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A Characterization of Best Multivariate Algebraic

Approximations from Below and from Above
in Terms of K-functionals

~
P. E. Parvanov

Presented by Bl. Sendov

This paper is the first step in the characterization of the best multivariate algebraic
approximations from below and from above. Direct and mverse inequalities for the best con-
.

strained approximations in terms ol appropriate A'-functionals are proved.

1. Introduction

We consider measurable real-valued bounded (fr

below or from above)
functions defined in every poiunt of the domain Q = Il[-1;1], w B

1ere

— MH]a;b]:= {z € RY; z; € [minda;, ;). max{a;, b;}]  for every i= ,...,d}

and 2 = (21,0, 20),0 = (.. .. aq) b = (by,....bg) arc points in R (d is a
natural number). Here 1 and —1 mean respectively (1,....1) and (=1,...,—1).

Let X be a measurable subset of Q. We shall cousider the following
spaces

, L
LP(X) = {f, “f“p(X) = {/\ lf(:v)l'l’(l:!:}‘ < 30} .
for p € [1,00) (dz means the Lebesgue measure on X) and
Loo(X) = {f Iflloot) = sup {|f(2)] ; v € X} < o0},

for p = oo.
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Here a3, ¢ are multi-indices. If o = (ay,..,qq), s > 0 for any s =
L. (l |a| ¢ | ;is the length of a. @ > A means a, > B, forany s = 1, ....d

and ( (“’)
Lct r be natulal. By W7 (X) we denote the Sobolev space

d e
- e r e o
l’V; (‘Y) = f; Z “D’Yj“‘p(X) < OO} ) where  D%= H PN
Jod|=r ’ o
For v € [—1,1],¢ > 0 we set ¥({.v) := (V1 — 02412, Por z € Q we denote
W(t,x) = [1%, (1, ) and WL, 2) := T2, (4 2)". At a neighbourhood
of the point = € § we define by
U(t,z) :={y € Q;las — ys| < (L, a,) for every s =1,....d}.
Everywhere in this paper ¢ denotes a positive number which may depend
on r,d and p. The ¢’s may dilfer at each occurrence. Il ¢ depends on another
parameter we indicate this using brackets.
By H, we denote the set of all algebraic polynomials in 24 of total degree
not greater than n. The best approximations by algebraic polynomials are given

. by
(f7 }In)p(X) - ]Ilf{”/ Q”p(,\) 3 Ct? € 11:1 } ¥

and the best approximations from below or from above by algebraic polynomials
are given respectively by

(1.1) E~(f, fln)p(X) = inf{”f - Q“p(.\') Qe Q< /}
and
(12) B, gy =t {|IF = Qllyx) 3 Q€1 Q2 T},
whenever f is bounded from below or from above respectively.
Everywhere in this paper { = [(r,p,d) is the bigger of the numbers [%} +1
and r ([-] - integral part). We investigate the K-functionals
(1.3)
E~(f,t), =K~ ( Jot5 Ly, W5 (9), W W)
= inf {Hf - g”p((l) + Z[cx[:r,[ ||\'l!“’(1)/)“‘_(/“7)“2);g < ./ g€ ”{;(Q)} )
(1.4)
K¥(fy0)y = K+ (o1 Ly, W (®), WH(W))
= inf ”f - (J“P(Q) + Elcvi:r,l ”\pa(l)])uq”p((l)’(/ > fﬁ /S llv]i(Q)} )
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(1.5)
K (f,l;Lp,W,f(‘I’)) := inf {“f—y”p(sz) + IZ- () D gl )5 9 € ["V,f(Q)}
and ,
as K (£, Lo, Wi (w), WH(W)) n
= inf{“f = Illp@) + Ziaj=et 1V (O DGy + g € WHQ) }
Let U C R? be a convex l)odyr We set
" (1.6) we(f,U)y = sup {”Aﬁ,uf(’)”p(tf); h e /n"[},
where . Ay f(x) i ax,z4+rh €U
A f(w) = { 0 " otherwisc,
and .
W)=Y (-1 (;) St + ih).
. i=0
Let I = U[a; b] and 7 = 1[c; d] (a neighbourhood of the 0) he such that
(1.7) ﬁg(ﬂ'—a:l_b>§1{.7r

for some R > 1, where for U ¢ R, y € % and 1 > 0, we denote
U+y:={xeR*; «— y € U},

w=Aae kY 17weul).

The main result of this paper is the lollowing statement for the best
constrained approximations in terms of the K -functionals.

Theorem 1.1. ILel 1 Sp <oy and n be nalural, ¥ = % — = gp ¢4«
and let f € L,(2) be bounded from below or Jrom above respectively. Then we
have

(d) E(f, Har)piey < o™ (Jon™c Ly (W), WH(W)) 5

(2)
K™ (fon™; L, W (), WD) < (Lt )y + B (fon™'s 1, Wy ().



40 P. Parvanov

These inequalities are the rcason for the investigations in [5], where we
characterize for r = 1 and » = 2 the constrained K-Tunctionals in terms of
appropriate moduli and thus we make a characterization of the best algebraic
approximations from below and from above. This theorem is proved in Section
5. Let we mention that the “classic” inverse inequality for the best constrained
approximations is

K* ( FrnY Ly, W (W), WH(W )
¢ (E*(f, Humt oty + K (0755 Ly, Wy (9), W)(9)) )
We set
B(t,z) := {y € R¢ ilys] < ¥(t, a,) for every s =1, ...,d}.
In this paper we consider the following averaged modulus of smoothness

(1.8) T (F, ¥ (8))pp(@) : {/ W(t,x) / |/-\’l;,§zf'("')I'J(["{l"'} ’,

which is equivalent to (1.5) and (1.5').

Theorem 1.2. Let 1 < p < oo,r be natural and [ € L,(Q). Then we

y

have

(7.) CTT(fv lI’(t))p,p(ﬂ) < K (f’ i, L]N "V;;(\l,)) < CT'I'(fa w("))p,p(ﬂ);

(1,0)  er(£ ¥ (®)) iy < I (Fo8 Ly, Wi(9), W(¥)) < enl f W(1)) p000)-

This theorem is proved in Section 4.
In this paper meas(V) denotes the Lebesgue measure ol the imeasureble
set V. In order to prove Theorem 1.2 we use the following characteristic of f.

1 1
(1.9) Ty M) = { /n—-(—,r— fa nfml"dwlz} .

A relationship between (1.6) and (1.9) is
Theorem 1.3. If (1.7) is salisfied and f € L, () then,

CTT(fa 7‘-)1),7)((]) < “-’7'(./‘5 II ,)1) < CRd+TT‘I‘(f’ 7r)p,p(l|)'

This theorem is proved in Section 3.
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2. Some notations and auxiliary results
Let N be a fixed natural number. We set

Z={0,1,..,N-1}; z'={0, 1, ... N}*; E={0, 1}%

km
2, = cos(m — TV_)’ k=0,1,..,N,z_y=z0=-1, zyp1 =2y = 1.
For every j = (j1, jo, ..., ja) € Z we denote
@y = [Zjl’ Zj1+1] X e X [3]'«17 Zjd-f-l]

~ and for every j € Z' we denote
! -~
Qj = [Zh—lv 3j1+1] X e X [3.7}1—1’ '°.7d+]]‘

-1 =1
We set pu(v) = [Yes?du/ fj es—dufor 0 < v < 1,p(v) =0 for v < 0
and p(v) =1 for v > 1. Therefore g € C°°(R) and we define

o(v) =1 - 1((v = z0)/(21 — 20));

ps(v) = (v — ze—1) /(25 — 2s—1 )L = p{(v — 25)/(Zs41 — 24)))
fors=1,2,...N —1;

pn(v) = p((v — z2n-1)/(2n — 3N-1)).

Finally for every j € Z we set y() = H¢_, u; (x,). Therefore for every |
& € @ we have s |

(2.1) 0< pife) <1; pi(e) =0 if = ¢ Q)
(2.2) > wix) =1.
Jj€Z’

In the statements below we collect some properties of the above quanti-

ties.

Let 0 <t < % and N = {%1’-] + 1. Then we have
(2.3) Y(t,z) < meas(U(t,z)) < 240 (¢, 2 ):
(2.4) Y(t,z) ~ ¥(t,y) for every y € U(t,z);

(2.4) Y(t,z) ~ U(t,a + y) for every y € B(t,a);
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(2.5) c¥(t,z) < meas(Q) < c¥(t,y) lorevery y € Qi

(2.6) Q; CU(l,x) forany a € ij.

The inequalities (2.3)-(2.6) are proved in [1]. (2.4') follows from (2.3), (2.4) and
definition of B(t, ).

In order to prove the main result of this paper we need of the following
lemmas,

Lemma 2.1. Let 1 < p < oo,r and n be natural, g € I'I"'Iﬂ(ﬂ), then we

have
E~(g, Ho-)p@) < ¢ Y ¥ (27Dl y0)-

fa]=n1

This Lemma is a trivial corollary from Theorem 2 and Theorem 1in [1],
because the error of the best algebraic aprroximation from below is smaller than
the error of the best one-sided algebraic aprroximation.

Lemma 2.2. Let1l < p < oco,r and n be natwral and | € L,() be

bounded from below. Then we have

E™(f, Hamt)pi@y < K™ (£.n75 Ly, Wi(9), Wh(W))

This Lemma follows from Lemma 2.1 and Theorem -1 in [2] applied to
the algebraic aprroximations from helow.

Lemma 2.3. Letl [ and g belong to L,(2), lhen

(2.7) T (f + 9, ¥())p o) < T (LY ppie) + Tl YIE))p )i
, . |
(2.8) T?‘(f’ ‘p(t))p,p(ﬂ) < (”[“1)(9) for 0<t< E’

(2.9) 7 ([ U(81))ppi) < ()l S, ¥ (E2))p (), I 1 <ty < Aty

Proof. We get (2.7) and (2.9) directly from the delinition (1.8). To
prove (2.8) we use (2.4")

1

([ ¥()pp@) < I fllp) +¢ {fn V(t,2)™! fLpa /(e + :I/)I"’fl;l/(l:v};
1
<N llpey + ¢ {fsz Sy fl@ )P, + ’!/)”]d'y(lév}P
1
< ”f“p(ﬂ) +c {fQ If(;l:)l"(l;l}}l’ < Cllf”])(ﬂ)'
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3. A new representation of w,(f,1I),

Proof of Theorem 1.3. Obviously,

1

@y T EThem < e (b fesw i lALnS(@)lrde s w e BT Ydw}?
< ewp(f, 1)y

I'rom [6] we have that if f is defined for cach @ € R, then for every hy, » € RY
the r-th finite difference satisfies the equality

3 r . Y r ' . ) . 3
S B2 AL =YD (1> (A%t + 0= 810}
=1 i "
For h € R* we set II, = Il N (Il — rh). 1, is also parallelepiped if

R | b
(3.3) hoe 2! (11 _ ﬁi})

Let (3.3) be satisfied. We devide Ilj, and »~'x in 27 parallelepipeds,
respectively By, ..., Bya through the hyperplanes across the center, which are
parallel to the coordinate hyperplancs and my,...,m,u through the coordinate
hyperplanes, s.t. m; is opposite to I3;. Suppose & € #3, and v € vz, from (1.7)
we have that
(3.1) ¥, v+iv and &+ {r—1i)h+ 0 belong to H for every i
Hence for every @ € By using (3.2) and (3.1) we get

meas(ws )|AG () < e (Zf:; IAVPNVACIE 70}
+|Ah+ (oo GO do
Thus for every a € I,
IAh nf('lv)lp CZ& 1 uuus(n meas(ma) ]71' (Z::l ,;\g(,,_h).“.f('l" + '/’)l
HAhH&(v—h),nj("")l Y dv.

aking L,(II;)-norm with respect to x in the above inequality and using
1 t

[ 1aiasterde = [ a7 e
Hh. S
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in the left-hand side and @, « + ih € Il in the right-hand side we derive
1

- . . _ . > »
“Ah,nf(')”p(n) <eXia [{fu ‘,,‘LLT(LI_S(F_) j - |A7%(U_h),nf(’y)|7 (l'v(ly}

(3.5) s
p
{fl’[ 7ncas(7r) f =Ly IA/H_ £(v—h), [[-/(y)lp(l'mly} ] .
Let v € »~1x. Then from (1.7)
) L 2R 41
(3.6) i(v —h) and h+ —Z—(v — h) belong to Z”,—l_ .
r r T

Using (3.5) and (3.6) we have °

l
2 - r : 1
(3.7) AL (s < C{/H W/z“ \ |AL Sy |’(Im/}

We need of the equality

90 r . 7‘+tl T 7),
LG8 1 Ol € e8] | e 18570 IrhdJ}

If *2IEL. L < 1, then (3.8) is a trivial corollary from (3.7). Else, suppose n =
[-——'t—'ZRT 1] + 1. From (3.7) we have

1 ) ¥
AT . < — T LN P Syl
“ lL,l'If( )”P(H) >¢ {/” ’ITLC(LS(?T) o [A‘u,llf(-’/.)l d”d!/}

Changing v by nw, we obtain

1
(3'9,) ”A;L,Hf()“p(n) < cjf"l {/1 / |Anw [l / (y) II (/U'(llj}

| meas(

From the definition of the r-th finite difference we have that if f is defined
for each y € RY, then for every w € R¢ the following equality holds

n~1 n~—1

AL fly) = Z Z A fly + Eyw + .+ kw).
k1=0 k=0
Then
n-1 n—1

ALunfly) = Z Z ALnfly+kiw + .+ kw).

k1=0 ky=0
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Finally the last equality and (3.9) give (3.8).
Now from (3.8) we receive

a«+b.
2

sup {”Ah Hf( )”p(n) h € (H - ) } S (,‘,R""f'!l /’ p o(11)-

But for h € R?\ (Il - %ﬁ) we have [|A} g f()|l,ar = 0 and then

sup{||A; 1 fllpny 1 h € BE Y < R4y (Fum )y pin)-

This inequality and (3.1) complete the proof of Theorem 1.2. |

Remark . Let U C R¢ be a covex neighbourhood of the 0 with a
strictly positive minimal radius f27 and with a finite maximal radius 4. That
is, B(Ry) C U C B(R3), where l)’ (p) = {w € R |a] < p}. We can investigate

T (Fs U pp(ny += {/” v / | AL (e |’(lwll}

and prove in analogical way the statement which is similar to I'.1.2 for the above
averaged modulus.
4. Equivalence of (1.5),(1.5’) and (1.8)

Here we use methods which are based on ideas of [3] and prove that the
K-functionals (1.5) and (1.5') and modulus of smoothness (1.8) are equivalent
(Theorem 1.2). We start with the following

Lemma 4.1. Let0 <t < % Then for every [ € L,(8) we have

(1.1) T (fs W)ty < K (Sob Ly, Wi (W) 5

(4.2) K (f,t,L,,,tV’( ), M"(w)) < ery (S V(1)) ppis2)-
Proof. Let us begin with the prool of (:1.2). We sct
" w2
and use the notation for €2;, Sl; and g; from the beginning of Section 2. We
denote by @; € H,_y the polynomial of best algebraic [, approximation of

degree r — 1 to f in Q;-, j € Z'. Then from the Whitney theorem and Theorem
1.3 we have
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(4.4) I/ = Qillnary < ewrl/; )y < erel [, Q) (27
We set
(4.5) g(x) = > pile)Q ().

i€z’

rom (4.3)-(4.5), (2.5) and (2.6) we obtain
| ez 1] — @ Ip((2
cYjez fsz; [/(x) — v)|Pd
¢ Tien el 12 );;,,)m,j)
CZ}'GZ’ fQ' m},(—gﬁjfgr |A;} @ J)Pdod
¢ ez fﬂ’ fB(z l)|-\l, of ()|[Pdod
er ULV,

/- g“p(g)

IA A

IA I

Fix a, |o| =7 or |a| =1 Let « € ;, j € Z. Ivom the definitions of
), @;(x) and g(x) we have

. 9(2) = Q;(2) + D g 2) (Qigel) = Q)

cely
and then from the last equality and DQ; = 0, it follows that

Dog(x)=>_ 3 ()J““”M( P(Qjel) = Q ()

€€E 0<B<ar

Now using (2.5), (2.6), the definitions of ¢; and (;, Markov's inequality and
(4.4) we have

(@) Dgllpqe,y < (L 2D gllpeey)

< eVt 25) Yeer EU<[$<L¥( D™ ’/¢J+ci|\(s2,)||f)ﬁ (J;+( Q) lpe;)

< WL, ) Teen Socpea (¥° /j(/'-zjv))* (e m)) Qi+ = Qillnaj)

S e |Qire — Qillpe)) £ ¢ Xeer (Uf = Qjellpyy + I/ - Q.i“pm,-)) <

<ere(f, Qﬂvm(%)'

Ilence,

1@ D9l < ¢ ez U2, )
(+3) =cTjer Ja 'uwu.s(Q;) Jan 1AL [ )" dod

< e Tjez Jay V(b e) ™ Jypa 1AL o ()| dode
= cr(f, ‘1’(’)),, P(9)"
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In this way (4.2) follows from (4.6), (+.7) and (1.5).
We turn our attention to (4.1). Let a0 = (e, ...,ay), |a] = r be multi-
index and z = (21, ..., 2g) € RY. We define
v d Lo
. S e YL
Immediately from the definition of the linite difference (sce also [3]) we have

Al of(z) = / /f” 4 Y1+ ety )dyydy,

for fin W7 (Q), where we assume f( = 0 when y does not helong to 2.
br 01n the other hand,

P )m ‘
(a3
ferf=r
Then using the last equality, after a change of variables and older’s inequality
we have
|ALaf(2)] < z|a|_r|”0| | |" () Jo ~-o.f('f!])“'./'(:v+;'/1 + ot g )ldyr.dy,
= Llal=r 17 (B 57107 [ + y)ldy |
< ¢ Llaj=r !““‘I if’l"l‘l' 10 g 1D S+ Py}

A RE

“CZIGI— |z __{I() D f(x+y '/)’1'/}' .
Here we assume D f(y) = 0 when g does not l)el()n.p; Lo . Then,
(WU, 2)7 fyg 10T g P}
< ‘de{‘l’ 80) ™! fp (i 12 PRI ST IO S+ )y }
1
< ¢ Catar { ¥ 2)7 o 1D (e + 9)IPdy [pon m,,l EERAT

<Y aj=r {\ll(f 2) TN @) [ 1P (2 +y) !”(IJ}
" I'rom the above inequality, (1.8) and (2.4') we obtain
L
T f, lIJ(t))p,p(Q) < c{fQ V() )WL, ) I/B L) | D fla + !j)|p(/y([;1:}7’
1
(4.8) < C{fn ) :H(t o PG+ )P e+ y)T (l‘!/fl-l?}"
<e{fo¥(L,a) DS |”/L}” < o= NYODY [l ey
Finally we prove (4.1). Let g be an arbitrary lunction in W(R). Using
Lemma 2.3 (inequalities (2.7) and (2.9)) and (4.8) we have
T7‘(f, ‘Il(t))p,'p(ﬂ) - Tv'((f =4)+y, ‘l’(l‘) )p,p(Q)‘
< CT’/'((./ - {/)-, \p(l))p,p(!l) + T‘r(.’/* W(l))p,])(ﬂ
<e¢ (”j — gl + ZM:F H\]i“(l)/)”!/l|,>(§2)§
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Taking an infimum on all g € W () in the above inequality, we prove (4.1).

Proof of Theorem 1.2.

We have to investigate only the case t > %, because for 0 < t <
Theorem 1.2 is equal to Lemma 4.1. I'rom Theorem 1.3, Lemma 4.1 (4.1) wit
. = § and the monotonicity of the A'-functional (1.5) with respect to & we get

N e

[

1

T'r(f7 \lj(t))p,p(ﬂ) < C‘—‘-’r(,.fa Q)p S CTr(fv ‘]!(2_1))7),])(9)

A T (P ) £ e (s W)

which proves the left inequality of Theorem 1.2(r).
From [4] we have that there are 2 € Il,_y, such that

- R”p(Q) < ewr(f, Q)p.
Then from (1.5), Theorem 1.3 and Lemma 2.3(2.9) we obtain
K (f,55 Ly WJ(0), WHW)) < ellf = Rlley < o,/ 92),
< err (£, ¥(27))pp@) S eTelfs ¥ (1)) ()

This is the right inequality of Theorem 1.2(r,l). Then (4.9), (1.10) and the trivial
inequality

(4.10)

K (f,t, Ly, Wy (9)) < K (f0 Ly, Wy (), 15(9))

give Theorem 1.2.

5. Main result

Proof of Theorem 1.1.
We first prove Theorem 1.1 for the approximation {rom below, i.e. in the _
case x =7 =7,
Inequality (d) follows immediately from Lemina 2.2. Irom Theorem 1.2

we have
(5.1) K (f,t; L,,,W;(W),PV;(\P)) <elk (f,t; L, [/V.I'j'(\ll )) .

(5.1) and Theorem 4.2 from [2] prove Theorem 1.1 for the approximation
[rom below.
Using that E*(f) = E~(—f) , K*(f) = K~(~f) (with one and the

same values of the parameters) we complete the proof of Theorem 1.1.



Characterization of Best Multivariate Algebraic Approximations 49
References

[I]V.H.Hristovand K. G.Ivanov. Operators for one-sided approximation
by algebraic polynomials in L,([—1,1]%). Mathematica Balkanica (N. S.),
2, N 4 (1988), 374-390.

2] V.H.Hristovand K. G.lvanov. Realization of K-functionals on
subsets and constrained approximation. Mathematica Balkanica (N. S.),
4, N 3 (1990), 236-257. :

[3] K. G.Ivanov. A characterization of weighted Pcetre K-Tunctionals. J.
of Approzimation Theory, 56, N 2 (1989), 185-211.

[ H.Johnenand K. Scherer. On the equavilance of the K-{unctional
and moduli of continuity and some applications. In “Constructive Theory
of Functions of Several Variables*. Iid. W. Schampp, K. Zeller, 1977,
119-140.

[5] P. E. P ar v anov. Characterization of best algebraic approximatoin from
below and from above in the multivariate case. To appear.

[6] B.SendovandV.A. Popov. The Averaged Moduli of Smoothness. John
Willey & Sons, 1988.

Institute of Mathematics and Informatics Received 12.12.1993
Bulgarian Academy of Sciences
Sofia 1090, BULGARIA



