time. A significant disadvantage of Level syn-
chronous heterogeneous strategy is the computationally intensive pre-process
step. Acquiring reliable run times configuration requires a lot of samples to
be performed by each group within the scalability window. To overcome this
limitation, a fit of cost-function that approximates the times can be con-
sidered, or table construction can be performed a on smaller grids, where
PDEs can be computed faster and then the values are extrapolated to fit the
simulation.

82

5.3.4 Dynamic strategy

In this section, a greedy scheduling strategy is considered. The scheme adopts
during the simulation. It is very flexible as it can be combined with any of
the previous strategies. All of the parallel layers are taken into account. This
strategy assumes that the first Estimate-Solve cycle has been completed and
empirical variance and sample computational time are available. Let L be the
number of the levels, and Ni, i = {0, 1, 2, . . . , L}, be the number of required
realizations per Monte Carlo estimator - Ŷl, where N0 is the number on the
coarsest estimator Ŷ0. Let pi be the number of processes allocated per Ŷi, pgli
the respective group size of processes working on a single realization, with
ti be respective time constants, for solving a single problem once on a single
process and finally with P total the total number of available processes. Then
the total CPU compute time for the current Estimate-Solve cycle, can be
estimated:

T totalCPU = N0t0 +N1t1 +N2t2 + · · ·+NLtL (5.10)

Then the optimal compute time per processor is:

T pCPU =
T totalCPU

P total
(5.11)

By dividing the CPU time needed for estimator Ŷi by T pCPU , a continuous
value for the number of processes on a given MC estimator is obtained.

pideali :=
Niti
T pCPU

for i = {0, 1, 2, . . . , L} (5.12)

Lets further assume that all of the available processors must be distributed
on all of the estimators Ŷi. Then by, rounding down to integer the pideali

83

N0, N1, N2

N1N0 N2

nl0
0

. . . nl0
k

. . . nl1
l

. . . nl2
m

p0
p1

p2

pg00 pg00

pg00

pg11

pg11
pg22

pg22p
g2
2

Figure 5.10: Schematic sample distribution of MLMC on three levels

value, a processors distribution for across the levels can be obtained

pi :=
⌊
pideali

⌋
, for i = {0, 1, 2, . . . , L} (5.13)

Depending on the scheme that will be used for parallel computing on the
estimator Ŷi, additional restrictions may be imposed for pi. For example if
LvlSynHom scheme is used, pi has to be divisible to the fixed group size: pi ≡
0 (mod pgll). Regardless of the estimator scheme, the unallocated processors,
due to rounding, can be left unused for this cycle. To improve the estimation
and search for a better approximation, the set of all upper and lower bounds
for each of the estimators is constructed. In other words, an integer solution
is searched in the range between

∑2
i=0 pi and p

total.

Till now the only considered case is the distribution of all of the available
processors to work simultaneously on all of the estimators. This may not
be the optimal strategy. It is rarely the case, because of the strong imbal-
ance of work between the estimators. To find a reasonable strategy of all
possible combinations of unions of elements from the estimator power set
is considered. This ensures that cases when all of the processors are allo-

84

cated on the coarsest level {Ŷ0} and then levels {Ŷ1, Ŷ2} are concurrently
computed, then just trying to balance the processors on all the estimators
together {Ŷ0, Ŷ1, Ŷ2} for MLMC on three levels. For the parallel strategy for
the estimator, depending on the scenario, allows different schemes to be used.
LvlSynHom can be used when there are no large time variations between the
samples. If the times for computing samples for the scalability windows of
the samples on all of the estimators are known, LvlSynHet can be considered.

At each Estimate-Solve, the samples average solving times are updated across
the estimators and processor distribution on the level layer of parallelism is
adopted according to the number of samples and the averaged times. To
incorporate the time fluctuations across different samples on a given estima-
tor, different strategies are considered. The scheduler behavior is modified
to achieve faster computation, at the price of additional communication.

5.3.5 Interrupted Dynamic strategy

Here a strategy, very similar to the idea of processor interruptions is con-
sidered. The algorithm starts as a standard dynamic strategy, as described
in the previous section 5.3.4. Again heuristical assumption is made, that
there is no sample to sample computational differences, or if present, they
will balance out, during the parallel computation. During the parallel com-
putation, due to load imbalances and sample to sample fluctuations, a group
(or groups) of MPI process among all of the MPI processes can complete
computation before the others. Upon completion, this group sends a signal
to a part of the other groups or all of the groups, that are still computing,
informing them that it is in an idle state. Upon receiving the signal, the com-
puting groups interrupt the current computation. When all those message
exchanges completes and all of the groups are in an idle state, rescheduling
is done. For this type of optimization two strategies are considered. The
first type is the local interruption strategy, done within an estimator and the
second type is the global one - computation on all MPI processes on all the

85

levels stops and then rescheduling is performed. Figure 5.11 illustrates the
idea.

time

co
re

s

R
ed

is
t

(a) Local(Estimator)

time

co
re

s

R
ed

is
tr

ib
ut

e

(b) Global(MLMC)

Figure 5.11: Schematic overview of the interruption process.

In practice, the signals are modeled as a message exchange between the
groups, by a master-slave approach. A group sends a message to the desig-
nated master processor to notify it is in an idle state. The master process
takes responsibility to inform the other groups and synchronize the data be-
tween them. The messages carry only a small amount of meta-information
and the dominating part of the time, needed for this process to complete, will
be the latency of the messaging system. This means, that a local interrup-
tion will have not only a smaller amount of messages, but smaller exchange
times due to the physical proximity of the processors. This approach can be
viewed as a way to guarantee that there will be no idle processors.

5.3.6 Job queue Dynamic strategy

This strategy simulates the idea of job dispatching, or task-based parallelism
in the multi-thread environment, adopted to MPI message system. First,
an optimal distribution of processors per estimator is obtained by equation
5.12. For each estimator, using the “master-slave” programming paradigm,

86

one of the available MPI processes is set to be master, and the others are set
to be slaves. The master process acts as a dispatcher, that assigns work to
the other processes. Each of them performs a given tasks and then reports
back to the master for more work. This way each process is busy working
regardless of the time for a sample. This is at the expense of a large number
of small message exchanges. The slaves can be organized in groups of equal
size, to work together on a single sample or groups of different sizes. The
number and the sizes of groups can be determined by solving the optimization
problem given by equation 5.9 from LvlSynHet model.

5.4 Review of the parallel strategies

The table 5.2 gives a short summary of the considered methods. For each
method, the parallel layers used are marked in columns Level, Sample and
Solver.

Method Level Sample Solver Comment

LvlSolSyn - * - Most basic scheduler,
not very efficient

LvlSynHom - * * More robust, may be
inefficient

LvlSynHet - * * Very hard to compute,
a lot of communication

Dyn + 2 layer sched. * * *
Does not incorporate
sample to sample time
deviations

LocDyn + 2 layer sched. * * * Local(Within level)
interruption

GlobalDyn + 2 layer sched. * * * Global(Across levels)
interruption

QueueDyn * * * Dynamic job dispatching,
expensive communication

Table 5.2: Summary of the different parallel strategies.

87

5.5 Parallel experiments for Laplace equation

The parallel experiments for the Laplace equation are divided in three main
groups. The first group of experiments, examinates the time deviations and
fluctuations on a sample to sample basis. Table containing computed θ func-
tion is also considered for different configurations of parameters. The second
group of experiments is devoted to the MLMC parallel efficiency under equa-
tion 5.8. Different configurations of processor distributions is considered. In
the last part, strong scalability results for the algorithm are shown.

Time to solution and scalability windows

On figure 5.12, time to solution histograms are presented. The stochastic
parameters considered are with increasing variance from left to right. Each
test contains 1000 samples. The more uncertainty in the system leads to more
difficult overall computation. The minimum and maximum time to compute
a sample slowly increase, but overall distance stays relatively unchanged - at
around 2 seconds. In all three cases the data is very dispersed. The maximum
time deviations value is at around 25% of the mean time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 6.6 6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8

N
u
m

b
e
r

o
f
s
a
m

p
le

s

Time[s]

(a) σ = 1, λ = 0.2

 0

 50

 100

 150

 200

 250

 6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9

N
u
m

b
e
r

o
f
s
a
m

p
le

s

Time[s]

(b) σ = 2, λ = 0.2

 0

 50

 100

 150

 200

 250

 300

 7 7.5 8 8.5 9 9.5

N
u
m

b
e
r

o
f
s
a
m

p
le

s

Time[s]

(c) σ = 3, λ = 0.2

Figure 5.12: Histogram of solution sample times

On tables 5.3, 5.4, 5.5, the θ value is computed for the same stochastic
parameters as in figure 5.12. The experiment shows very good scalability

88

for the conjugate gradienet linear solver. The overall computational time
changes slightly for a fixed stochastic parameters. The main contributing
factor to the time needed is the grid resolution.

#N of cores: 1 2 3 4 5 6 7 8
θ, grid: 27 × 27: 1 1.813 2.391 3.055 3.321 3.705 4.009 4.526
θ, grid: 28 × 28: 1 1.900 2.680 3.573 4.139 4.798 5.440 6.341
θ, grid: 29 × 29: 1 1.938 2.804 3.91 4.536 5.397 6.132 7.312
θ, grid: 210 × 210: 1 1.942 2.808 3.816 4.534 5.333 6.183 7.365

Table 5.3: Scalability for σ = 1, λ = 0.2

#N of cores: 1 2 3 4 5 6 7 8
θ, grid: 27 × 27 1 1.778 2.388 2.994 3.352 3.727 4.015 4.466
θ, grid: 28 × 28 1 1.911 2.744 3.594 4.258 4.966 5.608 6.347
θ, grid: 29 × 29 1 1.971 2.914 3.940 4.756 5.675 6.453 7.510
θ, grid: 210 × 210 1 1.980 2.947 3.779 4.809 5.713 6.569 7.584

Table 5.4: Scalability for σ = 2, λ = 0.2

#N of cores: 1 2 3 4 5 6 7 8
θ, grid: 27 × 27 1 1.791 2.394 2.988 3.324 3.707 4.031 4.476
θ, grid: 28 × 28 1 1.924 2.772 3.598 4.311 5.015 5.586 6.395
θ, grid: 29 × 29 1 1.970 2.987 3.946 4.758 5.746 6.540 7.511
θ, grid: 210 × 210 1 1.969 2.925 3.897 4.837 5.759 6.612 7.587

Table 5.5: Scalability for σ = 3, λ = 0.2

Parallel efficiency metrics

In this subsection, an investigation of the efficiency is done for different sched-
uler types. The parallel efficiency is measured under equation 5.8. For this
tests, the finest grid of the MLMC algorithm is 210 × 210 number of cells.
This is approximately 106 unknowns. The number of levels of MLMC is set
to 4.

Table 5.6 contains the efficiency results for Eff(1, 1, 1, 1) and single proces-
sor per problem. Table 5.7 is shows the data for the test where larger stochas-
tic parameters are used. This leads to larger uncertainty in the system and
more computationally challenging problem. The processor distribution is the

89

same. On table 5.8 same problem as table 5.7, but with different processor
distribution, is considered with Eff(1, 3.6, 7.35, 9.00). For this parameters
the required processors per problem is: p0 = 1, p1 = 5, p2 = 9, p3 = 11.
Under this processor distribution, each sample is solved with expected effi-
ciency at least: 1, 0.78, 0.79, 0.80 respectively. The efficiency is computed via
equation 5.6.

n Cores 168 252 336 420 504
Dyn + LvlSolSyn 0.928 0.875 0.822 0.734 0.615
LocDyn + LvlSolSyn 0.969 0.958 0.889 0.749 0.912
GlobalDyn + LvlSolSyn 0.970 0.954 0.942 0.922 0.680
QueueDyn 0.963 0.953 0.953 0.882 0.746

Table 5.6: Parallel efficiency for σ = 2, λ = 0.3, ε = 1e− 3

n Cores 168 252 336 420 504
Dyn + LvlSolSyn 0.944 0.878 0.864 0.805 0.667
LocDyn + LvlSolSyn 0.984 0.963 0.889 0.956 0.947
GlobalDyn + LvlSolSyn 0.970 0.970 0.962 0.845 0.747
QueueDyn 0.960 0.958 0.962 0.932 0.893

Table 5.7: Parallel efficiency for σ = 2.25, λ = 0.3, ε = 1e− 3

n Cores 168 252 336 420 504
Dyn + LvlSolSyn 0.931 0.922 0.899 0.893 0.892
LocDyn + LvlSolSyn 0.964 0.965 0.912 0.956 0.895
GlobalDyn + LvlSolSyn 0.928 0.933 0.960 0.896 0.956
QueueDyn 0.939 0.947 0.948 0.951 0.951

Table 5.8: Parallel efficiency for σ = 2.25, λ = 0.3, ε = 1e− 3

Tables 5.6 and 5.7 show that local interrupted approach achieves best ef-
ficiency for a relatively small number of processors. These efficiency values,
nonetheless, are not kept when the number of processors increases. In the
case of 504 cores, the effectiveness drops from 7 to 8% better than simple dy-
namic approach. There are two main reasons for that: the increased number
of processors leads to larger load imbalances between the different levels when

90

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 168 252 336 420 504

E
ff
ic

ie
n
c
y

Number of cores

Global interrupted
Local interrupted

Queue parallelism
Dynamic

Performance

(a) Efficiency from table 5.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 168 252 336 420 504

E
ff
ic

ie
n
c
y

Number of cores

Performance

Global interrupted
Local interrupted

Queue parallelism
Dynamic

(b) Efficiency from table 5.7

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 168 252 336 420 504

E
ff
ic

ie
n
c
y

Number of cores

Global interrupted
Local interrupted

Queue parallelism
Dynamic

Performance

(c) Efficiency from table 5.8

Figure 5.13: Graphical representation of tables 5.6, 5.7 and 5.8

the number of processors per level is estimated. Even if the algorithm finds
a good processor distribution that leads to small waiting time per processor
level groups, this time has much more impact on the effectiveness, compared
to the same waiting time on a smaller number of processors. Simply, there
are more idling processors. The other reason is a large number of messages
exchanges at a single point in time. These messages must be sent through
the network that can lead to flooding the communication canal. This prob-
lem becomes apparent when the queue method is compared to the local one.
Although there are much more messages, that are exchanged between the
processors, all of them have small byte sizes and are spread in time, leads to
better overall efficiency for the queue scheduler. The best performing algo-
rithm that is considered for the case of a single processor per problem is the
global technique. It shows small performance degradation when the number
of processors is increased. Table 5.8 shows that utilizing the third layer of
parallelism and thus counting all layers of parallel execution. This leads to
very efficient algorithms. All of the considered methods achieve more than
0.89 units of efficiency. In this case, the local interrupted technique outper-
forms the others. The increased effectiveness comes again from the fact that
groups of processors are considered by the dynamic scheduler, rather than all

91

the processors. Part of the imbalances is offloaded to the underlying parallel
algorithm used for the generation of a single sample.

Strong scalability experiments

In this section main focus is the strong scalability of the algorithm. On figure
5.14 the strong scalability performance of the algorithm is plotted for the
tests considered in tables 5.6, 5.7 and 5.8.

 1

 1.5

 2

 2.5

 3

 168 252 336 420 504

S
p
e
e
d
u
p
 t
im

e
s

Number of cores

Optimal
Global interrupted
Local interrupted

Queue parallelism
Dynamic

Strong scaling

(a) Scalability from table 5.6

 1

 1.5

 2

 2.5

 3

 168 252 336 420 504

S
p
e
e
d
u
p
 t
im

e
s

Number of cores

Strong scaling

Optimal
Global interrupted
Local interrupted

Queue parallelism
Dynamic

(b) Scalability from table 5.7

 1

 1.5

 2

 2.5

 3

 3.5

 168 252 336 420 504

S
p
e
e
d
u
p
 t
im

e
s

Number of cores

Optimal
Global interrupted
Local interrupted

Queue parallelism
Dynamic

Strong scaling

(c) Scalability from table 5.8

Figure 5.14: Graphical representation of tables 5.6, 5.7 and 5.8

The experiments show good scalability for all of the considered methods if all
of the layer of parallelism are used. Although for the cases of local interuped
and dynamic schedulers lack behind the other two schedulers in the case of 2

layer parallelism (5.14 a), b)), the speedup is close to 2.3 times of maximum
3, which is still good. Figures 5.13 and 5.14, shows that the efficiency and
scalability metrics are correlated, however it seems that they are not linearly
correlated.

Experiments with large number of cores for Laplace equation

The tests in this section are performed on the SuperMuc cluster hosted at
TUM Munich. Each node is consisting of 48 cores. The total node memory
is 96GB. The processor model is Intel Skylake Xeon Platinum 8174 1.

1https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG

92

https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG

Figure 5.15 shows the results for the simulation time, with different coarse
grain methods and figure 5.16 shows the efficiency and the scalability of the
considered methods. The simulation parameters are summarized in table
5.9.

Max. grid size 210 × 210 σ 2.75 λ 0.3 ε 1e-3

Cores per problem Lvl. 0 Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4
1 2 3 4 5

Table 5.9: Simulation parameters for figures 5.15 and 5.16

The experiment shows optimal scalability for both of the considered meth-
ods. The efficiency of the averaging approach is better in all of the cases.
This can be explained by the overall larger simulation times, compared to
the simplified renormalizaion idea. Considering the small simulation time,
appropriately 1000 seconds in the case of 3840 cores, efficiency remains very
good. Since the dynamic scheduler does not consider any handling of the
sample to sample inefficiencies, scheduling which considers them, will bring
even better effectiveness. For sufficiently large problems, the dynamic ap-
proach is good enough on its own. This is evident by the effectiveness at 960
cores.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 960 1920 2880 3840

S
im

u
la

ti
o

n
 t

im
e

Number of cores

Solution times

AVG Renorm.
Simpl. Rernom.

Figure 5.15: Simulation time

93

 1

 2

 3

 4

 960 1920 2880 3840

S
p
e
e
d
u
p
 t
im

e
s

Number of cores

Strong scaling

AVG Renorm.
Simpl. Rernom.

Optimal

(a) Strong scale

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 960 1920 2880 3840

E
ff
ic

ie
n
c
y

Number of cores

Performance

AVG Renorm.
Simpl. Rernom.

(b) Efficiency

Figure 5.16: Dynamic scheduler for different coarse grain MLMC techniques

The test shown on figure 5.17 is designed to test the effect of the global
interruption optimization of the dynamic scheduler for a large number of
cores on a relatively small problem. In such case the time lost to synchro-
nization will have more significant impact on the overall computational time
and effectiveness respectively. The test parameters are summarized in table
5.10. As a coarsening technique a simplified renormalization is used. The
experiment shows good processor distribution among the different levels for
the case of 4800 cores and thus efficiency for the case of dynamic scheduler.
The achieved efficiency is close to 70%. Using global interrupt optimiza-
tion leads to significant improvement in the efficiency - close to 15%. In the
case of 7200 cores, the optimization gains around 12% improvement. In the
case of 9600 the gain is around 7%. This steady decline of the gains is due
to the increased communication time, and compared to the overall smaller
computational time. In the case of 9600 cores the total simulation time is
only 621 seconds with the global interrupt. More computationally expensive
simulations will lead to even better effectiveness.

The test on figure 5.18 is very similar to the test shown on figure 5.17. The
key difference is the processor distribution of the cores per problem. In this

94

Max. grid size 210 × 210 σ 3 λ 0.3 ε 1e-3

Cores per problem Lvl. 0 Lvl. 1 Lvl. 2 Lvl. 3
1 1 1 1

Table 5.10: Simulation parameters for figure 5.17

 1

 1.5

 2

 4800 7200 9600

S
tr

o
n

g
 s

c
a

lin
g

Number of cores

Solution times

Optimal
Dynamic

Global interrupted

(a) Strong scaling

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 4800 7200 9600

E
ff

ic
ie

n
c
y

Number of cores

Solution times

Dynamic
Global interrupted

(b) Efficiency

Figure 5.17: Large number of cores, single processor per problem

case a single problem on all levels, except the coarsest level is solved by more
than one core. Again the simulation takes less than one hour on 9600 cores.
The simulation parameters are summarized in table 5.11. Compared to the
previous case the total communication is much more, due to the addition of
the communication within a PDE solution.

Max. grid size 210 × 210 σ 3.25 λ 0.3 ε 1e-3

Cores per problem Lvl. 0 Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4
1 2 3 4 5

Table 5.11: Simulation parameters for figure 5.18

The test shows degraded parallel efficiency compared to the case of single
core per problem, but better scalability.

95

 1

 1.5

 2

 4800 7200 9600

S
tr

o
n

g
 s

c
a

lin
g

Number of cores

Optimal
Global interrupted

(a) Strong scaling

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 4800 7200 9600

E
ff

ic
ie

n
c
y

Number of cores

Global interrupted

(b) Efficiency

Figure 5.18: Large number of cores with single core per problem

Figures 5.19 and 5.20 illustrates how the algorithm adopts during the dif-
ferent Estimate-Solve cycles. The simulation parameters are summarized in
table 5.12.

Max. grid size 210 × 210 σ 3 λ 0.3 ε 1e-3

Cores per problem Lvl. 0 Lvl. 1 Lvl. 2 Lvl. 3
1 1 1 1

Table 5.12: Simulation parameters for figures 5.19 and 5.20

The predicted time from the algorithm is plotted against the actual compute
time for that cycle. At the zero step, where the initial number of samples
is computed to obtain empirical variance, there are no statistics and no pre-
diction can be made. After this step a prediction is made, for the time that
the next Estimate-Solve cycle will need and the processors are distributed
accordingly. At the first step prediction time is quite inaccurate due to the
very small sample size available. At later stages of the algorithm the gap
between the predicted and actual time closes significantly. The test also
shows that the relative distance between two graphs is smaller in the case of
global interrupted approach. This is because in the case of interruption on

96

some level, the remaining work is rebalanced. This type of interruption can
happen in two cases: either a group on a given level has finished its work
or the total work on a given level has been finished. In either cases, since
the work is rebalanced globally, the parallel overhead imbalances, that comes
from the dynamic process distribution, are also accounted. This happens at
the expense of global communication. In the case of 9600 cores this means
that at given time point there will be at least 9600 messages circulating in
the network. Furthermore, this messages are not evenly distributed among
the processors which slows down even more the synchronization process.

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5

S
e

c
o

n
d

s

Steps

Est. step time
Computational time

(a) 4800 cores

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5

S
e

c
o

n
d

s

Steps

Est. step time
Computational time

(b) 7200 cores

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6

S
e

c
o

n
d

s

Steps

Est. step time
Computational time

(c) 9600 cores

Figure 5.19: Estimated and actual step time, no interruption

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4

S
e

c
o

n
d

s

Steps

Est. step time
Computation time

(a) 4800 cores

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5

S
e

c
o

n
d

s

Steps

Est. step time
Computational time

(b) 7200 cores

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5

S
e

c
o

n
d

s

Steps

Est. step time
Computational time

(c) 9600 cores

Figure 5.20: Estimated and actual step time, global interruption

97

5.6 Parallel experiments for
convection-reaction-diffusion problem

To test the magnitude of the time fluctuations in a sample to sample solu-
tions, a histogram of number of samples for given time interval is plotted
on figure 5.21. The simulation consists of 1000 samples on a grid of size
210 × 210 and stochastic parameters: σ = 2, λ = 0.2, P e = 2.5, Da = 0.5.
The histogram shows large fluctuations in time. The minimal time to com-
pute a sample is 39.5544 seconds and the maximum time is 54.6439 seconds.
The difference between the two times is more then 10 seconds. Using parallel
scheduler that does not take into account those fluctuations would be very
ineffective.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 38 40 42 44 46 48 50 52 54 56

N
u

m
b

e
r

o
f

s
a

m
p

le
s

Time[s]

Figure 5.21: Time to solution histogram

On figure 5.22 a parallel MLMC performance with Solve first then Renor-
malize approach is shown. The estimator is a 3 level MLMC with simulation
parameters σ = 2, λ = 0.2, ε = 5e − 3, P e = 1.5, Da = 0.5 for the concen-
tration. For the flow - 5 level MLMC with parameters σ = 2, λ = 0.2, ε =

98

5e−2, P e = 2, Da = 0.5. In both cases the fine grid size is 210×210. An im-
pacting factor for the parallel implementations is the fluctuations in the times
of the solutions, as show on figure 5.21, of the problems on a given level.
However the performance of the scheduler is similar regardless, of quantity
of interest.

 1

 1.5

 2

 2.5

 3

 168 252 336 420 504

S
tr

o
n
g
 s

c
a
la

b
ili

ty

Number of cores

Solve-Renormalize scalability

Optimal
Flow

Concentration

Figure 5.22: Performance for SR coarse grain approach

Table 5.13 contains the efficiency measured by equation 5.8 for the three dif-
ferent dynamic optimizations: Local interrupted, Global interrupted, Queue
parallelism. Each sample is solved by a single processor. The testing param-
eters are: σ = 2, λ = 0.2, ε = 1e − 2, P e = 2.5, Da = 0.5. The fine grid is
210× 210, and the estimator is a 4 level MLMC with renormalize first then
solve approach. The quantity of interest computed is the flow. The results
shows very good efficiency for Local interrupted approach for 168 and 252

cores. It outperforms the other two methods. The efficiency significantly
drops at higher number of cores, as both global and queue approaches re-
tain lower efficiency drop when the number of cores increases. The average
number of samples for this particular test are shown in table 5.14

Figure 5.23 shows the graphical representation of the test data from table
5.13.

99

n Cores 168 252 336 420 504
LocDyn + LvlSolSyn 0.974 0.965 0.898 0.845 0.709
GlobalDyn + LvlSolSyn 0.958 0.942 0.926 0.887 0.858
QueueDyn 0.948 0.948 0.933 0.919 0.896

Table 5.13: Parallel efficiency

Level 0 1 2 3
LocDyn + LvlSolSyn 444975 9466 3382 991
GlobalDyn + LvlSolSyn 447649 9571 3359 962
QueueDyn 449734 9398 3289 999

Table 5.14: Performed samples

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 168 252 336 420 504

E
ff

ic
ie

n
c
y

Number of cores

Global interrupted
Local interrupted

Queue parallelism

Performance

(a) Eff(1, 1, 1, 1)

 1

 1.5

 2

 2.5

 3

 168 252 336 420 504

S
tr

o
n

g
 s

c
a

la
b

ili
ty

Number of cores

Optimal
Global interrupted
Local interrupted

Queue parallelism

Performance

(b) Scalability

Figure 5.23: Efficiency and scaling for table 5.13

5.7 Conclusions

From algorithmic standpoint the MLMC algorithm is very similar to the pure
MC approach. MLMC can be seen as collection of intendant MC estimators
that work together to compute given quantity. However those MC estima-
tors have different computational cost and are working on different levels.
The computational cost is defined by the underling coarse grain method in
MLMC. The main difficulty of implementing MLMC is how to efficiently
parallelize it. Compared to the classical MC method, the problem of paral-
lelizaion for MLMC is much harder. The method has many different levels

100

that can be parallelized in different ways. Considering some or all of the
parallel levels leads to a different parallel scheme. The schemes that exploits
all of the levels are most flexible. The scheduling algorithm has also to con-
sider the sample to sample time deviations, that comes from the underling
problem calculation. The proposed dynamic load balancer provides a way to
exploit the different levels of MC as levels of parallelism that leads to very
flexible schemes. It can be combined with different MC scheduler methods -
schedulers that exploits only two level parallelism. Both LvlSmlSyn and Lvl-
SynHom can be seen as edge cases of the more general dynamic load balancer.
Incorporating the interruption mechanism with the scheduler leads to strate-
gies close to the theoretical optimal time. However the choice of the type
of interpretation technique is problem depended. For the case of Laplace
equation, where the computation of a single sample is faster compared to
the convection-reaction-diffusion, the global interruption gives better results
compared to strategies that tries to balance the work locally. The opposite is
true for the case of convection-reaction-diffusion local interruption or queue
approaches are better. The results show that the achieved efficiency and scal-
ability of the considered algorithms is high and the most impacting factor
for the synchronization time is the number of processors used.

By the opinion of the author, the main contributions of this chapter are:

• An adaptive algorithm for resource allocation between the different
levels of the Multilevel Monte Carlo algorithm has been developed;

• An overview, analysis and comparison of six parallelization strategies
are made;

• A strategy for generating random fields on graphic accelerators has
been developed and implemented;

• Four advanced parallel algorithms were proposed, implemented and
compared;

101

• The applicability of the considered approaches for large scale simula-
tions of realistic problems was confirmed with tests on a large number
of cores.

102

Chapter 6

Final thoughts and future
work

6.1 Final thoughts

The main aim of this work is to provide efficient implementation of Multi-
level Monte Carlo algorithm to address problems involving porous medium
flow simulations. More concretely a MLMC algorithm, that is capable of
much faster simulations, compared to the classical Monte Carlo algorithm.
The developed parallel algorithm must use effective resource allocation and
consider the sample to sample computational time fluctuations, in order to
be applicable for large simulations.

In chapter 1 an overview of existing approaches for stochastic modeling and
the computational challenges involving such simulations is done. In chapter
2 a detailed explanation of necessary components for porous medium flow
simulations is done. Also, a brief analysis of random sampling approaches
is done and as a result an efficient algorithm for such random data genera-
tion is chosen. Detailed analysis of the Multilevel Monte Carlo algorithm is

103

done and it is compared to the classical Monte Carlo. In chapter 3 a well-
established model equation is considered as a model problem, that shows
well the computational and modelling challenges, involving MLMC usage.
For this problem an efficient coarse graining technique is considered, that
leads to MLMC algorithm that is much faster than the classical MC algo-
rithm. In chapter 4 a solution of stochastic convection-reaction-diffusion
problem is presented. The equation is used as a building block in many com-
plex simulation models and it is more computationally expensive than the
Laplace equation, considered in the previous chapter. Different approaches
for coarsening are considered for this equation and the results are compared
to the classical MC algorithm. Chapter 5 considers the computational chal-
lenges that MLMC introduce. A different approaches for parallelizaion are
developed and tested. Different computational algorithms, that use all of the
MLMC parallel layers, are formulated. For described algorithms computa-
tional tests with different number of cores and different MLMC settings are
performed and in depth analysis of all collected results is present.

The solution described in this work achieves all of formulated aims. The pro-
posed scheduling algorithms use all three defined layers of parallelism. The
dynamic load balancer can be combined with different two layer scheduling al-
gorithms, that are more suitable for the simulation in question. A scheduling
approach, that incorporate the sample to sample solution time fluctuations
are proposed. Combined with the proposed renormalizaion technique, fitted
for MLMC, leads to much more superior algorithm, compared to the clas-
sical MC. It is capable of much faster simulations for porous medium flow
problems and it is suitable for realistic simulations with very effective parallel
scheduling, shown by the performed tests. An experiment with large number
of cores over a computationally easy problem, for that number of cores, is
performed to test the limits of the algorithm.

104

6.2 Author contributions

By the opinion of the author, the main contributions of this work are:

• Scientific contributions:

– A review and analysis of the existing solutions to the considered
problems are made. The advantages and disadvantages of the ex-
isting solutions for generating stochastic fields and corresponding
sampling algorithms are evaluated (Chapter 2);

– Different approaches for approximation of the stochastic field for
the Laplace problem are analyzed and compared (Chapter 3);

– An effective method for renormalization of the stochastic field for
the purposes of the Multilevel Monte Carlo has been developed
(Chapter 3);

– An adaptive algorithm for resource allocation between the dif-
ferent levels of the Multilevel Monte Carlo algorithm has been
developed (Chapter 5);

– The Multilevel Monte Carlo method is applied successfully for
the first time to solve the convection-reaction-diffusion equation
(Chapter 4).

• Scientific and applied contributions

– An approach for determining the levels for the Multilevel Monte
Carlo for the two considered problems is defined (Chapter 3 and
Chapter 4);

– Analysis and comparison of the two considered approaches for
coarse grain, for the Multilevel Monte Carlo versus the classi-

105

cal Monte Carlo for the convection-reaction-diffusion problem are
performed (Chapter 4);

– Analysis and comparison between the rate of convergence and the
time for calculation of the Multilevel Monte Carlo method with
simplified renormalization and the classical Monte Carlo are made
(Chapter 3);

– An overview, analysis and comparison of six parallelization strate-
gies are made (Chapter 5).

• Applied contributions

– A strategy for generating random fields on graphic accelerators
has been developed and implemented (Chapter 5);

– Four advanced parallel algorithms were proposed, implemented
and compared (Chapter 5);

– The applicability of the considered approaches for large scale sim-
ulations of realistic problems was confirmed with tests on a large
number of cores (Chapter 5).

6.3 Author publications

• [1] Iliev, O., Mohring, J., Shegunov, N., Renormalization Based
MLMC Method for Scalar Elliptic SPDE, International Conference on
Large-Scale Scientific Computing, pp.295-303, 2017, Springer, ISSN:
0302-9743, SJR (2017) - 0.295

• [2] Shegunov, N., Armianov, P., Semerdjiev, A., Iliev, O., GPU ac-
celerated Monte Carlo sampling for SPDEs, 2019, Conf. Proc. of the
12th ISGT 2018, ISSN:1613-0073, SJR (2019) - 0.177

106

• [3] Zakharov, P., Iliev, O., Mohring, J., Shegunov, N., Parallel Mul-
tilevel Monte Carlo Algorithms for Elliptic PDEs with Random Coeffi-
cients, International Conference on Large-Scale Scientific Computing,
pp.463-472, 2019, Springer, ISSN: 0302-9743, SJR (2019) - 0.427

• [4] Bastian, P., Altenbernd, M., Dreier, N., Engwer, Ch., Fahlke, J.,
Fritze, R., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Mohring,
J., Müthing, S., Ohlberger, M., Ribbrock, D., Shegunov, N., Turek,
S., Exa-Dune: Flexible PDE Solvers, Numerical Methods and Appli-
cations, Software for Exascale Computing-SPPEXA, 2016-2019, pp.
225-269, 2020, https://doi.org/10.1007/978-3-030-47956-5_9, Springer

• [5] Shegunov, N., Iliev, O., On Dynamic Parallelization of Multi-
level Monte Carlo Algorithm, Cybernetics and Information Technolo-
gies, Volume 20, No 6, pp. 116-125, 2020, Journal Sciendo Print ISSN:
1311-9702, Online ISSN: 1314-4081, SJR (2020) - 0.310

6.4 Future work

Although the proposed algorithms are very effective, there are many other
aspects of the problem, that are not considered and are subject to future
work. One such aspect is the approximation of the permeability field on
the coarser levels. Although the renormalizaion approach represent the vari-
ance accurately, it is computationally intensive technique. There may be
more suitable approximation techniques, that are faster but less accurate,
compared to the renormalizaion. For the convection-reaction-diffusion equa-
tion different constants for the Kozeny-Carman equation can be considered,
specific to different soil composites. Furthermore, even different relations
between permeability and porosity can be considered. An important setting,
where the algorithm can be adopted for use, is for the dynamic version of the
convection-reaction-diffusion model - important for the chemical industry.
From the scheduling prespective, the processor distribution across the levels

107

https://doi.org/10.1007/978-3-030-47956-5_9

of the MLMC algorithm is determined by an algorithm. Improvement of this
algorithm, that selects the work-processor distribution automatically within
a level can be considered - a level synchronous heterogeneous approach. By
constructing and solving the optimization problem within a level, the syn-
chronization time can be further reduced, leading to even more parallel effi-
cient algorithm. From simulation perspective, a test that uses finer grids can
be performed - e.g. simulation with high number of unknowns, for example
108. For such a simulation the number of samples must be examined. An-
other perspective of future work is the problem of finding optimal number
of levels for the MLMC algorithm, or adaptive MLMC based on the level
variance can be researched.

108

Appendices

109

Appendix A

Abbreviations

AMG - Algebraic Multi-Grid
AVG - Average
BCCB - Block Circulant with Circulant Blocks
BTTB - Block Toeplitz with Toeplitz Blocks
BiCG - Bi Conjugate Gradient
ccNUMA - cache coherence Non-Uniform Memory Access
CG - Conjugate Gradient
FEM - Finite Element Method
FFT - Fast Fourier Transform
FV - Finite Volume
HPC - High Performance Computing
IFFT - Inverse Fast Fourier Transform
MC - Monte Carlo
MLMC - Multilevel Monte Carlo
MPI - Message passing interface
MsFEM - Multi-scale Finite Element Method
NUMA - Non-Uniform Memory Access
PDE - Partial Different Equation
RMS, RMSE - Root Mean Square Error
RS - Renormalize then Solve approach
SBT - Symmetric Block Toeplitz
SIMD - Single instruction, multiple data
SMP - Symmetric Multi-Processing

110

SPDE - Stochastic Partial Different Equation
SR - Solve then Renormalize approach
UMA - Uniform Memory Access
UQ - Uncertainty quantification

111

Appendix B

Hardware resources

B.1 Beehive cluster
Total number of nodes: 48
Sockets per node: 2
Cores per socket: 14
Memory per node: 185GB
Node interconnect: InfiniBand
CPU model: Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz
Total number of cores: 1344
Host: Fraunhofer ITWM

B.2 SuperMUC cluster
Total number of nodes: 6336
Sockets per node: 2
Cores per socket: 24
Memory per node: 96GB
Node interconnect: InfiniBand
CPU model: Intel Skylake Xeon Platinum 8174
Total number of cores: 304,128
Host: TUM Munich

112

Appendix C

List of figures and tables

List of Figures

1.1 Shared memory model . 9
1.2 Distributed memory model 10
1.3 Distributed Memory with shared memory 10
1.4 Hybrid Architectures . 11
1.5 Dune design structure [31] 12

2.1 Example of symmetric Toeplitz matrix 19
2.2 Example of Circulant symmetric matrix 19
2.3 Porous media consisting of spherical particles 23

3.1 Single realization of permeability field in 3D 33
3.2 Simplified renormalization 37

113

3.3 Simulations of permeability, σ = 2.0, λ = 0.3 38
3.4 Random Field Representation, σ = 3, λ = 0.4 38
3.5 Decay of empirical variance for σ = 2.5, λ = 0.3, ε = 3e− 3 . 41
3.6 Estimated number of samples for 2 level MLMC estimator. . . 41
3.7 Estimated number of samples for 4 level MLMC estimator. . . 42
3.8 Speedup of MLMC with compared MC on 196 cores 43

4.1 Single realization of permeability with σ = 2, λ = 0.2 and the
corresponding porosity field with tortuosity τ = 1.3 51

4.2 Control Volume V . 52
4.3 Single realization for convection-reaction-diffusion equation for

given stochastic parameters. 57
4.4 Achieved speedup, concentration 59
4.5 Achieved speedup, flow . 59

5.1 Block diagram of MLMC algorithm 64
5.2 Generation time and scalability for: σ = 2, λ = 0.2, with grid

size: 210 × 210 . 68
5.3 Parallel sample generation 69
5.4 Block diagram of MLMC algorithm 70
5.5 MLMC convergence . 72
5.6 LvlSolSyn Time-Processor diagram 78
5.7 LvlSynHom Time-Processor diagram 79
5.8 Different update strategies for Level-Solver synchronous and

Level synchronous homogeneous schedulers 80
5.9 LvlSynHet Time-Processor diagram 81
5.10 Schematic sample distribution of MLMC on three levels . . . 84
5.11 Schematic overview of the interruption process. 86
5.12 Histogram of solution sample times 88
5.13 Graphical representation of tables 5.6, 5.7 and 5.8 91
5.14 Graphical representation of tables 5.6, 5.7 and 5.8 92
5.15 Simulation time . 93

114

5.16 Dynamic scheduler for different coarse grain MLMC techniques 94
5.17 Large number of cores, single processor per problem 95
5.18 Large number of cores with single core per problem 96
5.19 Estimated and actual step time, no interruption 97
5.20 Estimated and actual step time, global interruption 97
5.21 Time to solution histogram 98
5.22 Performance for SR coarse grain approach 99
5.23 Efficiency and scaling for table 5.13 100

List of Tables

3.1 Simulation with permeability generating parameters σ = 2,
λ = 0.3 and with Monte Carlo method tolerance ε = 3e− 3 . 40

3.2 MLMC simulation, on 960 cores, σ = 2.75, λ = 0.25, ε =

1e− 3, EMC [Q] = 1.3403 . 44
3.3 MLMC simulation, on 3840 cores, σ = 2.75, λ = 0.3, ε =

1e− 3, EMC [Q] = 1.4309 . 44

4.1 Concentration simulation on 112 cores, with single core per
problem . 58

4.2 Flow simulation on 224 cores, with 1 core per problem 58
4.3 Solve then Renormalize (SR) and Renormalize then Solve (RS) 60

5.1 Maximum number of samples for given optimal time 82
5.2 Summary of the different parallel strategies. 87
5.3 Scalability for σ = 1, λ = 0.2 89
5.4 Scalability for σ = 2, λ = 0.2 89

115

5.5 Scalability for σ = 3, λ = 0.2 89
5.6 Parallel efficiency for σ = 2, λ = 0.3, ε = 1e− 3 90
5.7 Parallel efficiency for σ = 2.25, λ = 0.3, ε = 1e− 3 90
5.8 Parallel efficiency for σ = 2.25, λ = 0.3, ε = 1e− 3 90
5.9 Simulation parameters for figures 5.15 and 5.16 93
5.10 Simulation parameters for figure 5.17 95
5.11 Simulation parameters for figure 5.18 95
5.12 Simulation parameters for figures 5.19 and 5.20 96
5.13 Parallel efficiency . 100
5.14 Performed samples . 100

116

Bibliography

[1] M.B. Giles. “Multilevel Monte Carlo Methods”. In: Acta Numerica
(2018). doi: 10.1017/S09624929.

[2] S. Heinrich. “Monte Carlo complexity of global solution of integral
equations.” In: Journal of Complexity 14 (1998), pp. 151–175. doi:
10.1006/jcom.1998.0471.

[3] S. Heinrich and E. Sindambiwe. “Monte Carlo complexity of parametric
integration.” In: Journal of Complexity 15 (1999), pp. 317–341. doi:
10.1006/jcom.1999.0508.

[4] S. Heinrich. “The multilevel method of dependent tests.” In: Advances
in Stochastic Simulation Methods (2000), pp. 47–61. doi: 10.1007/978-
1-4612-1318-5_4.

[5] D. Drziga et al. “SCHEDULING MASSIVELY PARALLEL MULTI-
GRID FOR MULTILEVEL MONTE CARLO METHODS”. In: SIAM
J. SCI. COMPUT 39.5 (2017), S873–S897. doi: 10.1137/16M1083591.

[6] Dongbin Xiu. “Fast Numerical Methods for Stochastic Computations:
A Review”. In: Communications in computational physics (2009).

[7] Wolfgang Betz, Iason Papaioannou, and Daniel Straub. “Numerical
methods for the discretization of random fields by means of the Karhunen-
Loève expansion”. In: Computer Methods in Applied Mechanics and
Engineering 271 (2014), pp. 109–129. doi: doi:10.1016/j.cma.2013.12.
010.

117

https://doi.org/10.1017/S09624929
https://doi.org/10.1006/jcom.1998.0471
https://doi.org/10.1006/jcom.1999.0508
https://doi.org/10.1007/978-1-4612-1318-5_4
https://doi.org/10.1007/978-1-4612-1318-5_4
https://doi.org/10.1137/16M1083591
https://doi.org/doi:10.1016/j.cma.2013.12.010
https://doi.org/doi:10.1016/j.cma.2013.12.010

[8] I. G. Graham et al. “Analysis of circulant embedding methods for sam-
pling stationary random fields”. In: SIAM Journal on Numerical Anal-
ysis 56 (2018). doi: https://doi.org/10.1137/17M1149730.

[9] Francisco Cuevas, Emilio Porcu, and Denis Allard. Fast and exact sim-
ulation of isotropic Gaussian random fields on S2 and S2 × R. 2018.
eprint: arXiv:1807.04145.

[10] Sarah Osborn, Panayot Vassilevski, and Umberto Villa. “A MULTI-
LEVEL HIERARCHICAL SAMPLING TECHNIQUE FOR SPATIALLY
CORRELATED RANDOM FIELDS”. In: SIAM J. SCI. COMPUT
(2017). doi: 10.1137/16M1082688.

[11] W.K. Liu, T. Belytschko, and A. Mani. “Probabilistic finite elements
for nonlinear structural dynamics”. In: Comput. Methods Appl. Mech.
Engrg 56 (1986), pp. 61–81. doi: 10.1016/0045-7825(86)90136-2.

[12] W.K. Liu, T. Belytschko, and A. Mani. “Random field finite elements.”
In: Int. J. Num. Meth.Engng. 23 (1986), pp. 1831–1845. doi: 0.1002/
nme.1620231004.

[13] R.G. Ghanem and P. Spanos. Stochastic Finite Elements: a Spectral
Approach. Springer-Verlag, 1991. isbn: 978-1-4612-7795-8.

[14] J. Dick, F. Kuo, and I. Sloan. “High-dimensional integration: The quasi-
Monte Carlo way.” In: Acta Numerica (2013). doi: 10.1017/s0962492
913000044.

[15] D. Zhang. Stochastic Methods for Flow in Porous Media: Coping With
Uncertainties. Academic Press, 2002. isbn: 0127796215.

[16] W.L. Loh. “Latin hypercube sampling.” In: The Annals of Statistics.
24 (1996), pp. 2058–2080. doi: 10.1214/aos/1069362310.

[17] B.L. Fox. Strategies for Quasi-Monte Carlo. International Series in Op-
erations Research and Management Science. Kluwer Academic Pub.,
1999. isbn: 978-1-4615-5221-5. doi: 10.1007/978-1-4615-5221-5.

[18] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods. SIAM, 1992. isbn: 978-0-89871-295-7. doi: 10.1137/1.97816
11970081.

118

https://doi.org/https://doi.org/10.1137/17M1149730
arXiv:1807.04145
https://doi.org/10.1137/16M1082688
https://doi.org/10.1016/0045-7825(86)90136-2
https://doi.org/0.1002/nme.1620231004
https://doi.org/0.1002/nme.1620231004
https://doi.org/10.1017/s0962492913000044
https://doi.org/10.1017/s0962492913000044
https://doi.org/10.1214/aos/1069362310
https://doi.org/10.1007/978-1-4615-5221-5
https://doi.org/10.1137/1.9781611970081
https://doi.org/10.1137/1.9781611970081

[19] Kurt Binder. “Monte Carlo Methods: a powerful tool of statistical
physics”. In: Monte Carlo and Quasi-Monte Carlo Methods (1998).

[20] AnthonyWilliams. C++ Concurrency in Action. 2019. isbn: 1617294691.
[21] Blaise Barney. Introduction to Parallel Computing. Lawrence Liver-

more National Laboratory.
[22] Ian Foster. Designing and building parallel programs. Addison Wesley,

1995. isbn: 978-0-201-57594-1.
[23] Bertil Schmidt et al. Parallel Programming. Elsevier, 2017. isbn: 978-

0-128-49890-3.
[24] Walker DW. Standards for message-passing in a distributed memory

environment. 1992. url: https://www.osti.gov/biblio/7104668 (vis-
ited on 05/01/2021).

[25] FAQ: Tuning the run-time characteristics of MPI sm communications.
url: https://www.open-mpi.org/faq/?category=sm.

[26] The MPI-3 standard introduces another approach to hybrid program-
ming that uses the new MPI Shared Memory (SHM) model. url: https:
//software.intel.com/en-us/articles/an-introduction-to-mpi-3-shared-
memory-programming?language=en.

[27] Shared memory and MPI3.0. url: https://insidehpc.com/2016/01/
shared-memory-mpi-3-0/.

[28] Using MPI-3 Shared Memory As a Multicore Programming System.
url: https://www.caam.rice.edu/~mk51/presentations/SIAMPP2016
_4.pdf.

[29] Bungartz Hans-Joachim, Neumann Philipp, and Nagel Wolfgang. “Soft-
ware for Exascale Computing - SPPEXA 2013-2015”. In: (2016). doi:
10.1007/978-3-319-40528-5.

[30] Bastian P et al. “A Generic Grid Interface for Parallel and Adap-
tive Scientific Computing. Part I: Abstract Framework.” In: Computing
103–119 (2008). doi: 10.1007/s00607-008-0003-x.

[31] Dune Numerics. url: https://dune-project.org (visited on 05/01/2021).

119

https://www.osti.gov/biblio/7104668
https://www.open-mpi.org/faq/?category=sm
https://software.intel.com/en-us/articles/an-introduction-to-mpi-3-shared-memory-programming?language=en
https://software.intel.com/en-us/articles/an-introduction-to-mpi-3-shared-memory-programming?language=en
https://software.intel.com/en-us/articles/an-introduction-to-mpi-3-shared-memory-programming?language=en
https://insidehpc.com/2016/01/shared-memory-mpi-3-0/
https://insidehpc.com/2016/01/shared-memory-mpi-3-0/
https://www.caam.rice.edu/~mk51/presentations/SIAMPP2016_4.pdf
https://www.caam.rice.edu/~mk51/presentations/SIAMPP2016_4.pdf
https://doi.org/10.1007/978-3-319-40528-5
https://doi.org/10.1007/s00607-008-0003-x
https://dune-project.org

[32] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM, 2002.

[33] E.Powell. Numerical Methods for Generating Realisations of Gaussian
Random Fields. url: www.maths.manchester.ac.uk/~cp (visited on
05/01/2021).

[34] Gabriel Lord, E.Powell, and Tony Shardow. An introduction to Com-
putational Stochastic PDEs. Cambridge University Press, 2014. isbn:
978-0521728522. doi: 10.1017/CBO9781139017329.

[35] Robert Gould and Colleen Ryan. Introductory Statistics. Pearson, 2016.
isbn: 978-0321978271.

[36] Joseph F. Hair. Multivariate Data Analysis – A Global Perspective, 7th
Edition. Pearson Education, 2010. isbn: 9780135153093.

[37] Randall LeVeque.Numerical Methods for Conservation Laws. Birkhauser-
Verlag, 1990. isbn: 978-3-0348-8629-1.

[38] Randall LeVeque. Finite Volume Methods for Hyperbolic Problems.
Cambridge University Press, 2002. doi: 10.1017/CBO9780511791253.

[39] Wendt and John (Ed.) Computational Fluid Dynamics. Springer Ver-
lag, 2009. isbn: 978-3-540-85056-4. doi: 10.1007/978-3-540-85056-4.

[40] Germund Dahlquist and Åke Björck. Numerical Methods. Courier Cor-
poration, 2003. isbn: 978-0486428079.

[41] Jack Dvorkin. Kozeny-Carman equation revisited. 2009. url: https://p
angea.stanford.edu/~jack/KC_2009_JD.pdf (visited on 05/01/2021).

[42] K.A. Cliffe et al. “Multilevel Monte Carlo Methods and Applications
to Elliptic PDEs with Random Coefficients.” In: Computing and Visu-
alization in Science 14 (2010). doi: https://doi.org/10.1007/s00791-
011-0160-x.

[43] Hoeksema R.J. and Kitanidis P.K. “Analysis of the spatial structure
of properties of selected aquifers.” In: Water Resour. Res 21 (1985),
pp. 563–572. doi: 10.1029/WR021i004p00563.

[44] G. Graham et al. “Quasi-Monte Carlo methods for elliptic PDEs with
random coefficients and applications.” In: Journal of Computational

120

www.maths.manchester.ac.uk/~cp
https://doi.org/10.1017/CBO9781139017329
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1007/978-3-540-85056-4
https://pangea.stanford.edu/~jack/KC_2009_JD.pdf
https://pangea.stanford.edu/~jack/KC_2009_JD.pdf
https://doi.org/https://doi.org/10.1007/s00791-011-0160-x
https://doi.org/https://doi.org/10.1007/s00791-011-0160-x
https://doi.org/10.1029/WR021i004p00563

Physics 230 (2011), pp. 3668–3694. doi: https://doi.org/10.1016/j.
jcp.2011.01.023.

[45] A. Cliffe et al. “Parallel computation of flow in heterogeneous media
using mixed finite elements”. In: J. Comput. Phys. 164 (2000). doi:
https://doi.org/10.1006/jcph.2000.6593.

[46] Blaheta R., Béreš M., and Domesová S. “A study of stochastic FEM
method for porous media flow problem”. In: Applied Mathematics in
Engineering and Reliability (2016). doi: 10.1201/b21348-47.

[47] Mohring J. et al. “Uncertainty Quantification for Porous Media Flow
Using Multilevel Monte Carlo”. In: International Conference on Large-
Scale Scientific Computing 9374 (2015), pp. 145–152. doi: 10.1007/
978-3-319-26520-9_15.

[48] Efendiev Y., Iliev O., and Kronsbein C. “Multilevel Monte Carlo meth-
ods using ensemble level mixed MsFEM for two-phase flow and trans-
port simulations.” In: Comput. Geosci 17 (2013), pp. 833–850. doi:
10.1007/s10596-013-9358-y.

[49] Renard P. and De Marsily G. “Calculating equivalent permeability: a
review.” In: Adv. Water Resour. 20 (1997), pp. 253–278. doi: 10.1016/
S0309-1708(96)00050-4.

[50] Wen X.H. and Gomez-Hern ández J.J. “Upscaling hydraulic conduc-
tivities in heterogeneous media: an overview.” In: Journal of Hydrology
183 (1996), pp. ix–xxxii. doi: 10.1016/S0022-1694(96)80030-8.

[51] Ivan Lunati et al. “A numerical comparison between two upscaling
techniques: non-local inverse based scaling and simplified renormaliza-
tion.” In: Advances in Watter Resources 24 (2001), pp. 913–929. doi:
10.1016/S0309-1708(01)00008-2.

[52] Oleg Iliev et al. “On the Pore-Scale Modeling and Simulation of Re-
active Transport in 3D Geometries”. In: Mathematical Modelling and
Analysis 22.5 (2017), pp. 671–694. doi: 10 . 3846 / 13926292 . 2017 .
1356759. eprint: https ://doi .org/10 .3846/13926292 .2017 .1356759.
url: https://doi.org/10.3846/13926292.2017.1356759.

121

https://doi.org/https://doi.org/10.1016/j.jcp.2011.01.023
https://doi.org/https://doi.org/10.1016/j.jcp.2011.01.023
https://doi.org/https://doi.org/10.1006/jcph.2000.6593
https://doi.org/10.1201/b21348-47
https://doi.org/10.1007/978-3-319-26520-9_15
https://doi.org/10.1007/978-3-319-26520-9_15
https://doi.org/10.1007/s10596-013-9358-y
https://doi.org/10.1016/S0309-1708(96)00050-4
https://doi.org/10.1016/S0309-1708(96)00050-4
https://doi.org/10.1016/S0022-1694(96)80030-8
https://doi.org/10.1016/S0309-1708(01)00008-2
https://doi.org/10.3846/13926292.2017.1356759
https://doi.org/10.3846/13926292.2017.1356759
https://doi.org/10.3846/13926292.2017.1356759
https://doi.org/10.3846/13926292.2017.1356759

[53] Turkuler Ozgumus, Moghtada Mobedi, and Unver Ozkol. “Determina-
tion of Kozeny Constant Based on Porosity and Pore to Throat Size
Ratio in Porous Medium with Rectangular Rods”. In: Engineering Ap-
plications of Computational Fluid Mechanics 8.2 (2014), pp. 308–318.
doi: 10 . 1080 / 19942060 . 2014 . 11015516. eprint: https : / / doi . org /
10.1080/19942060.2014.11015516. url: https ://doi .org/10.1080/
19942060.2014.11015516.

[54] M.N. Panda an L.W. Lake. “Estimation of single-phase permeability
from parameters of particle-size distribution”. In: American Association
of Petroleum Geologists Bulletin (1994).

[55] Abdon Atangana. Fractional Operators with Constant and Variable
Order with Application to Geo-Hydrology. Elsevier, 2018. isbn: 978-0-
12-809670-3. doi: https://doi.org/10.1016/C2015-0-05711-2.

[56] Oleg Iliev, Jan Mohring, and Nikolay Shegunov. “Renormalization Based
MLMC Method for Scalar Elliptic SPDE”. In: Large-Scale Scientific
Computing. LSSC 2017. Lecture Notes in Computer Science 10665
(2018), pp. 295–303. doi: 10.1007/978-3-319-73441-5_31.

[57] Petr Zakharov et al. “Parallel Multilevel Monte Carlo Algorithms for
Elliptic PDEs with Random Coefficients”. In: International Conference
on Large-Scale Scientific Computing (2019), pp. 463–472. doi: 10.100
7/978-3-030-41032-2_53.

[58] James Cooley, Peter Lewis, and Peter Welch. “The Fast Fourier Trans-
from and Its Applications”. In: Transactions on Education (1969).

[59] James Cooley, Peter Lewis, and Peter Welch. “Application of the Fast
Fourier Transfrom to Computation of Fourier integrals, Fourier Series,
and Convolution Integrals”. In: Transactions on audio and electroa-
coustics (1967).

[60] James Cooley and Jonh Tukey. “An Algorithm for the Machine of Com-
plex Fourier Series”. In: Mathematics of Computation (1965).

[61] Matteo Frigo and Steven Johnson. FFTW is a C subroutine library.
url: http://www.fftw.org/ (visited on 05/01/2021).

122

https://doi.org/10.1080/19942060.2014.11015516
https://doi.org/10.1080/19942060.2014.11015516
https://doi.org/10.1080/19942060.2014.11015516
https://doi.org/10.1080/19942060.2014.11015516
https://doi.org/10.1080/19942060.2014.11015516
https://doi.org/https://doi.org/10.1016/C2015-0-05711-2
https://doi.org/10.1007/978-3-319-73441-5_31
https://doi.org/10.1007/978-3-030-41032-2_53
https://doi.org/10.1007/978-3-030-41032-2_53
http://www.fftw.org/

[62] Nikolay Shegunov et al. “GPU accelerated Monte Carlo sampling for
SPDEs”. In: Proceedings of the Information Systems and Grid Tech-
nologies 2464 (2018). issn: 1613-0073.

123

Declaration of Originality

I declare that the present dissertation contains original results obtained from
my research (with the support of and the assistance of my supervisor and
all my co-authors). The results obtained, described and published by other
scientists, are duly and in detail cited in the bibliography. This work has
not been applied for the acquisition of a scientific degree in another higher
school, university or scientific institute.

Signiture:

124

	Introduction
	Motivation
	Outline of this work
	Stochastic computations
	Existing software for high-performance systems
	Aim and scope of this work

	Mathematical Models
	Random Sampling Algorithms
	Finite volume numerical method
	Porosity and Permeability
	Multilevel Monte Carlo algorithm
	Conclusions

	Multilevel Monte Carlo method for Laplace Equation
	Model equation
	Random field generation
	Problem discretization
	Coarse Grain
	Numerical Experiments
	Conclusions

	Multilevel Monte Carlo method for Convection-Reaction-Diffusion equation
	Model equation
	Random field generation
	Problem discretization
	Coarse grain
	Numerical experiments
	Conclusions

	Parallel Algorithms
	MLMC computation scheme
	Parallel Algorithms
	Scheduling strategies
	Level-Solver synchronous (LvlSolSyn)
	Level synchronous homogeneous (LvlSynHom)
	Level synchronous heterogeneous (LvlSynHet)
	Dynamic strategy
	Interrupted Dynamic strategy
	Job queue Dynamic strategy

	Review of the parallel strategies
	Parallel experiments for Laplace equation
	Parallel experiments for convection-reaction-diffusion problem
	Conclusions

	Final thoughts and future work
	Final thoughts
	Author contributions
	Author publications
	Future work

	Appendices
	Abbreviations
	Hardware resources
	Beehive cluster
	SuperMUC cluster

	List of figures and tables

